WO2022183909A1 - 一种铁基非晶纳米晶合金及其制备方法 - Google Patents

一种铁基非晶纳米晶合金及其制备方法 Download PDF

Info

Publication number
WO2022183909A1
WO2022183909A1 PCT/CN2022/076488 CN2022076488W WO2022183909A1 WO 2022183909 A1 WO2022183909 A1 WO 2022183909A1 CN 2022076488 W CN2022076488 W CN 2022076488W WO 2022183909 A1 WO2022183909 A1 WO 2022183909A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
iron
based amorphous
nanocrystalline alloy
amorphous nanocrystalline
Prior art date
Application number
PCT/CN2022/076488
Other languages
English (en)
French (fr)
Inventor
刘树海
步建伟
杨东
姚文康
刘红玉
Original Assignee
青岛云路先进材料技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛云路先进材料技术股份有限公司 filed Critical 青岛云路先进材料技术股份有限公司
Priority to US17/928,314 priority Critical patent/US20230212725A1/en
Priority to JP2022572665A priority patent/JP2023535861A/ja
Priority to EP22762375.8A priority patent/EP4303336A1/en
Publication of WO2022183909A1 publication Critical patent/WO2022183909A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/006Making ferrous alloys compositions used for making ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present specification relates to the technical field of magnetic materials, in particular to an iron-based amorphous nanocrystalline alloy and a preparation method thereof.
  • the soft magnetic materials used in transformers, motors or generators, current sensors, magnetic sensors and pulse power magnetic components include silicon steel, ferrite, Co-based amorphous alloys and nanocrystalline alloys.
  • silicon steel is inexpensive, has a high magnetic flux density, and is highly machinable, but its loss increases at high frequencies.
  • Ferrite has a low saturation magnetic flux density, and its application is limited in high-power, high-saturated magnetic flux density scenarios.
  • Co-based amorphous alloys are not only expensive, but also have low saturation magnetic flux density. Therefore, when Co-based amorphous alloys are used as high-power devices, their thermodynamics are unstable, and the loss during use increases.
  • Iron-based amorphous alloys have the advantages of high saturation magnetic flux density and low loss under high power, and are ideal magnetic materials.
  • Finemet series alloys have been widely promoted in many fields due to their good soft magnetic properties and low cost.
  • the saturation magnetic induction intensity of Finemet series alloys is low (only about 1.25T).
  • Finemet series alloys Compared with silicon steel with high saturation magnetic induction intensity, Finemet series alloys require a larger volume for application under the same conditions, which severely limits the application of Finemet series alloys. . In addition, compared with silicon steel, Finemet series alloys also increase the cost of materials because they contain precious metal Nb, which is not conducive to the development of society.
  • the embodiments of this specification provide an iron-based amorphous nanocrystalline alloy and a preparation method thereof.
  • the iron-based amorphous nanocrystalline alloy has excellent soft magnetic properties and can be industrially produced.
  • the embodiments of this specification provide an iron-based amorphous nanocrystalline alloy, and the iron-based amorphous nanocrystalline alloy includes a composition whose element atomic percentage is shown in formula (1);
  • the iron-based amorphous nanocrystalline alloy is in the shape of a continuous thin ribbon, and the ribbon thickness of the thin ribbon is ⁇ 30 microns.
  • the temperature difference between the second crystallization onset temperature and the first crystallization onset temperature of the iron-based amorphous nanocrystalline alloy is greater than 120°C.
  • the ratio between the temperature difference and the first heat is ⁇ 1.38, and the first heat is the heat released by the iron-based amorphous nanocrystalline alloy during the first crystallization; wherein , the unit of temperature difference is Celsius, and the unit of first heat is J/g.
  • the saturation magnetic induction intensity of the iron-based amorphous nanocrystalline alloy is greater than or equal to 1.75T; under the excitation condition of 1.5T/50Hz, the unit iron loss of the iron-based amorphous nanocrystalline alloy is less than 0.30W/kg ;
  • the particle size of the nanocrystalline grains is 20-30 nm.
  • the preparation method of the iron-based amorphous nanocrystalline alloy according to the first aspect includes the following steps:
  • the heating the initial strip to a first preset temperature includes:
  • the second preset temperature is lower than the first preset temperature
  • the temperature of the initial strip material is heated from the second preset temperature to the first preset temperature according to a first preset heating rate.
  • the second preset temperature is 280° C., and the preset duration is 2 hours;
  • the first preset heating rate is 30°C/min.
  • step e the initial strip is cooled at a cooling rate of 50°C/s.
  • a fourth aspect provides a magnetic component composed of the iron-based amorphous nanocrystalline alloy described in the first aspect.
  • the iron-based amorphous nanocrystalline alloys provided in the embodiments of the present specification have good magnetic properties and excellent thermal properties, have a wide crystallization temperature range, and are convenient for industrial production.
  • Fig. 1 shows the technological process of the iron-based amorphous nanocrystalline alloy provided in the embodiment of this specification
  • Figure 2 shows the XRD patterns of Examples 1, 2, and 3; wherein, 1 in Figure 2 represents Example 1, 2 represents Example 2, and 3 represents Example 3;
  • Figure 3 shows the XRD patterns of Examples 6, 7, and 8; wherein, 6 in Figure 3 represents Example 6, 7 represents Example 7, and 8 represents Example 8;
  • Figure 4 shows the XRD patterns of Examples 12, 13 and 14; wherein, 12 in Figure 4 represents Example 12, 13 represents Example 13, and 14 represents Example 14;
  • Figure 5 shows the DSC spectra of Examples 1, 3, and 6; wherein, 1 in Figure 5 represents Example 1, 3 represents Example 3, and 6 represents Example 6;
  • Figure 6 shows the DSC spectra in Examples 2, 8, 12, and 14; wherein, 2 in Figure 6 represents Example 2, 8 represents Example 8, 12 represents Example 12, and 14 represents Example 14.
  • a solution provides a composition of Fe a B b SiC P x C y Cu z (wherein 79 ⁇ a ⁇ 86at%, 5 ⁇ b ⁇ 13at%, 0 ⁇ c ⁇ 8at%, l ⁇ x ⁇ 8at% %, 0 ⁇ y ⁇ 5at%, 0.4 ⁇ z ⁇ 1.4at% and 0.08 ⁇ z/x ⁇ 0.8) iron-based amorphous alloy.
  • the Fe-based amorphous alloy composition is used as an initial component, and an Fe-based nanocrystalline alloy with both high saturation magnetic induction intensity and high magnetic permeability can be obtained.
  • the embodiment of this specification sets the heat treatment characterization parameter ⁇ , wherein, The relationship between ⁇ value and alloy composition can be used to explore the best alloy composition, and the heat treatment process of alloy crystallization can be controlled by ⁇ value.
  • the embodiments of the present specification provide an iron-based amorphous alloy with the composition of Fe ( 100-abcdef ) BaSibPcCdCueNbf .
  • a, b, c, d, and e represent the atomic percentages of the corresponding components respectively; 8 ⁇ a ⁇ 12, 0.2 ⁇ b ⁇ 6, 2.0 ⁇ c ⁇ 6.0, 0.5 ⁇ d ⁇ 4, 0.6 ⁇ e ⁇ 1.3, 0.6 ⁇ f ⁇ 0.9, and 1 ⁇ e/f ⁇ 1.4.
  • Fe as an essential element can improve the saturation magnetic induction and reduce the material cost. If the Fe content is less than 78 at%, the desired saturation magnetic flux density cannot be obtained. If the Fe content is higher than 86 at%, it is difficult to form an amorphous phase in the quenching method, and coarse ⁇ -Fe crystal grains will be formed. In this way, a uniform nanocrystalline structure cannot be obtained, resulting in a decrease in soft magnetic properties.
  • B can improve the amorphous forming ability.
  • the B content is less than 5 at%, it is difficult to form an amorphous phase in the preparation by the quenching method.
  • Si can inhibit the precipitation of Fe and B compounds in the nanocrystalline structure after crystallization, thereby stabilizing the nanocrystalline structure.
  • the Si content is more than 8 at%, the saturation magnetic flux density and the amorphous forming ability will decrease, resulting in the deterioration of the soft magnetic properties. It is particularly pointed out that when the Si content is above 0.8 at%, the amorphous forming ability will be improved, and the thin ribbon can be stably produced continuously. In addition, due to the increase in ⁇ T, a uniform nanocrystalline structure can be obtained.
  • P can improve the amorphous forming ability. If the P content is less than 1 at%, it is difficult to form an amorphous phase in the quenching method. If the P content is higher than 8 at%, the saturation magnetic flux density decreases, and the soft magnetic properties deteriorate. It is particularly pointed out that if the P content is 2 to 5 at%, the amorphous forming ability can be improved.
  • the C element can increase the amorphous forming ability, and the addition of C can reduce the content of metalloids and reduce the material cost.
  • the C content exceeds 5 at%, embrittlement is caused, resulting in a decrease in soft magnetic properties.
  • the C content is 3 at% or less, component segregation caused by C volatilization can be suppressed.
  • the content of Cu element is conducive to the formation of a large number of fcc-Cu clusters and bcc-(Fe) nuclei during the quenching process, and at the same time, it promotes the precipitation of bcc-(Fe) nuclei during the heat treatment process and increases the saturation magnetic induction.
