WO2022185723A1 - エネルギー変換素子 - Google Patents

エネルギー変換素子 Download PDF

Info

Publication number
WO2022185723A1
WO2022185723A1 PCT/JP2022/000821 JP2022000821W WO2022185723A1 WO 2022185723 A1 WO2022185723 A1 WO 2022185723A1 JP 2022000821 W JP2022000821 W JP 2022000821W WO 2022185723 A1 WO2022185723 A1 WO 2022185723A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sensitive magnetic
input terminal
magnetic body
magnetic material
Prior art date
Application number
PCT/JP2022/000821
Other languages
English (en)
French (fr)
Inventor
健二 香取
Original Assignee
健二 香取
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 健二 香取 filed Critical 健二 香取
Publication of WO2022185723A1 publication Critical patent/WO2022185723A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N10/00Electric motors using thermal effects
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Definitions

  • the present disclosure relates to an energy conversion element structure and constituent materials that convert temperature difference energy into kinetic energy.
  • a gas turbine is mainly used for the temperature difference range of several hundred degrees Celsius or more.
  • a method of converting a temperature difference into kinetic energy in a lower temperature range requires a complicated structure that boils a low boiling point medium and converts it into kinetic energy with a turbine (Japanese Unexamined Patent Application Publication No. 2013-036456).
  • JP-A-64-12852, JP-A-2018-046036, Non-Patent Document 1 a cooling system using a magnetic fluid.
  • the heat generated by the heat generated inside the device is cooled by the flow of the magnetic fluid generated by the heat generated. It was devised as a pumpless cooling device, and fluidization of the magnetic fluid occurs even with a small temperature difference, but it is not considered to extract it as kinetic energy.
  • JP4904528B2> describes that the drum is rotated by fluid motion, but in this case, it is necessary to irradiate microwaves or millimeter waves, and a complicated configuration is required.
  • Japanese Patent No. 6997822 the present inventor has proposed an element that converts temperature difference energy into kinetic energy.
  • the present invention does not use complicated methods such as solvent evaporation or turbine driving, or a combination of two or more types of elements, but also without using microwaves or millimeter waves.
  • the object is to output kinetic energy directly without accompanying noise and vibration with an element of simple structure.
  • Patent No. 6997822 is a method of converting temperature difference energy into kinetic energy. Direct energy conversion is performed without complicated operations, and temperature difference energy is input to the element to generate noise and vibration. directly output kinetic energy without It is an object of the present invention to further develop this technique.
  • the first disclosure provides a temperature-sensitive magnetic body, which is a rotatable disk-shaped, cylindrical, or conical magnetized permanent magnet, and a magnetism between the temperature-sensitive magnetic body and the temperature-sensitive magnetic body.
  • the structure of the energy conversion device is characterized by rotating a temperature-sensitive magnetic body, which is a permanent magnet magnetized by heat input from the outside of the device, having a fixed terminal containing a ferromagnetic material that generates an attractive force.
  • a second disclosure has a rotatable disk-shaped, cylindrical, or conical temperature-sensitive magnetic body and a fixed terminal containing a material that generates a magnetic reaction force between the temperature-sensitive magnetic body and the element.
  • This is the structure of an energy conversion element characterized by rotating a temperature-sensitive magnetic body by heat input from the outside.
  • a third disclosure has a fixed terminal including a rotatable disc-shaped, cylindrical, or conical temperature-sensitive magnetic body and a ferromagnetic body that generates magnetic attraction between the temperature-sensitive magnetic body, and a fixed terminal containing a material that generates a magnetic reaction force with the temperature-sensitive magnetic body, and the temperature-sensitive magnetic body is rotated by heat input from the outside of the element.
  • 4 is a structure of the disclosed energy conversion device
  • the fourth disclosure is to continuously conduct heat between the rotating temperature-sensitive magnetic body and the fixed terminal by filling the space between the temperature-sensitive magnetic body and the fixed terminal with a liquid or a liquid in which fine particles are dispersed.
  • 3 is the structure of the energy conversion element disclosed in No. 3.
  • the fifth disclosure is characterized in that the liquid filled between the temperature-sensitive magnetic material and the fixed terminal generating magnetic attraction between the temperature-sensitive magnetic material or the liquid in which fine particles are dispersed is a magnetic fluid. It is the structure of the energy conversion element disclosed in the first, third and fourth disclosures.
  • temperature difference energy can be simply converted into kinetic energy without noise and vibration and without using multiple types of elements.
  • effects described herein are not necessarily limited, and may be any effect described in the present disclosure or an effect different from them.
  • FIG. 10 is a cross-sectional view showing the configuration of an energy conversion element according to an embodiment when using a temperature-sensitive magnetic body that is a third rotating disc-shaped permanent magnet of the present disclosure.
  • FIG. 10 is a top view excluding a heat-insulating gap filler and lubricating oil, showing the configuration of an energy conversion element according to an embodiment in the case of using a temperature-sensitive magnetic material that is a third rotating disc-shaped permanent magnet of the present disclosure.
  • FIG. 10 is a top view showing the configuration of the energy conversion element according to the embodiment when using the temperature-sensitive magnetic material, which is the third rotating disc-shaped permanent magnet of the present disclosure.
  • FIG. 10 is a cross-sectional view showing the configuration of an energy conversion element according to an embodiment when using a temperature-sensitive magnetic body that is a third rotating disc-shaped permanent magnet of the present disclosure.
  • FIG. 10 is a top view excluding a heat-insulating gap filler and lubricating oil, showing the configuration of an energy conversion element according to an embodiment in the
  • FIG. 4 is a cross-sectional view showing the configuration of an energy conversion element according to an embodiment of a laminated element in which a temperature-sensitive magnetic body that is a rotating disk-shaped permanent magnet is used.
  • FIG. 3 is a top view of an example in which a plurality of pairs of temperature difference input terminals are arranged on the same temperature-sensitive magnetic body, excluding a heat-insulating gap filler and lubricating oil;
  • FIG. 4 is a top view of an example in which a plurality of pairs of temperature difference input terminals are provided on the same temperature-sensitive magnetic body;
  • FIG. 3 is a top view of an example in which a plurality of pairs of temperature difference input terminals are arranged on the same temperature-sensitive magnetic body, excluding a heat-insulating gap filler and lubricating oil;
  • FIG. 4 is a top view of an example in which a plurality of pairs of temperature difference input terminals are provided on the same temperature-sensitive magnetic body;
  • FIG. 3 is a top view of an example
  • FIG. 4 is a cross-sectional view of an example in which a high temperature input and a low temperature input are vertically separated when a plurality of pairs of temperature difference input terminals are installed on the same temperature-sensitive magnetic body;
  • FIG. 2 is a cross-sectional view showing the configuration of an energy conversion element according to an embodiment of a multilayer element connected in series when temperature-sensitive magnetic bodies that are rotating disc-shaped permanent magnets are used.
  • FIG. 2 is a cross-sectional view showing the configuration of an energy conversion element according to an embodiment when using a temperature-sensitive magnetic body that is the first rotating disc-shaped permanent magnet of the present disclosure.
  • Embodiment 1-5 "Temperature-sensitive magnetic material”
