WO2022188535A1 - 聚酯型高分子材料及其制备方法和应用 - Google Patents

聚酯型高分子材料及其制备方法和应用 Download PDF

Info

Publication number
WO2022188535A1
WO2022188535A1 PCT/CN2022/070571 CN2022070571W WO2022188535A1 WO 2022188535 A1 WO2022188535 A1 WO 2022188535A1 CN 2022070571 W CN2022070571 W CN 2022070571W WO 2022188535 A1 WO2022188535 A1 WO 2022188535A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer material
polyester
polyester polymer
material according
preparation
Prior art date
Application number
PCT/CN2022/070571
Other languages
English (en)
French (fr)
Inventor
袁好
陈少军
陈恒
张艳霞
胡致铨
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022188535A1 publication Critical patent/WO2022188535A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • C08G63/6884Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6886Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1483Heterocyclic containing nitrogen and sulfur as heteroatoms

Definitions

  • the present application relates to the technical field of polymer materials, in particular to a polyester polymer material and a preparation method and application thereof.
  • Ultraviolet (Ultraviolet, UV for short) is a type of electromagnetic wave with a wavelength in the range of 10-400nm, between X-rays and visible light, and its energy is sufficient to destroy many chemical bonds such as C-C, C-O, C-N and C-H bonds.
  • UV absorbers are usually added to materials to reduce the damage of UV rays.
  • the widely used small molecule additives have problems such as poor thermal stability and easy precipitation, which will seriously affect the performance of materials during processing and use. potential hazards to the environment.
  • zinc oxide nanowires are added to polypropylene materials to achieve the effect of anti-ultraviolet.
  • zinc oxide nanowires are inorganic materials and are prone to migration and precipitation.
  • surface treatment is also required. Dispersion is aided by hyperbranched polymers.
  • Fluorescent material can absorb light of a certain wavelength and convert it into emitted light of another wavelength. It is an important light conversion material and has important value in the field of solar cells and energy harvesting. Some fluorescent materials can absorb invisible ultraviolet light and emit eye-catching fluorescence, which can be used to prepare anti-counterfeiting labels. Since polymer materials are widely used in packaging and printing fields, fluorescent polymer materials have good application prospects in the field of anti-counterfeiting packaging.
  • the present application aims to solve at least one of the technical problems existing in the prior art. To this end, the present application proposes a polyester polymer material and its preparation method and application.
  • R is an alkyl group and x is a natural number.
  • the preparation method includes: obtaining reaction raw materials including thiazole pyridine diacid, aliphatic diol and an esterification catalyst, and performing an esterification reaction A polyester polymer material is obtained.
  • an ultraviolet absorber comprising the above-mentioned polyester type polymer material or the polyester type polymer material prepared according to the above-mentioned preparation method.
  • the fourth aspect of the present application proposes the application of the above polyester polymer material or the polyester polymer material prepared by the above preparation method in anti-ultraviolet absorption products or material products utilizing fluorescent properties .
  • Fig. 1 is the synthetic schematic diagram of polyester type polymer material in the embodiment 1 of the application;
  • Fig. 2 is the nuclear magnetic spectrum of the polyester type polymer material prepared in Example 2 of the application;
  • Fig. 3 is the UV-Vis absorption spectrum of the polythiazole butylene pyridine diacid ester prepared in the embodiment 3 of the application;
  • Fig. 4 is the fluorescence spectrogram of the polythiazole butylene picolinate DMF solution prepared in Example 3 of the application.
  • FIG. 5 is the thermogravimetric curve of the polyester polymer material prepared in Example 4 of the application.
  • the embodiments of the present application propose a polyester type polymer material and a preparation method and application thereof.
  • the polyester type polymer material has good compatibility with materials such as polyester type and polyurethane type resin, and has good precipitation resistance. , and at the same time has good ultraviolet absorption characteristics and fluorescence characteristics, and has good application prospects in the field of ultraviolet absorbers and anti-counterfeiting packaging.
  • polyester type polymer material of the embodiment of the present application its general chemical structure is shown in formula (I):
  • R is an alkyl group and x is a natural number.
  • the polyester polymer material provided in the embodiment of the present application is a thiazole pyridine diacid-based polyester structure, which belongs to a polyester polymer.
  • the material can achieve full coverage of ultraviolet wavelengths from 200 nm to 400 nm, and has good ultraviolet absorption characteristics.
  • the polyester polymer material has good compatibility with polyester and polyurethane resins, so that the polymer material can be used in the formation of products. It is not easy to be precipitated during the process, and the prepared product has good stability and anti-precipitation performance, thereby exerting better anti-ultraviolet ability.
