WO2022196258A1 - オニウム塩、光酸発生剤、組成物及びそれを用いたデバイスの製造方法 - Google Patents

オニウム塩、光酸発生剤、組成物及びそれを用いたデバイスの製造方法 Download PDF

Info

Publication number
WO2022196258A1
WO2022196258A1 PCT/JP2022/006978 JP2022006978W WO2022196258A1 WO 2022196258 A1 WO2022196258 A1 WO 2022196258A1 JP 2022006978 W JP2022006978 W JP 2022006978W WO 2022196258 A1 WO2022196258 A1 WO 2022196258A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
atom
branched
formula
Prior art date
Application number
PCT/JP2022/006978
Other languages
English (en)
French (fr)
Inventor
智至 榎本
俊 長谷
康平 町田
Original Assignee
東洋合成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋合成工業株式会社 filed Critical 東洋合成工業株式会社
Priority to JP2023506900A priority Critical patent/JPWO2022196258A1/ja
Publication of WO2022196258A1 publication Critical patent/WO2022196258A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • One aspect of the present invention relates to onium salts. Another aspect of the present invention relates to a photoacid generator containing the onium salt, a composition, and a method for manufacturing a device using the composition.
  • resist compositions are required to have improved lithography properties such as sensitivity to the exposure light source and resolution capable of reproducing fine-dimensional patterns.
  • a chemically amplified resist is known as a resist composition that satisfies such requirements (Patent Document 1).
  • conventional chemically amplified resists such as chemically amplified resist compositions for EUV or electron beams, have low absorption of EUV or electron beams, and the generation efficiency of secondary electrons is low. is degraded, and it is difficult to simultaneously meet the characteristics of sensitivity, resolution and pattern performance.
  • an acid and a sensitizer are generated by lithography using a first active energy beam such as EUV or an electron beam, and then visible light or ultraviolet light or the like is used.
  • a photosensitized chemically amplified resist composition for use in the method of irradiating with a second actinic energy ray.
  • the sensitizer electron donor
  • the photoacid generator (electron acceptor)
  • acid may be generated by the electron transfer reaction of several nm in some cases. This may cause unintended diffusion of the generated acid without reacting with the acid diffusion control agent even when the acid diffusion control agent is contained in the resist composition. As a result, pattern deterioration such as deterioration of LWR may occur.
  • the amount of photosensitizer produced in the process of producing the photosensitizer by the action of the acid produced by the first active energy ray is small. Since the amount is small, the sensitization reaction is difficult to occur, and there is a problem that even if a large amount of energy, for example, 1 J/cm 2 , is irradiated, the effect of accelerating the resist reaction is small.
  • a further object of the present invention is to provide an onium salt that is most suitable as a photoacid generator for exposure to a second active energy ray such as ultraviolet rays or visible light after irradiation with a first active energy ray such as an electron beam or extreme ultraviolet rays. do.
  • a photoacid generator containing the onium salt and a composition containing the photoacid generator is another object of the present invention.
  • Another object of the present invention is to provide a method for manufacturing a device using the composition.
  • an onium salt having a specific structure does not have significant absorption in the second active energy ray such as ultraviolet light or visible light, and can be structured by an acid.
  • the inventors have found that the ketone derivative can be converted into a ketone derivative having absorption in the second active energy ray by changing, and have completed several aspects of the present invention. More specifically, the present inventors have found that an onium salt having a dibenzothiophenium skeleton with a condensed ring structure and an acetal site or thioacetal site has the following properties. (1) To have high decomposition efficiency with respect to the first active energy rays such as electron beams or extreme ultraviolet rays.
  • the structure of the onium salt is changed by the acid generated by the decomposition due to the irradiation of the first active energy ray, and the onium salt itself does not need to have a substituent with a large structure, resulting in high absorption of the second active energy ray.
  • the substituent having a large structure includes, for example, a group having a skeleton with a long conjugation length such as naphthalene and condensed polycyclic heterocycle.
  • the ketone derivative whose structure has been changed by an acid should be excellent in acid generation efficiency after irradiation with the second activation energy.
  • a specific onium salt having a dibenzothiophenium skeleton and an acetal site or a thioacetal site has a higher decomposition efficiency than conventional onium salts with respect to the first activation energy
  • the present inventors have found that the onium salt derivative structurally changed from the above-mentioned specific onium salt by irradiation with the first active energy ray has a high decomposition efficiency with respect to the second active energy. was completed.
  • the present inventors have found that the use of a photoacid generator containing the above onium salt in a resist composition results in excellent sensitivity.
  • One aspect of the present invention for solving the above problems is an onium salt represented by any one selected from the following general formula (1) and the following general formula (2).
  • R 1 is a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms which may have a substituent;
  • the R 1 and any one of the benzene ring to which the R 2 is bonded and the benzene ring to which the R 3 is bonded are directly formed by a single bond, or consist of an oxygen atom, a sulfur atom, a nitrogen atom-containing group and a methylene group.
  • a ring structure may be formed together with the sulfur atom to which these are bonded via any one selected from the group.
  • At least one methylene group in R 1 may be substituted with a divalent heteroatom-containing group.
  • R 2 , R 3 and R 4 above each independently represent an alkyl group, a hydroxy group, a mercapto group, an alkoxy group, an alkylcarbonyl group, an arylcarbonyl group, a heteroarylcarbonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, heteroaryloxycarbonyl group, arylsulfanylcarbonyl group, heteroarylsulfanylcarbonyl group, arylsulfanyl group, heteroarylsulfanyl group, alkylsulfanyl group, aryl group, heteroaryl group, aryloxy group, heteroaryloxy group, alkylsulfinyl group, arylsulfinyl group, heteroarylsulfinyl group, alkylsulfonyl group, arylsulfonyl group
  • R 5 and R 6 above are independently each an optionally substituted linear, branched or cyclic alkyl group having 1 to 12 carbon atoms; an optionally substituted linear chain , a branched or cyclic alkenyl group having 2 to 12 carbon atoms; an aryl group having 6 to 14 carbon atoms which may have a substituent; and an optionally substituted 3 to 12 carbon atoms a heteroaryl group; any one selected from the group consisting of
  • R 5 and R 6 may be bonded to each other directly with a single bond or through any one selected from the group consisting of an oxygen atom, a sulfur atom and an alkylene group to form a ring structure. At least one methylene group in R 5 and R 6 may be substituted with a divalent heteroatom-containing group.
  • L 1 is any one selected from the group consisting of a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms; an alkenylene group having 2 to 12 carbon atoms; a sulfinyl group, a sulfonyl group and a carbonyl group; .
  • Y is an oxygen atom or a sulfur atom.
  • a is an integer of 0-4, b is an integer of 0-3, c is an integer of 1-5, d is an integer of 0-2, and e is an integer of 1-4.
  • a is 0 in the above formula (1) ⁇ 3 or b is 0 to 2, and a is 0 to 3 or d is 0 to 1 in the above formula (2).
  • At least one of the benzene rings in formulas (1) and (2) may be a six-membered heteroaromatic ring having a heteroatom in the ring.
  • e may be 0 when the benzene ring bonded to R 4 in the above formulas (1) and (2) is the above heteroaromatic ring.
  • two of the R 4 may be linked together to form a ring structure.
  • X - is a monovalent anionic group
  • f is an integer of 1 to 3
  • X - may be the same or different
  • R is an f-valent organic group.
  • photoacid generator (hereinafter referred to as "photoacid generator (A)”).
  • the photoacid generator (A) generates an acid upon exposure.
  • One aspect of the present invention for solving the above problems is a composition containing the photoacid generator (A) and an acid-reactive compound.
  • another aspect of the present invention includes the steps of applying the composition on a substrate to form a resist film, irradiating the resist film with a first active energy ray, and after irradiating the first active energy ray. and a step of developing the resist film after being irradiated with the second active energy ray to obtain a pattern.
  • a resist composition for a lithographic process using a first active energy ray such as particle beams or electromagnetic waves and a second active energy ray such as ultraviolet light or visible light can provide an onium salt with excellent sensitivity.
  • a resist composition containing the onium salt as an acid generator and having high sensitivity to the first activation energy such as particle beams or electromagnetic waves, especially electron beams or extreme ultraviolet rays, and a method for manufacturing a device using the same. can provide
  • FIG. 1 shows UV absorption spectra of ketone derivatives of sulfonium salts used in Examples and Comparative Examples.
  • Onium salt and photoacid generator (A) The onium salt according to one aspect of the present invention is represented by any one selected from the above general formula (1) and the above general formula (2). Moreover, the photoacid generator (A) contains at least one of the onium salts.
  • the onium salt according to one aspect of the present invention has a specific structure of an acetal site or thioacetal site or the like and a dibenzothiophenium skeleton, so that the decomposition efficiency for the first active energy ray such as particle beam or electromagnetic wave is high. It is high and has high absorption with respect to the second active energy ray irradiation after the first active energy irradiation. Moreover, the onium salt according to one aspect of the present invention does not have significant absorption of the second active energy ray such as ultraviolet light or visible light.
  • the acetal site or thioacetal site of the onium salt is deprotected and converted into a ketone derivative by the acid generated by the first actinic energy ray without impairing the function of the onium salt as a photoacid generator.
  • the ketone derivative contains a dibenzothiophenium structure having a condensed ring structure, the conjugation length becomes long, so that the absorption wavelength is easily lengthened and absorbs the second active energy ray. Since the ketone derivative is generated in the exposed portion irradiated with the first activation energy ray in the resist film, the amount of acid generated in the exposed portion by the first activation energy ray is increased by further irradiation with the second activation energy. can be increased.
  • ultraviolet light or visible light having a wavelength of 365 nm or more is preferable as the second active energy ray.
  • the second active energy ray is more preferably 420 nm or less.
  • R 1 is a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms which may have a substituent;
  • linear, branched or cyclic alkyl groups having 1 to 12 carbon atoms for R 1 include methyl, ethyl, n-propyl, n-butyl, isopropyl, t-butyl, cyclopropyl groups, Alkyl groups such as cyclobutyl group, cyclopentyl group, cyclohexyl group, adamantan-1-yl group, adamantan-2-yl group, norbornan-1-yl group and norbornan-2-yl group are included.
  • At least one methylene group may be substituted with a divalent heteroatom-containing group.
  • the divalent heteroatom-containing group includes -O-, -CO-, -COO-, -OCO-, -O-CO-O-, -NHCO-, -CONH-, -NH-CO-O- , —O—CO—NH—, —NH—, —N(R 16 )—, —N(Ar)—, —S—, —SO— and —SO 2 —.
  • the sulfur atom (S + ) of the sulfonium group is not directly bonded to the heteroatom-containing group but bonded to the divalent hydrocarbon group.
  • R 16 and Ar are described later.
  • Examples of the alkenyl group for R 1 include those in which at least one carbon-carbon single bond of the above alkyl group is replaced with a carbon-carbon double bond.
  • the optionally substituted aryl group having 6 to 14 carbon atoms in R 1 specifically includes a monocyclic aromatic hydrocarbon group, and at least two rings of the monocyclic aromatic hydrocarbon are condensed.
  • a condensed polycyclic aromatic hydrocarbon group and the like can be mentioned. These aryl groups may have a substituent.
  • Examples of the monocyclic aromatic hydrocarbon group include groups having a skeleton such as benzene.
  • Examples of the condensed polycyclic aromatic hydrocarbon group include groups having skeletons such as indene, naphthalene, azulene, anthracene, and phenanthrene.
  • At least one selected from an oxygen atom, a nitrogen atom and a sulfur atom is substituted for at least one carbon atom of the above aryl group.
  • Examples include those containing any of them in the skeleton.
  • the heteroaryl group includes a monocyclic aromatic heterocyclic group, and a condensed polycyclic aromatic heterocyclic group in which at least one of the monocyclic aromatic heterocycles is condensed with the above aromatic hydrocarbon group or aliphatic heterocyclic group.
  • a cyclic group and the like can be mentioned.
  • These aromatic heterocyclic groups may have a substituent.
  • Examples of the monocyclic aromatic heterocyclic group include groups having skeletons such as furan, pyrrole, imidazole, pyran, pyridine, pyrimidine and pyrazine.
  • Condensed polycyclic aromatic heterocyclic groups include groups having skeletons such as indole, purine, quinoline, isoquinoline, chromene, phenoxazine, xanthene, acridine, phenazine and carbazole.
  • Substituents for R 1 include a hydroxy group, a cyano group, a mercapto group, a carboxy group, an alkyl group (-R 16 ), an alkoxy group (-OR 16 ), and an acyl group.
  • R 16 in the first substituent is preferably an alkyl group having 1 or more carbon atoms. Moreover, it is more preferable that the number of carbon atoms is 20 or less. Specific examples of alkyl groups having 1 or more carbon atoms include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-octyl and n-decyl.
  • linear alkyl groups such as groups; branched alkyl groups such as isopropyl group, isobutyl group, tert-butyl group, isopentyl group, tert-pentyl group, 2-ethylhexyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl alicyclic alkyl groups such as groups, adamantan-1-yl groups, adamantan-2-yl groups, norbornan-1-yl groups and norbornan-2-yl groups; A silyl group-substituted alkyl group substituted with a trialkylsilyl group such as a dimethylethylsilyl group; an alkyl group in which at least one of these hydrogen atoms is substituted with a cyano group, a fluoro group, or the like; and the like.
  • a carbon-carbon single bond in the above alkyl group may be replaced
  • Ar in the first substituent is preferably an aryl group or a heteroaryl group.
  • a heteroaryl group is an aryl group that contains one or more heteroatoms in the ring structure.
  • Specific examples of Ar include a phenyl group, biphenyl group, terphenyl group, quaterphenyl group, naphthyl group, anthryl group, phenanthrenyl group, pentalenyl group, indenyl group, indacenyl group, acenaphthyl group, fluorenyl group, heptalenyl group, naphthacenyl group, pyrenyl group, chrysenyl group, tetracenyl group, furanyl group, thienyl group, pyranyl group, sulfanylpyranyl group, pyrrolyl group, imidazoyl group, oxazolyl group, thiazolyl group, pyrazolyl group, pyr
  • the number of carbon atoms of R 1 is 1 to 1, including the number of carbon atoms of the first substituent. 20 is preferred.
  • R 1 and any one of the benzene ring to which R 2 is bonded and the benzene ring to which R 3 is bonded are directly formed by a single bond, or consist of an oxygen atom, a sulfur atom, a nitrogen atom-containing group and a methylene group.
  • a ring structure may be formed together with the sulfur atom to which these are bonded via any one selected from the group.
  • nitrogen atom-containing group include divalent groups containing a nitrogen atom, such as an aminodiyl group (--NH--), an alkylaminodiyl group (--NR 16 --) and an arylaminodiyl group (--NAr--). mentioned.
  • R 16 and Ar are the same as R 16 and Ar of the first substituent.
  • the onium salt in one aspect of the invention may be a polymer component attached to a portion of the polymer as one unit of the resin, ie, as a unit containing the onium salt structure. It may also be a polymer component contained as a repeating unit of a polymer.
  • the first substituent group includes the main chain of the polymer.
  • the number of carbon atoms of R 1 excludes the number of carbon atoms of the main chain of the polymer.
  • the onium salt in one embodiment of the present invention is the polymer component, it is preferable to adjust the weight average molecular weight of the entire polymer component to 2000 to 200000.
  • a low-molecular compound has a weight-average molecular weight of less than 2,000, and a polymer component has a weight-average molecular weight of 2,000 or more.
  • R 1 is preferably an aryl group from the viewpoint of improving stability.
  • R 2 , R 3 and R 4 are each independently an alkyl group, a hydroxy group, a mercapto group, an alkoxy group, an alkylcarbonyl group, an arylcarbonyl group, a heteroarylcarbonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a hetero aryloxycarbonyl group, arylsulfanylcarbonyl group, heteroarylsulfanylcarbonyl group, arylsulfanyl group, heteroarylsulfanyl group, alkylsulfanyl group, aryl group, heteroaryl group, aryloxy group, heteroaryloxy group, alkylsulfinyl group, aryl sulfinyl group, heteroarylsulfinyl group, alkylsulfonyl group, arylsulfonyl group, heteroarylsulfonyl group, arylsulfonyl group, hetero
  • the alkyl groups for R 2 , R 3 and R 4 may be linear, branched or cyclic, and specific examples include the same alkyl groups as those for R 1 as the first substituent.
  • the alkyl group moieties such as alkoxy group, alkylcarbonyl group and alkoxycarbonyl group for R 2 , R 3 and R 4 are the same as the alkyl group for R 1 .
  • the aryl group and heteroaryl group for R 2 , R 3 and R 4 include the same aryl group and heteroaryl group for R 1 .
  • Examples of the aryl group moiety such as the above arylcarbonyl group and aryloxycarbonyl group for R 2 , R 3 and R 4 are the same as the aryl group for R 1 .
  • the heteroaryl group moieties such as the above heteroarylcarbonyl group and heteroaryloxycarbonyl group for R 2 , R 3 and R 4 are the same as the heteroaryl group for R 1 .
  • R 2 and R 3 are preferably substituents having no heteroaryl group moiety, such as the above heteroarylcarbonyl group and heteroaryloxycarbonyl group.
  • Examples of the hydroxy(poly)alkyleneoxy group for R 2 , R 3 and R 4 include a polyethyleneoxy group and a polypropyleneoxy group.
  • Halogen atoms for R 2 , R 3 and R 4 include fluorine, chlorine and iodine atoms.
  • At least one methylene group may contain the same group as the heteroatom-containing group for R 1 above in the skeleton. However, it is preferable not to have a continuous connection of heteroatoms such as -O-O-, -S-S- and -OS-.
  • Examples of R 2 , R 3 and R 4 when the above heteroatom-containing group is included instead of at least one methylene group in R 2 , R 3 and R 4 include groups having a glycol chain or a thioglycol chain. be done.
  • R 2 , R 3 and R 4 When R 2 , R 3 and R 4 have carbon, the number of carbon atoms is preferably 1-12. Also, R 2 , R 3 and R 4 may have a substituent (hereinafter also referred to as “second substituent”). Also, carbon-carbon single bonds in the alkyl groups of R 2 , R 3 and R 4 may be replaced with carbon-carbon double bonds. Examples of the second substituent that R 2 , R 3 and R 4 may have include those similar to the above first substituent. When R 2 , R 3 and R 4 have the second substituent and the onium salt is a low-molecular-weight compound, the number of carbon atoms in R 2 , R 3 and R 4 is the number of carbon atoms in the second substituent. It preferably has 1 to 12 carbon atoms, including When the second substituents of R 2 , R 3 and R 4 are polymer backbones, the number of carbon atoms of R 2 , R 3 and R 4 excludes the polymer backbone.
  • the onium salt which is one embodiment of the present invention, preferably has at least one R4 .
  • at least one R4 is preferably a hydroxy group or an alkoxy group.
  • R4 is preferably ortho or para to the binding position of the acetal or thioacetal moiety. Having a hydroxy group or an alkoxy group as R4 of the onium salt at the ortho or para position tends to increase the absorption of the second active energy ray when it becomes a ketone derivative.
  • a hydroxy group is more preferable because the solubility of the onium salt in development is improved because the affinity for the alkali developing solution is improved.
  • the onium salt cation structure is enlarged by adding a substituent to the cation of the onium salt, the hydrophobicity of the onium salt is improved, which may result in a dissolution inhibition effect during development. Therefore, the absorption wavelength of the ketone derivative after deprotection of the acetal site or thioacetal site without having a hydrophobic substituent, which tends to have low affinity for an alkaline developer, is lengthened and the absorption of the second active energy ray is increased. is preferably large.
  • Substituents exhibiting basicity are not preferred because they deactivate the generated acid and inhibit the decomposition of the acid-labile group.
  • the cation of the onium salt which is one embodiment of the present invention, does not have substituents containing aromatic rings, alicyclic structures, etc. in R 2 to R 4 , and has amino groups, etc. that react with generated acids. and the molecular weight of the cationic portion of the onium salt is preferably 500 or less.
  • the cation of the onium salt, which is one embodiment of the present invention more preferably does not have a basic group such as an amino group in R 2 and R 3 including R 4 .
  • At least one of R4 's is preferably a hydroxy group or an alkoxy group, and is preferably ortho- or para-position relative to the bonding position of the acetal or thioacetal moiety.
  • the other R4 's may not be a hydroxy group or an alkoxy group.
  • it is more preferably a substituent that donates electrons to the aromatic ring to which two or more R 4 are bonded. More preferably, it has a hydroxy group or an alkoxy group as R4 at two or more positions ortho or para to the bonding position of the acetal site or thioacetal site.
  • R 5 and R 6 are an optionally substituted linear, branched or cyclic alkyl group having 1 to 12 carbon atoms; an optionally substituted linear, branched or cyclic carbon an alkenyl group having 2 to 12 atoms; an aryl group having 6 to 14 carbon atoms which may have a substituent; and a heteroaryl group having 3 to 12 carbon atoms which may have a substituent; are preferably selected from the same options as each of R 1 above.
  • the alkyl group may be substituted with the above divalent heteroatom-containing group instead of at least one methylene group.
  • the divalent heteroatom-containing groups of R 5 and R 6 are preferably -O-, -CO-, -COO-, -OCO-, -O-CO-O-, -S-, -SO- and -SO 2 - and the like are more preferred.
  • Substituents for R 5 and R 6 include the same substituents as the first substituents.
  • R 5 and R 6 may be directly bonded to each other via a single bond or through any one selected from the group consisting of an oxygen atom, a sulfur atom and an alkylene group to form a ring structure. From a synthetic point of view, R 5 and R 6 above are preferably the same.
  • the third substituent is preferably a hydroxy group
  • R 5 and R 6 to which the hydroxy group is bonded are linear, branched or cyclic alkyls having 2 to 12 carbon atoms which may have the substituents described above. groups are preferred. More preferably, R 5 and R 6 having the hydroxy group as the third substituent have a tertiary alcohol structure. The reason is that the tertiary alcohols of R 5 and R 6 are E1 elimination reaction with the acid generated by irradiation with the first activation energy ray as a catalyst rather than primary alcohols and secondary alcohols. This is because it is easy to generate water.
  • the acetal site or thioacetal site of the onium salt represented by the general formula (1) or general formula (2) is easily hydrolyzed, and the acetal site or thioacetal site is deprotected. It changes into a ketone derivative that absorbs the second active energy ray. By irradiating the ketone derivative with the second active energy ray, the amount of acid generated can be amplified, so that the sensitivity is further improved.
  • L 1 is a direct bond; a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms; a linear, branched or cyclic alkenylene group having 2 to 12 carbon atoms; a sulfinyl group, a sulfonyl group and a carbonyl group; Any one selected from the group consisting of In general formulas (1) and (2) above, Y is an oxygen atom or a sulfur atom.
  • a is an integer of 0 to 4
  • b is an integer of 0 to 3
  • c is an integer of 1 to 5
  • d is an integer of 0 to 2
  • e is an integer of 1 to 4.
  • the onium salt in some embodiments of the present invention can be exemplified by the sulfonium cations shown below. However, some aspects of the invention are not so limited.
  • At least one of the benzene rings in the sulfonium salt cation examples above may be a heteroaromatic ring having a heteroatom in the ring.
  • e when the benzene ring bonded to R4 is the heteroaromatic ring, e may be 0, that is, R4 may be a hydrogen atom.
  • Heteroaromatic rings include 6-membered heteroaromatic rings such as pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring and triazine ring.
  • X - is a monovalent anionic group.
  • X 1 - is bonded to R.
  • the monovalent anion group is not particularly limited, and includes anion groups containing monovalent anions such as sulfonate anion (SO 3 ⁇ ), carboxylate anion (COO ⁇ ), imide anion, methide anion, borate anion, and the like. be done.
  • the anionic group is attached to R.
  • f is an integer of 1 to 3, and when f is 2 or more, X ⁇ may be the same or different.
  • R is an f-valent organic group.
  • the monovalent organic group when f is 1 includes an alkyl group, an aryl group, a heteroaryl group, and the like.
  • the alkyl group, aryl group, and heteroaryl group in the monovalent organic group may have a substituent, and examples of the substituent include those similar to the first substituent.
  • the alkyl group for R is preferably an alkyl group in which 80 mol % or more of the hydrogen atoms are substituted with fluorine atoms, and the alkyl group is preferably an alkyl group having 1 to 8 carbon atoms.
  • Alkyl groups to be R by fluorine substitution include straight-chain alkyl groups (methyl, ethyl, propyl, butyl, pentyl, octyl, etc.), branched-chain alkyl groups (isopropyl, isobutyl, sec-butyl, tert-butyl, etc.) and cycloalkyl groups (cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.) and the like.
  • the ratio of hydrogen atoms of these alkyl groups in R substituted with fluorine atoms is preferably 80 mol% or more, more preferably 90 mol%, based on the number of moles of hydrogen atoms possessed by the original alkyl groups. % or more, particularly preferably 100%.
  • Particularly preferred monovalent alkyl groups for R include CF 3 —, CF 3 CF 2 —, (CF 3 ) 2 CF—, CF 3 CF 2 CF 2 —, CF 3 CF 2 CF 2 —, (CF 3 ) 2CFCF 2 -, CF 3 CF 2 (CF 3 )CF- and (CF 3 ) 3 C- .
  • Examples of the divalent organic group when f is 2 include an alkylene group, an arylene group, and a heteroarylene group.
  • Examples of the trivalent organic group when f is 3 include those in which the above monovalent organic group is trivalent.
  • f-valent organic anions include the following.
  • the onium salt according to one aspect of the present invention may be, as one aspect of the photoacid generator (A), an acid generator unit-containing resin in which an anion moiety is bonded to a part of a polymer.
  • onium salts include resins in which X 1 - in the above formulas (1) and (2) has a unit represented by the following general formula (5).
  • the unit represented by the general formula (5) may be contained in a resin (B) as an acid-reactive compound described later, or may be contained in a resin different from the resin (B). .
  • R7 is any one selected from the group consisting of a hydrogen atom, an alkyl group and a halogenated alkyl group.
  • L 2 is a direct bond, a carbonyloxy group, a carbonylamino group, an optionally substituted linear, branched or cyclic alkylenecarbonyloxy group, and an optionally substituted linear, branched or It is any one selected from the group consisting of a cyclic alkylenecarbonylamino group.
  • substituent for L 2 include the same substituents as the first substituent.
  • Z 1 is a straight or branched alkyl group having 1 to 12 carbon atoms, a straight or branched alkenyl group having 2 to 12 carbon atoms, or a straight or branched aryl group having 6 to 14 carbon atoms. Also, some or all of the hydrogen atoms of these alkyl groups, alkenyl groups and aryl groups may be substituted with fluorine atoms. At least one methylene group in these groups may be substituted with the above divalent heteroatom-containing group.
  • Onium salts according to some aspects of the present invention preferably have a molar extinction coefficient at 365 nm of less than 1.0 ⁇ 10 5 cm 2 /mol, preferably less than 1.0 ⁇ 10 4 cm 2 /mol. is more preferred.
  • the ketone derivative obtained by deprotecting the acetal moiety or thioacetal moiety of the onium salt according to some aspects of the present invention preferably has a molar extinction coefficient at 365 nm of 1.0 ⁇ 10 5 cm 2 /mol or more. , 1.0 ⁇ 10 6 cm 2 /mol or more.
  • the molar absorption coefficient at 365 nm of the ketone derivative is preferably 5 times or more, more preferably 10 times or more, more preferably 20 times the molar absorption coefficient at 365 nm of the onium salt according to some embodiments of the present invention. It is more preferable to be above. In order to obtain the above characteristics, the onium salt represented by the above formula (1) or (2) may be used.
  • the corresponding dibenzothiophene derivative can be synthesized according to a general synthetic method, or can be prepared by obtaining a commercially available product. Then, after adding an alkylating agent ( R 12 SO 4 ) such as dimethyl sulfate to form a sulfonium salt, salt exchange is performed using a salt having a corresponding anion to obtain a dialkyl-arylsulfonium salt (formula (10d) below). get Thereafter, the carbonyl group is acetalized using an acid catalyst and an alcohol (R 5 OH) to obtain the desired sulfonium salt (formula (10e) below).
  • R 12 SO 4 alkylating agent
  • R 5 OH an alcohol
  • the methods shown below are exemplified.
  • the benzophenone derivative (formula (10c) below) is oxidized with an oxidizing agent such as hydrogen peroxide to obtain (10f).
  • the carbonyl group is acetalized using an acid catalyst and an alcohol (R 5 OH) to obtain an acetal form (the following formula (10g)).
  • a Grignard reagent having an R 1 group is used to react with the above acetal (formula (10g) below) to form a sulfonium salt, and then the desired sulfonium salt is subjected to salt exchange using a salt having a corresponding anion. (Formula (10h) below) is obtained.
  • the anion part of the onium salt is a polymer component bound to a part of the polymer
  • the synthesis method shown below can be used. First, an onium salt having a polymerizable functional group in the anion portion (polymerizable onium salt) (10i). Then, the polymerizable onium salt thus obtained and the acid dissociable compound or the like are copolymerized using a radical initiator to obtain the target polymer component (formula (10j) below).
  • compositions containing the photoacid generator (A) and an acid-reactive compound.
  • the composition further comprises an acid diffusion inhibitor.
  • the content of the photoacid generator in the composition of one embodiment of the present invention is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the resist composition components excluding the photoacid generator. It is more preferably 1 to 30 parts by mass, even more preferably 3 to 15 parts by mass.
  • the organic solvent is not included in 100 parts by mass of the resist composition components.
  • the photoacid generator is contained in the resin as one unit, that is, when the photoacid generator is a polymer component, the weight is based on the weight excluding the main chain of the polymer. Further, the photoacid generator is a polymer component, and units represented by general formulas (4a) to (4b) described later (hereinafter also referred to as "unit C") and general formulas (3a) to When it is included as a unit of the same polymer together with at least one unit selected from the group consisting of units represented by (3d) (hereinafter also referred to as “unit B"), the unit acting as the photoacid generator (hereinafter referred to as , also referred to as “unit A”) is preferably 0.1 to 40 mol%, more preferably 1 to 30 mol%, and further preferably 3 to 20 mol% of the total polymer units. preferable. In the resist composition, the photoacid generator may be used alone or in combination of two or more, regardless of whether it is a polymer component or a low-molecular
  • Photoacid generators other than the photoacid generator containing the onium salt include general-purpose ionic photoacid generators and nonionic photoacid generators.
  • Examples of the ionic photoacid generator include onium salt compounds such as iodonium salts and sulfonium salts other than the above.
  • Nonionic photoacid generators include N-sulfonyloxyimide compounds, oxime sulfonate compounds, organic halogen compounds and sulfonyldiazomethane compounds.
  • the content is 0.1 to 50 parts by mass with respect to 100 parts by mass of the resist composition components excluding the total amount of the photoacid generator. is preferred.
  • the acid-reactive compound is at least one selected from the group consisting of a compound having a protective group that is deprotected by an acid, a compound having a polymerizable group that is polymerized by an acid, and a cross-linking agent having a cross-linking action by an acid.
  • a compound having a protective group that can be deprotected by an acid is a compound whose protective group is deprotected by an acid to generate a polar group and change its solubility in a developer.
  • the protective group is insoluble in the alkaline developer, but the protective group is deprotected from the compound in the exposed area by the acid generated from the photoacid generator upon exposure. , is a compound that becomes soluble in an alkaline developer.
  • the acid-reactive compound is a resin (B) whose solubility in a developer changes under the action of acid.
  • the resin (B) has at least one of the units B represented by the above (3a) to (3d) having a protective group that can be deprotected by acid.
  • the above unit B is a unit contained in the resin (B) having a protective group that is deprotected by an acid, and a unit in which the protective group is deprotected by an acid to generate a polar group and change the solubility in a developer. is.
  • the protective group is deprotected from the unit B in the exposed area by the acid generated from the photoacid generator upon exposure, although it is insoluble in the alkaline developer. It is a compound that becomes soluble in an alkaline developer.
  • the developer is not limited to an alkaline developer, and may be an aqueous neutral developer or an organic solvent developer. Therefore, when an organic solvent developer is used, a compound having a protective group that can be deprotected by an acid is deprotected from the compound in the exposed area by the acid generated from the photoacid generator upon exposure. It is a compound that produces a group and lowers the solubility in an organic solvent developer.
  • Examples of the polar group include a hydroxy group, a carboxy group, an amino group and a sulfo group. Among these, a polar group having —OH in the structure is preferred, and a hydroxy group or a carboxy group is preferred.
  • Specific examples of protective groups that can be deprotected with an acid include groups that form tertiary alkyl ester groups with carboxy groups; alkoxyacetal groups; tetrahydropyranyl groups; siloxy groups and benzyloxy groups.
  • the compound having the protective group a compound having a styrene skeleton, a methacrylate or an acrylate skeleton to which these protective groups are pendant, and the like are preferably used.
  • the resin (B) may be a protective group-containing low-molecular-weight compound instead of a polymer component having a unit B having a protective group that can be deprotected by acid.
  • the protecting group-containing low-molecular-weight compound has at least one of the units represented by the following (3a) to (3d), similarly to the resin (B).
  • R 7 is any one selected from the group consisting of a hydrogen atom, an alkyl group and a halogenated alkyl group.
  • alkyl group include methyl, ethyl, n-propyl, n-butyl, isopropyl, t-butyl, cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl groups, and some of these hydrogen atoms are halogen may be replaced with Among them, a hydrogen atom, a methyl group, and a trifluoromethyl group are particularly preferred.
  • the moiety represented by the following formula (a-1) or (a-2) is a protecting group that is deprotected by an acid (hereinafter also referred to as an "acid-labile group"). It is decomposed by the action of acid to form carboxylic acid or phenolic hydroxyl groups, which changes the solubility in the developer.
  • the dashed lines in the following formulas (a-1) and (a-2) indicate the bonding portions with L 2 or oxygen atoms in the above formulas (3a) to (3d).
  • R 8 to R 13 in formulas (a-1) and (a-2) below are preferably selected from the same options as R 8 to R 13 in general formulas (3a) to (3d) above.
  • R 8 and R 9 are each independently a linear, branched or cyclic alkyl group which may have a substituent, such as methyl, ethyl, n-propyl, n- -butyl, isopropyl, t-butyl, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, adamantan-1-yl group, adamantan-2-yl group, norbornan-1-yl group and norbornan-2-yl group, etc. and an alkyl group having 1 to 12 carbon atoms.
  • a substituent such as methyl, ethyl, n-propyl, n- -butyl, isopropyl, t-butyl, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, adamantan-1-yl group, adam
  • R 10 is a linear, branched or cyclic alkyl group which may have a substituent, and the alkyl group is selected from the same options as the alkyl groups for R 8 , and some of these hydrogen atoms are It may be substituted with a hydroxyl group, an alkoxy group, an oxo group, an amino group, an alkylamino group, or the like.
  • R 8 , R 9 and R 10 directly form a single bond or form a ring structure through any one selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom-containing group and a methylene group; good too.
  • Substituents that R 8 to R 10 may have include those similar to the first substituents described above.
  • R 11 and R 12 are each independently a hydrogen atom and a linear or cyclic alkyl group, and the alkyl group is the same as the alkyl group for R 8 . is selected from
  • R 13 is a linear, branched or cyclic alkyl group which may have a substituent (also referred to as a “fifth substituent”), and the alkyl group is selected from the same options as the alkyl groups for R 8 . , a part of these hydrogen atoms may be substituted with a fifth substituent such as a hydroxyl group, an alkoxy group, an oxo group, an amino group, an alkylamino group, or the like.