  • a conventional cooling system using a temperature-sensitive magnetic material Japanese Patent Application Laid-Open No. 64-12852, Japanese Patent Application Laid-Open No. 2018-046036, Non-Patent Document 1 uses a magnetic fluid as a temperature-sensitive magnetic material.
  • a solid disc-shaped, cylindrical or conical temperature-sensitive magnetic body that rotates with a rotating shaft is used.
  • a high-temperature input terminal having a strong magnetic field for rotating the temperature-sensitive magnetic body and a low-temperature input terminal having no magnetic field or a weaker magnetic field than the high-temperature input side are installed so as to sandwich the solid temperature-sensitive magnetic body. do.
  • a magnetic field to the temperature-sensitive magnetic body from the outside an attractive force is generated between the temperature-sensitive magnetic body and a fixed terminal, and the temperature-dependent increase or decrease in this attractive force causes the temperature-sensitive magnetic body to generate rotational torque.
  • a temperature-sensitive magnetic material is a magnetic material whose magnetization changes with temperature, and includes Mn-Zn Ferrite, Sr-Ferrite, Ni-Fe alloys, and the like.
  • a permanent magnet magnetized by a temperature-sensitive magnetic material is used.
  • magnetic attraction is generated between the temperature-sensitive magnetic body and the fixed terminal without using a permanent magnet in the fixed terminal, which is a temperature difference input terminal, and rotational torque is generated due to the temperature dependence of this force. can be done.
  • a permanent magnet for the fixed end it is possible to generate a magnetic reaction force. Due to the temperature dependence of the reaction force, the temperature-sensitive magnetic body can generate rotational torque even when the reaction force is used. Torque can be generated at both the high-temperature input terminal and the low-temperature input terminal by the temperature dependence of the attractive force and the reaction force, respectively.
  • the temperature-sensitive magnetic material which is a permanent magnet, includes magnets of hexagonal ferrite system including Sr-Ferrite system, Nd-Fe-B system, and the like. By introducing an additive or the like into these materials or adjusting the manufacturing conditions, the temperature dependence of magnetization in the target temperature range can be adjusted.
  • the temperature input range must be equal to or lower than the Tc of the temperature-sensitive magnetic material, which is a permanent magnet, and the high temperature input must be within a range in which Hc does not change when returned to a low temperature state.
  • the shape of the temperature-sensitive magnetic body in addition to the disc shape, it may be cylindrical or conical. Further, in order to reduce heat diffusion in the circumferential direction, the temperature-sensitive magnetic body may be divided in the circumferential direction to form an aggregate disk of a heat insulating material or a gap and a fan-shaped temperature-sensitive magnetic body.
  • High temperature input terminal A rotating disc-shaped temperature-sensitive magnetic body and a high-temperature input terminal that generate magnetic attraction are installed on the rotating shaft.
  • the temperature-sensitive magnetic material is a ferromagnetic material that is a magnetized permanent magnet
  • a ferromagnetic material that generates an attractive force with the temperature-sensitive magnetic material is used for the high-temperature input terminal.
  • the ferromagnetic material of the high temperature input terminal may be a permanent magnet that produces an attractive force with the temperature sensitive magnetic material.
  • a liquid or a liquid in which fine particles are dispersed is introduced between a temperature-sensitive magnetic body, which is a magnetized permanent magnet, and a high-temperature input terminal.
  • a magnetic fluid can be used as the liquid or the liquid in which fine particles are dispersed.
  • the magnetic fluid is attracted by the magnetic field and stays at the high temperature input terminal.
  • high-temperature heat from the outside is conducted to the rotating disc-shaped temperature-sensitive magnetic body.
  • the temperature-sensitive magnetic material is heated through the high temperature input terminal, and the magnetization of the temperature-sensitive magnetic material becomes small.
  • the amount of magnetization of the temperature-sensitive magnetic material near the entrance of the magnetic field application part is larger than that near the center of the magnetic field application part because it is not heated.
  • the magnetic material of the high-temperature input terminal is provided with a temperature-sensitive magnetic material and a material that generates magnetic attraction, and the temperature dependence of the magnetization of the temperature-sensitive magnetic material produces rotational torque.
  • the temperature-sensitive magnet can be rotated without applying rotational torque to the high-temperature input terminal.
  • Low temperature input terminal It is necessary to cool the temperature sensitive magnetic material coming out of the high temperature input terminal.
  • a low-temperature input terminal is installed to cool the temperature-sensitive magnetic material in a high-temperature state by an external low-temperature state.
  • a low temperature state from the outside is transmitted to the temperature-sensitive magnetic body to cool the temperature-sensitive magnetic body.
  • a rotational torque is applied to the temperature-sensitive magnetic body from the high-temperature input terminal, the temperature-sensitive magnetic body rotates even if no rotational torque is applied from the low-temperature input terminal.
  • a permanent magnet magnetized as the temperature-sensitive magnetic body a permanent magnet that generates a reaction force with the temperature-sensitive magnetic body can be installed in the low temperature input terminal.
  • the magnetic reaction force is generated when it has the same polarity as the temperature-sensitive magnetic material, which is a magnetized permanent magnet, but a diamagnetic material can also be used.
  • a liquid such as lubricating oil with high thermal conductivity or a liquid in which fine particles are dispersed can be used for heat conduction between the temperature-sensitive magnetic material and the low-temperature input terminal.
  • the high-temperature input terminal can be kept in place by using a magnetic fluid for heat transfer, so the high-temperature liquid will not diffuse.
  • a low heat conductive material such as fluorine resin may be introduced between the high temperature input terminal and the low temperature input terminal (Figs. 1, 3, 4, 6). -9).
  • the temperature-sensitive magnetic material heated by the high temperature input terminal is cooled by the low temperature input terminal.
  • the torque generated at the temperature difference input terminal causes continuous rotation, but in order to start the rotation, it is necessary to introduce asymmetry to determine the rotation direction at the beginning.
  • the high-temperature input terminal and the low-temperature input terminal are not provided at a position of 180° with respect to the disk-shaped temperature-sensitive magnetic body, but are set at a bias.
  • the disk-shaped temperature-sensitive magnetic body is in a stationary state and high and low temperatures are input in a biased arrangement, a temperature difference occurs in the temperature-sensitive magnetic body at the high temperature input terminal end and the low temperature input terminal end, and this temperature difference can generate an initial rotational torque.
  • the portion that produces attractive force or reaction force becomes the driving force for generating rotational torque, but other portions cause torque reduction due to heat diffusion.
  • the temperature-sensitive magnetic material in the portion that does not generate attraction or reaction force with heat insulating material, it is possible to reduce heat diffusion that does not affect the rotational torque (Fig. 2).
  • Multiple pairs of temperature difference input terminals can be installed on the same temperature-sensitive magnetic material (Figs. 5 and 6).
  • the low temperature input terminal and the high temperature input terminal are not equidistant, and the two low temperature input terminals adjacent to the high temperature input terminal need to be arranged at different intervals in order to obtain the initial rotational torque.
