WO2022196619A1 - 断続シーム溶接測定装置及び断続シーム溶接測定方法 - Google Patents

断続シーム溶接測定装置及び断続シーム溶接測定方法 Download PDF

Info

Publication number
WO2022196619A1
WO2022196619A1 PCT/JP2022/011242 JP2022011242W WO2022196619A1 WO 2022196619 A1 WO2022196619 A1 WO 2022196619A1 JP 2022011242 W JP2022011242 W JP 2022011242W WO 2022196619 A1 WO2022196619 A1 WO 2022196619A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
measurement
time
current
intermittent seam
Prior art date
Application number
PCT/JP2022/011242
Other languages
English (en)
French (fr)
Inventor
貴洋 矢野
Original Assignee
株式会社アマダ
株式会社アマダウエルドテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダ, 株式会社アマダウエルドテック filed Critical 株式会社アマダ
Publication of WO2022196619A1 publication Critical patent/WO2022196619A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/06Resistance welding; Severing by resistance heating using roller electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups

Definitions

  • the present invention relates to an intermittent seam welding measuring device and an intermittent seam welding measuring method.
  • Intermittent seam welding is a welding method that repeats the cycle of welding that energizes the rotating electrode and pauses that do not energize.
  • the welding time is 1-5 cycles (eg 3 cycles) or about 5-200 ms, and the rest time is 1-3 cycles (eg 1 cycle) or about 5-60 ms.
  • the repetition time may extend over several minutes.
  • a conventional measuring instrument measures the current value of the welding circuit (hereinafter referred to as the welding current value) and the voltage value between the rotating electrodes in the welding range (hereinafter referred to as the welding current value and the voltage value between the rotating electrodes). current value, etc.).
  • the welding current value, etc. is measured without specifying each section of the energization time zone and the rest time zone, after measuring the welding current value, etc. in the welding range, the first 0.5 cycle of the section where no energization is performed Alternatively, the welding current value or the like is measured at 1 ms, and the time for judging that the energization is finished is measured to determine the end of the measurement.
  • the effective value, arithmetic mean effective value, and peak value of the welding current value, etc. are calculated from the measured value of the welding current value, etc.
  • the arithmetic mean effective value is obtained by calculating the effective value of the welding current value in units of 0.5 cycles or 1 ms and averaging the results in the welding range. It is checked whether or not the effective value, arithmetic mean effective value, and peak value of the obtained welding current values are within the judgment range, and the judgment is output.
  • the total time of the time to determine that energization has ended, the time to calculate the effective value of the welding current value, etc., and the determination output time may be longer than the pause time. In this case, the welding current value and the like for the next welding cannot be measured.
  • One aspect of the present invention provides a seam welding measurement device that includes a measurement setting section, a current trigger circuit, a measurement circuit, an arithmetic processing section, and a judgment output section.
  • the measurement setting unit is set to the intermittent seam welding device in the intermittent seam welding measurement device when welding the object to be welded by repeating the welding time during which the welding current is applied to the object to be welded and the welding pause time during which the welding current is not applied. Set the measurement time and measurement pause time to be the same values as the welding time and welding pause time, respectively.
  • a current trigger circuit detects the current value of the welding current to obtain a welding measurement start trigger.
  • the measurement circuit measures the current value of the welding current from the time of the welding measurement start trigger obtained by the current trigger circuit until the measurement time set by the measurement setting section elapses.
  • the arithmetic processing unit performs arithmetic processing on the measured values measured by the measurement circuit from after the measurement time elapses until the measurement pause time elapses.
  • the judgment output section judges the welding state of the object to be welded based on the calculated value obtained by the arithmetic processing section.
  • the measurement setting unit is set to the intermittent seam welding device in the intermittent seam measurement welding device when welding the object to be welded by repeating the welding time during which the welding current is applied to the object to be welded and the welding pause time during which the welding current is not applied.
  • Set the measurement time and measurement pause time to be the same values as the welding time and welding pause time, respectively.
  • the measurement circuit measures the current value of the welding current from the time of the welding measurement start trigger to the elapse of the measurement time set by the measurement setting section.
  • the arithmetic processing unit performs arithmetic processing of the measured value from after the measurement time elapses until the measurement pause time elapses. That is, since the measurement values are calculated within the preset measurement pause time, all welds can be measured and calculated. Therefore, it is possible to determine the measured values such as individual welding current values, and furthermore, determine the measured values such as the overall welding current value.
  • the welding current value and the like of all welding of intermittent seam welding are measured, the quality of welding is determined without omission based on individual welding current values, and the quality of welding is determined based on the overall welding current value. Defect judgment can be performed.
  • FIG. 1 is a configuration diagram of an intermittent seam welding measuring device and a welding power source according to an embodiment of the present invention.
  • FIG. 2 is a timing chart for repeating energization and resting of intermittent seam welding by the welding power source according to the embodiment of the present invention.
  • FIG. 3 is a timing chart showing setting of measurement time and pause time by the measurement setting section of the intermittent seam welding measurement apparatus according to the embodiment of the present invention.
  • FIG. 4 is a timing chart for repeating measurement of the welding state of the object to be welded and arithmetic processing by the measurement circuit of the intermittent seam welding measurement apparatus according to the embodiment of the present invention.
  • FIG. 1 is a configuration diagram of an intermittent seam welding measuring device and a welding power source according to an embodiment of the present invention.
  • FIG. 2 is a timing chart for repeating energization and resting of intermittent seam welding by the welding power source according to the embodiment of the present invention.
  • FIG. 3 is a timing chart showing setting of measurement time and pause time by the measurement
  • FIG. 5 is a timing chart showing the determination output when the determination is poor and when the determination is good after repeating the measurement and arithmetic processing shown in FIG.
  • FIG. 6 is a flow chart showing processing of the welding power source according to the embodiment of the present invention.
  • FIG. 7 is a flow chart showing processing of the intermittent seam welding measuring device according to the embodiment of the present invention.
  • FIG. 1 is a configuration diagram of an intermittent seam welding measuring device and welding power source according to an embodiment of the present invention. This embodiment will be described with reference to FIG.
  • the intermittent seam welding measuring device 2 repeats the welding time during which the welding current is applied to the welding object 5 and the welding pause time during which the welding current is not applied, thereby measuring the intermittent seam welding when welding the welding object 5.
  • a measurement setting unit 21 that sets the measurement time and the measurement rest time that are the same values as the welding time and the welding rest time that are set for the intermittent seam welding device, and the welding measurement by detecting the current value of the welding current.
  • a current trigger circuit 23 obtains a start trigger, and the current value of the welding current is measured from the time of the welding measurement start trigger obtained by the current trigger circuit 23 until the measurement time set by the measurement setting unit 21 elapses.
  • a measurement circuit 25 an arithmetic processing unit 22 that performs arithmetic processing on the measured value measured by the measurement circuit 25 from the time the measurement time elapses until the measurement pause time elapses, and the arithmetic processing obtained by the arithmetic processing unit 22 and a determination output unit 27 that determines the welding state of the welding target 5 based on the value.
  • the intermittent seam welding measurement device 2 includes a waveform restoration circuit 24 that restores the current waveform by integrating an analog current differential waveform of the current value of the welding current. until the measurement time elapses, the current waveform restored by the waveform restoration circuit 24 is converted into a digital signal, and the welding current is measured.
  • a welding power source 1 is a power source for performing intermittent seam welding, and as shown in FIG. Prepare.
