WO2022180930A1 - 流動物吐出システム - Google Patents

流動物吐出システム Download PDF

Info

Publication number
WO2022180930A1
WO2022180930A1 PCT/JP2021/039531 JP2021039531W WO2022180930A1 WO 2022180930 A1 WO2022180930 A1 WO 2022180930A1 JP 2021039531 W JP2021039531 W JP 2021039531W WO 2022180930 A1 WO2022180930 A1 WO 2022180930A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
buffer tank
supply
discharge
pump
Prior art date
Application number
PCT/JP2021/039531
Other languages
English (en)
French (fr)
Inventor
貴則 上田
潤平 布施
Original Assignee
兵神装備株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兵神装備株式会社 filed Critical 兵神装備株式会社
Priority to KR1020237028501A priority Critical patent/KR20230149821A/ko
Priority to US18/547,499 priority patent/US20240050969A1/en
Priority to CN202180093501.7A priority patent/CN116829271A/zh
Publication of WO2022180930A1 publication Critical patent/WO2022180930A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1007Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material
    • B05C11/101Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material responsive to weight of a container for liquid or other fluent material; responsive to level of liquid or other fluent material in a container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1047Apparatus or installations for supplying liquid or other fluent material comprising a buffer container or an accumulator between the supply source and the applicator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/02Pumping installations or systems having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/081Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to the weight of a reservoir or container for liquid or other fluent material; responsive to level or volume of liquid or other fluent material in a reservoir or container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • B05B9/0403Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump with pumps for liquids or other fluent material
    • B05B9/0416Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump with pumps for liquids or other fluent material with pumps comprising rotating pumping parts, e.g. gear pump, centrifugal pump, screw-type pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2207/00External parameters