  • the thermal connection to each temperature difference input becomes complicated. It can also be a simple heat input by thermally connecting to .
  • the low-temperature input terminal and the high-temperature input terminal are shown to have a square shape, they may be fan-shaped or arc-shaped, respectively, along the shape of the disk-shaped magnetic working material.
  • Embodiments of multilayer element takes a very simple form.
  • the torque can be increased by connecting the elements on the same axis (Fig. 4).
  • a high-temperature input terminal and a low-temperature input terminal are provided for separate disc-shaped temperature-sensitive magnetic bodies connected to the same axis.
  • the torque can be doubled by connecting the cold input terminal to the cold input terminal and the hot input terminal to the hot input terminal of the separate element with good thermal conductivity.
  • an example of two-stage connection is shown here, the number of laminations can be similarly increased as necessary to obtain the desired torque.
  • the above stack shows an example of parallel connection, multiple elements can also be connected in series (FIG. 8).
  • a high-temperature input terminal and a low-temperature input terminal are provided for separate temperature-sensitive magnetic bodies connected to the same axis.
  • the low temperature input terminal and the high temperature input terminal of the separate element are at the same temperature.
  • torque can be increased.
  • Example of single energy conversion element> A stainless steel shaft with a diameter of 5 mm and a length of 50 mm was prepared.
  • Sr Ferrite disc-shaped temperature-sensitive magnetic material Sr Ferrite has been replaced with polycarbonate in the central part with a diameter of 40 mm and the part with a diameter of 20 mm (Fig. 2).
  • the Sr Ferrite permanent magnet was previously magnetized in the direction perpendicular to the disk. It was magnetized so that the upper surface had an N pole and the lower surface had an S pole.
  • the disc-shaped temperature-sensitive magnetic body also rotates (Fig. 1).
  • a permanent magnet with a yoke was installed to sandwich the disc-shaped temperature-sensitive magnetic material in order to apply a magnetic field to the temperature-sensitive magnetic material.
  • a Sr-Ferrite magnet was used as the permanent magnet for the high-temperature input terminal, and the temperature-sensitive magnetic material gap was set to 4.0 mm.
  • the permanent magnet of the high-temperature input terminal is arranged so that an attractive force acts between the magnetic field of the high-temperature input terminal and the temperature-sensitive magnetic material, which is a permanent magnet.
  • a magnetic fluid made of magnetite magnetic powder was filled between the temperature-sensitive magnetic material, which is a permanent magnet, and the permanent magnet, and it was used as a high-temperature input terminal (Fig. 1).
  • a permanent magnet with a yoke was installed so as to sandwich the disk-shaped temperature-sensitive magnetic body. Sr-Ferrite magnets were used as permanent magnets, and the gap was set to 2.0 mm.
  • the permanent magnet of the low-temperature input terminal is arranged so that a reaction force acts between the magnetic field generated by the low-temperature input terminal and the temperature-sensitive magnetic material, which is a permanent magnet. Lubricating oil was introduced between the temperature-sensitive magnetic material and the low-temperature input terminal to ensure heat conduction. Between the high temperature input terminal and the low temperature input terminal, a gap filler made of fluorine-based low thermal conductive resin was introduced to reduce heat conduction.
  • the room temperature and element constituent materials were all initially set at 23.0°C. We heated and cooled the high temperature input terminal to 33.0°C and the low temperature input terminal to 13.0°C, respectively, and found that the disk-shaped temperature-sensitive magnetic body rotated at 8 rpm and the temperature difference energy could be directly converted into kinetic energy. . Compared to ⁇ Comparative Example 1>, which will be described later, the number of revolutions is faster, and the advantage of being able to use not only attractive force but also reaction force has been clarified.
  • Mn-Zn Ferrite of the same size was used as the disk-shaped temperature-sensitive magnetic material.
  • Mn-Zn ferrite is a temperature-sensitive magnetic material, but since it is a soft ferrite, it cannot be magnetized or generate a reaction force.
  • NdFeB system was used for the high temperature input terminal, and Sr-Ferrite was used for the low temperature input terminal.
  • the disk-shaped temperature-sensitive magnetic body rotated at 7.5 rpm.
  • Example 2 A stainless steel shaft with a diameter of 5 mm and a length of 50 mm was prepared.
  • Sr Ferrite disk-shaped temperature-sensitive magnetic material Sr Ferrite has been replaced with polycarbonate in the central part with a diameter of 40 mm and the part with a diameter of 20 mm.
  • the Sr Ferrite permanent magnet was previously magnetized in the direction perpendicular to the disk. It was magnetized so that the upper surface had an N pole and the lower surface had an S pole.
  • the disk-shaped temperature-sensitive magnetic body also rotates as the shaft rotates.
  • As a high-temperature input terminal only an iron-based yoke material was installed without using a permanent magnet.
  • the gap interval was set to 4.0 mm.
  • An attractive force acts between the high-temperature input terminal and the temperature-sensitive magnetic material, which is a permanent magnet.
  • a magnetic fluid composed of magnetite magnetic powder was filled between a temperature-sensitive magnetic material, which is a permanent magnet, and an iron-based yoke material to form a high-temperature input terminal.
  • a heat conductive material SiC: silicon carbide
  • ⁇ Example 3> So far, we have shown examples of a pair of high temperature input terminals and a low temperature input terminal for one disk-shaped temperature-sensitive magnetic body, but we have shown multiple pairs of high temperature input terminals and low temperature input terminals for one disk-shaped temperature-sensitive magnetic body. It is also possible to install a low temperature input terminal (Fig. 5). At this time, the interval between the high temperature input terminal and the low temperature input terminal should not be uniform, but should be non-uniform so that the initial rotation occurs.
  • Four pairs of temperature difference input terminals were installed using a rotating disk similar to ⁇ Example 1> (Fig. 5). The magnitude of the magnetic field at each input terminal was the same as ⁇ Example 1>.
  • the room temperature and the element constituent materials were all initially set to 23.0°C.
  • the disk-shaped temperature-sensitive magnetic material rotated at 12 rpm.
  • thermoelectric energy can be directly converted into kinetic energy, there is no need for complex processes such as vaporization of gas, or complex structures such as other functional elements, so energy can be generated with high reliability, low noise, and low vibration.
  • a conversion system can be constructed. Since it can be driven even with a small temperature difference, exhaust heat from factories, homes, and transportation equipment can be used to convert it into kinetic energy. That is, it can be applied to drive a cooling fan and various pumps for exhausting heat, and also to various sensors and toys that are activated by body temperature. Also, by connecting a generator, it is possible to generate electricity by temperature difference.
  • Peltier elements generally contain harmful elements such as Te, Sb, and Se, but in the case of the present invention, it is possible to construct a temperature difference power generation device without using harmful elements. be. It can also be used for heat generation from cold fusion, condensed matter fusion, and low-energy nuclear reactions.
  • Disk-shaped temperature-sensitive magnetic material 2 Ferrofluid 3 lubricating oil 4 Iron-based magnetic yoke materials 5 Sr Ferritic Permanent Magnet 6 Insulating gap filler 7 High temperature input terminal 8 Low temperature input terminal 9 Axis of rotation 10 Thermally conductive material 11 Stacked state high temperature input terminal 12 Stacked low temperature input terminal 13 Insulation 14 High temperature input terminal assembly 15 Low temperature input terminal assembly