  • the Cu content is lower than 0.6 at%, nanocrystallization is not favorable.
  • the Cu content is higher than 1.4 at%, it will cause the non-uniformity of the amorphous phase, which is not conducive to the formation of a uniform nanocrystalline structure, resulting in a decrease in the soft magnetic properties.
  • Nb element improves the amorphous formation ability of the alloy, inhibits the precipitation of the primary crystal phase in the amorphous precursor, and can inhibit the excessive growth of atoms during the heat treatment process and control the effect of grain size.
  • Nb element The addition of ⁇ -Fe improves the thermal stability of the amorphous phase, thereby increasing the nucleation activation energy and growth activation energy of the primary crystalline phase ⁇ -Fe, and its atomic content is controlled between 0.6-0.9 at%.
  • the solution provided by the embodiments of this specification may include the following steps.
  • the compounding can be carried out according to the composition shown in the above Fe (100-abcdef) B a Si b P c C d Cu e Nb f .
  • the required industrial raw materials are pure Fe, pure Cu, elemental Si, pure C, and Fe-B and Fe-P alloys. The purity of the raw materials is shown in Table 1.
  • Each raw material can be weighed according to the mass ratio, and then added to the heating furnace (specifically, an intermediate frequency induction heating furnace) for melting.
  • the heating furnace specifically, an intermediate frequency induction heating furnace
  • an inert gas such as argon
  • argon is used as a protective gas, and it is sedated for 30 minutes after melting to ensure molten steel.
  • the composition is uniform without segregation.
  • Amorphous alloy thin strips can be prepared by the copper roll rapid quenching method: the molten steel is poured at 1400°C-1500°C, and the amorphous nanocrystalline strips are obtained by the copper roll quick quenching method, and the prepared amorphous nanocrystalline strips are The material is wound into a ring.
  • the inner diameter of the ring sample may be ⁇ 65mm, and the outer diameter may be ⁇ 70mm.
  • the thin strip may also be referred to as a strip.
  • the amorphous alloy thin ribbon prepared above may be subjected to heat treatment.
  • the heat treatment can also be called crystallization annealing treatment, and its function is to promote the formation of nano-scale crystal grains in the amorphous alloy, so as to prepare the amorphous nanocrystalline alloy.
  • the specific process of heat treatment or crystallization annealing is as follows: setting a temperature 20-30° C. higher than the first crystallization start temperature of the amorphous alloy as the heating target temperature.
  • the heating target temperature may be 420°C.
  • the heat treatment process of the amorphous alloy sheet is divided into two stages. Among them, in the first stage.
  • the temperature of the amorphous alloy ribbon was raised to 280°C, and the temperature was maintained for 2 hours.
  • the temperature of the amorphous alloy thin strip is raised to the heating target temperature at a heating rate of 30°C/min, and the temperature is maintained for 30-40 minutes.
  • it is cooled at a speed of 50°C/s, and after cooling to room temperature, an amorphous nanocrystalline alloy ribbon can be obtained.
  • the above heat treatment processes are all carried out in an inert gas (eg, argon) atmosphere.
  • VSM vibrating sample magnetometer
  • XRD/DSC analysis specifically the detection and analysis of the amorphous alloy thin strip before heat treatment.
  • the XRD patterns of all samples are from the free surface of the alloy strip (the other side of the copper roller surface); the relevant test conditions and parameters are: X-ray wavelength graphite Monochromator filtering, the tube voltage is 40kV, the tube current is 30mA, the test range is 20-90°, the step size is 0.02°, and the scanning speed is 8°/min; the amorphous alloy strip in this application can be determined by XRD spectrum , if its characteristic spectrum presents a broad diffraction peak (also known as "mantou peak”), it can be concluded that the strip is a completely amorphous structure.
  • X-ray diffraction diffraction of x-rays
  • the phase transition of each sample during the heating process can be obtained, and the thermal characteristic temperature parameter values, such as the Curie temperature Tc, the glass transition temperature Tg and the crystallization initiation temperature Tx of the alloy strip, can be obtained;
  • the characteristic temperature value of the DSC curve of the alloy strip can reflect the thermal stability of the alloy strip, provide a reference for the determination of the heat treatment process of the amorphous strip, and determine the approximate annealing temperature range of the first-stage initial crystallization of the alloy strip.
  • the effect of Cu elements and the influence of Cu elements on the heat treatment characteristic parameters ⁇ and T max are verified, so as to control the content of Cu elements in the alloy.
  • the alloy composition of each example and comparative example (the content of each component is represented by atomic percentage) is shown in Table 2.
  • the preparation of amorphous alloy strips and the heat treatment of the amorphous alloy strips can be made with reference to the scheme shown in FIG. 1 . Specifically include the following steps.
  • the ingredients can be prepared according to the ingredients of each embodiment or comparative example shown in Table 2.
  • the required industrial raw materials are pure Fe, pure Cu, elemental Si, pure C, and Fe-B and Fe-P alloys.
  • the purity of the raw materials is shown in Table 1.
  • Each raw material can be weighed according to the mass ratio, and then added to the heating furnace (specifically, an intermediate frequency induction heating furnace) for melting.
  • the heating furnace specifically, an intermediate frequency induction heating furnace
  • an inert gas such as argon
  • the composition is uniform without segregation.
  • the total mass of each raw material is 200 kg.
  • Amorphous alloy thin strips can be prepared by the copper roll rapid quenching method: the molten steel is poured at 1400°C-1500°C, and the amorphous nanocrystalline strips are obtained by the copper roll quick quenching method, and the prepared amorphous nanocrystalline strips are The material is wound into a ring.
  • the inner diameter of the ring sample may be ⁇ 65mm, and the outer diameter may be ⁇ 70mm.
  • the thin strip may also be referred to as a strip.
  • the amorphous alloy thin ribbon prepared above may be subjected to heat treatment.
  • the heat treatment can also be called crystallization annealing treatment, and its function is to promote the formation of nano-scale crystal grains in the amorphous alloy, so as to prepare the amorphous nanocrystalline alloy.
  • the specific process of heat treatment or crystallization annealing is as follows: setting a temperature 20-30° C. higher than the first crystallization start temperature of the amorphous alloy as the heating target temperature.
  • the heating target temperature may be 420°C.
  • the heat treatment process of the amorphous alloy sheet is divided into two stages. Among them, in the first stage.
  • the temperature of the amorphous alloy ribbon was raised to 280°C, and the temperature was maintained for 2 hours.
  • the temperature of the amorphous alloy thin strip is raised to the heating target temperature at a heating rate of 30°C/min, and the temperature is maintained for 30-40 minutes.
  • it is cooled at a speed of 50°C/s, and after cooling to room temperature, an amorphous nanocrystalline alloy ribbon can be obtained.
  • the above heat treatment processes are all carried out in an inert gas (eg, argon) atmosphere.
  • X-ray diffraction analysis described above can be used to verify whether the prepared amorphous alloy strip is completely amorphous.
  • the verification results are shown in Fig. 2, and only a broadened diffuse scattering peak appears around 45°, indicating that the alloy sample has a completely amorphous structure.
  • the DSC analysis results are shown in Table 2. There are two obvious exothermic peaks in the DSC curves of the samples.
  • the starting temperature of the first exothermic peak and the starting temperature of the second exothermic peak are T x1 and T x2 respectively, and then ⁇ T is obtained. x .
  • the area of the first exothermic peak can be calculated, so as to calculate the exothermic heat Q 1 of the alloy during the first crystallization, and then obtain the heat treatment characteristic parameter ⁇ .
  • Examples 4 and 5 are the effects of different contents of B, Si, P, and C on the thermal properties of amorphous alloys. As shown in Table 2, the contents of B, Si, P, and C have little effect on thermal properties, and the thermal properties of amorphous alloys are mainly affected by the content of Cu element.
  • the ⁇ values are 0.5, 1.87, and 1.25, respectively.
  • the ⁇ T x is up to 102°C and the heat treatment characterization parameter ⁇ 1.11.
  • the Tmax of the comparative example all exceeded the second crystallization start temperature, because the first crystallization exothermed a lot, and the released heat triggered the second crystallization peak, resulting in a continuous increase in temperature until the sample was burned.
  • the saturation magnetic induction intensity Bs of Examples 1-5 is all ⁇ 1.75T.