Definitions

  • the present invention relates to a fluid discharge system that supplies and discharges a fluid to a discharge device.
  • a pump device capable of pumping up and pumping a fluid prepared in a container such as a pail, such as the pump device disclosed in Patent Document 1 below.
  • a fluid discharge system formed by connecting such a pump device with a pipe to a discharge device such as a dispenser. The fluid discharge system can discharge the fluid from the discharge device by supplying the fluid pumped by the pump device to the discharge device.
  • the above-described fluid dispensing system can continue dispensing the fluid in the dispensing device while the prepared fluid remains in the container of the pump device. However, when the fluid prepared on the pump device side runs out, the supply of fluid to the discharge device ceases. Therefore, in the fluid discharge system described above, it is necessary to temporarily stop discharging the fluid from the discharge device and replenish the fluid to the pump device every time the fluid runs out of the container of the pump device.
  • the present inventor prepares a plurality of (for example, two) pump devices for one discharge device for a fluid discharge system, and appropriately selects a pump device capable of supplying a fluid to the discharge device. We considered making it switchable.
  • the fluid discharge system having such a configuration switches the connection destination of the discharge device to a pump device ready for the fluid when the fluid runs out in the pump device connected to the discharge device. Therefore, it was found that the stoppage of discharge of the fluid can be suppressed to a minimum.
  • a large installation space is required and the cost is increased due to the provision of a plurality of (for example, two) pump devices for one discharge device.
  • an object of the present invention is to provide a fluid discharge system capable of continuously supplying a fluid to a discharge device while suppressing an increase in installation space and cost.
  • the present inventors have proposed a fluid discharge system that has a discharge device that discharges a fluid and a reservoir that stores the fluid, and that discharges the fluid stored in the reservoir.
  • a pump capable of supplying to the discharge device; a supply channel connecting the discharge device and the pump so that a fluid can pass therethrough; It was considered to be equipped with a buffer tank and With this configuration, when the supply of the fluid from the pump to the discharge device is restricted, the supply of the fluid to the discharge device is continued by discharging the fluid from the buffer tank to the supply path. It is possible to realize the operation (continuous discharge operation).
  • the storage capacity V of the buffer tank is set in consideration of variations in the time required to replenish the fluid in the storage section or replace the storage section, and variable factors such as the length of the supply path. preferably Therefore, when the fluid discharge system performs the continuous discharge operation, the discharge amount of the fluid discharged from the discharge device while the supply of the fluid from the pump to the discharge device is restricted, and various variable factors It is desirable that the storage volume V of the fluid in the buffer tank can be optimized in consideration of the above.
  • a fluid discharge system of the present invention provided based on such knowledge has a discharge device for discharging a fluid and a reservoir for storing the fluid, and the fluid stored in the reservoir is a pump capable of supplying an animal toward the discharge device; a supply channel connecting the discharge device and the pump so that a fluid can pass therethrough; and a buffer tank capable of supplying fluid to the dispensing device by discharging fluid from the buffer tank into the supply channel while restricting the supply of fluid from the pump to the dispensing device.
  • the average discharge flow rate of the fluid discharged from the discharge device while the supply of the fluid from the pump to the discharge device is restricted in the continuous discharge operation a, the time limit t during which the supply of the fluid from the pump to the discharge device is restricted in the continuous discharge operation, and the variable parameter x, the storage volume V of the fluid in the buffer tank is V It is characterized by being set by the relationship of a ⁇ (t+x).
  • the fluid discharge system of the present invention continues the supply of the fluid to the discharge device by discharging the fluid from the buffer tank to the supply channel while limiting the supply of the fluid from the pump to the discharge device. It is possible to drive. Therefore, in the fluid discharge system of the present invention, during the continuous discharge operation, for example, the fluid is replenished in the reservoir, or the reservoir with a reduced remaining amount of the fluid is replenished with a sufficient remaining amount of the fluid. It is possible to perform work such as replacing with a storage unit that is present. Therefore, according to the fluid discharge system of the present invention, it is possible to continuously supply the fluid to the discharge device while suppressing increases in installation space and cost.
  • the average discharge flow rate a of the fluid discharged from the discharge device while restricting the supply of the fluid from the pump to the discharge device in the continuous discharge operation A storage volume V of the fluid in the buffer tank is defined based on a time limit t during which the supply of the fluid from the pump to the discharge device is restricted and a variable parameter x.
  • the amount of fluid necessary for discharging from the discharge device is stored in the buffer tank while the supply of fluid from the pump to the discharge device is restricted in the continuous discharge operation. be able to.
  • the formula that defines the storage capacity V takes into account the variable parameter x. Therefore, in the fluid discharge system of the present invention, by setting the variable parameter x according to the above-described variable factors, it is possible to optimize the storage volume V in consideration of the variable factors as well. Therefore, according to the present invention, the discharge amount of the fluid discharged from the discharge device while the supply of the fluid from the pump to the discharge device is restricted in the continuous discharge operation, and various variable factors are considered. , the fluid storage volume V in the buffer tank can be optimized.
  • the remaining amount of fluid in the reservoir is equal to or less than a predetermined lower limit, and the fluid is discharged from the pump to the discharge device. is restricted, and the restriction on the supply of fluid from the pump to the discharge device is lifted on the condition that the remaining amount of fluid in the reservoir recovers to a state that satisfies a predetermined restriction cancellation condition.
  • the time limit t is defined based on the period R.
  • the time limit t can be set so as to reflect the recovery period R required for recovery.
  • the fluid discharge system of the present invention can set the fluid storage volume V to an optimum value in consideration of the recovery period R.
  • the remaining amount of the fluid in the reservoir is equal to or less than a predetermined lower limit, and the fluid is discharged from the pump to the discharge device. is restricted, and the restriction on the supply of fluid from the pump to the discharge device is lifted on the condition that the remaining amount of fluid in the reservoir recovers to a state that satisfies a predetermined restriction cancellation condition. It is preferable that the variable parameter x varies according to the operator who performs recovery work for recovering the remaining amount of the fluid.
  • the fluid discharge system of the present invention can optimize the storage volume V of the fluid in the buffer tank in consideration of variable factors such as the skill level of the operator who performs the recovery work.
  • variable parameter x fluctuates according to the arrival time S required for the fluid to reach the buffer tank from the pump.
  • the storage capacity V of the fluid in the buffer tank is optimized in consideration of the arrival time S required for the fluid to reach the buffer tank from the pump. can be achieved.
  • the fluid discharge system of the present invention has a discharge device for discharging a fluid and a reservoir for storing the fluid, and directs the fluid stored in the reservoir to the discharge device.
  • a pump capable of supplying a supply, a supply path connecting the discharge device and the pump so that a fluid can pass therethrough, and a buffer tank disposed in the middle of the supply path and capable of sucking and discharging the fluid. and when restricting the supply of fluid from the pump to the discharge device, the supply of fluid to the discharge device can be continued by discharging the fluid from the buffer tank to the supply path.
  • the buffer tank can realize a pressure acting state in which pressure is exerted on the fluid and a holding state in which pressure is not exerted on the fluid.
  • the buffer tank can realize a pressure action state that exerts pressure on the fluid. Therefore, in the fluid discharge system of the present invention, for example, when the fluid is supplied from the buffer tank toward the discharge device by stopping pumping by the pump, the buffer tank is placed in a pressure acting state, and the fluid is supplied to the discharge device. On the other hand, if the pressure is applied toward the outside of the buffer tank, the fluid can be pumped toward the discharge device. Therefore, the fluid discharge system of the present invention can suppress pressure fluctuation caused by switching the fluid supply source for the discharge device from the pump to the buffer tank.
  • the buffer tank when the fluid is sucked into the buffer tank, the buffer tank is placed in a pressure acting state so that the fluid is pressurized toward the inside of the buffer tank.
  • the fluid When activated, the fluid can be smoothly sucked into the buffer tank.
  • the fluid is sucked into the buffer tank in preparation for supplying the fluid from the buffer tank to the ejection device, which contributes to the stable supply of the fluid to the ejection device.
  • the pressure action state in which the buffer tank exerts pressure on the fluid is preferably realized by changing the balance between the pressure on the buffer tank side and the pressure on the supply channel side.
  • the fluid discharge system of the present invention has a configuration in which the balance between the pressure on the buffer tank side and the pressure on the supply channel side can be changed positively, for example, by providing a device capable of depressurizing or pressurizing the buffer tank side.
  • the buffer tank side may be communicated with the external environment, so that the balance between the pressure on the buffer tank side and the pressure on the supply path side may be varied.
  • the buffer tank can achieve a holding state in which no pressure is exerted on the fluid, in addition to the pressure acting state described above. Therefore, for example, when the fluid supplied from the pump is discharged from the discharge device without using a buffer tank, or when the remaining amount of fluid in the discharge device is sufficient, the buffer tank may affect the discharge device. Fluctuations in the supply pressure of the fluid and fluctuations in the ejection pressure of the fluid in the ejection device can be suppressed. Therefore, according to the present invention, fluctuations in the supply pressure of the fluid to the ejection device and fluctuations in the ejection pressure in the ejection device due to pressure acting on the fluid from the buffer tank can be suppressed.
  • the fluid discharge system of the present invention can stably supply the fluid to the discharge device by the operation described above without providing a plurality of pumps. Therefore, the fluid discharge system of the present invention can suppress an increase in installation space and cost compared to a configuration in which a plurality of pumps are provided.
  • the pressure action state in which the buffer tank exerts pressure on the fluid is a pressurization state in which pressure is exerted on the fluid, It is preferable to be characterized by being able to realize a reduced pressure state that exerts a reduced pressure force.
  • the fluid discharge system of the present invention can pressurize the fluid toward the discharge device by pressurizing the buffer tank, for example, when supplying the fluid from the buffer tank to the discharge device. Therefore, the fluid discharge system of the present invention can suppress pressure fluctuation caused by switching the fluid supply source for the discharge device from the pump to the buffer tank. Further, in the fluid ejection system of the present invention, for example, when the fluid is sucked into the buffer tank, the fluid can be smoothly sucked toward the buffer tank by reducing the pressure in the buffer tank. Therefore, in the fluid discharge system of the present invention, the fluid is pumped toward the discharge device while the buffer tank is in a pressurized state and pressure is applied, or the fluid is smoothly sucked in with the buffer tank in a decompressed state. can be Therefore, according to the present invention, it is possible to provide a fluid discharge system capable of stably supplying a fluid to the discharge device while suppressing an increase in installation space and cost.
  • the buffer tank is connected to the supply passage so that the fluid can flow in and out, and the tank portion communicates with the supply passage.
  • a volume variation mechanism for varying the volume of the space wherein the volume variation mechanism decreases the volume of the communication space to achieve the pressurized state, and the volume variation mechanism increases the volume of the communication space. and the holding state can be achieved by stopping the increase and decrease of the volume of the communication space by the volume variation mechanism.
  • a fluid discharge system capable of realizing a pressurized state, a depressurized state, and a holding state by controlling the increase and decrease of the volume of the communication space in the buffer tank. Therefore, according to the present invention, there is provided a fluid ejection system capable of appropriately controlling the state of the buffer tank and stably supplying the fluid to the ejection device by controlling the increase or decrease in the volume of the communication space. can.
  • the volume variation mechanism separates the interior of the tank into the communicating space and the non-communicating space that is not communicating with the supply path; and a drive unit for moving the partition, wherein the pressurized state, the depressurized state, and the holding state can be realized by controlling the movement of the partition by the drive unit. It is better if it is
  • the drive unit moves the partition by varying the pressure acting on the partition via the fluid in the non-communication space
  • the pressurized state is achieved by increasing the pressure acting on the partition on the side of the non-communication space
  • the decompressed state is achieved by reducing the pressure acting on the partition on the side of the non-communication space
  • the non-communication is achieved.
  • the holding state can be achieved by stopping fluctuation of the pressure acting on the partition on the space side.
  • a fluid discharge system capable of realizing a pressurized state, a decompressed state, and a holding state is provided. can. Therefore, according to the present invention, by controlling the pressure acting on the partition, the state of the buffer tank can be appropriately controlled to provide a fluid discharge system capable of stably supplying the fluid to the discharge device. can.
  • the fluid discharge system of the present invention includes a cylinder device capable of generating a driving force by the inflow and outflow of the fluid, and by controlling the driving of the cylinder device, the working state of the fluid can be adjusted. , is preferably characterized by
  • the buffer tank detects a position-varying member whose position varies within a predetermined variation range according to the remaining amount of the fluid, and the position of the position-varying member. and a detection device, wherein the remaining amount of fluid in the buffer tank can be grasped based on the correlation between the capacity of the buffer tank and the position of the position-varying member. It should be something.
  • a fluid discharge system has a discharge device for discharging a fluid and a reservoir, and pumps the fluid stored in the reservoir to a pump capable of supplying a fluid toward the discharge device; a supply passage connecting the pump and the discharge device so that the fluid can pass therethrough; a buffer tank capable of sucking and discharging animals; and the operation of the buffer tank is controlled.
  • the fluid discharge system of the present invention includes a buffer tank capable of sucking and discharging the fluid in addition to the pump capable of supplying the fluid to the discharge device. Therefore, the fluid ejection system of the present invention is capable of sucking and accumulating the fluid in the buffer tank, and discharging and supplying the fluid from the buffer tank at an appropriate timing. Therefore, the fluid discharge system of the present invention can complementarily operate the pump and the buffer tank to stably supply the fluid to the discharge device.
  • the fluid discharge system of the present invention can control the operation of the buffer tank based on the remaining amount of fluid in the discharge device ascertained by the remaining amount grasping section. Therefore, the fluid discharge system of the present invention can control the suction operation and the discharge operation of the fluid in the buffer tank so as to appropriately perform according to the remaining amount of the fluid in the discharge device. Therefore, according to the fluid ejection system of the present invention, it is possible to minimize the risk of the fluid remaining in the ejection device becoming insufficient or excessive.
  • the fluid discharge system of the present invention can stably supply the fluid to the discharge device by the operation described above without providing a plurality of pumps. Therefore, the fluid discharge system of the present invention can suppress an increase in installation space and cost compared to a configuration in which a plurality of pumps are provided.
  • the remaining amount grasping unit includes a pressure detection device provided between the buffer tank and the discharge device in the supply path or in the discharge device, It is preferable that the remaining amount of the fluid in the ejection device is grasped based on the measured value of the pressure detection device.
  • the pump and the buffer tank are appropriately operated according to the remaining amount of the fluid in the discharge device, and insufficient or excessive remaining amount of the fluid in the discharge device does not occur.
  • the fluid can be stably supplied appropriately to the ejection device.
  • the buffer tank discharges the fluid so that the supply of the fluid to the discharge device can be continued. It should be something.
  • the fluid discharge system of the present invention compensates for the reduction in supply capacity due to the limited supply of fluid by the pump by discharging the fluid from the buffer tank. Therefore, in the fluid discharge system of the present invention, even when the supply of fluid by the pump is forced to be limited due to, for example, a shortage of the remaining amount of fluid in the pump, the flow in the discharge device can be maintained. Fluid can be appropriately and stably supplied to the ejection device so that the remaining amount of the animal is not insufficient.
  • the buffer tank discharges the fluid It is preferable that one or both of the following are performed.
  • the fluid discharge system of the present invention in supplying the fluid to the discharge device, the fluid is discharged from the buffer tank on condition that the remaining amount of the fluid in the discharge device is below a predetermined lower limit.
  • a stable supply of fluid to the ejection device can be realized.
  • the fluid discharge system of the present invention for example, even when the supply of the fluid by the pump has to be restricted due to the shortage of the remaining amount of the fluid in the pump, discharge When the remaining amount of fluid in the device falls below a predetermined lower limit, the fluid is supplied from the buffer tank to the ejection device, thereby suppressing the shortage of the remaining amount of fluid in the ejection device.
  • the buffer tank stops discharging the fluid on the condition that the remaining amount of the fluid in the ejection device exceeds a predetermined upper limit, thereby preventing excess fluid from being discharged from the ejection device. supply can be suppressed. As a result, for example, problems such as unstable supply pressure, ejection pressure, and ejection amount of the fluid in the ejection device can be suppressed.
  • the buffer tank can accumulate the fluid inside the buffer tank by sucking the fluid, and during the accumulation of the fluid, the fluid can be ejected. It is preferable that the discharge of the fluid by the device is continued.
  • the fluid discharge system of the present invention can continue discharging the fluid by the discharge device even while the fluid is being accumulated in the buffer tank. Therefore, the fluid discharge system of the present invention can minimize the decrease in productivity caused by, for example, stopping the discharge of the fluid in the discharge device due to accumulation of the fluid in the buffer tank.
  • the buffer tank when the fluid is accumulated in the buffer tank, the remaining amount of the fluid in the discharge device grasped by the remaining amount grasping unit exceeds a predetermined upper limit. On the condition that the buffer tank sucks the fluid, and on the condition that the remaining amount of the fluid in the discharge device ascertained by the remaining amount ascertaining unit is below a predetermined lower limit value, the buffer tank is allowed to flow. stopping the sucking of the animal, or both.
  • the buffer tank sucks the fluid on the condition that the remaining amount of the fluid in the discharge device exceeds a predetermined upper limit, so that the fluid is discharged from the discharge device. Fluid can be sucked and accumulated in the buffer tank by effectively utilizing the period when it is not necessary to supply .
  • the fluid discharge system of the present invention suppresses excessive supply of the fluid to the discharge device in a state where the fluid does not need to be supplied to the discharge device. can. As a result, for example, problems such as unstable supply pressure, ejection pressure, and ejection amount of the fluid in the ejection device can be suppressed.
  • the buffer tank stops sucking the fluid on condition that the remaining amount of fluid in the discharge device is below a predetermined lower limit, so that the fluid in the discharge device In a state where the remaining amount of the fluid is decreasing, the fluid can be preferentially supplied to the ejection device rather than the buffer tank.
  • the fluid ejection system of the present invention can suppress the occurrence of ejection failure due to insufficient remaining amount of the fluid.
  • the grasp of the remaining amount of the fluid in the ejection device for example, a method of directly measuring and deriving it with a remaining amount sensor etc. provided in the ejection device, The amount of the fluid is directly or indirectly derived and grasped by a method of deriving by detecting and subtracting, or indirectly grasping by the time the fluid flows into and out of the discharge device. good to do
  • the buffer tank can accumulate the fluid inside the buffer tank by sucking the fluid, and the fluid is supplied by the pump. , the buffer tank discharges the fluid accumulated therein, so that the supply of the fluid to the discharge device can be continued, and the buffer tank is capable of accumulating the fluid and supplying the fluid In both cases, it is preferable that the operation is controlled based on the remaining amount of the fluid in the discharge device ascertained by the remaining amount ascertaining section.
  • the fluid discharge system of the present invention can continue supplying the fluid to the discharge device by discharging the fluid accumulated inside the buffer tank when the supply of the fluid by the pump is restricted. It is said that Further, the buffer tank serves both to accumulate fluid and to supply fluid, and its operation is controlled based on the remaining amount of fluid in the discharge device. Therefore, the fluid discharge system of the present invention can cause the pump and the buffer tank to operate in a mutually complementary manner, thereby stably supplying the fluid to the discharge device.
  • the buffer tank accumulates the fluid, and the remaining amount of the fluid in the discharge device grasped by the remaining amount grasping unit is a predetermined first upper limit value. and the remaining amount of fluid in the discharge device grasped by the remaining amount grasping unit is less than a predetermined first lower limit value. At least one of the stopping operations is performed, and when the fluid is supplied, the fluid is supplied on the condition that the remaining amount of the fluid in the discharge device grasped by the remaining amount grasping unit is less than a predetermined second lower limit value.
  • the fluid discharge system of the present invention controls accumulation of the fluid in the buffer tank based on the first upper limit and the first lower limit of the remaining amount of the fluid in the discharge device. Specifically, the fluid discharge system of the present invention accumulates the fluid in the buffer tank when the remaining amount of fluid in the discharge device exceeds the first upper limit, or Fluid accumulation in the buffer tank can be stopped when the first lower limit is exceeded. Therefore, in the fluid discharge system of the present invention, the fluid can be accumulated in the buffer tank at appropriate timing according to the remaining amount of the fluid in the discharge device.
  • the fluid discharge system of the present invention controls discharge of the fluid from the buffer tank based on the second upper limit and the second lower limit of the remaining amount of the fluid in the discharge device. Specifically, the fluid discharge system of the present invention discharges and supplies the fluid to the discharge device when the remaining amount of fluid in the discharge device is below the second lower limit, or exceeds the second upper limit. Occasionally, the discharge of the fluid can be stopped and the supply to the dispensing device can be stopped. Therefore, in the fluid discharge system of the present invention, the fluid can be discharged from the buffer tank at an appropriate timing according to the remaining amount of the fluid in the discharge device.
  • the amount of the fluid is directly or indirectly derived and grasped by a method of deriving by detecting and subtracting, or indirectly grasping by the time the fluid flows into and out of the discharge device. good to do
  • the buffer tank detects a position-varying member whose position varies within a predetermined variation range according to the remaining amount of the fluid, and the position of the position-varying member. and a detection device, wherein the remaining amount of fluid in the buffer tank can be grasped based on the correlation between the capacity of the buffer tank and the position of the position-varying member. It should be something.
  • a fluid discharge system has a discharge device for discharging a fluid and a reservoir, and pumps the fluid stored in the reservoir to a pump capable of supplying a fluid to the discharge device; a supply path connecting the discharge device and the pump so that the fluid can pass therethrough; a buffer tank capable of suction and discharge, operation in a tank accumulation mode in which fluid is sucked and accumulated in the buffer tank; Operation in a pump supply mode that supplies the fluid to the device, and operation in a tank supply mode that restricts the supply of the fluid to the discharge device by the pump and discharges the fluid from the buffer tank and supplies it to the discharge device. and operation in a combined supply mode in which fluid is supplied to the discharge device from both the pump and the buffer tank.
  • the fluid discharge system of the present invention has a configuration in which a buffer tank is provided in the supply path that connects the discharge device and the pump.
  • the fluid discharge system of the present invention can be operated in a pump supply mode in which the fluid is supplied from the pump to the discharge device, and can also be operated using a buffer tank.
  • the fluid discharge system of the present invention operates in a tank accumulation mode in which the fluid is sucked into the buffer tank and accumulated, or limits the supply of the fluid to the discharge device by the pump and allows the fluid to flow from the buffer tank. It can be operated in a tank supply mode in which the animal is ejected and supplied to the dispenser, or in a combined supply mode in which fluid is supplied to the dispenser from both the pump and the buffer tank. Therefore, the fluid discharge system of the present invention sequentially operates in various operation modes, so that the pump and the buffer tank are complementarily used to supply the fluid to the discharge device, and the fluid to the discharge device is stabilized. supply can be realized.
  • the fluid discharge system of the present invention is provided with the condition that the remaining amount of fluid in the reservoir of the pump falls below a predetermined value during operation in the pump supply mode. Operation in the tank supply mode is shifted to, and operation in the combined supply mode is performed on the condition that the remaining amount of fluid in the buffer tank falls below a predetermined value during the operation in the tank supply mode. Then, on condition that the remaining amount of the fluid in the buffer tank reaches the lower limit during the operation in the composite supply mode, the operation is shifted to the tank accumulation mode, and the operation is performed in the tank accumulation mode.
  • the operation in the pump supply mode may be shifted to on condition that the amount of fluid remaining in the buffer tank exceeds a predetermined value.
  • the fluid discharge system of the present invention can transition to operation in the tank supply mode on condition that the amount of fluid remaining in the reservoir of the pump falls below a predetermined value during operation in the pump supply mode. can. Therefore, in the fluid discharge system of the present invention, the operation mode is switched to the tank supply mode until the fluid cannot be supplied from the pump to the discharge device, and the supply of the fluid to the discharge device is stably continued. can be done. In addition, the fluid discharge system of the present invention shifts to operation in the composite supply mode on condition that the remaining amount of fluid in the buffer tank falls below a predetermined value during operation in the tank supply mode. .
  • the operation mode can be switched to the combined supply mode until the fluid cannot be supplied from the buffer tank to the ejection device, and the supply of the fluid to the ejection device can be stably continued.
  • the fluid discharge system of the present invention transitions to operation in the tank accumulation mode on condition that the amount of fluid remaining in the buffer tank reaches the lower limit during operation in the combined supply mode.
  • the fluid can be accumulated in the buffer tank in preparation for the next timing at which the fluid should be supplied to the ejection device using the buffer tank.
  • the fluid delivery system of the present invention while operating in the tank accumulation mode, provides a condition that fluid has accumulated in the buffer tank until the amount of fluid remaining in the buffer tank exceeds a predetermined value. It is possible to shift to operation in mode.
  • the pump and the buffer tank are complementarily used to supply the fluid to the discharge device. A stable supply of fluids can be achieved.
  • the above Operation is shifted to the tank accumulation mode, and during execution of the operation in the tank accumulation mode, the remaining amount of fluid in the buffer tank exceeds a predetermined value, and the remaining amount of fluid in the reservoir is increased.
  • the operation is shifted to the tank supply mode, and the remaining amount of fluid in the buffer tank during the operation in the tank supply mode. is less than a predetermined value, the operation is shifted to the composite supply mode, and the remaining amount of the fluid in the buffer tank reaches the lower limit during the operation in the composite supply mode.
  • it is preferable that the operation is shifted to the pump supply mode.
  • the fluid delivery system of the present invention transitions to tank accumulation mode operation on condition that the amount of fluid remaining in the reservoir of the pump falls below a predetermined value during operation in pump supply mode. be able to. Therefore, the fluid discharge system of the present invention can switch the operation mode to the tank accumulation mode and accumulate the fluid in the buffer tank in preparation for the inability of the pump to supply the fluid to the discharge device. can. Further, the fluid discharge system of the present invention is characterized in that, during operation in the tank accumulation mode, the fluid is accumulated in the buffer tank until it exceeds a predetermined value, and the remaining amount of fluid in the reservoir is On the condition that either one or both of reaching the lower limit is satisfied, the operation is shifted to the tank supply mode.
  • the fluid discharge system of the present invention can supply the fluid from the buffer tank to the discharge device instead of the pump.
  • the fluid discharge system of the present invention shifts to operation in the combined supply mode on the condition that the remaining amount of fluid in the buffer tank has decreased below a predetermined value due to operation in the tank supply mode. do.
  • the fluid discharge system of the present invention can compensate for the ability of the buffer tank to discharge the fluid by operating the pump, and can stably continue the supply of the fluid to the discharge device.
  • the fluid discharge system of the present invention shifts to operation in the pump supply mode on condition that the remaining amount of fluid in the buffer tank reaches the lower limit during operation in the combined supply mode, It is possible to stably continue the supply of the fluid to the ejection device.
  • the pump and the buffer tank are complementarily used to supply the fluid to the discharge device. A stable supply of fluids can be achieved.
  • the fluid discharge system of the present invention includes, in the supply path, a remaining amount grasping unit for grasping the remaining amount of the fluid in the discharge device, the tank accumulation mode, the pump supply mode, In the tank supply mode and the combined supply mode, the operations of the pump and the buffer tank may be controlled based on the measured value of the pressure detection section.
  • the pump and the buffer tank in each operation mode operate under optimum conditions for stable supply of the fluid based on the remaining amount of the fluid in the discharge device ascertained by the remaining amount ascertaining unit. Operation can be controlled.
  • the fluid discharge system of the present invention can minimize the decrease in productivity caused by, for example, stopping the discharge of the fluid in the discharge device due to accumulation of the fluid in the buffer tank.
  • the buffer tank intermittently performs the suction operation while the pump continues to supply the fluid.
  • the supply path includes a remaining amount grasping unit that grasps the remaining amount of the fluid in the discharge device, and the measured value of the remaining amount grasping unit is a predetermined upper limit. It is preferable that the buffer tank performs a suction operation on the condition that it exceeds the value.
  • the supply pressure, ejection pressure, and ejection amount of the fluid in the ejection device become unstable due to the decrease in the remaining amount of the fluid in the ejection device due to the suction operation in the buffer tank. can be minimized. As a result, the supply state of the fluid to the ejection device can be further stabilized.
  • the fluid discharge system of the present invention preferentially consumes the fluid in the buffer tank over the fluid stored in the reservoir. and good.
  • the buffer tank detects a position-varying member whose position varies within a predetermined variation range according to the remaining amount of the fluid, and the position of the position-varying member. and a detection device, wherein the remaining amount of fluid in the buffer tank can be grasped based on the correlation between the capacity of the buffer tank and the position of the position-varying member. It should be something.
  • FIG. 2 is a cross-sectional view showing an example of a discharge device used in the fluid discharge system of FIG. 1; (a) is a cross-sectional view showing the configuration of a buffer tank used in the fluid discharge system of FIG. 1 in a pressurized state, and (b) is a cross-sectional view enlarging the main part of (a).
  • FIG. 2 is a cross-sectional view showing the configuration of a buffer tank used in the fluid discharge system of FIG. 1 in a depressurized state;
  • FIG. 2 is a cross-sectional view showing the configuration of a buffer tank used in the fluid discharge system of FIG.
  • FIG. 1 in a held state
  • 2(a) and 2(b) are explanatory diagrams for explaining the operation states of the respective parts when the fluid discharge system of FIG. 1 is in the pump supply mode and the supply pressure is high and low, respectively
  • FIG. FIG. 2 is a timing chart when the fluid dispensing system of FIG. 1 operates in a pumping mode
  • FIG. 2 is a flow chart for the fluid dispensing system of FIG. 1 operating in a pumping mode
  • 2(a) and 2(b) are explanatory diagrams for explaining the operation states of the respective parts when the supply pressure is high and when the supply pressure is low in the tank accumulation mode of the fluid discharge system of FIG. 1, respectively
  • FIG. 2 is a timing chart when the fluid dispensing system of FIG.
  • FIG. 2 is a flow chart for the fluid dispensing system of FIG. 1 operating in tank accumulation mode; 2(a) and 2(b) are explanatory diagrams for explaining operation states of respective parts when the supply pressure is high and when the supply pressure is low in the tank supply mode of the fluid discharge system of FIG. 1, respectively.
  • 2 is a timing chart when the fluid dispensing system of FIG. 1 operates in tank supply mode;
  • 2 is a flow chart for the fluid dispensing system of FIG. 1 operating in a tank supply mode;
  • 2(a) and 2(b) are explanatory diagrams for explaining the operating states of the respective parts when the fluid discharge system of FIG. 1 is in a composite supply mode when the supply pressure is high and when the supply pressure is low.
  • FIG. 1 is a flow chart for the fluid dispensing system of FIG. 1 operating in tank accumulation mode;
  • 2(a) and 2(b) are explanatory diagrams for explaining operation states of the respective parts when the fluid discharge system of FIG. 1 is in a composite supply mode when the
  • FIG. 2 is a timing chart when the fluid dispensing system of FIG. 1 operates in a combined supply mode; FIG. FIG. 2 is a flow chart for when the fluid dispensing system of FIG. 1 operates in a combined feed mode; FIG. FIG. 2 is a flow chart for when the fluid dispensing system of FIG. 1 operates in a first mode of operation; FIG. FIG. 2 is a timing chart when the fluid dispensing system of FIG. 1 operates in a first mode of operation; FIG. Figure 2 is a flow chart for when the fluid dispensing system of Figure 1 operates in a second mode of operation; FIG. 3 is a cross-sectional view of a modification of the buffer tank used in the fluid discharge system of FIG. 1; FIG.
  • FIG. 4 is a cross-sectional view of a main part according to a modification of the buffer tank used in the fluid discharge system of FIG. 1;
  • FIG. 4 is a cross-sectional view of a main part according to a modification of the buffer tank used in the fluid discharge system of FIG. 1;
  • FIG. 4 is an explanatory diagram showing an example in which a buffer tank is provided with a detection device capable of continuously detecting the amount of fluid stored.
  • FIG. 10 is an image diagram relating to an example of a user interface showing the amount of fluid stored in the buffer tank and the operation mode of the fluid discharge system.
  • a fluid discharge system 10 according to an embodiment of the present invention will be described in detail below with reference to the drawings.
  • the configuration of the fluid discharge system 10 will be described first, and then the operation of the fluid discharge system 10 will be described.
  • the fluid discharge system 10 has a configuration in which a pump 20 and a discharge device 30 are connected by a supply channel 40 .
  • the fluid discharge system 10 is configured such that a buffer tank 50 is provided in the middle of the supply path 40 .
  • the fluid discharge system 10 also includes a remaining amount grasping unit 90 for grasping the remaining amount of the fluid in the discharge device 30 .
  • the fluid dispensing system 10 includes a control device 200 for controlling the operations of the pump 20, the dispensing device 30, and the buffer tank 50. As shown in FIG.
  • the fluid discharge system 10 can discharge the fluid supplied by the pump 20 or the buffer tank 50 toward the work in the discharge device 30 .
  • the pump 20 is a device for pumping up and pumping a fluid from a reservoir 22 in which the fluid is stored.
  • the pump 20 is pipe-connected to the supply path 40 . Therefore, the fluid pumped up from the reservoir by the pump 20 can be pressure-fed to the discharge device 30 side through the supply path 40 .
  • the discharge device 30 is configured by a rotary positive displacement pump.
  • the discharge device 30 is configured by a so-called single-shaft eccentric screw pump.
  • the discharge device 30 has a configuration in which a rotor 102, a stator 104, a power transmission mechanism 106, and the like are accommodated inside a casing 100.
  • the casing 100 is a cylindrical member made of metal, and is provided with a first opening 110 at one end in the longitudinal direction.
  • a second opening 112 is provided in the outer peripheral portion of the casing 100 .
  • the second opening 112 communicates with the internal space of the casing 100 at an intermediate portion 114 located in the longitudinally intermediate portion of the casing 100 .
  • the first opening 110 and the second opening 112 are portions that function as a suction port and a discharge port of the uniaxial eccentric screw pump that constitutes the discharge device 30, respectively.
  • the discharge device 30 can function the first opening 110 as a discharge port and the second opening 112 as a suction port.
  • the first opening 110 can function as a suction port and the second opening 112 can function as a discharge port.
  • the stator 104 is a member that is made of an elastic material such as rubber, resin, or the like and has a substantially cylindrical external shape.
  • An inner peripheral wall 116 of the stator 104 is formed into a single-stage or multi-stage female screw shape with n-stripes.
  • the stator 104 has a two-row, multi-stage internal thread.
  • the through hole 118 of the stator 104 is formed so that its cross-sectional shape (opening shape) is substantially oval when viewed in cross-section at any position in the longitudinal direction of the stator 104 .
  • the rotor 102 is a metal shaft, and has n-1 threads and a single-stage or multi-stage male screw.