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

【課題】騒音、振動が発生しない単純な構造を有する、温度差エネルギーから運動エネルギーへのエネルギー変換素子を提供する。 【解決手段】回転可能な円盤状の永久磁石である感温磁性体1と、これに磁場印加する部分5とを磁性流体2を用いて熱伝導し、永久磁石部分を通して外部からの熱を感温磁性体に誘導する。加熱された感温磁性体部分は磁化が小さくなり、加熱される前の感温磁性体がより磁場に引き付けられることにより回転トルクが生じる。感温磁性体1に永久磁石を用いることにより、反力も利用できる。低温入力端子8を通して感温磁性体1を冷却する。低温入力側では感温磁性体1との反力の温度依存から高温入力側7と同方向の回転トルクが生じる。簡単な構造により、低振動、低騒音、高信頼性のエネルギー変換素子を得られる。

Description

エネルギー変換素子
本開示は、温度差エネルギーから運動エネルギーへ変換するエネルギー変換素子構造及び構成材料に関する。
温度差を運動エネルギーへ変換する手法について、数百℃以上の温度差領域についてはガスタービンが主に用いられている。より低い温度領域で温度差を運動エネルギーへ変換する手法については、低沸点媒体を沸騰させこれをタービンで運動エネルギーに変換するという、複雑な構造が必要となる(特開2013-036456)。
また磁性流体を用いた冷却システムが研究されている(特開昭64-12852,特開2018-046036,非特許文献1)。ここでは装置内部の発熱により生じた熱を発熱により生じる磁性流体の流動により冷却する手法である。ポンプレスの冷却装置として考案され、低い温度差でも磁性流体の流動化が生じるが、運動エネルギーとして取り出すことは考慮されていない。〈JP4904528B2〉においては流体の運動からドラムを回転させるとの記載があるが、ここではマイクロ波又はミリ波を照射する必要があり、複雑な構成が必要となる。
本発明者は特許6997822において、温度差エネルギーから運動エネルギーへ変換する素子を提案している。
特開2013-036456 特開昭64-12852 特開2018-046036 JP4904528B2 特許6997822
Iwamoto, Y., Yamaguchi, H., and Niu, X.-D., "Magnetically-Driven Heat Transport Device using a Binary Temperature-Sensitive Magnetic Fluid", Journal of Magnetism and Magnetic Materials, Vol. 323 (2011), pp. 1378-1383.
工場や家庭で排出される100℃程度以下の比較的低温度差領域においては、温度差エネルギーを運動エネルギーへ直接変換できる単純な手法が一般的に提供されていない。前述の様に低沸点溶媒を沸騰させ、この蒸気でタービンを回転させる手法があるが装置が複雑かつ大規模になる。また温度差で発電するゼーベック素子を用いて発電し、この電気によりモーターを回転させる手法もあるが、前記2種類の素子が必要となる。
本発明は温度差エネルギーから運動エネルギーへ変換する手法において、溶媒の蒸発やタービンの駆動という複雑な手法や2種類以上の素子の組み合わせを行うのではなく、マイクロ波、ミリ波も用いることなく、単純な構造の素子で騒音振動を伴うことなく直接的に運動エネルギーを出力させることを目的とする。
本発明者が開発した手法(特許6997822)は温度差エネルギーから運動エネルギーへ変換する手法において、複雑な動作を伴うことなく直接にエネルギー変換を行い、素子に温度差エネルギーを入力することで騒音振動を伴うことなく直接的に運動エネルギーを出力させる。この手法をより発展させることが本発明の目的である。
上述の課題を解決するために、第1の開示は、回転可能な円盤状あるいは円筒状あるいは円錐状の帯磁した永久磁石である感温磁性体と、前記感温磁性体との間で磁気による引力を発生する強磁性体を含む固定端子を有し、素子外部からの熱入力により帯磁した永久磁石である感温磁性体を回転させることを特徴とするエネルギー変換素子の構造である。
第2の開示は、回転可能な円盤状あるいは円筒状あるいは円錐状の感温磁性体と、前記感温磁性体との間で磁気による反力を発生する材料を含む固定端子を有し、素子外部からの熱入力により感温磁性体を回転させることを特徴とするエネルギー変換素子の構造である。
第3の開示は、回転可能な円盤状あるいは円筒状あるいは円錐状の感温磁性体と、前記感温磁性体との間で磁気による引力を発生する強磁性体を含む固定端子を有し、且つ前記感温磁性体との間で磁気による反力を発生する材料を含む固定端子を有し、素子外部からの熱入力により感温磁性体を回転させることを特徴とする第1,2の開示のエネルギー変換素子の構造である。
第4の開示は感温磁性体と、固定端子との間に液体または微粒子が分散された液体を充填することで、回転する感温磁性体と固定端子を継続的に熱伝導させる第1-3の開示のエネルギー変換素子の構造である。
第5の開示は感温磁性体と,前記感温磁性体との間で磁気による引力を発生する固定端子との間に充填する液体または微粒子が分散された液体は磁性流体であることを特徴とする第1,3,4の開示のエネルギー変換素子の構造である。
 本開示によれば、騒音振動を伴うことなく、また複数の種類の素子を用いることもなく単純に温度差エネルギーを運動エネルギーへ変換することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果またはそれらとは異質な効果であってもよい。
本開示の第3の回転する円盤状永久磁石である感温磁性体を用いた場合の実施形態に係るエネルギー変換素子の構成を示す断面図である。 本開示の第3の回転する円盤状永久磁石である感温磁性体を用いた場合の実施形態に係るエネルギー変換素子の構成を示す断熱性間隙充填剤及び潤滑油を除いた上面図である。 本開示の第3の回転する円盤状永久磁石である感温磁性体を用いた場合の実施形態に係るエネルギー変換素子の構成を示す上面図である。 回転する円盤状永久磁石である感温磁性体を用いた場合の積層素子の実施形態に係るエネルギー変換素子の構成を示す断面図である。 温度差入力端子を同一感温磁性体上に複数対設置した例の断熱性間隙充填剤及び潤滑油を除いた上面図である。 温度差入力端子を同一感温磁性体上に複数対設置した例の上面図である。 温度差入力端子を同一感温磁性体上に複数ペア設置した場合において、高温入力、低温入力をそれぞれ上下に分離した例の断面図である。 回転する円盤状永久磁石である感温磁性体を用いた場合の直列接続とする積層素子の実施形態に係るエネルギー変換素子の構成を示す断面図である。 本開示の第1の回転する円盤状永久磁石である感温磁性体を用いた場合の実施形態に係るエネルギー変換素子の構成を示す断面図である。
 ここで記載している低温、高温との表現であるが、相対的なものであり、例えば低温入力が40℃、高温入力が100℃である場合など、高温入力に比較して低温であるとの要件である。高温入力に比較して低温であれば、室温よりも高温であっても構わない。