  • the unit iron loss Ps of the example after heat treatment is significantly lower than that of the comparative example, and the unit excitation power Ss of the example is also lower than that of the comparative example.
  • the XRD analysis shows that when the Cu element is 0.6-1.3 at%, the grain size of the alloy is 23-27 nm.
  • the comparative example it can be seen that when the Cu content exceeds this range, the crystal grains are relatively small due to the relatively small number of large atoms, and the abnormal growth of the crystal grains cannot be suppressed. the elements of.
  • the preferred range of Cu element is 0.6-1.3 at%.
  • each Example and Comparative Example is shown in Table 4.
  • the content of each element is atomic percent.
  • the amorphous alloy strips of Examples and Comparative Examples in Table 4 can be prepared with reference to the scheme shown in FIG. 1 , and the amorphous alloy strips can be heat-treated. Specifically include the following steps.
  • the ingredients can be prepared according to the ingredients of each embodiment or comparative example shown in Table 2.
  • the required industrial raw materials are pure Fe, pure Cu, elemental Si, pure C, and Fe-B and Fe-P alloys.
  • the purity of the raw materials is shown in Table 1.
  • Each raw material can be weighed according to the mass ratio, and then added to the heating furnace (specifically, an intermediate frequency induction heating furnace) for melting.
  • the heating furnace specifically, an intermediate frequency induction heating furnace
  • an inert gas such as argon
  • the composition is uniform without segregation.
  • the total mass of each raw material is 200 kg.
  • Amorphous alloy thin strips can be prepared by the copper roll rapid quenching method: the molten steel is poured at 1400°C-1500°C, and the amorphous nanocrystalline strips are obtained by the copper roll quick quenching method, and the prepared amorphous nanocrystalline strips are The material is wound into a ring.
  • the inner diameter of the ring sample may be ⁇ 65mm, and the outer diameter may be ⁇ 70mm.
  • the thin strip may also be referred to as a strip.
  • the amorphous alloy thin ribbon prepared above may be subjected to heat treatment.
  • the heat treatment can also be called crystallization annealing treatment, and its function is to promote the formation of nano-scale grains in the amorphous alloy, so as to prepare the amorphous nanocrystalline alloy.
  • the specific process of heat treatment or crystallization annealing is as follows: setting a temperature 20-30° C. higher than the first crystallization start temperature of the amorphous alloy as the heating target temperature.
  • the heating target temperature may be 420°C.
  • the heat treatment process of the amorphous alloy sheet is divided into two stages. Among them, in the first stage.
  • the temperature of the amorphous alloy ribbon was raised to 280°C, and the temperature was maintained for 2 hours.
  • the temperature of the amorphous alloy thin strip is raised to the heating target temperature at a heating rate of 30°C/min, and the temperature is maintained for 30-40 minutes.
  • it is cooled at a speed of 50°C/s, and after cooling to room temperature, an amorphous nanocrystalline alloy ribbon can be obtained.
  • the above heat treatment processes are all carried out in an inert gas (eg, argon) atmosphere.
  • X-ray diffraction analysis described above can be used to verify whether the prepared amorphous alloy strip is completely amorphous.
  • the verification results are shown in Fig. 3, and only a broadened diffuse scattering peak appears at about 45°, indicating that the alloy sample has a completely amorphous structure.
  • the DSC analysis results are shown in Table 4.
  • the starting temperature of the first exothermic peak and the starting temperature of the second exothermic peak are T x1 and T x2 respectively, and then ⁇ Tx can be obtained.
  • the area of the first exothermic peak can be calculated, thereby calculating the exothermic heat Q 1 of the alloy during the first crystallization, and then obtaining the heat treatment characteristic parameter ⁇ .
  • the ⁇ values are 3.33, 0.83, and 0.75, respectively.
  • the ⁇ Tx is up to 105°C, and the heat treatment characteristic parameter ⁇ 1.07.
  • Tmax all exceeded the second crystallization start temperature, the reason was that during the first crystallization, there was a lot of exothermic heat, and the released heat triggered the second crystallization peak, causing the temperature to continue to rise until the sample was burnt.
  • the saturation magnetic induction intensity Bs value of each embodiment is all ⁇ 1.75T.
  • the unit iron loss Ps of each embodiment is lower than that of the comparative example, and the unit excitation power Ss of each embodiment is lower than that of the comparative example. .
  • the XRD analysis shows that when the Nb content is in the range of 0.6-0.9 at%, the grain size is 23-30 nm.
  • the addition of Nb element improves the thermal stability of the amorphous phase.
  • the Nb content in the alloy exceeds 0.6-0.9 at%, the grains grow abnormally during the heat treatment of the alloy.
  • the preferred range of Nb element is 0.6-0.9 at%.
  • Table 6 shows the alloy composition of each example and comparative example.
  • the content of each element is atomic percent.
  • the preparation process of the amorphous alloy strip and the heat treatment process of the amorphous alloy strip can be referred to the above introduction, and will not be repeated here.
  • X-ray diffraction analysis described above can be used to verify whether the prepared amorphous alloy strip is completely amorphous.
  • the verification results are shown in Fig. 4. There is only a broadened diffuse scattering peak around 45°, indicating that the alloy sample has a completely amorphous structure.
  • the DSC analysis results are shown in Table 6.
  • the starting temperature of the first exothermic peak and the starting temperature of the second exothermic peak are T x1 and T x2 respectively, and then ⁇ T is obtained.
  • x The area of the first exothermic peak can be calculated, so as to calculate the exothermic heat Q 1 of the alloy during the first crystallization, and then obtain the heat treatment characteristic parameter ⁇ .
  • represents the ratio of the number of Cu atoms to the number of Nb atoms.
  • ⁇ T x In the range of 1 ⁇ 1.4, with the increase of Nb element, ⁇ T x has no obvious linear relationship, but ⁇ T x is all greater than 120°C. When ⁇ is less than 1 or greater than 1.4, ⁇ T x decreases significantly.
  • the heat treatment characteristic parameter ⁇ is calculated by the heat release Q1 of the first crystallization, and the minimum value of ⁇ is 1.40 at this time.
  • the maximum punching temperature T max of the first crystallization of each embodiment is measured, and it can be seen that the T max of each embodiment does not exceed the second crystallization temperature value T x2 .
  • the saturation magnetic induction intensity Bs of each embodiment is all ⁇ 1.75T.
  • is in the range of 1-1.4, the unit iron loss Ps of each embodiment is lower than that of the comparative example, and the unit excitation power Ss of each embodiment is lower than that of the comparative example.
  • the grain size of each embodiment is 22-29 nm.
  • the grain size is larger.
  • the preferred range for ⁇ is 1-1.4.
  • the thickness of the strip can be used to characterize the amorphous forming ability of the strip corresponding to the alloy composition.
  • Table 8 shows the amorphous forming ability of different alloy compositions.
  • means that the amorphous forming ability is strong, and the thickness of the prepared strip or thin strip is ⁇ 30um;
  • means that the amorphous forming ability is second, and the prepared strip or thin strip is 25-30um;
  • indicates that the amorphous forming ability is the weakest, and the prepared strip or thin strip is ⁇ 25um.
  • the amorphous forming ability of the components in each example is significantly better than that of the comparative example, and the maximum thickness can reach 33um. It shows that the amorphous forming ability of the strip prepared by the alloy composition limited by ⁇ and ⁇ is obviously better than that of other compositions.
  • Nb is a large atomic element, which inhibits the precipitation of the primary crystal phase in the amorphous precursor, and can inhibit the excessive growth of atoms and control the grain size during the heat treatment process.
  • the addition of Nb element improves the thermal stability of the amorphous phase.
  • the ratio of Cu/Nb atoms should be between 1-1.4.
  • the heat treatment interval ie, ⁇ T x
  • the large atomic element Nb is designed with different ratios of other elements. It has been verified that when Cu/Nb The ratio of atoms is 1 ⁇ 1.4, and the minimum grain size is 23nm.
  • the saturation magnetic induction intensity Bs of each of the above-mentioned embodiments is greater than 1.75T.
  • the grain size after heat treatment is controllable, and the grain size is all 20-30nm.
  • the element composition is mainly limited by the heat treatment characterization parameters ⁇ 1.38 and 1 ⁇ 1.4, and the composition range of the alloy is determined. ⁇ 120°C, after heat treatment, the Bs of the strip is ⁇ 1.75T, and the grain size of the nanocrystals can be controlled within the range of 20-30nm. And under the excitation condition of 1.5T/50Hz, the iron core loss of the iron-based amorphous alloy is less than 0.30W/kg.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Continuous Casting (AREA)