  • One end of the primary winding P of the transformer T is connected to one end of a single-phase AC power supply (hereinafter abbreviated as an AC power supply) (not shown), and the other end of the primary winding P is connected to an AC power supply via thyristors 14a and 14b. Connected to the other end of the power supply.
  • the welding power source 1, the transformer T, and the rotating electrodes 4a and 4b constitute an intermittent seam welding device for intermittently seam welding the object 5 to be welded.
  • rotating electrodes 4a and 4b are connected. Welding current is supplied to the rotating electrodes 4a and 4b from an AC power source through the transformer T and the thyristors 14a and 14b.
  • a welding current is applied while the rotating electrodes 4a and 4b are rotating while the object 5 to be welded is pressed between the disk-shaped rotating electrodes 4a and 4b. to heat. Furthermore, by moving the rotating electrodes 4a and 4b, the welding objects 5 are continuously joined while shifting the welding points.
  • the welding current setting unit 11 sets the magnitude of the welding current for intermittent seam welding, the welding time (energization time) of the welding current, and the welding pause time.
  • the welding current control unit 12 controls the magnitude of the welding current set by the welding current setting unit 11, the welding time (energization time) of the welding current, and the welding pause time, and sends a control signal to the ignition pulse generation circuit 13. Output.
  • the ignition pulse generation circuit 13 generates an ignition pulse based on the control signal from the welding current control section 12, and outputs the ignition pulse to the gates of the thyristors 14a and 14b.
  • the thyristors 14a and 14b are turned on according to the ignition pulse from the ignition pulse generating circuit 13, thereby allowing the welding current to flow.
  • the display unit 15 displays the magnitude of the welding current, the welding time (energization time) of the welding current, and the welding pause time.
  • the transformer T has a primary winding P and a secondary winding S that are electromagnetically coupled, transforms the AC voltage of the AC power supply, and outputs it to the secondary winding S side.
  • the current sensor 3 has a coil wound around a toroidal core and a secondary winding S of a transformer T passing through the toroidal core. is output to the current trigger circuit 23 .
  • the measuring instrument 2 (disconnection seam welding measuring device) includes a measurement setting section 21, an arithmetic processing section 22, a current trigger circuit 23, a current sensor 3, a waveform restoration circuit 24, a secondary current measurement circuit 25, and a secondary voltage measurement circuit 26. , a determination output unit 27 and a display unit 28 .
  • the measurement setting unit 21 includes an input unit such as a touch panel and an operation panel, and repeats a welding time during which current is applied to the object to be welded 5 and a welding pause time during which the current is not applied.
  • a measurement time and a measurement pause time are set that are the same values as the welding time and the welding pause time set in the intermittent seam welding device. Since the welding time of the welding power source is 3 cycles as shown in FIG. 2, the measurement time is also set to 3 cycles as shown in FIG. Since the welding rest time of the welding power source is one cycle as shown in FIG. 2, the measurement rest time is also set to one cycle as shown in FIG. The measurement time is the time for measuring the current value of the welding current flowing on the secondary winding S side of the transformer T. As shown in FIG.
  • the arithmetic processing unit 22 is composed of a CPU (Central Processing Unit), stores the measurement time and the measurement pause time set by the measurement setting unit 21 in a memory (not shown), and stores the measurement time and the measurement pause time in the secondary current measurement circuit. 25.
  • CPU Central Processing Unit
  • the current trigger circuit 23 obtains a welding measurement start trigger, which is the start of current flow, with an analog current differential waveform obtained from the output of the time differential value of the measured current consisting of the induced voltage detected by the current sensor 3.
  • the waveform restoration circuit 24 includes an operational amplifier circuit and an integration circuit, amplifies the analog differential current waveform detected by the current sensor 3 by the operational amplifier circuit, integrates the amplified current differential waveform by the integration circuit, Restore the current waveform.
  • the secondary current measuring circuit 25 corresponds to the measuring circuit of the present invention and includes an A/D converter (analog/digital converter). , and the measurement time set by the measurement setting unit 21 are input.
  • the secondary current measurement circuit 25 converts the current waveform restored by the waveform restoration circuit 24 into a digital signal by an A/D converter from the time of the welding measurement start trigger until the measurement time elapses. A current value flowing through the winding S is measured. That is, the process of measuring the welding state of the object 5 to be welded is repeatedly performed.
  • the secondary voltage measurement circuit 26 measures the voltage value between the rotating electrodes 4 a and 4 b and outputs the measured voltage value to the arithmetic processing section 22 .
  • Arithmetic processing unit 22 calculates current effective value, current arithmetic mean effective value, current Perform processing to calculate the peak value.
  • the arithmetic processing unit 22 calculates the voltage rms value, the voltage arithmetic mean rms value, and the voltage peak value based on the voltage measurement values measured by the secondary voltage measurement circuit 26 from after the measurement time has elapsed until the measurement pause time has elapsed. Perform processing to calculate the value.
  • the determination output unit 27 determines the welding target 5 based on the current effective value, the current arithmetic average effective value, the current peak value, the voltage effective value, the voltage arithmetic average effective value, and the voltage peak value obtained by the arithmetic processing unit 22. Determine the welding condition.
  • the display unit 28 displays the computation result of the computation processing unit 22 and the determination result of the determination output unit 27 .
  • FIG. 2 is a timing chart that repeats energization and resting of intermittent seam welding by the welding power source according to the embodiment of the present invention.
  • FIG. 6 is a flow chart showing processing of the welding power source according to the embodiment of the present invention. First, the operation of the welding power source 1 will be described with reference to the timing chart of repeating energization and suspension of intermittent seam welding by the welding power source 1 shown in FIG. 2 and the flowchart showing the processing of the welding power source 1 shown in FIG.
  • the welding current setting unit 11 sets the magnitude of the welding current for intermittent seam welding, the welding time (energization time) of the welding current, and the welding pause time (step S11).
  • the welding current control unit 12 controls the magnitude of the welding current set by the welding current setting unit 11, the welding time (energization time) of the welding current, and the welding pause time.
  • the firing pulse generating circuit 13 outputs the generated firing pulses to the thyristors 14a and 14b.
  • the thyristors 14a and 14b pass a welding current from the AC power supply to the primary winding P of the transformer T according to the ignition pulse. Further, a welding current flows through the secondary winding S of the transformer T, and this welding current flows through the disk-shaped rotating electrodes 4a and 4b. Thereby, intermittent seam welding is started (step S13).
  • the welding current has a welding time (energization time) from time t0 to t6, a welding rest time from time t6 to t8, a welding time from time t8 to t14, and a welding rest time from time t14 to t16.
  • Time . . . becomes a repeated increase/decrease transition state of the current value.
  • the welding current control unit 12 and the ignition pulse generation circuit 13 stop the intermittent seam welding to stop the welding (step S15).
  • step S17 determines whether or not the intermittent seam welding has ended.
  • step S17 if the intermittent seam welding is not finished, the measuring instrument 2 returns to step S11 and performs the processing from step S11 to step S15.
  • the measuring device 2 finishes the process.
  • FIG. 3 is a timing chart showing setting of measurement time and pause time by the measurement setting section of the intermittent seam welding measurement apparatus according to the embodiment of the present invention.
  • FIG. 4 is a timing chart for repeating measurement of the welding state of the object to be welded and arithmetic processing by the measurement circuit of the intermittent seam welding measurement apparatus according to the embodiment of the present invention.
  • FIG. 5 is a timing chart showing the determination output when the determination is poor and when the determination is good after repeating the measurement and arithmetic processing shown in FIG.
  • FIG. 7 is a flow chart showing processing of the intermittent seam welding measuring device according to the embodiment of the present invention.