  • R 11 , R 12 and R 13 may form a ring structure directly with a single bond or through any one selected from the group consisting of an oxygen atom, a sulfur atom, a nitrogen atom-containing group and a methylene group. good.
  • R 14 in the general formulas (3c) to (3d) is an alkyl group, a hydroxy group, an alkoxy group, an alkylcarbonyl group, an alkylsulfanyl group, an alkylsulfinyl group, an alkylsulfonyl group, an alkylamino group, a dialkylamino group and a cyano group. , a nitro group and a halogen atom. These are selected from the same options as each of R 3 in formula (1) above.
  • L 2 in the above general formulas (3a) to (3d) is a direct bond, a carbonyloxy group, a carbonylamino group, an optionally substituted linear, branched or cyclic alkylenecarbonyloxy group, or a substituted may be a linear, branched or cyclic alkylenecarbonylamino group, and the carbonyloxy group or carbonylamino group is bonded to the above acid-labile group.
  • l is an integer of 1 to 2
  • m is an integer of 0 to 4 when l is 1, and an integer of 0 to 6 when l is 2
  • n is l is 1, it is an integer of 1 to 5; when l is 2, it is an integer of 1 to 7; when l is 1, m+n is 1 to 5;
  • the composition may contain a compound having a polymerizable group that polymerizes with an acid and/or a cross-linking agent that has a cross-linking action with an acid.
  • a compound having a polymerizable group that is polymerized by an acid is a compound that changes solubility in a developer by being polymerized by an acid.
  • it acts on a compound soluble in an aqueous developer to reduce the solubility of the compound in the aqueous developer after polymerization.
  • Specific examples include compounds having an epoxy group, a vinyloxy group, an oxetanyl group, and the like.
  • the compound having a polymerizable group that is polymerized by an acid may be a polymerizable low-molecular-weight compound or a unit-containing polymer component having a polymerizable group.
  • a cross-linking agent having a cross-linking action with an acid is a compound that changes the solubility in a developer by cross-linking with an acid. For example, in the case of aqueous development, it acts on a compound soluble in an aqueous developer to reduce the solubility of the compound in the aqueous developer after polymerization or crosslinking.
  • Specific examples include cross-linking agents having cross-linkable groups such as epoxy groups, vinyloxy groups, 1-alkoxyamino groups and oxetanyl groups.
  • examples of the compound to be cross-linked that is, the compound that reacts with the cross-linking agent to change the solubility in the developer include compounds having a phenolic hydroxyl group.
  • the compound having a cross-linking action with an acid may be a cross-linkable low-molecular-weight compound or a unit-containing polymer component having a cross-linkable group.
  • the resin (B) may contain other units commonly used in resist compositions in the polymer component. good. Other units include, for example, units having at least one skeleton selected from the group consisting of a lactone skeleton, a sultone skeleton, a sulfolane skeleton, a lactam skeleton, and the like; units having at least one structure selected from the group consisting of structures, etc.; hydroxyaryl group-containing units; and the like.
  • the resin (B) may contain the unit A described above.
  • the resin (B) is a homopolymer containing the unit B, or at least one unit C selected from the group consisting of the unit B, the unit A, and general formulas (4a) to (4b) described later. and may be included in the composition as a copolymer having
  • the unit B in the resin (B) is preferably 3 to 50 mol%, more preferably 5 to 35 mol%, of the total polymer units. More preferably ⁇ 30 mol%.
  • the composition contains a resin (C) containing one or more units C represented by the following formulas (4a) to (4b), or the resin (B) is the above At least one of the units C is preferably further included.
  • R 7 , R 14 and L 2 are each independently selected from the same options as each of R 7 , R 14 and L 2 in formulas (3a) to (3d) above.
  • R 15 is a cyclic group containing at least one selected from the group consisting of -C(O)-O-, -SO 2 - and -O-SO 2 -.
  • p is an integer of 0-4 and q is an integer of 1-5.
  • Examples of the cyclic group include groups containing a lactone skeleton, a sultone skeleton, and a sulfolane skeleton.
  • the unit C represented by the formulas (4a) to (4b) is included in the copolymer containing at least one of the units A and/or the units B represented by the formulas (3a) to (3d). may also be units of another polymer.
  • the unit represented by the above formula (4a) is a hydroxyaryl group-containing unit (hereinafter also referred to as "unit C1")
  • the unit represented by the above formula (4b) is a lactone skeleton; a sultone skeleton; a sulfolane skeleton-containing unit. (hereinafter also referred to as “unit C2”).
  • the polymer having the hydroxyaryl group-containing unit C1 When the polymer having the hydroxyaryl group-containing unit C1 is used, it can serve as a hydrogen source when the photoacid generator decomposes, and the acid generation efficiency can be further improved, resulting in high sensitivity, which is preferable.
  • the polymer having a hydroxyaryl group-containing unit C1 since the polymer having a hydroxyaryl group-containing unit C1 has a low ionization potential, when an electron beam or extreme ultraviolet (EUV) is used as the first active energy beam described later, secondary electrons are easily generated, and the photoacid generation It is preferable because it improves the acid generation efficiency of the agent and provides high sensitivity.
  • EUV extreme ultraviolet
  • the hydroxyaryl group-containing unit C1 is included as a unit of the same polymer together with at least one selected from the group consisting of the unit A and the unit B, the hydroxyaryl group-containing unit C1 is a positive type for aqueous development.
  • the content is preferably 3 to 90 mol %, more preferably 5 to 80 mol %, even more preferably 7 to 70 mol %, based on the total polymer units.
  • the content is preferably 60 to 99 mol %, more preferably 70 to 98 mol %, even more preferably 75 to 98 mol %, based on the total polymer units.
  • lactone skeleton, sultone skeleton, and sulfolane skeleton-containing unit C2 are exemplified below. However, the invention is not so limited.
  • an acid is generated by ionization by electron beam or extreme ultraviolet (EUV) irradiation as the first active energy ray.
  • EUV extreme ultraviolet
  • it is preferable because it contributes to polarity conversion due to the reaction with the resin (B) containing the above unit B, and the solubility of the resin in the developer is further changed, resulting in high sensitivity.
  • the unit C2 includes a lactone skeleton-containing unit, a sultone skeleton-containing unit, and a sulfolane skeleton-containing unit together with at least one selected from the group consisting of the unit A and the unit B as units of the same polymer
  • the unit C2 is It is preferably 3 to 70 mol %, more preferably 5 to 50 mol %, even more preferably 7 to 40 mol % of the total polymer units.
  • composition of one aspect of the present invention in addition to the above unit A, the above unit B, and the above unit C, other compounds are included in the resin (B) and/or the resin (C) as units of the same polymer. good too.
  • Other compounds are not particularly limited as long as they are compounds generally used as resin compositions for ArF lithography, KrF lithography, electron beam lithography, EUV lithography, and the like.
  • composition of one aspect of the invention may comprise a low molecular weight compound or polymer containing a sulfone or sulfonate ester.
  • the above sulfone or sulfonic acid ester is not particularly limited, but preferably has a linear, branched or cyclic alkyl or aryl group. More preferably, some or all of the hydrogen atoms in the alkyl or aryl group are substituted with fluorine atoms.
  • the compound When the compound is contained, it is ionized by irradiation with an electron beam or extreme ultraviolet rays to generate an acid, so that the sensitivity of the resist can be increased.
  • the content of the compound containing sulfone or sulfonic acid ester is preferably 0.1 to 50 parts by weight per 100 parts by weight of the resist composition components excluding the total amount of the photoacid generator.
  • compounds containing sulfones or sulfonate esters include dimethylsulfone, isopropylmethylsulfone, methylphenylsulfone, diphenylsulfone, phenyltrifluoromethylsulfone, bis(4-fluorophenyl)sulfone, bis(phenylsulfonyl)methane, methyl methanesulfonate, isopropyl methanesulfonate, ethyl trifluoromethanesulfonate, methyl benzenesulfonate, 1,3-propanesultone, 1-propene 1,3-sultone, 1,4-butanesultone, 1,2-bis(tosyloxy ) ethane, 1,8-naphthosultone, and the like, each of which may be used alone or in combination of two or more.
  • composition of one aspect of the present invention may contain a fluorine-containing water-repellent polymer.
  • the fluorine-containing water-repellent polymer is not particularly limited, but includes those commonly used in the immersion exposure process, and preferably has a fluorine atom content higher than that of the above polymer.
  • the fluorine-containing water-repellent polymer is unevenly distributed on the surface of the resist film due to the water repellency of the fluorine-containing water-repellent polymer.
  • the fluorine content of the fluorine water-repellent polymer it is preferable that 25 mol % or more of the hydrogen atoms in the hydrocarbon groups in the fluorine water-repellent polymer are fluorinated, and 50 mol % or more is fluorinated. is more preferred.
  • the content of the fluorine water-repellent polymer in the composition should be 0.5 to 10 parts by mass with respect to 100 parts by mass of the polymer (not the fluorine water-repellent polymer) of one embodiment of the present invention. is preferable from the viewpoint of improving the hydrophobicity of the resist film.
  • the fluorine water-repellent polymer may be used alone or in combination of two or more.
  • the composition of one aspect of the invention may comprise a photosensitizer and its precursors.
  • the photosensitizer and its precursor are collectively referred to as a "sensitizing compound".
  • the sensitizing compound is not particularly limited as long as it does not reduce the effect of the onium salt according to some embodiments of the present invention, and includes thioxanthone derivatives and their acetalized compounds, benzophenone derivatives and their acetalized compounds, naphthalene derivatives, Examples include anthracene derivatives, alkyl alcohols and aryl alcohols.
  • a photosensitizer precursor represented by the following general formula (7) may be included as a sensitizing compound.
  • a photosensitizer precursor represented by the following general formula (7) By containing the photosensitizer precursor, a photosensitizer is generated from the photosensitizer precursor by irradiating the first active energy ray, and then by irradiating the second active energy. Since the sensitization reaction that occurs between the photosensitizer and the onium salt according to some embodiments of the present invention can be utilized, the sensitivity of the resist can be increased, which is preferable.
  • Ar 11 and Ar 12 are each independently a phenylene group optionally having a substituent
  • R 21 is a hydrogen atom, optionally having a substituent is any one selected from the group consisting of an alkylsulfanyl group, an arylsulfanyl group and an alkylsulfanylphenyl group
  • W is any one selected from the group consisting of a sulfur atom, an oxygen atom and a direct bond
  • Y is each independently an oxygen atom or a sulfur atom
  • R 23 and R 24 are , each independently selected from the group consisting of linear, branched or cyclic alkyl groups, alkenyl groups, alkynyl groups and aralkyl groups which may have a substituent; 23 and R 24 may combine with each other to form a ring structure with two Y in the formula.
  • Ar 11 and Ar 12 in the above formula (6) are each a phenylene group, and substituents other than R 21 or -WR 22 (hereinafter, the substituents of Ar 11 and Ar 12 are referred to as "sixth substituents group").
  • Ar 11 and Ar 12 may form a ring structure directly or via a divalent linking group. Examples of the divalent linking group include alkylene, an oxygen atom, a sulfur atom, and the like. An electron donating group is mentioned as said 6th substituent.
  • the electron-donating group examples include alkyl groups, alkenyl groups, alkoxy groups, alkoxyphenyl groups, alkylsulfanyl groups, arylsulfanyl groups and alkylsulfanylphenyl groups.
  • the sixth substituent also includes a long chain alkoxy group having a polyethylene glycol chain (-(CO 2 H 4 ) n -). Also, when the sixth substituent is bonded to the para-position of Ar 11 or Ar 12 , it may have an OH group as the sixth substituent.
  • the substitution position such as the “para position” of Ar 11 or Ar 12 is the position relative to the group to which the quaternary carbons bonded to two Ys and Ar 11 and Ar 12 in the above formula (6) are bonded.
  • the standard of the substitution position such as "para-position” is the position relative to the group bonded to the quaternary carbon.
  • the alkyl group and alkenyl group as the sixth substituent are selected from the same options as the alkyl group and alkenyl group for R 11 in formula (1) above.
  • the alkoxy group as the sixth substituent is selected from the same options as those for the alkoxy group in the first substituent.
  • alkylsulfanyl group, arylsulfanyl group and alkylsulfanylphenyl group as the sixth substituent include those similar to the alkylsulfanyl group, arylsulfanyl group and alkylsulfanylphenyl group for R 21 described later.
  • it is preferable that the heteroatoms such as —O—O, —S—S— and —S—O— are not connected continuously.
  • the phenylene groups Ar 11 and Ar 12 are bonded to the ortho and/or para positions of the phenylene group. preferably. In that case, the number of substituents is preferably three or less.
  • R 21 in the above formula (6) is any one selected from the group consisting of optionally substituted alkylsulfanyl groups, arylsulfanyl groups and alkylsulfanylphenyl groups.
  • the alkylsulfanyl group for R 21 is preferably an alkylsulfanyl group having 1 to 20 carbon atoms such as methylsulfanyl group, ethylsulfanyl group, n-propylsulfanyl group, n-butylsulfanyl group, and 1 to 12 carbon atoms. is more preferred.
  • Specific examples of the arylsulfanyl group for R 21 include a phenylsulfanyl group and a naphthylsulfanyl group.
  • alkylsulfanylphenyl group for R 21 preferably include a phenyl group to which an alkylsulfanyl group having 1 to 20 carbon atoms such as a methylsulfanylphenyl group, an ethylsulfanylphenyl group, a propylsulfanylphenyl group, and a butylsulfanylphenyl group are bonded. and more preferably a phenyl group to which an alkylsulfanyl group having 1 to 12 carbon atoms is attached.
  • substitution position of the alkylsulfanyl group bonded to the phenylene group in R 21 is not particularly limited, but the para-position is preferred from the viewpoint of increasing the electron-donating property and the molar absorption coefficient at 365 nm.
  • the above R 21 is preferably bonded to the ortho- or para-position of the phenylene group Ar 11 .
  • R 22 in the above formula (6) is either an optionally substituted alkyl group or an aryl group, and is selected from the same options as for each of R 11 above.
  • R 21 and R 22 in the above formula (6) may have a substituent, and the substituent (hereinafter, the substituent of R 21 and R 22 will be referred to as a “seventh substituent”) is particularly Examples include, but are not limited to, an electron-withdrawing group in addition to the sixth substituent.
  • a nitro group, a sulfonyl group, etc. are mentioned as an electron withdrawing group.
  • a polymerizable group may be introduced into R 21 or R 22 , and the resulting polymer may be used as a polymer imparted with a sensitizing effect.
  • the polymerizable group include a (meth)acryloyloxy group, an epoxy group, and a vinyl group.
  • W in the above formula (6) is an oxygen atom or a sulfur atom, it is preferred that the above W is at the ortho- or para-position of Ar 12 .
  • said W is a direct bond, said W is preferably at the ortho or para position of Ar 12 .
  • the total carbon number of R 21 in the above formula (6) is not particularly limited, and when R 21 has a substituent, it preferably has a total carbon number of 1-20.
  • the total carbon number of R 22 in the above formula (6) is not particularly limited, and when R 22 has a substituent, it preferably has a total carbon number of 1-20.
  • the photosensitizer precursor is a polymer
  • the total carbon number of R 21 and R 22 excluding the portion containing the polymer main chain serving as the seventh substituent is preferably 1-20.
  • R 23 and R 24 each independently represent an optionally substituted linear, branched or cyclic alkyl group, an optionally substituted linear, branched or cyclic from the group consisting of an alkenyl group, an optionally substituted linear, branched or cyclic alkynyl group, and an optionally substituted linear, branched or cyclic aralkyl group Either selected.
  • the alkyl group and alkenyl group for R 23 and R 24 are selected from the same options as the alkyl group and alkenyl group for R 11 in formula (1) above.
  • the alkynyl group for R 23 and R 24 is selected from those in which part of the alkyl groups for R 23 and R 24 are triple bonds.
  • the aralkyl group for R 23 and R 4 is selected from those in which some of the hydrogen atoms in the alkyl groups for R 23 and R 24 are substituted with aryl groups such as phenyl and naphthyl groups.
  • R 23 and R 24 in the above formula (6) may have a substituent, and the substituent (hereinafter, the substituent of R 23 and R 24 is referred to as the "eighth substituent") is particularly In addition to the seventh substituent, aryl groups such as a phenyl group and a naphthyl group are also included, although not limited thereto.
  • the total carbon number of R 23 and R 24 in the formula (6) is not particularly limited, and the photosensitizer precursor may be a constituent component of a polymer, but R 23 or R 24 may be a substituent. When it has, it is preferable that each has a total carbon number of 1 to 20.
  • R 23 and R 24 may combine with each other to form a ring structure with two Y in the formula. That is, the photosensitizer precursor according to one aspect of the present invention is represented by the following formula (7).
  • -R 25 -R 26 - is preferably -(CH 2 ) n -, where n is an integer of 2 or more. Although n is not particularly limited as long as it is 2 or more, it is preferably 8 or less for ease of synthesis.
  • R 25 and R 26 correspond to R 23 and R 24 in the above formula (6) combined to form a ring.
  • R 25 and R 26 may have the same eighth substituent as R 23 and R 24 above.
  • a polymerizable group may be introduced into the above R 23 or R 24 , and a polymer obtained by polymerizing this may be used as a polymer imparted with a sensitizing action.
  • the total carbon number of R 23 and R 24 is preferably 1-20.
  • the photosensitizer precursor is a polymer
  • the total number of carbon atoms in R 23 and R 24 excluding the portion containing the polymer main chain serving as the eighth substituent is preferably 1-20.
  • the photosensitizer having a carbonyl group generated when the photosensitizer precursor is deprotected by acid has a molar absorption coefficient of 1 at 365 nm. It is preferably 0 ⁇ 10 5 cm 2 /mol or more. A higher molar extinction coefficient at 365 nm is preferable, but a realistic value is 1.0 ⁇ 10 10 cm 2 /mol or less.
  • the photosensitizer precursor contains, for example, one or more alkylsulfanyl groups, arylsulfanyl groups, alkylsulfanylphenyl groups, or two or more alkoxy groups or aryloxy groups.
  • the molar extinction coefficient is at 365 nm measured with a UV-VIS spectrophotometer using chloroform as a solvent.
  • the photosensitizer precursor according to one aspect of the present invention has -YR 23 and -YR 24 in the whole photosensitizer precursor in terms of ease of synthesis and light absorption characteristics or 4 or less groups selected from the group consisting of alkylsulfanyl groups, arylsulfanyl groups, alkoxyphenyl groups, alkylsulfanylphenyl groups, alkoxy groups and aryloxy groups other than -YR 25 -R 26 -Y- is preferably
  • photosensitizer precursor represented by formula (6) or formula (7) include the following photosensitizer precursors. In the following examples, those shown in parentheses represent polymer units. Photosensitizer precursors in some embodiments of the present invention are not limited to this.
  • the photosensitizer precursor according to one aspect of the present invention has a structure represented by the following formula (8), it can be synthesized, for example, by the following method.
  • composition according to one aspect of the present invention may optionally further contain an acid diffusion control agent, a surfactant, an organic carboxylic acid, an organic solvent, and a dissolution inhibitor, which are used in ordinary resist compositions. , stabilizers and dyes, polymers other than those described above, and the like.
  • the acid diffusion control agent has the effect of controlling the diffusion phenomenon of the acid generated from the photo-acid generator in the resist film and controlling undesirable chemical reactions in the non-exposed regions. Therefore, the storage stability of the obtained resist composition is further improved, and the resolution as a resist is further improved, and the line width change of the resist pattern due to the variation of the holding time from exposure to development can be suppressed. , a resist composition having excellent process stability can be obtained.
  • the acid diffusion control agent examples include compounds having one nitrogen atom, compounds having two nitrogen atoms, compounds having three nitrogen atoms in the same molecule, amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, and the like. be done.
  • a photodegradable base that is sensitized by exposure to generate a weak acid can also be used.
  • Photodegradable bases include, for example, onium salt compounds and iodonium salt compounds which are decomposed by exposure to lose acid diffusion controllability.
  • the content of the acid diffusion control agent is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, more preferably 0.05 to 0.05 parts by mass, based on 100 parts by mass of the resist composition components. More preferably, it is 3 parts by mass.
  • the surfactant is preferably used to improve coatability. Examples of surfactants include nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, polyoxyethylene polyoxypropylene block copolymers, sorbitan fatty acid esters, and polyoxyethylene sorbitan fatty acid esters. agents, fluorine-based surfactants, organosiloxane polymers, and the like.
  • the content of the surfactant is preferably 0.0001 to 2 parts by mass, more preferably 0.0005 to 1% by mass, per 100 parts by mass of the resist composition components.
  • organic carboxylic acids examples include aliphatic carboxylic acids, alicyclic carboxylic acids, unsaturated aliphatic carboxylic acids, oxycarboxylic acids, alkoxycarboxylic acids, ketocarboxylic acids, benzoic acid derivatives, phthalic acid, terephthalic acid, isophthalic acid, 2 -naphthoic acid, 1-hydroxy-2-naphthoic acid, 2-hydroxy-3-naphthoic acid and the like.
  • phthalic acid terephthalic acid
  • isophthalic acid 2 -naphthoic acid, 1-hydroxy-2-naphthoic acid, 2-hydroxy-3-naphthoic acid and the like.
  • 1-Hydroxy-2-naphthoic acid, 2-hydroxy-3-naphthoic acid are preferred.
  • the content of the organic carboxylic acid is preferably 0.01 to 10 parts by mass, more preferably 0.01 to 5 parts by mass, and still more preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the resist composition components. is.
  • organic solvents examples include ethylene glycol monoethyl ether acetate, cyclohexanone, 2-heptanone, propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether propionate, and propylene glycol monoethyl ether.
  • the components of the resist composition are preferably dissolved in the above organic solvent at a solid content concentration of 1 to 40% by mass. More preferably 1 to 30 mass %, still more preferably 3 to 20 mass %. By setting the solid content concentration in such a range, the above film thickness can be achieved.
  • the polymer When the resist composition of one aspect of the present invention contains a polymer, the polymer preferably has a weight average molecular weight of 2000 to 200000, more preferably 2000 to 50000, and further preferably 2000 to 15000. preferable.
  • the preferred dispersity (molecular weight distribution) (Mw/Mn) of the polymer is 1.0 to 1.7, more preferably 1.0 to 1.2, from the viewpoint of sensitivity.
  • the weight-average molecular weight and dispersity of the polymer are defined as polystyrene-equivalent values by GPC measurement.
  • a composition of one aspect of the present invention is obtained by mixing each component of the above composition, and the mixing method is not particularly limited.
  • One aspect of the present invention includes the steps of forming a resist film by applying the composition onto a substrate, and irradiating the resist film with a first active energy ray;
  • a method of manufacturing a device comprising the steps of: irradiating a resist film after being irradiated with the first active energy ray with a second active energy ray; and developing the resist film after being irradiated with the second active energy ray to obtain a pattern. is.
  • One embodiment of the present invention includes the steps of forming a resist film, irradiating with a first active energy ray, irradiating with a second active energy, and forming a pattern using the above composition, It may be a method for manufacturing a substrate having a pattern before obtaining singulated chips.
  • One form of the present invention is a step of forming a coating film on a substrate using the above composition, exposing the coating film using a first active energy ray and a second active energy ray, and forming an interlayer insulating film. It may be a device manufacturing method including the step of obtaining
  • the first active energy ray and the second active energy ray are not particularly limited as long as the onium salt according to some embodiments of the present invention does not have significant absorption in the second active energy ray.
  • the wavelength of the radiation is shorter than that of the second active energy radiation, or the energy of the photon or particle radiation is higher.
  • Each actinic energy ray is exemplified below, but is not limited thereto if the wavelength of the first actinic energy ray is shorter than that of the second actinic energy ray, or if the energy of the photon or particle beam is high.
  • the first active energy ray is not particularly limited as long as it can generate active species (first active species) such as acid in the resist film after irradiation of the resist film, but examples include KrF excimer laser light and ArF excimer laser light. Light, electron beams, extreme ultraviolet (EUV), and the like are preferred.
  • active species such as acid in the resist film after irradiation of the resist film
  • examples include KrF excimer laser light and ArF excimer laser light.
  • the acetal site or thioacetal site of the onium salt according to some embodiments of the present invention is deprotected by the acid generated in the resist film after the irradiation of the first active energy ray.
  • Any light may be used as long as it can activate the ketone derivative to generate an active species (second active species) such as an acid.
  • active species such as an acid.
  • it means KrF excimer laser light, UV, visible light, etc.
  • UV light it is particularly preferable to use light in the range of 365 nm (i-line) to 436 nm (g-line).
  • a device manufacturing method preferably includes a heating step between the step of applying the first activation energy and the step of applying the second activation energy ray.
  • a heating method includes, but is not limited to, heating with a heating wire, laser, or the like. Having the heating step improves the decomposition efficiency of the onium salt, which can lead to further improvement in sensitivity. Heating using a heating wire includes implementation using a hot plate or the like. In the device manufacturing method, the implementation of prebaking corresponds to this step.
  • the onium salts represented by the above formulas (1) and (2) include the above R 5 and the above R 6 as the third substituent.
  • tertiary alcohols are more likely than primary alcohols and secondary alcohols to produce water by the E1 elimination reaction using the acid produced by irradiation with the first active energy ray as a catalyst, and the above heating This is because the step further promotes the E1 elimination reaction.
  • the acetal site or thioacetal site of the onium salts represented by the above formulas (1) and (2) is hydrolyzed and deprotected, resulting in a ketone that absorbs the second active energy ray. Change to a derivative.
  • the amount of acid generated can be amplified, so that the sensitivity is further improved.
  • the heating step also includes, but is not limited to, heating by a heating wire, laser, or the like, similar to the heating between the step of irradiating the first activation energy and the step of irradiating the second activation energy ray.
  • the substrate is not particularly limited, and known substrates can be used. Examples include metal substrates such as silicon, silicon nitride, titanium, tantalum, palladium, copper, chromium, and aluminum; glass substrates; and the like.
  • the active energy beam used for exposure in the photolithography process used to obtain an interlayer insulating film for LSI fabrication includes UV, KrF excimer laser light, ArF excimer laser light, electron beam, or Extreme ultraviolet rays (EUV) are preferred.
  • the irradiation amount of the first active energy ray varies depending on the type and blending ratio of each component in the photocurable composition, the film thickness of the coating film, etc., but it should be 1 J/cm 2 or less or 1000 ⁇ C/cm 2 or less. is preferred.
  • the thickness of the resist film formed from the resist composition is preferably 10 to 200 nm.
  • the above resist composition is applied onto a substrate by a suitable coating method such as spin coating, roll coating, flow coating, dip coating, spray coating, doctor coating, etc., and is heated at 60 to 150° C. for 1 to 20 minutes, preferably 80 to 80 minutes.
  • a thin film is formed by pre-baking at 120° C. for 1 to 10 minutes.
  • the film thickness of this coating film is 5 to 200 nm, preferably 10 to 100 nm.
  • Synthesis Example 7 Synthesis of 3′,5′-difluorophenyl-2-[dimethoxy-(4-methoxyphenyl)methyl]dibenzothiophenium-nonafluorobutanesulfonate (sulfonium salt 4)
  • Synthesis Example 3 above 1 By performing the same operation as in Synthesis Example 3 above except that a 1.0 mol/L THF solution of 3,5-difluorophenylmagnesium bromide was used in place of the 0 mol/L THF solution of phenylmagnesium bromide, 3,5- 3.1 g of difluorophenyl-2-[dimethoxy-(4-methoxyphenyl)methyl]dibenzothiophenium-nonafluorobutanesulfonate are obtained.
  • Phenyl-2-[4-methoxyphenyl-[1,3]dioxepane was obtained in the same manner as in Synthetic Example 3 above, except that butanesulfonate was used and 1,4-butanediol was used in place of methanol. 2.0 g of 2-yl]methyldibenzothiophenium-nonafluorobutanesulfonate are obtained.
  • phenyl-2-[(4-methoxyphenyl)]methyl-4,6-dimethyldibenzothiophenium-nonafluorobutanesulfonate is obtained in the same manner as in Synthesis Example 4 except that phenyl-2-[(4-methoxyphenyl)]methyl-4,6-dimethyldibenzothiophenium-nonafluorobutanesulfonate is used.
  • Phenyl-2-[di(3-hydroxy-3) was obtained in the same manner as in Synthetic Example 3 above, except that butanesulfonate was used and 3-methyl-1,3-butanediol was used in place of methanol. 2.8 g of -methyl)butoxy-(4-methoxyphenyl)methyl]dibenzothiophenium-nonafluorobutanesulfonate are obtained.
  • the polymer is precipitated by dropping the solution into 260 g of pure water.
  • the solid obtained by separating this by filtration under reduced pressure is washed twice with 300 g of pure water, and then vacuum-dried to obtain 9.2 g of polymer A shown below as a white solid.
  • the monomer ratio of the unit of the polymer in the present invention is not limited to the following.
  • the polymer is precipitated by dropping this into a mixed solvent of 149 g of hexane and 12 g of THF.
  • the solid obtained by separating the precipitated polymer by filtration under reduced pressure is washed with 52 g of hexane and then vacuum-dried to obtain 10.3 g of polymer B represented by the following formula as a white solid.
  • a weight-average molecular weight of 9,200 is obtained by polystyrene conversion using gel permeation chromatography.
  • the monomer ratio of the unit of the polymer in the present invention is not limited to the following.
  • Samples were prepared as follows. A sample was prepared by adding 200 mg of the polymer A, 0.045 mol of a photoacid generator (PAG), and 0.0012 mmol of coumarin 6 as an indicator to 3000 mg of cyclohexanone. As the PAG, any one of the sulfonium salts 1 and 8 and the sulfonium salts 15 to 19 shown below was used. Details are shown in Table 1.
  • PAG photoacid generator
  • the acid generation efficiency per irradiation dose is obtained from the slope of the linear function of the irradiation dose and the absorbance, and the relative acid generation efficiency based on the sulfonium salt 20 is calculated.
  • Table 1 shows the results. Specifically, the acid generation efficiency of Samples 1 to 6 of Examples 1 to 2 and Comparative Examples 1 to 4, respectively, was 1.00 compared to the acid generation efficiency of Sample 7 (Comparative Example 5) to which sulfonium salt 20 was added. As a relative value, the evaluation results of Samples 1 to 6 (Examples 1 to 2 and Comparative Examples 1 to 4) were calculated. A higher acid generation efficiency indicates a better effect.
  • Samples 1-2 (Examples 1-2) containing the sulfonium salt of some embodiments of the present invention have higher acid generation efficiencies compared to Comparative Examples 1, 4 and 5.
  • Comparative Examples 2 and 3 containing sulfonium salts 17 and 18 instead of dibenzothiophenium, the efficiency of acid generation by EUV irradiation is lower than that of sulfonium salt 20.
  • a compound having an acetal moiety or a thioacetal moiety causes electron donation and tends to decrease reactivity with secondary electrons generated by EUV irradiation. Due to the structure, the reactivity with secondary electrons generated in the polymer by EUV irradiation is less likely to decrease.
  • the sulfonium salts 17 and 18 tend to have lower electron-accepting properties in the polymer under the influence of electron-donating properties when irradiated with the first activation energy such as EUV.
  • the same effect as in Example 1 can be obtained even when Polymer D is used in place of Sample 1 of Example 1.
  • the sulfonium salt of some embodiments of the present invention is used in the step of UV irradiation after EUV or electron beam irradiation, the high efficiency of acid generation in EUV or electron beam results in the effect of acid generation by subsequent UV irradiation. can be used effectively.
  • Samples were prepared as follows. To 3000 mg of cyclohexanone, 100 mg of the polymer C, 0.024 mmol each of the above sulfonium salts 1, 8, 13, 16 to 19 as a photoacid generator (PAG), and 0.02 mmol of triisoamylamine as an acid diffusion controller. Samples were prepared by adding 0.10 mmol.
  • PAG photoacid generator
  • a silicon wafer modified with hexamethylenedisilazane in advance is spin-coated with the resist composition sample 1 above.
  • a substrate with a coating film having a thickness of 100 nm is obtained.
  • a 50 nm line-and-space pattern is drawn on the coating film of the substrate using an electron beam drawing apparatus.
  • the substrate was exposed entirely to a UV-LED of 395 nm with an exposure amount of 1000 mJ/cm 2 and then heated on a hot plate at 110° C. for 1 minute.
  • the sensitivity of each sample is the sensitivity of the sample (Comparative Example 9) to which the sulfonium salt 19 was added, and the sensitivity of the sample (Examples 3 to 5 and Comparative Examples 6 to 8) is evaluated against it as 1.00. was calculated as a relative value. Relative sensitivity indicates that the smaller the value, the better the effect.
  • Examples 3 and 4 which are samples containing the onium salt according to some aspects of the present invention, exhibited higher sensitivity than Comparative Example 9 in both polymers.
  • the reason is presumed to be as follows.
  • the sulfonium salts 1 and 8 (Examples 3 and 4) in some embodiments of the present invention deprotected the acetal group by the acid generated in the resist film by the electron beam, which is the first activation energy beam, to form a ketone derivative.
  • ketone derivative has absorption in UV, which is the second active energy ray, it can directly generate an acid when excited by UV irradiation.
  • the sulfonium salt 19 (Comparative Example 9) does not change to absorb the second active energy ray, UV.
  • the sensitivity is equivalent depending on the electron beam irradiation, in Examples 3 and 4, the sensitivity is increased by further generating acid by being excited by UV irradiation. It can be seen that it is sensitive.
  • sulfonium salt 13 had higher sensitivity than sulfonium salt 8. Since the sulfonium salt 13 has a tertiary alcohol at the end of the acetal group, it produces water using an acid generated by irradiation with an electron beam, which is the first active energy ray, as a catalyst. Hydrolysis is promoted by using this water, and the amount of ketone derivative produced before UV irradiation, which is the second active energy ray, is greater when sulfonium salt 13 is used than when sulfonium salt 8 is used. Tend. Therefore, it can be seen that the sample 10 using the sulfonium salt 13 has an improved amount of acid generated by UV irradiation and has a high sensitivity.
  • the onium salts of some embodiments of the invention are more sensitive than sulfonium salt 18 (Comparative Example 8).
  • the sulfonium salts 1 and 8 (Examples 3 and 4) have a dibenzothiophene skeleton, the decrease in electron-accepting property is less likely to occur. Therefore, in Comparative Example 8, the amount of acid generated before UV irradiation is smaller than in Examples 3 and 4. As shown in FIG. 1, the ketone derivative of the sulfonium salt 18 of Comparative Example 8 has a UV absorption at 395 nm, which is the second active energy ray, 10 times that of the ketone derivatives of the sulfonium salts 1 and 8 used in Examples 3 and 4.
  • sulfonium salts 1 and 8 have a hydroxyl group at the ortho or para position as R 4 , their affinity for alkaline developing solutions is improved, and thus the solubility of the sulfonium salts tends to be improved during development.
  • an onium salt is structurally changed into a ketone derivative by an active species generated by irradiation with a first active energy ray such as an electron beam or extreme ultraviolet rays, and the ketone derivative is converted into an active species by irradiation with a second active energy ray.
  • a resin composition containing an onium salt capable of generating
  • the onium salt has a specific substituent or a specific structure, specifically a benzothiophene structure, the absorption of the irradiated UV wavelength is improved. Therefore, the resin composition containing the onium salt can be a highly sensitive resist composition that efficiently generates acid upon UV irradiation.