  • the rotor 102 has a single eccentric male thread.
  • the rotor 102 is formed so that its cross-sectional shape is substantially a perfect circle even when viewed in cross-section at any position in the longitudinal direction.
  • the rotor 102 is inserted through a through hole 118 formed in the stator 104 described above, and is freely eccentrically rotatable inside the through hole 118 .
  • a fluid transport path 122 (cavity) is formed between.
  • the fluid transport path 122 spirally extends in the longitudinal direction of the stator 104 and the rotor 102 .
  • the power transmission mechanism 106 is for transmitting power from the driving machine 124 to the rotor 102 described above.
  • the power transmission mechanism 106 has a power transmission portion 126 and an eccentric rotating portion 128 .
  • the power transmission portion 126 is provided at one longitudinal end of the casing 100 .
  • the eccentric rotating portion 128 is provided in the intermediate portion 114 .
  • the eccentric rotating portion 128 is a portion that connects the power transmission portion 126 and the rotor 102 so that power can be transmitted.
  • the eccentric rotating portion 128 includes a connecting shaft 130 configured by a conventionally known coupling rod, screw rod, or the like. Therefore, the eccentric rotating part 128 can transmit the rotational power generated by operating the driving machine 124 to the rotor 102 to rotate the rotor 102 eccentrically.
  • the supply channel 40 is a channel that connects the pump 20 and the discharge device 30 so that the fluid can pass therethrough.
  • a buffer tank 50 which will be described in detail later, is provided in the middle of the supply path 40.
  • the supply path 40 includes a primary side supply path 42 that connects the primary side of the buffer tank 50 (the upstream side in the flow direction of the fluid in the supply path 40 ) and the pump 20 , and a secondary side of the buffer tank 50 . side (the downstream side in the flow direction of the fluid in the supply path 40) and a secondary side supply path 44 that connects the discharge device 30.
  • a sensor 92 and a valve 48 are provided, which constitute a remaining amount grasping section 90, which will be described in detail later.
  • the sensor 92 can detect the state of the fluid in the supply channel 40, such as a pressure gauge or a flow meter.
  • the sensor 92 is a pressure gauge.
  • the sensor 92 is positioned between the dispensing device 30 and the buffer tank 50 in the supply channel 40 .
  • the valve 48 is arranged between the pump 20 and the buffer tank 50 in the supply line 40 .
  • the valve 48 is capable of restricting (blocking in this embodiment) the flow of fluid from the pump 20 to the discharge device 30 side.
  • the valve 48 is preferably configured by a so-called two-way valve, a check valve, or the like.
  • the buffer tank 50 is arranged in the middle of the supply path 40 described above.
  • the buffer tank 50 is capable of sucking and discharging fluid.
  • the buffer tank 50 can accumulate the fluid inside by sucking the fluid. Further, the buffer tank 50 discharges the fluid accumulated inside when the pump 20 stops supplying the fluid, thereby allowing the fluid to be continuously supplied to the ejection device 30 .
  • the operation of the buffer tank 50 is controlled by the control device 200 according to the remaining amount of the fluid in the ejection device 30 .
  • the buffer tank 50 has a tank portion 52 and a volume variation mechanism .
  • the tank part 52 is capable of allowing fluid to flow into and out of the supply path 40 . It is a thing.
  • the tank portion 52 is provided with a connecting portion 56 on one end side of a cylindrical (substantially cylindrical in this embodiment) tank body portion 52a extending in a predetermined axial direction, and a connecting portion 56 inside the tank body portion 52a.
  • a communicating space 58 and a non-communicating space 60 are provided.
  • the connecting portion 56 is provided on one end side in the axial direction of the tank main body portion 52a forming the tank portion 52 .
  • the connecting portion 56 is a portion connected to the supply path 40 .
  • the connecting portion 56 has a flow path 56a extending in a direction crossing the axial direction of the tank portion 52 (radial direction in this embodiment).
  • the connection portion 56 has connection ports 56b and 56c at both ends of the flow path 56a.
  • the connection ports 56b and 56c are opened in the peripheral portion of the tank portion 52, and can be connected to the pipes forming the supply passage 40.
  • the connection portion 56 has a communication hole 56 d in a radially intermediate portion of the tank portion 52 .
  • the tank portion 52 communicates with the flow path 56a and the internal space (communication space 58) of the tank body portion 52a through the communication hole 56d.
  • the communication space 58 is a space provided on the side of the tank portion 52 where the connection portion 56 is provided.
  • the communication space 58 is formed so as to communicate with the supply path 40 via the connecting portion 56 described above. Therefore, the tank part 52 is capable of sucking and discharging the fluid to and from the communication space 58 between the supply path 40 connected to the connection part 56 .
  • the non-communicating space 60 is a non-communicating space with respect to the supply path 40 .
  • the non-communication space 60 is a space adjacent to the tank portion 52 in the axial direction on the side opposite to the connection portion 56 with respect to the communication space 58 .
  • the non-communication space 60 is separated from the communication space 58 by a piston portion 62 (partition wall portion) of the volume variation mechanism 54, which will be detailed later.
  • a volume variation mechanism 54 is connected to the end of the non-communication space 60 . Thereby, the non-communication space 60 communicates with a casing 68 that forms the drive section 64 of the volumetric variation mechanism 54 .
  • the volume variation mechanism 54 is an operating mechanism that varies the volume of the communication space 58 in the tank portion 52 .
  • the volume variation mechanism 54 has a piston portion 62 and a driving portion 64 , and the driving portion 64 can move the piston portion 62 inside the tank portion 52 in the axial direction of the tank portion 52 . Therefore, the volume change mechanism 54 can change the volume (volume ratio) of the communicating space 58 and the non-communicating space 60 inside the tank portion 52 by changing the position of the piston portion 62 by the drive portion 64 .
  • the piston part 62 separates the inside of the tank part 52 into a communicating space 58 and a non-communicating space 60 .
  • the piston part 62 be a piston in this embodiment.
  • the outer diameter of the piston forming the piston portion 62 is substantially the same as the inner diameter of the tank portion 52 .
  • a seal member 62 a is attached to the outer peripheral portion of the piston portion 62 .
  • the piston portion 62 separates the internal space of the tank main body portion 52a into the communicating space 58 and the non-communicating space 60 while sealing against leakage of liquid including fluid and gas.
  • the driving portion 64 is for moving the piston portion 62 in the axial direction inside the tank body portion 52a.
  • the driving portion 64 has a rod portion 66 , a casing 68 , a partition wall 70 and an air supply/exhaust device 72 .
  • the rod portion 66 is inserted into the tank body portion 52a from the non-communication space 60 side.
  • the rod portion 66 is arranged to extend in the axial direction of the tank body portion 52a.
  • One end of the rod portion 66 is connected to the piston portion 62 .
  • the connecting portion between the rod portion 66 and the piston portion 62 may be integrated by screwing by providing a female thread on one side and a male thread on the other side, or by using a fastener such as a screw to integrate the two.
  • the piston portion 62 and the tip portion of the rod portion 66 may be brought into contact and connected.
  • the rod portion 66 is preferably configured so that the tip portion 66 a can be attached to and detached from the shaft portion 66 b of the rod portion 66 . If a plurality of types of tip portions 66a with different lengths are prepared, the length of the rod portion 66 can be changed on the tip portion 66a side to adjust the length of the stroke of the piston portion 62.
  • a partition wall 70 is connected to the other end side of the rod portion 66 .
  • the partition wall 70 is integrated with the rod portion 66 .
  • the other end of the rod portion 66 is shaft-shaped, but it may be adjustable in length like the tip portion 66a.
  • the casing 68 is a tubular member having a hollow internal space.
  • the casing 68 is closed at one end.
  • the other end of the casing 68 communicates with the non-communication space 60 of the tank main body 52a and is connected so as not to communicate with the external space.
  • the casing 68 has a first casing connection port 68a and a second casing connection port 68b on one end side and the other end side in the axial direction.
  • the partition wall 70 separates the internal space of the casing 68 into a first space 70a on the side of the first casing connection port 68a and a second space 70b on the side of the second casing connection port 68b.
  • the partition wall 70 is plate-shaped, and its outer peripheral surface is arranged so as to be in close contact with the inner peripheral surface of the casing 68 via a sealing member such as an O-ring.
  • the partition wall 70 is connected to the other end side of the rod portion 66 (the side opposite to the connection end of the piston portion 62) on the surface on the second space 70b side.
  • the partition wall 70 can reciprocate in the axial direction of the casing 68 while maintaining a posture in which the outer peripheral surface is in contact with the inner peripheral surface of the casing 68 together with the rod portion 66 .
  • the partition wall 70 introduces and discharges gas via the first casing connection port 68a and the second casing connection port 68b, and changes the pressure balance between the first space 70a and the second space 70b, thereby It can be axially reciprocated inside.
  • a supply/exhaust device 72 is pipe-connected to the first casing connection port 68a.
  • the air supply/exhaust device 72 can stop the introduction and discharge of gas to and from the casing 68 in addition to the introduction and discharge of gas (air in this embodiment) to the casing 68 .
  • the air supply/exhaust device 72 includes a solenoid valve 72b, a pilot check valve, a solenoid valve 72b, a pilot check valve, and a gas supply source 72a toward the casing 68 in the middle of a first piping system 74 that connects a gas supply source 72a and a first casing connection port 68a of the casing 68.
  • 72c and the first speed controller 72d are arranged in this order.
  • the supply source 72a is capable of pumping gas toward the casing 68 side.
  • the supply source 72a can be configured by, for example, a pump, a compressor, or the like.
  • the solenoid valve 72b switches the passage of the gas supplied by the supply source 72a in the first piping system 74 .
  • a three-position closed center system, a three-position pressure center system, or other suitable switching system may be used. used. If a three-position exhaust center system is used as the solenoid valve 72b as in this embodiment, sufficient responsiveness can be ensured even when the solenoid valve 72b and the casing 68 are separated from each other.
  • a supply source 72a is connected to the air supply port PI of the solenoid valve 72b.
  • Two output ports A and B provided in the solenoid valve 72b are pipe-connected to the pilot check valve 72c.
  • the solenoid valve 72b is also provided with two exhaust ports EA and EB that are open to the atmosphere.
  • the solenoid valve 72b can be switched between three states, a first state, a second state, and a third state, by changing the valve position.
  • the first state is a state in which the air supply port PI and the output port B are connected, and the exhaust port EA and the output port A are connected.
  • the first state is a state in which the air supply port PI and the output port B are connected, and the exhaust port EA and the output port A are connected.
  • the second state is a state in which the air supply port PI and the output port A are connected, and the exhaust port EB and the output port B are connected.
  • the third state is a state in which output ports A and B are connected to exhaust ports EA and EB, respectively.
  • the pilot check valve 72c has three connection ports PA, PB, PC.
  • the connection ports PA and PB of the pilot check valve 72c are pipe-connected to the output ports A and B of the solenoid valve 72b, respectively. Further, the pilot check valve 72c is connected to the connection port PC with a pipe connected to the first casing connection port 68a.
  • the pilot check valve 72c allows gas to flow from the connection port PB to the connection port PC when no pressure is applied to the connection port PA, and vice versa, from the connection port PC to the connection port PB. Acts as a check valve to block flow.
  • pilot check valve 72c is released from its function as a check valve by applying a pressure equal to or higher than a predetermined value to the connection port PA, and a state in which a flow from the connection port PC to the connection port PB is permitted. become.
  • the pilot check valve 72c is connected to the solenoid valve 72b via the first piping system 74 as described above. Therefore, when the solenoid valve 72b is set to the first state and no pressure is applied to the connection port PA of the pilot check valve 72c, and pressure is applied to the connection port PB, the flow from the connection port PB to the connection port PC Gas can be flowed and introduced into the casing 68 from the first casing connection port 68a. Further, when the solenoid valve 72b is placed in the second state, a pressure equal to or higher than a predetermined value acts on the connection port PA, and the pilot check valve 72c is put into a state where it does not function as a check valve.
  • connection port PA is opened to the atmosphere through the exhaust port EB of the solenoid valve 72b. Therefore, when the solenoid valve 72b is set to the second state, gas can be discharged from the first casing connection port 68a of the casing 68. As shown in FIG. When the solenoid valve 72b is in the third state, pressure does not act on any of the connection ports PA and PB, and the pilot check valve 72c functions as a check valve. Therefore, when the solenoid valve 72b is placed in the third state, the casing 68 can be kept in a state in which gas does not flow in and out.
  • the first speed controller 72d is provided in the middle of the pipeline that connects the above-described pilot check valve 72c and the first casing connection port 68a of the casing 68.
  • the first speed controller 72d is provided with a residual pressure release valve. Also, the first speed controller 72d is capable of meter-out control.
  • a second piping system 80 is connected to the second casing connection port 68b of the casing 68.
  • a silencer 82 and a second speed controller 84 are provided in the second piping system 80 .
  • the second piping system 80 is open to the atmosphere via a silencer 82 .
  • the second piping system 80 is configured to allow gas (in this embodiment, air) to flow in and out of the region of the casing 68 on the side of the second casing connection port 68b.
  • the second speed controller 84 is capable of meter-out control.
  • the buffer tank 50 can realize three states of a pressurized state, a depressurized state, and a holding state by utilizing the configuration described above. Each of these states can be realized by controlling the movement of the piston portion 62 inside the tank portion 52 by the drive portion 64 forming the volume variation mechanism 54 .
  • the pressurized state is a state in which a pressurized force is applied to the fluid.
  • the pressurized state can be realized by reducing the volume of the communication space 58 communicating with the supply passage 40 in the tank portion 52 by the volume variation mechanism 54 . More specifically, when the buffer tank 50 is put into the pressurized state, as shown in FIG. supply. As a result, pressure does not act on the connection port PA of the pilot check valve 72c, and pressure acts on the connection port PB. Gas is introduced into the first space 70a through a first casing connection port 68a provided in the casing 68 . Along with this, the partition wall 70 moves in the direction in which the first space 70 a expands inside the casing 68 .
  • the pressure acting on the piston portion 62 connected to the partition wall 70 via the rod portion 66 on the non-communication space 60 side is increased. Accordingly, the piston portion 62 moves in the direction in which the volume of the communication space 58 is reduced. In this manner, the buffer tank 50 is in a pressurized state that exerts a pressurizing force on the fluid.
  • a reduced pressure state is a state in which a reduced pressure force is exerted on a fluid.
  • the reduced pressure state can be realized by increasing the volume of the communication space 58 communicating with the supply passage 40 in the tank portion 52 by the volume variation mechanism 54 . More specifically, when the buffer tank 50 is decompressed, gas is supplied to the solenoid valve 72b from the supply source 72a while the solenoid valve 72b constituting the drive unit 64 is placed in the second state, as shown in FIG. do. As a result, a pressure equal to or higher than a predetermined value acts on the connection port PA of the pilot check valve 72c, and the pilot check valve 72c does not function as a check valve. Also, the connection port PA is opened to the atmosphere through the exhaust port EB of the solenoid valve 72b.
  • the holding state is a state in which neither pressurizing force nor depressurizing force is exerted on the fluid.
  • the holding state can be realized by stopping the volume change mechanism 54 from increasing or decreasing the volume of the communication space 58 . More specifically, when the buffer tank 50 is placed in the holding state, the solenoid valve 72b constituting the driving section 64 is placed in the third state, as shown in FIG. As a result, pressure does not act on any of the connection ports PA, PB provided in the pilot check valve 72c, and the pilot check valve 72c functions as a check valve. Therefore, when the solenoid valve 72b is placed in the third state, the casing 68 can be kept in a state in which gas does not flow in and out. Therefore, the partition wall 70 is stopped inside the casing 68 .
  • the buffer tank 50 is in a holding state in which neither pressurization force nor depressurization force acts on the fluid.
  • a remaining amount grasping unit 90 is provided on the downstream side of the buffer tank 50 described above in the flow direction of the fluid toward the discharge device 30 .
  • the remaining amount grasping unit 90 is for grasping the remaining amount of the fluid in the discharge device 30 .
  • the remaining amount grasping unit 90 grasps the remaining amount of the fluid in the discharge device 30 by directly measuring the state of supply of the fluid to the discharge device 30, and the discharge of the fluid in the discharge device 30. It is preferable to indirectly grasp the remaining amount of the fluid in the discharge device 30 from the state.
  • the remaining amount grasping unit 90 determines the flow rate in the ejection device 30 from measured values related to the supply state of the fluid, such as the supply pressure of the fluid to the ejection device 30 and the flow rate of the fluid to the ejection device 30 . It is preferable to indirectly grasp the remaining amount of the animal.
  • the remaining amount grasping unit 90 includes, for example, a sensor 92 for measuring the supply pressure and flow rate of the fluid, and a process for grasping the remaining amount of the fluid in the discharge device 30 based on the measured value by the sensor 92. It is preferable that the sensor 92 and the processing unit 94 are separately provided. In this embodiment, a pressure sensor for detecting the supply pressure of the fluid to the ejection device 30 (hereinafter also referred to as "supply pressure P") is employed as the sensor 92 . Also, the function of the processing unit 94 is performed by the control device 200, which will be described later.
  • the control device 200 can grasp the remaining amount of the fluid in the ejection device 30 .
  • the supply pressure P detected by the sensor 92 is within a range of an upper limit (hereinafter also referred to as "upper pressure PH”) and a lower limit (hereinafter referred to as "lower limit pressure PL") of a predetermined pressure range ( On the condition that PL ⁇ P ⁇ PH), the control device 200 grasps that the remaining amount of the fluid in the ejection device 30 is within the appropriate range.
  • the control device 200 is for controlling the operation of the fluid discharge system 10 .
  • the control device 200 performs operation control of the pump 20, the discharge device 30, the buffer tank 50, etc., in addition to the function as the processing portion 94 of the remaining amount grasping portion 90 described above.
  • the fluid discharge system 10 is operable in four types of operation modes under the control of the control device 200 .
  • the fluid dispensing system 10 can operate in four modes of operation consisting of (1) pump supply mode, (2) tank accumulation mode, (3) tank supply mode, and (4) combined supply mode. It is said that Further, the fluid discharge system 10 can stably discharge the fluid in the discharge device 30 by sequentially performing operations in four types of operation modes.
  • operations of the fluid discharge system 10 will first be described with respect to four operation modes. After explaining the operation in each operation mode, the operation of the fluid discharge system 10 realized by sequentially performing the operation in each operation mode will be described.
  • the pump supply mode is an operation mode in which fluid is supplied from the pump 20 to the discharge device 30 while the buffer tank 50 is kept in a holding state.
  • the control device 200 opens the valve 48 provided between the buffer tank 50 and the pump 20 in the supply path 40 .
  • the control device 200 controls the operation of the pump 20 so as to operate and stop according to the remaining amount of the fluid in the discharge device 30 ascertained by the remaining amount ascertaining section 90 .
  • the control device 200 uses the supply pressure P to the discharge device 30 detected by the sensor 92 as an indicator to grasp the remaining amount of fluid in the discharge device 30, and operates the pump 20 according to the supply pressure P. control. Specifically, as shown in the timing chart of FIG. 7, the control device 200 does not need to supply the fluid to the ejection device 30 on condition that the supply pressure P is equal to or higher than the predetermined upper limit pressure PH. to stop the operation of the pump 20. On the other hand, on the condition that the supply pressure P is equal to or lower than the predetermined lower limit pressure PL, the control device 200 determines that the remaining amount of fluid in the discharge device 30 is below the appropriate value, and causes the pump 20 to operate. Operation of the fluid dispensing system 10 in the pump delivery mode is as shown in the flow chart of FIG. The operation of the fluid dispensing system 10 in the pumping mode will now be described in greater detail with reference to the flow chart of FIG.
  • Step 1-1 At step 1-1, the control device 200 opens the valve 48 . Here, if the valve 48 is already open, the valve 48 is kept open. After that, the control device 200 advances the control flow to step 1-2.
  • Step 1-2 the control device 200 confirms whether or not the amount of fluid remaining in the reservoir 22 of the pump 20 has decreased to the lower limit of the reservoir 22 .
  • the control device 200 advances the control flow to step 1-3.
  • Step 1-3 the control device 200 confirms whether or not the supply pressure P detected by the sensor 92 forming the remaining amount grasping section 90 is equal to or lower than the lower limit pressure PL.
  • the control device 200 waits in step 1-3.
  • the control device 200 advances the control flow to step 1-4.
  • Step 1-4 the controller 200 causes the pump 20 to operate. As a result, the fluid stored in the storage section 22 is pressure-fed toward the discharge device 30 by the pump 20 . After that, the control device 200 advances the control flow to step 1-5.
  • Step 1-5) the control device 200 confirms whether or not the remaining amount of fluid in the reservoir 22 of the pump 20 has reached the lower limit.
  • the control device 200 advances the control flow to step 1-6 when the remaining amount of the fluid in the reservoir 22 has reached the lower limit.
  • the control device 200 advances the control flow to step 1-7.
  • Step 1-6 In step 1-5 described above, when the remaining amount of the fluid in the reservoir 22 has reached the lower limit, the fluid cannot be supplied to the discharge device 30 even if the pump 20 is operated any more. Therefore, at step 1-6, the control device 200 terminates the series of control flows.
  • Step 1-7 the control device 200 confirms whether or not the supply pressure P is equal to or higher than the upper limit pressure PH.
  • the control device 200 returns the control flow to step 1-5 in order to continue the supply of the fluid to the discharge device 30 .
  • the control device 200 advances the control flow to step 1-8.
  • Step 1-8 the controller 200 stops the pump 20.
  • FIG. As a result, the supply of the fluid from the pump 20 to the discharge device 30 is stopped. After that, the controller 200 advances the control flow to step 1-9.
  • Step 1-9 the controller 200 checks the amount of fluid remaining in the reservoir 22 of the pump 20.
  • the control device 200 returns the control flow to step 1-3.
  • the fluid cannot be supplied to the discharge device 30 by the pump 20 any more, so the series of control flows is completed.
  • the tank accumulation mode is an operation mode in which the fluid is accumulated (charged) in the buffer tank 50 in preparation for the tank supply mode, which will be described in detail later, while continuing to supply the fluid from the pump 20 .
  • the tank accumulation mode is an operation mode in which fluid is accumulated inside the buffer tank 50 (the communication space 58) by sucking the fluid into the buffer tank 50.
  • FIG. In the tank accumulation mode the operation of the buffer tank 50 during accumulation is controlled based on the measurement value of the remaining amount grasping section 90 .
  • the tank accumulation mode is an operation mode in which the discharge device 30 can continue discharging the fluid even while the fluid is being accumulated in the buffer tank.
  • the control device 200 when operating in the tank accumulation mode, the control device 200 opens the valve 48 provided in the supply path 40 so that the fluid can be supplied from the pump 20 to the buffer tank 50. state. In addition, the control device 200 controls the operation of the pump 20 so as to operate and stop according to the remaining amount of the fluid in the discharge device 30 ascertained by the remaining amount ascertaining section 90 .
  • the control device 200 controls the operation of the pump 20 and the buffer tank 50 based on the measurement values of the remaining amount grasping section 90, as shown in the operation explanatory diagram of FIG. 9 and the timing chart of FIG. Control.
  • the control device 200 uses the supply pressure P to the discharge device 30 as an index to grasp the remaining amount of the fluid in the discharge device 30 and controls the operation of the pump 20 and the buffer tank 50 according to the supply pressure P.
  • the supply pressure P is higher than the predetermined upper limit pressure PH (first upper limit)
  • the fluid is sufficiently stored in the discharge device 30, so the buffer tank 50 is put into a reduced pressure state.
  • the fluid is accumulated in the communication space 58 of the tank portion 52 . More specifically, as shown in FIG.
  • the control device 200 opens the valve 48 to stop the pump 20 and decompresses the buffer tank 50 . Thereby, the fluid is accumulated in the buffer tank 50 .
  • the operating conditions such as the timing and duration of reducing the pressure in the buffer tank 50 are defined in consideration of the undershoot of the supply pressure P, such as limiting to a predetermined time after the supply pressure P reaches the upper limit pressure PH. good to do
  • the control device 200 opens the valve 48 to operate the pump 20 and puts the buffer tank 50 in the holding state. Thereby, the control device 200 supplies the fluid pressure-fed by the pump 20 to the discharge device 30 .
  • the control device 200 By performing such control in the tank accumulation mode, the control device 200 aims for a state in which the supply pressure P is sufficiently high (when there is a margin in the remaining amount of the fluid in the discharge device 30). Animals are allowed to accumulate in buffer tank 50 . That is, in the fluid discharge system 10, the control device 200 utilizes the advantage that the buffer tank 50 can realize the holding state, and controls the operation in the tank accumulation mode. Operation of the fluid dispensing system 10 in the tank accumulation mode is as shown in the flow chart of FIG. The operation of the fluid dispensing system 10 in the tank accumulation mode will now be described in greater detail with reference to the flow chart of FIG.
  • Step 2-1 the control device 200 opens the valve 48 .
  • the valve 48 is kept open.
  • the fluid can be pumped from the pump 20 to the buffer tank 50 and the discharge device 30 .
  • the control device 200 advances the control flow to step 2-2.
  • Step 2-2 the control device 200 confirms whether or not the amount of fluid remaining in the storage section 22 of the pump 20 has decreased to the lower limit of the storage section 22 or not.
  • the control flow according to FIG. 11 is ended.
  • the control device 200 advances the control flow to step 2-3.
  • Step 2-3 the control device 200 confirms whether the supply pressure P detected by the sensor 92 forming the remaining amount grasping section 90 is equal to or lower than the lower limit pressure PL.
  • the control device 200 advances the control flow to step 2-4.
  • Step 2-4 the controller 200 causes the pump 20 to operate. As a result, the fluid stored in the storage section 22 is pressure-fed toward the discharge device 30 by the pump 20 . After that, the control device 200 advances the control flow to step 2-5.
  • Step 2-5) the control device 200 confirms whether or not the remaining amount of fluid in the reservoir 22 of the pump 20 has reached the lower limit.
  • the control device 200 advances the control flow to step 2-6 when the remaining amount of the fluid in the reservoir 22 has reached the lower limit.
  • the control device 200 advances the control flow to step 2-7.
  • Step 2-6 When the control flow has moved to step 2-6, the remaining amount of fluid in the reservoir 22 is insufficient. Therefore, the control device 200 stops the pump 20 . After that, the control flow is terminated.
  • Step 2-7) the control device 200 confirms whether or not the supply pressure P is equal to or lower than the upper limit pressure PH.
  • the control flow is returned to step 2-5 and the operation of the pump 20 is continued.
  • the control device 200 advances the control flow to step 2-8.
  • Step 2-8 At step 2-8, the controller 200 stops the pump 20.
  • the control device 200 advances the control flow to step 2-9.
  • Step 2-9) the control device 200 decompresses the buffer tank 50 .
  • the control device 200 controls the operation of the solenoid valve 72b that constitutes the volume variation mechanism 54 of the buffer tank 50 so as to be in the second state.
  • gas is supplied to the solenoid valve 72b from a supply source 72a such as an air compressor.
  • a supply source 72a such as an air compressor.
  • the function of the pilot check valve 72c as a check valve is lost, and the first casing 68 of the volume variation mechanism 54 through the connection port PA of the pilot check valve 72c and the exhaust port EB of the solenoid valve 72b. Gas is discharged from the connection port 68a.
  • the partition wall 70 begins to move inside the casing 68 , and the piston part 62 moves in the direction in which the volume of the communication space 58 increases.
  • the buffer tank 50 is in a decompressed state in which decompressing force acts on the fluid.
  • the communication space 58 of the buffer tank 50 is in a decompressed state, the fluid begins to flow into the communication space 58 from the supply passage 40 and is accumulated.
  • the control device 200 advances the control flow to step 2-10.
  • Step 2-10) the control device 200 manages the accumulated amount so that the accumulated amount after starting accumulation of the fluid in the buffer tank 50 at step 2-9 is within a predetermined range.
  • the amount of fluid accumulated in the buffer tank 50 for example, a method of directly measuring and deriving it with a residual amount sensor or the like, or a method of detecting and subtracting the amount of inflow and outflow of the fluid into the buffer tank 50.
  • the amount of the fluid can be directly or indirectly derived and grasped by a derivation method or the like, or can be indirectly grasped by the time when the fluid flows into or out of the buffer tank 50 or the like.
  • the control device 200 starts accumulating the fluid in the buffer tank 50 in step 2-9 based on the time that has elapsed since the buffer tank 50 was depressurized in step 2-9. to manage the accumulated amount of
  • the control device 200 confirms whether or not the elapsed time Tx from the start of accumulating the fluid in the buffer tank 50 at step 2-9 is equal to or longer than the predetermined time T2.
  • the elapsed time T can be measured, for example, by a timer included in the control device 200 .
  • the control device 200 advances the control flow to step 2-11.
  • Step 2-11) the control device 200 switches the buffer tank 50 to the holding state, and puts neither pressurizing force nor depressurizing force on the fluid. Specifically, the control device 200 puts the solenoid valve 72b provided in the drive section 64 of the buffer tank 50 into the third state. As a result, the pressure does not act on any of the connection ports PA and PB provided in the pilot check valve 72c, and the pilot check valve 72c functions as a check valve. to stop. As a result, the partition wall 70 arranged inside the casing 68 stops, and the piston portion 62 connected to the partition wall 70 stops inside the tank portion 52 . In this manner, the control device 200 puts the buffer tank 50 into the holding state. After that, the controller 200 advances the control flow to step 2-12.
  • Step 2-12) the control device 200 confirms whether or not the amount of fluid stored in the buffer tank 50 has reached the upper limit.
  • the buffer tank 50 may be provided with a remaining amount sensor or a position sensor capable of detecting the position of the partition wall 70, and the output value from these sensors Alternatively, the inflow and outflow of the fluid to the buffer tank 50 can be detected or derived, and the determination can be made based on the inflow and outflow. If it is determined in step 2-12 that the amount of fluid stored in the buffer tank 50 has not reached the upper limit, the control device 200 shifts the control flow to step 2-2 to further advance accumulation of the fluid. back to On the other hand, when it is determined that the amount of fluid stored in the buffer tank 50 has reached the upper limit, the control device 200 completes a series of control flows.
  • the tank supply mode is an operation mode in which fluid is supplied from the buffer tank 50 to the discharge device 30 while the pump 20 is stopped. Operation in the tank supply mode is performed, for example, when the pump 20 is stopped for replacement of the reservoir 22 in the pump 20 or replenishment of fluid to the reservoir 22, and flow from the buffer tank 50 to the supply path 40 is performed. This is an operation mode for continuing the supply of the fluid to the ejection device 30 by discharging the animal.
  • the operations of the pump 20 and the buffer tank 50 are controlled based on the measurement values of the remaining amount grasping unit 90, as shown in the operation explanatory diagram of FIG. 12 and the timing chart of FIG.
  • the buffer tank 50 is controlled to discharge the fluid. More specifically, on condition that the supply pressure P detected by the sensor 92 falls below the predetermined lower limit pressure PL, the pump 20 is stopped and the buffer tank 50 is pressurized while the valve 48 is closed. pressure. As a result, the fluid is supplied from the buffer tank 50 to the discharge device 30 in a state where the fluid is not pumped by the pump 20 .
  • the lower limit pressure PL which is the second lower limit value, is the same value (pressure) as the first lower limit value in the above-described tank accumulation mode, but may be different values (pressure).
  • the operation is controlled so that the buffer tank 50 stops discharging the fluid on condition that the measured value of the remaining amount grasping unit 90 exceeds a predetermined upper limit (second upper limit).
  • a predetermined upper limit (second upper limit).
  • the pump 20 is stopped and the valve 48 is closed.
  • the buffer tank 50 is put into a holding state. This suppresses excessive supply of the fluid to the discharge device 30 which is sufficiently filled with the fluid.
  • the upper limit pressure PH which is the second upper limit value, is the same value (pressure) as the first upper limit value in the tank accumulation mode described above, but may be different values (pressure).
  • Step 3-1 the control device 200 confirms the storage state of the fluid in the buffer tank 50.
  • FIG. As a result, if the amount of fluid stored in the buffer tank 50 is at the lower limit, there is a concern that the buffer tank 50 will not be able to supply the fluid, so the control device 200 completes the series of control flows.
  • "when the storage amount of the fluid in the buffer tank 50 is the lower limit value" means that even if the storage amount is reduced to a level at which the fluid cannot be supplied, However, in this embodiment, the control device 200 treats the stage slightly before the level at which the fluid cannot be supplied (the state in which a little fluid remains) as the case where the amount of fluid stored is the lower limit value. Define and control operations. On the other hand, if the amount of fluid stored in the buffer tank 50 is greater than the lower limit, the control device 200 advances the control flow to step 3-2.
  • Step 3-2 the control device 200 confirms the remaining amount of the fluid in the discharge device 30.
  • the control device 200 confirms whether or not the supply pressure P detected by the sensor 92 of the remaining amount grasping section 90 is equal to or lower than a predetermined lower limit pressure PL (second lower limit value).
  • a predetermined lower limit pressure PL second lower limit value
  • the control device 200 waits in step 3-2.
  • the control device 200 advances the control flow to step 3-3.
  • Step 3-3) At step 3-3, the control device 200 puts the buffer tank 50 into a pressurized state. As a result, the control device 200 applies pressure to the fluid in the buffer tank 50 and discharges the fluid from the buffer tank 50 through the supply path 40 toward the ejection device 30 . Specifically, the control device 200 controls the volume variation mechanism 54 provided in the buffer tank 50 to move the piston portion 62 in the direction in which the volume of the communication space 58 communicating with the supply passage 40 decreases. . More specifically, the control device 200 supplies gas to the solenoid valve 72b from the supply source 72a while setting the solenoid valve 72b provided in the driving section 64 to the first state.
  • gas pressure-fed from a supply source 72a such as an air compressor is introduced into the first space 70a of the casing 68 from the first casing connection port 68a through the solenoid valve 72b and the pilot check valve 72c.
  • a supply source 72a such as an air compressor
  • the partition wall 70 and the piston portion 62 are actuated, and the piston portion 62 moves in the direction in which the volume of the communication space 58 is reduced.
  • the control device 200 pressurizes the buffer tank 50 .
  • the buffer tank 50 is pressurized, the fluid stored in the communication space 58 is discharged through the supply passage 40 toward the ejection device 30 .
  • Step 3-4) the control device 200 confirms whether the remaining amount of fluid in the buffer tank 50 has decreased to the lower limit.
  • the control flow proceeds to step 3-5, and when it has not reached the lower limit, the control flow proceeds to step 3-6. can be advanced to
  • Step 3-5 the controller 200 stops discharging the fluid from the buffer tank 50.
  • FIG. Specifically, the control device 200 brings the buffer tank 50 into the holding state in the same manner as in step 2-11 described above. After that, the control device 200 completes a series of control flows.
  • Step 3-6 the control device 200 checks whether or not the discharge device 30 has been filled with a sufficient amount of fluid. Specifically, the control device 200 confirms whether or not the supply pressure P has reached a predetermined upper limit pressure PH (second upper limit). Here, if the supply pressure P is less than the upper limit pressure PH, the control device 200 returns the control flow to step 3-4. On the other hand, if the supply pressure P is equal to or higher than the upper limit pressure PH, the control device 200 advances the control flow to step 3-7.
  • PH second upper limit
  • Step 3-7) At step 3-7, the control device 200 brings the buffer tank 50 into the holding state in the same manner as at steps 2-11 and 3-5 described above. After that, the controller 200 advances the control flow to step 3-8.
  • Step 3-8) the control device 200 confirms the storage state of the fluid in the buffer tank 50.
  • FIG. As a result, when the amount of fluid stored in the buffer tank 50 is greater than the lower limit, the control device 200 returns the control flow to step 3-2.
  • the amount of fluid stored in the buffer tank 50 is at the lower limit, the operation in the tank supply mode cannot be performed any more, and the series of control flows is completed.
  • the combined supply mode is an operation mode in which fluid is supplied to the discharge device 30 from both the pump 20 and the buffer tank 50 .
  • the operation in the combined supply mode is, for example, at the end of the tank supply mode described above, when it is assumed that the remaining amount of fluid in the tank unit 52 is low, the fluid from the buffer tank 50 to the discharge device 30 This operation mode is performed for the purpose of, for example, supplementing the supply of fluid from the pump 20 . If the combined supply mode is operated when it is assumed that the remaining amount of the fluid in the tank portion 52 is low, the supply pressure of the fluid to the discharge device 30 is stabilized and the flow accumulated in the buffer tank 50 is stabilized. It is possible to use up the animals at the same time.
  • the operation mode is switched to the combined supply mode, and the pump 20 is also used to supply the fluid in addition to the buffer tank 50.
  • both the pump 20 and the buffer tank 50 are operated under the condition that the measured value of the remaining amount grasping unit 90 is below a predetermined lower limit when supplying the fluid to the discharge device 30.
  • the operation is controlled so as to supply the fluid toward the discharge device 30 . More specifically, on the condition that the supply pressure P detected by the sensor 92 falls below the predetermined lower limit pressure PL, the control device 200 pressurizes the buffer tank 50 and opens the valve 48 to open the pump. 20 to drive.
  • the control device 200 causes the fluid to be supplied to the discharge device 30 from both the buffer tank 50 and the pump 20 .
  • the fluid is supplied by both the pump 20 and the buffer tank 50 in the composite supply mode, by making the pump 20 and the buffer tank 50 start pumping the fluid at different times, the fluid existing in either the pump 20 or the buffer tank 50 can be You can adjust whether to use the fluid that you want to use preferentially.