  • the measurement setting unit 21 determines the welding time and the welding pause time in the intermittent seam welding for welding the weld object 5 by repeating the welding time during which the current is applied to the welding object 5 and the welding pause time during which the current is not applied. Set the measurement time and the measurement pause time, which are the same values as each of (Step S21).
  • the measurement setting unit 21 sets the measurement time from time t0 to t6, the measurement rest time from time t6 to t8, the measurement time from time t8 to t14, the measurement rest time from time t14 to t16, and so on. repeatedly set. That is, the measuring device 2 is set with a measurement time and a measurement rest time synchronized with and equal to the welding time and welding rest time set by the welding power source 1 .
  • the arithmetic processing unit 22 stores the measurement time and the measurement pause time set by the measurement setting unit 21 in the storage device, and sets the measurement timing based on the measurement time and the measurement pause time (step S23).
  • the arithmetic processing unit 22 outputs measurement timing information to the secondary current measurement circuit 25 .
  • the current trigger circuit 23 determines whether the start of welding current flow has been detected from the current differential waveform detected by the current sensor 3 (step S25). When the current trigger circuit 23 detects the start of welding current flow (the rise of the welding current value), the current trigger circuit 23 acquires a welding measurement start trigger as the start of welding current flow.
  • the waveform restoration circuit 24, secondary current measurement circuit 25, secondary voltage measurement circuit 26, and arithmetic processing unit 22 start measuring the welding current value and welding voltage value (step S27).
  • the waveform restoration circuit 24 amplifies the analog differential current waveform detected by the current sensor 3 with an operational amplifier circuit, integrates the amplified current differential waveform with an integration circuit, and restores the current waveform. .
  • the secondary current measurement circuit 25 inputs the welding measurement start trigger obtained by the current trigger circuit 23 and the measurement time set by the measurement setting section 21 . As shown in FIG. 4, the secondary current measurement circuit 25 measures the current restored by the waveform restoration circuit 24 from the welding measurement start trigger time (for example, time t0) until the measurement time (for example, time t6) elapses. The waveform is converted into a digital signal by an A/D converter, and the secondary current value (welding current value) is measured. Also, the secondary current measuring circuit 25 measures the welding time (step S29).
  • the secondary current measurement circuit 25 measures the current value during the measurement time from time t0 to t6, and measures the current value during the measurement time from time t8 to t14. measure the value.
  • the measuring instrument 2 stops the waveform restoration circuit 24, secondary current measurement circuit 25, and secondary voltage measurement circuit 26 (step S31). That is, the measurement pause time is from t6 to t8 and from t14 to t16.
  • the arithmetic processing unit 22 calculates the effective value and the like based on the current measurement value measured by the secondary current measurement circuit 25 from the time the measurement time elapses until the measurement pause time elapses (for example, time t78 in FIG. 4). (step S33).
  • the arithmetic processing unit 22 calculates the current effective value and the like during the measurement time t0 to t6 after the measurement time t6 to t8 has passed and until the measurement pause time has passed. After the measurement time from time t14 to t16 has passed and until the measurement rest time has passed, the current effective value and the like during time t8 to t14 are calculated.
  • the arithmetic processing unit 22 calculates the effective value of the welding current value, the arithmetic mean effective value, and the peak value from the measured value of the welding current value, etc., for each measurement time.
  • the determination output unit 27 performs individual determination of non-defective and defective welding objects 5 based on the computation results obtained by the computation processing unit 22 (step S35). Determination of whether the object to be welded 5 is non-defective or non-defective is performed, for example, as follows. As shown in FIG. 5, when the peak value of the current value is within a predetermined value range, the product is determined to be "non-defective" (time t0 to t6). When the peak value of the current reaches the first threshold value, which is larger than the predetermined value range, the product is judged to be "defective" (time t8 to t14).
  • the judgment of the non-defective product of the welding target 5 is performed in multiple stages, for example, “defective product GOOD”, “defective product NO GOOD 1", and “defective product NO GOOD 2” based on the first threshold value and the second threshold value. can be classified. Furthermore, the judgment of the non-defective product of the welding object 5 is performed in multiple stages, for example, “good product GOOD”, “defective product NO GOOD 1", “defective product NO GOOD 2", “defective product NO GOOD 3", and the first threshold value , second threshold, and third threshold.
  • the determination output unit 27 stores the individual determination result, that is, the determination result for each measurement time in the storage device (step S37).
  • the determination output unit 27 determines whether or not the intermittent seam welding has ended (step S39). If the intermittent seam welding is not finished in step S39, the determination output unit 27 returns to step S25 and performs the processing from step S25 to step S37.
  • the determination output unit 27 makes an overall determination that summarizes the individual determinations (step S41). After that, the determination output unit 27 stores the overall determination result in the storage device (step S43).
  • the determination output unit 27 outputs the defect determination after the intermittent seam welding is completed. This makes it possible to output the determination of the entire welding.
  • the determination output unit 27 performs a defect determination output (Low: NO GOOD) and continues the defect determination output when the welding target 5 is defective.
  • a defect determination output Low: NO GOOD
  • the determination output unit 27 performs a defect determination output (Low: NO GOOD) and continues the defect determination output when the welding target 5 is defective.
  • the determination output unit 27 performs a defect determination output (Low: NO GOOD) when the welding target 5 is defective, and then when the welding state of the welding target 5 becomes good. A good judgment output (High: GOOD) is performed, and the defective judgment output is stopped. This makes it possible to determine the location determined to be defective in welding.
  • the determination output unit 27 performs a good determination output (High: GOOD) after the end of welding when the determination of the welding target 5 is good.
  • the measurement setting unit 21 repeats the welding time during which the current is applied to the welding object 5 and the welding pause time during which the current is not applied.
  • the intermittent seam welding measurement device for welding set the measurement time and the measurement rest time that are the same values as the welding time and the welding rest time set for the intermittent seam welding device.
  • the secondary current measurement circuit 25 measures the current value from the time of the welding measurement start trigger until the measurement time elapses.
  • the arithmetic processing unit 22 performs arithmetic processing on the measured values after the measurement time has elapsed and until the measurement pause time has elapsed.
  • the arithmetic processing unit 22 calculates the measured values during the preset pause time, that is, the interval from the measurement time to the measurement pause time, all welds can be measured and calculated. Therefore, it is possible to determine the quality of welding based on individual welding current values, and further determine the quality of welding based on the overall welding current value.
  • the secondary current measurement circuit 25 converts the current waveform restored by the waveform restoration circuit 24 into a digital signal and measures the current value from the time of the welding measurement start trigger until the measurement time elapses. , the welding current value, which is the secondary current, can be accurately and repeatedly measured for the measurement time.
  • the measuring instrument 2 when the measuring instrument 2 is connected to the welding power source 1 that supplies current to the welding device via a communication network, that is, when the intermittent seam welding device and the intermittent seam welding measuring instrument can communicate information via the communication network. Secondly, the measuring instrument 2 receives signals indicating the welding time and the welding pause time from the welding power source 1 via the communication network. The measurement setting unit 21 can set the measurement time and the measurement pause time that are the same values as the welding time and the welding pause time received from the welding power source 1 via the communication network.
  • the present invention is not limited to the intermittent seam welding measuring device according to the embodiment described above, and can be variously modified without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Abstract