Abstract

粒子線又は電磁波、特に電子線又は極端紫外線等に対して高感度のレジスト組成物用オニウム塩を提供する。 下記一般式(1)又は(2)から選択されるいずれかで表されるオニウム塩とする。 (前記式(1)及び(2)中、R1は、置換基を有していてもよい直鎖、分岐又は環状の炭素原子数1~12のアルキル基;置換基を有していてもよい直鎖、分岐又は環状の炭素原子数2~12のアルケニル基;置換基を有していてもよい炭素原子数6~14のアリール基;及び置換基を有していてもよい炭素原子数3~12のヘテロアリール基;からなる群より選択されるいずれかであり、 前記R2、R3及びR4は独立して各々に、アルキル基、ヒドロキシ基、メルカプト基、アルコキシ基、アルキルカルボニル基、アリールカルボニル基、ヘテロアリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、ヘテロアリールオキシカルボニル基、アリールスルファニルカルボニル基、ヘテロアリールスルファニルカルボニル基、アリールスルファニル基、ヘテロアリールスルファニル基、アルキルスルファニル基、アリール基、ヘテロアリール基、アリールオキシ基、ヘテロアリールオキシ基、アルキルスルフィニル基、アリールスルフィニル基、ヘテロアリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、ヘテロアリールスルホニル基、アリールスルホニル基、ヘテロアリールスルホニル基、(メタ)アクリロイルオキシ基、ヒドロキシ(ポリ)アルキレンオキシ基、アルキルアミノ基、ジアルキルアミノ基、シアノ基、ニトロ基及びハロゲン原子からなる群より選択されるいずれかであり、前記R2、R3及びR4が炭素を有する場合の炭素原子数が1~12であり、且つ、前記R2、R3及びR4が水素原子を有するとき該水素原子が置換基で置換されていても良く、 前記R1と、前記R2が結合するベンゼン環及び前記R3が結合するベンゼン環のいずれかと、が単結合で直接に、又は、酸素原子、硫黄原子、窒素原子含有基及びメチレン基からなる群より選択されるいずれかを介して、これらが結合する硫黄原子と共に環構造を形成してもよく、 前記R1がメチレン基を有するとき該メチレン基の少なくとも1つが2価のヘテロ原子含有基で置換されていてもよく、 前記R5及びR6は独立して各々に、置換基を有していてもよい直鎖、分岐又は環状の炭素原子数1~12のアルキル基;置換基を有していてもよい直鎖、分岐又は環状の炭素原子数2~12のアルケニル基;置換基を有してもよい炭素原子数6~14のアリール基;及び置換基を有していてもよい炭素原子数3~12のヘテロアリール基;からなる群より選択されるいずれかであり、 前記R5及びR6は、単結合で直接に、又は、酸素原子、硫黄原子及びアルキレン基からなる群より選択されるいずれかを介して、互いに結合して環構造を形成してもよく、 前記R5及びR6中の少なくとも1つのメチレン基が2価のヘテロ原子含有基で置換されていてもよく、 L1は、直接結合;直鎖、分岐又は環状の炭素原子数1~12のアルキレン基;炭素原子数2~12のアルケニレン基;スルフィニル基、スルホニル基及びカルボニル基;からなる群より選択されるいずれかであり、 Yは酸素原子又は硫黄原子であり、 aは0~4の整数であり、 bは0~3の整数であり、 cは1~5の整数であり、 dは0~2の整数であり、 eは1~4の整数であり、 (ただし、前記R1と、前記R2が結合するベンゼン環及び前記R3が結合するベンゼン環のいずれかとが、前記硫黄原子と共に環構造を形成する場合は、前記式(1)においてaが0~3又はbが0~2であり、前記式(2)においてaが0~3又はdが0~1である) 前記式(1)及び(2)におけるベンゼン環の少なくとも1つは、ヘテロ原子を環中に有する6員環のヘテロ芳香環であってもよく、前記式(1)及び(2)におけるR4に結合するベンゼン環が前記ヘテロ芳香環のときeが0~4であり、 前記式(1)及び(2)においてR4を2つ以上有するとき、R4のうち2つが互いに連結して環構造を形成していてもよく、 X-は1価のアニオン基であり、fは1~3の整数であり、fが2以上のときにX-は同じであっても異なっていてもよく、 Rはf価の有機基である。