  • the mechanism of UV shielding of the polyester polymer material provided in the embodiment of the present application is to directly absorb UV light without converting the UV light into fluorescence to achieve UV shielding effect. It has good application prospects in molecular materials, anti-ultraviolet polymer materials, anti-counterfeiting materials and light conversion materials.
  • x is 3-100,000.
  • R is a C2-C100 alkyl group.
  • R is a C2-C100 alkyl group. Further, R is a C4-C20 alkyl group.
  • the molecular weight of the polyester polymer material is 311.05 ⁇ 30,000,000.
  • the polyester polymer material is selected from the group consisting of poly(ethylene thiazole picolinate), poly(octyl thiazole picolinate), and poly(butylene thiazole picolinate) ester.
  • the embodiment of the present application also proposes a preparation method of the above-mentioned polyester polymer material, and the preparation method includes:
  • reaction raw materials including thiazole pyridine diacid, aliphatic dihydric alcohol and esterification catalyst are taken, and esterification reaction is carried out to obtain polyester type polymer material.
  • thiazole pyridine diacid is used as a raw material, and the polyester prepared by esterification has both fluorescent properties and ultraviolet absorption functions, and is expected to become a new type of organic ultraviolet absorber.
  • the aliphatic diol used makes the polyester It has a plasticizing effect, and can act as a plasticizer while being used as an ultraviolet absorber, and its fluorescent properties make the polyester polymer material have good application prospects in the fields of anti-counterfeiting packaging and the like.
  • a polyester polymer material with both ultraviolet absorption and fluorescence properties can be obtained by performing esterification of an aliphatic diol with two hydroxyl functional groups and thiazole pyridine diacid.
  • the ester bond formed in the esterification process makes the polyester polymer material have good compatibility with polyester resin and polyurethane resin and other materials, which is conducive to the formation of high thermal stability and UV resistance materials, UV shielding materials, anti-counterfeiting materials and light conversion materials.
  • the aliphatic dihydric alcohol is a dihydric alcohol having 2 to 100 carbon atoms.
  • the aliphatic diol is a diol of 4 to 20 carbon atoms.
  • the aliphatic diol used can be a diol with 2 to 100 carbon atoms, such as ethylene glycol, propylene glycol, octanediol, etc., one of them can be used alone, or two of them can be used. more than one mixture.
  • the aliphatic diol is selected from at least one of ethylene glycol, propylene glycol, butanediol, pentanediol, hexylene glycol, and octanediol.
  • the use of aliphatic diols to introduce carbon chains can make the prepared polyester polymer material have a plasticizing effect, and can also function as a plasticizer when used as a UV absorber.
  • the molar ratio of thiazole pyridine diacid:aliphatic diol is 0.8:1-1.2:1. According to the preparation methods of some embodiments of the present application, in the reaction raw materials, the molar ratio of thiazole pyridine diacid:aliphatic diol is 1:1, and equimolar addition is beneficial to increase the molecular weight of the polyester polymer material.
  • the esterification catalyst is selected from at least one of p-toluenesulfonic acid, concentrated sulfuric acid, concentrated hydrochloric acid, phosphotungstic acid, tetrabutyl titanate, and antimony trioxide.
  • p-toluenesulfonic acid concentrated sulfuric acid, concentrated hydrochloric acid, phosphotungstic acid, tetrabutyl titanate, and antimony trioxide.
  • the mass fraction of the esterification catalyst is 0.1 wt % to 1 wt %. In some embodiments, the mass fraction of the esterification catalyst is 0.5 wt%.
  • the temperature of the esterification reaction is 100-280°C.
  • the time for the esterification reaction is 1 hour to 18 hours.
  • the esterification reaction is as follows: firstly react at 100°C to 160°C, then heat to 220°C to 280°C and continue the reaction under reduced pressure.
  • the temperature is raised to 100° C. to 160° C. for prepolymerization to convert the small molecule monomer into a polymer, and then the temperature is raised to a higher temperature, so as to prevent the small molecule monomer from volatilizing at high temperature.
  • the purpose of carrying out the reaction under reduced pressure is to quickly remove the water generated in the reaction, thereby advancing the esterification reaction to the forward direction.
  • the pressure range of the reduced pressure condition is below 1000 Pa.
  • “below” includes this number.
  • the preparation method according to some embodiments of the present application further includes the step of separating and purifying the polyester polymer material from the esterification reaction system.
  • the separation and purification is selected from any one of dissolution, precipitation, centrifugation, filtration, and evaporation.
  • the embodiment of the present application also proposes an ultraviolet absorber, which comprises the above-mentioned polyester type polymer material or the polyester type polymer material prepared according to the above-mentioned preparation method.
  • polyester polymer materials of the embodiments of the present application are used as additives to prevent ultraviolet damage, and can be used alone, together with other additives with anti-ultraviolet properties, or together with additives that help improve anti-ultraviolet performance, such as with Used in combination with antioxidants.