Abstract

本说明书涉及磁性材料技术领域,具体涉及一种铁基非晶纳米晶合金及其制备方法。所述铁基非晶纳米晶合金包括元素原子百分含量如式Fe(100-a-b-c-d-e-f)BaSibPcCdCueNbf所示的成分;其中,8≤a≤12,0.2≤b≤6,2.0≤c≤6.0,0.5≤d≤4,0.6≤e≤1.3,0.6≤f≤0.9,且1≤e/f≤1.4。该铁基非晶纳米晶合金的磁性能良好,且热学性能较高,具有较宽的晶化温区,便于工业化生产。

Description

一种铁基非晶纳米晶合金及其制备方法
本申请要求于2021年3月1日提交中国国家知识产权局、申请号为202110224190.5、申请名称为“一种铁基非晶纳米晶合金及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本说明书涉及磁性材料技术领域,具体涉及一种铁基非晶纳米晶合金及其制备方法。
背景技术
目前,变压器、电动机或发电机、电流传感器、磁传感器及脉冲功率磁性部件等所用的软磁性材料,有硅钢、铁氧体、Co基非晶合金以及纳米晶合金。其中,硅钢廉价且磁通密度高,可加工性较强,但在高频下损耗变大。铁氧体饱和磁通密度较低,在高功率、高饱和磁感强度场景下应用受限。Co基非晶合金不仅价格较高,而且饱和磁通密度也较低,因此当Co基非晶合金作为高功率器件时,自身热力学不稳定,使用过程中损耗变大。
铁基非晶合金兼具饱和磁通密度高以及高功率下损耗低等优势,是较为理想的磁性材料。目前的铁基非晶/纳米晶合金已经主要发展成为三大体系,即Finemet(Fe 73.5Si1 3.5B 9Cu 1Nb 3)系合金、Nanoperm(Fe-M-B,M=Zr,Hf,Nb等)系合金和HITPERM(Fe-Co-M-B,M=Zr,Hf,Nb等)系合金。其中Finemet系合金以其较好的软磁性能以及较低的成本在许多领域得到了广泛的推广。但Finemet系合金的饱和磁感应强度较低(仅1.25T左右),与高饱和磁感应强度的硅钢相比,Finemet系合金在同等条件下应用需要较大的体积,严重的限制了Finemet系合金的应用。此外,Finemet系合金与硅钢相比由于其含有贵金属Nb,也加大了材料的成本,不利于社会的发展。
发明内容
本说明书实施例提供了一种铁基非晶纳米晶合金及其制备方法,该铁基非晶纳米晶合金软磁性能优良,且可工业化生产。
第一方面,本说明书实施例提供了一种铁基非晶纳米晶合金,所述铁基非晶纳米晶合金包括元素原子百分含量如式(1)所示的成分;
Fe (100-a-b-c-d-e-f)B aSi bP cC dCu eNb f   (1);
其中,8≤a≤12,0.2≤b≤6,2.0≤c≤6.0,0.5≤d≤4,0.6≤e≤1.3,0.6≤f≤0.9,且1≤e/f≤1.4。
在一些实施例中,所述铁基非晶纳米晶合金呈连续薄带状,且所述薄带的带厚≥30微米。
在一些实施例中,所述铁基非晶纳米晶合金的第二晶化开始温度与第一晶化开始温度之 间的温度差大于120℃。
在一些实施例中,所述温度差与所述第一热量之间的比值≥1.38,所述第一热量为所述铁基非晶纳米晶合金在第一晶化时所释放的热量;其中,温度差的单位为摄氏度,第一热量的单位为J/g。
在一些实施例中,所述铁基非晶纳米晶合金的饱和磁感应强度≥1.75T;所述铁基非晶纳米晶合金在1.5T/50Hz的励磁条件下,单位铁损小于0.30W/kg;
在所述铁基非晶纳米晶合金中,纳米晶晶粒的粒径为20-30nm。
第二方面,如第一方面所述的铁基非晶纳米晶合金的制备方法,包括以下步骤:
a),按照如式(1)所示的元素原子百分含量进行配料后,熔炼、得到钢液;
b),将所述钢液进行单辊快淬,得到初始带材;
c),将所述初始带材的温度加热到第一预设温度,所述第一预设温度比所述初始带材的第一晶化开始温度高20-30℃;
d),保温30-40分钟;
e),冷却所述初始带材,得到所述铁基非晶纳米晶合金;
其中,
Fe (100-a-b-c-d-e-f)B aSi bP cC dCu eNb f   (1);
其中,8≤a≤12,0.2≤b≤6,2.0≤c≤6.0,0.5≤d≤4,0.6≤e≤1.3,0.6≤f≤0.9,且1≤e/f≤1.4。
在一些实施例中,所述将所述初始带材加热到第一预设温度,包括:
将所述初始带材的温度加热到第二预设温度,并保温预设时长;其中,所述第二预设温度所述第二预设温度低于所述第一预设温度;
将所述初始带材的温度从所述第二预设温度,按照第一预设升温速度,加热到所述第一预设温度。
在一些实施例中,所述第二预设温度为280℃,所述预设时长为2小时;
所述第一预设升温速度为30℃/min。
在一些实施例中,在步骤e)中,按照50℃/s的降温速度对所述初始带材进行冷却。
第四方面,提供了一种由第一方面所述的铁基非晶纳米晶合金构成的磁性部件。
本说明书实施例提供的铁基非晶纳米晶合金的磁性能良好,且热学性能优良,具有较宽的晶化温区,便于工业化生产。
附图说明
图1示出了本说明书实施例提供的铁基非晶纳米晶合金的工艺流程;
图2示出了实施例1、2、3的XRD图谱;其中,图2中的1代表实施例1,2代表实施例2,3代表实施例3;
图3示出了实施例6、7、8的XRD图谱;其中,图3中的6代表实施例6,7代表实施例7,8代表实施例8;
图4示出了实施例12、13、14的XRD图谱;其中,图4中的12代表实施例12,13代表实施例13,14代表实施例14;
图5示出了实施例1、3、6的DSC图谱;其中,图5中的1代表实施例1,3代表实施例3,6代表实施例6;
图6示出了实施例2、8、12、14中DSC图谱;其中,图6中的2代表实施例2,8代表 实施例8,12代表实施例12,14代表实施例14。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行描述。显然,所描述的实施例仅是本说明书一部分实施例,而不是全部的实施例。
一种方案提供了一种组成成分为Fe aB bSi cP xC yCu z(其中79≤a≤86at%,5≤b≤l3at%,0<c≤8at%,l≤x≤8at%,0≤y≤5at%,0.4≤z≤l.4at%以及0.08≤z/x≤0.8)的铁基非晶合金。该铁基非晶合金组成作为初始成分,可获得兼备高饱和磁感应强度和高导磁率的Fe基纳米晶合金。该铁基非晶合金为了结晶细化到纳米尺度,必须以100℃/min的升温速度上的高速升温速度进行加热,且必须把升温后的到达温度保持在30~40℃的狭窄的温度范围。因此,基于该铁基非晶合金制备纳米晶合金,对于工业领域来说是极其困难的。另外,在设定温度附近,由于晶化产生瞬间的大量发热,导致大构件的温度急剧升高,放热冲温甚至发生熔化。
本说明书实施例通过成分控制,扩宽了铁基非晶合金的第二晶化开始温度(T x2)减第一开始晶化温度(T x1)得到的差值的范围,增大了晶化的热处理工艺窗口,解决了合金在第一晶化时的放热量Q1过大导致带材热处理温度超过第二晶化温度,使得带材冲温烧毁问题。
本说明书实施例设置了热处理表征参数κ,其中,
Figure PCTCN2022076488-appb-000001
可以通过κ值与合金成分的关系,来探索较佳的合金成分,并通过κ值控制合金晶化的热处理过程。
经过上述探索,本说明书实施例提供了一种成分组成为:Fe (100-a-b-c-d-e-f)B aSi bP cC dCu eNb f的铁基非晶合金。其中,a、b、c、d、e分别表示对应组分的原子百分含量;8≤a≤12,0.2≤b≤6,2.0≤c≤6.0,0.5≤d≤4,0.6≤e≤1.3,0.6≤f≤0.9,同时1≤e/f≤1.4。
Fe作为必备元素可以提高饱和磁感应强度和降低材料成本。若Fe含量低于78at%,则不能获得期望的饱和磁感应强度。若Fe含量高于86at%时,急冷法制备很难形成非晶相,会形成粗大α-Fe晶粒。这样便不能获得均匀的纳米晶结构,导致软磁性能下降。
B作为必备元素可以提高非晶形成能力。若B含量低于5at%时,急冷法制备很难形成非晶相。若B含量高于12at%时,T x2和T x1的温度差(ΔT=T x2-T x1)会减小,不利于获得均匀的纳米晶结构,导致软磁性能下降。
Si可以抑制晶化后纳米晶结构中Fe和B的化合物析出,从而稳定纳米晶结构。Si含量大于8at%时,饱和磁感应强度和非晶形成能力会下降,导致软磁性能恶化。特别指出,Si含量在0.8at%以上时,会改善非晶形成能力,可以稳定连续生产薄带。另外,由于ΔT的增加,可以获得均匀的纳米晶结构。
P作为必备元素可以提高非晶形成能力。若P含量低于1at%,急冷法制备很难形成非晶 相。若P含量高于8at%,饱和磁感应强度下降,软磁性能恶化。特别指出,若P含量在2~5at%时,可以提高非晶形成能力。
C元素可以增加非晶形成能力,而且C添加可以减少类金属的含量,降低材料成本。C含量超过5at%时会引起脆化,导致软磁性能下降。特别指出,C含量在3at%以下时,可以抑制C挥发所引起的成分偏析。
Cu元素含量有利于在淬态过程中形成大量fcc-Cu团簇及bcc-(Fe)晶核,同时在热处理过程中促进bcc-(Fe)晶核析出,提高饱和磁感应强度。当Cu含量低于0.6at%时,不利于纳米晶化。当Cu含量高于1.4at%时,会造成非晶相的不均匀,不利于形成均匀的纳米晶结构,导致软磁性能下降。需要说明的是,如果考虑纳米晶合金的脆化,Cu含量要控制在1.3at%以下为好。同时为了使合金在更宽的晶化温区(即T x2和T x1之间的温度范围)形成晶粒尺寸小、分布均匀的纳米晶结构,需要加入一定的大原子元素抑制晶粒的异常长大。可以将Cu/Nb原子的比值,即e/f的值,记作λ,本发明的发明人通过大量的实验验证当1≤λ≤1.4时,可得到热处理范围宽(κ≥1.38)且晶粒尺寸稳定的纳米晶合金。
Nb作为大原子元素,Nb元素提升了合金的非晶形成能力,抑制了初晶相在非晶前驱体中析出,在热处理过程中能够抑制原子过度长大,控制晶粒尺寸的作用,Nb元素的添加提高非晶相的热稳定性能,从而提高了初晶相α-Fe的形核激活能和长大激活能,其原子含量控制在0.6-0.9at%之间。