Description

オニウム塩、光酸発生剤、組成物及びそれを用いたデバイスの製造方法
 本発明のひとつの態様はオニウム塩に関する。また、本発明の別の態様は上記オニウム塩を含有する光酸発生剤、組成物、及び、該組成物を用いたデバイスの製造方法に関する。
 近年、フォトレジストを用いるフォトリソグラフィ技術を駆使して、液晶ディスプレイ(LCD)及び有機ELディスプレイ(OLED)等の表示装置の製造並びに半導体素子の形成が盛んに行われている。上記の電子部品や電子製品のパッケージ等には、活性エネルギー線として波長365nmのi線、それより長波長のh線(405nm)及びg線(436nm)等の光が広く用いられている。
 デバイスの高集積化が進み、リソグラフィ技術の微細化に対する要求が高まっており、KrFエキシマレーザ(波長248nm)、ArFエキシマレーザ(波長193nm)、極端紫外線(EUV、波長13.5nm)及び電子線(EB)のような非常に波長の短い光や粒子線が露光に使用される傾向にある。これらの波長の短い光、特にEUV又は電子線を用いたリソグラフィ技術はシングルパターニングでの製造が可能であることから、EUV又は電子線等に対し高い感応性を示すレジスト組成物の必要性は、今後更に高まると考えられる。
 露光光源の短波長化に伴い、レジスト組成物には、露光光源に対する感度、微細な寸法のパターンを再現できる解像性のリソグラフィ特性の向上が求められている。このような要求を満たすレジスト組成物として化学増幅型レジストが知られている(特許文献1)。
 しかしながら、従来の化学増幅型レジストはEUV又は電子線等用の化学増幅型レジスト組成物は、EUV又は電子線の吸収が小さく、2次電子の発生効率が低くなることで酸発生剤の分解効率が低下し、感度、解像度及びパターン性能の特性を同時に満たすことは難しい。特に、EUV又は電子線の吸収が小さいことに起因する低感度によるスループット低下と、レジストの解像線幅が微細化するにつれて生じるレジストパターン倒れ及びラインパターンのラインワイズラフネス(LWR)の悪化と、を克服することは難しい。
 上記の課題に対して、EUV又は電子線リソグラフィのスループット向上を目的としてEUV又は電子線等の第1活性エネルギー線を用いたリソグラフィにより酸と増感剤を生成させた後、可視光又は紫外線等の第2活性エネルギー線を照射する方法に用いるための光増感化学増幅レジスト組成物が提案されている。(特許文献2~3及び非特許文献1)
特開平9-90637号公報 国際公開WO2014/129556号公報 特開2015-172741号公報
Proc. of SPIE Vol. 9776 977607
 しかしながら、上記の光増感反応を利用した光増感化学増幅レジスト組成物を用いて上記第2活性エネルギー線によりレジスト反応を促進した場合、増感剤(電子供与体)と光酸発生剤(電子受容体)との間で生じる光誘起電子移動反応を用いるために、場合によっては数nmの電子移動反応によっても酸を発生することがある。これは、レジスト組成物中に酸拡散制御剤が含有された場合でも該酸拡散制御剤と反応することなく、意図しない発生酸の拡散が生じる等の原因となるおそれがある。それにより、LWR悪化等のパターン劣化が起こることがある。それに対し、パターン劣化抑制のために多量に酸拡散制御剤を添加した場合、上記第1活性エネルギー線で生成した酸の作用により光増感剤を生成させるプロセスでは光増感剤の生成量が少ないため、増感反応が起こりにくく、例えば1J/cm2もの多量のエネルギーを照射してもレジスト反応の促進効果が僅かとなってしまう問題がある。
 本発明のいくつかの態様は、このような事情に鑑み、感度に優れる光酸発生剤として有用なオニウム塩、該オニウム塩を含む光酸発生剤及び組成物を提供することを課題とする。より詳しくは、粒子線又は電磁波等の照射を行う場合に用いる光酸発生剤として最適なオニウム塩を提供することを課題とする。また該オニウム塩と、酸の作用により現像液に対する溶解性が変化する特定の樹脂と、を含有する組成物を提供することを課題とする。
 さらに、電子線又は極端紫外線等の第1活性エネルギー線照射後に紫外線又は可視光等の第2活性エネルギー線の露光を行う場合に用いる光酸発生剤として最適なオニウム塩を提供することを課題とする。また、本発明のいくつかの態様は、該オニウム塩を含有する光酸発生剤、該光酸発生剤を含む組成物を提供することを課題とする。また、該組成物を用いたデバイスの製造方法を提供することを課題とする。
 本発明者等は上記課題を解決するために鋭意検討を重ねた結果、特定の構造を有するオニウム塩は、紫外線又は可視光等の第2活性エネルギー線に顕著な吸収を持たず、酸により構造変化することで第2活性エネルギー線に吸収を持つケトン誘導体へ変換されることを見出し、本発明のいくつかの態様を完成するに至った。
 より詳しくは、本発明者等は、縮環構造を持つジベンゾチオフェニウム骨格とアセタール部位又はチオアセタール部位とを有するオニウム塩が下記の特性を有することを見出した。
(1)電子線又は極端紫外線等の第1活性エネルギー線に対して高い分解効率を有すること。
(2)第1活性エネルギー線照射により分解することで発生した酸によりオニウム塩が構造変化し、オニウム塩自身が大きな構造の置換基を有する必要なく第2活性エネルギー線に対して高い吸収を生じさせることが出来ること。なお、大きな構造の置換基とは、例えばナフタレンや縮合多環複素環等の共役長の長い骨格を有する基が挙げられる。
(3)酸により構造変化したケトン誘導体が第2活性エネルギー照射後の酸発生効率に優れること。
 以上のように、ジベンゾチオフェニウム骨格と、アセタール部位又はチオアセタール部位と、を有する特定のオニウム塩は、第1活性エネルギーに対して従来のオニウム塩と比較して高い分解効率を有し、且つ、第1活性エネルギー線照射により上記特定のオニウム塩から構造変化したオニウム塩誘導体が第2活性エネルギーに対して高い分解効率を有することを本発明者等は見出し、本発明のいくつかの態様を完成するに至った。
 上記オニウム塩を含有する光酸発生剤をレジスト組成物に用いることで、感度に優れることを見出した。
 上記課題を解決するための本発明のひとつの態様は、下記一般式(1)及び下記一般式(2)から選択されるいずれかで表されるオニウム塩である。
Figure JPOXMLDOC01-appb-C000005
 上記式(1)及び(2)中、Rは、置換基を有していてもよい直鎖、分岐又は環状の炭素原子数1~12のアルキル基;置換基を有していてもよい直鎖、分岐又は環状の炭素原子数2~12のアルケニル基;置換基を有していてもよい炭素原子数6~14のアリール基;及び、置換基を有していてもよい炭素原子数3~12のヘテロアリール基;からなる群より選択されるいずれかである。
 前記R1と、前記Rが結合するベンゼン環及び前記Rが結合するベンゼン環のいずれかと、が単結合で直接に、又は、酸素原子、硫黄原子、窒素原子含有基及びメチレン基からなる群より選択されるいずれかを介して、これらが結合する硫黄原子と共に環構造を形成してもよい。
 上記R1中の少なくとも1つのメチレン基が2価のヘテロ原子含有基で置換されていてもよい。
 上記R、R及びRは独立して各々に、アルキル基、ヒドロキシ基、メルカプト基、アルコキシ基、アルキルカルボニル基、アリールカルボニル基、ヘテロアリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、ヘテロアリールオキシカルボニル基、アリールスルファニルカルボニル基、ヘテロアリールスルファニルカルボニル基、アリールスルファニル基、ヘテロアリールスルファニル基、アルキルスルファニル基、アリール基、ヘテロアリール基、アリールオキシ基、ヘテロアリールオキシ基、アルキルスルフィニル基、アリールスルフィニル基、ヘテロアリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、ヘテロアリールスルホニル基、アリールスルホニル基、ヘテロアリールスルホニル基、(メタ)アクリロイルオキシ基、ヒドロキシ(ポリ)アルキレンオキシ基、アルキルアミノ基、ジアルキルアミノ基、シアノ基、ニトロ基及びハロゲン原子からなる群より選択されるいずれかである。
 上記R、R及びRが炭素を有する場合の炭素原子数は1~12であり、且つ、上記R、R及びRが水素原子を有するとき該水素原子が置換基で置換されていてもよい。
 上記R及びRは独立して各々に、置換基を有していてもよい直鎖、分岐又は環状の炭素原子数1~12のアルキル基;置換基を有していてもよい直鎖、分岐又は環状の炭素原子数2~12のアルケニル基;置換基を有してもよい炭素原子数6~14のアリール基;及び、置換基を有していてもよい炭素原子数3~12のヘテロアリール基;からなる群より選択されるいずれかである。
 上記R及びRは、単結合で直接に、又は、酸素原子、硫黄原子及びアルキレン基からなる群より選択されるいずれかを介して、互いに結合して環構造を形成してもよい。
 上記R及びR中の少なくとも1つのメチレン基が2価のヘテロ原子含有基で置換されていてもよい。
 L1は直鎖、分岐又は環状の炭素原子数1~12のアルキレン基;炭素原子数2~12のアルケニレン基;スルフィニル基、スルホニル基及びカルボニル基;からなる群より選択されるいずれかである。
 Yは酸素原子又は硫黄原子である。
 a0~4の整数であり、bは0~3の整数であり、cは1~5の整数であり、dは0~2の整数であり、eは1~4の整数である。
 ただし、上記R1と、上記Rが結合するベンゼン環及び上記Rが結合するベンゼン環のいずれかとが、上記硫黄原子と共に環構造を形成する場合は、上記式(1)においてaが0~3又はbが0~2であり、上記式(2)においてaが0~3又はdが0~1である。
 また、上記式(1)及び(2)におけるベンゼン環の少なくとも1つは、ヘテロ原子を環中に有する6員環のヘテロ芳香環であってもよい。上記式(1)及び(2)におけるRに結合するベンゼン環が上記ヘテロ芳香環のときeが0であってもよい。
 また上記式(1)及び(2)においてR4を2つ以上有するとき、R4のうち2つが互いに連結して環構造を形成していてもよい。
 Xは1価のアニオン基であり、fは1~3の整数であり、fが2以上のときにXは同じであっても異なっていてもよく、Rはf価の有機基である。
 また、本発明の他の態様は、上記一般式(1)及び上記一般式(2)から選択されるいずれか表されるオニウム塩を少なくとも含有する光酸発生剤(以下、「光酸発生剤(A)」ともいう)である。該光酸発生剤(A)は、露光により酸を発生する。
 上記課題を解決するための本発明のひとつの態様は、上記光酸発生剤(A)と、酸反応性化合物と、を含む組成物である。
 また、本発明の他の態様は、上記組成物を基板上に塗布しレジスト膜を形成する工程と、上記レジスト膜に第1活性エネルギー線を照射する工程と、上記第1活性エネルギー線照射後のレジスト膜に第2活性エネルギー線を照射する工程と、上記第2活性エネルギー線照射後のレジスト膜を現像してパターンを得る工程と、を含むデバイスの製造方法である。
 本発明のいくつかの態様によれば、粒子線又は電磁波等の第1活性エネルギー線と、紫外線又は可視光等の第2活性エネルギー線と、を用いるリソグラフィプロセスのレジスト組成物として好適に用いられる、感度に優れるオニウム塩を提供できる。また、該オニウム塩を酸発生剤として含有し、粒子線又は電磁波、特に電子線又は極端紫外線等の第1活性エネルギーに対して高感度のレジスト組成物、及び、それを用いたデバイスの製造方法を提供できる。
図1は実施例及び比較例で用いた各スルホニウム塩のケトン誘導体のUV吸収スペクトルを示す。
 以下、本発明について具体的に説明するが、本発明はこれに限定されない。
<1>オニウム塩及び光酸発生剤(A)
 本発明のひとつの態様に係るオニウム塩は、上記一般式(1)及び上記一般式(2)から選択されるいずれかで表される。また、光酸発生剤(A)は、該オニウム塩を少なくとも1つ含む。
 本発明のひとつの態様に係るオニウム塩は、アセタール部位又はチオアセタール部位等とジベンゾチオフェニウム骨格との特定の構造を有することで、粒子線又は電磁波等の第1活性エネルギー線に対する分解効率が高く、且つ、前記第1活性エネルギー照射後の第2活性エネルギー線照射に対して高い吸収を有する。
 また、本発明のひとつの態様に係るオニウム塩は、紫外線又は可視光等の上記第2活性エネルギー線に顕著な吸収を持たない。一方で、上記第1活性エネルギー線により発生した酸により、上記オニウム塩は光酸発生剤としての機能を損なうことなく、上記オニウム塩のアセタール部位又はチオアセタール部位が脱保護しケトン誘導体へ変換される。該ケトン誘導体は縮環構造を有するジベンゾチオフェニウム構造を含むことで共役長が長くなるため、容易に吸収波長が長波長化して第2活性エネルギー線に吸収を持つ。該ケトン誘導体は、レジスト膜中、上記第1活性エネルギー線を照射した露光部に生成しているため、第2活性エネルギーをさらに照射することで上記第1活性エネルギー線による露光部で酸発生量を増大させることができる。
 なお、本発明において第2活性エネルギー線としては、365nm以上の波長を有する紫外線又は可視光等が好ましい。第2活性エネルギー線としては、420nm以下であることがさらに好ましい。
 上記式(1)及び(2)中、Rは、置換基を有していてもよい直鎖、分岐又は環状の炭素原子数1~12のアルキル基;置換基を有していてもよい直鎖、分岐又は環状の炭素原子数2~12のアルケニル基;置換基を有していてもよい炭素原子数6~14のアリール基;及び、置換基を有していてもよい炭素原子数3~12のヘテロアリール基;からなる群より選択されるいずれかである。
 Rにおける直鎖、分岐鎖又は環状の炭素原子数1~12のアルキル基として具体的には、それぞれ、メチル、エチル、n-プロピル、n-ブチル、イソプロピル、t-ブチル、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンタン-1-イル基、アダマンタン-2-イル基、ノルボルナン-1-イル基及びノルボルナン-2-イル基等のアルキル基等が挙げられる。
 R1のアルキル基において、少なくとも1つのメチレン基に代えて、2価のヘテロ原子含有基で置換されていてもよい。該2価のヘテロ原子含有基としては、-O-、-CO-、-COO-、-OCO-、-O-CO-O-、-NHCO-、-CONH-、-NH-CO-O-、-O-CO-NH-、-NH-、-N(R16)-、-N(Ar)-、-S-、-SO-及び-SO2-からなる群より選ばれる少なくとも1種を含む基である。ただし、スルホニウム基の硫黄原子(S)はヘテロ原子含有基に直接結合せずに、2価の炭化水素基と結合していることが好ましい。R16及びArについては後述する。
 R1のアルケニル基は、上記アルキル基の少なくとも1つの炭素-炭素一重結合が、炭素-炭素二重結合に置換されたものが挙げられる。
 R1における置換基を有していてもよい炭素原子数6~14のアリール基として具体的には、単環芳香族炭化水素基、及び、該単環芳香族炭化水素が少なくとも2環縮合した縮合多環芳香族炭化水素基等を挙げることができる。これらアリール基は、置換基を有していてもよい。
 上記単環芳香族炭化水素基としては、ベンゼン等の骨格を有する基が挙げられる。
 上記縮合多環芳香族炭化水素基としては、インデン、ナフタレン、アズレン、アントラセン及びフェナントレン等の骨格を有する基が挙げられる。
 R1における置換基を有してもよい炭素原子数3~12のヘテロアリール基としては、上記アリール基の少なくとも1つの炭素原子に代えて、酸素原子、窒素原子及び硫黄原子から選択される少なくともいずれかを骨格に含むものが挙げられる。
 上記ヘテロアリール基としては、単環芳香族複素環基、及び、該単環芳香族複素環の少なくとも1つが上記芳香族炭化水素基又は脂肪族複素環基等と縮合した縮合多環芳香族複素環基等を挙げることができる。これら芳香族複素環基は、置換基を有していてもよい。
 上記単環芳香族複素環基としては、フラン、ピロール、イミダゾール、ピラン、ピリジン、ピリミジン及びピラジン等の骨格を有する基が挙げられる。
 縮合多環芳香族複素環基としては、インドール、プリン、キノリン、イソキノリン、クロメン、フェノキサジン、キサンテン、アクリジン、フェナジン及びカルバゾール等の骨格を有する基が挙げられる。
 R1における置換基(以下、「第1置換基」ともいう)としては、ヒドロキシ基、シアノ基、メルカプト基、カルボキシ基、アルキル基(-R16)、アルコキシ基(-OR16)、アシル基(-COR16)、アルコキシカルボニル基(-COOR16)、アリール基(-Ar)、アリーロキシ基(-OAr)、アミノ基、アルキルアミノ基(-NHR16)、ジアルキルアミノ基(-N(R16)、アリールアミノ基(-NHAr)、ジアリールアミノ基(-N(Ar))、N-アルキル-N-アリールアミノ基(-NR16Ar)ホスフィノ基、シリル基、ハロゲン原子、トリアルキルシリル基(-Si-(R16)、該トリアルキルシリル基のアルキル基の少なくとも1つがArで置換されたシリル基、アルキルスルファニル基(-SR16)及びアリールスルファニル基(-SAr)等を挙げることができるが、これらに制限されない。
 また、第1置換基が(メタ)アクリロイル基等の重合性基であってもよい。
 R16及びArについては以下に説明する。
 上記第1置換基中の上記R16は、炭素原子数1以上のアルキル基であることが好ましい。また、炭素原子数20以下であることがより好ましい。炭素原子数1以上のアルキル基の具体例としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基及びn-デシル基等の直鎖状アルキル基;イソプロピル基、イソブチル基、tert-ブチル基、イソペンチル基、tert-ペンチル基、2-エチルヘキシル基等の分岐状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンタン-1-イル基、アダマンタン-2-イル基、ノルボルナン-1-イル基及びノルボルナン-2-イル基等の脂環式アルキル基;これらの水素の1つがトリメチルシリル基、トリエチルシリル基及びジメチルエチルシリル基等のトリアルキルシリル基で置換されたシリル基置換アルキル基;これらの水素原子の少なくとも1つがシアノ基又はフルオロ基等で置換されたアルキル基;等が好ましく挙げられる。上記アルキル基中の炭素-炭素一重結合が、炭素-炭素二重結合に置き換わっていてもよい。
 上記第1置換基中のArは、アリール基又はヘテロアリール基であることが好ましい。ヘテロアリール基とは、環構造中にヘテロ原子を1つ以上含むアリール基である。上記Arの具体例としては、フェニル基、ビフェニル基、ターフェニル基、クアテルフェニル基、ナフチル基、アントリル基、フェナントレニル基、ペンタレニル基、インデニル基、インダセニル基、アセナフチル基、フルオレニル基、ヘプタレニル基、ナフタセニル基、ピレニル基、クリセニル基、テトラセニル基、フラニル基、チエニル基、ピラニル基、スルファニルピラニル基、ピロリル基、イミダゾイル基、オキサゾリル基、チアゾリル基、ピラゾイル基、及びピリジル基、イソベンゾフラニル基、ベンゾフラニル基、イソクロメニル基、クロメニル基、インドリル基、イソインドリル基、ベンゾイミダゾイル基、キサンテニル基、アクアジニル基及びカルバゾイル基等の炭素原子数20以下のものが好ましく挙げられる。
 R1のアルキル基等が上記第1置換基を有し、且つオニウム塩が低分子化合物である場合、R1の炭素原子数は第1置換基の炭素原子数も含めて炭素原子数1~20であることが好ましい。
 上記R1と、上記Rが結合するベンゼン環及び上記Rが結合するベンゼン環のいずれかと、が単結合で直接に、又は、酸素原子、硫黄原子、窒素原子含有基及びメチレン基からなる群より選択されるいずれかを介して、これらが結合する硫黄原子と共に環構造を形成してもよい。
 上記「窒素原子含有基」としては、例えばアミノジイル基(-NH-)、アルキルアミノジイル基(-NR16-)、アリールアミノジイル基(-NAr-)等の窒素原子を含む2価の基が挙げられる。R16及びArについては上記第1置換基のR16及びArと同様である。
 本発明のひとつの態様におけるオニウム塩は、樹脂の一つの単位として、すなわち、オニウム塩構造を含む単位として、ポリマーの一部に結合したポリマー成分であってもよい。また、ポリマーの繰返単位として含まれるポリマー成分であってもよい。ポリマー成分であるときは、上記第1置換基としてはポリマーの主鎖が挙げられる。R1の上記第1置換基がポリマーの主鎖のとき、R1の炭素原子数はポリマー主鎖の炭素原子数を除いたものとする。本発明のひとつの態様におけるオニウム塩がポリマー成分である場合、ポリマー成分全体で重量平均分子量が2000~200000となるように調整することが好ましい。
 本発明において、低分子化合物とは重量平均分子量が2000未満のものであり、ポリマー成分とは重量平均分子量が2000以上のものとする。
 R1としては、安定性の向上の点からアリール基が好ましい。
 R、R及びRは独立して各々に、アルキル基、ヒドロキシ基、メルカプト基、アルコキシ基、アルキルカルボニル基、アリールカルボニル基、ヘテロアリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、ヘテロアリールオキシカルボニル基、アリールスルファニルカルボニル基、ヘテロアリールスルファニルカルボニル基、アリールスルファニル基、ヘテロアリールスルファニル基、アルキルスルファニル基、アリール基、ヘテロアリール基、アリールオキシ基、ヘテロアリールオキシ基、アルキルスルフィニル基、アリールスルフィニル基、ヘテロアリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、ヘテロアリールスルホニル基、アリールスルホニル基、ヘテロアリールスルホニル基、(メタ)アクリロイルオキシ基、ヒドロキシ(ポリ)アルキレンオキシ基、アルキルアミノ基、ジアルキルアミノ基、シアノ基、ニトロ基及びハロゲン原子からなる群より選択されるいずれかである。
 R、R及びRにおけるアルキル基としては、直鎖、分岐鎖又は環状でよく、具体的には、上記第1置換基としてのR1のアルキル基と同様のものが挙げられる。また、R、R及びRにおけるアルコキシ基、アルキルカルボニル基、アルコキシカルボニル基等のアルキル基部分もR1におけるアルキル基と同様のものが挙げられる。
 R、R及びRにおけるアリール基及びヘテロアリール基としては、R1のアリール基及びヘテロアリール基と同様のものが挙げられる。R、R及びRにおける上記アリールカルボニル基、アリールオキシカルボニル基等のアリール基部分はR1におけるアリール基と同様のものが挙げられる。R、R及びRにおける上記ヘテロアリールカルボニル基、ヘテロアリールオキシカルボニル基等のヘテロアリール基部分はR1におけるヘテロアリール基と同様のものが挙げられる。なお、R及びRにおいては上記ヘテロアリールカルボニル基、ヘテロアリールオキシカルボニル基等のヘテロアリール基部分を有しない置換基であることが合成の観点から好ましい。
 なお上記式(1)及び(2)においてR4を2つ以上有するとき、R4のうち2つが互いに連結して環構造を形成していてもよい。
 R、R及びRにおけるヒドロキシ(ポリ)アルキレンオキシ基としては、ポリエチレンオキシ基、ポリプロピレンオキシ基等が挙げられる。
 R、R及びRにおけるハロゲン原子としては、フッ素原子、塩素原子、ヨウ素原子等が挙げられる。
 R、R及びRにおけるアルキル基において、少なくとも1つのメチレン基に代えて、上記R1におけるヘテロ原子含有基と同様の基を骨格に含んでいてもよい。ただし、-O-O-、-S-S-及び-O-S-等のヘテロ原子の連続した繋がりを有しないことが好ましい。R、R及びRにおける中の少なくとも1つのメチレン基に代えて上記ヘテロ原子含有基を含む場合のR、R及びRとしては例えばグリコール鎖やチオグリコール鎖を有する基が挙げられる。
 R、R及びRが炭素を有する場合の炭素原子数は1~12が好ましい。また、R、R及びRは置換基(以下、「第2置換基」ともいう)を有してもよい。また、R、R及びRのアルキル基中の炭素-炭素一重結合が、炭素-炭素二重結合に置き換わっていてもよい。
 R、R及びRが有してもよい第2置換基としては、上記第1置換基と同様のものが挙げられる。
 R、R及びRが上記第2置換基を有し、且つオニウム塩が低分子化合物である場合、R、R及びRの炭素原子数は第2置換基の炭素原子数も含めて炭素原子数1~12であることが好ましい。R、R及びRの第2置換基がポリマー主鎖の場合、R、R及びRの炭素原子数はポリマー主鎖を除いたものとする。
 本発明の一つの態様であるオニウム塩は、Rを少なくとも1つ有することが好ましい。また、少なくとも1つのRがヒドロキシ基又はアルコキシ基であることが好ましい。さらに、Rはアセタール部位又はチオアセタール部位の結合位置に対しオルト位又はパラ位であることが好ましい。オニウム塩のRとしてヒドロキシ基又はアルコキシ基をオルト位又はパラ位に有することで、ケトン誘導体となった際に第2活性エネルギー線の吸収が大きくなる傾向がある。特にヒドロキシ基の場合、アルカリ現像液に対する親和性が向上するため、現像においてオニウム塩の溶解性が向上することからより好ましい。
 一般的に、オニウム塩のカチオンに置換基を付加することでオニウム塩カチオン構造が大きくなると、疎水性が向上して現像時に溶解阻害効果が生じることがある。そのため、アルカリ現像液に対する親和性が低い傾向である疎水性置換基を有することなくアセタール部位又はチオアセタール部位が脱保護した後のケトン誘導体の吸収波長が長波長化して第2活性エネルギー線の吸収が大きくなることが好ましい。また、塩基性を示す置換基は発生酸を失活させて酸解離性基の分解を阻害するため好ましくない。以上のことから、本発明の一つの態様であるオニウム塩のカチオンは、R~Rに芳香環や脂環式構造等を含む置換基を有さず、発生酸と反応するアミノ基等の塩基性基を有しないことが好ましく、また、上記オニウム塩のカチオン部分の分子量が500以下であることが好ましい。本発明の一つの態様であるオニウム塩のカチオンは、Rを含め、R及びRにおいてもアミノ基等の塩基性基を有しないことがさらに好ましい。
 Rを複数有する場合は、Rの少なくとも1つがヒドロキシ基又はアルコキシ基であり、且つ、アセタール部位又はチオアセタール部位の結合位置に対しオルト位又はパラ位であるのが好ましい。また、Rを複数有する場合、Rの少なくとも1つがヒドロキシ基又はアルコキシ基であればそれ以外のRはヒドロキシ基又はアルコキシ基でなくてもよい。酸によって生じたケトン誘導体の吸収波長を長波長化する観点から、2つ以上のRが結合する芳香環に対して電子供与する置換基であることがより好ましい。さらに好ましくは、アセタール部位又はチオアセタール部位の結合位置に対しオルト位又はパラ位の2つ以上の位置でRとしてヒドロキシ基又はアルコキシ基を有することが好ましい。
 R及びRとしては、置換基を有してもよい直鎖、分岐又は環状の炭素原子数1~12のアルキル基;置換基を有していてもよい直鎖、分岐又は環状の炭素原子数2~12のアルケニル基;置換基を有していてもよい炭素原子数6~14のアリール基;及び、置換基を有していてもよい炭素原子数3~12のヘテロアリール基;が好ましく、これらは上記Rのそれぞれと同じ選択肢から選択されることが好ましい。なお、上記Rと同様に、アルキル基において、少なくとも1つのメチレン基に代えて、上記2価のヘテロ原子含有基で置換されていてもよい。R及びRが有する2価のヘテロ原子含有基として好ましくは、-O-、-CO-、-COO-、-OCO-、-O-CO-O-、-S-、-SO-及び-SO2-等がより好ましい。
 R及びRとしての置換基(以下、「第3置換基」ともいう)は、上記第1の置換基と同様のものが挙げられる。
 上記R及びRは、単結合で直接に、又は、酸素原子、硫黄原子及びアルキレン基からなる群より選択されるいずれかを介して互いに結合して環構造を形成してもよい。
 合成の観点から、上記R及びRは同じであることが好ましい。