  • the controller 200 controls the buffer tank 50 in order to satisfy the desire to surely use up the fluid in the buffer tank 50 in each cycle. Control is performed to delay the timing of starting pressure-feeding of the fluid by the pump 20 with respect to the timing of starting pressure-feeding of the fluid by the tank 50 .
  • the pump 20 and the buffer tank 50 are controlled to stop discharging the fluid on condition that the measured value of the remaining amount grasping unit 90 exceeds a predetermined upper limit. More specifically, in the composite supply mode, the pump 20 is stopped and the buffer tank 50 is placed in the holding state on condition that the supply pressure P detected by the sensor 92 exceeds the predetermined upper limit pressure PH. This suppresses excessive supply of the fluid to the discharge device 30 which is sufficiently filled with the fluid.
  • Step 4-1 At step 4-1, the timer provided in the control device 200 starts counting time. After that, the control device 200 advances the control flow to step 4-2.
  • Step 4-2 the control device 200 confirms whether or not the time measured by the timer (hereinafter also referred to as timer time Ty) has exceeded a predetermined time T1.
  • the predetermined time T1 is the time measured to determine when to terminate the composite supply mode.
  • the predetermined time T1 instead of providing limit switches or the like at two locations, one a little before the lower limit of the buffer tank 50 and the other at the lower limit, a little before the lower limit of the buffer tank 50 can be configured to be provided only. Specifically, when the operation is continued after the timing when the remaining amount of the fluid is detected by the sensor provided slightly before the lower limit of the buffer tank 50, the time when the buffer tank 50 is assumed to be empty.
  • the composite supply mode can be ended at an appropriate timing.
  • the predetermined time T1 is used as an index to end the combined supply mode, even if the liquid hardens at the bottom of the buffer tank 50 and the piston does not move all the way down, the combined supply mode never ends.
  • the control device 200 completes the control flow.
  • the control device 200 advances the control flow to step 4-3.
  • Step 4-3 the control device 200 confirms the supply pressure P to the ejection device 30.
  • the control flow is returned to step 4-2.
  • the control device 200 advances the control flow to step 4-4.
  • Step 4-4 the control device 200 pressurizes the buffer tank 50 in the same manner as at step 3-3 described above. As a result, a pressurizing force acts on the fluid in the buffer tank 50 , and the fluid is supplied from the buffer tank 50 toward the ejection device 30 . After that, the control device 200 advances the control flow to step 4-5.
  • Step 4-5 the control device 200 confirms the time that has elapsed since the buffer tank 50 was pressurized at step 4-4 (hereinafter also referred to as "pressurization time Tp").
  • the predetermined time T3 corresponds to a delay time for delaying the timing of starting pressure-feeding of the fluid by the pump 20 with respect to the timing of starting pressure-feeding of the fluid by the buffer tank 50 in the combined supply mode.
  • the control device 200 causes the control flow to wait in step 4-5.
  • the pressurization time Tp reaches or exceeds the predetermined time T3, the control device 200 advances the control flow to step 4-6.
  • Step 4-6 the controller 200 causes the pump 20 to operate and the discharge device 30 to supply fluid. At this time, the supply of the fluid to the ejection device 30 by the buffer tank 50, which has already started in step 4-4, is also continued. Therefore, by operating the pump 20 in step 4-6, both the buffer tank 50 and the pump 20 supply fluid to the discharge device 30. FIG. When the pump 20 starts operating, the controller 200 advances the control flow to step 4-7.
  • Step 4-7) the control device 200 confirms the timer time Ty started at step 4-1.
  • the control device 200 advances the control flow to step 4-8. If the timer time Ty is less than the predetermined time T1, the control device 200 advances the control flow to step 4-9.
  • Step 4-8) the control device 200 stops the pump 20 and puts the buffer tank 50 in the holding state.
  • the control for setting the buffer tank 50 to the holding state is performed in the same manner as in step 2-11 described above.
  • both the pump 20 and the buffer tank 50 stop supplying fluid to the discharge device 30 .
  • the controller 200 completes the control flow.
  • Step 4-9) the control device 200 confirms the supply pressure P to the ejection device 30.
  • the control flow is returned to step 4-7.
  • the control device 200 advances the control flow to step 4-10.
  • Step 4-10) At step 4-10, the control device 200 stops the pump 20 and puts the buffer tank 50 in the holding state, as in step 4-8. After that, the control device 200 advances the control flow to step 4-11.
  • Step 4-11 the control device 200 confirms the timer time Ty started at step 4-1.
  • the control device 200 completes a series of control flows. If the timer time Ty is less than the predetermined time T1, the control device 200 returns the control flow to step 4-3.
  • Fluid dispensing system 10 operates in four modes of operation, as described above, consisting of (1) pump supply mode, (2) tank accumulation mode, (3) tank supply mode, and (4) combined supply mode. It is possible. Next, the overall operation of the fluid discharge system 10 realized by sequentially performing operations in these operation modes will be described.
  • the overall operation of the fluid discharge system 10 includes a first operation pattern in which the fluid is accumulated in the buffer tank 50 in the initial stage, and a second operation pattern in which the fluid is accumulated in the buffer tank 50 in the intermediate stage. , can be operated. Therefore, in the following description, the operation in the first operation pattern will be described first, and then the operation in the second operation pattern will be described.
  • the first operation pattern is an operation pattern in which operation in each operation mode is repeated in the order of tank accumulation mode ⁇ pump supply mode ⁇ tank supply mode ⁇ combined supply mode.
  • a mode switching condition for switching from operation in each operation mode to operation in the next operation mode is set for each operation mode.
  • the control device 200 performs control to switch the operation mode each time the mode switching condition is satisfied.
  • the control device 200 controls the operation of the fluid discharge system 10 according to the flowchart shown in FIG. 18 and the timing chart shown in FIG.
  • FIG. 18 the operation of the fluid discharge system 10 according to the first operation pattern
  • Step 5-1 the control device 200 starts operation in the tank accumulation mode according to the control flow of FIG. After that, the control device 200 advances the control flow to step 5-2.
  • Step 5-2 the control device 200 checks the remaining amount of fluid accumulated in the buffer tank 50 in the fluid discharge system 10 operating in the tank accumulation mode. Here, when it is confirmed that the accumulated amount of fluid in the buffer tank 50 has reached the upper limit, the control device 200 advances the control flow to step 5-3.
  • Step 5-3 the control device 200 starts operation in the pump supply mode according to the control flow of FIG. After that, the controller 200 advances the control flow to step 5-4.
  • Step 5-4 the controller 200 checks the amount of fluid remaining in the reservoir 22 of the pump 20 in the fluid delivery system 10 operating in the pump supply mode. Here, when it is confirmed that the remaining amount of fluid in the reservoir 22 has reached the lower limit, the control device 200 advances the control flow to step 5-5.
  • Step 5-5 At step 5-5, the control device 200 starts operation in the tank supply mode according to the control flow of FIG. Controller 200 then advances the control flow to step 5-6.
  • Step 5-6) the controller 200 checks the amount of fluid remaining in the buffer tank 50 in the fluid dispensing system 10 operating in the tank supply mode.
  • the control device 200 advances the control flow to step 5-7.
  • the state in which "the remaining amount of the fluid in the buffer tank 50 has reached the lower limit" may be a state in which the amount of liquid stored has decreased to a level at which the fluid cannot be supplied.
  • the control device 200 defines a stage slightly before the level at which the fluid cannot be supplied (a state in which a little fluid remains) as a case where the remaining amount of fluid is the lower limit value, and operates control.
  • Step 5-7 the control device 200 starts operation in the combined supply mode according to the control flow of FIG. Controller 200 then advances the control flow to step 5-8.
  • Step 5-8 the controller 200 checks the timer period Ty for the fluid dispensing system 10 operating in the combined feed mode.
  • the control device 200 returns the control flow to step 5-1.
  • the operation is controlled by the control device 200 according to the flow described above.
  • the first operation pattern accumulates the fluid in the buffer tank 50 in the initial stage (step 5-1). Therefore, when the fluid discharge system 10 is operated according to the first operation pattern, for example, not only when the fluid in the reservoir 22 of the pump 20 runs out, but also when an abnormality occurs in the pump 20, the pump 20 Even when the fluid cannot be supplied, the fluid accumulated in the buffer tank 50 can be supplied to the ejection device 30 .
  • the second operation pattern is an operation pattern in which operation in each operation mode is repeated in the order of pump supply mode ⁇ tank accumulation mode ⁇ tank supply mode ⁇ combined supply mode. Also in the second operation pattern, a mode switching condition for switching from operation in each operation mode to operation in the next operation mode is set for each operation mode.
  • the control device 200 performs control to switch the operation mode each time the mode switching condition is satisfied.
  • the control device 200 controls the operation of the fluid discharge system 10 according to the flowchart shown in FIG.
  • the operation of the fluid discharge system 10 according to the second operation pattern will be described in more detail with reference to FIG. 20 .
  • Step 6-1 the control device 200 starts operation in the pump supply mode according to the control flow of FIG. After that, the control device 200 advances the control flow to step 6-2.
  • Step 6-2 the control device 200 checks the amount of fluid remaining in the reservoir 22 of the pump 20 in the fluid discharge system 10 operating in the pump supply mode. Here, when it is confirmed that the remaining amount of the fluid in the reservoir 22 is at a stage before reaching the lower limit, the control device 200 advances the control flow to step 6-3.
  • Step 6-3 the control device 200 starts operation in the tank accumulation mode according to the control flow of FIG. Thereafter, controller 200 advances the control flow to step 6-4.
  • Step 6-4 the control device 200 checks the amount of fluid remaining in the reservoir 22 in the fluid discharge system 10 operating in the tank accumulation mode. Here, when it is confirmed that the accumulated amount of fluid in the reservoir 22 has reached the lower limit, the control device 200 advances the control flow to step 6-5.
  • Step 6-5 At step 6-5, the control device 200 starts operation in the tank supply mode according to the control flow of FIG. Controller 200 then advances the control flow to step 6-6.
  • Step 6-6 the controller 200 checks the amount of fluid remaining in the buffer tank 50 in the fluid discharge system 10 operating in the tank supply mode.
  • the control device 200 advances the control flow to step 6-7.
  • the state in which "the remaining amount of the fluid in the buffer tank 50 has reached the lower limit" may be a state in which the amount of liquid stored has decreased to a level at which the fluid cannot be supplied.
  • the control device 200 defines a stage slightly before the level at which the fluid cannot be supplied (a state in which a small amount of fluid remains) as a case where the remaining amount of fluid is the lower limit, and performs operation control. .
  • Step 6-7 the control device 200 starts operation in the combined supply mode according to the control flow of FIG. Controller 200 then advances the control flow to steps 6-8.
  • Step 6-8 the controller 200 checks the timer period Ty for the fluid dispensing system 10 operating in the combined feed mode.
  • the control device 200 returns the control flow to step 6-1.
  • the operation is controlled by the control device 200 according to the flow described above.
  • the second operation pattern performs operation in the pump supply mode prior to operation in the tank accumulation mode, and accumulates fluid in the buffer tank 50 in the tank accumulation mode in the intermediate stage (step 6-3). I do.
  • the fluid discharge system 10 is operated according to the second operation pattern, the fluid is accumulated in the buffer tank 50 before the remaining amount of the fluid in the reservoir 22 of the pump 20 reaches the lower limit, Control is performed to switch the fluid supply source to the ejection device 30 to the buffer tank 50 . Therefore, according to the second operation pattern, the period during which the fluid is accumulated (stayed) in the buffer tank 50 can be minimized.
  • the buffer tank 50 is arranged in the middle of the supply path 40 connecting the pump 20 and the discharge device 30.
  • the fluid dispensing system 10 is capable of achieving pressure working conditions in which the buffer tank 50 exerts pressure on the fluid. Further, the fluid discharge system 10 can realize a pressurized state in which a pressurizing force is applied to the fluid and a depressurized state in which a depressurized force is applied to the fluid as the pressure acting state. Therefore, the fluid discharge system 10 of the present embodiment can pressurize the fluid toward the discharge device 30 by applying pressure to the fluid toward the outside of the buffer tank 50 in a pressurized state. Therefore, the fluid discharge system 10 can suppress pressure fluctuation caused by switching the fluid supply source for the discharge device 30 from the pump 20 to the buffer tank 50 .
  • the fluid discharge system 10 can smoothly suck the fluid into the buffer tank 50 by depressurizing the buffer tank 50 and applying pressure to the fluid in the direction toward the inside of the buffer tank 50 . . Thereby, the fluid discharge system 10 can suck and accumulate the fluid in the buffer tank 50 in preparation for supplying the fluid from the buffer tank 50 to the discharge device 30 . Therefore, the fluid discharge system 10 can contribute to the stable supply of the fluid to the discharge device 30 by utilizing the fluid accumulation function of the buffer tank 50 .
  • the buffer tank 50 can realize a holding state in which no pressure is exerted on the fluid, in addition to the above-described pressure acting state (pressurized state, depressurized state). ing. Therefore, a state in which the fluid can be discharged from the discharge device 30 without using the buffer tank 50, such as during operation in the pump supply mode or when the remaining amount of fluid in the discharge device 30 is sufficient, or During operation in the tank accumulation mode, when it is not appropriate to continue accumulating liquid in the buffer tank 50 considering the amount of fluid remaining in the discharge device 30, the effect of the buffer tank 50 on the discharge device 30 Fluctuations in the supply pressure of the fluid and fluctuations in the ejection pressure of the fluid in the ejection device 30 can be suppressed. Therefore, according to the fluid discharge system 10 of the present embodiment, fluctuations in the supply pressure of the fluid to the discharge device 30 due to pressure acting on the fluid from the buffer tank 50 and fluctuations in the discharge pressure in the discharge device 30 can be suppressed.
  • the fluid discharge system 10 of the present embodiment can stably supply the fluid to the discharge device 30 by operating in each operation mode described above without providing a plurality of pumps 20 . Therefore, the fluid discharge system 10 of the present embodiment can suppress an increase in installation space and cost compared to a configuration in which a plurality of pumps 20 are provided.
  • the pressurization state in which positive pressure acts on the fluid from the buffer tank 50 side toward the supply path 40 side is the pressure acting state in which pressure is exerted on the fluid in the buffer tank 50.
  • An example of changing the pressure in three stages consisting of a reduced pressure state in which negative pressure acts on the fluid from the buffer tank 50 side toward the supply path 40 side, and a holding state in which no pressure acts on the fluid.
  • the invention is not so limited.
  • the action state of the pressure acting on the fluid may be changed in multiple steps or may be changed steplessly.
  • the first piping system 74 connected to the first casing connection port 68a of the casing 68 includes the solenoid valve 72b, the pilot check valve 72c, and the first speed controller 72d.
  • a regulator 72x may be provided as shown in FIG.
  • the pressure acting on the fluid is changed from a strongly pressurized state to a weakly pressurized state. By doing so, it becomes possible to further optimize the pressure control in the buffer tank 50 according to the operating state of the fluid discharge system 10 .
  • the buffer tank 50 includes the tank portion 52 and the volume variation mechanism 54, and the volume variation mechanism 54 controls the increase and decrease of the volume of the communication space 58, whereby the pressurized state , a reduced pressure state, or a holding state. Therefore, the fluid discharge system 10 can control the operation of the buffer tank 50 by increasing or decreasing the volume of the communication space 58 .
  • the fluid discharge system 10 includes a piston portion 62 in which the volume variation mechanism 54 separates the inside of the tank portion 52 into a communicating space 58 and a non-communicating space 60 that is not communicating with the supply path 40, and a piston and a driving portion 64 for moving the portion 62 .
  • the buffer tank 50 can realize a pressurized state, a depressurized state, and a holding state by controlling the movement of the piston portion 62 by the driving portion 64 . Therefore, the fluid discharge system 10 appropriately realizes the pressurized state, the decompressed state, and the holding state by controlling the movement of the piston portion 62 , and can stably supply the fluid to the discharge device 30 .
  • the piston part 62 was provided and the example which pressure acts on the fluid via the piston part 62 was shown, this invention is not limited to this.
  • the volume variation mechanism 54 may be configured without the piston portion 62, for example, by configuring it so that pressure can be applied directly to the fluid.
  • the drive unit 64 is configured by a gas cylinder device (an air cylinder device in this embodiment) capable of generating a driving force by inflow and outflow of gas (air). It is not limited to this.
  • the fluid discharge system 10 uses oil as the fluid as the driving unit 64, and can mechanically or electrically generate driving force by using a hydraulic cylinder device capable of generating driving force by hydraulic pressure, a motor, or the like. It is preferable to use a driving device 64x (see FIG. 23) or the like.
  • the buffer tank 50 described above is provided with a connecting portion 56 connected to the supply passage 40 at one end side of the tank portion 52, and allows fluid to flow into and out of the tank body portion 52a through the connecting portion 56.
  • the buffer tank 150 has substantially the same configuration as the buffer tank 50 described above, but serves as an inlet for the fluid to the tank main body 52a in contrast to the connection port 56b serving as an outlet for the fluid in the tank main body 52a.
  • the difference is that the connection port 56c is provided above. With such a configuration, the residence time of the fluid can be minimized, and the use up of the accumulated fluid can be further promoted.
  • the fluid discharge system 10 described above sets a time limit for accumulating the fluid in the buffer tank 50 as a countermeasure for suppressing a decrease in the supply pressure P to the discharge device 30.
  • the present invention is not limited to this.
  • accumulation of the fluid in the buffer tank 50 may be stopped on condition that the supply pressure P to the ejection device 30 becomes equal to or less than a predetermined value.
  • the fluid discharge system 10 can improve the ability of the pump 20 to supply the fluid compared to other operation modes, and the operation start time of the pump 20 is The decrease in the supply pressure P may be suppressed by making the timing earlier than the illustrated timing.
  • the accumulated amount of the fluid in the buffer tank 50 can be calculated by, for example, directly measuring it with a residual amount sensor or the like, or by detecting the inflow and outflow of the fluid in the buffer tank 50 and subtracting it.
  • the amount of the fluid can be directly or indirectly derived and grasped by a derivation method or the like, or can be indirectly grasped by the time when the fluid flows into and out of the buffer tank 50, or the like. .
  • the above-described fluid discharge system 10 operates the pump 20 after a while from the start of supply of the fluid by the buffer tank 50, thereby giving priority to the fluid in the buffer tank 50.
  • the present invention is not limited to this.
  • the speed of the pump 20 is reduced to lower the pumping capacity, or the pressure of the buffer tank 50 is increased, so that the pump 20 and the buffer tank 50 can supply the fluid.
  • the fluid in the buffer tank 50 is preferentially consumed.
  • the supply of the fluid by the buffer tank 50 and the supply of the fluid by the operation of the pump 20 may be started at the same time.
  • a sensor such as a limit switch is installed only slightly before the lower limit of the buffer tank 50 (just before the remaining amount of fluid becomes zero).
  • Switching the operation mode to the combined supply mode (step 5-7, step 6-7) when it is detected that the remaining amount of fluid is at the lower limit (equivalent to step 5-6, step 6-6) can be In this case, it is determined that the remaining amount of the fluid in the buffer tank 50 has reached the lower limit by using a timer to determine switching from the composite supply mode to the next operation mode (steps 5-8 and 6-8).
  • the state in which "the remaining amount of fluid in the buffer tank 50 is at the lower limit" may be a state in which the amount of fluid stored has decreased to a level at which the fluid cannot be supplied, but the present invention is not limited to this. However, it can be defined as appropriate without departing from the gist of the present invention.
  • the state slightly before the level at which the fluid cannot be supplied (the state in which a small amount of fluid remains) is referred to as the "remaining amount of fluid in the buffer tank 50. is the lower limit” does not depart from the spirit of the present invention.
  • the fluid discharge system 10 described above is provided with a sensor 92 capable of detecting pressure between the buffer tank 50 and the discharge device 30, and controls each device based on the supply pressure P to the discharge device 30.
  • the sensor 92 may be a flow rate sensor or the like, and the remaining amount of fluid in the ejection device 30 may be grasped according to the flow rate of the fluid supplied to the ejection device 30 .
  • an accumulator is provided separately before the discharge device 30, it is preferable to grasp the remaining amount of fluid in the discharge device 30 based on the piston position of this accumulator and control each device.
  • the arrangement of the sensor 92 in the fluid discharge system 10 is not limited to that described above.
  • the sensor 92 is not limited to the supply path 40, the accumulator, or the like, and may be provided in the discharge device 30 itself (for example, the casing 100, the stator 104, or the like of the discharge device 30).
  • the fluid discharge system 10 is provided with, for example, a remaining amount sensor in the buffer tank 50 or a position sensor capable of detecting the position of the partition wall 70, and the output value from these sensors to determine the amount of fluid stored in the buffer tank 50 based on the It is good to judge the storage amount of the fluid.
  • the fluid discharge system 10 is not limited to a configuration in which sensors are arranged at the upper limit position and the lower limit position of the buffer tank 50, and the amount of fluid stored in the buffer tank 50 can be detected in a plurality of stages. It is also possible to adopt a configuration in which the amount of fluid stored can be continuously detected.
  • a detection device 300 is provided for the purpose.
  • the detection device 300 shown in FIG. 24 continuously detects the position of a member (the piston portion 62 in the illustrated example) that moves according to the remaining amount of the fluid, or the rod portion 66 and the partition wall 70 that move in conjunction therewith. , the remaining amount of the fluid in the buffer tank 50 is detected.
  • the detection device 300 is provided with a sensor dog 302 and a magnetic position detection sensor 304 .
  • the sensor dog 302 is formed so as to generate magnetism by, for example, incorporating a magnet.
  • the sensor dog 302 can be attached to an object whose position is to be detected.
  • the sensor dog 302 is attached to a position varying member 306 whose position varies according to the remaining amount of fluid in the buffer tank 50, such as the piston portion 62, the rod portion 66, and the partition wall 70 that constitute the cylinder in the buffer tank 50, for example. be done.
  • the rod portion 66 is selected as the position varying member 306 and the sensor dog 302 is attached to the rod portion 66 .
  • the magnetic position detection sensor 304 is a sensor that can detect the position of the sensor dog 302 based on the magnetism emitted from the sensor dog 302 .
  • the magnetic position detection sensor 304 is attached to the buffer tank 50 so that the detection range is the range in which the sensor dog 302 moves according to the increase or decrease of the fluid stored in the buffer tank 50 .
  • the magnetic position detection sensor 304 is attached to the casing 68 of the buffer tank 50 over the entire movement range where the sensor dog 302 is assumed to move according to the increase or decrease of the fluid.
  • the magnetic position detection sensor 304 is arranged to extend in the axial direction of the buffer tank 50 .
  • the fluid discharge system 10 uses a device capable of sensing the entire stroke of the cylinder in the buffer tank 50, such as the detection device 300 shown in FIG.
  • the detection device 300 By associating the relationship with the stroke of the cylinder, the remaining amount of the fluid in the buffer tank 50 can be grasped. That is, the detection device 300 can continuously detect the amount of fluid stored in the buffer tank 50 .
  • the operation control of the fluid discharge system 10 can be performed by appropriately setting or changing the upper limit value and the lower limit value of the amount of fluid stored in the buffer tank 50. It can be carried out.
  • a detection device such as a switch such as a limit switch or a sensor
  • the fluid In order to change the upper limit value and the lower limit value of the storage amount of , it is necessary to physically move the installation position of the detection device.
  • the upper limit position and the lower limit position can be set at appropriate positions within the range where the sensor dog 302 can be detected by the magnetic position detection sensor 304, and the upper limit position and the lower limit position can be set. Modifications may be made to control the operation of fluid dispensing system 10 .
  • the user interface 310 such as the operation control panel of the fluid discharge system 10 and the monitor of the control device is connected to the buffer tank 50. It is good to be able to display the remaining amount of the fluid in.
  • a remaining amount display section 312 that indicates the remaining amount of fluid in the buffer tank 50, and to display the remaining amount using an indicator, a numerical value, or the like (an indicator in the illustrated example).
  • a user interface 310 as shown in FIG. 25 is provided, in addition to or instead of the amount of fluid remaining in the buffer tank 50, it is possible to identify in which operating mode the fluid dispensing system 10 is operating. It is preferable to provide a mode display section 314 for displaying as possible. In the mode display unit 314 illustrated in FIG. 25, the display indicating the current operation mode is displayed in a color that is reversed from the display indicating the other operation modes, thereby making it possible to identify which operation mode is being used. made identifiable. As a result, the fluid discharge system 10 can intuitively grasp which operation mode it is operating in, and can clearly grasp the timing of replacing the reservoir 22 and replenishing the reservoir 22 with the fluid. It becomes possible to
  • the timing of replacing the reservoir 22 and replenishing the fluid to the reservoir 22 can be defined as appropriate. good. Therefore, as shown in FIG. 25, if the mode display section 314 clearly shows that the fluid discharge system 10 is in the tank supply mode, the storage section 22 can be replaced or the storage section 22 can be replaced. It becomes possible to clearly grasp the timing of replenishment of fluids.
  • a display portion such as an indicator displayed thereon (remaining amount display portion 312 in the illustrated example) can accept an operation, and each portion can respond to the operation. It is preferable to be able to output an operation command for and set the operation.
  • the display portion of the indicator in the remaining amount display section 312 can be operated and the length of the indicator can be adjusted.
  • the operator can intuitively perform tasks such as outputting a warning and setting either or both of the upper limit value and the lower limit value of the remaining amount of the fluid in the buffer tank 50, which is an index of the operating conditions. will be able to go to
  • the fluid discharge system 10 described above discharges the fluid from the buffer tank 50 to the supply path 40 when restricting the supply of the fluid from the pump 20 to the discharge device 30 , thereby reducing the amount of fluid to the discharge device 30 . It is assumed that an operation in which supply is continued (continuous discharge operation) can be realized. Therefore, while the fluid discharge system 10 is supplying the fluid discharged from the buffer tank 50 to the discharge device 30 in the continuous discharge operation, for example, the reservoir 22 is replenished with the fluid, or the remaining fluid is discharged. It is possible to replace the storage unit 22 whose amount has decreased with the storage unit 22 in which the remaining amount of the fluid is sufficiently secured.
  • the fluid discharge system 10 unless the storage capacity V of the fluid in the buffer tank 50 is optimized, the fluid cannot be continuously supplied to the discharge device 30 or the fluid cannot be stored in the buffer tank 50. There is a concern that is accumulated excessively. Specifically, when the storage volume V of the fluid in the buffer tank 50 is small, the fluid discharge system 10 is configured to replenish the fluid in the storage section 22 or replace the storage section 22 with the buffer. If the tank 50 runs out of fluid, the supply of the fluid to the discharge device 30 may be interrupted. Further, in the fluid discharge system 10, if the storage volume V of the fluid in the buffer tank 50 is larger than necessary, the fluid will remain accumulated in the buffer tank 50 for a long period of time. I have concerns.
  • the storage capacity V of the buffer tank 50 also takes into account variable factors such as variations in the time required for replenishing fluid to the storage section 22 or replacing the storage section 22 and the length of the supply path 40. It is desirable to be set as Therefore, when the fluid discharge system 10 performs the continuous discharge operation, the discharge amount of the fluid discharged from the discharge device 30 while the supply of the fluid from the pump 20 to the discharge device 30 is restricted, It is desirable that the storage volume V of the fluid in the buffer tank 50 is optimized in consideration of various variable factors.
  • the fluid discharge system 10 discharges the fluid from the buffer tank 50 to the supply path 40 while restricting the supply of the fluid from the pump 20 to the discharge device 30.
  • the parameter "a” is the value of is the average flow rate of the fluid to be delivered.
  • parameter "t" that constitutes (Equation 1) described above is a time limit during which the supply of the fluid from the pump 20 to the discharge device 30 is restricted during continuous discharge operation.
  • the fluid discharge system 10 restricts the supply of the fluid from the pump 20 to the discharge device 30 on the condition that the remaining amount of the fluid in the reservoir 22 is equal to or less than a predetermined lower limit. is supposed to be In addition, the fluid discharge system 10 replaces the reservoir 22 in which the remaining amount of the fluid is equal to or less than the lower limit value with another reservoir 22 sufficiently filled with the fluid, or By replenishing the fluid to the reservoir 22 that has become equal to or less than the lower limit value to restore the remaining amount of the fluid, the condition for releasing the restriction is restored.
  • the fluid discharge system 10 is in a state where the fluid required for supply to the discharge device 30 is secured in the reservoir 22, and the restriction on the supply of the fluid from the pump 20 to the discharge device 30 is lifted. . Therefore, the time limit t that constitutes the above-described (Equation 1) is set so that the remaining amount of fluid in the storage section 22 does not satisfy the predetermined restriction cancellation condition after the remaining amount of fluid in the storage section 22 becomes equal to or less than the lower limit value. It is defined based on the work time (recovery period R) assumed to be necessary to perform the work (recovery work) to restore a satisfactory state. The time limit t may be set to the same value as the recovery period R, for example. Also, the recovery period R is preferably defined by assuming the work time required for recovery work by an average worker.
  • the parameter "x" that constitutes the above-mentioned (Equation 1) is the variation in the time required for replenishing the fluid to the reservoir 22 or the replacement of the reservoir 22, the fluctuation in the length of the supply path 40, etc. It is a variable parameter that can be arbitrarily set in consideration of factors.
  • the variable parameter x may vary depending on the worker who performs recovery work for recovering the remaining amount of the fluid, or may vary depending on the arrival time S required for the fluid to reach the buffer tank 50 from the pump 20. It is better to make it variable.
  • the buffer tank 50 can change the volume of fluid that can be accumulated in the communication space 58 .
  • the buffer tank 50 can replace the tank part 52 according to the storage capacity V of the fluid derived from the above-described (Equation 1), or the upper limit of the fluid that can be accumulated in the communication space 58.
  • the storage volume V can be varied.
  • the average discharge flow rate a of the fluid discharged from the discharge device 30 while the supply of the fluid from the pump 20 to the discharge device 30 is restricted in the continuous discharge operation is It is constant regardless of the skill level of the work.
  • an average worker replaces the reservoir 22 to recover the amount of fluid stored. This is the work time required for work (recovery work) to recover from the problem, and is set to a constant value regardless of the worker. Therefore, by varying the variable parameter x according to the skill level, the storage capacity V is set to a value that takes into account the skill level.
  • the replacement work of the reservoir 22 can be performed in 10 minutes.
  • the remaining amount of fluid remaining inside the buffer tank 50 at that time is 1 [min]. (100 ml) equivalent. Therefore, by setting the storage volume V as described above, it is possible to prevent the supply of the fluid to the discharge device 30 from being interrupted, and to reduce the remaining amount of the fluid remaining in the buffer tank 50 after the replacement of the reservoir 22. can be minimized.
  • the fluid discharge system 10 of this modification can optimize the storage capacity V of the fluid in the buffer tank 50 by varying the above-described variable parameter x according to the skill level according to the reaching period S. can.
  • the average discharge flow rate a of the fluid discharged from the discharge device 30 while the supply of the fluid from the pump 20 to the discharge device 30 is restricted in the continuous discharge operation is It is constant regardless of the skill level of the work.
  • an average worker replaces the reservoir 22 to recover the amount of fluid stored. This is the work time required for work (recovery work) to recover from the problem, and is set to a constant value regardless of the worker. Therefore, by varying the variable parameter x according to the skill level, the storage capacity V is set to a value in consideration of the arrival period S.
  • the buffer tank 50 will have 20 [min] at the time the replacement of the reservoir 22 is completed. ] minutes (2000 [ml]) of fluid remains.
  • the reaching period S until the fluid reaches the buffer tank 50 from the exchanged reservoir 22 is 10 [min]
  • another 10 [min] 1000 [ml ]
  • variable parameter x is set to an optimum value according to the reaching period S, it is possible to prevent the supply of the fluid to the ejection device 30 from being interrupted, and at the same time, to reduce the amount of fluid remaining in the buffer tank 50 after the reservoir 22 is replaced. The remaining amount of animals can be minimized.
  • the fluid discharge system 10 of the present modification discharges the fluid from the buffer tank 50 to the supply path 40 while restricting the supply of the fluid from the pump 20 to the discharge device 30. Continuous discharge operation is possible to continue the supply of fluid to the device 30 . For this reason, the fluid discharge system 10 of the present modified example can replenish the fluid to the reservoir 22 during the continuous discharge operation, or replenish the reservoir 22 when the remaining amount of the fluid has decreased. It is possible to perform work such as replacing with a sufficiently secured storage section 22 . Therefore, according to the fluid discharge system 10 of this modified example, it is possible to continuously supply the fluid to the discharge device 30 while suppressing increases in installation space and cost.
  • the storage capacity V of the fluid in the buffer tank 50 is defined by the relationship of (Equation 1) described above, and at least the amount obtained by multiplying the average discharge flow rate a by the time limit t has a capacity of Therefore, the fluid discharge system 10 of the present embodiment can supply the amount of fluid required to be discharged from the discharge device 30 while the supply of the fluid from the pump 20 to the discharge device 30 is restricted in the continuous discharge operation. can be stored in the buffer tank 50.
  • (Equation 1) that defines the storage capacity V takes into consideration the variable parameter x.
  • the fluid discharge system 10 of the present modification sets the variable parameter x according to the variable factors such as the skill level of the replacement work of the reservoir 22 described above and the reaching period S, for example.
  • the storage volume V can be optimized by taking into account also. Therefore, the fluid discharge system 10 of the present modified example can control the discharge amount of the fluid discharged from the discharge device 30 while the supply of the fluid from the pump 20 to the discharge device 30 is restricted in the continuous discharge operation,
  • the storage volume V of the fluid in the buffer tank 50 can be optimized by considering various variables.
  • the fluid discharge system 10 of the present modification satisfies the predetermined restriction release condition after the remaining amount of the fluid in the reservoir 22 reaches the lower limit (replacement of the reservoir 22 in the present embodiment).
  • the time limit t is defined based on a standard recovery period R required until recovery to a state in which the remaining amount of fluid has reached a predetermined amount or more.
  • the time limit t is defined as a value reflecting the recovery period R in this way, so the fluid storage volume V is set to an optimum value using the recovery period R as an index. can.
  • the recovery period R is defined as a standard period until the remaining amount of fluid recovers to a predetermined amount or more by replacing the reservoir 22, but the present invention is limited to this.
  • the recovery period R instead of replacing the reservoir 22 in which the remaining amount of fluid is equal to or lower than the lower limit value as described above with another reservoir 22 containing a sufficient amount of fluid, the period required for the fluid to flow into the storage part 22 and recover to the predetermined remaining amount is set as the recovery period R, etc. It is preferable to set the recovery period R to an optimum value according to the means for recovering the remaining amount of the fluid in the reservoir 22, or the like.
  • the fluid discharge system 10 of this modification can optimize the storage volume V of the fluid in the buffer tank 50 in consideration of variable factors such as the skill level of the operator who performs the recovery work.
  • the parameter x is varied according to the arrival time S required for the fluid to reach the buffer tank 50 from the pump 20 .
  • the fluid discharge system 10 of the present modification optimizes the storage capacity V of the fluid in the buffer tank 50 in consideration of the arrival time S required for the fluid to reach the buffer tank 50 from the pump 20. can be achieved.
  • the storage capacity V of the fluid in the buffer tank 50 is determined by the skill level of the operator who performs recovery work for recovering the remaining amount of fluid in the storage unit 22, or the arrival period.
  • the variable parameter x such as S, is set in consideration of a single variable element to optimize the storage volume V of the fluid in the buffer tank 50, but the present invention is not limited to this.
  • the fluid discharge system 10 can set the variable parameter x in consideration of a plurality of variable factors to optimize the storage volume V of the fluid in the buffer tank 50. .
  • the fluid storage volume V in the buffer tank 50 can be further optimized.
  • the fluid discharge system 10 can have various methods and configurations for changing the storage volume V of the fluid in the buffer tank 50 without departing from the gist of the present invention.
  • the fluid discharge system 10 prepares a plurality of replaceable tank portions 52 having different capacities that can be stored, and supplies the fluid according to the fluid storage volume V and the variable parameter x derived as described above.
  • the volume of the tank part 52 can be adjusted according to the storage capacity V and the variable parameter x by combining a plurality of containers with the same or different capacities. It's good to have it.
  • the fluid discharge system 10 of this modified example may be configured such that the upper limit position of the piston portion 62 of the buffer tank 50 can be set according to the variable parameter x and the storage volume V.
  • the present invention can be suitably used in general fluid discharge systems for pumping and discharging a fluid.