測定設定部(21)には、溶接対象物(5)に溶接電流を流す溶接時間と溶接電流を流さない溶接休止時間とを繰り返し溶接対象物を溶接する断続シーム溶接する際の断続シーム溶接測定装置(2)における、断続シーム溶接装置の溶接時間及び溶接休止時間の各々と同じ値である測定時間及び測定休止時間を設定し、電流トリガ回路(23)は溶接電流値の立ち上がりを検出し溶接測定開始トリガを得る。測定回路(25)は電流トリガ回路(23)で得られた溶接測定開始トリガの時刻から測定設定部(21)で設定された測定時間が経過するまでの間、電流値を測定する。演算処理部(22)は測定時間の経過後から測定休止時間が経過するまでの間、測定された測定値の演算処理を行う。判定出力部(27)は演算処理部(22)で得られた演算値に基づき溶接対象物の溶接状態を判定する。

Description

断続シーム溶接測定装置及び断続シーム溶接測定方法
 本発明は、断続シーム溶接測定装置及び断続シーム溶接測定方法に関する。
 断続シーム溶接は、回転電極に通電を行う溶接と通電を行わない休止とのサイクルを繰り返し続ける溶接工法である。溶接時間は、1~5サイクル(例えば3サイクル)又は5~200ms程度であり、休止時間は、1~3サイクル(例えば1サイクル)又は5~60ms程度である。繰り返し時間は数分間に亘る場合もある。
 従来の測定器は、溶接範囲の、溶接回路の電流値(以下溶接電流値と呼ぶ)及び回転電極間の電圧値を測定する(以下、溶接電流値と回転電極間の電圧値を合わせて溶接電流値等と呼ぶ)。この場合、通電時間帯と休止時間帯の各区間を指定しないで溶接電流値等を測定するため、溶接範囲で溶接電流値等を測定した後に、通電を行わない区間の最初の0.5サイクル又は1msで溶接電流値等を測定し、通電が終わったと判断する時間を測定して、測定終了判定を行う。
 さらに、溶接電流値等の測定値から溶接電流値等の実効値、相加平均実効値、ピーク値を演算する。相加平均実効値は、0.5サイクル又は1ms単位で溶接電流値の実効値を演算し、その結果を溶接範囲で平均して求めたものである。得られた溶接電流値の実効値、相加平均実効値、ピーク値が判定範囲内かどうかの確認を行い、判定出力する。
特許第5305172号公報
 通電が終わったと判断する時間と、溶接電流値の実効値等の演算時間と、判定出力時間との合計時間が、休止時間よりも長くなる場合がある。この場合、次の溶接の溶接電流値等を測定できなくなる。
 また、測定毎に判定出力を行うので、断続シーム溶接の全体を通した判定結果を出すことができない。
 本発明の一態様は、測定設定部と、電流トリガ回路と、測定回路と、演算処理部と、判定出力部とを備えるシーム溶接測定装置を提供する。測定設定部は、溶接対象物に溶接電流を流す溶接時間と溶接電流を流さない溶接休止時間とを繰り返すことにより溶接対象物を溶接する際の断続シーム溶接測定装置における、断続シーム溶接装置へ設定する溶接時間及び溶接休止時間の各々と同じ値である測定時間及び測定休止時間を設定する。電流トリガ回路は、溶接電流の電流値を検出して、溶接測定開始トリガを得る。測定回路は、電流トリガ回路で得られた溶接測定開始トリガの時刻から測定設定部で設定された測定時間が経過するまでの間、溶接電流の電流値を測定する。演算処理部は、測定時間の経過後から測定休止時間が経過するまでの間、測定回路で測定された測定値の演算処理を行う。判定出力部は、演算処理部で得られた演算値に基づき溶接対象物の溶接状態を判定する。
 測定設定部は、溶接対象物に溶接電流を流す溶接時間と溶接電流を流さない溶接休止時間とを繰り返すことにより溶接対象物を溶接する際の断続シーム測定溶接装置における、断続シーム溶接装置へ設定する溶接時間及び溶接休止時間の各々と同じ値である測定時間及び測定休止時間を設定する。測定回路は、溶接測定開始トリガの時刻から測定設定部で設定された測定時間が経過するまでの間、溶接電流の電流値を測定する。演算処理部は、測定時間の経過後から測定休止時間が経過するまでの間、測定値の演算処理を行う。即ち、予め設定された測定休止時間内に測定値の演算を行うので、全溶接を測定し、演算できる。このため、個々の溶接電流値等の測定値の判定を行い、更に全体の溶接電流値等の測定値の判定を行うことができる。
 本発明の一態様によれば、断続シーム溶接の全溶接の溶接電流値等を測定し、個々の溶接電流値による溶接の良不良判定を漏れなく行い、更に全体の溶接電流値による溶接の良不良判定を行うことができる。
図1は、本発明の実施形態に係る断続シーム溶接測定装置と溶接電源との構成図である。 図2は、本発明の実施形態に係る溶接電源による断続シーム溶接の通電と休止とを繰り返すタイミングチャートである。 図3は、本発明の実施形態に係る断続シーム溶接測定装置の測定設定部による測定時間と休止時間の設定を示すタイミングチャートである。 図4は、本発明の実施形態に係る断続シーム溶接測定装置の測定回路による溶接対象物の溶接状態の測定と演算処理を繰り返すタイミングチャートである。 図5は、図4に示す測定と演算処理を繰り返した後の判定不良時と判定良時の判定出力を示すタイミングチャートである。 図6は、本発明の実施形態に係る溶接電源の処理を示すフローチャートである。 図7は、本発明の実施形態に係る断続シーム溶接測定装置の処理を示すフローチャートである。
 以下、本発明の実施形態の断続シーム溶接測定装置及び断続シーム溶接測定方法について、図面を参照しながら詳細に説明する。図面の記載において同一部分には同一符号を付して説明を省略する。
(断続シーム溶接測定装置の基本構成)
 図1は、本発明の実施形態に係る断続シーム溶接測定装置と溶接電源との構成図である。図1を参照して本実施形態について説明する。