本開示の実施形態について以下の順序で説明する。
1 第1-5の実施形態
2 積層素子の実施形態
<1 第1-5の実施形態>
「感温磁性体」
 従来研究されている感温磁性体を用いた冷却システム(特開昭64-12852,特開2018-046036,非特許文献1)では感温磁性体として磁性流体を用いる。
 本発明人が発明した(特許6997822)において、従来の液体循環型では無く、回転軸により回転する固体の円盤状あるいは円筒状あるいは円錐状の感温磁性体を用いる。該固体感温磁性体を挟み込むようにして、該感温磁性体を回転させる強力な磁場を有する高温入力端子と、磁場を印加しないかあるいは高温入力側よりも弱い磁場を有する低温入力端子を設置する。ここでは感温磁性体に外部から磁場を印加することにより感温磁性体と固定端子の間に引力を発生させ、この引力の温度による増減から感温磁性体に回転トルクを発生させるものである。感温磁性体は温度により磁化が変化する磁性体であり、Mn-Zn Ferrite,Sr-Ferrite,Ni-Fe系合金等がある。
 本発明では、感温磁性体に帯磁した永久磁石を用いる。これにより、温度差入力端子である固定端子には永久磁石を用いないでも感温磁性体と固定端子との間に磁気的な引力を発生させ、これの温度依存性により回転トルクを発生させることができる。また固定端に永久磁石を用いることで、磁気的な反力も発生させることができる。反力の温度依存性により、反力を用いても感温磁性体に回転トルクを発生させることができる。高温入力端子と低温入力端子にそれぞれ引力と反力の温度依存により共にトルクを発生させることができる。
 永久磁石である感温磁性体にはSr-Ferrite系を含む六方晶フェライト系、Nd-Fe-B系等マグネットを挙げることができる。またこれらの材料に添加物等を導入するか作製条件を調整することにより、目的の温度域での磁化の温度依存性を調整することができる。温度の入力範囲は永久磁石である感温磁性体のTc以下であり、低温状態に戻した場合にHcが変化しない範囲での高温入力とする必要がある。
 感温磁性体の形状としては前記円盤状のほかに円筒状、円錐状としても良い。また円周方向の熱拡散を低減させるために感温磁性体を円周方向に分断し、断熱材あるいは空隙と扇型感温磁性体の集合体円盤としても良い。
「高温入力端子」
 回転軸に取り付けられ、回転する円盤状の感温磁性体と磁気的な引力を生じる構成の高温入力端子を設置する。感温磁性体が帯磁した永久磁石である強磁性体の場合には、高温入力端子には該感温磁性体と引力を生じる強磁性体を用いる。高温入力端子の強磁性体は該感温磁性体と引力を生じる永久磁石であっても良い。帯磁した永久磁石である感温磁性体と高温入力端子との間に液体または微粒子が分散された液体を導入する。前記液体または微粒子が分散された液体には磁性流体を使用することができる。感温磁性体が回転しても磁性流体は磁場に引き寄せられ高温入力端子に留まる。磁性流体を通して、外部からの高温熱量は回転する円盤状の感温磁性体に熱伝導される。ここで高温入力端子を通して感温磁性体が加熱され、感温磁性体の磁化が小さくなる。磁場印加部中央付近と比較して磁場印加部入口付近の感温磁性体の磁化量が加熱されていない分大きくなっており、このため感温磁性体に回転トルクが生じる。
 高温入力端子の磁性体は感温磁性体と磁気的な引力を発生する材料を設置し、感温磁性体の磁化の温度依存性により回転トルクを生じさせる。但し、後述の低温入力端子で感温磁性体に回転トルクを与えられる場合には、高温入力端子で回転トルクを与えなくても感温磁性を回転させることはできる。
「低温入力端子」
 高温入力端子から出た感温磁性体を冷却する必要がある。高温状態の感温磁性体を外部の低温状態により冷却するため、低温入力端子を設置する。外部からの低温状態を感温磁性体に伝達し、感温磁性体を冷却する。前記高温入力端子で感温磁性体に回転トルクを与える場合には、低温入力端子では回転トルクを与えなくても感温磁性体は回転する。
 感温磁性体に帯磁した永久磁石を用いる場合に、低温入力端子に感温磁性体と反力を生じさせる永久磁石を設置することができる。この場合、低温入力端子の入口での感温磁性体の磁化と低温入力端子の出口との感温磁性体の磁化の大きさを比較した場合、低温入力端子で感温磁性体が冷却されるため、出口での感温磁性体の磁化がより増大しており、結果的に出口での反力が入口での反力よりも大となる。このため回転トルクが生じる。
 感温磁性体に帯磁した永久磁石を用いる場合には高温入力端子、低温入力端子共に回転トルクを生じさせることが可能になる。
 磁気的な反力を生じるものは永久磁石の場合には帯磁した永久磁石である感温磁性体と同極の場合であるが、反磁性体を用いることもできる。
 感温磁性体と低温入力端子の間の熱伝導には熱伝導率が高い潤滑油等の液体または微粒子が分散された液体を用いることができる。高温入力端子では前記の様に熱伝達に磁性流体を用いてその場に留めておくことができるため、高温状態の液体が拡散することは無い。さらに高温入力端子と低温入力端子間の熱拡散を防止するため、高温入力端子と低温入力端子との間にフッ素樹脂等の低熱伝導材を導入しても良い(図1,3,4,6-9)。
「配置」
 高温入力端子で加熱された感温磁性体は低温入力端子で冷却される。回転が始まれば温度差入力端子でのトルク発生により連続回転が生じるが、回転を始める為には初期に回転方向を決定するための非対称性を導入する必要がある。図2に示すように、高温入力端子と低温入力端子とは円盤状感温磁性体に対して180°の位置には設けず、偏って設置する。円盤状感温磁性体が静止状態の際に偏った配置で高温、低温を入力した場合、高温入力端子端部、低温入力端子端部での感温磁性体に温度差が生じ、この温度差により初期回転トルクを生じさせることができる。
 回転する感温磁性体において引力あるいは反力を生じる部分は回転トルクを生み出す原動力になるが、それ以外の部分においては熱拡散によりトルク減少の原因となる。ここで、引力あるいは反力を生じない部分の感温磁性体を断熱材に置き換えることにより回転トルクに関与しない熱拡散を減少させることができる(図2)。
 温度差入力端子を同一感温磁性体上に複数ペア設置することができる(図5,6)。ここでも低温入力端子と高温入力端子は等間隔では無く、高温入力端子と隣接する2つの低温入力端子は初期回転トルクを得るため、間隔を異なる様に配置する必要がある。複数の温度差入力端子を同一感温磁性体上に設置した場合に各温度差入力への熱接続が煩雑になるが、例えば図7に示したように高温側は上面に、低温側は下面にと熱的に接続することで単純な熱入力とすることもできる。
 低温入力端子、および高温入力端子は角形の形状を示したが、それぞれ円盤状磁気作業物質の形状に沿った扇形、円弧状にしても良い。
<2 積層素子の実施形態>
「積層」
 前記エネルギー変換素子は非常に単純な形態を採る。ここで素子を同一軸に接続することでトルクを増大することができる(図4)。
 同一軸に接続された別個体の円盤状感温磁性体に対してそれぞれ高温入力端子と低温入力端子を設置する。別個体の素子の低温入力端子と低温入力端子、高温入力端子と高温入力端子とをそれぞれ熱伝導性良く接続することによりトルクを倍増できる。ここでは2段接続の例を示したが、所望のトルクを得るために必要に応じて同様に積層数を増すことができる。
 前記積層は並列接続の例を示したが、複数の素子を直列に接続することもできる(図8)。同一軸に接続された別個体の感温磁性体に対してそれぞれ高温入力端子と低温入力端子を設置する。別個体の素子の低温入力端子と高温入力端子とを熱伝導性良く接続することにより前記低温入力端子と高温入力端子は同じ温度となる。直列接続とすることで、大きな温度差入力に対応することができる。この場合、積層された各素子に用いる感温磁性体は同一である必要は無い。最適動作温度の異なる感温磁性体を各素子の動作温度に従い配置し、トルクの拡大を図ることができる。