Abstract

【課題】設置スペースやコストの増大を抑制しつつ、吐出装置に対して流動物を安定的に供給可能な流動物吐出システムの提供を目的とした。 【解決手段】流動物吐出システム10は、流動物を吐出する吐出装置30と、貯留部22に貯留された流動物を吐出装置30に向けて供給可能なポンプ20と、吐出装置30及びポンプ20の間を流動物が通過可能に接続する供給路40と、供給路40の中途に配置され、流動物の吸引及び排出が可能なバッファタンク50と、を有する。流動物吐出システム10は、ポンプ20から吐出装置30への流動物の供給を制限する際に、バッファタンク50から供給路40に流動物を排出することにより、吐出装置30に対する流動物の供給を継続可能であり、バッファタンク50が、流動物に対して圧力を及ぼす圧力作用状態、及び流動物に対して圧力を及ぼさない保持状態を実現可能である。

Description

流動物吐出システム
 本発明は、流動物を吐出装置に供給して吐出させる流動物吐出システムに関する。
 従来、下記特許文献1に開示されているポンプ装置のように、ペール缶等の容器に準備した流動物を汲み上げて圧送可能なものが提供されている。また従来、このようなポンプ装置を、例えば、ディスペンサ等の吐出装置に対して配管接続することにより形成された流動物吐出システムが提供されている。流動物吐出システムは、ポンプ装置によって圧送される流動物を吐出装置に供給することにより、吐出装置から流動物を吐出可能とされている。
特開2019-203465号公報
 上述した流動物吐出システムは、ポンプ装置の容器内に準備された流動物が残存している間は、吐出装置における流動物の吐出を継続できる。しかしながら、ポンプ装置側に準備された流動物がなくなると、吐出装置に対する流動物の供給が途絶える。そのため、上述した流動物吐出システムは、ポンプ装置の容器から流動物がなくなる度に吐出装置における流動物の吐出を一旦停止し、ポンプ装置への流動物の補充等を行う必要がある。
 そこで、本発明者は、流動物吐出システムについて、一台の吐出装置に対して複数台(例えば二台)のポンプ装置を準備し、吐出装置に対して流動物を供給可能なポンプ装置を適宜切り替え可能とすることを検討した。その結果、このような構成の流動物吐出システムは、吐出装置に対して接続されたポンプ装置において流動物がなくなるタイミングで、吐出装置の接続先を流動物の準備ができているポンプ装置に切り替えることが可能となり、流動物の吐出の停止を最小限に抑制できるとの知見を得た。しかしながら、このような構成とした場合には、一台の吐出装置に対して複数台(例えば二台)のポンプ装置を設ける分だけ、大きな設置スペースが必要となったり、高コスト化したりしてしまうという問題があるとの知見に至った。
 そこで本発明は、設置スペースやコストの増大を抑制しつつ、吐出装置に対して流動物を継続的に供給可能な流動物吐出システムの提供を目的とした。
 上述した課題を解決すべく、本発明者らは、流動物吐出システムについて、流動物を吐出する吐出装置と、流動物を貯留する貯留部を有し、前記貯留部に貯留された流動物を前記吐出装置に向けて供給可能なポンプと、前記吐出装置及び前記ポンプの間を流動物が通過可能に接続する供給路と、前記供給路の中途に配置され、流動物の吸引及び排出が可能なバッファタンクと、を備えたものとすることについて検討した。かかる構成とした場合、前記ポンプから前記吐出装置への流動物の供給を制限する際に、前記バッファタンクから前記供給路に流動物を排出することにより、前記吐出装置に対する流動物の供給を継続する運転(吐出継続運転)を実現可能なものとすることができる。このような構成とした場合、吐出継続運転においてバッファタンクから排出された流動物を吐出装置に供給している間に、例えば貯留部に流動物を補充したり、流動物の残量が減った貯留部を、流動物の残量が十分確保されている貯留部に取り替えたりする作業を行うことが可能となる。
 その一方で、本発明者らが鋭意検討したところ、バッファタンクにおける流動物の貯留容量Vを最適化しなければ、吐出装置に対する流動物の供給を継続的に行えなくなったり、バッファタンクに流動物が過剰に蓄積されてしまったりする懸念があるとの知見に至った。具体的には、バッファタンクにおける流動物の貯留容量Vが少ないと、貯留部に流動物を補充したり貯留部を交換したりしているうちに、バッファタンクにおける流動物の残量がなくなり、吐出装置に対する流動物の供給が途絶えてしまい兼ねない。また、バッファタンクにおける流動物の貯留容量Vが必要以上に多いと、バッファタンクに蓄積されたまま長期間に亘って残留してしまう流動物が発生してしまう懸念がある。流動物がバッファタンクにおいて長期間に亘って残存すると、流動物の変質等にも配慮が必要となってしまう。さらに、バッファタンクにおける貯留容量Vは、貯留部に流動物を補充したり貯留部を交換したりする作業に要する時間のバラツキや、供給路の長さ等の変動要素についても配慮して設定されることが望ましい。従って、流動物吐出システムは、吐出継続運転を行う場合に、ポンプから吐出装置への流動物の供給を制限している間に吐出装置から吐出される流動物の吐出量や、各種の変動要素を考慮してバッファタンクにおける流動物の貯留容量Vの最適化を図れるものであることが望ましい。
(1-1)かかる知見に基づいて提供される本発明の流動物吐出システムは、流動物を吐出する吐出装置と、流動物を貯留する貯留部を有し、前記貯留部に貯留された流動物を前記吐出装置に向けて供給可能なポンプと、前記吐出装置及び前記ポンプの間を流動物が通過可能に接続する供給路と、前記供給路の中途に配置され、流動物の吸引及び排出が可能なバッファタンクと、を有し、前記ポンプから前記吐出装置への流動物の供給を制限しつつ、前記バッファタンクから前記供給路に流動物を排出することにより、前記吐出装置に対する流動物の供給を継続する吐出継続運転が可能であり、前記吐出継続運転において前記ポンプから前記吐出装置への流動物の供給を制限している間に前記吐出装置から吐出される流動物の平均吐出流量a、及び前記吐出継続運転において前記ポンプから前記吐出装置への流動物の供給が制限される制限時間t、及び可変パラメータxに基づいて、前記バッファタンクにおける流動物の貯留容量Vが、V=a・(t+x)の関係により設定されること、を特徴とするものである。
 本発明の流動物吐出システムは、ポンプから吐出装置への流動物の供給を制限しつつ、バッファタンクから供給路に流動物を排出することにより、吐出装置に対する流動物の供給を継続する吐出継続運転が可能である。そのため、本発明の流動物吐出システムは、吐出継続運転中に、例えば貯留部に流動物を補充したり、流動物の残量が減った貯留部を、流動物の残量が十分確保されている貯留部に取り替えたりする作業を行うことが可能である。従って、本発明の流動物吐出システムによれば、設置スペースやコストの増大を抑制しつつ、吐出装置に対して流動物を継続的に供給することができる。
 また、本発明の流動物吐出システムは、吐出継続運転においてポンプから吐出装置への流動物の供給を制限している間に吐出装置から吐出される流動物の平均吐出流量a、吐出継続運転においてポンプから前記吐出装置への流動物の供給が制限される制限時間t、及び可変パラメータxに基づいて、バッファタンクにおける流動物の貯留容量Vが規定されるものとされている。ここで、貯留容量Vは、V=a・(t+x)の関係により規定され、少なくとも平均吐出流量aと制限時間tとを乗じた分の容量を有する。そのため、本発明の流動物吐出システムは、吐出継続運転においてポンプから吐出装置への流動物の供給を制限している間に吐出装置から吐出するのに必要な分の流動物をバッファタンクに蓄えることができる。また、貯留容量Vを規定する数式は、可変パラメータxを加味したものとされている。そのため、本発明の流動物吐出システムは、上述した変動要素に応じて可変パラメータxを設定することにより、変動要素も考慮に入れて貯留容量Vを最適化できる。従って、本発明によれば、吐出継続運転においてポンプから吐出装置への流動物の供給を制限している間に吐出装置から吐出される流動物の吐出量や、各種の変動要素を考慮して、バッファタンクにおける流動物の貯留容量Vを最適化できる。
(1-2)上述した本発明の流動物吐出システムは、前記吐出継続運転において、前記貯留部における流動物の残量が所定の下限値以下になることを条件として前記ポンプから前記吐出装置への流動物の供給が制限され、前記貯留部における流動物の残量が所定の制限解除条件を満足する状態に回復することを条件として前記ポンプから前記吐出装置への流動物の供給制限が解除されるものであり、前記貯留部における流動物の残量が下限値以下になってから、前記貯留部における流動物の残量が所定の制限解除条件を満足する状態に回復するまでに要する回復期間Rに基づいて前記制限時間tが規定されるものであると良い。
 本発明の流動物吐出システムは、上述した構成とすることにより、貯留部における流動物の残量が所定の下限値以下になった状態から、所定の制限解除条件を満足する状態に回復するまでに要する回復期間Rを反映した値となるように制限時間tを設定できる。これにより、本発明の流動物吐出システムは、流動物の貯留容量Vを回復期間Rを考慮した最適な値に設定できる。
(1-3)上述した本発明の流動物吐出システムは、前記吐出継続運転において、前記貯留部における流動物の残量が所定の下限値以下になることを条件として前記ポンプから前記吐出装置への流動物の供給が制限され、前記貯留部における流動物の残量が所定の制限解除条件を満足する状態に回復することを条件として前記ポンプから前記吐出装置への流動物の供給制限が解除されるものであり、前記流動物の残量を回復させる回復作業を行う作業者に応じて前記可変パラメータxが変動するものであると良い。
 本発明の流動物吐出システムは、上述した構成とすることにより、回復作業を行う作業者の熟練度等の変動要素を考慮して、バッファタンクにおける流動物の貯留容量Vの最適化を図れる。
(1-4)上述した本発明の流動物吐出システムは、流動物が前記ポンプから前記バッファタンクに到達するまでに要する到達期間Sに応じて前記可変パラメータxが変動するものであると良い。
 本発明の流動物吐出システムは、上述した構成とすることにより、流動物がポンプからバッファタンクに到達するまでに要する到達期間Sを考慮して、バッファタンクにおける流動物の貯留容量Vの最適化を図れる。
(1-5)本発明の流動物吐出システムは、流動物を吐出する吐出装置と、流動物を貯留する貯留部を有し、前記貯留部に貯留された流動物を前記吐出装置に向けて供給可能なポンプと、前記吐出装置及び前記ポンプの間を流動物が通過可能に接続する供給路と、前記供給路の中途に配置され、流動物の吸引及び排出が可能なバッファタンクと、を有し、前記ポンプから前記吐出装置への流動物の供給を制限する際に、前記バッファタンクから前記供給路に流動物を排出することにより、前記吐出装置に対する流動物の供給を継続可能であり、前記バッファタンクが、流動物に対して圧力を及ぼす圧力作用状態、及び流動物に対して圧力を及ぼさない保持状態を実現可能であること、を特徴とするものであると良い。
 本発明の流動物吐出システムにおいては、バッファタンクが、流動物に対して圧力を及ぼす圧力作用状態を実現可能なものとされている。そのため、本発明の流動物吐出システムは、例えば、ポンプによる圧送を停止する等して、バッファタンクから吐出装置に向けて流動物を供給する際に、バッファタンクを圧力作用状態として、流動物に対してバッファタンクの外側に向けて圧力を作用させると、流動物を吐出装置に向けて圧送できる。従って、本発明の流動物吐出システムは、吐出装置に対する流動物の供給源がポンプからバッファタンクに切り替わることによる圧力変動を抑制できる。
 また、本発明の流動物吐出システムにおいては、例えば、バッファタンクに流動物を吸引する際等において、バッファタンクを圧力作用状態として、流動物に対してバッファタンクの内側に向かう方向への圧力を作用させると、流動物をスムーズにバッファタンク内に吸引できる。これにより、バッファタンクに流動物を吸引しておき、吐出装置に対してバッファタンクから流動物を供給するのに備え、吐出装置に対する流動物の安定供給に貢献できる。
 なお、本発明において、バッファタンクが流動物に対して圧力を及ぼす圧力作用状態は、バッファタンク側の圧力と、供給路側の圧力とのバランスを変動させることによって実現すると良い。本発明の流動物吐出システムは、例えば、バッファタンク側を減圧や加圧可能な装置を設ける等して、バッファタンク側の圧力と供給路側の圧力とのバランスを積極的に変動可能な構成としたり、例えば、バッファタンク側を外部環境と連通させる等する結果としてバッファタンク側の圧力と供給路側の圧力とのバランスを変動可能な構成としたりすると良い。
 本発明の流動物吐出システムは、バッファタンクが、上述した圧力作用状態に加え、流動物に対して圧力を及ぼさない保持状態を実現可能なものとされている。そのため、例えば、バッファタンクを用いることなくポンプから供給された流動物を吐出装置において吐出させる場合や、吐出装置における流動物の残量が十分である場合等において、バッファタンクの影響により吐出装置に対する流動物の供給圧が変動したり、吐出装置における流動物の吐出圧が変動したりするのを抑制できる。従って、本発明によれば、バッファタンクから流動物に圧力が作用することによる吐出装置への流動物の供給圧の変動や、吐出装置における吐出圧の変動を抑制できる。
 本発明の流動物吐出システムは、ポンプを複数台設けなくても、上述したような動作により、吐出装置に対して流動物を安定的に供給できる。従って、本発明の流動物吐出システムは、ポンプを複数台設けた構成とする場合に比べて、設置スペースやコストの増大を抑制することができる。
(1-6)本発明の流動物吐出システムは、前記バッファタンクが、流動物に対して圧力を及ぼす圧力作用状態として、流動物に対して加圧力を及ぼす加圧状態、流動物に対して減圧力を及ぼす減圧状態を実現可能であること、を特徴とするものであると良い。
 本発明の流動物吐出システムは、例えば、バッファタンクから吐出装置に向けて流動物を供給する場合等において、バッファタンクを加圧状態とすることにより、流動物を吐出装置に向けて圧送できる。従って、本発明の流動物吐出システムは、吐出装置に対する流動物の供給源がポンプからバッファタンクに切り替わることによる圧力変動を抑制できる。また、本発明の流動物吐出システムは、例えば、バッファタンクに流動物を吸引する場合等において、バッファタンクを減圧状態とすることにより、流動物をスムーズにバッファタンクに向けて吸引できる。そのため、本発明の流動物吐出システムは、バッファタンクを加圧状態として圧力を作用させた状態で流動物を吐出装置に向けて圧送したり、バッファタンクを減圧状態として流動物をスムーズに吸引したりすることができる。従って、本発明によれば、設置スペースやコストの増大を抑制しつつ、吐出装置に対して流動物を安定的に供給可能な流動物吐出システムを提供できる。
(1-7)本発明の流動物吐出システムは、前記バッファタンクが、前記供給路に対して流動物を流出入可能に接続されるタンク部と、前記タンク部において前記供給路に連通する連通空間の容積を変動させる容積変動機構と、を有し、前記容積変動機構により前記連通空間の容積を減少させることで前記加圧状態とし、前記容積変動機構により前記連通空間の容積を増大させることで前記減圧状態とし、前記容積変動機構による前記連通空間の容積の増減を停止させることで前記保持状態とすることができること、を特徴とするものであると良い。
 かかる構成によれば、バッファタンクにおける連通空間の容積の増減についての制御を行うことにより、加圧状態、減圧状態、及び保持状態を実現可能な流動物吐出システムを提供できる。従って、本発明によれば、連通空間の容積の増減を制御することにより、バッファタンクの状態を適切に制御し、吐出装置に対して流動物を安定的に供給可能な流動物吐出システムを提供できる。
(1-8)本発明の流動物吐出システムは、前記容積変動機構が、前記タンク部の内部を前記連通空間、及び前記供給路に対して非連通の非連通空間に隔てる隔壁部と、前記隔壁部を移動させる駆動部と、を有し、前記駆動部により前記隔壁部の移動制御を行うことにより、前記加圧状態、前記減圧状態、及び前記保持状態を実現可能であること、を特徴とするものであると良い。
 かかる構成によれば、バッファタンクにおいて連通空間と非連通空間とを隔てる隔壁部の移動制御により、加圧状態、減圧状態、及び保持状態を実現可能な流動物吐出システムを提供できる。従って、本発明によれば、隔壁部の移動制御を行うことにより、バッファタンクの状態を適切に制御し、吐出装置に対して流動物を安定的に供給可能な流動物吐出システムを提供できる。
(1-9)本発明の流動物吐出システムは、前記駆動部が、前記非連通空間にある流体を介して前記隔壁部に作用する圧力を変動させて前記隔壁部を移動させるものであり、前記非連通空間側において前記隔壁部に作用する圧力を向上させることにより前記加圧状態とし、前記非連通空間側において前記隔壁部に作用する圧力を低下させることにより前記減圧状態とし、前記非連通空間側において前記隔壁部に作用する圧力の変動を停止させることにより、前記保持状態とすることができること、を特徴とするものであると良い。
 かかる構成によれば、バッファタンクにおいて連通空間と非連通空間とを隔てる隔壁部に作用する圧力を制御することにより、加圧状態、減圧状態、及び保持状態を実現可能な流動物吐出システムを提供できる。従って、本発明によれば、隔壁部に作用する圧力を制御することにより、バッファタンクの状態を適切に制御し、吐出装置に対して流動物を安定的に供給可能な流動物吐出システムを提供できる。
(1-10)本発明の流動物吐出システムは、流体の流出入によって駆動力を発現可能なシリンダ装置を備えており、前記シリンダ装置を駆動制御することにより、流動物の作用状態を調整できること、を特徴とするものであると良い。
 かかる構成によれば、シリンダ装置の駆動制御を行うことにより、バッファタンクの状態を適切に制御し、吐出装置に対して流動物を安定的に供給可能な流動物吐出システムを提供できる。
(1-11)本発明の流動物吐出システムは、前記バッファタンクが、流動物の残量に応じて所定の変動範囲で位置が変動する位置変動部材と、前記位置変動部材の位置を検出する検出装置とを備えたものであり、前記バッファタンクの容量と、前記位置変動部材の位置との相関関係に基づき、前記バッファタンクにおける流動物の残量を把握可能であること、を特徴とするものであると良い。
 かかる構成によれば、バッファタンクにおける流動物の残量値を連続的に検知することができる。また、上述した構成によれば、バッファタンクにおける流動物の貯留量の上限値、及び下限値を適宜設定したり、変更したりして、流動物吐出システムの動作制御を行うことができる。
(2-1)本発明の第二の態様に係る流動物吐出システムは、流動物を吐出する吐出装置と、貯留部を有し、前記貯留部に貯留された流動物を圧送することで、前記吐出装置に向けて流動物を供給可能なポンプと、前記ポンプと前記吐出装置との間を流動物が通過可能であるように接続する供給路と、前記供給路の中途に配置され、流動物の吸引及び排出が可能なバッファタンクと、前記吐出装置における流動物の残量を把握する残量把握部と、を有し、前記残量把握部によって把握された流動物の残量に基づいて、前記バッファタンクの動作が制御されること、を特徴とするものである。
 本発明の流動物吐出システムは、吐出装置に向けて流動物を供給可能なポンプに加え、流動物の吸引及び排出が可能なバッファタンクを備えている。そのため、本発明の流動物吐出システムは、バッファタンクに流動物を吸引して蓄積しておき、適宜のタイミングでバッファタンクから流動物を排出させて供給する動作が可能である。従って、本発明の流動物吐出システムは、ポンプ及びバッファタンクを相補的に動作させ、吐出装置に対して流動物を安定供給できる。
 また、本発明の流動物吐出システムは、残量把握部によって把握された吐出装置における流動物の残量に基づいて、バッファタンクの動作を制御できる。そのため、本発明の流動物吐出システムは、バッファタンクにおける流動物の吸引動作及び排出動作を、吐出装置における流動物の残量に応じて適切に行うように制御できる。従って、本発明の流動物吐出システムによれば、吐出装置における流動物の残量不足や残量過剰が生じるリスクを最小限に抑制できる。
 本発明の流動物吐出システムは、ポンプを複数台設けなくても、上述したような動作により、吐出装置に対して流動物を安定的に供給できる。従って、本発明の流動物吐出システムは、ポンプを複数台設けた構成とする場合に比べて、設置スペースやコストの増大を抑制することができる。
(2-2)本発明の流動物吐出システムは、前記残量把握部が、前記供給路における前記バッファタンクと前記吐出装置との間、あるいは前記吐出装置に設けられた圧力検知装置を備え、前記圧力検知装置の計測値に基づいて前記吐出装置における流動物の残量を把握するものであると良い。
 かかる構成によれば、圧力検知装置により検知された圧力に基づき、吐出装置における流動物の残量を適切に把握できる。従って、本発明の流動物吐出システムによれば、吐出装置における流動物の残量に応じて適切にポンプやバッファタンクを動作させ、吐出装置における流動物の残量不足や残量過剰が生じないように吐出装置に対して適切に流動物を安定供給できる。
(2-3)本発明の流動物吐出システムは、前記ポンプによる流動物の供給を制限する際に、前記バッファタンクが流動物を排出することで前記吐出装置に対する流動物の供給を継続可能なものであると良い。
 本発明の流動物吐出システムは、ポンプによる流動物の供給制限に伴う供給能力の低減を、バッファタンクによる流動物の排出によって補える。従って、本発明の流動物吐出システムは、例えば、ポンプにおける流動物の残量不足等に伴い、ポンプによる流動物の供給制限を行わざるを得ないような場合であっても、吐出装置における流動物の残量不足が生じないように吐出装置に対して適切に流動物を安定供給できる。
(2-4)本発明の流動物吐出システムは、前記吐出装置に対する流動物の供給にあたり、前記残量把握部によって把握された前記吐出装置における流動物の残量が所定の下限値を下回ることを条件として前記バッファタンクが流動物を排出すること、及び前記残量把握部によって把握された前記吐出装置における流動物の残量が所定の上限値を上回ることを条件として前記バッファタンクが流動物の排出を停止すること、のいずれか一方又は双方を行うものであると良い。
 本発明の流動物吐出システムは、吐出装置に対する流動物の供給にあたり、吐出装置における流動物の残量が所定の下限値を下回ることを条件として、バッファタンクにおいて流動物を排出させるようにすることにより、吐出装置に対する流動物の安定供給を実現できる。具体的には、本発明の流動物吐出システムは、例えば、ポンプにおける流動物の残量不足等に伴い、ポンプによる流動物の供給制限を行わざるを得ないような場合であっても、吐出装置における流動物の残量が所定の下限値を下回ったときにバッファタンクから吐出装置に流動物を供給し、吐出装置における流動物の残量不足の発生を抑制できる。
 また、本発明の流動物吐出システムは、吐出装置における流動物の残量が所定の上限値を上回ることを条件としてバッファタンクが流動物の排出を停止することにより、吐出装置に対する流動物の過剰供給を抑制できる。これにより、例えば、吐出装置における流動物の供給圧や吐出圧、吐出量が不安定になる等の問題が生じるのを抑制できる。
(2-5)本発明の流動物吐出システムは、前記バッファタンクが、流動物を吸引することで、前記バッファタンクの内部に流動物を蓄積可能であり、前記流動物の蓄積中に、吐出装置による流動物の吐出が継続されるものであると良い。
 本発明の流動物吐出システムは、バッファタンクへの流動物の蓄積中においても、吐出装置による流動物の吐出を継続可能である。そのため、本発明の流動物吐出システムは、バッファタンクへの流動物の蓄積のために、例えば吐出装置における流動物の吐出を停止させる等して生産性が低下するのを最小限に抑制できる。
(2-6)本発明の流動物吐出システムは、前記バッファタンクへの流動物の蓄積にあたり、前記残量把握部によって把握された前記吐出装置における流動物の残量が所定の上限値を上回ることを条件として前記バッファタンクが流動物を吸引すること、及び前記残量把握部によって把握された前記吐出装置における流動物の残量が所定の下限値を下回ることを条件として前記バッファタンクが流動物の吸引を停止すること、のいずれか一方又は双方を行うものであると良い。
 本発明の流動物吐出システムは、吐出装置における流動物の残量が所定の上限値を上回ることを条件として、バッファタンクが流動物を吸引するようにすることで、吐出装置に対して流動物を供給する必要がない期間を有効利用し、バッファタンクにおいて流動物を吸引して蓄積できる。また、このようにすることで、本発明の流動物吐出システムは、吐出装置に対して流動物を供給する必要がない状態において、吐出装置に対して過剰に流動物が供給されるのを抑制できる。これにより、例えば、吐出装置における流動物の供給圧や吐出圧、吐出量が不安定になる等の問題が生じるのを抑制できる。
 また、本発明の流動物吐出システムは、吐出装置における流動物の残量が所定の下限値を下回ることを条件として、バッファタンクが流動物の吸引を停止するようにすることで、吐出装置における流動物の残量が減少している状態において、バッファタンクよりも吐出装置に対して優先的に流動物を供給できる。これにより、本発明の流動物吐出システムは、流動物の残量不足による吐出不良の発生を抑制できる。なお、吐出装置における流動物の残量の把握については、例えば、吐出装置に設けた残量センサ等によって直接的に計測して導出する方法、吐出装置への流動物の流入量、流出量を検出して差し引きすることにより導出する方法等によって流動物の量を直接的あるいは間接的に導出して把握したり、吐出装置に対して流動物が流出入する時間等によって間接的に把握したりすると良い。
(2-7)本発明の流動物吐出システムは、前記バッファタンクが、流動物を吸引することで、前記バッファタンクの内部に流動物を蓄積可能であるとともに、前記ポンプがによる流動物の供給を制限する際に、前記バッファタンクが内部に蓄積した流動物を排出することで、前記吐出装置に対する流動物の供給を継続可能であり、前記バッファタンクが、流動物の蓄積及び流動物の供給の両方にあたり、前記残量把握部によって把握された前記吐出装置における流動物の残量に基づいて動作制御されるものであると良い。
 本発明の流動物吐出システムは、ポンプによる流動物の供給を制限する際に、バッファタンクにおいて内部に蓄積してある流動物を排出することで、吐出装置に対する流動物の供給を継続可能なものとされている。また、バッファタンクは、流動物の蓄積及び流動物の供給の両方にあたり、吐出装置における流動物の残量に基づいて動作制御される。そのため、本発明の流動物吐出システムは、ポンプ及びバッファタンクを相互補完的に動作させ、吐出装置に対して流動物を安定供給できる。
(2-8)本発明の流動物吐出システムは、前記バッファタンクが、流動物の蓄積にあたり、前記残量把握部によって把握された前記吐出装置における流動物の残量が所定の第一上限値を上回ることを条件として流動物を吸引する動作、及び前記残量把握部によって把握された前記吐出装置における流動物の残量が所定の第一下限値を下回ることを条件として流動物の吸引を停止する動作の少なくとも一方を行うとともに、流動物の供給にあたり、前記残量把握部によって把握された前記吐出装置における流動物の残量が所定の第二下限値を下回ることを条件として流動物を排出する動作、及び前記残量把握部によって把握された前記吐出装置における流動物の残量が所定の第二上限値を上回ることを条件として前記流動物の排出を停止する動作、の少なくとも一方を行うものであると良い。
 本発明の流動物吐出システムは、吐出装置における流動物の残量についての第一上限値や第一下限値を基準として、バッファタンクに対する流動物の蓄積についての制御を行う。具体的には、本発明の流動物吐出システムは、吐出装置における流動物の残量が第一上限値を上回るときにバッファタンクに流動物を蓄積したり、吐出装置における流動物の残量が第一下限値を下回るときにバッファタンクへの流動物の蓄積を停止したりすることができる。そのため、本発明の流動物吐出システムでは、吐出装置における流動物の残量に応じて、適切なタイミングで流動物をバッファタンクに蓄積しておける。
 また、本発明の流動物吐出システムは、吐出装置における流動物の残量についての第二上限値や第二下限値を基準として、バッファタンクからの流動物の排出についての制御を行う。具体的には、本発明の流動物吐出システムは、吐出装置における流動物の残量が第二下限値を下回るときに流動物を排出して吐出装置に供給したり、第二上限値を上回るときに流動物の排出を停止して吐出装置への供給を止めたりすることができる。そのため、本発明の流動物吐出システムでは、吐出装置における流動物の残量に応じて、適切なタイミングで流動物をバッファタンクから排出できる。
 なお、吐出装置における流動物の残量の把握については、例えば、吐出装置に設けた残量センサ等によって直接的に計測して導出する方法、吐出装置への流動物の流入量、流出量を検出して差し引きすることにより導出する方法等によって流動物の量を直接的あるいは間接的に導出して把握したり、吐出装置に対して流動物が流出入する時間等によって間接的に把握したりすると良い。
(2-9)本発明の流動物吐出システムは、前記バッファタンクが、流動物の残量に応じて所定の変動範囲で位置が変動する位置変動部材と、前記位置変動部材の位置を検出する検出装置とを備えたものであり、前記バッファタンクの容量と、前記位置変動部材の位置との相関関係に基づき、前記バッファタンクにおける流動物の残量を把握可能であること、を特徴とするものであると良い。
 かかる構成によれば、バッファタンクにおける流動物の残量値を連続的に検知することができる。また、上述した構成によれば、バッファタンクにおける流動物の貯留量の上限値、及び下限値を適宜設定したり、変更したりして、流動物吐出システムの動作制御を行うことができる。
(3-1)本発明の第三の態様に係る流動物吐出システムは、流動物を吐出する吐出装置と、貯留部を有し、前記貯留部に貯留された流動物を圧送することで、前記吐出装置に流動物を供給可能なポンプと、前記吐出装置と前記ポンプとの間を流動物が通過可能であるように接続する供給路と、前記供給路の中途に配置され、流動物の吸引及び排出が可能なバッファタンクと、を有し、前記バッファタンクに流動物を吸引して蓄積するタンク蓄積モードによる運転と、前記バッファタンクによる流動物の排出を制限し、前記ポンプから前記吐出装置に流動物を供給するポンプ供給モードによる運転と、前記ポンプによる前記吐出装置への流動物の供給を制限し、前記バッファタンクから流動物を排出して前記吐出装置に供給するタンク供給モードによる運転と、前記ポンプと前記バッファタンクの両方から前記吐出装置に流動物を供給する複合供給モードによる運転とを実施可能であることを特徴とするものである。
 本発明の流動物吐出システムは、吐出装置とポンプとを繋ぐ供給路にバッファタンクを設けた構成とされている。本発明の流動物吐出システムは、ポンプから吐出装置に流動物を供給するポンプ供給モードによる運転を行えるだけでなく、バッファタンクを活用した運転を行える。具体的には、本発明の流動物吐出システムは、バッファタンクに流動物を吸引して蓄積するタンク蓄積モードによる運転や、ポンプによる吐出装置への流動物の供給を制限し、バッファタンクから流動物を排出して吐出装置に供給するタンク供給モードによる運転、ポンプとバッファタンクの両方から吐出装置に流動物を供給する複合供給モードによる運転を行える。そのため、本発明の流動物吐出システムは、各種運転モードによる運転を順次行うことにより、ポンプ及びバッファタンクを吐出装置に対する流動物の供給のために相補的に活用し、吐出装置に対する流動物の安定供給を実現できる。
(3-2)本発明の流動物吐出システムは、前記タンク供給モードでの運転を実行中に、前記バッファタンクにおける流動物の残量が所定の値を下回ることを条件として、前記複合供給モードでの運転に移行するものであると良い。
 かかる構成によれば、タンク供給モードでの運転においてバッファタンクにおける流動物を使い切るまでの間に複合供給モードに切り替え、流動物を吐出装置に供給できる。これにより、タンク供給モードでの運転中に流動物が吐出装置に供給できなくなるのを抑制できる。従って、上述した構成によれば、吐出装置に対する流動物の安定供給を実現できる。
(3-3)本発明の流動物吐出システムは、前記ポンプ供給モードでの運転を実行中に、前記ポンプの前記貯留部における流動物の残量が所定の値を下回ることを条件として、前記タンク供給モードでの運転に移行し、前記タンク供給モードでの運転を実行中に、前記バッファタンクにおける流動物の残量が所定の値を下回ることを条件として、前記複合供給モードでの運転に移行し、前記複合供給モードでの運転を実行中に、前記バッファタンクにおける流動物の残量が下限値に達することを条件として、前記タンク蓄積モードでの運転に移行し、前記タンク蓄積モードでの運転を実行中に、前記バッファタンクにおける流動物の残量が所定の値を上回ることを条件として、前記ポンプ供給モードでの運転に移行するものであると良い。
 本発明の流動物吐出システムは、ポンプ供給モードでの運転中に、ポンプの貯留部における流動物の残量が所定の値を下回ることを条件として、タンク供給モードでの運転に移行することができる。そのため、本発明の流動物吐出システムは、ポンプから吐出装置に向けて流動物を供給できなくなるまでに運転モードをタンク供給モードに切り替え、吐出装置への流動物の供給を安定的に継続させることができる。また、本発明の流動物吐出システムは、タンク供給モードでの運転を実行中に、バッファタンクにおける流動物の残量が所定の値を下回ることを条件として、複合供給モードでの運転に移行する。これにより、バッファタンクから吐出装置に向けて流動物を供給できなくなるまでに運転モードを複合供給モードに切り替え、吐出装置への流動物の供給を安定的に継続させることができる。さらに、本発明の流動物吐出システムは、複合供給モードでの運転を実行中に、バッファタンクにおける流動物の残量が下限値に達することを条件として、タンク蓄積モードでの運転に移行する。これにより、次にバッファタンクを用いて吐出装置に流動物を供給すべきタイミングに備えて、バッファタンクに流動物を蓄積することができる。また、本発明の流動物吐出システムは、タンク蓄積モードでの運転を実行中に、バッファタンクにおける流動物の残量が所定の値を上回るまで流動物が蓄積されたことを条件として、ポンプ供給モードでの運転に移行することができる。本発明の流動物吐出システムは、このようにして各運転モードによる運転を順次切り替えて行うことにより、ポンプ及びバッファタンクを吐出装置に対する流動物の供給のために相補的に活用し、吐出装置に対する流動物の安定供給を実現できる。
(3-4)本発明の流動物吐出システムは、前記ポンプ供給モードでの運転を実行中に、前記ポンプの前記貯留部における流動物の残量が所定の値を下回ることを条件として、前記タンク蓄積モードでの運転に移行し、前記タンク蓄積モードでの運転を実行中に、前記バッファタンクにおける流動物の残量が所定の値を上回ること、及び前記貯留部における流動物の残量が下限に達することのいずれか一方又は双方を満足することを条件として、前記タンク供給モードでの運転に移行し、前記タンク供給モードでの運転を実行中に、前記バッファタンクにおける流動物の残量が所定の値を下回ることを条件として、前記複合供給モードでの運転に移行し、前記複合供給モードでの運転を実行中に、前記バッファタンクにおける流動物の残量が下限値に達することを条件として、前記ポンプ供給モードでの運転に移行するものであると良い。
 本発明の流動物吐出システムは、ポンプ供給モードでの運転を実行中に、ポンプの貯留部における流動物の残量が所定の値を下回ることを条件として、タンク蓄積モードでの運転に移行することができる。そのため、本発明の流動物吐出システムは、ポンプから吐出装置に向けて流動物を供給できなくなるのに備えて、運転モードをタンク蓄積モードに切り替え、バッファタンクに対して流動物を蓄積することができる。また、本発明の流動物吐出システムは、タンク蓄積モードでの運転を実行中に、バッファタンクに流動物が所定の値を上回るまで蓄積されること、及び前記貯留部における流動物の残量が下限に達することのいずれか一方又は双方を満足することを条件として、タンク供給モードでの運転に移行する。これにより、本発明の流動物吐出システムは、ポンプに代えてバッファタンクから吐出装置に向けて流動物を供給することができる状態になる。また、本発明の流動物吐出システムは、タンク供給モードでの運転に伴い、バッファタンクにおける流動物の残量が所定の値を下回るまで減少したことを条件として、複合供給モードでの運転に移行する。これにより、本発明の流動物吐出システムは、バッファタンクにおける流動物の吐出能力をポンプの運転により補い、吐出装置への流動物の供給を安定的に継続させることができる。さらに、本発明の流動物吐出システムは、複合供給モードでの運転を実行中に、バッファタンクにおける流動物の残量が下限値に達することを条件として、ポンプ供給モードでの運転に移行し、吐出装置への流動物の供給を引き続き安定的に継続させることができる。本発明の流動物吐出システムは、このようにして各運転モードによる運転を順次切り替えて行うことにより、ポンプ及びバッファタンクを吐出装置に対する流動物の供給のために相補的に活用し、吐出装置に対する流動物の安定供給を実現できる。
(3-5)本発明の流動物吐出システムは、前記供給路において、前記吐出装置における流動物の残量を把握する残量把握部を備え、前記タンク蓄積モードと、前記ポンプ供給モードと、前記タンク供給モードと、前記複合供給モードとにおいて、前記圧力検知部の計測値に基づいて、前記ポンプ及び前記バッファタンクの動作が制御されるものであると良い。
 かかる構成によれば、残量把握部によって把握される吐出装置における流動物の残量に基づき、各運転モードにおけるポンプ及びバッファタンクが流動物の安定供給のために最適な条件で動作するように動作制御することができる。
(3-6)本発明の流動物吐出システムは、前記タンク蓄積モードによる運転中に、前記吐出装置による流動物の吐出が継続されるものであると良い。
 かかる構成によれば、吐出装置における流動物の吐出と、バッファタンクへの流動物の蓄積とを同時進行させることができる。そのため、本発明の流動物吐出システムは、バッファタンクへの流動物の蓄積のために、例えば吐出装置における流動物の吐出を停止させる等して生産性が低下するのを最小限に抑制できる。
(3-7)本発明の流動物吐出システムは、前記タンク蓄積モードにおいて、前記ポンプによる流動物の供給が継続された状態で、前記バッファタンクが吸引動作を間欠的に行うものでると良い。
 かかる構成によれば、バッファタンクにおける吸引動作に伴い、吐出装置における流動物の残量が低下するのを最小限に抑制できる。これにより、吐出装置に対する流動物の供給状態をさらに安定化させることができる。
(3-8)本発明の流動物吐出システムは、前記供給路において、前記吐出装置における流動物の残量を把握する残量把握部を備え、前記残量把握部の計測値が所定の上限値を上回ることを条件として、前記バッファタンクが吸引動作を行うものであると良い。
 かかる構成によれば、バッファタンクにおける吸引動作に伴い、吐出装置における流動物の残量が低下することにより、吐出装置における流動物の供給圧や吐出圧、吐出量が不安定になる等の問題を最小限に抑制できる。これにより、吐出装置に対する流動物の供給状態をさらに安定化させることができる。
(3-9)本発明の流動物吐出システムは、前記複合供給モードにおいて、前記バッファタンク内の流動物を、前記貯留部に貯留されている流動物に対して優先的に消費するものであると良い。
 かかる構成によれば、複合供給モードにおいてバッファタンクに蓄積されている流動物を優先的に使用することができる。これにより、バッファタンクに流動物を蓄積しておくことによる流動物の変質等の懸念を最小限に抑制できる。
(3-9)本発明の流動物吐出システムは、前記バッファタンクが、流動物の残量に応じて所定の変動範囲で位置が変動する位置変動部材と、前記位置変動部材の位置を検出する検出装置とを備えたものであり、前記バッファタンクの容量と、前記位置変動部材の位置との相関関係に基づき、前記バッファタンクにおける流動物の残量を把握可能であること、を特徴とするものであると良い。
 かかる構成によれば、バッファタンクにおける流動物の残量値を連続的に検知することができる。また、上述した構成によれば、バッファタンクにおける流動物の貯留量の上限値、及び下限値を適宜設定したり、変更したりして、流動物吐出システムの動作制御を行うことができる。
 本発明によれば、設置スペースやコストの増大を抑制しつつ、吐出装置に対して流動物を安定的に供給可能な流動物吐出システムを提供できる。
本発明の流動物吐出システムの一例を示す模式図である。 図1の流動物吐出システムに用いられる吐出装置の一例を示す断面図である。 (a)は、図1の流動物吐出システムに用いられるバッファタンクの加圧状態における構成を示した断面図、(b)は(a)の要部を拡大した断面図である。 図1の流動物吐出システムに用いられるバッファタンクの減圧状態における構成を示した断面図である。 図1の流動物吐出システムに用いられるバッファタンクの保持状態における構成を示した断面図である。 (a),(b)はそれぞれ、図1の流動物吐出システムがポンプ供給モードにおいて供給圧が高い場合、及び低い場合の各部の動作状態を説明する説明図である。 図1の流動物吐出システムがポンプ供給モードで動作する場合のタイミングチャートである。 図1の流動物吐出システムがポンプ供給モードで動作する場合のフローチャートである。 (a),(b)はそれぞれ、図1の流動物吐出システムがタンク蓄積モードにおいて供給圧が高い場合、及び低い場合の各部の動作状態を説明する説明図である。 図1の流動物吐出システムがタンク蓄積モードで動作する場合のタイミングチャートである。 図1の流動物吐出システムがタンク蓄積モードで動作する場合のフローチャートである。 (a),(b)はそれぞれ、図1の流動物吐出システムがタンク供給モードにおいて供給圧が高い場合、及び低い場合の各部の動作状態を説明する説明図である。 図1の流動物吐出システムがタンク供給モードで動作する場合のタイミングチャートである。 図1の流動物吐出システムがタンク供給モードで動作する場合のフローチャートである。 (a),(b)はそれぞれ、図1の流動物吐出システムが複合供給モードにおいて供給圧が高い場合、及び低い場合の各部の動作状態を説明する説明図である。 図1の流動物吐出システムが複合供給モードで動作する場合のタイミングチャートである。 図1の流動物吐出システムが複合供給モードで動作する場合のフローチャートである。 図1の流動物吐出システムが第一の運転モードで動作する場合のフローチャートである。 図1の流動物吐出システムが第一の運転モードで動作する場合のタイミングチャートである。 図1の流動物吐出システムが第二の運転モードで動作する場合のフローチャートである。 図1の流動物吐出システムに用いられるバッファタンクの変形例に係る断面図である。 図1の流動物吐出システムに用いられるバッファタンクの変形例に係る要部断面図である。 図1の流動物吐出システムに用いられるバッファタンクの変形例に係る要部断面図である。 バッファタンクに流動物の貯留量を連続的に検知可能な検知装置を設けた例を示す説明図である。 バッファタンクに流動物の貯留量や流動物吐出システムの動作モードを示すユーザインターフェイスの一例に係る画像図である。
 以下、本発明の一実施形態に係る流動物吐出システム10について、図面を参照しつつ詳細に説明する。なお、以下の説明においては、先ず流動物吐出システム10の構成について説明し、その後に流動物吐出システム10の動作について説明する。
≪流動物吐出システム10の構成について≫
 図1に示すように、流動物吐出システム10は、ポンプ20と、吐出装置30とを供給路40によって繋いだ構成とされている。流動物吐出システム10は、供給路40の中途にバッファタンク50を設けた構成とされている。また、流動物吐出システム10は、吐出装置30における流動物の残量を把握するための残量把握部90を備えている。さらに、流動物吐出システム10は、ポンプ20や吐出装置30、バッファタンク50の動作制御を行うための制御装置200を備えている。流動物吐出システム10は、ポンプ20やバッファタンク50により供給された流動物を吐出装置30においてワークに向けて吐出できる。
 ポンプ20は、流動物が貯留された貯留部22から流動物を汲み上げて圧送するための装置である。ポンプ20は、供給路40に対して配管接続されている。そのため、ポンプ20によって貯留部から汲み上げた流動物を、供給路40を介して吐出装置30側に圧送することができる。
 吐出装置30は、回転容積式のポンプによって構成されている。本実施形態において、吐出装置30は、いわゆる一軸偏心ねじポンプによって構成されている。図2に示すように、吐出装置30は、ケーシング100の内部に、ロータ102、ステータ104、及び動力伝達機構106等を収容した構成とされている。ケーシング100は、金属製で筒状の部材であり、長手方向一端側に第一開口部110が設けられている。また、ケーシング100の外周部分には、第二開口部112が設けられている。第二開口部112は、ケーシング100の長手方向中間部分に位置する中間部114においてケーシング100の内部空間に連通している。
 第一開口部110及び第二開口部112は、それぞれ吐出装置30をなす一軸偏心ねじポンプの吸込口及び吐出口として機能する部分である。吐出装置30は、ロータ102を正方向に回転させることにより、第一開口部110を吐出口、第二開口部112を吸込口として機能させることができる。また、ロータ102を逆方向に回転させることにより、第一開口部110を吸込口、第二開口部112を吐出口として機能させることができる。
 ステータ104は、ゴム等の弾性体、又は樹脂等によって形成された略円筒形の外観形状を有する部材である。ステータ104の内周壁116は、n条で単段あるいは多段の雌ねじ形状とされている。本実施形態においては、ステータ104は、2条で多段の雌ねじ形状とされている。また、ステータ104の貫通孔118は、ステータ104の長手方向のいずれの位置において断面視しても、その断面形状(開口形状)が略長円形となるように形成されている。
 ロータ102は、金属製の軸体であり、n-1条で単段あるいは多段の雄ねじ形状とされている。本実施形態においては、ロータ102は、1条で偏心した雄ねじ形状とされている。ロータ102は、長手方向のいずれの位置で断面視しても、その断面形状が略真円形となるように形成されている。ロータ102は、上述したステータ104に形成された貫通孔118に挿通され、貫通孔118の内部において自由に偏心回転可能とされている。
 ロータ102をステータ104に対して挿通すると、ロータ102の外周壁120とステータ104の内周壁116とが両者の接線で密接した状態になり、ステータ104の内周壁116とロータ102の外周壁120との間に流体搬送路122(キャビティ)が形成される。流体搬送路122は、ステータ104やロータ102の長手方向に向けて螺旋状に伸びている。
 流体搬送路122は、ロータ102をステータ104の貫通孔118内において回転させると、ステータ104内を回転しながらステータ104の長手方向に進む。そのため、ロータ102を回転させると、ステータ104の一端側から流体搬送路122内に流体を吸い込むと共に、この流体を流体搬送路122内に閉じこめた状態でステータ104の他端側に向けて移送し、ステータ104の他端側において吐出させることが可能である。具体的には、ロータ102を正回転させると、第二開口部112から流動物を吸い込み、第一開口部110から吐出させる動作(吐出動作)を実行できる。また、ロータ102を逆方向に回転させることにより、吐出動作とは逆方向、すなわち第一開口部110側から第二開口部112側に向けて流動物を吸い込む動作(引戻動作)を実行できる。