 一実施形態に係る断続シーム溶接測定装置2は、溶接対象物5に溶接電流を流す溶接時間と溶接電流を流さない溶接休止時間とを繰り返すことにより溶接対象物5を溶接する際の断続シーム溶接測定装置における、断続シーム溶接装置へ設定する溶接時間及び溶接休止時間の各々と同じ値である測定時間及び測定休止時間を設定する測定設定部21と、溶接電流の電流値を検出して溶接測定開始トリガを得る電流トリガ回路23と、電流トリガ回路23で得られた溶接測定開始トリガの時刻から測定設定部21で設定された測定時間が経過するまでの間、溶接電流の電流値を測定する測定回路25と、測定時間の経過後から測定休止時間が経過するまでの間、測定回路25で測定された測定値の演算処理を行う演算処理部22と、演算処理部22で得られた演算値に基づき溶接対象物5の溶接状態を判定する判定出力部27と、を備える。
 一実施形態に係る断続シーム溶接測定装置2は、溶接電流の電流値のアナログ電流微分波形を積分して電流波形を復元する波形復元回路24を備え、測定回路25は、溶接測定開始トリガの時刻から測定時間が経過するまでの間、波形復元回路24で復元された電流波形をデジタル信号に変換して、溶接電流を測定する。
 溶接電源1は、断続シーム溶接するための電源であり、図1に示すように、溶接電流設定部11、溶接電流制御部12、点弧パルス発生回路13、サイリスタ14a,14b、表示部15を備える。トランスTの一次巻線Pの一端は、図示しない単相交流電源(以下、交流電源と略称する。)の一端に接続され、一次巻線Pの他端は、サイリスタ14a,14bを介して交流電源の他端に接続されている。溶接電源1と、トランスT、回転電極4a,4bは、溶接対象物5を断続シーム溶接するための断続シーム溶接装置を構成している。
 トランスTの二次巻線Sの両端には、回転電極4a,4bが接続されている。交流電源からトランスTとサイリスタ14a,14bとを介して回転電極4a,4bに溶接電流が供給される。
 断続シーム溶接は、溶接対象物5を円板状の回転電極4a,4bで挟んで加圧した状態で、回転電極4a,4bを回転しながら溶接電流を流し、その電気抵抗によって溶接対象物5を加熱する。さらに、回転電極4a,4bを移動させることで、溶接する箇所をずらしながら、溶接対象物5を連続的に接合する。
 溶接電流設定部11は、断続シーム溶接を行うための溶接電流の大きさ、溶接電流の溶接時間(通電時間)、及び溶接休止時間を設定する。溶接電流制御部12は、溶接電流設定部11で設定された溶接電流の大きさ、溶接電流の溶接時間(通電時間)、及び溶接休止時間を制御し、制御信号を点弧パルス発生回路13に出力する。
 点弧パルス発生回路13は、溶接電流制御部12からの制御信号に基づき点弧パルスを発生し、点弧パルスをサイリスタ14a,14bのゲートに出力する。サイリスタ14a,14bは、点弧パルス発生回路13からの点弧パルスに従ってオンすることにより、溶接電流を流す。表示部15は、溶接電流の大きさ、溶接電流の溶接時間(通電時間)、及び溶接休止時間を表示する。
 トランスTは、電磁結合された一次巻線Pと二次巻線Sとを有し、交流電源の交流電圧を変圧して二次巻線S側に出力する。電流センサ3は、トロイダルコアにコイルが巻回され、トロイダルコアをトランスTの二次巻線Sが貫通して構成され、二次巻線Sに流れる溶接電流を検出し、検出された溶接電流を電流トリガ回路23に出力する。
 測定器2(断接シーム溶接測定装置)は、測定設定部21、演算処理部22、電流トリガ回路23、電流センサ3、波形復元回路24、2次電流測定回路25、2次電圧測定回路26、判定出力部27、表示部28を備える。
 測定設定部21は、タッチパネル、操作パネル等の入力部からなり、溶接対象物5に電流を流す溶接時間と前記電流を流さない溶接休止時間とを繰り返すことにより溶接対象物5を溶接する際の断続シーム溶接測定装置における、断続シーム溶接装置へ設定する溶接時間及び溶接休止時間の各々と同じ値である測定時間及び測定休止時間を設定する。溶接電源の溶接時間が図2に示すように、3サイクルであるので、測定時間も図3に示すように、3サイクルを設定する。溶接電源の溶接休止時間が図2に示すように、1サイクルであるので、測定休止時間も図3に示すように、1サイクルを設定する。測定時間は、トランスTの二次巻線S側に流れる溶接電流の電流値を測定するための時間である。
 演算処理部22は、CPU(中央処理装置)からなり、測定設定部21で設定された測定時間と測定休止時間を図示しないメモリに記憶するとともに、測定時間と測定休止時間を2次電流測定回路25に出力する。
 電流トリガ回路23は、電流センサ3で検出される誘起電圧から成る測定電流の時間微分値出力から得られるアナログの電流微分波形を以て、電流の流れ始めである溶接測定開始トリガを得る。
 波形復元回路24は、演算増幅回路、及び積分回路を備え、電流センサ3で検出されたアナログの電流微分波形を演算増幅回路により増幅し、増幅された電流微分波形を積分回路により積分して、電流波形を復元する。
 2次電流測定回路25は、本発明の測定回路に対応し、A/D変換器(アナログ/デジタル変換器)を備え、電流トリガ回路23で得られた溶接測定開始トリガと演算処理部22からの測定設定部21で設定された測定時間とを入力する。
 2次電流測定回路25は、溶接測定開始トリガの時刻から測定時間が経過するまでの間、波形復元回路24で復元された電流波形をA/D変換器によりデジタル信号に変換して、二次巻線Sに流れる電流値を測定する。即ち、溶接対象物5の溶接状態を測定する処理を繰り返し行う。