 上記第3置換基としてはヒドロキシ基が好ましく、上記ヒドロキシ基が結合するR及びRとしては、上記置換基を有してもよい直鎖、分岐又は環状の炭素原子数2~12のアルキル基が好ましい。上記第3置換基として上記ヒドロキシ基を有する上記R及びRは、第3級アルコールの構造を有することがより好ましい。理由としては、上記R及びRが有する第3級アルコールは第1級アルコール及び第2級アルコールよりも、上記第1活性エネルギー線を照射することによって生成する酸を触媒としてE1脱離反応により水を生成しやすいからである。その水を用いて上記一般式(1)及び一般式(2)で表されるオニウム塩が有するアセタール部位又はチオアセタール部位が加水分解されやすくなり、アセタール部位又はチオアセタール部位が脱保護することで上記第2活性エネルギー線に吸収を持つケトン誘導体に変化する。該ケトン誘導体に第2活性エネルギー線を照射することで酸発生量を増幅することが出来るため感度がさらに向上する。
 Lは、直接結合;直鎖、分岐又は環状の炭素原子数1~12のアルキレン基;直鎖、分岐又は環状の炭素原子数2~12のアルケニレン基;スルフィニル基、スルホニル基及びカルボニル基;からなる群より選択されるいずれかである。
 上記一般式(1)及び(2)中、Yは酸素原子又は硫黄原子である。
 また、aは0~4の整数であり、bは0~3の整数であり、cは1~5の整数であり、dは0~2の整数であり、eは1~4の整数である。
 ただし、前記R1と、前記Rが結合するベンゼン環及び前記Rが結合するベンゼン環のいずれかとが、前記硫黄原子と共に環構造を形成する場合は、前記式(1)においてaが0~3又はbが0~2であり、前記式(2)においてaが0~3又はdが0~1である。
 本発明のいくつかの態様においてオニウム塩は、下記に示すスルホニウムカチオンが例示できる。しかしながら、本発明のいくつかの態様はこれに限定されない。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 上記スルホニウム塩のカチオンの例示におけるベンゼン環の少なくとも1つは、ヘテロ原子を環中に有するヘテロ芳香環であってもよい。上記化合物中、Rに結合するベンゼン環が前記ヘテロ芳香環のときeが0であってもよく、すなわちR4が水素原子であってもよい。
 ヘテロ芳香環としては、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環等の6員環ヘテロ芳香環が挙げられる。
 上記一般式(1)及び(2)中、Xは1価のアニオン基である。なお、XはRに結合している。
 上記1価のアニオン基としては特に制限はなく、スルホン酸アニオン(SO )、カルボン酸アニオン(COO)、イミドアニオン、メチドアニオン、ボレートアニオン、等の1価のアニオンを含むアニオン基が挙げられる。該アニオン基はRに結合している。
 fは1~3の整数であり、fが2以上のときにXは同じであっても異なっていてもよい。Rはf価の有機基である。
 fが1であるときの1価の有機基としては、アルキル基、アリール基、ヘテロアリール基等が挙げられる。1価の有機基におけるアルキル基、アリール基、ヘテロアリール基は置換基を有していてもよく、置換基としては上記第1の置換基と同様のものが挙げられる。
 Rにおけるアルキル基としては、水素原子の80モル%以上がフッ素原子で置換されたアルキル基が好ましく、アルキル基としては炭素原子数1~8のアルキル基が好ましい。フッ素置換によりRとするアルキル基としては、直鎖アルキル基(メチル、エチル、プロピル、ブチル、ペンチル及びオクチル等)、分枝鎖アルキル基(イソプロピル、イソブチル、sec-ブチル及びtert-ブチル等)及びシクロアルキル基(シクロプロピル、シクロブチル、シクロペンチル及びシクロヘキシル等)等が挙げられる。Rにおいてこれらのアルキル基の水素原子がフッ素原子に置換されている割合は、もとのアルキル基が有していた水素原子のモル数に基づいて、80モル%以上が好ましく、さらに好ましくは90%以上、特に好ましくは100%である。
 特に好ましいRにおける1価のアルキル基としては、CF-、CFCF-、(CFCF-、CFCFCF-、CFCFCFCF-、(CFCFCF-、CFCF(CF)CF-及び(CFC-等が挙げられる。
 fが2であるときの2価の有機基としては、アルキレン基、アリーレン基、ヘテロアリーレン基等が挙げられる。
 fが3であるときの3価の有機基としては、上記1価の有機基を3価にしたものが挙げられる。
 f価の有機アニオンとしては、具体的には下記が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 本発明のひとつの態様に係るオニウム塩は、光酸発生剤(A)の一態様として、アニオン部がポリマーの一部に結合した酸発生剤単位含有樹脂であってもよい。そのようなオニウム塩としては、例えば、上記式(1)及び(2)におけるXが下記一般式(5)で表される単位を有する樹脂が挙げられる。上記オニウム塩が酸発生剤単位含有樹脂の一つの単位として組成物に含有されることで、露光時に発生する酸の拡散が抑制されることによってLWRを抑制できる点で好ましい。
 なお、上記一般式(5)で表される単位は、後述する酸反応性化合物としての樹脂(B)に含まれていてもよく、該樹脂(B)と異なる樹脂に含まれていてもよい。
Figure JPOXMLDOC01-appb-C000009
 上記式(5)中、R7は水素原子、アルキル基及びハロゲン化アルキル基からなる群より選択されるいずれかである。
 L2は、直接結合、カルボニルオキシ基、カルボニルアミノ基、置換基を有してもよい直鎖、分岐又は環状のアルキレンカルボニルオキシ基、及び、置換基を有してもよい直鎖、分岐又は環状のアルキレンカルボニルアミノ基からなる群より選択されるいずれかである。L2における置換基は、上記第1置換基と同じものが挙げられる。
 Zは、炭素原子数1~12直鎖又は分岐のアルキル基、炭素原子数2~12の直鎖又は分岐のアルケニル基、炭素原子数6~14の直鎖又は分岐のアリール基である。また、これらアルキル基、アルケニル基及びアリール基が有する一部又は全ての水素原子がフッ素原子に置換されてもよい。これらの基中の少なくとも1つのメチレン基は、上記2価のヘテロ原子含有基で置換されていてもよい。
 上記式(5)で表されるアニオン部は下記に示すものが例示できる。しかしながら、本発明はこれに限定されない。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 本発明のいくつかの態様に係るオニウム塩は、365nmのモル吸光係数が1.0×10cm/mol未満であることが好ましく、1.0×10cm/mol未満であることがより好ましい。
 また、本発明のいくつかの態様に係るオニウム塩のアセタール部位又はチオアセタール部位が脱保護したケトン誘導体は、365nmのモル吸光係数が1.0×10cm/mol以上であることが好ましく、1.0×10cm/mol以上であることがより好ましい。
 上記ケトン誘導体の365nmのモル吸光係数は、本発明のいくつかの態様に係るオニウム塩の365nmのモル吸光係数が5倍以上となることが好ましく、10倍以上となることがより好ましく、20倍以上となることがさらに好ましい。
 上記特性とするには、上記式(1)又は(2)で表されるオニウム塩とすればよい。
<2>上記オニウム塩の合成方法
 本発明のひとつの態様に係るオニウム塩であるスルホニウム塩の合成方法について説明する。本発明においてはこれに限定されない。
 目的とするスルホニウム塩のスルホニオ基部分にアルキル基を有する場合(上記式(1)においてRがアルキル基である場合)、例えば、下記に示す方法が挙げられる。まず、置換基Rを有するベンゾイルクロリド(下記式(10a))とジベンゾチオフェン誘導体(下記式(10b)において置換基R又は置換基Rを有してもよい)をフリーデルクラフツ反応させ、ベンゾフェノン誘導体(下記式(10c))を得る。下記反応式では各置換基R~Rをそれぞれ1つ有する化合物を示しているが、それぞれ複数有していても同様に合成可能である。また、対応するジベンゾチオフェン誘導体は、通常の合成方法に従って合成するか、又は、市販品を入手して準備可能である。
 次いで、ジメチル硫酸等のアルキル化剤(R SO)を加えスルホニウム塩とした後、対応するアニオンを有する塩を用いて塩交換を行い、ジアルキル-アリールスルホニウム塩(下記式(10d))を得る。その後、酸触媒とアルコール(ROH)を用いてカルボニル基をアセタール化することで目的とするスルホニウム塩(下記式(10e))を得る。
 なお、下記反応式ではアセタール化する際に1種のアルコール(ROH)を用いたが、さらに他のアルコール(ROH)を段階的に追加することでRとRとを有するアセタール部位とすることができる。また、チオアセタール部位の導入についてはアルコールに代えてチオール(RSH等)を用いることで同様にできる。
Figure JPOXMLDOC01-appb-C000012
 目的とするスルホニウム塩のRにアリール基を有する場合、例えば、下記に示す方法が挙げられる。まず、上記ベンゾフェノン誘導体(下記式(10c))を過酸化水素等の酸化剤で酸化することで(10f)を得る。
 次いで、酸触媒とアルコール(ROH)を用いてカルボニル基をアセタール化し、アセタール体(下記式(10g))を得る。そして、R基を有するグリニャール試薬を用いて上記アセタール体(下記式(10g))と反応させてスルホニウム塩とした後、対応するアニオンを有する塩を用いて塩交換することにより目的のスルホニウム塩(下記式(10h))を得る。
Figure JPOXMLDOC01-appb-C000013
 オニウム塩のアニオン部がポリマーの一部と結合したポリマー成分である場合、例えば、下記に示す合成方法が挙げられる。まず、市販又は随時合成した重合性官能基を有するスルホネートと上記スルホニウム塩(上記式(10e)又は(10h))を塩交換することでアニオン部に重合性官能基を有するオニウム塩(重合性オニウム塩)(10i)を得る。次いで、得られた重合性オニウム塩と酸解離性化合物等とをラジカル開始剤を用いて共重合することで目的のポリマー成分(下記式(10j))を得ることができる。
Figure JPOXMLDOC01-appb-C000014
<3>組成物
 本発明のひとつの態様は、上記光酸発生剤(A)と、酸反応性化合物を含む組成物に関する。好ましくは、組成物はさらに酸拡散抑制剤を含む。
(光酸発生剤)
 本発明のひとつの態様の組成物中の上記光酸発生剤の含有量は、該光酸発生剤を除くレジスト組成物成分100質量部に対し0.1~50質量部であることが好ましく、1~30質量部であることがより好ましく、3~15質量部であることがさらに好ましい。
 上記光酸発生剤の含有量の算出において、有機溶剤はレジスト組成物成分100質量部中に含まないこととする。
 上記光酸発生剤が一つの単位として樹脂に含まれる場合、つまり上記光酸発生剤がポリマー成分である場合は、ポリマー主鎖を除いた質量基準とする。また、上記光酸発生剤がポリマー成分であって、且つ、後述の一般式(4a)~(4b)で表される単位(以下、「単位C」ともいう)及び上記一般式(3a)~(3d)で表される単位(以下、「単位B」ともいう)からなる群より選択される少なくとも1つの単位と共に同一ポリマーの単位として含まれる場合、上記光酸発生剤として作用する単位(以下、「単位A」ともいう)は、ポリマー全単位中、0.1~40モル%であることが好ましく、1~30モル%であることがより好ましく、3~20モル%であることがさらに好ましい。
 上記レジスト組成物には上記光酸発生剤を、ポリマー成分及び低分子量成分問わず、単独又は2種以上を混合してもよく、その他の光酸発生剤と併用してもよい。
 上記オニウム塩を含有する光酸発生剤以外のその他の光酸発生剤としては、汎用的なイオン性光酸発生剤と非イオン性光酸発生剤が挙げられる。イオン性光酸発生剤としては、例えば、上記以外のヨードニウム塩及びスルホニウム塩等のオニウム塩化合物が挙げられる。非イオン性光酸発生剤としてはN-スルホニルオキシイミド化合物、オキシムスルホネート化合物、有機ハロゲン化合物及びスルホニルジアゾメタン化合物等が挙げられる。
 上記オニウム塩を含有する光酸発生剤以外の光酸発生剤を含む場合、その含有量は光酸発生剤総量を除くレジスト組成物成分100質量部に対し0.1~50質量部であることが好ましい。
(酸反応性化合物)
 上記酸反応性化合物は、酸により脱保護する保護基を有する化合物、酸により重合する重合性基を有する化合物、及び、酸により架橋作用を有する架橋剤からなる群より選択される少なくともいずれかであることが好ましい。
 酸により脱保護する保護基を有する化合物とは、酸によって保護基が脱保護することにより極性基を生じ、現像液に対する溶解性が変化する化合物である。例えばアルカリ現像液等を用いる水系現像の場合、アルカリ現像液に対して不溶性であるが、露光により上記光酸発生剤から発生する酸によって露光部において上記保護基が上記化合物から脱保護することにより、アルカリ現像液に対して可溶となる化合物である。
 本発明のひとつの態様は、上記酸反応性化合物は、酸の作用により現像液に対する溶解性が変化する樹脂(B)であることが特に好ましい。
(樹脂(B))
 上記樹脂(B)は、酸により脱保護する保護基を有する上記(3a)~(3d)で表される単位Bの少なくともいずれかを有するものである。
 上記単位Bは、酸により脱保護する保護基を有する、樹脂(B)に含まれる単位であり、酸によって保護基が脱保護することにより極性基を生じ、現像液に対する溶解性が変化する単位である。例えばアルカリ現像液等を用いる水系現像の場合、アルカリ現像液に対して不溶性であるが、露光により上記光酸発生剤から発生する酸によって露光部において上記保護基が上記単位Bから脱保護することにより、アルカリ現像液に対して可溶となる化合物である。
 本発明においては、アルカリ現像液に限定されず、水系中性現像液又は有機溶剤現像液であってもよい。そのため、有機溶剤現像液を用いる場合は、酸により脱保護する保護基を有する化合物は、露光により上記光酸発生剤から発生する酸によって露光部において上記保護基が上記化合物から脱保護して極性基を生じ、有機溶剤現像液に対して溶解性が低下する化合物である。
 上記極性基としては、ヒドロキシ基、カルボキシ基、アミノ基及びスルホ基等が挙げられる。これらの中でも構造中に-OHを有する極性基が好ましく、ヒドロキシ基又はカルボキシ基が好ましい。
 酸で脱保護する保護基の具体例としては、カルボキシ基と第3級アルキルエステル基を形成する基;アルコキシアセタール基;テトラヒドロピラニル基;シロキシ基及びベンジロキシ基等が挙げられる。該保護基を有する化合物として、これら保護基がペンダントしたスチレン骨格、メタクリレート又はアクリレート骨格を有する化合物等が好適に用いられる。
 上記樹脂(B)は、酸により脱保護する保護基を有する単位Bを有するポリマー成分に代えて、保護基含有低分子化合物であってもよい。
 上記保護基含有低分子化合物は、上記樹脂(B)と同様に、下記(3a)~(3d)で表される単位の少なくともいずれかを有するものである。
Figure JPOXMLDOC01-appb-C000015
 上記式(3a)~(3d)中、R7は水素原子、アルキル基及びハロゲン化アルキル基からなる群より選択されるいずれかである。
 上記アルキル基としては、例えばメチル、エチル、n-プロピル、n-ブチル、イソプロピル、t-ブチル、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられ、これらの水素原子の一部がハロゲンに置換されていてもよい。その中でも特に水素原子、メチル基、トリフルオロメチル基であることが好ましい。
 上記一般式(3a)~(3d)中、下記式(a-1)又は(a-2)で示される部位は酸により脱保護する保護基(以下、「酸不安定性基」ともいう)であり、酸の作用で分解してカルボン酸又はフェノール性水酸基を生成して現像液に対する溶解性が変化する。
 なお、下記式(a-1)及び(a-2)における破線は、上記式(3a)~(3d)中のL2又は酸素原子との結合部を示す。下記式(a-1)及び(a-2)におけるR8~R13は上記一般式(3a)~(3d)におけるR8~R13と同じ選択肢から選択されることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 上記式(a-1)中、R8及びR9は独立して各々に置換基を有してもよい直鎖、分岐又は環状のアルキル基であり、例えばメチル、エチル、n-プロピル、n-ブチル、イソプロピル、t-ブチル、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンタン-1-イル基、アダマンタン-2-イル基、ノルボルナン-1-イル基及びノルボルナン-2-イル基等の炭素数1~12のアルキル基等が挙げられる。
 R10は置換基を有してもよい直鎖、分岐、又は環状のアルキル基であり、アルキル基としてはR8のアルキル基のそれぞれと同じ選択肢から選択され、これらの水素原子の一部が水酸基、アルコキシ基、オキソ基、アミノ基、アルキルアミノ基等に置換されていてもよい。前記R8、R9、及びR10は単結合で直接に、又は、酸素原子、硫黄原子、窒素原子含有基及びメチレン基からなる群より選択されるいずれかを介して環構造を形成してもよい。
 R8~R10が有してもよい置換基(「第4置換基」ともいう)としては、上記第1置換基と同様のものが挙げられる。
 上記式(a-2)中、R11及びR12は独立して各々に、水素原子、及び、直鎖又は環状のアルキル基であり、アルキル基としてはR8のアルキル基のそれぞれと同じ選択肢から選択される。
 R13は置換基(「第5置換基」ともいう)を有してもよい直鎖、分岐又は環状のアルキル基であり、アルキル基としてはR8のアルキル基のそれぞれと同じ選択肢から選択され、これらの水素原子の一部が水酸基、アルコキシ基、オキソ基、アミノ基、アルキルアミノ基等の第5置換基に置換されていてもよい。前記R11、R12及びR13は単結合で直接に、又は、酸素原子、硫黄原子、窒素原子含有基及びメチレン基からなる群より選択されるいずれかを介して環構造を形成してもよい。
 上記式(a-1)及び(a-2)として具体的に、下記に示す構造が例示できる。しかしながら、本発明はこれに限定されない。
Figure JPOXMLDOC01-appb-C000017
 上記一般式(3c)~(3d)におけるR14は、アルキル基、ヒドロキシ基、アルコキシ基、アルキルカルボニル基、アルキルスルファニル基、アルキルスルフィニル基、アルキルスルホニル基、アルキルアミノ基、ジアルキルアミノ基、シアノ基、ニトロ基及びハロゲン原子からなる群より選択されるいずれかである。これらは、上記式(1)中のR3のそれぞれと同じ選択肢から選択される。
 上記一般式(3a)~(3d)におけるL2は、直接結合、カルボニルオキシ基、カルボニルアミノ基、置換基を有してもよい直鎖、分岐若しくは環状のアルキレンカルボニルオキシ基又は置換基を有してもよい直鎖、分岐若しくは環状のアルキレンカルボニルアミノ基であり、カルボニルオキシ基又はカルボニルアミノ基が上記酸不安定性基と結合する。
 上記式(3a)~(3d)中、lは1~2の整数であり、mは、lが1のとき0~4、lが2のとき0~6の整数であり、nは、lが1のとき1~5、lが2のとき1~7の整数であり、m+nは、lが1のとき1~5であり、lが2のとき1~7である。
 上記一般式(3a)~(3d)で表される単位Bとして、具体的に下記に示すものが例示できる。しかしながら、本発明はこれに限定されない。
Figure JPOXMLDOC01-appb-C000018
 上記樹脂(B)に代えて又は加えて、酸により重合する重合性基を有する化合物及び/又は酸により架橋作用を有する架橋剤を組成物に含有させてもよい。酸により重合する重合性基を有する化合物とは、酸によって重合することにより現像液に対する溶解性を変化させる化合物である。例えば水系現像の場合、水系現像液に対して可溶である化合物に対して作用し、重合後に該化合物を水系現像液に対して溶解性を低下させるものである。具体的には、エポキシ基、ビニルオキシ基及びオキセタニル基等を有する化合物が挙げられる。
 酸により重合する重合性基を有する化合物は、重合性低分子化合物であっても、重合性基を有する単位含有ポリマー成分であってもよい。
 酸により架橋作用を有する架橋剤とは、酸によって架橋することにより現像液に対する溶解性を変化させる化合物である。例えば水系現像の場合、水系現像液に対して可溶である化合物に対して作用し、重合後又は架橋後に該化合物を水系現像液に対して溶解性を低下させるものである。具体的には、エポキシ基、ビニルオキシ基、1-アルコキシアミノ基及びオキセタニル基等の架橋性基を有する架橋剤が挙げられる。該化合物が架橋作用を有する架橋剤であるとき、架橋する相手の化合物、つまり架橋剤と反応して現像液に対する溶解性が変化する化合物としては、フェノール性水酸基を有する化合物等が挙げられる。
 酸により架橋作用を有する化合物は、架橋性低分子化合物であっても、架橋性基を有する単位含有ポリマー成分であってもよい。
 上記樹脂(B)は、上記式(3a)~(3d)で表される単位Bの少なくともいずれかに加えて、レジスト組成物において通常用いられているその他の単位をポリマー成分に含有させてもよい。その他の単位としては、例えば、ラクトン骨格、スルトン骨格、スルホラン骨格及びラクタム骨格等からなる群より選択される少なくともいずれかの骨格を有する単位;エーテル構造、エステル構造、アセタール構造、及びヒドロキシ基を有する構造等からなる群より選択される少なくともいずれかの構造を有する単位;ヒドロキシアリール基含有単位;等が挙げられる。さらに、樹脂(B)は上記単位Aを含有してもよい。
 上記樹脂(B)は、上記単位Bを含むホモポリマーとして、又は、上記単位Bと、上記単位A及び後述する一般式(4a)~(4b)からなる群より選択される少なくとも1つの単位Cと、を有するコポリマーとして、組成物に含まれていてもよい。樹脂(B)がコポリマーである場合、上記樹脂(B)における上記単位Bは、ポリマー全単位中、3~50モル%であることが好ましく、5~35モル%であることがより好ましく、7~30モル%であることがさらに好ましい。
(樹脂(C))
 本発明のひとつの態様においては、組成物が、下記式(4a)~(4b)で表される単位Cを1種類以上含む樹脂(C)を含むか、又は、上記樹脂(B)が上記単位Cの少なくともいずれかをさらに含むことが好ましい。
Figure JPOXMLDOC01-appb-C000019
 上記式(4a)及び(4b)中、R7、R14及びL2は独立して各々、上記式(3a)~(3d)中のR7、R14及びL2の各々と同じ選択肢から選択される。
 R15は、-C(O)-O-、-SO-及び-O-SO-からなる群より選択される少なくともいずれかを含む環式基である。
 pは0~4の整数であり、qは1~5の整数である。
 上記環式基としては、ラクトン骨格;スルトン骨格;スルホラン骨格を含有する基等が挙げられる。
 上記式(4a)~(4b)で表される単位Cは、上記単位A及び/又は上記式(3a)~(3d)で表される少なくともいずれかを単位Bとして含むコポリマーに含まれていてもよく、また、別のポリマーの単位であってもよい。
 上記式(4a)で表される単位はヒドロキシアリール基含有単位(以下、「単位C1」ともいう)であり、上記式(4b)で表される単位はラクトン骨格;スルトン骨格;スルホラン骨格含有単位(以下、「単位C2」ともいう)である。
 ヒドロキシアリール基含有単位C1を有するポリマーを用いた場合、上記光酸発生剤が分解する際の水素源となり得、酸発生効率をより向上させることができ、高感度となるため好ましい。また、ヒドロキシアリール基含有単位C1を有するポリマーはイオン化ポテンシャルが低いため、後述する第1活性エネルギー線に電子線又は極端紫外線(EUV)を用いる場合、2次電子を生成しやすく、上記光酸発生剤の酸発生効率を向上させ、高感度となるため好ましい。
 上記ヒドロキシアリール基含有単位C1は下記に示すものが例示できる。しかしながら、本発明はこれに限定されない。
Figure JPOXMLDOC01-appb-C000020
 上記ヒドロキシアリール基含有単位C1が、上記単位A及び上記単位Bからなる群より選択される少なくとも1つと共に同一ポリマーの単位として含まれる場合、上記ヒドロキシアリール基含有単位C1は、水系現像のポジ型レジスト組成物用ではポリマー全単位中、3~90モル%であることが好ましく、5~80モル%であることがより好ましく、7~70モル%であることがさらに好ましい。水系現像のネガ型レジスト組成物用ではポリマー全単位中、60~99モル%であることが好ましく、70~98モル%であることがより好ましく、75~98モル%であることがさらに好ましい。
 ラクトン骨格;スルトン骨格;スルホラン骨格含有単位C2は下記に示すものが例示できる。しかしながら、本発明はこれに限定されない。
Figure JPOXMLDOC01-appb-C000021
 単位C2としてスルトン骨格含有単位又はスルホラン骨格含有単位を用いた場合、第1活性エネルギー線として電子線又は極端紫外線(EUV)照射によってイオン化することで酸を発生するため、本発明のいくつかの態様におけるオニウム塩のアセタールの脱保護反応に寄与して第2活性エネルギー線に吸収を持つケトン誘導体をより多く生成できる。また、上記単位Bを含む樹脂(B)との反応による極性変換にも寄与して樹脂の現像液に対する溶解性がより変化することで、高感度となるため好ましい。
 単位C2としてラクトン骨格含有単位、スルトン骨格含有単位;スルホラン骨格含有単位が、上記単位A及び上記単位Bからなる群より選択される少なくとも1つと共に同一ポリマーの単位として含まれる場合、上記単位C2はポリマー全単位中、3~70モル%であることが好ましく、5~50モル%であることがより好ましく、7~40モル%であることがさらに好ましい。
 本発明のひとつの態様の組成物において、上記単位A、上記単位B、及び上記単位C以外に、その他の化合物を同一ポリマーの単位として樹脂(B)及び/又は樹脂(C)に含んでいてもよい。その他の化合物としては、ArFリソグラフィ、KrF リソグラフィ、電子線リソグラフィ、EUVリソグラフィ等の樹脂組成物として一般的に使用されている化合物であれば特に限定されない。
(スルホン若しくはスルホン酸エステルを含む低分子化合物、又は、ポリマー)
 本発明のひとつの態様の組成物は、スルホン若しくはスルホン酸エステルを含む低分子化合物、又は、ポリマーを含んでいてもよい。
 上記スルホン又はスルホン酸エステルとしては、特に制限はないが直鎖、分岐若しくは環状のアルキル、又は、アリール基を有するものが好ましい。アルキル又はアリール基の一部又はすべての水素原子がフッ素原子に置換されたものがさらに好ましい。当該化合物が含まれることで電子線又は極端紫外線の照射によりイオン化することで酸を発生するため、レジストの感度を上げることが出来る。
 スルホン又はスルホン酸エステルを含む化合物の含有量は光酸発生剤総量を除くレジスト組成物成分100質量部に対し0.1~50質量部であることが好ましい。
 上記スルホン又はスルホン酸エステルを含む化合物として具体的にはジメチルスルホン、イソプロピルメチルスルホン、メチルフェニルスルホン、ジフェニルスルホン、フェニルトリフルオロメチルスルホン、ビス(4-フルオロフェニル)スルホン、ビス(フェニルスルホニル)メタン、メタンスルホン酸メチル、メタンスルホン酸イソプロピル、トリフルオロメタンスルホン酸エチル、ベンゼンスルホン酸メチル、1,3-プロパンスルトン、1-プロペン1,3-スルトン、1,4-ブタンスルトン、1,2-ビス(トシルオキシ)エタン、1,8-ナフトスルトン、等であり、それぞれ単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
(含フッ素はっ水ポリマー)
 本発明のひとつの態様の組成物は、含フッ素はっ水ポリマーを含んでいてもよい。
 上記含フッ素はっ水ポリマーとしては、特に制限はないが液浸露光プロセスに通常用いられるものが挙げられ、上記ポリマーよりもフッ素原子含有率が大きい方が好ましい。含フッ素はっ水ポリマーを含有した組成物を用いてレジスト膜を形成する場合に、含フッ素はっ水ポリマーのはっ水性に起因して、レジスト膜表面に上記含フッ素はっ水ポリマーを偏在化させることができる。