 動力伝達機構106は、駆動機124から上述したロータ102に対して動力を伝達するためのものである。動力伝達機構106は、動力伝達部126と偏心回転部128とを有する。動力伝達部126は、ケーシング100の長手方向の一端側に設けられている。また、偏心回転部128は、中間部114に設けられている。偏心回転部128は、動力伝達部126とロータ102とを動力伝達可能なように接続する部分である。偏心回転部128は、従来公知のカップリングロッドや、スクリューロッドなどによって構成された連結軸130を備えている。そのため、偏心回転部128は、駆動機124を作動させることにより発生した回転動力をロータ102に伝達させ、ロータ102を偏心回転させることが可能である。
 供給路40は、ポンプ20と吐出装置30との間を流動物が通過可能なように接続する流路である。供給路40の中途には、後に詳述するバッファタンク50が設けられている。具体的には、供給路40は、バッファタンク50の一次側(供給路40における流動物の流れ方向上流側)とポンプ20との間を繋ぐ一次側供給路42と、バッファタンク50の二次側(供給路40における流動物の流れ方向下流側)と吐出装置30との間を繋ぐ二次側供給路44とを有する。
 供給路40の中途には、後に詳述する残量把握部90を構成するセンサ92、及びバルブ48が設けられている。センサ92は、例えば圧力計や流量計等、供給路40における流動物の状態を検知可能なものとすることができる。本実施形態では、センサ92は、圧力計とされている。センサ92は、供給路40において、吐出装置30とバッファタンク50との間に配置されている。また、バルブ48は、供給路40において、ポンプ20とバッファタンク50との間に配置されている。バルブ48は、ポンプ20から吐出装置30側への流動物の流れを制限(本実施形態では遮断)可能なものである。バルブ48は、いわゆる二方弁や、逆止弁等によって構成すると良い。
 バッファタンク50は、上述した供給路40の中途に配置されている。バッファタンク50は、流動物の吸引及び排出が可能なものとされている。バッファタンク50は、流動物を吸引することで、内部に流動物を蓄積できる。また、バッファタンク50は、ポンプ20が流動物の供給を停止する際に、内部に蓄積した流動物を排出することで、吐出装置30に対する流動物の供給を継続可能とするものである。バッファタンク50は、吐出装置30における流動物の残量に応じて、制御装置200により動作制御される。図3~図5に示すように、バッファタンク50は、タンク部52と、容積変動機構54とを有する。
 タンク部52は、供給路40に対して流動物を流出入させることが可能なものである。ものである。本実施形態では、タンク部52は、所定の軸線方向に延びる筒状(本実施形態では略円筒状)のタンク本体部52aの一端側に接続部56を設けると共に、タンク本体部52aの内部に連通空間58、及び非連通空間60を設けたものとされている。
 接続部56は、タンク部52をなすタンク本体部52aの軸線方向一端側に設けられている。接続部56は、供給路40に対して接続される部分である。接続部56は、タンク部52の軸線方向に対して交差する方向(本実施形態では径方向)に延びる流路56aがある。接続部56は、流路56aの両端部に接続口56b,56cを有する。接続口56b,56cは、タンク部52の周部において開口しており、供給路40をなす配管を接続可能とされている。また、接続部56は、タンク部52の径方向中間部に連通孔56dを有する。タンク部52は、連通孔56dを介して流路56aとタンク本体部52aの内部空間(連通空間58)と連通している。
 連通空間58は、タンク部52において接続部56が設けられた側に設けられた空間である。連通空間58は、上述した接続部56を介して、供給路40に対して連通するように形成されている。そのため、タンク部52は、接続部56に接続された供給路40との間で、連通空間58に対して流動物を吸引及び排出可能とされている。
 非連通空間60は、供給路40に対して非連通の空間である。非連通空間60は、連通空間58に対して接続部56とは反対側において、タンク部52の軸線方向に隣接する空間である。非連通空間60は、後に詳述する容積変動機構54のピストン部62(隔壁部)によって連通空間58と隔てられている。非連通空間60の端部には、容積変動機構54が接続されている。これにより、非連通空間60は、容積変動機構54の駆動部64をなすケーシング68と連通している。
 容積変動機構54は、タンク部52における連通空間58の容積を変動させる動作機構である。容積変動機構54は、ピストン部62、及び駆動部64を有し、駆動部64によってピストン部62をタンク部52の内部においてタンク部52の軸線方向に移動させることができる。そのため、容積変動機構54は、駆動部64によってピストン部62の位置を変化させることにより、タンク部52の内部における連通空間58と非連通空間60の容積(容積比)を変化させることができる。
 ピストン部62は、タンク部52の内部を連通空間58及び非連通空間60に隔てるものである。本実施形態では、ピストン部62は、ピストンとされている。ピストン部62をなすピストンの外径は、タンク部52の内径と略同一とされている。また、ピストン部62の外周部には、シール部材62aが装着されている。これにより、ピストン部62は、流動物をはじめとする液体や気体が漏洩しないようにシールしつつ、タンク本体部52aの内部空間を連通空間58と非連通空間60とに隔てる。
 駆動部64は、タンク本体部52aの内部においてピストン部62を軸線方向に移動させるためのものである。駆動部64は、ロッド部66、ケーシング68、仕切壁70、及び給排気装置72を有する。ロッド部66は、タンク本体部52aに対して非連通空間60側から挿入されている。ロッド部66は、タンク本体部52aの軸線方向に延びるように配されている。ロッド部66の一端側にはピストン部62が接続されている。ロッド部66とピストン部62との接続部分は、例えば一方に雌ネジ、他方に雄ネジを設けて螺合により一体化したり、ネジ等の固定具を用いて両者を一体化したりすると良い。また、本実施形態のように、ピストン部62とロッド部66とを固定して一体化するのではなく、ピストン部62とロッド部66の先端部分とを接触させて接続しても良い。また、ロッド部66は、先端部66aを、ロッド部66の軸部66bに対して着脱可能とすると良い。先端部66aとして長さの異なるものを複数種用意すれば、ロッド部66の長さを先端部66a側において変更し、ピストン部62のストロークの長さを調整できる。
 また、ロッド部66の他端側には仕切壁70が接続されている。仕切壁70は、ロッド部66に対して一体化されている。本実施形態では、ロッド部66の他端側は、軸状とされているが、先端部66aと同様に長さを調整可能なものとしても良い。
 ケーシング68は、中空の内部空間を有する筒状の部材である。ケーシング68は、一端側において閉塞されている。また、ケーシング68は、他端側において、タンク本体部52aの非連通空間60に対して連通すると共に、外部空間とは非連通となるように接続されている。ケーシング68は、軸線方向一端側、及び他端側に第一ケーシング接続口68a及び第二ケーシング接続口68bを有する。
 仕切壁70は、ケーシング68の内部空間を第一ケーシング接続口68a側の第一空間70aと、第二ケーシング接続口68b側の第二空間70bとに隔てるものである。仕切壁70は、板状とされており、その外周面がOリング等のシール部材を介してケーシング68の内周面に対して略密接するように配置されている。また、仕切壁70は、第二空間70b側の面においてロッド部66の他端側(ピストン部62の接続端とは反対側)が接続されている。仕切壁70は、ロッド部66と共に、外周面がケーシング68の内周面に対して接触した姿勢を維持したまま、ケーシング68の軸線方向に往復動可能とされている。仕切壁70は、第一ケーシング接続口68a及び第二ケーシング接続口68bを介して気体の導入及び排出を行い、第一空間70a及び第二空間70bの圧力バランスを変化させることにより、ケーシング68の内部において軸線方向に往復動させることができる。
 第一ケーシング接続口68aには、給排気装置72が配管接続されている。給排気装置72は、ケーシング68に対する気体(本実施形態では空気)の導入、排出に加え、ケーシング68との間で気体の導入及び排出を停止することができる。給排気装置72は、気体の供給源72aとケーシング68の第一ケーシング接続口68aとを繋ぐ第一配管系統74の途中に、供給源72aからケーシング68に向けて、ソレノイドバルブ72b、パイロットチェック弁72c、及び第一スピードコントローラ72dを順に配したものとされている。
 供給源72aは、ケーシング68側に向けて気体を圧送可能なものとされている。供給源72aは、例えば、ポンプやコンプレッサ等によって構成できる。ソレノイドバルブ72bは、第一配管系統74において、供給源72aによって供給される気体の通過経路を切り替えるものである。ソレノイドバルブ72bは、例えば、三位置クローズドセンタ方式、三位置プレッシャセンタ方式等、適宜の切り替え方式のものを用いても良いが、本実施形態では、三位置エギゾーストセンタの切り替え方式を採用したものが用いられている。本実施形態のように三位置エギゾーストセンタ方式のものをソレノイドバルブ72bとして用いれば、ソレノイドバルブ72bとケーシング68との距離が離れた場合でも十分な応答性を確保することができる。
 ソレノイドバルブ72bの給気ポートPIには、供給源72aが接続されている。また、ソレノイドバルブ72bに設けられた二つの出力ポートA,Bは、パイロットチェック弁72cに対して配管接続されている。また、ソレノイドバルブ72bには、大気開放された二つの排気ポートEA,EBが設けられている。ソレノイドバルブ72bは、バルブ位置を変更することにより、第一状態、第二状態、及び第三状態の三つの状態に切り替えることができる。具体的には、図3に示すように、第一状態は、給気ポートPIと出力ポートBとが繋がると共に、排気ポートEAと出力ポートAとが繋がった状態である。図4に示すように、第二状態は、給気ポートPIと出力ポートAとが繋がると共に、排気ポートEBと出力ポートBとが繋がった状態である。図5に示すように、第三状態は、出力ポートA,Bがそれぞれ、排気ポートEA,EBと繋がった状態である。
 パイロットチェック弁72cは、三つの接続ポートPA,PB,PCを有する。パイロットチェック弁72cは、接続ポートPA,PBが、それぞれソレノイドバルブ72bに設けられた出力ポートA,Bに対して配管接続されている。また、パイロットチェック弁72cは、接続ポートPCに対して第一ケーシング接続口68aに繋がる配管が接続されている。パイロットチェック弁72cは、接続ポートPAに対して圧力が作用していない状態において、接続ポートPBから接続ポートPCへの気体の流れを許容し、その逆である接続ポートPCから接続ポートPBへの流れを阻止する逆止弁として機能する。また、パイロットチェック弁72cは、接続ポートPAに対して所定値以上の圧力を作用させることにより、逆止弁としての機能が解除され、接続ポートPCから接続ポートPBへの流れが許容された状態になる。
 パイロットチェック弁72cは、上述したような第一配管系統74を介してソレノイドバルブ72bに対して接続されている。そのため、ソレノイドバルブ72bを第一状態とし、パイロットチェック弁72cの接続ポートPAに対して圧力が作用せず、接続ポートPBに圧力が作用する状態とすると、接続ポートPBから接続ポートPCに向けて気体を流し、ケーシング68に対して第一ケーシング接続口68aから気体を導入することができる。また、ソレノイドバルブ72bを第二状態とすると、接続ポートPAに対して所定値以上の圧力が作用してパイロットチェック弁72cが逆止弁として機能しない状態になる。また、接続ポートPAが、ソレノイドバルブ72bの排気ポートEBを介して大気開放された状態になる。そのため、ソレノイドバルブ72bを第二状態とすると、ケーシング68の第一ケーシング接続口68aから気体を排出させることができる。また、ソレノイドバルブ72bを第三状態とすると、接続ポートPA,PBのいずれにも圧力が作用せず、パイロットチェック弁72cが逆止弁として機能する。そのため、ソレノイドバルブ72bを第三状態とすると、ケーシング68において気体が出入りしない状態にすることができる。
 第一スピードコントローラ72dは、上述したパイロットチェック弁72cと、ケーシング68の第一ケーシング接続口68aとを繋ぐ管路の途中に設けられている。第一スピードコントローラ72dは、残圧排気弁付きのものとされている。また、第一スピードコントローラ72dは、メータアウト制御が可能なものとされている。
 一方、ケーシング68の第二ケーシング接続口68bには、第二配管系統80が接続されている。第二配管系統80には、サイレンサ82、及び第二スピードコントローラ84が設けられている。第二配管系統80は、サイレンサ82を介して大気開放されている。これにより、第二配管系統80は、ケーシング68の第二ケーシング接続口68b側の領域において、気体(本実施形態では空気)の流入及び排出が可能な構成とされている。また、第二スピードコントローラ84は、メータアウト制御が可能なものとされている。
 バッファタンク50は、上述した構成を活用して加圧状態、減圧状態、及び保持状態の三つの状態を実現可能とされている。これらの各状態は、容積変動機構54をなす駆動部64によりタンク部52の内部におけるピストン部62の移動制御を行うことにより実現可能である。
 具体的には、加圧状態は、流動物に対して加圧力を及ぼす状態である。加圧状態は、容積変動機構54により、タンク部52内において供給路40と連通した連通空間58の容積を減少させることで実現可能である。さらに詳細に説明すると、バッファタンク50を加圧状態にするときには、図3に示すように、駆動部64を構成するソレノイドバルブ72bを第一状態にしつつ、供給源72aによりソレノイドバルブ72bに気体を供給する。これにより、パイロットチェック弁72cの接続ポートPAに対して圧力が作用せず、接続ポートPBに圧力が作用する状態になり、接続ポートPBから接続ポートPCに向けて気体が流れ、駆動部64のケーシング68に設けられた第一ケーシング接続口68aから第一空間70aに気体が導入される。これに伴い、仕切壁70は、ケーシング68の内部において第一空間70aが拡大する方向に移動する。これにより、ロッド部66を介して仕切壁70に接続されたピストン部62に対し、非連通空間60側において作用する圧力が向上する。これに伴い、連通空間58の容積が縮小する方向にピストン部62が移動する。このようにして、バッファタンク50は、流動物に対して加圧力を及ぼす加圧状態になる。
 減圧状態は、流動物に対して減圧力を及ぼす状態である。減圧状態は、容積変動機構54により、タンク部52内において供給路40と連通した連通空間58の容積を増大させることで実現可能である。さらに詳細に説明すると、バッファタンク50を減圧状態にするときには、図4に示すように、駆動部64を構成するソレノイドバルブ72bを第二状態にしつつ、供給源72aによりソレノイドバルブ72bに気体を供給する。これにより、パイロットチェック弁72cの接続ポートPAに対して所定値以上の圧力が作用してパイロットチェック弁72cが逆止弁として機能しない状態になる。また、接続ポートPAが、ソレノイドバルブ72bの排気ポートEBを介して大気開放された状態になる。そのため、ソレノイドバルブ72bを第二状態とすると、ケーシング68の第一ケーシング接続口68aから気体が排出される。これに伴い、ケーシング68の内部において、仕切壁70は、第二空間70bが増大する方向に移動する。これに伴い、ロッド部66を介して仕切壁70に接続されたピストン部62に対し、非連通空間60側において作用する圧力が低下する。これにより、連通空間58の容積が増大する方向にピストン部62が移動する。このようにして、バッファタンク50は、流動物に対して減圧力が作用する減圧状態になる。
 保持状態は、流動物に対して加圧力及び減圧力のいずれも及ぼさない状態である。保持状態は、容積変動機構54による連通空間58の容積の増減を停止させることで実現可能である。さらに詳細に説明すると、バッファタンク50を保持状態にするときには、図5に示すように、駆動部64を構成するソレノイドバルブ72bを第三状態にする。これにより、パイロットチェック弁72cに設けられた接続ポートPA,PBのいずれにも圧力が作用せず、パイロットチェック弁72cが逆止弁として機能する状態になる。そのため、ソレノイドバルブ72bを第三状態とすると、ケーシング68において気体が出入りしない状態にすることができる。そのため、ケーシング68の内部において、仕切壁70は、停止した状態になる。これに伴い、ロッド部66を介して仕切壁70に接続されたピストン部62に作用する圧力の変動や、連通空間58の容積変動が生じない状態になる。このようにして、バッファタンク50は、流動物に対して加圧力及び減圧力のいずれも作用しない保持状態になる。
 図1に示すように、上述したバッファタンク50に対して、吐出装置30に向かう流動物の流れ方向下流側には、残量把握部90が設けられている。残量把握部90は、吐出装置30における流動物の残量を把握するためのものである。残量把握部90は、例えば、吐出装置30における流動物の残量を直接的に計測等して把握するものや、吐出装置30に対する流動物の供給状態や、吐出装置30における流動物の吐出状態から、吐出装置30における流動物の残量を間接的に把握するものであると良い。具体的には、残量把握部90は、例えば、吐出装置30に対する流動物の供給圧や、吐出装置30に対する流動物の流量等の流動物の供給状態に関する計測値から、吐出装置30における流動物の残量を間接的に把握するものであると良い。
 また、残量把握部90は、例えば、流動物の供給圧や流量を計測するためのセンサ92と、センサ92による計測値に基づいて吐出装置30における流動物の残量を把握するための処理を行う処理部94とが一体的に設けられたものや、センサ92と処理部94とが別に設けられたものとすると良い。本実施形態では、センサ92として吐出装置30に対する流動物の供給圧(以下、「供給圧P」とも称す)を検知するための圧力センサを採用している。また、処理部94としての機能を、後述する制御装置200に担わせている。そのため、センサ92の計測値を制御装置200に対して入力することで、制御装置200において吐出装置30における流動物の残量を把握可能としている。本実施形態では、センサ92によって検知される供給圧Pが所定の圧力範囲の上限値(以下、「上限圧力PH」とも称す)、及び下限値(以下、「下限圧力PL」)の範囲内(PL<P<PH)であることを条件として、制御装置200は、吐出装置30における流動物の残量が適正範囲にあると把握する。
 制御装置200は、流動物吐出システム10の動作を制御するためのものである。制御装置200は、上述した残量把握部90の処理部94としての機能の他に、ポンプ20や吐出装置30、バッファタンク50等の動作制御を行っている。
≪流動物吐出システム10の動作について≫
 流動物吐出システム10は、制御装置200による制御のもと、四種の運転モードで運転可能とされている。具体的には、流動物吐出システム10は、(1)ポンプ供給モード、(2)タンク蓄積モード、(3)タンク供給モード、及び(4)複合供給モードからなる四種の運転モードで運転可能とされている。また、流動物吐出システム10は、四種の運転モードによる運転を順次行うことにより、吐出装置30における流動物の吐出を安定的に行うことができる。以下、流動物吐出システム10の動作について、先ず四種の運転モードによる運転について説明する。また、各運転モードによる運転についての説明の後、各運転モードによる運転を順次行うことで実現される流動物吐出システム10の動作について説明する。
(1)ポンプ供給モードについて
 ポンプ供給モードは、バッファタンク50を保持状態としつつ、ポンプ20から吐出装置30に流動物を供給する運転モードである。図6に示すように、ポンプ供給モードにおいて、制御装置200は、供給路40においてバッファタンク50とポンプ20との間に設けられたバルブ48を開状態とする。また、制御装置200は、残量把握部90によって把握される吐出装置30における流動物の残量に応じて、運転及び停止するようにポンプ20を動作制御する。
 本実施形態では、制御装置200は、センサ92によって検知される吐出装置30への供給圧Pを指標として吐出装置30における流動物の残量を把握し、供給圧Pに応じてポンプ20の動作制御を行う。具体的には、図7のタイミングチャートに示すように、制御装置200は、供給圧Pが所定の上限圧力PH以上であることを条件として、吐出装置30への流動物の供給が不要であるとしてポンプ20の運転を停止させる。一方、供給圧Pが所定の下限圧力PL以下であることを条件として、制御装置200は、吐出装置30における流動物の残量が適正値を下回っているとして、ポンプ20を運転させる。ポンプ供給モードによる流動物吐出システム10の動作は、図8のフローチャートに示した通りである。以下、図8のフローチャートを参照しつつ、ポンプ供給モードにおける流動物吐出システム10の動作について、さらに詳細に説明する。
(ステップ1-1)
 ステップ1-1において、制御装置200は、バルブ48を開状態とする。ここで、バルブ48が既に開状態である場合には、バルブ48を開状態で維持する。その後、制御装置200は、制御フローをステップ1-2に進める。
(ステップ1-2)
 ステップ1-2において、制御装置200は、ポンプ20の貯留部22における流動物の残量が貯留部22の下限まで減っているか否かを確認する。ここで、貯留部22における流動物の残量が下限である場合には、ポンプ20を運転しても流動物を圧送できないため、当該制御フローを終了する。一方、貯留部22に下限を越える流動物がある場合には、制御装置200は、制御フローをステップ1-3に進める。
(ステップ1-3)
 ステップ1-3において、制御装置200は、残量把握部90をなすセンサ92により検出された供給圧Pが、下限圧力PL以下であるか否かを確認する。ここで、供給圧Pが下限圧力PLよりも高いときには、ポンプ20を運転して吐出装置30に流動物を供給する必要がない。そのため、供給圧Pが下限圧力PLよりも高いときには、制御装置200は、ステップ1-3において待機する。一方、供給圧Pが下限圧力PL以下のときには、吐出装置30に対する流動物の供給が必要となる。そこで、この場合には、制御装置200は、ステップ1-4に制御フローを進める。
(ステップ1-4)
 ステップ1-4において、制御装置200は、ポンプ20を運転させる。これにより、貯留部22に貯留されている流動物が、ポンプ20によって吐出装置30に向けて圧送される。その後、制御装置200は、制御フローをステップ1-5に進める。
(ステップ1-5)
 ステップ1-5において、制御装置200は、ポンプ20の貯留部22における流動物の残量が下限に達していないか、を確認する。ここで、制御装置200は、貯留部22における流動物の残量が下限に達している場合に、制御フローをステップ1-6に進める。一方、流動物の残量が下限に達していない場合に、制御装置200は、制御フローをステップ1-7に進める。
(ステップ1-6)
 上述したステップ1-5において貯留部22における流動物の残量が下限に達している場合には、これ以上ポンプ20を作動させても流動物を吐出装置30に供給できない。そのため、ステップ1-6において、制御装置200は、一連の制御フローを終了させる。
(ステップ1-7)
 ステップ1-7において、制御装置200は、供給圧Pが上限圧力PH以上になっているか否かを確認する。ここで、供給圧Pが上限圧力PHに達していない場合には、吐出装置30への流動物の供給を継続すべく、制御装置200は、制御フローをステップ1-5に戻す。一方、供給圧Pが上限圧力PH以上になった場合には、制御装置200は、制御フローをステップ1-8に進める。
(ステップ1-8)
 ステップ1-8において、制御装置200は、ポンプ20を停止させる。これにより、ポンプ20から吐出装置30への流動物の供給が停止される。その後、制御装置200は、制御フローをステップ1-9に進める。
(ステップ1-9)
 ステップ1-9において、制御装置200は、ポンプ20の貯留部22における流動物の残量を確認する。ここで、流動物の残量が、貯留部22の下限に達していない場合には、制御装置200は、制御フローをステップ1-3に戻す。一方、流動物の残量が、貯留部22の下限に達している場合には、これ以上ポンプ20により吐出装置30に対して流動物を供給できないため、一連の制御フローを完了させる。
(2)タンク蓄積モードについて
 続いて、タンク蓄積モードについて、詳細に説明する。タンク蓄積モードは、ポンプ20から流動物の供給を続けつつ、後に詳述するタンク供給モードに備えて、バッファタンク50に流動物を蓄積(チャージ)する運転モードである。タンク蓄積モードは、バッファタンク50に流動物を吸引することで、バッファタンク50の内部(連通空間58)に流動物を蓄積する運転モードである。タンク蓄積モードでは、残量把握部90の計測値に基づいて、蓄積中のバッファタンク50の動作が制御される。また、タンク蓄積モードは、バッファタンクへの流動物の蓄積中も吐出装置30による流動物の吐出を継続することができる運転モードである。
 図9に示すように、タンク蓄積モードにより運転を行う場合、制御装置200は、供給路40に設けられたバルブ48を開状態とし、ポンプ20からバッファタンク50に向けて流動物を供給可能な状態とする。また、制御装置200は、残量把握部90によって把握される吐出装置30における流動物の残量に応じて、運転及び停止するようにポンプ20を動作制御する。
 また、タンク蓄積モードにおいて、制御装置200は、図9の動作説明図や図10のタイミングチャートに示すように、残量把握部90の計測値に基づいて、ポンプ20やバッファタンク50の動作を制御する。制御装置200は、吐出装置30への供給圧Pを指標として吐出装置30における流動物の残量を把握し、供給圧Pに応じてポンプ20及びバッファタンク50の動作制御を行う。具体的には、供給圧Pが所定の上限圧力PH(第一上限値)よりも高いときには、吐出装置30に十分な流動物が貯留されている状態であるため、バッファタンク50を減圧状態にして、タンク部52の連通空間58に流動物を蓄積する。さらに詳細には、図9(a)に示すように、制御装置200は、バルブ48を開状態としてポンプ20を停止させると共に、バッファタンク50を減圧状態とする。これにより、バッファタンク50に流動物が蓄積される。バッファタンク50を減圧状態にするタイミングや期間等の動作条件については、例えば、供給圧Pが上限圧力PHに達してから所定の時間に限定する等、供給圧Pのアンダーシュートを考慮して規定すると良い。
 一方、供給圧Pが所定の下限圧力PL(第一下限値)よりも低いときには、吐出装置30における流動物の残量が適正値を下回っている状態であるため、バッファタンク50を保持状態にして、連通空間58への流動物の蓄積を停止する。さらに詳細には、図9(b)に示すように、制御装置200は、バルブ48を開状態としてポンプ20を運転させると共に、バッファタンク50を保持状態にする。これにより、制御装置200は、ポンプ20により圧送される流動物を、吐出装置30に対して供給する。
 制御装置200は、タンク蓄積モードにおいてこのような制御を行うことにより、供給圧Pが十分な高さである状態(吐出装置30における流動物の残量に余裕があるとき)を狙って、流動物をバッファタンク50に蓄積させる。すなわち、流動物吐出システム10において、制御装置200は、バッファタンク50が保持状態を実現できるものであるという利点を活用し、タンク蓄積モードにおける動作制御を行っている。タンク蓄積モードによる流動物吐出システム10の動作は、図11のフローチャートに示した通りである。以下、図11のフローチャートを参照しつつ、タンク蓄積モードにおける流動物吐出システム10の動作について、さらに詳細に説明する。
(ステップ2-1)
 ステップ2-1において、制御装置200は、バルブ48を開状態とする。ここで、バルブ48が既に開状態である場合には、バルブ48を開状態で維持する。これにより、ポンプ20からバッファタンク50や吐出装置30に対して流体を圧送可能な状態とされる。その後、制御装置200は、制御フローをステップ2-2に進める。
(ステップ2-2)
 ステップ2-2において、制御装置200は、ポンプ20の貯留部22における流動物の残量が貯留部22の下限まで減っているか否かを確認する。貯留部22における流動物の残量が下限である場合には、図11に係る制御フローを終了させる。一方、貯留部22に下限を越える流動物がある場合には、制御装置200は、制御フローをステップ2-3に進める。
(ステップ2-3)
 ステップ2-3において、制御装置200は、残量把握部90をなすセンサ92により検出された供給圧Pが、下限圧力PL以下であるか否かを確認する。ここで、供給圧Pが下限圧力PLよりも高いときには、ポンプ20を運転して吐出装置30に流動物を供給する必要がないため、ステップ2-3において待機状態とされる。一方、供給圧Pが下限圧力PL以下のときには、吐出装置30に対する流動物の供給が必要となる。そこで、この場合には、制御装置200は、ステップ2-4に制御フローを進める。
(ステップ2-4)
 ステップ2-4において、制御装置200は、ポンプ20を運転させる。これにより、貯留部22に貯留されている流動物が、ポンプ20によって吐出装置30に向けて圧送される。その後、制御装置200は、制御フローをステップ2-5に進める。
(ステップ2-5)
 ステップ2-5において、制御装置200は、ポンプ20の貯留部22における流動物の残量が下限に達していないか、を確認する。ここで、制御装置200は、貯留部22における流動物の残量が下限に達している場合に、制御フローをステップ2-6に進める。一方、流動物の残量が下限に達していない場合に、制御装置200は、制御フローをステップ2-7に進める。
(ステップ2-6)
 制御フローがステップ2-6に移行した状態においては、貯留部22における流動物の残量が十分でない。そのため、制御装置200は、ポンプ20を停止させる。その後、制御フローを終了させる。
(ステップ2-7)
 ステップ2-7において、制御装置200は、供給圧Pが上限圧力PH以下になっているか否かを確認する。ここで、供給圧Pが上限圧力PHよりも低い場合には、制御フローをステップ2-5に戻し、ポンプ20の運転を継続する。一方、供給圧Pが上限圧力PH以上である場合には、制御装置200は、制御フローをステップ2-8に進める。
(ステップ2-8)
 ステップ2-8において、制御装置200は、ポンプ20を停止させる。その後、制御装置200は、制御フローをステップ2-9に進める。
(ステップ2-9)
 ステップ2-9において、制御装置200は、バッファタンク50を減圧状態にする。具体的には、制御装置200は、バッファタンク50の容積変動機構54を構成するソレノイドバルブ72bを第二状態になるように動作制御する。また、エアコンプレッサー等からなる供給源72aによりソレノイドバルブ72bに気体を供給する。これにより、パイロットチェック弁72cの逆止弁としての機能を喪失させると共に、パイロットチェック弁72cの接続ポートPA及びソレノイドバルブ72bの排気ポートEBを介して容積変動機構54のケーシング68において、第一ケーシング接続口68aから気体を排出させる。これに伴い、ケーシング68の内部において仕切壁70が移動し始め、連通空間58の容積が増大する方向にピストン部62が移動する。このようにして、バッファタンク50は、流動物に対して減圧力が作用する減圧状態になる。バッファタンク50の連通空間58が減圧状態になると、供給路40から連通空間58に流動物が流入しはじめ、蓄積されていく。ステップ2-9においてバッファタンク50が減圧状態とされると、制御装置200は、制御フローをステップ2-10に進める。
(ステップ2-10)
 ステップ2-10において、制御装置200は、ステップ2-9においてバッファタンク50に対する流動物の蓄積を開始してからの蓄積量が所定範囲内となるように、蓄積量の管理を行う。バッファタンク50における流動物の蓄積量については、例えば、残量センサ等によって直接的に計測して導出する方法、バッファタンク50への流動物の流入量、流出量を検出して差し引きすることにより導出する方法等によって流動物の量を直接的あるいは間接的に導出して把握したり、バッファタンク50に対して流動物が流出入する時間等によって間接的に把握したりすることができる。本実施形態では、制御装置200は、ステップ2-9でバッファタンク50が減圧状態とされてから経過した時間に基づき、ステップ2-9においてバッファタンク50への流動物の蓄積を開始してからの蓄積量の管理を行う。ステップ2-10において、制御装置200は、ステップ2-9においてバッファタンク50への流動物の蓄積を開始してからの経過時間Txが、所定時間T2以上であるか否かを確認する。経過時間Tは、例えば、制御装置200が備えるタイマにより計測することができる。ここで、経過時間Tが所定時間T2以上であると確認されたとき、制御装置200は、制御フローをステップ2-11に進める。
(ステップ2-11)
 ステップ2-11において、制御装置200は、バッファタンク50を保持状態に切り替え、流動物に対して加圧力及び減圧力のいずれも及ぼさない状態にする。具体的には、制御装置200は、バッファタンク50の駆動部64に設けられたソレノイドバルブ72bを第三状態にする。これにより、パイロットチェック弁72cに設けられた接続ポートPA,PBのいずれにも圧力が作用せず、パイロットチェック弁72cが逆止弁として機能する状態とし、駆動部64のケーシング68における気体の出入りを停止する。これにより、ケーシング68の内部に配された仕切壁70が停止すると共に、仕切壁70に接続されたピストン部62がタンク部52内において停止する。このようにして、制御装置200は、バッファタンク50を保持状態にする。その後、制御装置200は、制御フローをステップ2-12に進める。
(ステップ2-12)
 ステップ2-12において、制御装置200は、バッファタンク50において流動物の貯留量が上限に達したか否かを確認する。バッファタンク50における流動物の貯留量については、例えば、バッファタンク50に残量センサを設けたり、仕切壁70の位置を検出可能とする位置センサを設けたりして、これらのセンサからの出力値に基づいて判断することとしたり、バッファタンク50に対する流動物の流入量及び流出量を検知あるいは導出可能とし、流入量及び流出量に基づいて判断することとしたりすると良い。ステップ2-12において、バッファタンク50において流動物の貯留量が上限に達していないと判断された場合には、さらに流動物の蓄積を進めるべく、制御装置200は、制御フローをステップ2-2に戻す。一方、バッファタンク50において流動物の貯留量が上限に達したと判断された場合には、制御装置200は、一連の制御フローを完了する。
(3)タンク供給モードについて
 続いて、タンク供給モードについて、詳細に説明する。タンク供給モードは、ポンプ20が停止している状態において、バッファタンク50から吐出装置30に流動物を供給する運転モードである。タンク供給モードでの運転は、例えば、ポンプ20における貯留部22の交換や、貯留部22への流動物の補充等のためにポンプ20を停止させる際に、バッファタンク50から供給路40に流動物を排出することにより、吐出装置30に対する流動物の供給を継続可能とするための運転モードである。
 タンク供給モードでは、図12の動作説明図や図13のタイミングチャートに示すように、残量把握部90の計測値に基づいて、ポンプ20やバッファタンク50の動作が制御される。具体的には、タンク供給モードにおいては、吐出装置30に対する流動物の供給にあたり、残量把握部90の計測値が所定の下限値(第二下限値)を下回ることを条件として、バッファタンク50が流動物を排出するように動作制御がなされる。さらに詳細には、センサ92により検知される供給圧Pが所定の下限圧力PLを下回ることを条件として、ポンプ20が停止されると共に、バルブ48を閉止されている状態において、バッファタンク50を加圧状態とする。これにより、ポンプ20による流動物の圧送がなされない状態において、バッファタンク50から吐出装置30への流動物の供給がなされる。なお、第二下限値である下限圧力PLは、上述したタンク蓄積モードにおける第一下限値と同じ値(圧力)とされているが、互いに相違する値(圧力)であっても良い。
 一方、タンク供給モードにおいては、残量把握部90の計測値が所定の上限値(第二上限値)を上回ることを条件としてバッファタンク50が流動物の排出を停止するように動作制御がなされる。さらに詳細には、タンク供給モードにおいて、センサ92により検知される供給圧Pが所定の上限圧力PHを上回ることを条件として、ポンプ20が停止されてると共に、バルブ48を閉止されている状態において、バッファタンク50を保持状態とする。これにより、流動物が十分に充填されている吐出装置30に対して、流動物が過剰に供給されることを抑制する。なお、第二上限値である上限圧力PHは、上述したタンク蓄積モードにおける第一上限値と同じ値(圧力)とされているが、互いに相違する値(圧力)であっても良い。
 タンク供給モードでは、上述した動作を、図14に示したフローチャートに則って行う。以下、図14のフローチャートを参照しつつ、タンク供給モードにおける流動物吐出システム10の動作について、さらに詳細に説明する。
(ステップ3-1)
 ステップ3-1において、制御装置200は、バッファタンク50における流動物の貯留状態を確認する。その結果、バッファタンク50における流動物の貯留量が下限値である場合には、バッファタンク50による流動物の供給ができなくなる懸念があるため、制御装置200は、一連の制御フローを完了させる。ここで、本ステップ及び以下のステップにおいて、「バッファタンク50における流動物の貯留量が下限値である場合」とは、流動物の供給ができなくなるレベルまで貯留量が減少している状態としても良いが、本実施形態では、制御装置200は、流動物の供給ができなくなるレベルよりも少し手前の段階(流動物が少し残っている状態)を流動物の貯留量が下限値である場合として規定し、動作制御を行う。一方、バッファタンク50における流動物の貯留量が下限値よりも多い場合、制御装置200は、制御フローをステップ3-2に進める。
(ステップ3-2)
 ステップ3-2において、制御装置200は、吐出装置30における流動物の残量を確認する。具体的には、制御装置200は、残量把握部90のセンサ92によって検知される供給圧Pが、所定の下限圧力PL(第二下限値)以下であるか否かを確認する。ここで、供給圧Pが下限圧力PLよりも高い場合には、吐出装置30に流動物が十分残存しており、吐出装置30に流動物を補充する必要がない。そのため、この場合には、制御装置200は、ステップ3-2において待機する。一方、供給圧Pが下限圧力PL以下である場合には、吐出装置30における流動物の残量が少なくなっている状態である。この場合、制御装置200は、制御フローをステップ3-3に進める。
(ステップ3-3)
 ステップ3-3において、制御装置200は、バッファタンク50を加圧状態にする。これにより、制御装置200は、バッファタンク50において流動物に対して加圧力を及ぼし、バッファタンク50から供給路40を介して吐出装置30に向けて流動物を排出させる。具体的には、制御装置200は、バッファタンク50に設けられた容積変動機構54により、供給路40と連通した連通空間58の容積が減少する方向にピストン部62を移動させるための制御を行う。さらに詳細には、制御装置200は、駆動部64に設けられたソレノイドバルブ72bを第一状態にしつつ、供給源72aによりソレノイドバルブ72bに気体を供給する。これにより、エアコンプレッサ等からなる供給源72aから圧送された気体が、ソレノイドバルブ72bからパイロットチェック弁72cを経て、第一ケーシング接続口68aからケーシング68の第一空間70aに導入される。これに伴い、仕切壁70及びピストン部62が作動し、連通空間58の容積が縮小する方向にピストン部62が移動する。このようにして、制御装置200は、バッファタンク50を加圧状態とする。バッファタンク50が加圧状態になると、連通空間58に蓄えられていた流動物が、供給路40を介して吐出装置30に向けて排出される。
(ステップ3-4)
 ステップ3-4において、制御装置200は、バッファタンク50における流動物の残量が下限まで減少していないか、を確認する。ここで、バッファタンク50における流動物の残量が下限まで減少している場合には、制御フローがステップ3-5に進められ、下限まで達していない場合には、制御フローがステップ3-6に進められる。
(ステップ3-5)
 ステップ3-5において、制御装置200は、バッファタンク50からの流動物の排出を停止する。具体的には、制御装置200は、上述したステップ2-11と同様にして、バッファタンク50を保持状態にする。その後、制御装置200は、一連の制御フローを完了させる。
(ステップ3-6)
 ステップ3-6において、制御装置200は、吐出装置30に十分な流動物が充填されたか否かを確認する。具体的には、制御装置200は、供給圧Pが所定の上限圧力PH(第二上限値)に達したか否かを確認する。ここで、供給圧Pが上限圧力PH未満である場合、制御装置200は、制御フローをステップ3-4に戻す。一方、供給圧Pが上限圧力PH以上である場合、制御装置200は、制御フローをステップ3-7に進める。
(ステップ3-7)
 ステップ3-7において、制御装置200は、上述したステップ2-11やステップ3-5と同様にして、バッファタンク50を保持状態にする。その後、制御装置200は、制御フローをステップ3-8に進める。
(ステップ3-8)
 ステップ3-8において、制御装置200は、バッファタンク50における流動物の貯留状態を確認する。その結果、バッファタンク50における流動物の貯留量が下限値よりも多い場合には、制御装置200は、制御フローをステップ3-2に戻す。一方、バッファタンク50における流動物の貯留量が下限値である場合には、これ以上タンク供給モードによる運転ができないため、一連の制御フローを完了する。
(4)複合供給モードについて
 続いて、複合供給モードについて、詳細に説明する。複合供給モードは、ポンプ20及びバッファタンク50の双方から吐出装置30に流動物を供給する運転モードである。複合供給モードでの運転は、例えば、上述したタンク供給モードの終期に、タンク部52における流動物の残量が少なくなってきたと想定されるときに、バッファタンク50から吐出装置30への流動物の供給を、ポンプ20からの流動物の供給によって補う等の目的で行われる運転モードである。タンク部52における流動物の残量が少なくなってきたと想定されるときに複合供給モードによる運転を行うと、吐出装置30に対する流動物の供給圧の安定化、及びバッファタンク50に蓄積された流動物の使い切りを両立できる。
 すなわち、タンク供給モードにおいてバッファタンク50における流動物の残量が減少してくると、タンク本体部52aの底面とピストン部62との距離が狭くなり、圧力損失が大きくなる。これにより、バッファタンク50から吐出装置30に向けて排出される流動物の流量が減少していく。バッファタンク50から吐出装置30への流動物の流量が、吐出装置30における流動物の吐出量を下回ると、流動物の供給不足が生じる。そのため、バッファタンク50に蓄積されている流動物の残量が一定量以下になったときに、運転モードを複合供給モードに切り替え、バッファタンク50に加えてポンプ20も流動物の供給のために動作させることにより、吐出装置30に対する流動物の供給圧の安定化を図りつつ、バッファタンク50に蓄積された流動物を使い切ることも可能となる。
 複合供給モードでは、図15の動作説明図や、図16のタイミングチャートに示すように、残量把握部90の計測値に基づいて、ポンプ20やバッファタンク50の動作が制御される。具体的には、複合供給モードにおいては、吐出装置30に対する流動物の供給にあたり、残量把握部90の計測値が所定の下限値を下回ることを条件として、ポンプ20及びバッファタンク50の双方により、吐出装置30に向けて流動物を供給するように動作制御がなされる。さらに詳細には、制御装置200は、センサ92により検知される供給圧Pが所定の下限圧力PLを下回ることを条件として、バッファタンク50を加圧状態とすると共に、バルブ48を開状態としてポンプ20を運転させる。これにより、制御装置200は、バッファタンク50及びポンプ20の双方から吐出装置30に流動物を供給させる。複合供給モードにおいてポンプ20及びバッファタンク50の双方によって流動物を供給する場合、ポンプ20及びバッファタンク50による流動物の圧送開始のタイミングを相違させることで、ポンプ20及びバッファタンク50のいずれに存在する流動物を優先的に使用するかを調整できる。本実施形態では、バッファタンク50に蓄積した流動物の変質を防ぐため、バッファタンク50内の流動物については、サイクル毎に確実に使い切りたいとの要望を満足すべく、制御装置200は、バッファタンク50による流動物の圧送開始のタイミングに対し、ポンプ20による流動物の圧送開始のタイミングを遅延させる制御を行う。
 一方、複合供給モードにおいては、残量把握部90の計測値が所定の上限値を上回ることを条件としてポンプ20及びバッファタンク50が流動物の排出を停止するように動作制御がなされる。さらに詳細には、複合供給モードにおいて、センサ92により検知される供給圧Pが所定の上限圧力PHを上回ることを条件として、ポンプ20を停止し、バッファタンク50を保持状態とする。これにより、流動物が十分に充填されている吐出装置30に対して、流動物が過剰に供給されることを抑制する。
 複合供給モードでは、上述した動作を、図17に示したフローチャートに則って行う。以下、図17のフローチャートを参照しつつ、複合供給モードにおける流動物吐出システム10の動作について、さらに詳細に説明する。
(ステップ4-1)
 ステップ4-1において、制御装置200が備えているタイマによる計時がスタートされる。その後、制御装置200は、ステップ4-2に制御フローを進める。
(ステップ4-2)
 ステップ4-2において、制御装置200は、タイマによる計測時間(以下、タイマ時間Tyとも称す)が所定時間T1以上になったか否かを確認する。ここで、所定時間T1は、複合供給モードをいつ終了させるかを決定するために計測する時間である。所定時間T1をステップ4-2における判定条件とすることにより、バッファタンク50の下限よりも少し手前、及び下限の2カ所にリミットスイッチ等を設ける代わりに、バッファタンク50の下限よりも少し手前にだけ設ける構成とすることができる。具体的には、バッファタンク50の下限よりも少し手前に設けられたセンサによって流動物の残量が検知されたタイミング以降も運転を継続した場合に、バッファタンク50が空になると想定される時間に基づいて所定時間T1を規定することにより、適切なタイミングで複合供給モードを終了させることができる。このように、バッファタンク50の下限よりも少し手前、及び下限の2カ所にリミットスイッチ等を設けるのではなく、バッファタンク50の下限よりも少し手前において流動物が検知された後、所定時間T1を指標として複合供給モードを終了させるようにすれば、万一バッファタンク50の底部で液が硬化してピストンが下がりきらない状態となってしまったとしても、いつまでも複合供給モードが終了しないといった不具合の発生を抑制できるという利点を有する。ここで、タイマ時間Tyが所定時間T1以上になっていることが確認された場合、制御装置200は、制御フローを完了させる。一方、タイマ時間Tyが所定時間T1未満である場合、制御装置200は、制御フローをステップ4-3に進める。
(ステップ4-3)
 ステップ4-3において、制御装置200は、吐出装置30への供給圧Pを確認する。ここで、供給圧Pが所定の下限圧力PLよりも高い場合には、制御フローをステップ4-2に戻す。一方、供給圧Pが下限圧力PL以下である場合、制御装置200は、制御フローをステップ4-4に進める。
(ステップ4-4)
 ステップ4-4において、制御装置200は、上述したステップ3-3と同様にして、バッファタンク50を加圧状態にする。これにより、バッファタンク50において流動物に加圧力が作用し、バッファタンク50から吐出装置30に向けて流動物が供給される。その後、制御装置200は、制御フローをステップ4-5に進める。
(ステップ4-5)