参阅图1,本说明书实施例提供的方案可以包括如下步骤。
1,配料
可以按照上述Fe (100-a-b-c-d-e-f)B aSi bP cC dCu eNb f所示成分,进行配料。其中,所需的工业原材料为纯Fe、纯Cu、单质Si、纯C及Fe-B和Fe-P合金,原材料纯度见表1。
表1,原材料及其纯度表
Figure PCTCN2022076488-appb-000002
2,熔炼
可以将各个原材料按照质量比称重后,依次加入加热炉(具体可以为中频感应加热炉)中进行熔化,熔化过程中通惰性气体(例如氩气)作为保护气体,熔化后镇静30min,保证钢水成分均匀无偏析。
3,单辊快淬制带
可以通过铜辊快淬法制备非晶合金薄带:将所述钢水在1400℃-1500℃下进行浇注,通过铜辊快淬法得到非晶纳米晶带材,将制备的非晶纳米晶带材卷绕成环样。示例性的,环样内 径可以为φ65mm,外径可以为φ70mm。其中,在本说明书实施例中,薄带也可以称为带材。
4,热处理
可以对上述制备得到的非晶合金薄带,进行热处理。其中,热处理也可以称为晶化退火处理,其作用为促使非晶合金产生纳米尺度的晶粒,以制备非晶纳米晶合金。热处理或者说晶化退火的具体工艺为:设定高于该非晶合金的第一晶化开始温度20-30℃的温度为加热目标温度。例如,加热目标温度可以为420℃。示例性的,为了保证升温均匀性,将非晶合金薄待的热处理过程分为两个阶段。其中,在第一阶段。将非晶合金薄带的温度升至280℃,保温2小时。在第二阶段,以30℃/min的升温速率,将非晶合金薄带的温度升至加热目标温度,并进行保温,保温时间30-40min。最后以50℃/s速度进行冷却,冷却至室温后,可得到非晶纳米晶合金薄带。为防止热处理过程中氧化发生,上述热处理过程均在惰性气体(例如氩气)气氛中进行。
5,性能检测,具体为对得到的非晶纳米晶合金薄带进行性能评价及分析。
1)饱和磁感应强度的测定及矫顽力的测定。使用振动样品磁力计(vibrating sample magnetometer,VSM)测量非晶纳米晶合金薄带的饱和磁化强度Bs。使用软磁直流测试仪测量非晶纳米晶合金薄带的矫顽力。其中,VSM基于电磁感应的原理获得样品磁矩随外磁场变化的曲线关系,测试磁场的范围为:-12500至12500Oe;在测试之前,利用制备好的Ni标对设备进行校准,后将需测试的磁性样品碾碎,称取0.032g左右,利用锡纸包紧,放入铜模中测量。
2)损耗功率及激磁功率的测定:使用B-H测试仪测定,通过设置样品参数(有效磁路长度,有效截面积,绕线圈数等)及测试条件(测试频率,磁场强度,最大磁通密度,最大感应电压等)输出B-H曲线,并测试出各种磁特性参数。其中,重点关注损耗功率(Ps)、励磁功率(Ss)。
6,XRD/DSC分析,具体为对进行热处理前的非晶合金薄带的检测分析。
1)采用X射线衍射法(diffraction of x-rays,XRD)验证制备的非晶合金薄带是否为完全的非晶结构。为保证合金带材为完全的非晶态结构,所有样品的XRD图谱均来自于合金带材的自由面(相对于铜辊面的另一侧);相关测试条件及参数为:X射线波长石墨单色器滤波,管电压为40kV,管电流为30mA,测试范围为20~90°,步长0.02°,扫描速度8°/min;本申请中非晶态合金带材可通过XRD谱来确定,若其特征谱呈现为宽泛的衍射峰(又称“馒头峰”),方可断定带材为完全非晶态结构。
2)利用差示扫描量热((differential scanning calorimeter,DSC))法对非晶合金薄带进行热分析,考察合金带材晶化行为和热稳定性,在测试前将带材剪成面积小于1mm×1mm的小片状;称重约20mg后放入氧化铝坩埚内的试样台;在N 2氛围的保护下升温对样品进行加 热,升温速率取20℃/min,将样品的温度从室温加热到300℃-800℃,优选的,加热到800℃。通过对样品的DSC曲线分析,可以获得各样品的在加热过程的相变,获得热特征温度参数值,如居里温度Tc,玻璃转化温度Tg及合金带材的晶化起始温度Tx;根据合金带材的DSC曲线的特征温度值,可以反映合金带材的热稳定性,为非晶带材热处理工艺的确定提供参考,确定大致的退火温度范围合金带材的第一级起始晶化温度标记为T x1(即ɑ-Fe(Si)开始析出温度点),第二级起始晶化温度标记为T x2(即为Fe-(B,P)化合物开始析出点温度点),两级起始晶化温度差值标记为:ΔT x(定义ΔT x=T x2-T x1)。
接下来,在具体实施例中,对本说明书所提供的方案进行示例说明。
一,验证Cu元素的作用及控制范围:
在不同实施例中,通过添加不同含量的Cu元素,验证Cu元素的作用,以及Cu元素对热处理特征参数κ、T max的影响,进而控制合金中Cu元素的含量。其中,各实施例以及对比例的合金成分(各组分的含量由原子百分比表示)如表2所示。
可以参考图1所示的方案制备非晶合金带材以及对非晶合金带材的热处理。具体包括如下步骤。
11,配料
可以按照表2所示各实施例或对比例的成分,进行配料。其中,所需的工业原材料为纯Fe、纯Cu、单质Si、纯C及Fe-B和Fe-P合金,原材料纯度见表1。
12,熔炼
可以将各个原材料按照质量比称重后,依次加入加热炉(具体可以为中频感应加热炉)中进行熔化,熔化过程中通惰性气体(例如氩气)作为保护气体,熔化后镇静30min,保证钢水成分均匀无偏析。在一个例子中,各个原材料的总质量为200kg。
13,单辊快淬制带
可以通过铜辊快淬法制备非晶合金薄带:将所述钢水在1400℃-1500℃下进行浇注,通过铜辊快淬法得到非晶纳米晶带材,将制备的非晶纳米晶带材卷绕成环样。示例性的,环样内径可以为φ65mm,外径可以为φ70mm。其中,在本说明书实施例中,薄带也可以称为带材。
14,热处理
可以对上述制备得到的非晶合金薄带,进行热处理。其中,热处理也可以称为晶化退火处理,其作用为促使非晶合金产生纳米尺度的晶粒,以制备非晶纳米晶合金。热处理或者说晶化退火的具体工艺为:设定高于该非晶合金的第一晶化开始温度20-30℃的温度为加热目标温度。例如,加热目标温度可以为420℃。示例性的,为了保证升温均匀性,将非晶合金薄待的热处理过程分为两个阶段。其中,在第一阶段。将非晶合金薄带的温度升至280℃,保温2小时。在第二阶段,以30℃/min的升温速率,将非晶合金薄带的温度升至加热目标温度, 并进行保温,保温时间30-40min。最后以50℃/s速度进行冷却,冷却至室温后,可得到非晶纳米晶合金薄带。为防止热处理过程中氧化发生,上述热处理过程均在惰性气体(例如氩气)气氛中进行。
由此,可以制备得到表2中各实施例或对比例的带材。
可以采用上文所述的X射线衍射分析(XRD)验证制备的非晶合金带材是否为完全的非晶结构。验证结果如图2所示,只在45°左右出现一个宽化的漫散射峰,说明合金样品为完全的非晶态结构。
DSC分析结果如表2所示,样品的DSC曲线均出现两个明显的放热峰,第一放热峰开始温度和第二放热峰开始温度分别为T x1及T x2,进而得出ΔT x。可计算第一放热峰的面积,从而计算出合金在第一晶化时的放热量Q 1,进而得出热处理特征参数κ。
表2,热学性能及热处理工艺
Figure PCTCN2022076488-appb-000003
表2中可以看出:不同Cu元素含量对ΔT x的影响:在0.6-1.3at%范围内,随着Cu元素的增加,ΔT x逐渐增大(由120℃增加到142℃),即热处理窗口明显增大。通过第一晶化峰所放热量Q1,计算出热处理表征参数κ,此时κ的最小值为1.38。将十层带材叠放后,测定各实施例的第一晶化的最高冲温温度T max,可见各实施例的T max均未超过第二晶化温度值T x2。其中,第一晶化的最高冲温温度T max是指合金在第一晶化过程中所释放的热量(即Q1)的作用下,所达到的最高温度。
实施例4、5为B、Si、P、C的不同含量对非晶合金的热学性能的影响。由表2所示,B、Si、P、C的含量对热学性能的影响较小,非晶合金的热学性能主要受Cu元素含量的影响。
通过对比例可以看出,当Cu元素含量低于0.6at%或高于1.3at%时,λ值分别为0.5、1.87、1.25。在这种情况下,ΔT x最高为102℃,热处理表征参数κ≤1.11。且对比例的T max均超过第二晶化开始温度,原因为第一晶化放热较多,释放的热量触发第二晶化峰,导致温度持续升高至样品烧毁。
对非晶合金带材进行热处理以及性能检测,具体过程可以参考上文介绍。性能检测结果如表3所示,经热处理后进行饱和磁感应强度、矫顽力测定,然后B-H测试仪测定环样的磁性能(1.5T/50HZ的激励条件下):单位铁损Ps及单位激磁功率Ss。并通过XRD分析软件计算出形成的晶粒尺寸大小。
表3,磁学性能及晶粒尺寸
Figure PCTCN2022076488-appb-000004
从表3中可以看到:实施例1-5的饱和磁感应强度Bs均≥1.75T。当Cu含量在0.6-1.3at%范围内时,热处理后实施例的单位铁损Ps明显低于对比例的单位铁损Ps数值,实施例的单位激磁功率Ss也相对对比例较低。
经XRD分析可知,当Cu元素为0.6-1.3at%时,合金的晶粒尺寸为23-27nm。通过对比例,可看出当Cu含量超出该范围时晶粒因大原子相对较少,无法抑制晶粒的异常长大,晶粒尺寸>35nm,而异常长大的晶粒也是影响材料磁性能的因素。
结合κ、λ等热学性能以及Ps、Ss、晶粒尺寸等磁性能,Cu元素的优选范围为0.6-1.3at%。
二,验证Nb元素的作用及控制范围:
各实施例以及对比例的合金成分如表4所示。其中,在各合金成分中,各元素的含量为原子百分比。
可以参考图1所示的方案制备表4中各实施例及对比例的非晶合金带材,以及对非晶合金带材进行热处理。具体包括如下步骤。
21,配料
可以按照表2所示各实施例或对比例的成分,进行配料。其中,所需的工业原材料为纯Fe、纯Cu、单质Si、纯C及Fe-B和Fe-P合金,原材料纯度见表1。
22,熔炼
可以将各个原材料按照质量比称重后,依次加入加热炉(具体可以为中频感应加热炉)中进行熔化,熔化过程中通惰性气体(例如氩气)作为保护气体,熔化后镇静30min,保证钢水成分均匀无偏析。在一个例子中,各个原材料的总质量为200kg。