 2次電圧測定回路26は、回転電極4a,4b間の電圧値を測定し、測定電圧値を演算処理部22に出力する。
 演算処理部22は、測定時間の経過後から測定休止時間が経過するまでの間、2次電流測定回路25で測定された電流測定値に基づき、電流実効値、電流相加平均実効値、電流ピーク値を演算する処理を行う。演算処理部22は、測定時間の経過後から測定休止時間が経過するまでの間、2次電圧測定回路26で測定された電圧測定値に基づき電圧実効値、電圧相加平均実効値、電圧ピーク値を演算する処理を行う。
 判定出力部27は、演算処理部22で得られた電流実効値、電流相加平均実効値、電流ピーク値、電圧実効値、電圧相加平均実効値、電圧ピーク値に基づき溶接対象物5の溶接状態を判定する。表示部28は、演算処理部22の演算結果を表示し、判定出力部27の判定結果を表示する。
 次にこのように構成されたシーム溶接測定機及び溶接電源の動作を、図面を参照しながら説明する。
 図2は、本発明の実施形態に係る溶接電源による断続シーム溶接の通電と休止とを繰り返すタイミングチャートである。図6は、本発明の実施形態に係る溶接電源の処理を示すフローチャートである。まず、図2に示す溶接電源1による断続シーム溶接の通電と休止とを繰り返すタイミングチャートと、図6に示す溶接電源1の処理を示すフローチャートを参照しながら、溶接電源1の動作を説明する。
 まず、溶接電流設定部11は、断続シーム溶接を行うための溶接電流の大きさ、溶接電流の溶接時間(通電時間)、及び溶接休止時間を設定する(ステップS11)。
 溶接電流制御部12は、溶接電流設定部11で設定された溶接電流の大きさ、溶接電流の溶接時間(通電時間)、及び溶接休止時間を制御する。点弧パルス発生回路13は、発生した点弧パルスをサイリスタ14a,14bに出力する。
 サイリスタ14a,14bは、点弧パルスに従って交流電源からトランスTの一次巻線Pに溶接電流を流す。さらに、トランスTの二次巻線Sに溶接電流が流れて、この溶接電流が円板状の回転電極4a,4bに流れる。これにより、断続シーム溶接が開始される(ステップS13)。
 この場合、図2に示すように、溶接電流は、時刻t0~t6に溶接時間(通電時間)、時刻t6~t8に溶接休止時間、時刻t8~t14に溶接時間、時刻t14~t16に溶接休止時間…が繰り返された電流値の増減遷移状態となる。
 次に、溶接電流制御部12と点弧パルス発生回路13が断続シーム溶接を停止させて、溶接を休止する(ステップS15)。
 次に、測定器2は断続シーム溶接が終了したかどうかを判定する(ステップS17)。ステップS17において、断続シーム溶接が終了しない場合には、測定器2はステップS11に戻り、ステップS11からステップS15の処理を行う。断続シーム溶接が終了した場合には、測定器2は処理を終了する。
 次に、図3、図4、図5に示すタイミングチャート、図7に示す測定器2のフローチャートを参照しながら、測定器2の動作を説明する。図3は、本発明の実施形態に係る断続シーム溶接測定装置の測定設定部による測定時間と休止時間の設定を示すタイミングチャートである。図4は、本発明の実施形態に係る断続シーム溶接測定装置の測定回路による溶接対象物の溶接状態の測定と演算処理を繰り返すタイミングチャートである。図5は、図4に示す測定と演算処理を繰り返した後の判定不良時と判定良時の判定出力を示すタイミングチャートである。図7は、本発明の実施形態に係る断続シーム溶接測定装置の処理を示すフローチャートである。
 まず、測定設定部21は、溶接対象物5に電流を流す溶接時間と前記電流を流さない溶接休止時間とを繰り返すことにより溶接対象物5を溶接する断続シーム溶接における、溶接時間及び溶接休止時間の各々と同じ値である測定時間及び測定休止時間を設定する。(ステップS21)。
 この場合、測定設定部21は、図3に示すように、時刻t0~t6に測定時間、時刻t6~t8に測定休止時間、時刻t8~t14に測定時間、時刻t14~t16に測定休止時間…を繰り返し設定する。即ち、測定器2には溶接電源1で設定される溶接時間、溶接休止時間に同期し且つ同じ時間だけ、測定時間、測定休止時間が設定される。
 次に、演算処理部22は、測定設定部21で設定された測定時間と測定休止時間を記憶装置に記憶するとともに、測定時間と測定休止時間に基づく測定タイミングを設定する(ステップS23)。演算処理部22は、測定タイミング情報を2次電流測定回路25に出力する。
 電流トリガ回路23は、電流センサ3で検出された電流微分波形から溶接電流の流れ始めを検出したかどうかを判定する(ステップS25)。電流トリガ回路23は、溶接電流の流れ始め(溶接電流値の立ち上がり)を検出した場合には、溶接電流の流れ始めとして溶接測定開始トリガを取得する。
 次に、波形復元回路24、2次電流測定回路25、2次電圧測定回路26、演算処理部22は、溶接電流値、溶接電圧値の測定を開始する(ステップS27)。
 具体的には、波形復元回路24は、電流センサ3で検出されたアナログの電流微分波形を演算増幅回路により増幅し、増幅された電流微分波形を積分回路により積分して、電流波形を復元する。
 2次電流測定回路25は、電流トリガ回路23で得られた溶接測定開始トリガと測定設定部21で設定された測定時間とを入力する。2次電流測定回路25は、図4に示すように、溶接測定開始トリガの時刻(例えば時刻t0)から測定時間(例えば時刻t6)が経過するまでの間、波形復元回路24で復元された電流波形をA/D変換器によりデジタル信号に変換して、二次電流値(溶接電流値)を測定する処理を行う。また、2次電流測定回路25は、溶接時間を計測する(ステップS29)。