 以下、実施例により本開示を具体的に説明するが、本開示はこれらの実施例のみに限定されるものではない。
 本実施例について以下の順序で説明する。
i  エネルギー変換素子単体
ii エネルギー変換素子積層集合体
〈i  エネルギー変換素子単体での実施例〉
〈実施例1〉
 径5mm、長さ50mmのステンレス製軸を用意した。前記軸中央に穴あき円盤状厚さ1.5mm、直径40mmの感温磁性体Sr Ferrite(ストロンチウムフェライト)を設置し、軸に固定した。円盤状感温磁性体Sr Ferrite直径40mmの中央部分、直径20mmの部分をSr Ferriteからポリカーボネートに置き換えている(図2)。Sr Ferrite永久磁石はあらかじめ、円盤垂直方向に帯磁させた。上面にN極、下面側にS極となるように帯磁した。軸回転により円盤状感温磁性体も回転する(図1)。
 高温入力端子として、感温磁性体に磁場を印加するため、円盤状感温磁性体を挟み込むようにヨーク付きの永久磁石を設置した。高温入力端子の永久磁石にはSr-Ferrite系マグネットを用いて感温磁性体ギャップ間隔は4.0mmとした。高温入力端子による磁場と永久磁石である感温磁性体の間には引力が働く様に、高温入力端子の永久磁石を配置した。永久磁石である感温磁性体と永久磁石の間にマグネタイト磁性紛からなる磁性流体を充填し、高温入力端子とした(図1)。
 高温入力端子の円周反対側から20°ずれた位置に低温入力端子を設置するため、円盤状感温磁性体を挟み込むようにヨーク付きの永久磁石を設置した。永久磁石にはSr-Ferrite系マグネットを用いてギャップ間隔は2.0mmとした。低温入力端子による磁場と永久磁石である感温磁性体の間には反力が働く様に、低温入力端子の永久磁石を配置した。感温磁性体と低温入力端子の間には潤滑油を導入し、熱伝導を確保した。
 高温入力端子と低温入力端子の間にはフッ素系低熱伝導樹脂からなる間隙充填材を導入し熱伝導を低減させた。
 室温及び素子構成材料はすべて初期23.0℃とした。高温入力端子が33.0℃、低温入力端子が13.0℃となるようにそれぞれ加熱、冷却したところ、円盤状の感温磁性体は8rpmで回転し温度差エネルギーが直接に運動エネルギーへ変換できることが判明した。後記〈比較例1〉に比べ回転数が速くなり、引力に加え反力も利用できる長所が明らかになった。
〈比較例1〉
 円盤状感温磁性体を同サイズのMn-Zn Ferrite(マンガンー亜鉛フェライト)とした。Mn-Zn Ferriteは感温磁性体であるが、ソフトフェライトなので、帯磁させること、反力を生じさせることは出来ない。高温入力端子にNdFeB系、低温入力端子にSr-Ferriteを用いてそれぞれ磁性流体をもちいて固定端子と感温磁性体の熱伝導を確保した。高温入力端子が33.0℃、低温入力端子が13.0℃となるようにそれぞれ加熱、冷却したところ、円盤状の感温磁性体は7.5rpmで回転した。
〈実施例2〉
 径5mm、長さ50mmのステンレス製軸を用意した。前記軸中央に穴あき円盤状厚さ1.5mm、直径40mmの感温磁性体Sr Ferrite(ストロンチウムフェライト)を設置し、軸に固定した。円盤状感温磁性体Sr Ferrite直径40mmの中央部分、直径20mmの部分をSr Ferriteからポリカーボネートに置き換えている。Sr Ferrite永久磁石はあらかじめ、円盤垂直方向に帯磁させた。上面にN極、下面側にS極となるように帯磁した。軸回転により円盤状感温磁性体も回転する。
 高温入力端子として、永久磁石を用いず、鉄系ヨーク材料のみを設置した。ギャップ間隔は4.0mmとした。高温入力端子と永久磁石である感温磁性体の間には引力が働く。永久磁石である感温磁性体と鉄系ヨーク材料の間にマグネタイト磁性紛からなる磁性流体を充填し、高温入力端子とした。
 高温入力端子の円周反対側から20°ずれた位置に低温入力端子を設置するため、円盤状感温磁性体を挟み込むように伝熱性材料(SiC:炭化ケイ素)を設置した。低温入力端子と感温磁性体との間には大きな磁気的な力は働かない。感温磁性体と低温入力端子の間には潤滑油を導入し、熱伝導を確保した。
 高温入力端子と低温入力端子の間にはフッ素系低熱伝導樹脂からなる間隙充填材を導入し熱伝導を低減させた(図9)。
 室温及び素子構成材料はすべて初期は23.0℃とした。高温入力端子が33.0℃、低温入力端子が13.0℃となるようにそれぞれ加熱、冷却したところ、円盤状の感温磁性体は6rpmで回転し温度差エネルギーが直接に運動エネルギーへ変換できることが判明した。感温磁性体に帯磁した永久磁石を用いた場合には高温入力端子、低温入力端子共に永久磁石を用いなくてもエネルギー変換素子として動作することが判明した。
〈実施例3〉
 これまで1枚の円盤状感温磁性体に対して1対の高温入力端子および低温入力端子の例を示したが、1枚の円盤状感温磁性体に対して複数対の高温入力端子および低温入力端子を設置することも可能である(図5)。この際、高温入力端子および低温入力端子の間隔は均一にするのではなく、初期回転が生じるように不均一にする必要がある。〈実施例1〉と同様の回転円盤を用いて4対の温度差入力端子を設置した(図5)。各入力端子における磁場の大きさは〈実施例1〉と同様とした。室温及び素子構成材料はすべて初期は23.0℃とした。高温入力端子が33.0℃、低温入力端子が13.0℃となるようにそれぞれ加熱、冷却したところ、円盤状の感温磁性体回転数は12rpmとなった。
〈ii エネルギー変換素子積層集合体〉
 図1に示したエネルギー変換素子の同軸上に別個体のエネルギー変換素子を設置した。この際一方のエネルギー変換素子の高温入力端子がもう一方の高温入力端子と熱伝導性良く接続するように伝熱性材料を介して、低温入力端子側でも同様に密着固定するように設置しエネルギー変換素子積層集合体とした(図4)。
 高温入力端子が33.0℃、低温入力端子が13.0℃となるようにそれぞれ加熱、冷却したところ、円盤状の感温磁性体は10rpmで回転し温度差エネルギーが直接に運動エネルギーへ変換できることが判明した。
 同様にして積層構造を3段、4段とした場合それぞれ回転可能であることを確認した。
 温度差エネルギーを直接的に運動エネルギーへ変換できるため、さらに気体の蒸発等の複雑な工程、他の機能性素子等複雑な構造が不要であるために高信頼性、低騒音、低振動でエネルギー変換システムが構築可能である。小温度差においても駆動可能であることから、工場、家庭内、輸送機器での排熱を利用して運動エネルギーへ変換することができる。すなわち排熱のための冷却ファン駆動及び各種ポンプ駆動、また体温により動き出さす各種感知器、玩具等にも応用することができる。
 また発電機を接続して温度差による発電も行うことができる。ペルチェ素子の場合にはTe,Sb,Se等有害な元素が含まれることが一般的であるが、本発明の場合には有毒な元素を用いることなく温度差発電装置を構築することが可能である。
 常温核融合、凝縮系核融合、低エネルギー核反応からの発熱によるエネルギー変換にも用いることが出来る。
1 円盤状感温磁性体
2 磁性流体
3 潤滑油
4 鉄系磁気ヨーク材料
5 Srフェライト系永久磁石
6 断熱性間隙充填材
7 高温入力端子
8 低温入力端子
9 回転軸
10 伝熱性材料
11 積層状態高温入力端子
12 積層状態低温入力端子 
13 断熱材
14 高温入力端子接合体
15 低温入力端子接合体