23,单辊快淬制带
可以通过铜辊快淬法制备非晶合金薄带:将所述钢水在1400℃-1500℃下进行浇注,通过铜辊快淬法得到非晶纳米晶带材,将制备的非晶纳米晶带材卷绕成环样。示例性的,环样内径可以为φ65mm,外径可以为φ70mm。其中,在本说明书实施例中,薄带也可以称为带材。
24,热处理
可以对上述制备得到的非晶合金薄带,进行热处理。其中,热处理也可以称为晶化退火处理,其作用为促使非晶合金产生纳米尺度的晶粒,以制备非晶纳米晶合金。热处理或者说晶化退火的具体工艺为:设定高于该非晶合金的第一晶化开始温度20-30℃的温度为加热目标温度。例如,加热目标温度可以为420℃。示例性的,为了保证升温均匀性,将非晶合金薄待的热处理过程分为两个阶段。其中,在第一阶段。将非晶合金薄带的温度升至280℃,保温2小时。在第二阶段,以30℃/min的升温速率,将非晶合金薄带的温度升至加热目标温度,并进行保温,保温时间30-40min。最后以50℃/s速度进行冷却,冷却至室温后,可得到非晶纳米晶合金薄带。为防止热处理过程中氧化发生,上述热处理过程均在惰性气体(例如氩气)气氛中进行。
由此,可以制备得到表4中各实施例或对比例的带材。
可以采用上文所述的X射线衍射分析(XRD)验证制备的非晶合金带材是否为完全的非晶结构。验证结果如图3所示,只在45°左右出现一个宽化的漫散射峰,说明合金样品为完全的非晶态结构。
DSC分析结果如表4所示,样品的DSC曲线均出现两个明显的放热峰,第一放热峰开始温度和第二放热峰开始温度分别为T x1及T x2,进而得出ΔTx。可计算出第一放热峰的面积,从而计算出合金在第一晶化时的放热量Q 1,进而得出热处理特征参数κ。
表4,热学性能及热处理工艺
Figure PCTCN2022076488-appb-000005
表4中可以看出Nb元素不同含量对ΔT x的影响。在0.6-0.9at%范围内,随着Nb元素的增加,ΔT x无明显线性关系,但ΔT x均大于120℃。当Nb含量低于0.6at%或高于0.9at%时,热处理窗口ΔTx明显较小。通过第一晶化峰放热量Q1,计算出热处理表征参数κ,此时κ的最小值为1.39。将十层带材叠放后,测定各实施例的第一晶化的最高冲温温度T max,可见各实施例的T max均未超过第二晶化温度值T x2
通过对比例可以看出当Nb元素含量低于0.6at%、或高于0.9at%时,λ值分别为3.33、0.83、0.75,此时ΔTx最高为105℃,热处理表征参数κ≤1.07。且T max均超过第二晶化开始温度,原因为第一晶化时放热较多,释放的热量触发第二晶化峰,导致温度持续升高至样品烧毁。
对非晶合金带材进行热处理以及性能检测,具体过程可以参考上文介绍。性能检测结果如表5所示,经热处理后进行饱和磁感应强度、矫顽力测定,然后B-H测试仪测定环样的磁性能(1.5T/50Hz的励磁条件下):单位铁损Ps及单位激磁功率Ss。并通过XRD分析软件计算出形成的晶粒尺寸大小。
表5,磁学性能及晶粒尺寸
Figure PCTCN2022076488-appb-000006
从表5中可以看出,各实施例的饱和磁感应强度Bs值均≥1.75T。当Nb含量在0.6-0.9at%范围内时,各实施例的单位铁损Ps低于对比例的单位铁损Ps值,以及各实施例的单位激磁功率Ss低于对比例的单位激磁功率Ss。
经XRD分析可知,当Nb含量在0.6-0.9at%范围内时,晶粒尺寸为23-30nm。Nb元素的添加提高非晶相的热稳定性能,当合金中Nb含量超出在0.6-0.9at%时,在合金的热处理过程中,晶粒异常长大。
结合κ、λ等热学性能以及Ps、Ss、晶粒尺寸等磁性能,Nb元素的优选范围为0.6-0.9at%。
三,验证元素Cu/Nb的比值的影响及控制范围:
各实施例以及对比例的合金成分如表6所示。其中,在各合金成分中,各元素的含量为原子百分比。
非晶合金带材的制备过程,以及非晶合金带材的热处理过程可以参考上文介绍,在此不再赘述。
可以采用上文所述的X射线衍射分析(XRD)验证制备的非晶合金带材是否为完全的非晶结构。验证结果如图4所示,只在45°左右出现一个宽化的漫散射峰,说明合金样品为完全的非晶态结构。
DSC分析结果如表6所示,样品的DSC曲线均出现两个明显的放热峰,第一放热峰开始温度和第二放热峰开始温度分别为T x1及T x2,进而得出ΔT x。可计算第一放热峰的面积,从而计算出合金在第一晶化时的放热量Q 1,进而得出热处理特征参数κ。
表6,热学性能及热处理工艺
Figure PCTCN2022076488-appb-000007
表6中可以看出Cu元素和Nb元素之间的比例,对λ、ΔT x具有影响。其中,λ表示Cu原子数比上Nb原子数量得到的比值。当1≤λ≤1.4范围时,随着Nb元素的增加,ΔT x无明显线性关系,但ΔT x均大于120℃。当λ小于1或大于1.4时,ΔT x明显减小。通过第一晶化的放热量Q1,计算出热处理表征参数κ,此时κ的最小值为1.40。
将十层带材叠放后,测定各实施例的第一晶化的最高冲温温度T max,可见各实施例的T max均未超过第二晶化温度值T x2
通过对比例可以看出,当λ值分别为0.67/0.67/1.73时,ΔT x最高为105℃,热处理表征参数κ≤1.09。且T max均超过第二晶化开始温度,原因为第一晶化时放热较多,释放的热量触发第二晶化峰,导致温度持续升高至样品烧毁。
对非晶合金带材进行热处理以及性能检测,具体过程可以参考上文介绍。性能检测结果如表7所示,经热处理后进行饱和磁感应强度、矫顽力测定,然后B-H测试仪测定环样的磁性能(1.5T/50Hz的励磁条件下):单位铁损Ps及单位激磁功率Ss。并通过XRD分析软件计算出形成的晶粒尺寸大小。
表7,磁学性能及晶粒尺寸
Figure PCTCN2022076488-appb-000008
从表7中可看出,各实施例的饱和磁感应强度Bs均≥1.75T。当λ在1-1.4范围内时,各实施例的单位铁损Ps低于对比例的单位铁损Ps值,以及各实施例的单位激磁功率Ss低于对比例的单位激磁功率Ss。
经XRD分析可知,当λ在1-1.4范围内时,各实施例的晶粒尺寸为22-29nm。当不λ在1-1.4范围内时,晶粒尺寸较大。
结合合金的热学性能以及磁性能,λ的优选范围为1-1.4。
四,观察不同合金成分的非晶形成能力。
可以用带材的厚度表征该带材对应合金成分的非晶形成能力。表8示出了不同合金成分的非晶形成能力。
表8,非晶形成能力对比
序号 合金成分 厚度 非晶形成能力表征 备注
实施例1 Fe 83.4B 10Si 0.5P 3.5C 1.0Cu 0.8Nb 0.8 32 О  
对比例1 Fe 83.7B 10Si 0.5P 3.5C 1.0Cu 0.5Nb 0.8 28 Δ  
对比例2 Fe 82.8B 10Si 0.5P 3.5C 1.0Cu 1.4Nb 0.8 27 Δ  
实施例6 Fe 83.7B 10Si 0.5P 3.5C 1.0Cu 0.8Nb 0.6 33 О  
对比例5 Fe 83.7B 10Si 0.5P 3.5C 1.0Cu 1.0Nb 0.3 26 Δ  
对比例6 Fe 82.8B 10Si 0.5P 3.5C 1.0Cu 1.0Nb 1.2 24 φ  
实施例12 Fe 82.3B 10Si 0.5P 3.5C 1.0Cu 0.7Nb 0.61 33 О  
对比例9 Fe 82.3B 10Si 0.5P 3.5C 1.0Cu 0.8Nb 1.2 23 φ  
对比例10 Fe 82.3B 10Si 0.5P 3.5C 1.0Cu 0.6Nb 0.9 26 Δ  
注:“О”表示非晶形成能力强,所制备的带材或者说薄带的带厚≥30um;
“φ”表示非晶形成能力次之,所制备的带材或者说薄带的25-30um;
“Δ”表示非晶形成能力最弱,所制备的带材或者说薄带的≤25um。
图表8所示,各实施例中成分的非晶形成能力明显优于对比例的非晶形成能力,最高厚度可达33um。表明通过κ及λ限定的合金成分制得的带材非晶形成能力明显优于其他成分。
在以上实验中,通过验证Cu元素的不同含量,可知随着Cu元素含量的增加,ΔT x的范围逐渐增大,热处理窗口的宽泛性增大,有利于防止过程冲温。通过控制Cu元素含量在0.6-1.3at%,可以保证ΔT x大于120℃。当Cu含量不在此范围时,ΔT x明显减小。
热处理表征参数κ≥1.38时,热处理窗口明显增大,而且可以保证T max≤T x2。Nb为大原子元素,抑制了初晶相在非晶前驱体中析出,在热处理过程中能够抑制原子过度长大,控制晶粒尺寸的作用。Nb元素的添加提高非晶相的热稳定性能,通过控制Nb元素的不同含量,验证了当含P的合金体系中Nb元素的原子分数范围为0.6-0.9at%时,ΔT x大于110℃,可以满足热处理要求。另外配置Cu/Nb原子的不同比例,验证了为保证较宽的热处理窗口ΔT x大于120℃,需保证Cu/Nb原子的比例在1-1.4之间。当Cu/Nb原子的比例在1-1.4之间时,热处理区间(即ΔT x)增大,有利于工业化热处理。换言之,为了使合金在更宽的晶化温区(即ΔT x)形成晶粒尺寸小、分布均匀的纳米晶结构,设计大原子元素Nb与其他元素不同配比,经验证,当Cu/Nb原子的比例在1≤λ≤1.4,得到晶粒尺寸最小为23nm。
另外,上文所述各实施例的饱和磁感应强度Bs均大于1.75T。通过控制Cu、Nb等主元素的含量,使得热处理后晶粒尺寸可控,晶粒尺寸均在20-30nm。
综上以上所述,本说明书实施例主要通过热处理表征参数κ≥1.38及1≤λ≤1.4进行元素成分限定,确定合金的成分范围,制得的带材非晶形成能力最大值33um,热处理窗口≥120℃,热处理后带材Bs≥1.75T,纳米晶的晶粒尺寸可控在20-30nm范围内。且在1.5T/50Hz的励磁条件下,所述铁基非晶合金的铁芯损耗小于0.30W/kg。
可以理解的是,在本说明书的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本说明书的实施例的范围。