 2次電流測定回路25は、図4に示すように、時刻t0~t6の測定時間が経過するまでの間、電流値を測定し、時刻t8~t14の測定時間が経過するまでの間、電流値を測定する。
 溶接時間(測定時間)が経過したら、測定器2は、波形復元回路24、2次電流測定回路25、2次電圧測定回路26を停止させる(ステップS31)。即ち、測定の休止時間時刻t6~t8、時刻t14~t16となる。
 演算処理部22は、測定時間の経過後から測定休止時間が経過するまでの間(例えば図4の時刻t78)、2次電流測定回路25で測定された電流測定値に基づき実効値等を演算する(ステップS33)。
 演算処理部22は、図4に示すように、時刻t6~t8の測定時間の経過後から測定休止時間が経過するまでの間、測定時間t0~t6内の電流実効値等の演算を行い、時刻t14~t16の測定時間の経過後から測定休止時間が経過するまでの間、時刻t8~t14内の電流実効値等の演算を行う。
 ここでは、演算処理部22は、測定時間毎に、溶接電流値等の測定値から溶接電流値等の実効値、相加平均実効値、ピーク値を演算する。
 判定出力部27は、演算処理部22で得られた演算結果に基づき溶接対象物5の良品不良品の個別判定を行う(ステップS35)。溶接対象物5の良品不良品の判定は、例えば、以下のようにして行う。図5に示すように、電流値のピーク値が所定値の範囲以内の場合には、「良品」とする(時刻t0~t6)。電流のピーク値が所定値の範囲よりも大きい第1閾値になった場合には、「不良品」と判定する(時刻t8~t14)。
 また、溶接対象物5の良品不良品の判定は、多段階に、例えば、「良品GOOD」、「不良品NO GOOD1」、「不良品NO GOOD2」に、第1閾値、第2閾値に基づいて分類することができる。さらに、溶接対象物5の良品不良品の判定は、多段階に、例えば、「良品GOOD」、「不良品NO GOOD1」、「不良品NO GOOD2」、「不良品NO GOOD3」に、第1閾値、第2閾値、第3閾値に基づいて分類することができる。
 その後、判定出力部27は、個別判定結果即ち、測定時間毎の判定結果を記憶装置に記憶する(ステップS37)。
 次に、判定出力部27は、断続シーム溶接が終了したかどうかを判定する(ステップS39)。ステップS39において、断続シーム溶接が終了しない場合には、判定出力部27は、ステップS25に戻り、ステップS25からステップS37の処理を行う。
 断続シーム溶接が終了した場合には、判定出力部27は、個別判定をまとめた全体の判定を行う(ステップS41)。その後、判定出力部27は、全体判定結果を記憶装置に記憶する(ステップS43)。
 次に、溶接対象物5の不良判定時の判定出力のいくつかの例を図5のタイミングチャートを参照しながら、説明する。
 第1の例は、判定出力部27が、溶接対象物5が不良である場合には、断続シーム溶接が終了した後に不良判定出力を行う。これにより、溶接全体の判定を出力することができる。
 第2の例は、判定出力部27が、溶接対象物5が不良である場合に、不良判定出力(Low:NO GOOD)を行い、不良判定出力を継続する。即ち、溶接対象物5の溶接不良と判定したら、すぐに不良判定を出力し、溶接を止めることができる。
 第3の例は、判定出力部27が、溶接対象物5が不良である場合に、不良判定出力(Low:NO GOOD)を行い、その後、溶接対象物5の溶接状態が良好となった時には良判定出力(High:GOOD)を行い、不良判定出力を止める。これにより、溶接不良と判断した箇所を判断することができる。
 第4の例は、判定出力部27が、溶接対象物5の判定良時には、溶接終了後に良判定出力(High:GOOD)を行う。
 このように実施形態に係る断続シーム溶接測定装置によれば、測定設定部21は、溶接対象物5に電流を流す溶接時間と前記電流を流さない溶接休止時間とを繰り返すことにより溶接対象物5を溶接する際の断続シーム溶接測定装置における、断続シーム溶接装置へ設定する溶接時間及び溶接休止時間の各々と同じ値である測定時間及び測定休止時間を設定する。
 2次電流測定回路25は、溶接測定開始トリガの時刻から測定時間が経過するまでの間、電流値を測定する。演算処理部22は、測定時間の経過後から測定休止時間が経過するまでの間に測定値の演算処理を行う。
 即ち、演算処理部22は、予め設定された休止時間、即ち、測定時間の経過後から測定休止時間が経過するまでの間、測定値の演算を行うので、全溶接を測定し、演算できる。このため、個々の溶接電流値による溶接の良不良判定を行い、更に全体の溶接電流値による溶接の良不良判定を行うことができる。
 また、2次電流測定回路25は、溶接測定開始トリガの時刻から測定時間が経過するまでの間、波形復元回路24で復元された電流波形をデジタル信号に変換して、電流値を測定するので、2次電流である溶接電流値を測定時間だけ、正確に繰り返し測定できる。
 また、測定器2が、溶接装置へ電流を供給する溶接電源1に、通信網により接続されている場合に、つまり、断続シーム溶接装置と断続シーム溶接測定器とが通信網で情報伝達できる場合に、測定器2は、溶接電源1から溶接時間及び溶接休止時間を示す信号を、通信網を介して受信する。測定設定部21は、通信網を介して溶接電源1から受信した溶接時間及び溶接休止時間と同じ値である測定時間及び測定休止時間を設定することができる。
 本発明は以上説明した実施形態に係る断続シーム溶接測定装置に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能である。
 本願の開示は、2021年3月18日に出願された特願2021-044333号に記載の主題と関連しており、それら全ての開示内容は引用によりここに援用される。