  • the embodiments of the present application also propose the application of the above polyester polymer material or the polyester polymer material prepared according to the above preparation method in anti-ultraviolet absorbing products or material products utilizing fluorescent properties.
  • the anti-ultraviolet absorbing product includes an ultraviolet shielding material.
  • the polyester type polymer material is used as an ultraviolet absorber, and a polymer matrix material, an antioxidant, etc., is used to make a polymer that can shield ultraviolet rays. Material.
  • material articles utilizing fluorescent properties include anti-counterfeiting materials or light conversion materials.
  • anti-counterfeiting labels can be prepared and applied in the fields of packaging and printing, as well as in the fields of solar cells and energy collection.
  • This example provides a polyester polymer material, the schematic diagram of which is shown in Figure 1, using thiazole pyridine diacid and aliphatic dihydric alcohol (HO-R-OH) as a reaction raw material under the action of an esterification catalyst to obtain through an esterification reaction, the aliphatic dihydric alcohol used in this embodiment is ethylene glycol, and the esterification catalyst is Concentrated sulfuric acid, prepared according to the following steps:
  • the molecular weight range of the prepared polyester can be adjusted by adjusting the conditions such as the time of the esterification reaction and the amount of the reaction raw materials added.
  • the polyester type polymer material can be controlled The molecular weight range of 311.05 ⁇ 30000000.
  • a polyester type polymer material is prepared.
  • the aliphatic diol used in this example is 1,8-octanediol, and the esterification catalyst is tetrabutyl titanate, which is specifically prepared according to the following steps:
  • 1,8-octanediol is used as one of the polyester raw materials.
  • the long-chain diol can plasticize the polyester, and can also act as a plasticizer when used as a UV absorber.
  • FIG. 2 is the nuclear magnetic spectrum of the polyester polymer material prepared in this example. It can be seen from the figure that in this example, polythiazole pyridine diacid octadiol was successfully prepared.
  • a polyester type polymer material is prepared.
  • the aliphatic diol used in this example is 1,4-butanediol, and the esterification catalyst is p-toluenesulfonic acid, which is specifically prepared according to the following steps:
  • Figure 3 shows the UV-Vis absorption spectrum of the polythiazole butylene pyridine diacid ester prepared in this example, the results show that the polyester polymer material prepared in this example has strong absorption in the ultraviolet region, and has good UV absorption properties.
  • Figure 4 shows the fluorescence spectrum of the polythiazole butylene pyridine DMF solution prepared in this example, the results show that the polyester polymer material has better UV absorption properties and better fluorescence effect .
  • polyester polymer materials prepared in the examples of the present application have both UV absorption properties and fluorescence properties, and have great applications in the fields of UV absorbers and anti-counterfeiting packaging. potential.
  • This example provides a polyester type polymer material, and the preparation process is the same as that of Example 1, except that the aliphatic diol used is hexanediol.
  • Figure 5 shows the thermogravimetric (TG) curve of the polyester polymer material prepared in this example at a pyrolysis temperature of about 320°C. It can be seen from the figure that the polyester type polymer material prepared in this example Polymer materials have good thermal stability.
  • polyester polymer material prepared in this example as an additive and co-extrude with polyethylene terephthalate-1,4-cyclohexanedimethanol (PETG) polyester material to form a material product, with Ethanol is a solvent, and the material product is subjected to a leaching experiment in ethanol.
  • the specific experimental process is as follows: the material product is soaked in ethanol for 24h, and the weight change of the material product before and after soaking is measured.
  • the leaching rate (the weight of the sample before leaching- The weight of the sample after soaking) / the weight of the sample before soaking.
  • the experimental results show that the leaching rate of the material product formed by the polyester polymer material of the embodiment of the present application as an additive is about 0.8%, showing excellent anti-precipitation performance.
  • polyester polymer materials provided in the examples of the present application have excellent thermal stability and anti-precipitation performance.
  • the polyester polymer material provided in the example can form intermolecular hydrogen bonds with the resin matrix, and the existence of these large numbers of hydrogen bonds can effectively improve its thermal stability and anti-precipitation performance.
  • the aliphatic diols used in the above examples are illustrated by taking ethylene glycol, octanediol, butanediol and hexanediol as examples, and changing the carbon chain length of the aliphatic diols has an impact on the plasticizing properties of the subsequent products. , those of ordinary skill in the art can adjust the carbon chain length of the aliphatic diol according to actual needs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