Claims (5)

  1. 回転可能な円盤状あるいは円筒状あるいは円錐状の帯磁した永久磁石である感温磁性体と、前記感温磁性体との間で磁気による引力を発生する強磁性体を含む固定端子を有し、素子外部からの熱入力により帯磁した永久磁石である感温磁性体を回転させることを特徴とするエネルギー変換素子。
  2. 回転可能な円盤状あるいは円筒状あるいは円錐状の感温磁性体と、前記感温磁性体との間で磁気による反力を発生する材料を含む固定端子を有し、素子外部からの熱入力により感温磁性体を回転させることを特徴とするエネルギー変換素子。
  3. 回転可能な円盤状あるいは円筒状あるいは円錐状の感温磁性体と、前記感温磁性体との間で磁気による引力を発生する強磁性体を含む固定端子を有し、且つ前記感温磁性体との間で磁気による反力を発生する材料を含む固定端子を有し、素子外部からの熱入力により感温磁性体を回転させることを特徴とする〈請求項1,2〉記載のエネルギー変換素子。
  4. 感温磁性体と、固定端子との間に液体または微粒子が分散された液体を充填することで、回転する感温磁性体と固定端子を継続的に熱伝導させる〈請求項1-3〉記載のエネルギー変換素子。
  5. 感温磁性体と,前記感温磁性体との間で磁気による引力を発生する固定端子との間に充填する液体または微粒子が分散された液体は磁性流体であることを特徴とする〈請求項1,3,4〉記載のエネルギー変換素子。
PCT/JP2022/000821 2021-03-02 2022-01-13 エネルギー変換素子 WO2022185723A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021032302A JP7065224B1 (ja) 2021-03-02 2021-03-02 エネルギー変換素子
JP2021-032302 2021-03-02

Publications (1)

Publication Number Publication Date
WO2022185723A1 true WO2022185723A1 (ja) 2022-09-09

Family

ID=81579251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000821 WO2022185723A1 (ja) 2021-03-02 2022-01-13 エネルギー変換素子

Country Status (2)