Claims (10)

  1. 一种铁基非晶纳米晶合金,其特征在于,所述铁基非晶纳米晶合金包括元素原子百分含量如式(1)所示的成分;
    Fe (100-a-b-c-d-e-f)B aSi bP cC dCu eNb f      (1);
    其中,8≤a≤12,0.2≤b≤6,2.0≤c≤6.0,0.5≤d≤4,0.6≤e≤1.3,0.6≤f≤0.9,且1≤e/f≤1.4。
  2. 根据权利要求1所述的铁基非晶纳米晶合金,其特征在于,所述铁基非晶纳米晶合金呈连续薄带状,且所述薄带的带厚≥30微米。
  3. 根据权利要求1所述的铁基非晶纳米晶合金,其特征在于,所述铁基非晶纳米晶合金的第二晶化开始温度与第一晶化开始温度之间的温度差大于120℃。
  4. 根据权利要求3所述的铁基非晶纳米晶合金,其特征在于,所述温度差与所述第一热量之间的比值≥1.38,所述第一热量为所述铁基非晶纳米晶合金在第一晶化时所释放的热量;其中,所述温度差的单位为摄氏度,第一热量的单位为J/g。
  5. 根据权利要求1-4任一项所述的铁基非晶纳米晶合金,其特征在于,所述铁基非晶纳米晶合金的饱和磁感应强度≥1.75T;所述铁基非晶纳米晶合金在1.5T/50Hz的励磁条件下,单位铁损小于0.30W/kg;
    在所述铁基非晶纳米晶合金中,纳米晶晶粒的粒径为20-30nm。
  6. 如权利要求1-5任一项所述的铁基非晶纳米晶合金的制备方法,其特征在于,包括以下步骤:
    a),按照如式(1)所示的元素原子百分含量进行配料后,熔炼、得到钢液;
    b),将所述钢液进行单辊快淬,得到初始带材;
    c),将所述初始带材的温度加热到第一预设温度,所述第一预设温度比所述初始带材的第一晶化开始温度高20-30℃;
    d),保温30-40分钟;
    e),冷却所述初始带材,得到所述铁基非晶纳米晶合金;
    其中,
    Fe (100-a-b-c-d-e-f)B aSi bP cC dCu eNb f    (1);
    其中,8≤a≤12,0.2≤b≤6,2.0≤c≤6.0,0.5≤d≤4,0.6≤e≤1.3,0.6≤f≤0.9,且1≤e/f≤1.4。
  7. 根据权利要求6所述的制备方法,其特征在于,所述将所述初始带材加热到第一预设温度,包括:
    将所述初始带材的温度加热到第二预设温度,并保温预设时长;其中,所述第二预设温度所述第二预设温度低于所述第一预设温度;
    将所述初始带材的温度从所述第二预设温度,按照第一预设升温速度,加热到所述第一 预设温度。
  8. 根据权利要求7所述的制备方法,其特征在于,所述第二预设温度为280℃,所述预设时长为2小时;
    所述第一预设升温速度为30℃/min。
  9. 根据权利要求6-8任一项所述的制备方法,其特征在于,在步骤e)中,按照50℃/s的降温速度对所述初始带材进行冷却。
  10. 一种由权利要求1-5任一项所述的铁基非晶纳米晶合金构成的磁性部件。
PCT/CN2022/076488 2021-03-01 2022-02-16 一种铁基非晶纳米晶合金及其制备方法 WO2022183909A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/928,314 US20230212725A1 (en) 2021-03-01 2022-02-16 Fe-BASED AMORPHOUS NANOCRYSTALLINE ALLOY AND PREPARATION METHOD THEREOF
JP2022572665A JP2023535861A (ja) 2021-03-01 2022-02-16 Fe基アモルファスナノ結晶合金及びその製造方法
EP22762375.8A EP4303336A1 (en) 2021-03-01 2022-02-16 Fe-based amorphous nanocrystalline alloy and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110224190.5A CN113046657B (zh) 2021-03-01 2021-03-01 一种铁基非晶纳米晶合金及其制备方法
CN202110224190.5 2021-03-01