一种聚酯型高分子材料及其制备方法和应用,该聚酯型高分子材料的化学结构通式如式(I)所示,其中R为烷基,x为自然数。

Description

聚酯型高分子材料及其制备方法和应用
相关申请的交叉引用
本申请基于申请号为202110257169.5、申请日为2021年03月09日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及高分子材料技术领域,尤其是涉及一种聚酯型高分子材料及其制备方法和应用。
背景技术
紫外线(Ultraviolet,简称UV)是一类波长在10-400nm范围、介于X射线和可见光之间的电磁波,其能量足够破坏许多化学键如C-C、C-O、C-N以及C-H键。长期暴露在紫外线下,会加速材料的老化降解,导致力学性能下降,进而危及正常的生产和生活活动。因此,通常会在材料中添加紫外线吸收剂以降低紫外线的损害,目前,大量使用的小分子添加剂具有热稳定性差和易析出等问题,这在加工和使用过程中会严重影响材料的性能并对环境造成潜在的危害。如现有技术中有公开在聚丙烯材料中加入氧化锌纳米线以起到抗紫外的效果,但氧化锌纳米线属于无机材料,容易发生迁移析出,在制备过程中需要进行表面处理同时还需要借助超支化聚合物辅助分散。
荧光材料可以吸收一定的波长的光,并转化为另一波长的发射光,是一种重要的光转换材料,在太阳能电池和能量收集领域拥有重要的价值。部分荧光材料可以吸收不可见的紫外光,并发射出醒目的荧光,可以用来制备防伪标签等。由于高分子材料在包装和印刷领域有着广泛的应用,荧光高分子材料在防伪包装领域拥有良好的应用前景。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种聚酯型高 分子材料及其制备方法和应用。
本申请的第一方面,提出了聚酯型高分子材料,其化学结构通式如式(Ⅰ)所示:
Figure PCTCN2022070571-appb-000001
其中R为烷基,x为自然数。
本申请的第二方面,提出了上述的聚酯型高分子材料的制备方法,所述制备方法包括:获取包括噻唑吡啶二酸、脂肪族二元醇和酯化催化剂的反应原料,进行酯化反应得到聚酯型高分子材料。
本申请的第三方面,提出了一种紫外线吸收剂,包含上述的聚酯型高分子材料或根据上述的制备方法制得的聚酯型高分子材料。
本申请的第四方面,提出了一种上述的聚酯型高分子材料或根据上述的制备方法制得的聚酯型高分子材料在抗紫外吸收制品或在利用荧光特性的材料制品中的应用。
附图说明
下面结合附图和实施例对本申请做进一步的说明,其中:
图1为本申请实施例1中聚酯型高分子材料的合成示意图;
图2为本申请实施例2中制备的聚酯型高分子材料的核磁谱图;
图3为本申请实施例3中制备的聚噻唑吡啶二酸丁二醇酯的UV-Vis吸收光谱;
图4为本申请实施例3中制备的聚噻唑吡啶二酸丁二醇酯DMF溶液的荧光光谱图;以及
图5为本申请实施例4中制备的聚酯型高分子材料的热重曲线。
具体实施方式
以下将结合实施例对本申请的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本申请的目的、特征和效果。显然,所描述的实施例只是本申请的一部分实施例,而不是全部实施例,基于本申请的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本申请保护的范围。
本申请实施例提出一种聚酯型高分子材料及其制备方法和应用,该聚酯型高分子材料与聚酯型和聚氨酯型树脂等材料具有良好的相容性,具有良好的抗析出性能,并且同时具有良好的紫外线吸收特性和荧光特性,在紫外吸收剂领域和防伪包装领域具有较好的应用前景。
根据本申请实施例的聚酯型高分子材料,其化学结构通式如式(Ⅰ)所示:
Figure PCTCN2022070571-appb-000002
其中R为烷基,x为自然数。
根据本申请实施例的聚酯型高分子材料,至少具有如下有益效果:
本申请实施例提供的聚酯型高分子材料为噻唑吡啶二酸基聚酯结构,属于聚酯型高分子,该材料能够实现对紫外线波长200nm~400nm的全覆盖,具有良好的紫外线吸收特性,此外由于拥有与聚酯型高分子类似的酯键和分子结构,使得该聚酯型高分子材料与聚酯型和聚氨酯型树脂拥有良好的相容性,从而使得该高分子材料在形成制品的过程中不易析出,制得的制品具有良好的稳定性和抗析出性能,进而发挥更优秀的抗紫外能力。本申请实施例提供的聚酯型高分子材料进行紫外线屏蔽的机理是直接吸收紫外线,不需要将紫外线转换为荧光后再达到紫外屏蔽作用,此外该高分子材料还具有荧光特性,在紫外线屏蔽高分子材料、抗紫外高分子材料、防伪材料和光转化材料中具有较好的应用前景。