 ステップ4-5において、制御装置200は、ステップ4-4でバッファタンク50が加圧状態にされてからの経過時間(以下、「加圧時間Tp」とも称す)を確認する。所定時間T3は、複合供給モードにおいてバッファタンク50による流動物の圧送開始のタイミングに対し、ポンプ20による流動物の圧送開始のタイミングを遅延させる遅延時間に相当するものである。加圧時間Tpが所定時間T3未満である間、制御装置200は、ステップ4-5において制御フローの進行を待機させる。加圧時間Tpが所定時間T3以上になると、制御装置200は、制御フローをステップ4-6に進める。
(ステップ4-6)
 ステップ4-6において、制御装置200は、ポンプ20を運転させ、吐出装置30に流動物を供給させる。このとき、既に上記ステップ4-4において開始されているバッファタンク50による吐出装置30に対する流動物の供給も継続されている。そのため、ステップ4-6においてポンプ20を運転させることにより、バッファタンク50及びポンプ20の双方により吐出装置30に向けて流動物が供給される状態になる。ポンプ20の運転が開始されると、制御装置200は、制御フローをステップ4-7に進める。
(ステップ4-7)
 ステップ4-7において、制御装置200は、ステップ4-1で計時を開始したタイマ時間Tyを確認する。ここで、タイマ時間Tyが所定時間T1以上である場合、制御装置200は、制御フローをステップ4-8に進める。タイマ時間Tyが所定時間T1未満である場合、制御装置200は、制御フローをステップ4-9に進める。
(ステップ4-8)
 ステップ4-8において、制御装置200は、ポンプ20を停止させると共に、バッファタンク50を保持状態とする。バッファタンク50を保持状態とする制御は、上述したステップ2-11と同様にして行われる。これにより、ポンプ20及びバッファタンク50の双方において、吐出装置30への流動物の供給が停止される。その後、制御装置200は、制御フローを完了させる。
(ステップ4-9)
 ステップ4-9において、制御装置200は、吐出装置30への供給圧Pを確認する。ここで、供給圧Pが所定の上限圧力PH未満である場合には、制御フローをステップ4-7に戻す。一方、供給圧Pが上限圧力PH以上である場合、制御装置200は、制御フローをステップ4-10に進める。
(ステップ4-10)
 ステップ4-10において、制御装置200は、ステップ4-8と同様に、ポンプ20を停止させると共に、バッファタンク50を保持状態とする。その後、制御装置200は、制御フローをステップ4-11に進める。
(ステップ4-11)
 ステップ4-11において、制御装置200は、ステップ4-1で計時を開始したタイマ時間Tyを確認する。ここで、タイマ時間Tyが所定時間T1以上である場合、制御装置200は、一連の制御フローを完了させる。タイマ時間Tyが所定時間T1未満である場合、制御装置200は、制御フローをステップ4-3に戻す。
 流動物吐出システム10は、上述したようにして、(1)ポンプ供給モード、(2)タンク蓄積モード、(3)タンク供給モード、及び(4)複合供給モードからなる四種の運転モードで運転可能とされている。次に、これらの運転モードでの運転を順次行うことで実現される流動物吐出システム10の全体動作について説明する。なお、流動物吐出システム10の全体動作は、初期段階においてバッファタンク50への流動物の蓄積を行う第一運転パターン、及び中間段階においてバッファタンク50への流動物の蓄積を行う第二運転パターン、のいずれでも動作可能である。そのため、以下の説明においては、先ず第一運転パターンでの動作について説明し、その後に第二運転パターンでの動作について説明する。
[第一運転パターンによる流動物吐出システム10の全体動作について]
 第一運転パターンは、タンク蓄積モード→ポンプ供給モード→タンク供給モード→複合供給モードの順で各運転モードでの運転を繰り返す運転パターンである。各運転モードでの運転から、次の運転モードでの運転に切り替えるためのモード切替条件が、各運転モード毎に設定されている。制御装置200は、モード切替条件を満足する毎に運転モードを切り替える制御を行う。流動物吐出システム10が第一運転パターンで動作する場合、制御装置200は、図18に示したフローチャート、及び図19に示したタイミングチャートに則って、流動物吐出システム10の動作制御を行う。以下、図18及び図19を参照しつつ、第一運転パターンによる流動物吐出システム10の動作について、さらに詳細に説明する。
(ステップ5-1)
 ステップ5-1において、制御装置200は、図11の制御フローに則って、タンク蓄積モードによる動作を開始させる。その後、制御装置200は、ステップ5-2に制御フローを進める。
(ステップ5-2)
 ステップ5-2において、制御装置200は、タンク蓄積モードでの運転中である流動物吐出システム10において、バッファタンク50に蓄積されている流動物の残量を確認する。ここで、バッファタンク50における流動物の蓄積量が上限に達していることが確認された場合、制御装置200は、制御フローをステップ5-3に進める。
(ステップ5-3)
 ステップ5-3において、制御装置200は、図8の制御フローに則って、ポンプ供給モードによる動作を開始させる。その後、制御装置200は、ステップ5-4に制御フローを進める。
(ステップ5-4)
 ステップ5-4において、制御装置200は、ポンプ供給モードでの運転中である流動物吐出システム10において、ポンプ20の貯留部22における流動物の残量を確認する。ここで、貯留部22における流動物の残量が下限に達したことが確認されると、制御装置200は、制御フローをステップ5-5に進める。
(ステップ5-5)
 ステップ5-5において、制御装置200は、図14の制御フローに則って、タンク供給モードによる動作を開始させる。その後、制御装置200は、ステップ5-6に制御フローを進める。
(ステップ5-6)
 ステップ5-6において、制御装置200は、タンク供給モードでの運転中である流動物吐出システム10において、バッファタンク50における流動物の残量を確認する。ここで、バッファタンク50における流動物の残量が下限に達したことが確認されると、制御装置200は、制御フローをステップ5-7に進める。ここで、本ステップにおいて、「バッファタンク50における流動物の残量が下限に達した」状態とは、流動物の供給ができなくなるレベルまで貯留量が減少している状態としても良いが、本実施形態では、制御装置200は、流動物の供給ができなくなるレベルよりも少し手前の段階(流動物が少し残っている状態)を流動物の残量が下限値である場合として規定し、動作制御を行う。
(ステップ5-7)
 ステップ5-7において、制御装置200は、図17の制御フローに則って、複合供給モードによる動作を開始させる。その後、制御装置200は、ステップ5-8に制御フローを進める。
(ステップ5-8)
 ステップ5-8において、制御装置200は、複合供給モードでの運転中である流動物吐出システム10において、タイマ時間Tyを確認する。ここで、タイマ時間Tyが所定時間T1以上になったことが確認されると、制御装置200は、制御フローをステップ5-1に戻す。
 流動物吐出システム10が第一運転パターンで動作するときには、上述したフローに則って制御装置200によって動作制御される。上述したように、第一運転パターンは、初期段階(ステップ5-1)においてバッファタンク50への流動物の蓄積を行う。そのため、第一運転パターンにより流動物吐出システム10を動作させると、例えば、ポンプ20の貯留部22の流動物がなくなったときだけでなく、ポンプ20において異常が発生する等して、ポンプ20による流動物の供給ができなくなるケースにおいても、バッファタンク50に蓄積されている流動物を吐出装置30に供給することができる。
[第二運転パターンによる流動物吐出システム10の全体動作について]
 続いて、第二運転パターンによる流動物吐出システム10の全体動作について説明する。第二運転パターンは、ポンプ供給モード→タンク蓄積モード→タンク供給モード→複合供給モードの順で各運転モードでの運転を繰り返す運転パターンである。第二運転パターンにおいても、各運転モードでの運転から、次の運転モードでの運転に切り替えるためのモード切替条件が各運転モード毎に設定されている。制御装置200は、モード切替条件を満足する毎に、運転モードを切り替える制御を行う。流動物吐出システム10が第二運転パターンで動作する場合、制御装置200は、図20に示したフローチャートに則って、流動物吐出システム10の動作制御を行う。以下、図20を参照しつつ、第二運転パターンによる流動物吐出システム10の動作について、さらに詳細に説明する。
(ステップ6-1)
 ステップ6-1において、制御装置200は、図8の制御フローに則って、ポンプ供給モードによる動作を開始させる。その後、制御装置200は、ステップ6-2に制御フローを進める。
(ステップ6-2)
 ステップ6-2において、制御装置200は、ポンプ供給モードでの運転中である流動物吐出システム10において、ポンプ20の貯留部22における流動物の残量を確認する。ここで、貯留部22における流動物の残量が下限に到達する手前の段階であることが確認されると、制御装置200は、制御フローをステップ6-3に進める。
(ステップ6-3)
 ステップ6-3において、制御装置200は、図11の制御フローに則って、タンク蓄積モードによる動作を開始させる。その後、制御装置200は、ステップ6-4に制御フローを進める。
(ステップ6-4)
 ステップ6-4において、制御装置200は、タンク蓄積モードでの運転中である流動物吐出システム10において、貯留部22における流動物の残量を確認する。ここで、貯留部22におけるにおける流動物の蓄積量が下限に達していることが確認された場合、制御装置200は、制御フローをステップ6-5に進める。
(ステップ6-5)
 ステップ6-5において、制御装置200は、図14の制御フローに則って、タンク供給モードによる動作を開始させる。その後、制御装置200は、ステップ6-6に制御フローを進める。
(ステップ6-6)
 ステップ6-6において、制御装置200は、タンク供給モードでの運転中である流動物吐出システム10において、バッファタンク50における流動物の残量を確認する。ここで、バッファタンク50における流動物の残量が下限に達したことが確認されると、制御装置200は、制御フローをステップ6-7に進める。本ステップにおいて、「バッファタンク50における流動物の残量が下限に達した」状態とは、流動物の供給ができなくなるレベルまで貯留量が減少している状態としても良いが、本実施形態では、制御装置200は、流動物の供給ができなくなるレベルよりも少し手前の段階(流動物が少し残っている状態)を流動物の残量が下限値である場合として規定し、動作制御を行う。
(ステップ6-7)
 ステップ6-7において、制御装置200は、図17の制御フローに則って、複合供給モードによる動作を開始させる。その後、制御装置200は、ステップ6-8に制御フローを進める。
(ステップ6-8)
 ステップ6-8において、制御装置200は、複合供給モードでの運転中である流動物吐出システム10において、タイマ時間Tyを確認する。ここで、タイマ時間Tyが所定時間T1以上になったことが確認されると、制御装置200は、制御フローをステップ6-1に戻す。
 流動物吐出システム10が第二運転パターンで動作するときには、上述したフローに則って制御装置200によって動作制御される。上述したように、第二運転パターンは、タンク蓄積モードによる動作に先駆けて、ポンプ供給モードによる動作を行い、中間段階(ステップ6-3)においてタンク蓄積モードによりバッファタンク50への流動物の蓄積を行う。このように、第二運転パターンにより流動物吐出システム10を動作させるときには、ポンプ20の貯留部22における流動物の残量が下限に到達する手前の段階でバッファタンク50に流動物を蓄積し、吐出装置30への流動物の供給源をバッファタンク50に切り替える制御が行われる。そのため、第二運転パターンによれば、バッファタンク50において流動物が蓄積されている(滞留している)期間を最小限に抑制できる。
 上述したように、本実施形態の流動物吐出システム10は、ポンプ20や吐出装置30に加え、バッファタンク50をポンプ20及び吐出装置30を繋ぐ供給路40の中途に配置したものとされている。流動物吐出システム10は、バッファタンク50が流動物に対して圧力を及ぼす圧力作用状態を実現可能なものとされている。また、流動物吐出システム10は、圧力作用状態として、流動物に対して加圧力を及ぼす加圧状態、流動物に対して減圧力を及ぼす減圧状態を実現可能なものとされている。そのため、本実施形態の流動物吐出システム10は、加圧状態として、流動物に対してバッファタンク50の外側に向けて圧力を作用させると、流動物を吐出装置30に向けて圧送できる。従って、流動物吐出システム10は、吐出装置30に対する流動物の供給源がポンプ20からバッファタンク50に切り替わることによる圧力変動を抑制できる。
 また、流動物吐出システム10は、バッファタンク50を減圧状態として、流動物に対してバッファタンク50の内側に向かう方向への圧力を作用させると、流動物をスムーズにバッファタンク50内に吸引できる。これにより、流動物吐出システム10は、吐出装置30に対してバッファタンク50から流動物を供給するのに備え、バッファタンク50に流動物を吸引して蓄積しておくことができる。従って、流動物吐出システム10は、バッファタンク50における流動物の蓄積機能を活用して、吐出装置30に対する流動物の安定供給に貢献できる。
 本実施形態の流動物吐出システム10は、バッファタンク50が、上述した圧力作用状態(加圧状態、減圧状態)に加え、流動物に対して圧力を及ぼさない保持状態を実現可能なものとされている。そのため、ポンプ供給モードでの運転中や、吐出装置30における流動物の残量が十分である場合のように、バッファタンク50を用いることなく吐出装置30において流動物を吐出可能である状態、あるいはタンク蓄積モードでの運転中に、吐出装置30における流動物の残量を考慮するとバッファタンク50への液の蓄積を継続するのが適切ではない状態において、バッファタンク50の影響により吐出装置30に対する流動物の供給圧が変動したり、吐出装置30における流動物の吐出圧が変動したりするのを抑制できる。従って、本実施形態の流動物吐出システム10によれば、バッファタンク50から流動物に圧力が作用することによる吐出装置30への流動物の供給圧の変動や、吐出装置30における吐出圧の変動を抑制できる。
 本実施形態の流動物吐出システム10は、ポンプ20を複数台設けなくても、上述した各運転モードによる運転を行うことにより、吐出装置30に対して流動物を安定的に供給できる。従って、本実施形態の流動物吐出システム10は、ポンプ20を複数台設けた構成とする場合に比べて、設置スペースやコストの増大を抑制することができる。
 なお、本実施形態では、バッファタンク50において流動物に対して圧力を及ぼす圧力作用状態として、流動物に対してバッファタンク50側から供給路40側に向けて正の圧力が作用する加圧状態、流動物に対してバッファタンク50側から供給路40側に向けて負の圧力が作用する減圧状態、及び流動物に対して圧力が作用しない保持状態からなる3段階で圧力を変化させる例を示したが、本発明はこれに限定されるものではない。例えば、加圧状態や減圧状態において、流動物に作用する圧力について複数段階に圧力の作用状態を変化できるようにしたり、無段階で圧力の作用状態を変化できるようにしたりしても良い。
 具体的には、上述したように容積変動機構54において、ケーシング68の第一ケーシング接続口68aに接続された第一配管系統74に、ソレノイドバルブ72bや、パイロットチェック弁72c、第一スピードコントローラ72dを設ける代わりに、例えば、図22に示すようにレギュレータ72xを設ける等すると良い。このような構成によれば、加圧状態や減圧状態において、流動物に作用する圧力を多段階あるいは無段階に変化させることが可能となる。また、このような構成によれば、例えば、上述したタンク蓄積モードにおいて、バッファタンク50を減圧状態とするのに代えて、流動物に作用する圧力の強い強加圧状態から弱加圧状態に変化させるようにする等して、流動物吐出システム10の動作状態に応じてバッファタンク50における圧力制御をより一層最適化することが可能となる。
 また、上述した流動物吐出システム10は、バッファタンク50が、タンク部52、及び容積変動機構54を備え、容積変動機構54によって連通空間58の容積の増減についての制御を行うことによって加圧状態、減圧状態、あるいは保持状態とすることができるものとされている。従って、流動物吐出システム10は、連通空間58の容積の増減制御によってバッファタンク50の動作制御を行える。
 上述したように、流動物吐出システム10は、容積変動機構54が、タンク部52の内部を連通空間58、及び供給路40に対して非連通の非連通空間60に隔てるピストン部62と、ピストン部62を移動させる駆動部64とを備えたものとされている。また、バッファタンク50は、駆動部64によりピストン部62の移動制御を行うことにより、加圧状態、減圧状態、及び保持状態を実現可能なものとされている。そのため、流動物吐出システム10は、ピストン部62の移動制御により、加圧状態、減圧状態、及び保持状態を適切に実現し、吐出装置30に対して流動物を安定供給できる。なお、本実施形態では、ピストン部62を設け、ピストン部62を介して流動物に圧力を作用させる例を示したが、本発明はこれに限定されない。例えば、容積変動機構54は、流動物に対して直接的に圧力を作用可能な構成とする等して、ピストン部62を備えていない構成とすると良い。
 なお、本実施形態では、駆動部64を、気体(空気)の流出入によって駆動力を発現可能なガスシリンダ装置(本実施形態ではエアシリンダ装置)によって構成した例を示したが、本発明はこれに限定されるものではない。例えば、流動物吐出システム10は、駆動部64として、流体としてオイルを用い、油圧によって駆動力を発現可能な油圧シリンダ装置や、モータ等を用いることにより機械的あるいは電気的に駆動力を発現可能な駆動装置64xを用いたもの(図23参照)等とすると良い。
 本発明は上述した実施形態や変形例において例示したものに限定されるものではなく、特許請求の範囲を逸脱しない範囲でその教示及び精神から他の実施形態があり得る。例えば、上述したバッファタンク50は、タンク部52の一端側において、供給路40に接続される接続部56を設け、タンク本体部52aに対して接続部56を介して流動物を流出入させるものであるが、これに代えて図22のバッファタンク150のようなものとすることが可能である。バッファタンク150は、上述したバッファタンク50と略同一の構成とされているが、タンク本体部52aにおける流動物の出口となる接続口56bに対し、タンク本体部52aへの流動物の入口となる接続口56cを、上方に設けたものとされている点において相違している。このような構成とすれば、流動物の滞留時間を最小限に抑制し、蓄積された流動物の使い切りをより一層促進できる。
 また、上述した流動物吐出システム10は、タンク蓄積モードにおいて、吐出装置30への供給圧Pが低下するのを抑制するための対策として、バッファタンク50への流動物の蓄積を制限時間を設けて行うこととしているが、本発明はこれに限定されるものではない。例えば、吐出装置30への供給圧Pが所定値以下になることを条件として、バッファタンク50における流動物の蓄積を停止するようにしてもよい。また、流動物吐出システム10は、タンク蓄積モードにおいて、他の運転モードで運転を行う場合に比べてポンプ20による流動物の供給能力を向上させたり、ポンプ20の運転開始時間を上記実施形態において例示したタイミングよりも早めたりして、供給圧Pの低下を抑制するようにしても良い。また、バッファタンク50における流動物の蓄積量については、例えば、残量センサ等によって直接的に計測して導出する方法、バッファタンク50への流動物の流入量、流出量を検出して差し引きすることにより導出する方法等によって流動物の量を直接的あるいは間接的に導出して把握したり、バッファタンク50に対して流動物が流出入する時間等によって間接的に把握したりすることができる。
 また、上述した流動物吐出システム10は、複合供給モードにおいて、バッファタンク50による流動物の供給を開始した後、しばらくしてからポンプ20を運転することで、バッファタンク50内の流動物を優先的に消費することとしているが、本発明はこれに限定されるものではない。複合供給モードにおいて、例えば、ポンプ20の回転数を低下させる等して圧送能力を低下させたり、バッファタンク50の加圧力を上げたりして、ポンプ20とバッファタンク50とで流動物の供給能力に差を設けることにより、バッファタンク50内の流動物を優先的に消費するようにすると良い。なお、前述のようにポンプ20の圧送能力を低下させる等するときには、バッファタンク50による流動物の供給、及びポンプ20の運転による流動物の供給を同時に開始するようにしても良い。
 ここで、上述した流動物吐出システム10は、バッファタンク50の下限より少し手前(流動物の残量がゼロになる少し手前)にのみリミットスイッチ等のセンサを設置し、このセンサによってバッファタンク50における流動物の残量が下限であることが検出されたとき(ステップ5-6,ステップ6-6に相当)に複合供給モードに運転モードを切り替える(ステップ5-7,ステップ6-7)ものとすることができる。この場合、複合供給モードから次の運転モードへの切り替え判定をタイマによって行う(ステップ5-8,ステップ6-8)ことにより、バッファタンク50内の流動物の残量が下限に到達したものとすると良い。また、このような方式で複合供給モードから次の運転モードへの切り替え判定を行う代わりに、バッファタンク50の下限位置にセンサを別途設け、このセンサにより流動物が下限位置まで減少したことが検出されることを条件として、複合供給モードから次の運転モードへの切り替えを行うようにしても良い。また、「バッファタンク50における流動物の残量が下限である」状態とは、流動物の供給ができなくなるレベルまで貯留量が減少している状態としても良いが、本発明はこれに限定されるものではなく、本発明の趣旨を逸脱しない範囲において適宜規定できる。具体的には、本実施形態において説明したように、流動物の供給ができなくなるレベルよりも少し手前の状態(流動物が少し残っている状態)を、「バッファタンク50における流動物の残量が下限である」状態としても、本発明の趣旨を逸脱するものではない。
 上述した流動物吐出システム10は、バッファタンク50と吐出装置30の間に圧力を検知可能なセンサ92を設け、吐出装置30への供給圧Pに基づいて各機器を制御するものであるが、本発明はこれに限定されるものではない。例えば、センサ92を、流量センサ等とし、吐出装置30に供給される流動物の流量に応じて、吐出装置30における流動物の残量を把握するもの等としても良い。また、吐出装置30の手前に別途アキュムレータを設ける場合には、このアキュムレータのピストン位置に基づいて吐出装置30における流動物の残量を把握し、各機器を制御すると良い。また、流動物吐出システム10は、センサ92の配置についても、上述したものに限定されない。具体的には、センサ92は、供給路40やアキュムレータ等に限らず、吐出装置30自体(例えば吐出装置30のケーシング100やステータ104等)に設けても良い。
 上述したように、流動物吐出システム10は、例えば、バッファタンク50に残量センサを設けたり、仕切壁70の位置を検出可能とする位置センサを設けたりして、これらのセンサからの出力値に基づいてバッファタンク50における流動物の貯留量を判断することとしたり、バッファタンク50に対する流動物の流入量及び流出量を検知あるいは導出可能とし、流入量及び流出量に基づいてバッファタンク50における流動物の貯留量を判断することとしたりすると良い。また、流動物吐出システム10は、バッファタンク50の上限位置や下限位置などにセンサを配し、流動物の貯留量を複数の段階で検知できる構成のものに限定されず、バッファタンク50内の流動物の貯留量を連続的に検知できる構成のものとすることも可能である。
 具体的には、バッファタンク50内の流動物の貯留量を連続的に検知できるものとして、例えば、図24に示すように、バッファタンク50に対して流動物の貯留量を連続的に検出するための検出装置300を設けたものとすると良い。図24に示した検出装置300は、流動物の残量に応じて移動する部材(図示例ではピストン部62)、あるいはこれと連動して移動するロッド部66や仕切壁70の位置を連続的に検出することにより、バッファタンク50における流動物の残量を検出するものである。図24に示した例では、検出装置300が、センサドグ302と、磁気式位置検出センサ304とを備えたものとされている。
 センサドグ302は、例えば磁石を内蔵するなどして磁気を発するように形成されたものである。センサドグ302は、位置検出の対象となるものに対して取り付け可能とされている。センサドグ302は、例えばバッファタンク50においてシリンダを構成するピストン部62、ロッド部66、仕切壁70のように、バッファタンク50における流動物の残量に応じて位置が変動する位置変動部材306に取り付けられる。図24に示す例では、位置変動部材306としてロッド部66が選択され、ロッド部66に対してセンサドグ302が取り付けられている。
 磁気式位置検出センサ304は、センサドグ302から発せられる磁気に基づいて、センサドグ302の位置を検出できるセンサである。磁気式位置検出センサ304は、バッファタンク50に貯留される流動物の増減に応じてセンサドグ302が移動する範囲が検知範囲となるように、バッファタンク50に対して取り付けられる。本実施形態では、磁気式位置検出センサ304は、バッファタンク50のケーシング68において、流動物の増減に応じてセンサドグ302が移動すると想定される移動範囲の全域に亘って取り付けられている。本実施形態では、センサドグ302がバッファタンク50の軸線方向に移動するため、磁気式位置検出センサ304はバッファタンク50の軸線方向に延びるように配されている。
 流動物吐出システム10は、図24に示した検出装置300のように、バッファタンク50におけるシリンダのストローク全域をセンシングできるものを用いれば、バッファタンク50のタンク容積(流動物の残量)と、シリンダのストロークとの関係を関連付けすることにより、バッファタンク50における流動物の残量値を把握することができる。すなわち、検出装置300により、バッファタンク50内の流動物の貯留量を連続的に検知することができる。
 また、図24のような構成とすることにより、バッファタンク50における流動物の貯留量の上限値、及び下限値を適宜設定したり、変更したりして、流動物吐出システム10の動作制御を行うことができる。具体的には、上記実施形態のように、バッファタンク50における貯留量の上限値となる位置、及び下限値となる位置に、リミットスイッチなどのスイッチやセンサなどの検知装置を設ける場合、流動物の貯留量の上限値、及び下限値を変更するためには、検知装置の設置位置を物理的に移動させる必要がある。しかしながら、上述した検出装置300を用いれば、磁気式位置検出センサ304によりセンサドグ302を検知できる範囲内において、適宜の位置に上限位置や下限位置を設定したり、上限位置や下限位置となる位置の変更を行い、流動物吐出システム10の動作制御を行うことができる。
 また、検出装置300において、磁気式位置検出センサ304により検出されるセンサドグ302の位置情報に基づき、流動物吐出システム10の動作制御盤や、制御装置のモニタなどのユーザインターフェイス310に、バッファタンク50における流動物の残量を表示可能とすると良い。
 具体的には、図25に示すように、バッファタンク50における流動物の残量を示す残量表示部312を設け、インジケータや数値等(図示例ではインジケータ)により残量を表示すると良い。このようにして、バッファタンク50における流動物の残量を可視化することにより、ポンプ20が配置されている貯留部22への流動物の補充や、貯留部22の交換を行うタイミングが明確になる。例えば、貯留部22をペール缶とした場合には、空になったペール缶(貯留部22)を新しいペール缶(貯留部22)に交換するタイミングが明確になる。
 図25に示すようなユーザインターフェイス310を設ける場合には、バッファタンク50における流動物の残量に加えて、あるいは代えて、流動物吐出システム10がいずれの動作モードで動作しているのかを識別可能なように表示するモード表示部314を設けると良い。図25に例示したモード表示部314においては、現状の動作モードを示す表示を、他の動作モードを示す表示と色を反転して表示することにより、いずれの動作モードで動作しているのかを識別可能とされている。これにより、流動物吐出システム10は、いずれの動作モードで動作しているのかを直感的に把握したり、貯留部22の交換や貯留部22への流動物の補充を行うタイミングを明確に把握したりすることが可能になる。
 貯留部22の交換や貯留部22への流動物の補充を行うタイミングについては、適宜規定可能であるが、上記実施形態に係る流動物吐出システム10においては、タンク供給モードでの動作時に行うと良い。そのため、図25に示したように、モード表示部314において流動物吐出システム10の動作状態がタンク供給モードとなったことが明確に分かるようにすれば、貯留部22の交換や貯留部22への流動物の補充を行うタイミングが明確に把握できるようになる。
 また、図25に示すようなユーザインターフェイス310を設ける場合には、例えばこれに表示されるインジケータなどの表示部分(図示例では残量表示部312)において操作を受け付け可能とし、操作に応じて各部に対する動作指令を出力したり、動作設定を行ったりすることができるようにすると良い。例えば、図25の例においては、残量表示部312におけるインジケータの表示部分において操作を受け付け可能とし、インジケータの長さを調整すると良い。これにより、例えば、警告の出力や、動作条件の指標となるバッファタンク50における流動物の残量の上限値及び下限値のいずれか一方又は双方を設定する等の作業を、作業者が直感的に行うことができるようになる。
 本発明は上述した実施形態や変形例において例示したものに限定されるものではなく、特許請求の範囲を逸脱しない範囲でその教示及び精神から他の変形実施形態や変形例があり得る。以下、流動物吐出システム10の更なる変形例について説明する。
 上述した流動物吐出システム10は、ポンプ20から吐出装置30への流動物の供給を制限する際に、バッファタンク50から供給路40に流動物を排出することにより、吐出装置30に対する流動物の供給を継続する運転(吐出継続運転)を実現可能なものとされている。そのため、流動物吐出システム10は、吐出継続運転においてバッファタンク50から排出された流動物を吐出装置30に供給している間に、例えば貯留部22に流動物を補充したり、流動物の残量が減った貯留部22を、流動物の残量が十分確保されている貯留部22に取り替えたりする作業を行うことが可能となる。
 ここで、上述した流動物吐出システム10は、バッファタンク50における流動物の貯留容量Vを最適化しなければ、吐出装置30に対する流動物の供給を継続的に行えなくなったり、バッファタンク50に流動物が過剰に蓄積されてしまったりする懸念がある。具体的には、流動物吐出システム10は、バッファタンク50における流動物の貯留容量Vが少ないと、貯留部22に流動物を補充したり貯留部22を交換したりしているうちに、バッファタンク50における流動物の残量がなくなり、吐出装置30に対する流動物の供給が途絶えてしまい兼ねない。また、流動物吐出システム10は、バッファタンク50における流動物の貯留容量Vが必要以上に多いと、バッファタンク50に蓄積されたまま長期間に亘って残留してしまう流動物が発生してしまう懸念がある。さらに、バッファタンク50における貯留容量Vは、貯留部22に流動物を補充したり貯留部22を交換したりする作業に要する時間のバラツキや、供給路40の長さ等の変動要素についても配慮して設定されることが望ましい。従って、流動物吐出システム10は、吐出継続運転を行う場合に、ポンプ20から吐出装置30への流動物の供給を制限している間に吐出装置30から吐出される流動物の吐出量や、各種の変動要素を考慮してバッファタンク50における流動物の貯留容量Vを最適化したものであることが望ましい。
 このような課題を解決するための変形例として、流動物吐出システム10は、ポンプ20から吐出装置30への流動物の供給を制限しつつ、バッファタンク50から供給路40に流動物を排出することにより、吐出装置30に対する流動物の供給を継続する吐出継続運転が可能であり、以下の(数式1)に基づいてバッファタンク50における流動物の貯留容量Vが設定されるものとすることができる。
   V=a・(t+x)・・・(数式1)
 ここで、上述した(数式1)を構成するパラメータのうち、パラメータ「a」は、吐出継続運転においてポンプ20から吐出装置30への流動物の供給を制限している間に吐出装置30から吐出される流動物の平均吐出流量である。
 また、上述した(数式1)を構成するパラメータ「t」は、吐出継続運転においてポンプ20から吐出装置30への流動物の供給が制限される制限時間である。
 ここで、流動物吐出システム10は、吐出継続運転において、貯留部22における流動物の残量が所定の下限値以下になることを条件としてポンプ20から吐出装置30への流動物の供給が制限されるものとされている。また、流動物吐出システム10は、流動物の残量が下限値以下になった貯留部22を、流動物が十分に満たされた別の貯留部22に交換したり、流動物の残量が下限値以下になった貯留部22に流動物を補充して流動物の残量を回復させたりすることにより、制限解除条件を満足する状態に回復する。これにより、流動物吐出システム10は、貯留部22において吐出装置30への供給に必要な流動物が確保された状態になり、ポンプ20から吐出装置30への流動物の供給制限が解除される。従って、上述した(数式1)を構成する制限時間tは、貯留部22における流動物の残量が下限値以下になってから、貯留部22における流動物の残量が所定の制限解除条件を満足する状態に回復させるための作業(回復作業)を行うのに必要と想定される作業時間(回復期間R)に基づいて規定される。制限時間tは、例えば、回復期間Rと同一の値に設定すると良い。また、回復期間Rは、平均的な作業者が回復作業に要する作業時間を想定して規定されると良い。
 上述した(数式1)を構成するパラメータ「x」は、貯留部22に流動物を補充したり貯留部22を交換したりする作業に要する時間のバラツキや、供給路40の長さ等の変動要素を考慮して任意に設定可能な可変パラメータである。例えば、可変パラメータxは、流動物の残量を回復させる回復作業を行う作業者に応じて変動するものとしたり、流動物がポンプ20からバッファタンク50に到達するまでに要する到達期間Sに応じて変動するものとしたりすると良い。
 本変形例において、バッファタンク50は、連通空間58に蓄積可能な流動物の容量を変更可能なものとされる。具体的には、バッファタンク50は、上述した(数式1)によって導出される流動物の貯留容量Vに応じてタンク部52を交換可能なものや、連通空間58に蓄積可能な流動物の上限容量を貯留容量Vに設定変更可能なものとすることにより、貯留容量Vを変動可能なものとされる。
 流動物吐出システム10は、本変形例のような構成とすることにより、例えば次のようにしてバッファタンク50における流動物の貯留容量Vを最適化することができる。
≪貯留部22の交換作業に関する熟練度を考慮した貯留容量Vの最適化方法≫
 本変形例の流動物吐出システム10は、貯留部22の交換作業についての熟練度に応じて上述した可変パラメータxを熟練度に応じて相違させることにより、バッファタンク50における流動物の貯留容量Vの最適化を図ることができる。
 さらに詳細に説明すると、吐出継続運転においてポンプ20から吐出装置30への流動物の供給を制限している間に吐出装置30から吐出される流動物の平均吐出流量aは、貯留部22の交換作業についての熟練度によらず一定である。また、吐出継続運転においてポンプ20から吐出装置30への流動物の供給が制限される制限時間tは、平均的な作業者が貯留部22の交換作業を行い、流動物の貯留量を回復させるための作業(回復作業)に要する作業時間であり、作業者によらず一定の値に設定される。そのため、可変パラメータxを熟練度に応じて相違させることにより、貯留容量Vは、熟練度を考慮した値に設定される。
 ここで、具体例を例示して説明すると、平均吐出流量aが100[ml/min]であり、制限時間tが10[min]である場合において、10分で貯留部22の交換作業を行える熟練者の場合の可変パラメータxを1とすると、貯留容量Vは、V=a×(t+x)=100×(10+1)=1100[ml]となる。貯留部22における流動物の残量が下限に設定された量になったことが検知されて貯留部22の交換が必要となり、吐出装置30への流動物の供給がバッファタンク50からのみに切り替わってから、バッファタンク50が空になるまでに要する時間temptyは、tempty=1100[ml]/100[ml/min]=11[min]となる。そのため、熟練者が想定通りに10分で貯留部22の交換作業を完了させた場合には、その時点でバッファタンク50の内部に残存している流動物の残量は、1[min]分(100ml)に相当する分だけである。そのため、前述したようにして貯留容量Vを設定することにより、吐出装置30への流動物の供給が途切れるのを回避しつつ、貯留部22の交換後にバッファタンク50に残る流動物の残量を最小限に抑制できる。
 また、貯留部22の交換作業に時間を要する熟練度の低い作業者である場合の可変パラメータxを5とすると、貯留容量Vは、V=a×(t+x)=100×(10+5)=1500[ml]となる。この場合において、貯留部22における流動物の残量が下限に設定された量になったことが検知されて貯留部22の交換が必要となり、吐出装置30への流動物の供給がバッファタンク50からのみに切り替わってから、バッファタンク50が空になるまでに要する時間temptyは、tempty=1500[ml]/100[ml/min]=15[min]となる。そのため、貯留部22の交換作業に係る熟練度の低い作業者が、標準(制限時間t)よりも長い13分に亘って貯留部22の交換作業を行ったとしても、交換作業が完了した時点で、バッファタンク内には2[min]分(200ml)の流動物が残存している。そのため、前述したようにして貯留容量Vを設定することにより、熟練度の低い作業者が貯留部22の交換作業を行う場合であっても、吐出装置30への流動物の供給が途切れることを回避しつつ、貯留部22の交換後にバッファタンク50に残る流動物の残量を最小限に抑制できる。
≪到達期間Sを考慮した貯留容量Vの最適化方法≫
 続いて、流動物がポンプ20からバッファタンク50に到達するまでに要する到達期間Sを考慮した貯留容量Vの最適化方法について説明する。本変形例の流動物吐出システム10は、到達期間Sに応じて上述した可変パラメータxを熟練度に応じて相違させることにより、バッファタンク50における流動物の貯留容量Vの最適化を図ることができる。
 さらに詳細に説明すると、吐出継続運転においてポンプ20から吐出装置30への流動物の供給を制限している間に吐出装置30から吐出される流動物の平均吐出流量aは、貯留部22の交換作業についての熟練度によらず一定である。また、吐出継続運転においてポンプ20から吐出装置30への流動物の供給が制限される制限時間tは、平均的な作業者が貯留部22の交換作業を行い、流動物の貯留量を回復させるための作業(回復作業)に要する作業時間であり、作業者によらず一定の値に設定される。そのため、可変パラメータxを熟練度に応じて相違させることにより、貯留容量Vは、到達期間Sを考慮した値に設定される。
 ここで、具体例を例示して説明すると、平均吐出流量aが100[ml/min]であり、制限時間tが10[min]である場合において、可変パラメータx=20とした場合、バッファタンクの容量は、V=a×(t+x)=100×(10+20)=3000[ml]となる。この場合において、貯留部22における流動物の残量が下限に設定された量になったことが検知されて貯留部22の交換が必要となり、吐出装置30への流動物の供給がバッファタンク50からのみに切り替わってから、バッファタンク50が空になるまでに要する時間temptyは、temprty=3000[ml]/100[ml/min]=30[min]となる。そのため、貯留部22における流動物の残量が下限に達してから貯留部22の交換に10[min]の時間を要した場合、貯留部22の交換完了時点においてバッファタンク50には20[min]分(2000[ml])の流動物が残っている。
 しかしながら、例えば、交換した貯留部22からバッファタンク50へ流動物が到達するまでの到達期間Sが10[min]である場合、貯留部22の交換完了時点からさらに10[min](1000[ml])に亘ってバッファタンク50から吐出装置30に流動物を供給し続けなければならない。このような場合であっても、上述したように、バッファタンク50には、20[min]分(2000[ml])の流動物が残存している。そのため、バッファタンク50に代えてポンプ20から吐出装置30に流動物を供給可能となる時点において、バッファタンク50には20[min]-10[min]=10[min]分(1000[ml])の流動物が残存している。そのため、到達期間Sに応じて可変パラメータxを最適な値に設定することにより、吐出装置30への流動物の供給が途切れることを回避しつつ、貯留部22の交換後にバッファタンク50に残る流動物の残量を最小限に抑制できる。
 上述したように、本変形例の流動物吐出システム10は、ポンプ20から吐出装置30への流動物の供給を制限しつつ、バッファタンク50から供給路40に流動物を排出することにより、吐出装置30に対する流動物の供給を継続する吐出継続運転が可能である。そのため、本変形例の流動物吐出システム10は、吐出継続運転中に、例えば貯留部22に流動物を補充したり、流動物の残量が減った貯留部22を、流動物の残量が十分確保されている貯留部22に取り替えたりする作業を行うことが可能である。従って、本変形例の流動物吐出システム10によれば、設置スペースやコストの増大を抑制しつつ、吐出装置30に対して流動物を継続的に供給することができる。
 また、本変形例の流動物吐出システム10は、バッファタンク50における流動物の貯留容量Vが上述した(数式1)の関係により規定され、少なくとも平均吐出流量aと制限時間tとを乗じた分の容量を有する。そのため、本実施形態の流動物吐出システム10は、吐出継続運転においてポンプ20から吐出装置30への流動物の供給を制限している間に吐出装置30から吐出するのに必要な分の流動物をバッファタンク50に蓄えることができる。また、貯留容量Vを規定する(数式1)は、可変パラメータxを加味したものとされている。そのため、本変形例の流動物吐出システム10は、例えば、上述した貯留部22の交換作業に係る熟練度や、到達期間S等の変動要素に応じて可変パラメータxを設定することにより、変動要素も考慮に入れて貯留容量Vを最適化できる。従って、本変形例の流動物吐出システム10は、吐出継続運転においてポンプ20から吐出装置30への流動物の供給を制限している間に吐出装置30から吐出される流動物の吐出量や、各種の変動要素を考慮して、バッファタンク50における流動物の貯留容量Vを最適化できる。
 上述したように、本変形例の流動物吐出システム10は、貯留部22における流動物の残量が下限に達してから所定の制限解除条件を満足する状態(本実施形態では貯留部22の交換により流動体の残量が所定量以上になった状態)に回復するまでに要する標準的な回復期間Rに基づいて制限時間tを規定するものとされている。本変形例の流動物吐出システム10は、このように制限時間tが回復期間Rを反映した値に規定されているため、回復期間Rを指標として流動物の貯留容量Vを最適な値に設定できる。
 なお、本変形例では、回復期間Rを貯留部22の交換により流動体の残量が所定量以上に回復するまでの標準的な期間に規定する例を示したが、本発明はこれに限定されるものではない。例えば、上述したように流動体の残量が下限値以下になった貯留部22を、流動体が十分に入った別の貯留部22に交換するのではなく、貯留部22に対して流動体を流入させることにより流動物の残量を回復させるものとする場合には、貯留部22に対して流動体を流入させて所定の残量まで回復するのに要する期間を回復期間Rとする等、貯留部22における流動物の残量を回復させるための手段等に応じて回復期間Rを最適な値に設定すると良い。
 上述したように、本変形例の流動物吐出システム10は、貯留部22における流動物の残量を回復させる回復作業(本変形例では貯留部22の交換作業)を行う作業者に応じて可変パラメータxを変動させるものとされている。これにより、流動物吐出システム10は、回復作業を行う作業者の熟練度等の変動要素を考慮して、バッファタンク50における流動物の貯留容量Vの最適化を図れる。
 上述した本変形例の流動物吐出システム10は、流動物がポンプ20からバッファタンク50に到達するまでに要する到達期間Sに応じてパラメータxを変動させるものとされている。これにより、本変形例の流動物吐出システム10は、流動物がポンプ20からバッファタンク50に到達するまでに要する到達期間Sを考慮して、バッファタンク50における流動物の貯留容量Vの最適化を図れる。
 なお、本変形例の流動物吐出システム10は、バッファタンク50における流動物の貯留容量Vは、貯留部22における流動物の残量を回復させる回復作業を行う作業者の熟練度や、到達期間S等、単一の変動要素を考慮して設定される可変パラメータxによりバッファタンク50における流動物の貯留容量Vの最適化を図るものであるが、本発明はこれに限定されるものではない。具体的には、流動物吐出システム10は、複数の変動要素を考慮して可変パラメータxを設定し、バッファタンク50における流動物の貯留容量Vの最適化を図るものとすることも可能である。例えば、第一の変動要素として貯留部22における流動物の残量を回復させる回復作業を行う作業者の熟練度、第二の変動要素として到達期間Sを想定し、第一の変動要素に係る可変パラメータx1、及び第二の変動要素に係る可変パラメータx2を考慮してバッファタンク50における流動物の貯留容量Vを設定するものとすることが可能である。具体的には、n個の変動要素を想定する場合に、可変パラメータxを以下の(数式2)により導出し、これを上述した(数式1)に代入することによりバッファタンク50における流動物の貯留容量Vを設定するようにすると良い。
   x=x1+x2+・・・+xn ・・・(数式2)
 上述したように、複数の変動要素を想定して流動物の貯留容量Vを設定するようにすれば、バッファタンク50における流動物の貯留容量Vをより一層最適化できる。
 なお、流動物吐出システム10は、バッファタンク50における流動物の貯留容量Vを変更する方法や構成として、本発明の趣旨を逸脱しない範囲において様々なものとすることができる。例えば、流動物吐出システム10は、貯留可能な容量の異なるタンク部52を取り替え可能なように複数準備しておき、上述したようにして導出された流動物の貯留容量Vや可変パラメータxに応じて最適な容積のタンク部52に取り替え可能なものとしたり、容量が同一又は相違する複数の容器を組み合わせることにより貯留容量Vや可変パラメータxに応じてタンク部52の容積を調整可能なものとしたりしてもと良い。また、本変形例の流動物吐出システム10は、バッファタンク50のピストン部62の上限位置を可変パラメータxや貯留容量Vに応じて設定可能なものとしても良い。
 本発明は、上述した実施形態や変形例等として示したものに限定されるものではなく、特許請求の範囲を逸脱しない範囲でその教示および精神から他の実施形態があり得る。上述した実施形態の構成要素は任意に選択して組み合わせて構成するとよい。また実施形態の任意の構成要素と、発明を解決するための手段に記載の任意の構成要素または発明を解決するための手段に記載の任意の構成要素を具体化した構成要素とは任意に組み合わせて構成してもよい。これらについても本願の補正または分割出願等において権利取得する意思を有する。
 本発明は、流動物を圧送して吐出させるための流動物吐出システム全般において好適に利用可能である。
 10 :流動物吐出システム
 20 :ポンプ
 22 :貯留部
 30 :吐出装置
 40 :供給路
 50 :バッファタンク
 52 :タンク部
 54 :容積変動機構
 58 :連通空間
 60 :非連通空間
 62 :ピストン部(隔壁部)
 64 :駆動部