Publications (1)

Publication Number Publication Date
WO2022183909A1 true WO2022183909A1 (zh) 2022-09-09

Family

ID=76509434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076488 WO2022183909A1 (zh) 2021-03-01 2022-02-16 一种铁基非晶纳米晶合金及其制备方法

Country Status (5)

Country Link
US (1) US20230212725A1 (zh)
EP (1) EP4303336A1 (zh)
JP (1) JP2023535861A (zh)
CN (1) CN113046657B (zh)
WO (1) WO2022183909A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113046657B (zh) * 2021-03-01 2022-02-15 青岛云路先进材料技术股份有限公司 一种铁基非晶纳米晶合金及其制备方法
CN115351429A (zh) * 2022-09-15 2022-11-18 宁波中益赛威材料科技有限公司 铁基非晶、纳米晶制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252749A (ja) * 2000-01-06 2001-09-18 Hitachi Metals Ltd ナノ結晶材料用Fe基アモルファスリボンの製造方法、およびナノ結晶材料の製造方法
CN102741437A (zh) * 2008-08-22 2012-10-17 牧野彰宏 合金组合物、Fe基纳米晶合金及其制造方法和磁性部件
CN110670001A (zh) * 2019-11-20 2020-01-10 广东工业大学 富硅含p型铁基非晶纳米晶合金及铁基非晶合金纳米晶磁芯的制备方法
CN113046657A (zh) * 2021-03-01 2021-06-29 青岛云路先进材料技术股份有限公司 一种铁基非晶纳米晶合金及其制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755898A (en) * 1983-06-13 1988-07-05 Matsushita Electric Industrial Co., Ltd. Amorphous magnetic head
JPS6286146A (ja) * 1985-10-14 1987-04-20 Nippon Yakin Kogyo Co Ltd 高耐食性,高強度,高耐摩耗性に優れる高透磁率非晶質合金とその合金の磁気特性の改質方法
JP2698369B2 (ja) * 1988-03-23 1998-01-19 日立金属株式会社 低周波トランス用合金並びにこれを用いた低周波トランス
CN101834046B (zh) * 2009-03-10 2012-10-10 苏州宝越新材料科技有限公司 高饱和磁化强度铁基纳米晶软磁合金材料及其制备方法
CN101650999A (zh) * 2009-08-13 2010-02-17 太原科技大学 一种铁基非晶或纳米晶软磁合金及其制备方法
GB2520775A (en) * 2013-12-02 2015-06-03 Dca Consultants Ltd Multifunctional reactor
CN104831169A (zh) * 2015-04-08 2015-08-12 朗峰新材料南通有限公司 一种铁基纳米晶软磁合金材料及其制备方法
CN105261435A (zh) * 2015-10-16 2016-01-20 网为新材料(邳州)有限公司 一种铁基非晶纳米晶软磁合金薄带及其制备方法
CN106702291A (zh) * 2017-01-25 2017-05-24 青岛云路先进材料技术有限公司 一种铁基非晶合金及其制备方法
CN107177805B (zh) * 2017-04-21 2019-03-15 宁波中科毕普拉斯新材料科技有限公司 一种生产工艺性良好的铁基亚纳米合金及其制备方法
CN107393673B (zh) * 2017-07-31 2020-02-11 东莞美壹磁电科技有限公司 一种铁基非晶纳米晶软磁合金及其制备方法
CN108251765A (zh) * 2018-01-23 2018-07-06 北京科技大学 一种高饱和磁化强度Fe-B-Si-P-C-Cu-M非晶纳米晶软磁合金
CN108461246B (zh) * 2018-02-07 2019-10-08 河南中岳非晶新型材料股份有限公司 一种铁基非晶软磁合金及其制备方法
CN109440022A (zh) * 2018-11-15 2019-03-08 北京航空航天大学 一种(FeaSibBcCudNbe)xMy软磁材料及其制备方法
CN110306130B (zh) * 2019-07-02 2021-05-07 北京科技大学 一种高铁含量Fe-Si-B-P-Cu-Nb非晶纳米晶软磁合金及制备方法
CN110295322A (zh) * 2019-07-19 2019-10-01 广东工业大学 一种高饱和磁感应强度新型铁基软磁合金及其制备方法
CN110541116B (zh) * 2019-10-15 2021-11-26 桂林电子科技大学 一种晶化可控的铁基纳米晶软磁合金
CN111101076A (zh) * 2019-12-27 2020-05-05 中国科学院宁波材料技术与工程研究所 一种铁基纳米晶软磁合金

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252749A (ja) * 2000-01-06 2001-09-18 Hitachi Metals Ltd ナノ結晶材料用Fe基アモルファスリボンの製造方法、およびナノ結晶材料の製造方法
CN102741437A (zh) * 2008-08-22 2012-10-17 牧野彰宏 合金组合物、Fe基纳米晶合金及其制造方法和磁性部件
CN110670001A (zh) * 2019-11-20 2020-01-10 广东工业大学 富硅含p型铁基非晶纳米晶合金及铁基非晶合金纳米晶磁芯的制备方法
CN113046657A (zh) * 2021-03-01 2021-06-29 青岛云路先进材料技术股份有限公司 一种铁基非晶纳米晶合金及其制备方法

Also Published As

Publication number Publication date
JP2023535861A (ja) 2023-08-22
CN113046657B (zh) 2022-02-15
US20230212725A1 (en) 2023-07-06
EP4303336A1 (en) 2024-01-10
CN113046657A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
EP3522186B1 (en) Nanocrystal alloy magnetic core, magnetic core unit, and method for manufacturing nanocrystal alloy magnetic core
WO2022183909A1 (zh) 一种铁基非晶纳米晶合金及其制备方法
JP6191908B2 (ja) ナノ結晶軟磁性合金及びこれを用いた磁性部品
US4409041A (en) Amorphous alloys for electromagnetic devices
EP2557190A1 (en) Initial ultrafine crystal alloy, nanocrystal soft magnetic alloy and method for producing same, and magnetic component formed from nanocrystal soft magnetic alloy
WO2017022594A1 (ja) 軟磁性材料およびその製造方法
US4298409A (en) Method for making iron-metalloid amorphous alloys for electromagnetic devices
JP7387008B2 (ja) サブナノスケールの秩序クラスターを含む鉄基アモルファス合金、その調製方法及びそれを用いたナノ結晶合金誘導体
JP5912239B2 (ja) Fe基合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
KR20170103845A (ko) 나노결정성 자기 합금 배경에 기초한 자기 코어
EP2894236A1 (en) Ultrafine crystal alloy ribbon, fine crystal soft magnetic alloy ribbon, and magnetic parts using same
Wan et al. Surface crystallization and magnetic properties of FeCuSiBNbMo melt-spun nanocrystalline alloys
JP6080094B2 (ja) 巻磁心およびこれを用いた磁性部品
Jiang et al. Unique influence of heating rate on the magnetic softness of Fe81. 5Si0. 5B4. 5P11Cu0. 5C2 nanocrystalline alloy
JP2011195936A (ja) 合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
CN108603272B (zh) Fe基合金组合物、软磁性材料、磁性部件、电气电子相关部件和设备
KR102474993B1 (ko) 합금 조성물, Fe계 나노 결정질 합금, 이의 제조 방법 및 자성 부재
Wang et al. Crystallization kinetics and magnetic properties of Fe63. 5Co10Si13. 5B9Cu1Nb3 nanocrystalline powder cores
Hsiao et al. Crystallization and nanocrystallization kinetics of Fe-based amorphous alloys
JP2009293132A (ja) 軟磁性薄帯、磁心、磁性部品、および軟磁性薄帯の製造方法
CN114144851A (zh) 铁基软磁合金、其制造方法以及包括其的磁性部件
Mitrović et al. The precipitation of nanocrystalline structure in the joule heated Fe72Al5Ga2P11C6B4 metallic glasses
Hawelek et al. Influence of substitution on structure and magnetic properties of rapidly quenched Fe86B14 alloy
CN113278897B (zh) 一种铁基纳米晶软磁合金及其制备方法
Gu et al. Study on Properties and Heat Treatment Process of Fe 7 5. 9 Cu1Si 1 3 B8Nb 1. 5 Mo 0. 5 Dy 0. 1

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572665

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022762375

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022762375

Country of ref document: EP

Effective date: 20231002