Claims (7)

  1.  溶接対象物に溶接電流を流す溶接時間と前記溶接電流を流さない溶接休止時間とを繰り返すことにより前記溶接対象物を溶接する際の断続シーム溶接測定装置における、
     断続シーム溶接装置へ設定する前記溶接時間及び前記溶接休止時間の各々と同じ値である測定時間及び測定休止時間を設定する測定設定部と、
     前記溶接電流の電流値を検出して溶接測定開始トリガを得る電流トリガ回路と、
     前記電流トリガ回路で得られた溶接測定開始トリガの時刻から前記測定設定部で設定された測定時間が経過するまでの間、前記溶接電流の電流値を測定する測定回路と、
     前記測定時間の経過後から前記測定休止時間が経過するまでの間、前記測定回路で測定された測定値の演算処理を行う演算処理部と、
     前記演算処理部で得られた演算値に基づき前記溶接対象物の溶接状態を判定する判定出力部と、
    を備える、断続シーム溶接測定装置。
  2.  前記溶接電流の電流値のアナログ電流微分波形を積分して電流波形を復元する波形復元回路を備え、
     前記測定回路は、前記溶接測定開始トリガの時刻から前記測定時間が経過するまでの間、前記波形復元回路で復元された電流波形をデジタル信号に変換して、前記溶接電流を測定する、請求項1記載の断続シーム溶接測定装置。
  3.  前記判定出力部は、前記溶接対象物の溶接状態が不良である場合に、断続シーム溶接が終了した後に不良判定出力を行う、請求項1又は2記載の断続シーム溶接測定装置。
  4.  前記判定出力部は、前記溶接対象物の溶接状態が不良である場合に不良判定出力を行い、前記不良判定出力を継続する、請求項1又は2記載の断続シーム溶接測定装置。
  5.  前記判定出力部は、前記溶接対象物の溶接状態が不良時に不良判定出力を行い、その後、前記溶接対象物の溶接状態が良好となった時には前記不良判定出力を停止する、請求項1又は2記載の断続シーム溶接測定装置。
  6.  当該断続シーム溶接測定装置が通信網により前記断続シーム溶接装置に接続されている場合に、前記断続シーム溶接装置から前記溶接時間及び前記溶接休止時間を示す信号を、前記通信網を介して受信する、
    請求項1乃至5のいずれか1項記載の断続シーム溶接測定装置。
  7.  溶接対象物に溶接電流を流す溶接時間と前記溶接電流を流さない溶接休止時間とを繰り返すことにより前記溶接対象物を溶接する断続シーム溶接する際の断続シーム溶接測定方法における、
     断続シーム溶接装置へ設定する前記溶接時間及び溶接休止時間の各々と同じ値である測定時間及び測定休止時間を設定し、
     前記溶接電流の電流値を検出して溶接測定開始トリガを取得し、
     得られた溶接測定開始トリガの時刻から前記設定された測定時間が経過するまでの間、前記溶接電流の電流値を測定し、
     前記測定時間の経過後から前記測定休止時間が経過するまでの間、前記測定された測定値の演算処理を行い、
     得られた演算値に基づき前記溶接対象物の溶接状態を判定する、
    断続シーム溶接方法。
PCT/JP2022/011242 2021-03-18 2022-03-14 断続シーム溶接測定装置及び断続シーム溶接測定方法 WO2022196619A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-044333 2021-03-18
JP2021044333A JP2022143683A (ja) 2021-03-18 2021-03-18 断続シーム溶接測定装置及び断続シーム溶接測定方法

Publications (1)

Publication Number Publication Date
WO2022196619A1 true WO2022196619A1 (ja) 2022-09-22

Family

ID=83320387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011242 WO2022196619A1 (ja) 2021-03-18 2022-03-14 断続シーム溶接測定装置及び断続シーム溶接測定方法

Country Status (2)

Country Link
JP (1) JP2022143683A (ja)
WO (1) WO2022196619A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314081U (ja) * 1989-06-19 1991-02-13
JPH0716759A (ja) * 1993-07-06 1995-01-20 Toyota Autom Loom Works Ltd 抵抗溶接制御装置
JPH0952181A (ja) * 1995-08-10 1997-02-25 Miyachi Technos Corp インバータ式抵抗溶接電源装置
JPH0985457A (ja) * 1995-09-20 1997-03-31 Miyachi Technos Corp インバータ式シーム抵抗溶接電源装置
JP5305172B2 (ja) * 2010-06-21 2013-10-02 アキム株式会社 溶接異常検出方法、シーム溶接異常検出装置、シーム溶接装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314081U (ja) * 1989-06-19 1991-02-13
JPH0716759A (ja) * 1993-07-06 1995-01-20 Toyota Autom Loom Works Ltd 抵抗溶接制御装置
JPH0952181A (ja) * 1995-08-10 1997-02-25 Miyachi Technos Corp インバータ式抵抗溶接電源装置
JPH0985457A (ja) * 1995-09-20 1997-03-31 Miyachi Technos Corp インバータ式シーム抵抗溶接電源装置
JP5305172B2 (ja) * 2010-06-21 2013-10-02 アキム株式会社 溶接異常検出方法、シーム溶接異常検出装置、シーム溶接装置

Also Published As

Publication number Publication date
JP2022143683A (ja) 2022-10-03

Similar Documents

Publication Publication Date Title
JP2783155B2 (ja) 抵抗溶接用制御方法及び装置
US4434351A (en) Method and system for determining weld quality in resistance welding
US20130233838A1 (en) Apparatus and method for monitoring resistance welding and system thereof
JP2012511157A (ja) 直流電流を検出するための方法と装置及び抵抗溶接装置
JPH0244630B2 (ja)
WO2022196619A1 (ja) 断続シーム溶接測定装置及び断続シーム溶接測定方法
JP2009128274A (ja) 充放電試験装置
US5081338A (en) Apparatus and method for monitoring weld quality
JP3396602B2 (ja) 溶接品質監視方法および装置
JP6529232B2 (ja) 溶接電流測定装置、抵抗溶接監視装置及び抵抗溶接制御装置
JPH0947883A (ja) インバータ式抵抗溶接制御装置
JPH0644542Y2 (ja) インバータ式抵抗溶接機の制御又は測定装置
JPH0646632Y2 (ja) 連続シーム溶接モニタ装置
JP2010266299A (ja) スポット溶接検査装置およびスポット溶接検査方法
JP3128500B2 (ja) ナゲット形成監視装置
JPS6227910B2 (ja)
US3800119A (en) Resistance welding monitor
JPH0989825A (ja) 抵抗溶接部の検査方法およびその装置
JPH0589995A (ja) X線装置
JP2016055306A5 (ja)
JP3259013B2 (ja) インバータ式抵抗溶接電源装置
JP2007132778A (ja) インピーダンス測定装置
KR101670690B1 (ko) 용접 감시 장치용 전류 센싱 장치
JPH07323376A (ja) スタッドの抵抗溶接方法及び装置
JPH0435020Y2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771365

Country of ref document: EP

Kind code of ref document: A1