根据本申请的一些实施例的聚酯型高分子材料,x为3~100000。
根据本申请的一些实施例的聚酯型高分子材料,R为C2~C100的烷基。
根据本申请的一些实施例的聚酯型高分子材料,R为C2~C100的烷基。更进一步地,R为C4~C20的烷基。
根据本申请的一些实施例的聚酯型高分子材料,聚酯型高分子材料的分子量为311.05~30000000。
根据本申请的一些实施例的聚酯型高分子材料,聚酯型高分子材料选自聚噻唑吡啶二酸乙二醇酯、聚噻唑吡啶二酸辛二醇酯和聚噻唑吡啶二酸丁二醇酯。
本申请的实施例还提出了上述的聚酯型高分子材料的制备方法,该制备方法包括:
取包括噻唑吡啶二酸、脂肪族二元醇和酯化催化剂的反应原料,进行酯化反应得到聚酯型高分子材料。
根据本申请实施例的聚酯型高分子材料的制备方法,至少具有如下有益效果:
本申请实施例使用噻唑吡啶二酸作为原料,通过酯化反应制备的聚酯同时具有荧光特性和紫外线吸收功能,有望成为一种新型的有机紫外线吸收剂,使用的脂肪族二元醇使得聚酯具有塑化作用,用作紫外线吸收剂的同时可充当增塑剂,拥有的荧光特性使得该聚酯型高分子材料在防伪包装等领域具有良好的应用前景。本申请实施例提供的制备方法,利用具有两 个羟基官能团的脂肪族二元醇与噻唑吡啶二酸进行酯化反应即可获得同时具有紫外吸收和荧光性能的聚酯型高分子材料,制备方法简单,利于大规模生产,酯化过程中形成的酯键使得该聚酯型高分子材料与聚酯型树脂和聚氨酯型树脂等材料具有良好的相容性,利于形成热稳定性高的抗紫外线材料、紫外线屏蔽材料、防伪材料和光转化材料。
根据本申请的一些实施例的制备方法,脂肪族二元醇为2~100个碳原子的二元醇。在一些实施例中,脂肪族二元醇为4~20个碳原子的二元醇。使用的脂肪族二元醇可以是2~100个碳原子的二元醇,例如乙二醇、丙二醇、辛二醇等,可以是它们中的一种单独使用,或者也可以采用它们中的两种以上的混合物。
根据本申请的一些实施例的制备方法,脂肪族二元醇选自乙二醇,丙二醇,丁二醇,戊二醇,己二醇,辛二醇中的至少一种。利用脂肪族二元醇引入碳链能够使得制备形成的聚酯型高分子材料具有塑化作用,在用作紫外吸收剂的同时也可以起到增塑剂的作用。
根据本申请的一些实施例的制备方法,反应原料中,噻唑吡啶二酸:脂肪族二元醇的摩尔比为0.8:1~1.2:1。根据本申请的一些实施例的制备方法,反应原料中,噻唑吡啶二酸:脂肪族二元醇的摩尔比为1:1,等摩尔加入有利于提高聚酯型高分子材料的分子量。
根据本申请的一些实施例的制备方法,酯化催化剂选自对甲苯磺酸、浓硫酸、浓盐酸、磷钨酸、钛酸四丁酯、三氧化锑中的至少一种。可以单独采用这些酯化催化剂中的一种,或者也可以采用这些酯化催化剂中的两种以上的混合物。
根据本申请的一些实施例的制备方法,以反应原料的质量计,酯化催化剂的质量分数为0.1wt%~1wt%。在一些实施例中,酯化催化剂的质量分数为0.5wt%。
根据本申请的一些实施例的制备方法,酯化反应的温度为100~280℃。
根据本申请的一些实施例的制备方法,酯化反应的时间为1小时~18小时。
根据本申请的一些实施例的制备方法,酯化反应为:先在100℃~160℃条件下反应,然后加热至220℃~280℃并于减压条件下继续反应。本申请实施例先通过升温至100℃~160℃进行预聚,将小分子单体转化为聚合物,然后升温至更高的温度,可以避免小分子单体在高温下挥发。在减压条件下进行反应的目的是快速去除反应中生成的水,从而推进酯化反应向正向进行。
根据本申请的一些实施例的制备方法,减压条件的压力范围在1000pa以下。本申请中“以下”包括本数。
根据本申请的一些实施例的制备方法,还包括将聚酯型高分子材料从酯化反应体系中分离提纯的步骤。
根据本申请的一些实施例的制备方法,该分离提纯选自溶解、沉淀、离心、过滤、蒸发中的任一种。
本申请的实施例还提出了一种紫外线吸收剂,包含上述的聚酯型高分子材料或根据上述的制备方法制得的聚酯型高分子材料。
本申请实施例的聚酯型高分子材料作为防止紫外线损害的添加剂使用,可以单独使用,可以与其他具有防紫外线的添加剂共同使用,也可以与具有协助提升抗紫外线性能的助剂共同使用如与抗氧化剂配合使用。
本申请的实施例还提出了一种上述的聚酯型高分子材料或根据上述的制备方法制得的聚酯型高分子材料在抗紫外吸收制品或在利用荧光特性的材料制品中的应用。