 フッ素はっ水ポリマーのフッ素含有率としては、フッ素はっ水ポリマー中の炭化水素基における水素原子の25モル%以上がフッ素化されていることが好ましく、50モル%以上フッ素化されていることがより好ましい。
 組成物中のフッ素はっ水ポリマーの含有量としては、本発明のひとつの態様の上記ポリマー(該フッ素はっ水ポリマーでないもの)100質量部に対し、0.5~10質量部であることが、レジスト膜の疎水性が向上する点から好ましい。フッ素はっ水ポリマーは単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
(光増感剤及びその前駆体)
 本発明のひとつの態様の組成物は、光増感剤及びその前駆体を含んでいてもよい。以下、光増感剤及びその前駆体を合わせて「増感化合物」ともいう。
 上記増感化合物としては、本発明のいくかの態様に係るオニウム塩の効果を低減しなければ特に制限はないが、チオキサントン誘導体及びそのアセタール化化合物、ベンゾフェノン誘導体及びそのアセタール化化合物、ナフタレン誘導体、アントラセン誘導体及びアルキルアルコール及びアリールアルコール等が挙げられる。
 また、増感化合物として例えば下記一般式(7)で表される光増感剤前駆体を含んでいてもよい。上記光増感剤前駆体が含まれることで、第1活性エネルギー線を照射することで上記光増感剤前駆体から光増感剤が生成し、その後、第2活性エネルギーを照射することで上記光増感剤と本発明のいくかの態様に係るオニウム塩との間で生じる増感反応を利用できるため、レジストの感度を上げることが出来ることから好ましい。
Figure JPOXMLDOC01-appb-C000022
 上記式(6)中、Ar11及びAr12は、独立して各々に、置換基を有していてもよいフェニレン基であり、R21は、水素原子、置換基を有していてもよいアルキルスルファニル基、アリールスルファニル基及びアルキルスルファニルフェニル基からなる群より選択されるいずれかであり、Wは、硫黄原子、酸素原子及び直接結合からなる群より選択されるいずれかであり、R22は、水素原子、置換基を有していてもよいアルキル基及びアリール基のいずれかであり、Yは、独立して各々に、酸素原子及び硫黄原子のいずれかであり、R23及びR24は、独立して各々に、置換基を有してもよい直鎖状、分岐鎖状又は環状のアルキル基、アルケニル基及びアルキニル基並びにアラルキル基からなる群より選択されるいずれかであり、上記R23及びR24は、互いに結合して式中の2つのYと環構造を形成していてもよい。
 上記式(6)中のAr11及びAr12は、それぞれフェニレン基であり、それぞれR21以外又は-W-R22以外に置換基(以下、Ar11及びAr12の置換基を「第6置換基」という)を有していてもよい。なお、Ar11及びAr12は、直接に、又は、2価の連結基を介して環構造を形成していてもよい。上記2価の連結基としては、アルキレン、酸素原子又は硫黄原子等が挙げられる。
 上記第6置換基としては電子供与性基が挙げられる。該電子供与性基として具体的には、アルキル基、アルケニル基、アルコキシ基、アルコキシフェニル基、アルキルスルファニル基、アリールスルファニル基及びアルキルスルファニルフェニル基等が挙げられる。第6置換基として、ポリエチレングリコール鎖(-(CO-)を有する長鎖アルコキシ基も挙げられる。また、第6置換基がAr11又はAr12のパラ位に結合する場合、OH基を第6置換基として有していてもよい。
 なお、本発明において、Ar11又はAr12の「パラ位」等の置換位置は、上記式(6)中の2つのYとAr11とAr12と結合する4級炭素が結合する基に対する位置をいう。第6置換基だけでなく、他の基についても、「パラ位」等の置換位置の基準は上記4級炭素と結合する基に対する位置とする。
 第6置換基としてのアルキル基、アルケニル基としては、上記式(1)におけるR11のアルキル基、アルケニル基と同様の選択肢から選択される。第6置換基としてのアルコキシ基としては、上記第1置換基におけるアルコキシ基と同様の選択肢から選択される。
 第6置換基としてのアルキルスルファニル基、アリールスルファニル基及びアルキルスルファニルフェニル基としては、後述するR21のアルキルスルファニル基、アリールスルファニル基及びアルキルスルファニルフェニル基と同様のものが挙げられる。
 第6置換基における上記アルキル基の任意のメチレン基が-C(=O)-基又は-O-C(=O)-基で置換された基であってもよい。ただし、-C(=O)-基及び-O-C(=O)-基は、上記6置換基において、Ar11及びAr12に直接結合しないことが好ましい。また、上記第6置換基において、-O-O、-S-S-及び-S-O-等のヘテロ原子の連続した繋がりを有しないことが好ましい。
 第6置換基が、アルコキシ基、アルコキシフェニル基、アルキルスルファニル基、アリールスルファニル基及びアルキルスルファニルフェニル基のときは、Ar11及びAr12であるフェニレン基のオルト位及び/又はパラ位に結合していることが好ましい。その際、置換基の数は3つ以下であることが好ましい。
 上記式(6)中のR21としては、置換基を有していてもよいアルキルスルファニル基、アリールスルファニル基及びアルキルスルファニルフェニル基からなる群より選択されるいずれかである。
 R21のアルキルスルファニル基として具体的には、メチルスルファニル基、エチルスルファニル基、n-プロピルスルファニル基、n-ブチルスルファニル基等の炭素数1~20のアルキルスルファニル基が好ましく、炭素数1~12のアルキルスルファニル基がより好ましい。
 R21のアリールスルファニル基として具体的には、フェニルスルファニル基、ナフチルスルファニル基等が挙げられる。
 R21のアルキルスルファニルフェニル基として具体的には、メチルスルファニルフェニル基、エチルスルファニルフェニル基、プロピルスルファニルフェニル基、ブチルスルファニルフェニル等の炭素数1~20のアルキルスルファニル基が結合したフェニル基が好ましく挙げられ、炭素数1~12のアルキルスルファニル基が結合したフェニル基がさらに好ましい。R21においてフェニレン基に結合するアルキルスルファニル基の置換位置としては特に制限はないが、パラ位であることが電子供与性と365nmのモル吸光係数を高める点から好ましい。上記R21は、Ar11であるフェニレン基のオルト位又はパラ位に結合していることが好ましい。
 上記式(6)中のR22としては、置換基を有していてもよいアルキル基及びアリール基のいずれかであり、上記R11のそれぞれと同様の選択肢から選択される。
 上記式(6)中のR21及びR22は置換基を有していてもよく、該置換基(以下、R21及びR22の置換基を「第7置換基」という)としては、特に制限されないが、上記第6置換基に加え、電子吸引性基等が挙げられる。電子吸引性基としては、ニトロ基、スルホニル基等が挙げられる。上記R21又はR22に重合性基を導入し、これを重合したものを増感作用を付与したポリマーとして用いてもよく、第7置換基がポリマー主鎖を含む構成であってもよい。上記重合性基としては、(メタ)アクリロイルオキシ基、エポキシ基、ビニル基等が挙げられる。
 上記式(6)中のWが酸素原子又は硫黄原子であるとき、上記WがAr12のオルト位又はパラ位であることが好ましい。上記Wが直接結合であるときは、上記WがAr12のオルト位又はパラ位であることが好ましい。
 上記式(6)中のR21の総炭素数は特に制限はなく、R21が置換基を有する場合、総炭素数1~20であることが好ましい。上記式(6)中のR22の総炭素数は特に制限はなく、R22が置換基を有する場合、総炭素数1~20であることが好ましい。
 なお、上記光増感剤前駆体がポリマーである場合、第7置換基となるポリマー主鎖を
含む部分を除いたR21及びR22の総炭素数が1~20であることが好ましい。
 Yは、独立して各々に、酸素原子及び硫黄原子のいずれかである。
 R23及びR24は、独立して各々に、置換基を有してもよい、直鎖、分岐鎖又は環状のアルキル基、置換基を有してもよい、直鎖、分岐鎖又は環状のアルケニル基、及び、置換基を有してもよい、直鎖、分岐鎖又は環状のアルキニル基、並びに、置換基を有してもよい、直鎖、分岐鎖又は環状のアラルキル基からなる群より選択されるいずれかである。R23及びR24のアルキル基、アルケニル基としては、上記式(1)におけるR11のアルキル基、アルケニル基と同様の選択肢から選択される。
 R23及びR24のアルキニル基としては上記R23及びR24のアルキル基の一部が三重結合になったものから選択される。R23及びRのアラルキル基としては、上記R23及びR24のアルキル基の水素の一部が、フェニル基、ナフチル基等のアリール基で置換されているものから選択される。
 上記式(6)中のR23及びR24は置換基を有していてもよく、該置換基(以下、R23及びR24の置換基を「第8置換基」という)としては、特に制限されないが、上記第7置換基に加え、フェニル基、ナフチル基等のアリール基等も挙げられる。
 上記式(6)中のR23及びR24の総炭素数は特に制限はなく、上記光増感剤前駆体がポリマーの構成成分であってもよいが、R23又はR24が置換基を有する場合、それぞれ総炭素数1~20であることが好ましい。
 上記R23及びR24は、互いに結合して式中の2つのYと環構造を形成していてもよい。
すなわち、本発明の一つの態様に係る光増感剤前駆体は下記式(7)で示される。下記式(7)において-R25-R26-は、-(CH-であることが好ましく、nは2以上の整数である。nは2以上であれば特に制限はないが、合成のしやすさから8以下であることが好ましい。R25及びR26は、上記式(6)におけるR23及びR24が互いに結合して環を形成したものに対応するものとする。
Figure JPOXMLDOC01-appb-C000023
 上記式(7)において、R25及びR26は、上記R23及びR24と同様の上記第8置換基を有していてもよい。上記R23又はR24に重合性基を導入し、これを重合したものを増感作用を付与したポリマーとして用いてもよい。
 なお、R23及びR24の総炭素数は1~20であることが好ましい。上記光増感剤前駆体がポリマーである場合、第8置換基となるポリマー主鎖を含む部分を除いたR23及びR24の総炭素数が1~20であることが好ましい。
 上記光増感剤前駆体の酸処理後のもの、すなわち上記光増感剤前駆体が酸により脱保護された際に生成するカルボニル基を有する光増感剤は、365nmにおけるモル吸光係数が1.0×10cm/mol以上であることが好ましい。365nmにおけるモル吸光係数は高い方が好ましいが、1.0×1010cm/mol以下が現実的な値である。モル吸光係数を上記範囲とするには、光増感剤前駆体において、例えば、一つ以上のアルキルスルファニル基、アリールスルファニル基、アルキルスルファニルフェニル基、又は2つ以上のアルコキシ基若しくはアリールオキシ基を含む構成とすることが挙げられる。
 本発明においてモル吸光係数は、溶媒としてクロロホルムを用い、UV-VIS吸光光度計により測定された365nmにおけるものである。
 なお、本発明の一つの態様に係る光増感剤前駆体は、合成のしやすさ及び吸光特性の点から、光増感剤前駆体全体において、-Y-R23及び-Y-R24、又は、-Y-R25-R26-Y-以外のアルキルスルファニル基、アリールスルファニル基、アルコキシフェニル基、アルキルスルファニルフェニル基、アルコキシ基及びアリールオキシ基からなる群から選ばれる基が4つ以下であることが好ましい。
 上記式(6)又は式(7)で表される光増感剤前駆体としては下記光増感剤前駆体が例示できる。下記例示中、括弧で示されたものはポリマー単位を表している。本発明のいくつかの態様における光増感剤前駆体はこれに限定されない。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 本発明の一つの態様に係る光増感剤前駆体の合成方法について説明する。本発明においてはこれに限定されない。
 本発明の一つの態様に係る光増感剤前駆体が下記式(8)に示される構造の場合、例えば下記の方法により合成可能である。まず、-W-R22基を有するアルコキシベンゾイルクロリド、アルキルベンゾイルクロリド、チオアルコキシベンゾイルクロリド及びチオアルキルベンゾイルクロリド、並びに、これらのアルキル基がアリール基となったものからなる群より選択される1つと、R21基を有するハロゲン化ベンゼンとを用いて、グリニャール反応により反応させ、ベンゾフェノン誘導体を得る。次いで、該ベンゾフェノン誘導体と、アルコール及び必要に応じて脱水剤としてオルトギ酸トリアルキル(R23、R24=アルキル基)等のオルトエステルとを、0℃~還流温度で1~120時間反応させることにより、下記式(8)に示される誘導体を得ることができる。
Figure JPOXMLDOC01-appb-C000027
(その他の成分)
 本発明のひとつの態様の組成物には、上記成分以外に必要により任意成分としてさらに、通常のレジスト組成物で用いられる酸拡散制御剤、界面活性剤、有機カルボン酸、有機溶剤、溶解抑制剤、安定剤及び色素、上記以外のポリマー等を組み合わせて含んでいてもよい。
 上記酸拡散制御剤は、光酸発生剤から生じる酸のレジスト膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を制御する効果を奏する。そのため、得られるレジスト組成物の貯蔵安定性がさらに向上し、またレジストとしての解像度がさらに向上するとともに、露光から現像処理までの引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に優れたレジスト組成物が得られる。
 酸拡散制御剤としては、例えば、同一分子内に窒素原子を1個有する化合物、2個有する化合物、窒素原子を3個有する化合物、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等が挙げられる。また、酸拡散制御剤として、露光により感光し弱酸を発生する光崩壊性塩基を用いることもできる。光崩壊性塩基としては、例えば、露光により分解して酸拡散制御性を失うオニウム塩化合物、ヨードニウム塩化合物等が挙げられる。
 酸拡散制御剤として具体的には、特許3577743号、特開2001-215689号、特開2001-166476号、特開2008-102383号、特開2010-243773号、特開2011-37835号及び特開2012-173505号に記載の化合物が挙げられる。
 酸拡散制御剤の含有量は、レジスト組成物成分100質量部に対して0.01~10質量部であることが好ましく、0.03~5質量部であることがより好ましく、0.05~3質量部であることがさらに好ましい。
 上記界面活性剤は、塗布性を向上させるために用いることが好ましい。界面活性剤の例としては、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレンポリオキシプロピレンブロックコポリマー類、ソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタン脂肪酸エステル等のノニオン系界面活性剤、フッ素系界面活性剤、オルガノシロキサンポリマー等が挙げられる。
 界面活性剤の含有量は、レジスト組成物成分100質量部に対して0.0001~2質量部であることが好ましく、0.0005~1質量%であることがより好ましい。
 上記有機カルボン酸としては、脂肪族カルボン酸、脂環式カルボン酸、不飽和脂肪族カルボン酸、オキシカルボン酸、アルコキシカルボン酸、ケトカルボン酸、安息香酸誘導体、フタル酸、テレフタル酸、イソフタル酸、2-ナフトエ酸、1-ヒドロキシ-2-ナフトエ酸、2-ヒドロキシ-3-ナフトエ酸等を挙げることができる。電子線露光を真空化で行う際にはレジスト膜表面より揮発して描画チャンバー内を汚染してしまう恐れがあるので、好ましい有機カルボン酸としては、芳香族有機カルボン酸、その中でも例えば安息香酸、1-ヒドロキシ-2-ナフトエ酸、2-ヒドロキシ-3-ナフトエ酸が好適である。
 有機カルボン酸の含有量は、レジスト組成物成分100質量部に対し、0.01~10質量部が好ましく、より好ましくは0.01~5質量部、更により好ましくは0.01~3質量部である。
 有機溶剤としては、例えば、エチレングリコールモノエチルエーテルアセテート、シクロヘキサノン、2-ヘプタノン、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテルプロピオネート、プロピレングリコールモノエチルエーテルアセテート、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、β-メトキシイソ酪酸メチル、酪酸エチル、酪酸プロピル、メチルイソブチルケトン、酢酸エチル、酢酸イソアミル、乳酸エチル、トルエン、キシレン、酢酸シクロヘキシル、ジアセトンアルコール、N-メチルピロリドン、N,N-ジメチルホルムアミド、γ-ブチロラクトン、N,N-ジメチルアセトアミド、プロピレンカーボネート、エチレンカーボネート等が好ましい。これらの有機溶剤は単独又は組み合わせて用いられる。
 レジスト組成物成分は、上記有機溶剤に溶解し、固形分濃度として、1~40質量%で溶解することが好ましい。より好ましくは1~30質量%、更に好ましくは3~20質量%である。このような固形分濃度の範囲とすることで、上記の膜厚を達成できる。
 本発明のひとつの態様のレジスト組成物がポリマーを含む場合、ポリマーは、重量平均分子量が2000~200000であることが好ましく、2000~50000であることがより好ましく、2000~15000であることがさらに好ましい。上記ポリマーの好ましい分散度(分子量分布)(Mw/Mn)は、感度の観点から、1.0~1.7であり、より好ましくは1.0~1.2である。上記ポリマーの重量平均分子量及び分散度は、GPC測定によるポリスチレン換算値として定義される。
 本発明のひとつの態様の組成物は、上記組成物の各成分を混合することにより得られ、混合方法は特に限定されない。
<4>デバイスの製造方法
 本発明のひとつの態様は、上記組成物を基板上に塗布する等してレジスト膜を形成する工程と、上記レジスト膜に第1活性エネルギー線を照射す工程と、上記第1活性エネルギー線照射後のレジスト膜に第2活性エネルギー線を照射する工程と、上記第2活性エネルギー線照射後のレジスト膜を現像してパターンを得る工程と、を含むデバイスの製造方法である。
 本発明のひとつの形態は、上記組成物を用いて、レジスト膜を形成する工程と第1活性エネルギー線を照射する工程と第2活性エネルギーを照射する工程とパターンを形成する工程とを含み、個片化チップを得る前のパターンを有する基板の製造方法であってもよい。
 本発明のひとつの形態は、上記組成物を用いて基板上に塗布膜を形成する工程と、第1活性エネルギー線及び第2活性エネルギー線を用いて、上記塗布膜を露光し、層間絶縁膜を得る工程とを含むデバイスの製造方法であってもよい。
 第1活性エネルギー線及び第2活性エネルギー線としては、本発明のいくつかの態様に係るオニウム塩が、第2活性エネルギー線に顕著な吸収を持たなければ特に制限はないが、第1活性エネルギー線の波長は第2活性エネルギー線よりも短い、又は、光子若しくは粒子線のエネルギーが高いことが好ましい。下記に各活性エネルギー線を例示するが、第1活性エネルギー線の波長が第2活性エネルギー線よりも短い、又は、光子若しくは粒子線のエネルギーが高ければこれに限定されない。
 第1活性エネルギー線としては、レジスト膜照射後に該レジスト膜中に酸等の活性種(第1活性種)を発生させることができれば特に制限はないが、例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、電子線又は極端紫外線(EUV)等が好ましく挙げられる。
 第2活性エネルギー線としては、第1活性エネルギー線の照射後にレジスト膜中に発生した酸により、本発明のいくつかの態様に係るオニウム塩のアセタール部位又はチオアセタール部位が脱保護して生成したケトン誘導体を活性化して酸等の活性種(第2活性種)を発生させ得る光であればよい。例えば、KrFエキシマレーザ光、UV、可視光線等を意味し、特にUV光のうち365nm(i線)~436nm(g線)領域の光を用いることが好ましい。
 本発明のひとつの形態のデバイスの製造方法は、第1活性エネルギーを照射する工程と、第2活性エネルギー線を照射する工程と、の間に加熱する工程を有することが好ましい。加熱する方法としては、電熱線又はレーザー等による加熱が挙げられるが、これに制限されない。加熱工程を有することで、オニウム塩の分解効率が向上し、さらなる感度向上につながり得る。電熱線を用いた加熱としてはホットプレート等での実施が挙げられる。デバイスの製造方法においてはプレベークの実施が該工程に相当する。
 上記加熱する工程を含む上記デバイスの製造方法に使用する場合、上記式(1)及び(2)で表されるオニウム塩としては、上記R及び上記Rが、上記第3置換基として第3級アルコールとなるヒドロキシ基を有することが好ましい。理由としては、第3級アルコールは第1級アルコール及び第2級アルコールよりも、第1活性エネルギー線を照射することによって生成する酸を触媒としてE1脱離反応により水を生成しやすく、上記加熱工程によってE1脱離反応がさらに促進されるからである。その水を用いて上記式(1)及び上記式(2)で表されるオニウム塩が有するアセタール部位又はチオアセタール部位が加水分解されて脱保護することで第2活性エネルギー線に吸収を持つケトン誘導体に変化する。これに第2活性エネルギー線を照射することで酸発生量を増幅することが出来るため感度がさらに向上する。
 なお、第2活性エネルギー線を照射する工程の後に加熱する工程を有していてもよい。該加熱工程も上記第1活性エネルギーを照射する工程と第2活性エネルギー線を照射する工程との間の上記加熱と同様に電熱線又はレーザー等による加熱が挙げられるが、これに制限されない。
 上記基板としては、特に限定されず公知のものを用いることができる。例えば、シリコン、窒化シリコン、チタン、タンタル、パラジウム、銅、クロム、アルミニウム等の金属製の基板;ガラス基板;等が挙げられる。
 本発明のひとつの態様において、LSI作成のための層間絶縁膜等を得るために用いるフォトリソグラフィ工程の露光に用いる活性エネルギー線としては、UV、KrFエキシマレーザ光、ArFエキシマレーザ光、電子線又は極端紫外線(EUV)等が好ましく挙げられる。
 第1活性エネルギー線の照射量は、光硬化性組成物中の各成分の種類及び配合割合、並びに塗膜の膜厚等によって異なるが、1J/cm以下又は1000μC/cm以下であることが好ましい。
 本発明のひとつの態様において、上記レジスト組成物により形成されたレジスト膜の膜厚は10~200nmであることが好ましい。上記レジスト組成物は、スピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターコート等の適当な塗布方法により基板上に塗布され、60~150℃で1~20分間、好ましくは80~120℃で1~10分間プリベークして薄膜を形成する。この塗布膜の膜厚は5~200nmであり、10~100nmであることが好ましい。
 以下、本発明を実施例によってさらに詳細に説明するが、本発明はこれら実施例によって何ら制限されるものではない。
<1>スルホニウム塩の合成
<スルホニウム塩1の合成>
(合成例1)2-(4-メトキシベンゾイル)ジベンゾチオフェンの合成
 塩化アルミニウム5.0gを塩化メチレン50gに添加して0℃とする。これにジベンゾチオフェン5gを添加した後に4-メトキシベンゾイルクロリド4.6gを塩化メチレン9.2gに溶解して30分かけて滴下する。滴下後25℃で1時間撹拌し、純水60gを添加してさらに5分撹拌後、トルエン20gで2回洗浄する。得られた有機層を溶媒留去する。得られた残留物をアセトン30g用いた再結晶によって精製することで、2-(4-メトキシベンゾイル)ジベンゾチオフェンを6.1g得る。
Figure JPOXMLDOC01-appb-C000028
(合成例2)2-(4-メトキシベンゾイル)ジベンゾチオフェン-5-オキシドの合成
 上記合成例1で得られた2-(4-メトキシベンゾイル)ジベンゾチオフェン6.0gをギ酸30gに溶解し、これに35質量%過酸化水素水3.5gを氷冷下で滴下する。その後、室温に昇温して5時間撹拌する。撹拌後、反応液に純水80gを滴下し固体を析出させる。析出した固体をろ別し、純水10gで3回洗浄した後に乾燥することで粗結晶を得る。粗結晶をアセトン100gとエタノール200gを用いて再結晶させ、2-(4-メトキシベンゾイル)ジベンゾチオフェン-5-オキシドを4.3g得る。
Figure JPOXMLDOC01-appb-C000029
(合成例3)2-[ジメトキシ-(4-メトキシフェニル)メチルジベンゾチオフェン-5-オキシドの合成
 合成例2で得られた2-(4-メトキシベンゾイル)ジベンゾチオフェン-5-オキシド5.0gをメタノール20gに添加し、これにオルトギ酸トリメチル5.0gと濃硫酸20mgを添加して60℃で3時間撹拌する。撹拌後、反応溶液を塩化メチレン60gと3質量%炭酸水素ナトリウム水溶液10gの混合溶液に加え10分間撹拌して有機層を回収する。得られた有機層を水で3回洗浄後に塩化メチレンを留去することで2-[ジメトキシ-(4-メトキシフェニル)メチルジベンゾチオフェン-5-オキシドを4.6g得る。
Figure JPOXMLDOC01-appb-C000030
(合成例4)フェニル-2-[ジメトキシ-(4-メトキシフェニル)メチル]ジベンゾチオフェニウム-ノナフルオロブタンスルホネート(スルホニウム塩1)の合成
 上記合成例3で得た2-[ジメトキシ-(4-メトキシフェニル)メチルジベンゾチオフェン-5-オキシド4.0gとトリメチルシリルクロライド1.1gとトリエチルアミン1.8gとを塩化メチレン15.5gに溶解した溶液中に、1.0mol/LのフェニルマグネシウムブロミドのTHF溶液15mlを10℃以下で滴下し、その後25℃で1時間撹拌する。撹拌後、10質量%塩化アンモニウム水溶液30gを5℃以下で添加してさらに10分撹拌した後、塩化メチレン40gとノナフルオロブタンスルホン酸カリウム3.1gを添加して25℃で2時間程度撹拌する。これを分液して水で3回洗浄後に塩化メチレンを留去することで粗結晶を得る。粗結晶をシリカゲルカラムクロマトグラフィー(塩化メチレン/メタノール=90/10(体積比))により精製することでフェニル-2-[ジメトキシ-(4-メトキシフェニル)メチル]ジベンゾチオフェニウム-ノナフルオロブタンスルホネートを2.6g得る。
Figure JPOXMLDOC01-appb-C000031
<スルホニウム塩2の合成>
(合成例5)フェニル-2-[ジメトキシ-(4-メトキシフェニル)メチル]ジベンゾチオフェニウム-4-(3-ヒドロキシアダマンチルカルボニルオキシ)-1,1,2-トリフルオロブタンスルホネート(スルホニウム塩2)の合成
 上記合成例4において、ノナフルオロブタンスルホン酸カリウムに代えて4-(3-ヒドロキシアダマンチルカルボニルオキシ)-1,1,2-トリフルオロブタンスルホン酸ナトリウムを用いる以外は上記合成例4と同様の操作を行うことで、フェニル-4-[ジメトキシ-(4-メトキシフェニル)メチル]ジベンゾチオフェニウム-2-(3-ヒドロキシアダマンチルカルボニルオキシ)-1,1,2-トリフルオロブタンスルホネートを2.1g得る。
Figure JPOXMLDOC01-appb-C000032
<スルホニウム塩3の合成>
(合成例6)ビス{フェニル-2-[ジメトキシ-(4-メトキシフェニル)メチル]ジベンゾチオフェニウム}-ヘキサフルオログルタレート(スルホニウム塩3)の合成
 上記合成例4において、ノナフルオロブタンスルホン酸カリウムに代えてヘキサフルオログルタル酸カリウムを用いる以外は上記合成例4と同様の操作を行うことで、ビス{フェニル-2-[ジメトキシ-(4-メトキシフェニル)メチル]ジベンゾチオフェニウム}-ヘキサフルオログルタレートを1.7g得る。
Figure JPOXMLDOC01-appb-C000033
<スルホニウム塩4の合成>
(合成例7)3',5'-ジフルオロフェニル-2-[ジメトキシ-(4-メトキシフェニル)メチル]ジベンゾチオフェニウム-ノナフルオロブタンスルホネート(スルホニウム塩4)の合成