Country Link
JP (1) JP7065224B1 (ja)
WO (1) WO2022185723A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098880A (ja) * 1983-10-31 1985-06-01 Tdk Corp 回転駆動装置
US4730137A (en) * 1986-11-03 1988-03-08 Vollers Gary L Energy conversion system
JPH09268968A (ja) * 1996-04-01 1997-10-14 Masahiro Nishikawa 熱磁気エンジン
JP2002129273A (ja) * 2000-08-14 2002-05-09 Kiyohito Ishida 強磁性形状記憶合金およびそれを用いたアクチュエーター
JP2002204588A (ja) * 2000-10-24 2002-07-19 Nagano Prefecture 光熱磁気駆動装置の駆動方法、光熱磁気駆動装置およびこれに用いる低温キュリー温度をもつNi基合金の製造方法
US20030082060A1 (en) * 2001-10-27 2003-05-01 Buhei Kono Compressible fluid gas dynamic generator by microwave magnetic material thermoeffect
JP2005086904A (ja) * 2003-09-08 2005-03-31 Canon Inc 磁性体を用いた熱機関
WO2007001009A1 (ja) * 2005-06-27 2007-01-04 Japan Science And Technology Agency 強磁性形状記憶合金及びその用途
JP2014138549A (ja) * 2013-01-17 2014-07-28 Tsutomu Tanaka 金属感温磁性材料の磁気特性を応用した熱機関
JP2014155429A (ja) * 2013-02-06 2014-08-25 Tsutomu Tanaka 金属感温磁性材料の磁気特性を応用した熱機関
JP2020174516A (ja) * 2019-04-11 2020-10-22 香取 健二 エネルギー変換素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145908A (en) * 1978-05-08 1979-11-14 Sanyo Electric Co Ltd Thermal magnetic drive device
JPH01232174A (ja) * 1988-03-10 1989-09-18 Nkk Corp 感温磁性体を利用した動力装置
JPH02269487A (ja) * 1989-04-07 1990-11-02 Tsuyoshi Tanaka 熱エネルギーを力学的エネルギーに変換する方法及び熱機関
JPH03230776A (ja) * 1990-02-01 1991-10-14 Tsuyoshi Tanaka 磁性体エンジン
JPH03253279A (ja) * 1990-03-01 1991-11-12 Tsuyoshi Tanaka 海洋温度差熱を力学的エネルギーに変換する方法及びシステム
JP4918468B2 (ja) * 2007-12-05 2012-04-18 大阪瓦斯株式会社 デシカント除湿器及びデシカント空調システム
US8242662B2 (en) 2009-04-06 2012-08-14 John Hazelwood Special thermo magnetic motor device
TWI522530B (zh) 2012-04-09 2016-02-21 台達電子工業股份有限公司 熱磁引擎與熱磁引擎系統
JP2014207843A (ja) * 2013-04-10 2014-10-30 ▲強▼ 田中 感温磁性材料の磁気特性を応用した熱機関
JP6960492B2 (ja) 2019-04-04 2021-11-05 健二 香取 エネルギー変換素子およびこれを用いた温度調節装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098880A (ja) * 1983-10-31 1985-06-01 Tdk Corp 回転駆動装置
US4730137A (en) * 1986-11-03 1988-03-08 Vollers Gary L Energy conversion system
JPH09268968A (ja) * 1996-04-01 1997-10-14 Masahiro Nishikawa 熱磁気エンジン
JP2002129273A (ja) * 2000-08-14 2002-05-09 Kiyohito Ishida 強磁性形状記憶合金およびそれを用いたアクチュエーター
JP2002204588A (ja) * 2000-10-24 2002-07-19 Nagano Prefecture 光熱磁気駆動装置の駆動方法、光熱磁気駆動装置およびこれに用いる低温キュリー温度をもつNi基合金の製造方法
US20030082060A1 (en) * 2001-10-27 2003-05-01 Buhei Kono Compressible fluid gas dynamic generator by microwave magnetic material thermoeffect
JP2005086904A (ja) * 2003-09-08 2005-03-31 Canon Inc 磁性体を用いた熱機関
WO2007001009A1 (ja) * 2005-06-27 2007-01-04 Japan Science And Technology Agency 強磁性形状記憶合金及びその用途
JP2014138549A (ja) * 2013-01-17 2014-07-28 Tsutomu Tanaka 金属感温磁性材料の磁気特性を応用した熱機関
JP2014155429A (ja) * 2013-02-06 2014-08-25 Tsutomu Tanaka 金属感温磁性材料の磁気特性を応用した熱機関
JP2020174516A (ja) * 2019-04-11 2020-10-22 香取 健二 エネルギー変換素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKIZAWA, HIDEKAZU: "Development of a motor that rotates with light", CHILDREN'S SCIENCE, vol. 64, no. 4, 1 April 2001 (2001-04-01), pages 46 - 47, XP009539591, ISSN: 1345-8825 *

Also Published As

Publication number Publication date
JP2022133562A (ja) 2022-09-14
JP7065224B1 (ja) 2022-05-11

Similar Documents

Publication Publication Date Title
JP6997822B2 (ja) エネルギー変換素子
US7315103B2 (en) Superconducting rotating machines with stationary field coils
US4956976A (en) Magnetic refrigeration apparatus for He II production
US20120060513A1 (en) Magnetocaloric refrigerator
US7148594B2 (en) Axial gap electrical machine
US9883552B2 (en) Heat generator
EP3217521B1 (en) Eddy current type heating device
US10701768B2 (en) Eddy current heat generating apparatus
US7049724B2 (en) Superconducting rotating machines with stationary field coils and axial airgap flux
WO2016136702A1 (ja) 渦電流式発熱装置
JP6960492B2 (ja) エネルギー変換素子およびこれを用いた温度調節装置
JP6197727B2 (ja) 渦電流式減速装置
WO2022185723A1 (ja) エネルギー変換素子
JP2005269845A (ja) アキシャルギャップ電動機のステータの冷却構造
WO2022158282A1 (ja) エネルギー変換素子およびこれを用いた温度調節装置
US11075333B2 (en) Apparatus and method for converting thermal energy into electrical energy
JP6468126B2 (ja) 渦電流式発熱装置
KR102217162B1 (ko) 와전류 히터 장치
US7705513B1 (en) Thermal to electricity conversion using thermal magnetic properties
EP1280260A2 (en) Axial gap electrical machine
JP2014138550A (ja) 金属感温磁性材料の磁気特性を応用した熱磁気発電機
JP2017005932A (ja) 渦電流式発熱装置
JP3169232U (ja) モータの遠心式放熱構造及び遠心式放熱構造を有するモータ
JPH0544853A (ja) 磁性流体シール装置
JP2006034081A (ja) 磁力を力学的エネルギー、電気エネルギーに変換する方法と装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762782

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762782

Country of ref document: EP

Kind code of ref document: A1