根据本申请的一些实施例的应用,抗紫外吸收制品包括紫外线屏蔽材料,如使用该聚酯型高分子材料作为紫外线吸收剂,与高分子基体材料,抗氧化剂等制成可屏蔽紫外线的高分子材料。
根据本申请的一些实施例的应用,利用荧光特性的材料制品包括防伪材料或光转化材料。利用本申请实施例提供的聚酯型高分子材料具有的荧光特性,可以将其制备防伪标签,并应用于包装和印刷领域,也可以将其应用于太阳能电池和能量收集领域。
实施例1
本实施例提供了一种聚酯型高分子材料,其合成示意图如图1所示,使用噻唑吡啶二酸
Figure PCTCN2022070571-appb-000003
和脂肪族二元醇(HO-R-OH)作为反应原料在酯化催化剂的作用下经酯化反应制得,本实施例中使用的脂肪族二元醇为乙二醇,酯化催化剂为浓硫酸,具体按照以下步骤制备:
将10毫摩尔的噻唑吡啶二酸、10毫摩尔的乙二醇、0.5wt%的浓硫酸混合,130℃加热反应4小时,然后200℃减压继续反应6个小时。反应结束后,将产物溶解于DMF然后在去离子水中沉淀,真空干燥24小时,得到聚噻唑吡啶二酸乙二醇酯,该产物含不饱和键,可以起到紫外吸收的作用。
本申请实施例可以根据需求,通过调整酯化反应的时间、加入的反应原料的量等条件来调节制备得到的聚酯的分子量范围,在一些具体实施例中可以控制该聚酯型高分子材料的分 子量范围在311.05~30000000。
实施例2
本实施例制备了一种聚酯型高分子材料,本实施例中使用的脂肪族二元醇为1,8-辛二醇,酯化催化剂为钛酸四丁酯,具体按照以下步骤制备:
将10毫摩尔的噻唑吡啶二酸、10毫摩尔的1,8-辛二醇和0.5wt%的钛酸四丁酯混合,160℃加热反应2小时,然后220℃减压继续反应6个小时。反应结束后,得到聚噻唑吡啶二酸辛二醇酯。
本实施例中的1,8-辛二醇作为聚酯原料之一,该长链二醇可使聚酯具有塑化作用,用作紫外吸收剂的同时也可充当增塑剂。图2是本实施例所制备的聚酯型高分子材料的核磁谱图,从图中可以看出,本实施例成功制备出了聚噻唑吡啶二酸辛二醇酯。
实施例3
本实施例制备了一种聚酯型高分子材料,本实施例中使用的脂肪族二元醇为1,4丁二醇,酯化催化剂为对甲苯磺酸,具体按照以下步骤制备:
将10毫摩尔的噻唑吡啶二酸、10毫摩尔的1,4丁二醇和0.5wt%的对甲苯磺酸混合,140℃加热反应4小时,然后220℃减压继续反应4个小时。反应结束后,得到聚噻唑吡啶二酸丁二醇酯。
图3示出了本实施例制备的聚噻唑吡啶二酸丁二醇酯的UV-Vis吸收光谱,结果显示本申请实施例制备的聚酯型高分子材料在紫外区具有强烈的吸收,具有良好的紫外吸收性能。
图4示出了本实施例制备的聚噻唑吡啶二酸丁二醇酯DMF溶液的荧光光谱,结果显示该聚酯型高分子材料具有较好的紫外吸收性能,同时还具有较好的荧光效应。
通过图3和图4的表征结果可以看出,本申请实施例制备得到的聚酯型高分子材料同时具有紫外吸收性能和荧光特性,在紫外吸收剂领域和防伪包装等领域具备较大的应用潜力。
实施例4
本实施例提供一种聚酯型高分子材料,制备过程与实施例1相同,不同之处仅在于使用的脂肪族二元醇为己二醇。
图5示出了本实施例制备得到的聚酯型高分子材料在热解温度约为320℃下的热重(TG) 曲线,从图中可以看出本申请实施例制得的聚酯型高分子材料具有良好的热稳定性。
取本实施例制备得到的聚酯型高分子材料作为添加剂与聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)聚酯材料共挤压形成材料制品,以乙醇为溶剂,将该材料制品在乙醇中进行浸出实验,具体实验过程为:将该材料制品在乙醇中浸泡24h,测定材料制品在浸泡前后的重量变化,浸出率=(浸出前样品的重量-浸泡后样品的重量)/浸泡前样品的重量。实验结果显示,本申请实施例的聚酯型高分子材料作为添加剂形成的材料制品的浸出率约为0.8%,表现出了优越的抗析出性能。
从上述热重实验和浸出实验结果可以看出,本申请实施例提供的聚酯型高分子材料具有优异的热稳定性和抗析出性能,主要原因是:相较于小分子添加剂,本申请实施例提供的聚酯型高分子材料可以与树脂基体形成分子间的氢键作用,这些大量氢键的存在可以有效提高其热稳定性和抗析出性能。
以上实施例使用的脂肪族二元醇以乙二醇、辛二醇、丁二醇和己二醇为例进行说明,改变脂肪族二元醇的碳链长度对后续形成制品的塑化性能具有影响,本领域的普通技术人员可以根据实际需求来调整脂肪族二元醇的碳链长度。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。