Claims (11)

  1.  流動物を吐出する吐出装置と、
     流動物を貯留する貯留部を有し、前記貯留部に貯留された流動物を前記吐出装置に向けて供給可能なポンプと、
     前記吐出装置及び前記ポンプの間を流動物が通過可能に接続する供給路と、
     前記供給路の中途に配置され、流動物の吸引及び排出が可能なバッファタンクと、
    を有し、
     前記ポンプから前記吐出装置への流動物の供給を制限しつつ、前記バッファタンクから前記供給路に流動物を排出することにより、前記吐出装置に対する流動物の供給を継続する吐出継続運転が可能であり、
     前記吐出継続運転において前記ポンプから前記吐出装置への流動物の供給を制限している間に前記吐出装置から吐出される流動物の平均吐出流量a、及び前記吐出継続運転において前記ポンプから前記吐出装置への流動物の供給が制限される制限時間t、及び可変パラメータxに基づいて、前記バッファタンクにおける流動物の貯留容量Vが、V=a・(t+x)の関係により設定されること、を特徴とする流動物吐出システム。
  2.  前記吐出継続運転において、前記貯留部における流動物の残量が所定の下限値以下になることを条件として前記ポンプから前記吐出装置への流動物の供給が制限され、前記貯留部における流動物の残量が所定の制限解除条件を満足する状態に回復することを条件として前記ポンプから前記吐出装置への流動物の供給制限が解除されるものであり、
     前記貯留部における流動物の残量が下限値以下になってから、前記貯留部における流動物の残量が所定の制限解除条件を満足する状態に回復するまでに要する回復期間Rに基づいて前記制限時間tが規定されること、を特徴とする請求項1に記載の流動物吐出システム。
  3.  前記吐出継続運転において、前記貯留部における流動物の残量が所定の下限値以下になることを条件として前記ポンプから前記吐出装置への流動物の供給が制限され、前記貯留部における流動物の残量が所定の制限解除条件を満足する状態に回復することを条件として前記ポンプから前記吐出装置への流動物の供給制限が解除されるものであり、
     前記流動物の残量を回復させる回復作業を行う作業者に応じて前記可変パラメータxが変動すること、を特徴とする請求項1に記載の流動物吐出システム。
  4.  流動物が前記ポンプから前記バッファタンクに到達するまでに要する到達期間Sに応じて前記パラメータxが変動すること、を特徴とする請求項1に記載の流動物吐出システム。
  5.  前記バッファタンクが、流動物に対して圧力を及ぼす圧力作用状態、及び流動物に対して圧力を及ぼさない保持状態を実現可能であること、を特徴とする請求項1に記載の流動物吐出システム。
  6.  前記バッファタンクが、流動物に対して圧力を及ぼす圧力作用状態として、流動物に対して加圧力を及ぼす加圧状態、流動物に対して減圧力を及ぼす減圧状態を実現可能であること、を特徴とする請求項5に記載の流動物吐出システム。
  7.  前記バッファタンクが、
     前記供給路に対して流動物を流出入可能に接続されるタンク部と、
     前記タンク部において前記供給路に連通する連通空間の容積を変動させる容積変動機構と、を有し、
     前記容積変動機構により前記連通空間の容積を減少させることで前記加圧状態とし、
     前記容積変動機構により前記連通空間の容積を増大させることで前記減圧状態とし、
     前記容積変動機構による前記連通空間の容積の増減を停止させることで前記保持状態とすることができること、を特徴とする請求項6に記載の流動物吐出システム。
  8.  前記容積変動機構が、
     前記タンク部の内部を前記連通空間、及び前記供給路に対して非連通の非連通空間に隔てる隔壁部と、
     前記隔壁部を移動させる駆動部と、
    を有し、
     前記駆動部により前記隔壁部の移動制御を行うことにより、前記加圧状態、前記減圧状態、及び前記保持状態を実現可能であること、を特徴とする請求項7に記載の流動物吐出システム。
  9.  前記駆動部が、前記非連通空間にある流体を介して前記隔壁部に作用する圧力を変動させて前記隔壁部を移動させるものであり、
     前記非連通空間側において前記隔壁部に作用する圧力を向上させることにより前記加圧状態とし、
     前記非連通空間側において前記隔壁部に作用する圧力を低下させることにより前記減圧状態とし、
     前記非連通空間側において前記隔壁部に作用する圧力の変動を停止させることにより、前記保持状態とすることができること、を特徴とする請求項8に記載の流動物吐出システム。
  10.  流体の流出入によって駆動力を発現可能なシリンダ装置を備えており、
    前記シリンダ装置を駆動制御することにより、流動物の作用状態を調整できること、を特徴とする請求項8に記載の流動物吐出システム。
  11.  前記バッファタンクが、
     流動物の残量に応じて所定の変動範囲で位置が変動する位置変動部材と、
     前記位置変動部材の位置を検出する検出装置とを備えたものであり、
     前記バッファタンクの容量と、前記位置変動部材の位置との相関関係に基づき、前記バッファタンクにおける流動物の残量を把握可能であること、を特徴とする請求項1~10のいずれかに記載の流動物吐出システム。
PCT/JP2021/039531 2020-05-08 2021-10-26 流動物吐出システム WO2022180930A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237028501A KR20230149821A (ko) 2020-05-08 2021-10-26 유동물 토출 시스템
US18/547,499 US20240050969A1 (en) 2020-05-08 2021-10-26 Fluid discharge system
CN202180093501.7A CN116829271A (zh) 2020-05-08 2021-10-26 流动物喷出系统

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020082792 2020-05-08
JP2021-031252 2021-02-26
JP2021031252A JP2021178312A (ja) 2020-05-08 2021-02-26 流動物吐出システム

Publications (1)

Publication Number Publication Date
WO2022180930A1 true WO2022180930A1 (ja) 2022-09-01

Family

ID=78510175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039531 WO2022180930A1 (ja) 2020-05-08 2021-10-26 流動物吐出システム

Country Status (5)

Country Link
US (1) US20240050969A1 (ja)
JP (1) JP2021178312A (ja)
KR (1) KR20230149821A (ja)
CN (1) CN116829271A (ja)
WO (1) WO2022180930A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230118197A1 (en) * 2021-10-18 2023-04-20 Semes Co., Ltd. Substrate treating apparatus, and method of controlling the substrate treating apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3104056U (ja) * 2004-03-16 2004-09-02 株式会社サンエイエンジニアリング シール剤の定量塗布装置
JP2004249243A (ja) * 2003-02-21 2004-09-09 Heishin Engineering & Equipment Co Ltd 材料供給システム
JP2011189295A (ja) * 2010-03-15 2011-09-29 Toray Eng Co Ltd 塗布液供給装置、塗布液供給方法、及びバッファタンク
JP2013071044A (ja) * 2011-09-27 2013-04-22 Toppan Printing Co Ltd 塗工装置および塗工方法
JP2013163152A (ja) * 2012-02-10 2013-08-22 Three Bond Co Ltd 高粘度材料供給装置
JP2015211945A (ja) * 2014-05-02 2015-11-26 兵神装備株式会社 流動物吐出システム、及びアキュムレータ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7071736B2 (ja) 2018-05-24 2022-05-19 兵神装備株式会社 ポンプ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249243A (ja) * 2003-02-21 2004-09-09 Heishin Engineering & Equipment Co Ltd 材料供給システム
JP3104056U (ja) * 2004-03-16 2004-09-02 株式会社サンエイエンジニアリング シール剤の定量塗布装置
JP2011189295A (ja) * 2010-03-15 2011-09-29 Toray Eng Co Ltd 塗布液供給装置、塗布液供給方法、及びバッファタンク
JP2013071044A (ja) * 2011-09-27 2013-04-22 Toppan Printing Co Ltd 塗工装置および塗工方法
JP2013163152A (ja) * 2012-02-10 2013-08-22 Three Bond Co Ltd 高粘度材料供給装置
JP2015211945A (ja) * 2014-05-02 2015-11-26 兵神装備株式会社 流動物吐出システム、及びアキュムレータ

Also Published As

Publication number Publication date
JP2021178312A (ja) 2021-11-18
CN116829271A (zh) 2023-09-29
KR20230149821A (ko) 2023-10-27
US20240050969A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
KR100927546B1 (ko) 재료 공급 장치
WO2022180930A1 (ja) 流動物吐出システム
JP2011517752A (ja) 複数の可変負荷を駆動するための、定容量ポンプを含む油圧システム及びその動作方法
RU2416742C1 (ru) Стенд для гидравлических испытаний емкостей большого объема и высокого давления на циклическую долговечность
EP3546761B1 (en) Pressure booster
CN109386602B (zh) 液压控制装置
KR100274925B1 (ko) 액체 분배 장치 및 방법
CN105090134A (zh) 液压供给装置
KR101051795B1 (ko) 절삭유 자동 희석 및 공급장치
CN100409925C (zh) 克服压力下降的对水进行淡化的方法和装置
CA2698910C (en) Multi-pump sequencing
JP2021178313A (ja) 流動物吐出システム
JP3692004B2 (ja) 流体圧回路装置
JP6429085B2 (ja) ガス供給装置
RU2480635C1 (ru) Стенд для гидравлических испытаний емкостей большого объема и высокого давления на циклическую долговечность
WO2012176314A1 (ja) 電油ハイブリッド駆動装置
KR102148794B1 (ko) 윤활유용 펌프 장치 및 그의 작동방법
JP5993589B2 (ja) コンクリートポンプ
CN217382472U (zh) 一种双线集中润滑系统及其润滑泵
KR100606202B1 (ko) 펌프카의 콘크리트 압송변환시스템
JP2007120446A (ja) エア駆動ダイアフラムポンプ
JP2007182242A (ja) 液体供給システム
JP5993588B2 (ja) コンクリートポンプ
TWI778183B (zh) 吐出系統
JP5234629B2 (ja) 混合塗料の供給装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928025

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180093501.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18547499

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928025

Country of ref document: EP

Kind code of ref document: A1