 上記合成例3において、1.0mol/LのフェニルマグネシウムブロミドのTHF溶液に代えて1.0mol/Lの3,5-ジフルオロフェニルマグネシウムブロミドTHF溶液を用いる以外は上記合成例3と同様の操作を行うことで3,5-ジフルオロフェニル-2-[ジメトキシ-(4-メトキシフェニル)メチル]ジベンゾチオフェニウム-ノナフルオロブタンスルホネートを3.1g得る。
Figure JPOXMLDOC01-appb-C000034
<スルホニウム塩5の合成>
(合成例8)3'-トリフルオロメチルフェニル-4-[ジメトキシ-(4-メトキシフェニル)メチル]ジベンゾチオフェニウム-ノナフルオロブタンスルホネート(スルホニウム塩5)の合成
 上記合成例3において、1.0mol/LのフェニルマグネシウムブロミドのTHF溶液に代えて1.0mol/Lの3-トリフルオロメチルフェニルマグネシウムブロミドTHF溶液を用いる以外は上記合成例3と同様の操作を行うことで3,5-ジフルオロフェニル-2-[ジメトキシ-(4-メトキシフェニル)メチル]ジベンゾチオフェニウム-ノナフルオロブタンスルホネートを3.0g得る。
Figure JPOXMLDOC01-appb-C000035
<スルホニウム塩6の合成>
(合成例9)フェニル-2-[メトキシフェニル-[1,3]ジオキセパン-2-イル]メチルジベンゾチオフェニウム-ノナフルオロブタンスルホネート(スルホニウム塩6)の合成
 上記合成例3において、上記合成例2で得た2-(4-メトキシベンゾイル)ジベンゾチオフェン-5-オキシドに代えて上記合成例4で得たフェニル-2-[ジメトキシ-(4-メトキシフェニル)]メチルジベンゾチオフェニウム-ノナフルオロブタンスルホネートを用いて、またメタノールに代えて1,4-ブタンジオールを用いる以外は上記合成例3と同様の操作を行うことで、フェニル-2-[4-メトキシフェニル-[1,3]ジオキセパン-2-イル]メチルジベンゾチオフェニウム-ノナフルオロブタンスルホネートを2.0g得る。
Figure JPOXMLDOC01-appb-C000036
<スルホニウム塩7の合成>
(合成例10)フェニル-2-[ジプロピオキシ-(4-メトキシフェニル)メチル]ジベンゾチオフェニウム-ノナフルオロブタンスルホネート(スルホニウム塩7)の合成
 上記合成例3において、上記合成例2で得た2-(4-メトキシベンゾイル)ジベンゾチオフェン-5-オキシドに代えて上記合成例4で得たフェニル-4-[ジメトキシ-(4-メトキシフェニル)メチル]ジベンゾチオフェニウム-ノナフルオロブタンスルホネートを用いて、またメタノールに代えて1-プロパノールを用いる以外は上記合成例3と同様の操作を行うことでフェニル-2-[ジプロピオキシ-(4-メトキシフェニル)メチル]ジベンゾチオフェニウム-ノナフルオロブタンスルホネートを2.4g得る。
Figure JPOXMLDOC01-appb-C000037
<スルホニウム塩8の合成>
(合成例11)フェニル-2-(4-ヒドロキシベンゾイル)ジベンゾチオフェニウム-ノナフルオロブタンスルホネートの合成
 上記合成例4で得たフェニル-2-[ジメトキシ-(4-メトキシフェニル)]メチルジベンゾチオフェニウム-ノナフルオロブタンスルホネート3.0gを酢酸30mlに添加して110℃とした後に48質量%臭化水素酸水溶液2.2gを滴下して18時間攪拌する。その後、25℃に冷却してから純水60mlと塩化メチレン40gを添加して撹拌する。これを分液して水で3回洗浄後に塩化メチレンを留去することで粗結晶を得る。粗結晶をシリカゲルカラムクロマトグラフィー(塩化メチレン/メタノール=80/20(体積比))により精製することでフェニル-2-(4-ヒドロキシベンゾイル)ジベンゾチオフェニウム-ノナフルオロブタンスルホネートを1.4g得る。
Figure JPOXMLDOC01-appb-C000038
(合成例12)フェニル-2-[ジメトキシ-(4-ヒドロキシフェニル)]メチルジベンゾチオフェニウム-ノナフルオロブタンスルホネート(スルホニウム塩8)の合成
 上記合成例3において、上記合成例2で得た2-(4-メトキシベンゾイル)ジベンゾチオフェン-5-オキシドに代えて上記合成例11で得たフェニル-2-(4-ヒドロキシベンゾイル)ジベンゾチオフェニウム-ノナフルオロブタンスルホネートを用いる以外は上記合成例3と同様の操作を行うことで、フェニル-2-[ジメトキシ-(4-ヒドロキシフェニル)]メチルジベンゾチオフェニウム-ノナフルオロブタンスルホネートを1.5g得る。
Figure JPOXMLDOC01-appb-C000039
<スルホニウム塩9の合成>
(合成例13)フェニル-2-{ジメトキシ-[4-(1-エトキシエチル)オキシフェニル]メチル}ジベンゾチオフェニウム-ノナフルオロブタンスルホネート(スルホニウム塩9)の合成
 上記合成例12で得たフェニル-2-[ジメトキシ-(4-ヒドロキシフェニル)]メチルジベンゾチオフェニウム-ノナフルオロブタンスルホネート1.5gとエチルビニルエーテル0.30gを塩化メチレン15mlに溶解した後に、メタンスルホン酸10mgを滴下して3時間攪拌する。その後、トリエチルアミン20mgを添加後に純水15mlを添加して撹拌する。これを分液して水で3回洗浄後に塩化メチレンを留去することで粗結晶を得る。粗結晶をシリカゲルカラムクロマトグラフィー(塩化メチレン/メタノール=80/20(体積比))により精製することでフェニル-2-{ジメトキシ-[4-(1-エトキシエチル)オキシフェニル]メチル}ジベンゾチオフェニウム-ノナフルオロブタンスルホネートを1.0g得る。
Figure JPOXMLDOC01-appb-C000040
<スルホニウム塩10の合成>
(合成例14)2-(3,5-ジメチル-4-メトキシベンゾイル)ジベンゾチオフェンの合成
 上記合成例1において、4-メトキシベンゾイルクロリドに代えて3,5-ジメチル-4-メトキシベンゾイルクロリドを用いる以外は上記合成例1と同様の操作を行うことで、2-(3,5-ジメチル-4-メトキシベンゾイル)ジベンゾチオフェンを6.3g得る。
Figure JPOXMLDOC01-appb-C000041
(合成例15)2-(3,5-ジメチル-4-メトキシベンゾイル)ジベンゾチオフェン-5-オキシドの合成
 上記合成例2において、2-(4-メトキシベンゾイル)ジベンゾチオフェンに代えて上記合成例14で得た2-(3,5-ジメチル-4-メトキシベンゾイル)ジベンゾチオフェンを用いる以外は上記合成例2と同様の操作を行うことで、2-(3,5-ジメチル-4-メトキシベンゾイル)ジベンゾチオフェン-5-オキシドを4.0g得る。
Figure JPOXMLDOC01-appb-C000042
(合成例16)2-[ジメトキシ-(3,5-ジメチル-4-メトキシフェニル)メチルジベンゾチオフェン-5-オキシドの合成
 上記合成例3において、2-(4-メトキシベンゾイル)ジベンゾチオフェン-5-オキシドに代えて上記合成例15で得た2-(3,5-ジメチル-4-メトキシベンゾイル)ジベンゾチオフェン-5-オキシドを用いる以外は上記合成例3と同様の操作を行うことで、2-[ジメトキシ-(3,5-ジメチル-4-メトキシフェニル)メチルジベンゾチオフェン-5-オキシドを4.1g得る。
Figure JPOXMLDOC01-appb-C000043
(合成例17)フェニル-2-[ジメトキシ-(3,5-ジメチル-4-メトキシフェニル)メチル]ジベンゾチオフェニウム-ノナフルオロブタンスルホネート(スルホニウム塩10)の合成
 上記合成例4において、2-[ジメトキシ-(4-メトキシフェニル)メチルジベンゾチオフェン-5-オキシドに代えて上記合成例16で得た2-[ジメトキシ-(3,5-ジメチル-4-メトキシフェニル)メチルジベンゾチオフェン-5-オキシドを用いる以外は上記合成例4と同様の操作を行うことで、フェニル-2-[ジメトキシ-(3,5-ジメチル-4-メトキシフェニル)メチル]ジベンゾチオフェニウム-ノナフルオロブタンスルホネートを2.7g得る。
Figure JPOXMLDOC01-appb-C000044
<スルホニウム塩11の合成>
(合成例18)2-(4-メトキシベンゾイル)-4,6-ジメチルジベンゾチオフェンの合成
 上記合成例1において、ジベンゾチオフェンに代えて4,6-ジメチルジベンゾチオフェンを用いる以外は上記合成例1と同様の操作を行うことで、2-(4-メトキシベンゾイル)-4,6-ジメチルジベンゾチオフェンを6.0g得る。
Figure JPOXMLDOC01-appb-C000045
(合成例19)2-(4-メトキシベンゾイル)-4,6-ジメチルジベンゾチオフェン-5-オキシドの合成
 上記合成例2において、2-(4-メトキシベンゾイル)ジベンゾチオフェンに代えて上記合成例18で得た2-(4-メトキシベンゾイル)-4,6-ジメチルジベンゾチオフェンを用いる以外は上記合成例2と同様の操作を行うことで、2-(4-メトキシベンゾイル)-4,6-ジメチルジベンゾチオフェン-5-オキシドを4.0g得る。
Figure JPOXMLDOC01-appb-C000046
(合成例20)2-[ジメトキシ-(4-メトキシフェニル)]メチル-4,6-ジメチルジベンゾチオフェン-5-オキシドの合成
 上記合成例3において、2-(4-メトキシベンゾイル)ジベンゾチオフェン-5-オキシドに代えて上記合成例19で得た2-(4-メトキシベンゾイル)-4,6-ジメチルジベンゾチオフェン-5-オキシドを用いる以外は上記合成例3と同様の操作を行うことで、2-[ジメトキシ-(4-メトキシフェニル)]メチル-4,6-ジメチルジベンゾチオフェン-5-オキシドを3.7g得る。
Figure JPOXMLDOC01-appb-C000047
(合成例21)フェニル-2-[(4-メトキシフェニル)]メチル-4,6-ジメチルジベンゾチオフェニウム-ノナフルオロブタンスルホネート(スルホニウム塩11)の合成
 上記合成例4において、2-[ジメトキシ-(4-メトキシフェニル)メチルジベンゾチオフェン-5-オキシドに代えて上記合成例20で得た2-[ジメトキシ-(4-メトキシフェニル)]メチル-4,6-ジメチルジベンゾチオフェン-5-オキシドを用いる以外は上記合成例4と同様の操作を行うことで、フェニル-2-[(4-メトキシフェニル)]メチル-4,6-ジメチルジベンゾチオフェニウム-ノナフルオロブタンスルホネートを2.2g得る。
Figure JPOXMLDOC01-appb-C000048
<スルホニウム塩12の合成>
(合成例22)2-(4-メトキシベンゾイル)-4,6-ジメチルジベンゾチオフェンの合成
 3-ブロモジベンゾチオフェン5.0gをテトラヒドロフランの30gに溶解させ、そこにメチルマグネシウムブロミドの1mol/LのTHF溶液20mlを5℃以下で滴下する。滴下後、35℃で30分撹拌し、3-ブロモマグネシウムジベンゾチオフェンのTHF溶液を得る。4-メトキシベンゾイルクロリド3.2gをTHF15gに溶解した溶液中に、3-ブロモマグネシウムジベンゾチオフェンのTHF溶液を10℃以下で滴下し、その後25℃で1時間撹拌する。撹拌後、10質量%塩化アンモニウム水溶液50gを20℃以下で添加してさらに10分撹拌し、有機層を酢酸エチル80gで抽出する。これを水で洗浄後に酢酸エチル及びテトラヒドロフランを留去することで粗結晶を得る。粗結晶をエタノール140gを用いて再結晶させ、2-(4-メトキシベンゾイル)-4,6-ジメチルジベンゾチオフェンを4.3g得る。
Figure JPOXMLDOC01-appb-C000049
(合成例23)3-(4-メトキシベンゾイル)ジベンゾチオフェン-5-オキシドの合成
 上記合成例2において、2-(4-メトキシベンゾイル)ジベンゾチオフェンに代えて上記合成例22で得た3-(4-メトキシベンゾイル)ジベンゾチオフェンを用いる以外は上記合成例2と同様の操作を行うことで、3-(4-メトキシベンゾイル)ジベンゾチオフェン-5-オキシドを4.0g得る。
Figure JPOXMLDOC01-appb-C000050
(合成例24)3-[ジメトキシ-(4-メトキシフェニル)]メチルジベンゾチオフェン-5-オキシドの合成
 上記合成例3において、2-(4-メトキシベンゾイル)ジベンゾチオフェン-5-オキシドに代えて上記合成例23で得た3-(4-メトキシベンゾイル)ジベンゾチオフェン-5-オキシドを用いる以外は上記合成例3と同様の操作を行うことで、3-[ジメトキシ-(4-メトキシフェニル)]メチルジベンゾチオフェン-5-オキシドを3.7g得る。
Figure JPOXMLDOC01-appb-C000051
(合成例25)フェニル-3-[ジメトキシ(4-メトキシフェニル)]メチルジベンゾチオフェニウム-ノナフルオロブタンスルホネート(スルホニウム塩12)の合成
 上記合成例4において、2-[ジメトキシ-(4-メトキシフェニル)メチルジベンゾチオフェン-5-オキシドに代えて上記合成例24で得た3-[ジメトキシ-(4-メトキシフェニル)]メチルジベンゾチオフェン-5-オキシドを用いる以外は上記合成例4と同様の操作を行うことで、フェニル-3-[ジメトキシ(4-メトキシフェニル)]メチルジベンゾチオフェニウム-ノナフルオロブタンスルホネートを2.2g得る。
Figure JPOXMLDOC01-appb-C000052
<スルホニウム塩13の合成>
(合成例26)フェニル-2-[ジ(3-ヒドロキシ‐3‐メチル)ブトキシ-(4-メトキシフェニル)メチル]ジベンゾチオフェニウム-ノナフルオロブタンスルホネート(スルホニウム塩13)の合成
 上記合成例3において、上記合成例2で得た2-(4-メトキシベンゾイル)ジベンゾチオフェン-5-オキシドに代えて上記合成例11で得たフェニル-2-(4-ヒドロキシベンゾイル)ジベンゾチオフェニウム-ノナフルオロブタンスルホネートを用いて、またメタノールに代えて3-メチル-1,3-ブタンジオールを用いる以外は上記合成例3と同様の操作を行うことで、フェニル-2-[ジ(3-ヒドロキシ-3-メチル)ブトキシ-(4-メトキシフェニル)メチル]ジベンゾチオフェニウム-ノナフルオロブタンスルホネートを2.8g得る。
Figure JPOXMLDOC01-appb-C000053
<スルホニウム塩14の合成>
(合成例27)フェニル-2-{ヒドロキシフェニル-[4-(1-メチル-1-ヒドロキシ)エチル[1,3]ジオキサン-2-イル]}メチルジベンゾチオフェニウム-ノナフルオロブタンスルホネート(スルホニウム塩14)の合成
 上記合成例3において、上記合成例2で得た2-(4-メトキシベンゾイル)ジベンゾチオフェン-5-オキシドに代えて上記合成例11で得たフェニル-4-[ジメトキシ-(4-メトキシフェニル)メチル]ジベンゾチオフェニウム-ノナフルオロブタンスルホネートを用いて、またメタノールに代えて3-メチル-1,2,3-ブタントリオールを用いる以外は上記合成例3と同様の操作を行うことで、フェニル-2-{ヒドロキシフェニル-[4-(1-メチル-1-ヒドロキシ)エチル[1,3]ジオキサン-2-イル]メチルジベンゾチオフェニウム-ノナフルオロブタンスルホネートを2.1g得る。
Figure JPOXMLDOC01-appb-C000054
<スルホニウム塩15の合成>
(合成例28)フェニル-2-[ジメトキシ-(4-メトキシフェニル)メチル]ジベンゾチオフェニウム-2-メタクリルオキシ-1,2-ジフルオロエタンスルホネート(スルホニウム塩15)の合成
 上記合成例4において、ノナフルオロブタンスルホン酸カリウムに代えて2-メタクリルオキシ-1,2-ジフルオロエタンスルホン酸ナトリウムを用いる以外は上記合成例4と同様の操作を行うことで、フェニル-2-[ジメトキシ-(4-メトキシフェニル)メチル]ジベンゾチオフェニウム-2-メタクリルオキシ-1,2-ジフルオロエタンスルホネートを4.1g得る。
Figure JPOXMLDOC01-appb-C000055
<ポリマーAの合成>
(合成例29)ポリマーAの合成
 ポリヒドロキシスチレン(重量平均分子量8000)8.0gと0.010gの35質量%塩酸水溶液とを脱水ジオキサン28gに溶解する。2.73gのシクロヘキシルビニルエーテルを2.80gの脱水ジオキサンに溶解した溶液をポリヒドロキシスチレン溶液に30分かけて滴下する。滴下後に40℃として2時間撹拌する。撹拌後、冷却した後に0.014gのジメチルアミノピリジンを添加する。その後、溶液を260gの純水中に滴下することでポリマーを沈殿させる。これを減圧ろ過で分離して得られた固体を純水300gで2回洗浄した後、真空乾燥することで白色固体として下記に示すポリマーAを9.2g得る。なお、本発明におけるポリマーのユニットのモノマー比は下記に限定されない。
Figure JPOXMLDOC01-appb-C000056
<ポリマーBの合成>
(合成例30)ポリマーBの合成
 7.0gのアセトキシスチレンと、2.1gのt-ブチルメタクリレートと、0.022gのブチルメルカプタンと、0.40gのジメチル-2,2'-アゾビス(2-メチルプロピオネート)(AIBN)と、を35gのテトラヒドロフラン(THF)に溶解して脱酸素する。これをあらかじめ窒素気流化で還流温度とした20gのTHF中に4時間かけて滴下する。滴下後、2時間撹拌してから室温に冷却する。これを149gのヘキサンと12gのTHFの混合溶媒中に滴下することでポリマーを沈殿させる。沈殿させたポリマーを減圧ろ過で分離し得られた固体を52gのヘキサンで洗浄した後、真空乾燥することで白色固体として下記式に示すポリマーBを10.3g得る。ゲル浸透クロマトグラフィーを用いてポリスチレン換算により求めた重量平均分子量は9200である。なお、本発明におけるポリマーのユニットのモノマー比は下記に限定されない。
Figure JPOXMLDOC01-appb-C000057
<ポリマーCの合成>
(合成例31)ポリマーCの合成
 ポリマーBを6.0g、トリエチルアミン6.0g、メタノール6.0g及び純水1.5gを30gのプロピレングリコールモノメチルエーテルに溶解し還流温度で6時間撹拌する。その後25℃に冷却し、得られた溶液を30gのアセトンと30gの純水の混合液に滴下することでポリマーを沈殿させる。これを減圧ろ過で分離して得られた固体を30gの純水で2回洗浄した後、真空乾燥することで白色固体として下記式に示すポリマーCを4.3g得る。ゲル浸透クロマトグラフィーを用いてポリスチレン換算により求めた重量平均分子量は9100である。なお、本発明におけるポリマーのユニットのモノマー比は下記に限定されない。
Figure JPOXMLDOC01-appb-C000058
<ポリマーDの合成>
(合成例32)ポリマーDの合成
 3.0gのフェニル-2-[ジメトキシ-(4-メトキシフェニル)メチル]ジベンゾチオフェニウム-2-メタクリルオキシ-1,2-ジフルオロエタンスルホネート(スルホニウム塩15)と、0.9gの4-ヒドロキシフェニルメタクリレート、1.3gの3-ヒドロキシアダマンタンメタクリレート、及び1.5gエチルシクロペンチルメタクリレートと、0.042gのブチルメルカプタンと、0.80gのジメチル-2,2'-アゾビス(2-メチルプロピオネート)(AIBN)と、を16gのシクロヘキサノンに溶解して脱酸素する。これをあらかじめ窒素気流化で還流温度とした7gのシクロヘキサノン中に4時間かけて滴下する。滴下後、2時間撹拌してから室温に冷却する。これを130gの時イソプロピルアルコール中に滴下することでポリマーを沈殿させる。沈殿させたポリマーを減圧ろ過で分離し得られた固体を60gの50質量%メタノール水溶液で洗浄した後、真空乾燥することで白色固体として下記式に示すポリマーDを4.3g得る。ゲル浸透クロマトグラフィーを用いてポリスチレン換算により求めた重量平均分子量は4800である。なお、本発明におけるポリマーのユニットのモノマー比は下記に限定されない。
Figure JPOXMLDOC01-appb-C000059
[実施例1、2及び比較例1~5]
<EUV酸発生効率評価>
 下記のようにしてサンプルを調製した。シクロヘキサノン3000mgに、上記ポリマーA200mgと、光酸発生剤(PAG)0.045molと、指示薬としてクマリン6を0.0012mmolの割合で添加してサンプルを調製した。
 なお、PAGとしては、上記スルホニウム塩1及び8、並びに、下記に示すスルホニウム塩15~19のいずれかを用いた。詳細は表1に示す。
Figure JPOXMLDOC01-appb-C000060
<EUV酸発生効率評価>
 4インチ石英ウェハ上に滴下してスピンコートした後に、110℃のホットプレートで1分間ベークすることで膜厚1μmのフィルムを形成した。形成したフィルムをEUV露光装置(Energetiq Technology社製 EQ-10m)を用いて1.0~6.0mJ/cm照射した後に、紫外可視光(UV-VIS)分光光度計を用いて酸とクマリン6の反応により生じる吸収(530nm)の吸光度を測定する。照射量と吸光度の1次関数の傾きより照射量当たりの酸発生効率を求め、スルホニウム塩20を基準とした相対酸発生効率を算出する。結果を表1に示す。具体的には、実施例1~2及び比較例1~4のそれぞれのサンプル1~6の酸発生効率は、スルホニウム塩20を添加したサンプル7(比較例5)の酸発生効率を1.00として、それに対するサンプル1~6(実施例1~2及び比較例1~4)の評価結果を相対値として算出した。酸発生効率は、数値が大きいほど優れた効果を有することを示す。
Figure JPOXMLDOC01-appb-T000061
 本発明のいくつかの態様であるスルホニウム塩を含有するサンプル1~2(実施例1~2)は、比較例1、4及び5と比較して酸発生効率が高くなる。一方でジベンゾチオフェニウムでなく、スルホニウム塩17、18を含む比較例2、3はスルホニウム塩20よりもEUV照射による酸発生効率が低下する。
 アセタール部位又はチオアセタール部位を有する化合物は電子供与が生じEUV照射によって発生する2次電子との反応性が低下しやすいが、本発明のいくつかの態様におけるオニウム塩は電子受容性の高いジベンゾチオフェン構造を有するため、ポリマー中でEUV照射によって発生する2次電子との反応性が低下しにくい。一方でスルホニウム塩17、18はEUV等の第1活性エネルギー照射において、電子供与性の影響でポリマー中での電子受容性が低下する傾向がある。
 なお、上記ポリマーDを実施例1のサンプル1に代えて使用した場合も、実施例1と同様の効果が得られる。
 本発明のいくつかの態様のスルホニウム塩をEUV又は電子線を照射した後にUVを照射する工程で用いる場合、EUV又は電子線における酸発生効率が高いことで、その後のUV照射による酸発生の効果を有効に利用できることになるため好ましい。
[実施例3~5及び比較例6~9]
<電子線感度評価>
 下記のようにしてサンプルを調製した。シクロヘキサノン3000mgに、上記ポリマーC100mgと、光酸発生剤(PAG)として上記スルホニウム塩1、8、13、16~19のいずれかをそれぞれ0.024mmolと、酸拡散制御剤としてトリイソアミルアミンを0.010mmolの割合で添加してサンプルを調製した。
<電子線感度評価>
 あらかじめヘキサメチレンジシラザンを修飾したシリコンウェハ上に上記レジスト組成物サンプル1をスピンコートする。これを110℃のホットプレート上に1分間プレベークすることで、厚さ100nmの塗布膜が形成された基板を得る。該基板の塗布膜に対し、電子線描画装置を用いて50nmのラインアンドスペースパターンとなるように描画する。電子線照射後の基板を395nmのUV-LEDによって1000mJ/cmの露光量で全面露光し、次いで、ホットプレート上で110℃で1分間加熱した。現像液(製品名:NMD-3、水酸化テトラメチルアンモニウム2.38質量%水溶液、東京応化工業(株)製)を用いて1分間現像し、その後に純水でリンスすることで50nmのラインアンドスペースパターンを得る。50nm(±1nm)のラインアンドスペースパターンが描ける電子線照射量をEsize[μC/cm]として電子線照射による感度を求める。50nm(±1nm)のラインアンドスペースパターンが描けたかは、走査型電子顕微鏡(SEM)((株)日立ハイテク製 S-5500)を用いた観察により行う。上記その他のサンプルに対しても、上記と同様にして感度評価を行う。サンプル組成と結果を表2に示す。
 表2において、それぞれのサンプルの感度は、スルホニウム塩19を添加したサンプル(比較例9)の感度を1.00として、それに対するサンプル(実施例3~5及び比較例6~8)の評価結果を相対値として算出した。相対感度は、数値が小さいほど優れた効果を有することを示す。
Figure JPOXMLDOC01-appb-T000062
<スルホニウム塩のケトン誘導体のUVスペクトル>
 スルホニウム塩1、8、16、17及び18の各ケトン誘導体のUVスペクトルを測定した。結果を図1に示す。
 いずれのポリマーにおいても本発明のいくつかの態様におけるオニウム塩を含有するサンプルである実施例3、4は比較例9より高感度となった。
 理由としては、以下の点によると推測される。本発明のいくつかの態様におけるスルホニウム塩1及び8(実施例3及び4)は第1活性エネルギー線である電子線によりレジスト膜中に発生した酸によりアセタール基の脱保護が起こり、ケトン誘導体となる。該ケトン誘導体は第2活性エネルギー線であるUVに吸収を持つため、UV照射により励起されることで直接酸発生することができる。それに対し、スルホニウム塩19(比較例9)は第2活性エネルギー線であるUVに吸収を持つ変化が生じない。そのため表1に示すEUVによる酸発生効率からも推測されるように、電子線照射によっては同等の感度であるが実施例3、4はUV照射により励起されることでさらに酸発生することで高感度となることがわかる。
 また、実施例4及び5から、スルホニウム塩13はスルホニウム塩8と比較して高感度であった。スルホニウム塩13は、アセタール基の末端に3級アルコールを有するため、第1活性エネルギー線である電子線の照射により発生した酸を触媒として水を生成する。この水を利用することで加水分解が促進され、第2活性エネルギー線であるUV照射前のケトン誘導体の生成量が、スルホニウム塩13を用いた場合はスルホニウム塩8を用いた場合よりも多くなる傾向がある。そのため、スルホニウム塩13を用いたサンプル10は、UV照射による酸発生量が向上し高感度となることがわかる。
 さらに、本発明のいくつかの態様のオニウム塩は、スルホニウム塩18(比較例8)よりも感度が高い。スルホニウム塩18は、スルホニウム塩1及び8(実施例3及び4)と同様に電子線照射により発生した酸によりケトン誘導体となりUV吸収を持つ。酸により分解してUV吸収を持たせるためにケトン誘導体を生成するためのアセタール部位を有することで電子受容性が低下して電子線照射による酸発生効率が低下する傾向がある。一方、スルホニウム塩1及び8(実施例3及び4)はジベンゾチオフェン骨格を有するため電子受容性の低下が起こりにくい。そのため、比較例8は実施例3、4と比較してUV照射前の酸発生量が少なくなる。図1に示すように、比較例8のスルホニウム塩18のケトン誘導体は第2活性エネルギー線である395nmのUV吸収が、実施例3、4で用いるスルホニウム塩1、8それぞれのケトン誘導体より10倍以上大きいが、N-メチルカルバゾールのような構造であってもアミノ基は発生酸と反応する塩基として働き酸触媒反応に影響することがあるため、UV照射後の感度は比較例8よりも実施例3、4の方が高くなる。
 また、スルホニウム塩1及び8は、Rとしてヒドロキシ基をオルト位又はパラ位に有することで、アルカリ現像液に対する親和性が向上するため、現像においてスルホニウム塩の溶解性が向上する傾向がある。
 本発明のいくつかの態様により、電子線又は極端紫外線等の第1活性エネルギー線照射により生じる活性種によってオニウム塩をケトン誘導体に構造変化させ、第2活性エネルギー線照射によって該ケトン誘導体が活性種を発生させることができるオニウム塩を含有する樹脂組成物を提供できる。上記オニウム塩が特定の置換基又は特定の構造を有することで、具体的にはベンゾチオフェン構造を有することで、照射するUV波長の吸収が向上する。そのため、上記オニウム塩を含む上記樹脂組成物は、UV照射により効率よく酸を発生する高感度なレジスト組成物となり得る。

Claims (13)

  1.  下記一般式(1)又は(2)から選択されるいずれかで表されるオニウム塩。
    Figure JPOXMLDOC01-appb-C000001
    (前記式(1)及び(2)中、Rは、置換基を有していてもよい直鎖、分岐又は環状の炭素原子数1~12のアルキル基;置換基を有していてもよい直鎖、分岐又は環状の炭素原子数2~12のアルケニル基;置換基を有していてもよい炭素原子数6~14のアリール基;及び、置換基を有していてもよい炭素原子数3~12のヘテロアリール基;からなる群より選択されるいずれかであり、
    、R及びRは独立して各々に、アルキル基、ヒドロキシ基、メルカプト基、アルコキシ基、アルキルカルボニル基、アリールカルボニル基、ヘテロアリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、ヘテロアリールオキシカルボニル基、アリールスルファニルカルボニル基、ヘテロアリールスルファニルカルボニル基、アリールスルファニル基、ヘテロアリールスルファニル基、アルキルスルファニル基、アリール基、ヘテロアリール基、アリールオキシ基、ヘテロアリールオキシ基、アルキルスルフィニル基、アリールスルフィニル基、ヘテロアリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、ヘテロアリールスルホニル基、アリールスルホニル基、ヘテロアリールスルホニル基、(メタ)アクリロイルオキシ基、ヒドロキシ(ポリ)アルキレンオキシ基、アルキルアミノ基、ジアルキルアミノ基、シアノ基、ニトロ基及びハロゲン原子からなる群より選択されるいずれかであり、前記R、R及びRが炭素を有する場合の炭素原子数が1~12であり、且つ、前記R、R及びRは置換基を有していてもよく、
    前記R1と、前記Rが結合するベンゼン環及び前記Rが結合するベンゼン環のいずれかと、が単結合で直接に、又は、酸素原子、硫黄原子、窒素原子含有基及びメチレン基からなる群より選択されるいずれかを介して、これらが結合する硫黄原子と共に環構造を形成してもよく、
    前記R1がメチレン基を有するとき該メチレン基の少なくとも1つが2価のヘテロ原子含有基で置換されていてもよく、
    及びRは独立して各々に、置換基を有していてもよい直鎖、分岐又は環状の炭素原子数1~12のアルキル基;置換基を有していてもよい直鎖、分岐又は環状の炭素原子数2~12のアルケニル基;置換基を有してもよい炭素原子数6~14のアリール基;及び、置換基を有していてもよい炭素原子数3~12のヘテロアリール基;からなる群より選択されるいずれかであり、
    前記R及びRは、単結合で直接に、又は、酸素原子、硫黄原子及びアルキレン基からなる群より選択されるいずれかを介して、互いに結合して環構造を形成してもよく、
    前記R及びR中の少なくとも1つのメチレン基が2価のヘテロ原子含有基で置換されていてもよく、
    1は、直接結合;直鎖、分岐又は環状の炭素原子数1~12のアルキレン基;炭素原子数2~12のアルケニレン基;スルフィニル基;スルホニル基;及びカルボニル基;からなる群より選択されるいずれかであり、
    Yは酸素原子又は硫黄原子であり、
    aは0~4の整数であり、
    bは0~3の整数であり、
    cは1~5の整数であり、
    dは0~2の整数であり、
    eは1~4の整数であり、
    (ただし、前記R1と、前記Rが結合するベンゼン環及び前記Rが結合するベンゼン環のいずれかとが、前記硫黄原子と共に環構造を形成する場合は、前記式(1)においてaが0~3又はbが0~2であり、前記式(2)においてaが0~3又はdが0~1である)
    前記式(1)及び(2)におけるベンゼン環の少なくとも1つは、ヘテロ原子を環中に有する6員環のヘテロ芳香環であってもよく、前記式(1)及び(2)におけるRに結合するベンゼン環が前記ヘテロ芳香環のときeが0~4であってもよく、
    前記式(1)及び(2)においてR4を2つ以上有するとき、R4のうち2つが互いに連結して環構造を形成していてもよく、
    は1価のアニオン基であり、fは1~3の整数であり、fが2以上のときにXは同じであっても異なっていてもよく、
    Rはf価の有機基である。)
  2.  前記Rが、ヒドロキシ基又はアルコキシ基である請求項1に記載のオニウム塩。
  3.  請求項1又は2のいずれか一項に記載のオニウム塩を少なくとも含む光酸発生剤。
  4.  請求項3に記載の光酸発生剤と、酸反応性化合物と、を含む組成物。
  5.  酸拡散制御剤をさらに含む請求項4に記載の組成物。
  6.  前記酸反応性化合物が酸の作用により現像液に対する溶解性が変化する樹脂(B)であり、
     前記樹脂(B)が、下記(3a)~(3d)で表される単位の少なくともいずれかを有する、請求項4又は5に記載の組成物。
    Figure JPOXMLDOC01-appb-C000002
    (前記式(3a)中、
    7は水素原子、アルキル基及びハロゲン化アルキル基からなる群より選択されるいずれかであり、
    8~R10は独立して各々に、置換基を有してもよい直鎖、分岐又は環状のアルキル基であり、前記R8~R10のうち2つ以上が、単結合で直接に、又は、酸素原子、硫黄原子、窒素原子含有基及びメチレン基からなる群より選択されるいずれかを介して、環構造を形成してもよく、
    2は、直接結合、カルボニルオキシ基、カルボニルアミノ基、置換基を有してもよい直鎖、分岐又は環状のアルキレンカルボニルオキシ基、及び、置換基を有してもよい直鎖、分岐又は環状のアルキレンカルボニルアミノ基からなる群より選択されるいずれかである。
    前記式(3b)中、R7及びL2は、前記式(3a)のR7及びL2の各々と同じ選択肢から選択され、
    11及びR12は独立して各々に、水素原子、及び、直鎖、分岐又は環状のアルキル基からなる群より選択されるいずれかであり、
    13は置換基を有してもよい直鎖、分岐又は環状のアルキル基であり、
    前記R11~R13のうち2つ以上が、単結合で直接に、又は、酸素原子、硫黄原子、窒素原子含有基及びメチレン基からなる群より選択されるいずれかを介して、環構造を形成してもよい。
    前記式(3c)中、前記R7~R10及びL2は、前記式(3a)のR7~R10及びL2の各々と同じ選択肢から選択され、
    14は独立して各々に、アルキル基、ヒドロキシ基、アルコキシ基、アルキルカルボニル基、アルキルスルファニル基、アルキルスルフィニル基、アルキルスルホニル基、アミノ基、シアノ基、ニトロ基、及びハロゲン原子からなる群より選択されるいずれかであり、
    14のうち2つ以上が、単結合で直接に、又は、酸素原子、硫黄原子、窒素原子含有基及びメチレン基からなる群より選択されるいずれかを介して、環構造を形成してもよく、
    lは1~2の整数であり、
    mは、lが1のとき0~4、lが2のとき0~6の整数であり、
    nは、lが1のとき1~5、lが2のとき1~7の整数であり、
    m+nは、lが1のとき1~5であり、lが2のとき1~7である。
    前記式(3d)中、R7、R11~R13、R14、L2、l及びnは、前記式(3a)~(3c)のR7、R11~R13、R14、L2、l及びnの各々と同じ選択肢から選択される。)
  7.  前記樹脂(B)が下記一般式(4a)~(4b)で表される単位の少なくともいずれかを含む、又は、
     前記組成物が下記一般式(4a)~(4b)で表される単位の少なくともいずれかを含む樹脂(C)をさらに含む請求項6に記載の組成物。
    Figure JPOXMLDOC01-appb-C000003
    (前記式(4a)中、R7、R14及びL2は独立して各々、前記式(3a)のR7、R14及びL2の各々と同じ選択肢から選択され、
    pは0~4の整数であり、qは1~5の整数である。
    前記式(4b)中、前記R7及びL2は独立して各々、前記式(3a)のR7及びL2の各々と同じ選択肢から選択され、
    15は、-C(O)-O-、-SO-及び-O-SO-からなる群より選択される少なくともいずれかを含む環式基である。)
  8.  前記光酸発生剤が、前記オニウム塩におけるXが下記一般式(5)で表される単位を有する酸発生剤単位含有樹脂である、請求項4~7のいずれか一項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000004
    (前記式(5)中、R7及びL2は各々独立に、前記式(3a)のR7及びL2と同じ選択肢からそれぞれ選択され、
    は、炭素原子数1~12の直鎖又は分岐のアルキレン基、炭素原子数2~12の直鎖又は分岐のアルケニレン基、及び、炭素原子数6~14のアリーレン基からなる群から選択されるいずれかであり、
    前記アルキレン基、アルケニレン基及びアリーレン基が有する水素の一部又は全てがフッ素原子に置換されてもよく、
    前記アルキレン基、アルケニレン基及びアリーレン基中の少なくとも1つのメチレン基が、2価のヘテロ原子含有基で置換されていてもよい。)
  9.  請求項4~8のいずれか一項に記載の組成物を基板上に塗布しレジスト膜を形成する工程と、
     前記レジスト膜に第1活性エネルギー線を照射する工程と、
     前記第1活性エネルギー線照射後のレジスト膜に第2活性エネルギー線を照射する工程と、
     前記第2活性エネルギー線照射後のレジスト膜を現像してパターンを得る工程と、を含むデバイスの製造方法。
  10.  前記第1活性エネルギー線の波長が、前記第2活性エネルギー線の波長よりも短い請求項9に記載のデバイスの製造方法。
  11.  前記第1活性エネルギー線が電子線又は極端紫外線である請求項9又は10に記載のデバイスの製造方法。
  12.  前記第1活性エネルギー線照射によりレジスト膜中で前記組成物から第1活性種を発生させ、
     前記第1活性種により前記光酸発生剤を構造変化させ、
     前記第2活性エネルギー線照射により、前記構造変化した光酸発生剤から第2活性種を発生させる請求項9~11のいずれか一項に記載のデバイスの製造方法。
  13.  前記構造変化した光酸発生剤がケトン誘導体である請求項12に記載のデバイスの製造方法。
PCT/JP2022/006978 2021-03-15 2022-02-21 オニウム塩、光酸発生剤、組成物及びそれを用いたデバイスの製造方法 WO2022196258A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023506900A JPWO2022196258A1 (ja) 2021-03-15 2022-02-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-041748 2021-03-15
JP2021041748 2021-03-15

Publications (1)

Publication Number Publication Date
WO2022196258A1 true WO2022196258A1 (ja) 2022-09-22

Family

ID=83321246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006978 WO2022196258A1 (ja) 2021-03-15 2022-02-21 オニウム塩、光酸発生剤、組成物及びそれを用いたデバイスの製造方法

Country Status (2)

Country Link
JP (1) JPWO2022196258A1 (ja)
WO (1) WO2022196258A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1029321B1 (fr) * 2021-05-06 2023-05-16 Sumitomo Chemical Co Sel, generateur d’acide, composition de resist et procede de production de motif de resist
WO2024070091A1 (ja) * 2022-09-29 2024-04-04 東洋合成工業株式会社 オニウム塩、光酸発生剤、ポリマー、レジスト組成物及び、該レジスト組成物を用いたデバイスの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172741A (ja) * 2014-02-21 2015-10-01 東京エレクトロン株式会社 光増感化学増幅型レジスト材料及びこれを用いたパターン形成方法、半導体デバイス、リソグラフィ用マスク、並びにナノインプリント用テンプレート
WO2018074382A1 (ja) * 2016-10-17 2018-04-26 東洋合成工業株式会社 組成物及びそれを用いたデバイスの製造方法
JP2019182813A (ja) * 2018-04-17 2019-10-24 東洋合成工業株式会社 組成物及びそれを用いたデバイスの製造方法
JP2020176096A (ja) * 2019-04-19 2020-10-29 東洋合成工業株式会社 オニウム塩、組成物及びそれを用いたデバイスの製造方法
WO2022039212A1 (ja) * 2020-08-20 2022-02-24 東洋合成工業株式会社 ポリマー、該ポリマーを含有するレジスト組成物、それを用いた部材の製造方法、パターン形成方法及び反転パターンの形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172741A (ja) * 2014-02-21 2015-10-01 東京エレクトロン株式会社 光増感化学増幅型レジスト材料及びこれを用いたパターン形成方法、半導体デバイス、リソグラフィ用マスク、並びにナノインプリント用テンプレート
WO2018074382A1 (ja) * 2016-10-17 2018-04-26 東洋合成工業株式会社 組成物及びそれを用いたデバイスの製造方法
JP2019182813A (ja) * 2018-04-17 2019-10-24 東洋合成工業株式会社 組成物及びそれを用いたデバイスの製造方法
JP2020176096A (ja) * 2019-04-19 2020-10-29 東洋合成工業株式会社 オニウム塩、組成物及びそれを用いたデバイスの製造方法
WO2022039212A1 (ja) * 2020-08-20 2022-02-24 東洋合成工業株式会社 ポリマー、該ポリマーを含有するレジスト組成物、それを用いた部材の製造方法、パターン形成方法及び反転パターンの形成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1029321B1 (fr) * 2021-05-06 2023-05-16 Sumitomo Chemical Co Sel, generateur d’acide, composition de resist et procede de production de motif de resist
WO2024070091A1 (ja) * 2022-09-29 2024-04-04 東洋合成工業株式会社 オニウム塩、光酸発生剤、ポリマー、レジスト組成物及び、該レジスト組成物を用いたデバイスの製造方法

Also Published As

Publication number Publication date
JPWO2022196258A1 (ja) 2022-09-22

Similar Documents

Publication Publication Date Title
US11142495B2 (en) Composition and method for manufacturing device using same
KR102014600B1 (ko) 술포늄염, 레지스트 조성물 및 패턴 형성 방법
JP7079647B2 (ja) 組成物及びそれを用いたデバイスの製造方法
JP6827037B2 (ja) レジスト組成物及びそれを用いたデバイスの製造方法
JP6887394B2 (ja) スルホニウム塩、光酸発生剤、それを含む組成物、及び、デバイスの製造方法
KR20070096977A (ko) 포지티브 레지스트 조성물 및 이것을 사용한 패턴형성방법
WO2022196258A1 (ja) オニウム塩、光酸発生剤、組成物及びそれを用いたデバイスの製造方法
WO2010029907A1 (ja) レジスト処理方法及びポジ型レジスト組成物の使用
KR20120044349A (ko) 감활성광선성 또는 감방사선성 조성물 및 그것을 사용한 패턴 형성 방법
JP7249198B2 (ja) オニウム塩、組成物及びそれを用いたデバイスの製造方法
JP7171601B2 (ja) 光酸発生剤、レジスト組成物及び、該レジスト組成物を用いたデバイスの製造方法
JP6948828B2 (ja) ヨードニウム塩化合物、それを含有する光酸発生剤及び組成物、並びに、デバイスの製造方法
TW202120475A (zh) 鋶鹽、酸產生劑、抗蝕劑組成物和裝置的製造方法
KR20080037139A (ko) 술포닐기를 포함하는 포토레지스트 모노머, 폴리머 및 이를포함하는 포토레지스트 조성물
JP2018024598A (ja) スルホニウム塩、光酸発生剤、それを含む組成物、及び、デバイスの製造方法
KR20190082279A (ko) 금속 함유 오늄염 화합물, 광 붕괴성 염기 및 레지스트 조성물 및 상기 레지스트 조성물을 이용한 디바이스의 제조 방법
WO2023053877A1 (ja) 光酸発生剤、レジスト組成物及び、該レジスト組成物を用いたデバイスの製造方法
JP2024026915A (ja) オニウム塩、化学増幅レジスト組成物及びパターン形成方法
JP6913031B2 (ja) ポリマー、感放射線性組成物、化合物及びデバイスの製造方法
JP2021179544A (ja) 組成物、それを用いて得られる硬化物、光学デバイス、及び、デバイスの製造方法
WO2024070091A1 (ja) オニウム塩、光酸発生剤、ポリマー、レジスト組成物及び、該レジスト組成物を用いたデバイスの製造方法
KR20240053528A (ko) 오늄염, 화학 증폭 레지스트 조성물 및 패턴 형성 방법
TW202325694A (zh) 鹽化合物及含該鹽化合物之酸擴散抑制劑、光致抗蝕劑組成物
TW202326294A (zh) 新穎光酸產生劑、光致抗蝕劑組成物及光致抗蝕劑圖案形成方法
JP2017016053A (ja) 樹脂組成物及びそれを用いたデバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771017

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023506900

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771017

Country of ref document: EP

Kind code of ref document: A1