Claims (14)

  1. 聚酯型高分子材料,其化学结构通式如式(Ⅰ)所示:
    Figure PCTCN2022070571-appb-100001
    其中R为烷基,x为自然数。
  2. 根据权利要求1所述的聚酯型高分子材料,其中,x为3~100000。
  3. 根据权利要求1所述的聚酯型高分子材料,其中,R为C2~C100的烷基。
  4. 根据权利要求3所述的聚酯型高分子材料,其中,R为C4~C20的烷基。
  5. 根据权利要求1至4任一项所述的聚酯型高分子材料,其中,所述聚酯型高分子材料的分子量为311.05~30000000。
  6. 一种根据权利要求1至5任一项所述的聚酯型高分子材料的制备方法,包括:
    获取包括噻唑吡啶二酸、脂肪族二元醇和酯化催化剂的反应原料,进行酯化反应得到聚酯型高分子材料。
  7. 根据权利要求6所述的聚酯型高分子材料的制备方法,其中,所述脂肪族二元醇为2~100个碳原子的二元醇。
  8. 根据权利要求6所述的聚酯型高分子材料的制备方法,其中,所述酯化催化剂选自对甲苯磺酸、浓硫酸、浓盐酸、磷钨酸、钛酸四丁酯、三氧化锑中的至少一种。
  9. 根据权利要求6所述的聚酯型高分子材料的制备方法,其中,所述酯化反应的温度为100~280℃。
  10. 根据权利要求9所述的聚酯型高分子材料的制备方法,其中,所述酯化反应为:先在100℃~160℃条件下反应,然后加热至220℃~280℃并于减压条件下继续反应。
  11. 根据权利要求6至10任一项所述的聚酯型高分子材料的制备方法,还包括将所述聚酯型高分子材料从酯化反应体系中分离提纯的步骤。
  12. 一种紫外线吸收剂,包含权利要求1至5任一项所述的聚酯型高分子材料或根据权利要求6至11任一项所述的制备方法制得的聚酯型高分子材料。
  13. 权利要求1至5任一项所述的聚酯型高分子材料或根据权利要求6至11任一项所述的制备方法制得的聚酯型高分子材料在抗紫外吸收制品或在利用荧光特性的材料制品中的应用。
  14. 根据权利要求13所述的应用,其中,所述抗紫外吸收制品包括紫外线屏蔽材料,所述利用荧光特性的材料制品包括防伪材料或光转化材料。
PCT/CN2022/070571 2021-03-09 2022-01-06 聚酯型高分子材料及其制备方法和应用 WO2022188535A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110257169.5A CN115044025A (zh) 2021-03-09 2021-03-09 聚酯型高分子材料及其制备方法和应用
CN202110257169.5 2021-03-09

Publications (1)

Publication Number Publication Date
WO2022188535A1 true WO2022188535A1 (zh) 2022-09-15

Family

ID=83156523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070571 WO2022188535A1 (zh) 2021-03-09 2022-01-06 聚酯型高分子材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115044025A (zh)
WO (1) WO2022188535A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063055A (ja) * 2012-09-21 2014-04-10 Fuji Xerox Co Ltd 電子写真用トナー、電子写真用現像剤、トナーカートリッジ、現像装置、画像形成装置、および画像形成方法
CN107400206A (zh) * 2017-07-20 2017-11-28 汕头大学 一种长效抗菌聚酯共聚物及其制备与应用
CN108586323A (zh) * 2018-05-30 2018-09-28 江西师范大学 一种含有联三吡啶结构的芳香二酸及其合成方法
CN109796585A (zh) * 2019-01-30 2019-05-24 陕西科技大学 一种采用三臂交联法制备发绿光的水溶性纳米材料的方法
CN112746348A (zh) * 2020-12-29 2021-05-04 江苏恒力化纤股份有限公司 一种缆绳用涤纶工业丝及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063055A (ja) * 2012-09-21 2014-04-10 Fuji Xerox Co Ltd 電子写真用トナー、電子写真用現像剤、トナーカートリッジ、現像装置、画像形成装置、および画像形成方法
CN107400206A (zh) * 2017-07-20 2017-11-28 汕头大学 一种长效抗菌聚酯共聚物及其制备与应用
CN108586323A (zh) * 2018-05-30 2018-09-28 江西师范大学 一种含有联三吡啶结构的芳香二酸及其合成方法
CN109796585A (zh) * 2019-01-30 2019-05-24 陕西科技大学 一种采用三臂交联法制备发绿光的水溶性纳米材料的方法
CN112746348A (zh) * 2020-12-29 2021-05-04 江苏恒力化纤股份有限公司 一种缆绳用涤纶工业丝及其制备方法

Also Published As

Publication number Publication date
CN115044025A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
CN110606941B (zh) 一种低端羧基耐水解聚酯及其制备方法和用途
WO2022188535A1 (zh) 聚酯型高分子材料及其制备方法和应用
CN101215728A (zh) 一种异山梨醇改性聚酯纤维及制备方法
CN107022067A (zh) 一种异山梨醇基聚醚酯、其制备方法和应用
TWI770680B (zh) 生物可分解聚酯
CN104693428A (zh) 高分子量的聚丁二酸丁二醇酯的制备方法
KR20230065377A (ko) 전형적인 녹색 및 저탄소 특성을 갖는 폐폴리에스테르의 폐쇄루프 회수에 의한 재생 폴리에스테르의 제조 방법
CN113603584B (zh) 一种光热降解聚酯的方法
CN112080025A (zh) 一种耐紫外聚酯薄膜的制备方法
CN114853995A (zh) 一种耐紫外聚酯树脂及薄膜的制备方法
CN110357785B (zh) 一种氰酸酯树脂增塑剂的制备方法
CN109096497B (zh) 一种废旧聚酯纺织品深度降解石墨烯共聚改性方法
CN101148501A (zh) 一种高热稳定性聚羟基脂肪酸酯的制备方法
CN110028656A (zh) 一种可降解聚酯材料的绿色合成方法
CN114316228B (zh) 一种透明可降解共聚酯及其制备方法
CN115044022B (zh) 温和条件下可快速闭环回收的脂肪、脂肪-芳香共聚酯及其制备方法、应用和回收方法
CN116178971B (zh) 纳米掺杂氧化锌改性沥青及其制备方法
CN109535402B (zh) 一种基于2-(4-羟基苯基)-5-羧基吡啶并咪唑的聚芳酯的制备方法
CN116554520B (zh) 一种含铕转光剂的聚乙烯复合塑料膜和制备工艺
CN113185825B (zh) 一种抗撕裂、可降解的聚乳酸食品包装膜及制备方法
CN114133547B (zh) 一种光控粘合-脱粘水下超支化粘合剂及其制备方法和应用
CN114621430A (zh) 一种具有紫外线屏蔽性能的增塑剂及其制备方法与应用
CN115477745A (zh) 抗紫外聚乳酸的制备方法
CN116948147A (zh) 一种大豆苷元基环氧树脂材料及其制备方法
CN107159155A (zh) 一种玻璃纤维改性的生物质吸附剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE