WO2022180658A1 - 電力増幅器 - Google Patents

電力増幅器 Download PDF

Info

Publication number
WO2022180658A1
WO2022180658A1 PCT/JP2021/006738 JP2021006738W WO2022180658A1 WO 2022180658 A1 WO2022180658 A1 WO 2022180658A1 JP 2021006738 W JP2021006738 W JP 2021006738W WO 2022180658 A1 WO2022180658 A1 WO 2022180658A1
Authority
WO
WIPO (PCT)
Prior art keywords
power amplifier
difference frequency
frequency
circuit
short circuit
Prior art date
Application number
PCT/JP2021/006738
Other languages
English (en)
French (fr)
Inventor
拓海 杉谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US18/247,867 priority Critical patent/US20240014784A1/en
Priority to PCT/JP2021/006738 priority patent/WO2022180658A1/ja
Priority to JP2023501694A priority patent/JPWO2022180658A1/ja
Priority to CN202180078155.5A priority patent/CN116783819A/zh
Publication of WO2022180658A1 publication Critical patent/WO2022180658A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • H03F3/604Combinations of several amplifiers using FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/36Indexing scheme relating to amplifiers the amplifier comprising means for increasing the bandwidth

Definitions

  • the present disclosure relates to a power amplifier that amplifies power at high frequencies and is particularly excellent in broadband and linearity.
  • Microwave power amplifiers for satellites and base stations in mobile communication systems are required to be compact, and to have high output and wideband characteristics.
  • a microwave power amplifier that has good distortion characteristics and excellent linearity even when the bandwidth of a high-frequency signal that carries information is widened as the amount of information to be transmitted increases.
  • a power amplifier generally employs internal matching in which a plurality of amplifying elements operating in parallel are matched inside a package from the viewpoint of heat dissipation and versatility.
  • Patent Document 1 the other end of a ⁇ /4 line, one end of which is connected to the drain end of a transistor or the output end of an amplifier, is connected to a plurality of capacitors that are series-resonant at the inductance of the line and the difference frequency.
  • a microwave power amplifier capable of preventing deterioration of distortion characteristics in the microwave power amplifier.
  • the bias circuit disclosed in Patent Document 1 connects a plurality of capacitors 8 provided in parallel to a single ⁇ /4 wavelength line 7, the bias circuit disclosed in Patent Document 1 has The resonance frequency is single. For this reason, the bias circuit disclosed in Patent Document 1 cannot set the impedance of the difference frequency to a sufficiently low value over a wide band of the order of 1 MHz to 100 MHz and obtain distortion characteristics.
  • the output impedance of high-output amplifying elements that are generally used for mounting on satellites in mobile communication systems is lower than 50 ⁇ and falls into the capacitive region when parasitic capacitance is considered. Then, if the inductor forming the short stub has an electrical length of ⁇ /4 with respect to the operating frequency, the output impedance cannot be transformed on the real axis. Therefore, it has been difficult to realize an output matching circuit that provides good impedance matching over a wide band of operating frequencies.
  • the present disclosure has been made to solve the above-described problems, for example, in a power amplifier that amplifies microwaves of several GHz or more, it is possible to obtain power in a wide band and with excellent linearity without increasing the package size.
  • the object is to provide an amplifier.
  • a power amplifier includes a plurality of amplifying elements, a tournament-type circuit having a plurality of transmission lines connected to the plurality of amplifying elements and having a plurality of tournament-type transmission lines, and a plurality of difference-frequency short circuits having series-connected inductors and capacitors. and a circuit, wherein the resonance frequency of the plurality of difference frequency short circuits decreases with increasing distance from the plurality of amplifying elements, and the one of the plurality of difference frequency short circuits closest to the amplifying element of the tournament type circuit.
  • a difference frequency short circuit connected to a plurality of nodes has an inductive reactance that resonates at an impedance and an operating frequency looking into the amplifying element from the node to which the difference frequency short circuit is connected, and has a different resonance frequency. It is characterized by
  • a power amplifier that amplifies microwaves it is possible to provide a power amplifier that has a wide band and excellent linearity without increasing the package size.
  • FIG. 1 is a circuit diagram of a power amplifier according to Embodiment 1;
  • FIG. 4 is an explanatory diagram of an impedance locus of the power amplifier according to Embodiment 1;
  • FIG. 4 is a diagram showing VSWR on the output side of the power amplifier according to Embodiment 1;
  • FIG. 4 is a diagram showing the difference frequency impedance of the output circuit of the power amplifier according to Embodiment 1;
  • FIG. 4 shows evaluation results of distortion characteristics of the power amplifier according to Embodiment 1.
  • FIG. 4 shows evaluation results of distortion characteristics of the power amplifier according to Embodiment 1.
  • FIG. 4 is a circuit diagram of a power amplifier according to a modification of Embodiment 1;
  • FIG. 4 is an explanatory diagram of an impedance locus of the power amplifier according to Embodiment 1;
  • FIG. 4 is a diagram showing VSWR on the output side of the power amplifier according to Embodiment 1;
  • FIG. 4 is a diagram showing the difference
  • FIG. 4 is a circuit diagram of a power amplifier according to another modification of Embodiment 1;
  • FIG. 8 is a circuit diagram of a power amplifier according to Embodiment 2;
  • FIG. 9 is a circuit diagram of a power amplifier according to a modification of Embodiment 2;
  • Embodiment 1 A power amplifier according to an embodiment of the present disclosure will be described with reference to the drawings. The same or corresponding components are denoted by the same reference numerals, and repeated description may be omitted.
  • FIG. 1 is a circuit diagram of power amplifier 100 according to Embodiment 1 of the present invention.
  • the power amplifier 100 receives microwave power and operates as a microwave power amplifier that amplifies it.
  • the operating frequency at which power amplifier 100 operates in Embodiment 1 is the 14 GHz band, it is not limited to this.
  • the amplifying elements 1a to 1d are denoted by different symbols for distinction, they are the amplifying elements 1 having the same characteristics.
  • the amplifying element 1 may be a HEMT (High Electron Mobility Transistor) formed on a gallium nitride substrate, a MESFET (Metal Semiconductor Field Effect Transistor) formed on a gallium arsenide substrate, or the like.
  • HEMT High Electron Mobility Transistor
  • MESFET Metal Semiconductor Field Effect Transistor
  • the amplifying elements 1a to 1d may be formed on the same chip or may be formed on separate chips. When it is desired to increase the output of the amplifying element 1, a multi-cell configuration in which the cell regions are arranged in parallel is preferable.
  • the output impedance of the amplifying elements 1a to 1d is lower than 50 ⁇ and in the capacitive region.
  • a series inductor 2a is connected to the output side of the amplifying element 1a.
  • one end of the series inductor 2b is connected to the output side of the amplifying element 1b
  • one end of the series inductor 2c is connected to the output side of the amplifying element 1c
  • one end of the series inductor 2d is connected to the output side of the amplifying element 1d.
  • the series inductors 2a to 2d are given different symbols for distinction, they are the series inductors 2 having the same characteristics. That is, series inductors 2 are connected to the output sides of a plurality of amplifying elements 1, respectively.
  • the series inductor 2 can be a transmission line such as a microstrip line, a bonding wire, or the like.
  • a parallel inductor 11 a and a capacitor 11 b constitute a difference frequency short circuit 11 .
  • One end of the parallel inductor 11a is connected to a connection point (node) A1 between the series inductors 2a and 2b, the other end of the parallel inductor 11a is connected to one end of the capacitor 11b, and the other end of the capacitor 11b is grounded. That is, the difference frequency short circuit 11 is shunt-connected to the connection point A1.
  • the inductance value of the parallel inductor 11a is L1.
  • the parallel inductor 11a is set to have an inductance that resonates at the operating frequency with respect to the capacitive component of the impedance looking into the amplifying element 1 side from the connection point A1 of the series inductors 2a and 2b.
  • the capacitor 11b has a capacitance value C1 that becomes series resonance with the parallel inductor 11a at the difference frequency ⁇ f1.
  • a parallel inductor 12 a and a capacitor 12 b constitute a difference frequency short circuit 12 .
  • One end of the parallel inductor 12a is connected to a connection point (node) A2 between the series inductors 2c and 2d, the other end of the parallel inductor 12a is connected to one end of the capacitor 12b, and the other end of the capacitor 12b is grounded. That is, the difference frequency short circuit 12 is shunt-connected to the connection point A2.
  • the inductance value of the parallel inductor 12a is L1.
  • the parallel inductor 12a is set to an inductance that resonates at the operating frequency with respect to the capacitive component of the impedance when looking into the amplifying element 1 side from the connection point A2 with the series inductors 2c and 2d.
  • the capacitor 12b has a capacitance value C2 that causes series resonance with the parallel inductor 12a at the difference frequency ⁇ f2.
  • a capacitor 11b is a capacitor for grounding the parallel inductor 11a at a high frequency (operating frequency), and a capacitor 12b is a capacitor for grounding the parallel inductor 12a at the operating frequency.
  • Capacitors 11b and 12b can have a structure in which a dielectric layer having a high dielectric constant is sandwiched between upper and lower electrodes. Although the capacitance value C1 of the capacitance 11b and the capacitance value C2 of the capacitance 12b are different values, both have sufficiently large capacitance values that can be regarded as a short circuit at the operating frequency. Therefore, the difference frequency short circuit 11 seen from the connection point A1 and the difference frequency short circuit 12 seen from the connection point A2 exhibit substantially the same impedance.
  • the series inductors 3a and 3b are the series inductors 3 having the same characteristics, although they are given different symbols for distinction.
  • One end of the series inductor 3a is connected to the connection point A1.
  • One end of the series inductor 3b is connected to the connection point A2.
  • the other end of the series inductor 3a and the other end of the series inductor 3a are connected at a connection point (node) B1.
  • the series inductor 4 has one end connected to the connection point B ⁇ b>1 and the other end connected to the package terminal 9 of the package 10 , and is connected to the outside of the package 10 via the package terminal 9 .
  • the series inductor 4 is a transmission line having an electrical length of about ⁇ /4 at the center frequency of the operating frequency band, which transforms the impedance looking into the amplifying element 1 side from the connection point B1 to 50 ⁇ .
  • the series inductors 3 and 4 are transmission lines such as microstrip lines.
  • the series inductors 2a, 2b, 2c, 2d, 3a, 3b, 4 are arranged in a tournament style. These transmission lines form a tournament circuit connected to a plurality of amplifying elements 1a, 1b, 1c, and 1d.
  • the tournament-type circuit of the first embodiment is a tournament-type synthesis circuit that synthesizes amplified signals from a plurality of amplification elements. In the tournament-type synthesis circuit, signal synthesis is repeated in which powers from two transistors are first synthesized in the first stage, and then the synthesized power is further synthesized in the second stage.
  • the series inductor 4 arranged in the package 10 constitutes an output matching circuit together with the series inductor 2, the difference frequency short circuits 11 and 12, and the series inductor 3.
  • the series inductor 5 is connected to the package terminal 9 and the terminal P1 of the power amplifier 100 .
  • Terminal P1 functions as an output terminal of power amplifier 100 .
  • the difference frequency short circuit 21 includes a parallel inductor 21a with one end connected to the package terminal 9 and a capacitor 21b connected to the other end of the parallel inductor 21a. The other end of the capacitor 21b is grounded.
  • the parallel inductor 21a is a transmission line having an electrical length of ⁇ /4 in the operating frequency band and is composed of a microstrip line.
  • the inductance of the parallel inductor 21a is L2.
  • Capacitor 21b has a capacitance value C3 and grounds parallel inductor 21a in the operating frequency band.
  • the capacitor 21b and the parallel inductor 21a undergo series resonance at the difference frequency ⁇ f3.
  • the difference frequency short circuit 21 operates as a bias circuit, ie the difference frequency short circuit 21 is also a DC bias voltage supply means.
  • a voltage application terminal P2 is provided between the parallel inductor 21a and the capacitor 21b, and a DC bias source for applying a drain voltage to the amplifying element 1 is connected to the voltage application terminal P2.
  • a DC bias source supplies a predetermined DC bias voltage to the DC bias voltage supply means. Since the parallel inductor 21a is a transmission line with a length of about ⁇ /4 at the center frequency of the operating frequency band, the impedance of the difference frequency short circuit 21 from the package terminal 9 in the operating frequency band is high impedance as in the prior art. becomes.
  • the substrate 8 is a microwave integrated circuit (MIC), indicated by dotted lines in FIG.
  • a transmission line connected between the amplifier element 1 and the package terminal 9 and a parallel inductor in the same area can be patterned on the substrate 8 using metal wiring.
  • the substrate 8, the amplifying element 1, and the capacitors 11b and 12b are mounted on the package 10 using a bonding material such as solder.
  • Power amplifier 100 comprises three difference frequency short circuits 11 , 12 and 21 .
  • L1 ⁇ C1 1/(2 ⁇ f1) 2
  • L1 ⁇ C2 1/(2 ⁇ f2) 2
  • L2 ⁇ C3 1/(2 ⁇ f3) 2
  • ⁇ f 1 is the resonance frequency of the difference frequency short circuit 11
  • ⁇ f 2 is the resonance frequency of the difference frequency short circuit 12
  • ⁇ f 3 is the resonance frequency of the difference frequency short circuit 21 .
  • the inductance forming the difference frequency short circuit is L1 a transmission line having an electrical length of less than ⁇ /4 at the operating frequency, and L2 a transmission line having an electrical length of ⁇ /4 at the operating frequency.
  • FIG. 2 is an explanatory diagram of the impedance locus of power amplifier 100 according to the first embodiment.
  • FIG. 2 is a Smith diagram illustrating the impedance transformation of the load on the output side of power amplifier 100, normalized to 50 ⁇ .
  • Z1 is the impedance looking into the amplifying element 1 side from the connection point A1 when the difference frequency short circuit 11 is not connected to the connection point A1, and the impedance from the connection point A2 when the difference frequency short circuit 12 is not connected to the connection point A2. This shows the impedance looking into the element 1 side.
  • the impedance on the output side of amplifying element 1 has a low resistance component of, for example, 3 ⁇ and an output capacitance in parallel with the resistance component.
  • the impedance on the output side of the amplifying element 1 is converted by the series inductor 2, and the electrical length thereof is the impedance and the difference frequency short circuit looking into the amplifying element 1 side from the connection point A1 when the difference frequency short circuit 11 is not connected. 12 is not connected, the impedance looking from the connection point A2 to the amplifying element 1 side is set to a length that does not reach the real axis and remains capacitive.
  • Z2 is the impedance when the difference frequency short circuit 11 is connected to the connection point A1 and the amplifier element 1 side is viewed from the connection point A1, and the connection point A2 is the impedance when the difference frequency short circuit 12 is connected to the connection point A2. shows the impedance looking into the amplifying element 1 side from .
  • Z2 is the impedance in which Z1 and the difference frequency short circuit 11 are connected in parallel, or the impedance in which Z1 and the difference frequency short circuit 12 are connected in parallel.
  • Series inductor 2 and parallel inductors 11a and 12a are set so that difference frequency short circuits 11 and 12 contribute to impedance matching as part of a matching circuit.
  • the electrical length of the parallel inductor 11a is set to be shorter than ⁇ /4 at the operating frequency so that the impedance looking into the difference frequency short circuit 11 from the connection point A1 exhibits inductive reactance.
  • the series inductors 2a and 2b are set so that the impedance seen from the connection point A1 to the amplifying elements 1a and 1b becomes a capacitive reactance that resonates with the reactance at the operating frequency.
  • the electrical length of the parallel inductor 12a is set shorter than ⁇ /4 at the operating frequency so that the impedance looking into the difference frequency short circuit 12 from the connection point A2 exhibits inductive reactance.
  • the series inductors 2c and 2d are set so that the impedance looking into the amplifying elements 1c and 1d from the connection point A2 becomes a capacitive reactance that resonates with the reactance at the operating frequency.
  • Z2 is located on the real axis.
  • the electrical length of the parallel inductors 11a and 12a is set shorter than ⁇ /4 at the operating frequency, which is shorter than that of conventional microwave amplifiers.
  • Z3 indicates the impedance when looking from the package terminal 9 to the amplifying element 1 side. This is Z2 after impedance transformation by the series inductor 4 .
  • the characteristic impedance of series inductor 4 was set to 25 ⁇ , and the electrical length of series inductor 4 was set to ⁇ /4 at the center frequency.
  • Series inductor 4 acts as a 90 degree inverter and matches the output impedance of power amplifier 100 to 50 ⁇ at package terminal 9 .
  • the difference frequency short circuit 21 having a resonance frequency so small that the reflection phase can be ignored is arranged outside the package 10
  • the difference frequency short circuits 11 and 12 having a resonance frequency with a reflection phase not negligible are arranged in the package 10. be placed inside the
  • the resonance frequency at which the reflection phase is negligible is on the order of 1 MHz
  • the resonance frequency at which the reflection phase is not negligible is on the order of 10 to 100 MHz.
  • a difference frequency short circuit having a resonance frequency equal to or greater than a predetermined specific resonance frequency is mounted on the package 10
  • a difference frequency short circuit having a resonance frequency lower than the specific resonance frequency is mounted on the package 10.
  • a specific resonance frequency is for example 10 MHz.
  • the difference frequency short circuit is arranged so that the resonance frequency thereof decreases as the distance from the amplifying elements 1a, 1b, 1c, and 1d increases.
  • the difference frequency short circuits 11 and 12 having the highest resonance frequency among the plurality of difference frequency short circuits are arranged closest to the amplifying elements 1a, 1b, 1c and 1d.
  • a large difference frequency short circuit 21 is arranged at a location farther from the amplifying elements 1a, 1b, 1c and 1d than the difference frequency short circuits 11 and 12 are.
  • Two difference frequency short circuits are arranged closest to the amplifying elements 1a, 1b, 1c and 1d so that the impedance of the output circuit viewed from all the amplifying elements 1a, 1b, 1c and 1d is uniform. are arranged after the connection point of the two transmission lines connected to the amplifying element. Note that the uniform impedance includes not only the case where the impedance is completely uniform but also the case where the impedance is substantially the same.
  • power amplifier 100 according to Embodiment 1 includes a tournament-type combining circuit that combines amplified signals from a plurality of amplifying elements.
  • the nodes of the stages closest to the amplifier elements of the tournament synthesis circuit are juncture A1 and juncture A2.
  • the difference frequency short circuit 11 connected to the connection point A1 and the difference frequency short circuit 12 connected to the connection point A2 have substantially the same impedance at the operating frequency. Therefore, the impedance of the output circuit seen from all the amplifying elements becomes uniform at the operating frequency, so that there is an effect that the amplifying elements become uniform. Further, the difference frequency short circuits 11 and 12 have different resonance frequencies. Therefore, even without enlarging the package size, the impedance of the matching circuit viewed from the output side of the amplifying element 1 can be realized to be low in a wide frequency range of the difference frequency, as will be described later.
  • the parallel inductor 11a forming the difference frequency short circuit 11 and the parallel inductor 12a forming the difference frequency short circuit 12 have an electrical length at the operating frequency so that the difference frequency short circuits 11 and 12 contribute to impedance matching of the power amplifier 100. is set to less than ⁇ /4. In other words, since a circuit that contributes to impedance matching can be arranged at a position close to the amplifying element, the operating frequency band can be widened. Since the difference frequency short-circuits 11 and 12 serve both to widen the operating frequency band and to reduce the impedance at the difference frequency of the tournament-type synthesis circuit, an increase in package size can be suppressed.
  • FIG. 3 is a diagram showing VSWR on the output side of the power amplifier according to the first embodiment.
  • the horizontal axis of FIG. 3 indicates frequency, and the vertical axis indicates VSWR (Voltage Standing Wave Ratio).
  • a solid line indicates VSWR for the package terminal 9 of the power amplifier 100 according to the first embodiment.
  • FIG. 3 shows a comparative example in which the electrical length of the parallel inductor 11a of the difference frequency short circuit 11 and the parallel inductor 12a of the difference frequency short circuit 12 is ⁇ /4, and the VSWR in the conventional circuit configuration is indicated by a dashed line. showing.
  • the power amplifier 100 according to the first embodiment and the comparative example are designed by optimizing the circuits with the center frequency set to 13.75 GHz.
  • the maximum value of VSWR is 1.5 or more, resulting in a large mismatch.
  • the maximum value of VSWR is 1.3. In other words, good impedance matching can be achieved over a wide band compared to the comparative example.
  • FIG. 4 is a diagram showing differential frequency impedance of the output circuit of the power amplifier according to the first embodiment.
  • the vertical axis of FIG. 4 shows logarithmically the impedance of the package terminal 9 from the output side of the amplifying element 1, and the horizontal axis shows logarithmically the frequency from 1 MHz to 1 GHz.
  • resonance points are created at 5 MHz, 30 MHz and 400 MHz, and the impedance near the three resonance points is reduced to 1 ⁇ or less. .
  • the difference frequency short circuit 11 creates a resonance point of 400 MHz ( ⁇ f1)
  • the difference frequency short circuit 12 creates a resonance point of 30 MHz ( ⁇ f2)
  • the difference frequency short circuit 21 creates a resonance point of 5 MHz ( ⁇ f3).
  • FIG. 5 shows evaluation results of distortion characteristics of power amplifier 100 according to the first embodiment.
  • FIG. 5 shows evaluation results of third-order modulation distortion (IM3) when two signals having frequencies f1 and f2 and having the same power value are input to power amplifier 100 according to the first embodiment.
  • IM3 is the power ratio between the frequency (2 ⁇ f1 ⁇ f2) and f1 or f2.
  • the horizontal axis of FIG. 5 indicates the output power of the power amplifier 100, and the vertical axis indicates the third-order modulation distortion (IM3).
  • squares ( ⁇ ) indicate IM3 when f1 is 13.75 GHz, f2 is 13.755 GHz, and two waves are separated by 5 MHz.
  • a circle ( ⁇ ) indicates IM3 when f1 is 13.75 GHz, f2 is 13.95 GHz, and the two waves are separated by 200 MHz.
  • a triangle ( ⁇ ) indicates IM3 when f1 is 13.75 GHz, f2 is 14.15 GHz, and the two waves are separated by 400 MHz.
  • the power amplifier 100 by appropriately setting the capacitances of the difference frequency short circuits 11, 12, and 21, intermodulation distortion can be minimized even when the interval between carrier frequencies is large. Deterioration can be prevented. As a result, IM3 is suppressed to -25 dBc or less in the range where the output power is 44 dBm or less and the detuning frequency is 400 MHz or less.
  • FIG. 6 shows evaluation results of distortion characteristics of power amplifier 100 according to the first embodiment.
  • the horizontal axis of FIG. 6 indicates the detuning frequency (offset frequency).
  • the vertical axis in FIG. 6 indicates the third-order modulation distortion (IM3) when the output power of the power amplifier 100 and the comparative example is 42 dBm.
  • black circles ( ⁇ ) indicate the evaluation results of the power amplifier 100
  • white circles ( ⁇ ) indicate the evaluation results of the power amplifier according to the comparative example.
  • Two waves are input to the power amplifier 100 and the power amplifier according to the comparative example, with f1 set to a constant 13.75 GHz and f2 having a frequency higher than f1 by the detuning frequency.
  • Capacitances 11b and 12b of the difference frequency short circuit are the same in the power amplifier 100 and the power amplifier according to the comparative example, respectively, and other circuit elements are adjusted to be optimum. Referring to FIG. 6, it can be seen that the detuning frequency at which IM3 is -25 dBc or less is 50 MHz in the comparative example, but is expanded to 400 MHz in the power amplifier 100. FIG.
  • the capacitive component of the impedance seen from the connection points A1 and A2 between the series inductors 2 connected in series to the amplifying element 1 and the capacitance component of the impedance seen from the connection point A1 The difference frequency short circuit 11 and the inductance component of the difference frequency short circuit 12 connected in parallel to the connection point A2 are made to resonate. Therefore, not only can good impedance matching be achieved in a wide band, but also the impedance of the output circuit viewed from the amplifying element 1 can be reduced from ⁇ f1 to ⁇ f3. can be continuously suppressed at As a result, it is possible to reduce the size of the circuit and prevent deterioration of the distortion characteristics from the minimum detuning frequency to the maximum detuning frequency when the desired detuning frequency is widened.
  • the output impedance of power amplifier 100 is changed to 50 ⁇ at package terminal 9 by series inductor 4, but a transmission line having a different characteristic impedance is connected in series with series inductor 4. It may be connected and the impedance may be transformed to 50 ⁇ by so-called two-stage impedance transformation.
  • FIG. 7 is a circuit diagram of power amplifier 110 according to a modification.
  • the power amplifier 110 has a complementary difference frequency short circuit 13 .
  • Others are the same as the power amplifier 100 .
  • the supplementary difference frequency short circuit 13 is a series LC circuit having a parallel inductor 13a and a capacitor 13b and shunt-connected to the connection point B1, which is the node of the series inductor 4.
  • FIG. The parallel inductor 13a has an electrical length of ⁇ /4 at the operating frequency.
  • the resonance frequency ⁇ f4 of the complementary difference frequency short circuit 13 has a relationship of ⁇ f1> ⁇ f2> ⁇ f4> ⁇ f3.
  • Difference frequency short circuits 11 and 12 with a large resonance frequency are connected to the connection points A1 or A2 in the stages closest to the amplifying elements 1a, 1b, 1c and 1d, and then a complementary difference frequency short circuit 13 with a large resonance frequency is connected next.
  • a difference frequency short circuit 21 having the highest resonance frequency is connected furthest from the amplification element.
  • the power amplifier 110 can make the impedance of the matching circuit seen from the output side of the amplifying element 1 flatter and lower, so that it is easier to achieve low distortion.
  • FIG. 8 is a circuit diagram of power amplifier 120 according to another modification.
  • the power amplifier 120 includes a difference frequency short circuit 31 a in place of the difference frequency short circuit 11 and a difference frequency short circuit 32 a in place of the difference frequency short circuit 12 . Others are the same as the power amplifier 100 .
  • the difference frequency short circuit 31a differs from the difference frequency short circuit 11 in that it has a supplementary capacitor 11c in parallel with the capacitor 11b.
  • the difference frequency short circuit 32a differs from the difference frequency short circuit 12 in that it has a supplementary capacitor 12c in parallel with the capacitor 12b.
  • Supplementary capacitors 11c and 12c have a short-circuit capacity at the operating frequency.
  • the capacitance 11b of the difference frequency short circuit 11 and the capacitance 12b of the difference frequency short circuit 12 of the power amplifier 100 are heated by the microwave power flowing through the capacitance during operation, and the temperature of the capacitance rises.
  • a rise in temperature may affect capacitance, such as a decrease in capacitance, an increase in equivalent series resistance in a high frequency region, or a decrease in insulation resistance.
  • the capacitance may change significantly.
  • the power amplifier 120 further includes supplementary capacitors 11c and 12c that short-circuit the difference frequency short circuits 31a and 32a at the operating frequency. Since the microwave current at the operating frequency that flows per capacitor is reduced, the temperature rise of the capacitor can be suppressed. Therefore, it is possible to suppress characteristic fluctuations of the power amplifier 120 due to changes in the capacitance of the capacitors.
  • FIG. 9 is a circuit diagram of power amplifier 130 according to the second embodiment.
  • Power amplifier 130 applies the technical features described in the first embodiment to the input sides of amplifying elements 1a, 1b, 1c, and 1d.
  • the power amplifier of the second embodiment is obtained by inverting the input/output of the configuration described in the first embodiment with respect to the amplifying element 1 .
  • the tournament type circuit of Embodiment 2 is a tournament type distribution circuit that has series inductors 2a, 2b, 2c, 2d, 3a, 3b, and 4 and distributes an input signal to a plurality of amplification elements.
  • the tournament type synthesis circuit described in the first embodiment can be connected to the output sides of the amplifying elements 1a, 1b, 1c, and 1d.
  • the terminal P1 in the second embodiment functions as an input terminal. According to the configuration of the second embodiment, various technical features described in the first embodiment can be realized by the circuit on the input side of the amplifying element 1.
  • the difference frequency short-circuit described in the first embodiment is provided on the input side of the transistor, it not only realizes good impedance matching in a wide band, Therefore, the impedance of the input circuit can be reduced from .DELTA.f1 to .DELTA.f3. Therefore, the distortion component generated at the detuning frequency can be continuously suppressed in the frequency band ranging from ⁇ f1 to ⁇ f3. As a result, it is possible to reduce the size of the circuit and to prevent deterioration of the distortion characteristics from the minimum detuning frequency to the maximum detuning frequency when the desired detuning frequency is widened.
  • FIG. 10 is a circuit diagram of power amplifier 140 according to a modification of the second embodiment.
  • the power amplifier 140 includes a difference frequency short circuit 31 b in place of the difference frequency short circuit 11 and a difference frequency short circuit 32 b in place of the difference frequency short circuit 12 .
  • the difference frequency short circuit 31b differs from the difference frequency short circuit 11 in that it includes a resistor R1 connected in series with the parallel inductor 11a and the capacitor 11b.
  • the difference frequency short circuit 32b differs from the difference frequency short circuit 12 in that it includes a resistor R2 connected in series with the parallel inductor 12a and the capacitor 12b.
  • the power amplifier 140 has the same effect as the power amplifier 130, and also has the effect of suppressing unnecessary oscillation. Others are the same as the power amplifier 130 .
  • the resistance values of the resistor R1 and the resistor R2 may be the same or different.
  • the resistor R1 is connected between the parallel inductor 11a and the capacitor 11b.
  • the resistor R2 is connected between the parallel inductor 12a and the capacitor 12b.
  • the present disclosure is not limited to the above-described examples, and includes various modifications.
  • the above embodiments have been described in detail to facilitate understanding of the present disclosure, and are not necessarily limited to those having all the described configurations.
  • it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Microwave Amplifiers (AREA)

Abstract

本開示に係る電力増幅器は、複数の増幅素子と、該複数の増幅素子に接続されトーナメント型に複数の伝送線路を有するトーナメント型回路と、直列接続されたインダクタと容量を有する複数の差周波短絡回路と、を備え、該複数の差周波短絡回路の共振周波数は該複数の増幅素子から離れるほど小さく、該複数の差周波短絡回路のうちで該トーナメント型回路の該増幅素子に最も近い段の複数のノードに接続された差周波短絡回路は、該差周波短絡回路が接続された該ノードから該増幅素子を見込んだインピーダンスと動作周波数において共振する誘導性リアクタンスを有するとともにそれぞれ異なる共振周波数を有することを特徴とする。

Description

電力増幅器
 本開示は高周波において電力を増幅し特に広帯域で線形性に優れた電力増幅器に関するものである。
 移動体通信システムにおける衛星搭載用及び基地局用のマイクロ波電力増幅器には、装置の小型化と、高出力で広帯域な特性を要求される。情報伝達量の拡大に伴い、情報を搬送する高周波信号の帯域幅が広がった場合にも、良好な歪特性を有し線形性に優れたマイクロ波電力増幅器が求められていれる。このようなマイクロ波電力増幅器においては、増幅素子を並列に配置する、あるいは複数の増幅素子を並列に合成して、マイクロ波電力増幅器に用いられるトランジスタのゲート幅を増大させることにより、高出力化が図られている。電力増幅器は、放熱性と汎用性の観点から並列動作する複数の増幅素子をパッケージ内部において整合する内部整合が一般的である。
 一般に多数のキャリア周波数を含むマイクロ波信号を電力増幅器に入力した場合、キャリア周波数の差周波数における2次歪み成分が相互変調歪みを悪化させる現象が生じる。この歪み成分は、キャリア周波数f1及びf2との差の絶対値|f1-f2|を周波数とするものである。この周波数間隔は、離調幅または離調周波数と呼ばれ、その幅に相当する周波数を差周波周波数または単に差周波と呼ばれる。
 例えば特許文献1には、一端をトランジスタのドレイン端又は増幅器の出力端に接続したλ/4線路の他端が、線路のインダクタンスと差周波で直列共振となる複数のキャパシタに接続されることで、マイクロ波電力増幅器において歪特性の劣化を防止することができるマイクロ波電力増幅器が記載されている。
特開平11-150431号公報
 伝送情報の大容量化のため離調幅の拡大と低歪み化の両立が要求されているが、しかし特許文献1に示されたバイアス回路では、離調周波数を100MHzオーダまで拡大しつつ低歪化の実現することは極めて困難であった。
 なぜならば特許文献1に示されたバイアス回路は、並列に設けられた複数のキャパシタ8を単一のλ/4波長線路7に接続しているので、特許文献1に示されたバイアス回路がもつ共振周波数は単一である。このため特許文献1に開示されたバイアス回路では、1MHzオーダから100MHzオーダの広帯域にわたって差周波のインピーダンスを十分低い値に設定し、歪特性を得る事が出来ないからである。
 例えば、共振周波数の異なる複数の差周波短絡回路をドレイン端子に直結することも考えられる。しかしこの場合、パッケージ内の実装エリアの制約上、パッケージサイズを大きくしない限り、差周波短絡回路を構成するすべてのインダクタとキャパシタを配置できないという問題があった。
 また一般に移動体通信システムにおける衛星搭載用に用いられる高出力の増幅素子の出力インピーダンスは、50Ωより低く寄生容量を考慮すると容量性の領域となる。すると、ショートスタブを形成するインダクタが動作周波数に対しλ/4となる電気長を有する場合、出力インピーダンスを実軸上に変成することができない。よって、動作周波数に対して広帯域にわたって良好なインピーダンス整合となる出力整合回路の実現が困難であった。
 本開示は、上述のような問題を解決するためになされたものであり、例えば数GHz以上のマイクロ波を増幅する電力増幅器において、パッケージサイズの拡大を招くことなく広帯域で線形性に優れた電力増幅器を提供することを目的とする。
 本開示に係る電力増幅器は、複数の増幅素子と、該複数の増幅素子に接続されトーナメント型に複数の伝送線路を有するトーナメント型回路と、直列接続されたインダクタと容量を有する複数の差周波短絡回路と、を備え、該複数の差周波短絡回路の共振周波数は該複数の増幅素子から離れるほど小さく、該複数の差周波短絡回路のうちで該トーナメント型回路の該増幅素子に最も近い段の複数のノードに接続された差周波短絡回路は、該差周波短絡回路が接続された該ノードから該増幅素子を見込んだインピーダンスと動作周波数において共振する誘導性リアクタンスを有するとともにそれぞれ異なる共振周波数を有することを特徴とする。
 本開示によれば、マイクロ波を増幅する電力増幅器において、パッケージサイズの拡大を招くことなく広帯域で線形性に優れた電力増幅器を提供することが可能となる。
実施の形態1に係る電力増幅器の回路図である。 実施の形態1に係る電力増幅器のインピーダンス軌跡の説明図である。 実施の形態1に係る電力増幅器の出力側のVSWRを示す図である。 実施の形態1に係る電力増幅器の出力回路の差周波インピーダンスを示す図である。 実施の形態1に係る電力増幅器の歪特性の評価結果である。 実施の形態1に係る電力増幅器の歪特性の評価結果である。 実施の形態1の変形例に係る電力増幅器の回路図である。 実施の形態1の別の変形例に係る電力増幅器の回路図である。 実施の形態2に係る電力増幅器の回路図である。 実施の形態2の変形例に係る電力増幅器の回路図である。
実施の形態1.
 本開示の実施の形態に係る電力増幅器について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある
 図1は本発明の実施の形態1に係る電力増幅器100の回路図である。電力増幅器100はマイクロ波電力が入射され、これを増幅するマイクロ波電力増幅器として動作する。実施の形態1において電力増幅器100が動作する動作周波数は14GHz帯であるが、これに限られるものではない。
 増幅素子1aから1dは区別の為に異なる符号を付しているが同一の特性を有する増幅素子1である。増幅素子1は、窒化ガリウム基板に形成されたHEMT(High Electron Mobility Transistor)やヒ化ガリウム基板に形成されたMESFET(Metal Semiconductor Field Effect Transistor)などとすることができる。増幅素子1aから1dは同一チップ上に形成されても良く、別々のチップ上に形成されても良い。増幅素子1を高出力としたい場合、セル領域が並列配置されたマルチセル構成とするとよい。
 増幅素子1aから1dの出力インピーダンスは、50Ωより低く、かつ容量性の領域にある。
 増幅素子1aの出力側には直列インダクタ2aの一端が接続されている。同様に増幅素子1bの出力側には直列インダクタ2bの一端が、増幅素子1cの出力側には直列インダクタ2cの一端が、増幅素子1dの出力側には直列インダクタ2dの一端が接続されている。
 直列インダクタ2aから2dは区別の為に異なる符号を付しているが同一の特性を有する直列インダクタ2である。つまり複数の増幅素子1の出力側にはそれぞれ直列インダクタ2が接続されている。直列インダクタ2は、マイクロストリップ線路等の伝送線路やボンディングワイヤなどとすることができる。
 並列インダクタ11aと容量11bは、差周波短絡回路11を構成する。並列インダクタ11aの一端は、直列インダクタ2a及び2bの接続点(ノード)A1に接続され、並列インダクタ11aの他端は容量11bの一端に接続され、容量11bの他端は接地されている。つまり、差周波短絡回路11は接続点A1にシャント接続されている。並列インダクタ11aのインダクタンス値はL1である。
 並列インダクタ11aは、直列インダクタ2a及び2bの接続点A1から増幅素子1側を見込んだインピーダンスの容量性成分に対して、動作周波数で共振するインダクタンスに設定されている。容量11bは、並列インダクタ11aと差周波Δf1で直列共振となる容量値C1を有する。
 並列インダクタ12aと容量12bは、差周波短絡回路12を構成する。並列インダクタ12aの一端は、直列インダクタ2c及び2dの接続点(ノード)A2に接続され、並列インダクタ12aの他端は容量12bの一端に接続され、容量12bの他端は接地されている。つまり、差周波短絡回路12は接続点A2にシャント接続されている。並列インダクタ12aのインダクタンス値はL1である。
 並列インダクタ12aは、直列インダクタ2c及び2dとの接続点A2から増幅素子1側を見込んだインピーダンスの容量性成分に対して、動作周波数で共振するインダクタンスに設定されている。容量12bは、並列インダクタ12aと差周波Δf2で直列共振となる容量値C2を有する。
 容量11bは並列インダクタ11aを高周波(動作周波数)で接地するための容量であり、容量12bは並列インダクタ12aを動作周波数で接地するための容量である。容量11b及び12bは、高い比誘電率を有する誘電体層が上下電極で挟まれた構造とすることができる。
 容量11bの容量値C1及び容量12bの容量値C2は異なる値であるが、共に動作周波数において実質的に短絡と見なせるだけの十分に大きな容量値を有する。従って、接続点A1から見込んだ差周波短絡回路11、及び接続点A2から見込んだ差周波短絡回路12は実質的に同一と見なせるインピーダンスを示す。
 直列インダクタ3a及び3bは、区別の為に異なる符号を付しているが同一の特性を有する直列インダクタ3である。直列インダクタ3aの一端は、接続点A1に接続されている。直列インダクタ3bの一端は、接続点A2に接続されている。直列インダクタ3aの他端と直列インダクタ3aの他端は接続点(ノード)B1で接続されている。
 直列インダクタ4は、一端が接続点B1に接続され他端がパッケージ10のパッケージ端子9に接続され、パッケージ端子9を介してパッケージ10の外部と接続されている。直列インダクタ4は、接続点B1から増幅素子1側を見込んだインピーダンスを50Ωへ変成する、動作周波数帯の中心周波数においてλ/4程度の電気長を有する伝送線路である。直列インダクタ3,4はマイクロストリップ線路等の伝送線路である。
 このように、直列インダクタ2a、2b,2c,2d,3a、3b、4は、トーナメント型に配置されている。これらの伝送線路は、複数の増幅素子である増幅素子1a、1b、1c、1dに接続されたトーナメント型回路を構成している。実施の形態1のトーナメント型回路は、複数の増幅素子の増幅信号を合成するトーナメント型合成回路である。トーナメント型合成回路では、まず1段目で2個のトランジスタからの電力を合成し、次に、合成された電力を2段目でさらに合成するという信号合成を繰り返す。
 パッケージ10内に配置された、直列インダクタ4は直列インダクタ2、差周波短絡回路11及び12、直列インダクタ3と共に出力整合回路を構成する。
 直列インダクタ5は、パッケージ端子9と電力増幅器100の端子P1に接続されている。端子P1は電力増幅器100の出力端子として機能する。
 差周波短絡回路21は、一端がパッケージ端子9に接続された並列インダクタ21aと、並列インダクタ21aの他端に接続された容量21bを備えている。容量21bの他端は接地されている。並列インダクタ21aは動作周波数帯においてλ/4の電気長を有する伝送線路であり、マイクロストリップ線路で構成されている。並列インダクタ21aのインダクタンスはL2である。容量21bは容量値C3を有し、動作周波数帯において並列インダクタ21aを接地する。容量21bと並列インダクタ21aは差周波Δf3で直列共振する。
 差周波短絡回路21はバイアス回路として動作し、すなわち差周波短絡回路21は直流バイアス電圧供給手段でもある。並列インダクタ21aと容量21bの間は電圧印加端子P2であり、電圧印加端子P2には増幅素子1にドレイン電圧を印加する直流バイアス源が接続される。直流バイアス源は直流バイアス電圧供給手段に所定の直流バイアス電圧を供給する。
 並列インダクタ21aが動作周波数帯の中心周波数においてλ/4程度の長さの伝送線路であるので、従来技術と同様に動作周波数帯におけるパッケージ端子9から差周波短絡回路21を見込んだインピーダンスは高インピーダンスとなる。
 基板8はマイクロ波集積回路(MIC)であり、図1において点線で示される。基板8上には、増幅素子1からパッケージ端子9の間に接続された伝送線路及び同領域にある並列インダクタを、金属配線を用いてパターン形成することができる。そして、基板8、増幅素子1、容量11b、12bは、はんだ等の接合材を用いてパッケージ10に実装されている。
 電力増幅器100は、3つの差周波短絡回路11、12及び21を備えている。これら差周波短絡回路に用いられるインダクタと容量と共振周波数の間には以下の関係がある。
 L1×C1=1/(2πΔf1)
 L1×C2=1/(2πΔf2)
 L2×C3=1/(2πΔf3)
 ここで、Δf1は差周波短絡回路11の共振周波数、Δf2は差周波短絡回路12の共振周波数、Δf3は差周波短絡回路21の共振周波数である。
 Δf1、Δf2、Δf3は、電力増幅器100で増幅される高周波信号の周波数(動作周波数)の高域端と低域端の差分周波数(又は差周波)として取り得る最小値から最大値の間に存在する。なお、通信システムにより帯域幅の設定が異なるので、この最小値と最大値は通信システムによって変動する。
 Δf1、Δf2、Δf3の大小関係は、Δf1>Δf2>Δf3であるとする。容量値C1、C2,C3の大小関係は、C1<C2<C3であるとする。
 実施の形態1において差周波短絡回路を構成するインダクタンスは、L1は動作周波数において電気長がλ/4未満の伝送線路、L2は動作周波数において電気長がλ/4である伝送線路である。
 次に電力増幅器100の動作について説明する。図2は、実施の形態1に係る電力増幅器100のインピーダンス軌跡の説明図である。図2は電力増幅器100の出力側負荷のインピーダンス変換を説明するスミス図であり、50Ωに正規化されている。
 Z1は、差周波短絡回路11が接続点A1に接続されない状態で接続点A1から増幅素子1側を見込んだインピーダンス、及び差周波短絡回路12が接続点A2に接続されない状態で接続点A2から増幅素子1側を見込んだインピーダンスを示す。増幅素子1の出力側のインピーダンスは、たとえば3Ωといった低い抵抗成分と、抵抗成分に並列となる出力容量をもつ。増幅素子1の出力側のインピーダンスは直列インダクタ2により変換されるが、その電気長は、差周波短絡回路11が接続されない状態で接続点A1から増幅素子1側を見込んだインピーダンス及び差周波短絡回路12が接続されない状態で接続点A2から増幅素子1側を見込んだインピーダンスが、実軸上に達さずに容量性に留まる長さに設定されている。
 Z2は、差周波短絡回路11が接続点A1に接続された状態で接続点A1から増幅素子1側を見込んだインピーダンス、及び差周波短絡回路12が接続点A2に接続された状態で接続点A2から増幅素子1側を見込んだインピーダンスを示す。言い換えるとZ2は、Z1と差周波短絡回路11が並列接続されたインピーダンス、あるいはZ1と差周波短絡回路12が並列接続されたインピーダンスである。
 直列インダクタ2と並列インダクタ11a及び12aは、差周波短絡回路11及び12が整合回路の一部としてインピーダンス整合に寄与するように、設定されている。
 具体的には、接続点A1から差周波短絡回路11を見込んだインピーダンスが誘導性のリアクタンスを示すよう、並列インダクタ11aの電気長は動作周波数においてλ/4より短く設定されている。接続点A1から増幅素子1a及び1bを見込んだインピーダンスは動作周波数において該リアクタンスと共振する容量性リアクタンスとなるよう直列インダクタ2a及び2bは設定されている。
 また、接続点A2から差周波短絡回路12を見込んだインピーダンスが誘導性のリアクタンスを示すよう、並列インダクタ12aの電気長は動作周波数においてλ/4より短く設定されている。接続点A2から増幅素子1c及び1dを見込んだインピーダンスは動作周波数において該リアクタンスと共振する容量性リアクタンスとなるよう直列インダクタ2c及び2dは設定されている。
 この結果、Z2は実軸上に位置する。なお、並列インダクタ11a及び12aの電気長は、動作周波数においてλ/4より短く設定されているが、これは従来のマイクロ波増幅器と比較して短い。
 Z3はパッケージ端子9から増幅素子1側を見込んだインピーダンスを示している。これは直列インダクタ4によりインピーダンス変成された後のZ2である。
 電力増幅器100において、直列インダクタ4の特性インピーダンスは25Ωとし、直列インダクタ4の電気長は中心周波数においてλ/4に設定した。直列インダクタ4は90度インバーターとして動作し、電力増幅器100の出力インピーダンスをパッケージ端子9において50Ωに整合させている。
 次に、実施の形態1における出力回路の差周波インピーダンスおよびIM3について説明する。
 実施の形態1では、反射位相が無視できる程度に共振周波数が小さい差周波短絡回路21をパッケージ10の外部に配置し、反射位相が無視できない共振周波数を有する差周波短絡回路11、12をパッケージ10の内部に配置する。例えば反射位相が無視できる程度の共振周波数とは1MHzオーダの周波数であり、例えば反射位相が無視できない共振周波数とは10~100MHzオーダの周波数である。
 一例によれば、予め定められた特定共振周波数と等しいか特定共振周波数より大きい共振周波数の差周波短絡回路をパッケージ10に搭載し、特定共振周波数より小さい共振周波数の差周波短絡回路をパッケージ10の外に設けることができる。そのような特定共振周波数は例えば10MHzである。
 差周波短絡回路は、増幅素子1a、1b、1c、1dから離れるほど、その共振周波数が小さくなるよう配置する。図1の例では、複数の差周波短絡回路のうち共振周波数が最も大きい差周波短絡回路11、12を増幅素子1a、1b、1c、1dから一番近い箇所に配置し、次に共振周波数が大きい差周波短絡回路21を差周波短絡回路11、12より増幅素子1a、1b、1c、1dから遠ざけた箇所に配置している。
 また、増幅素子1a、1b、1c、1dに最も近い位置に配置する差周波短絡回路は、すべての増幅素子1a、1b、1c、1dから見た出力回路のインピーダンスが均一となるよう、2個の増幅素子に接続された2個の伝送線路の接続点以降に配置している。なお、インピーダンスが均一とは、完全にインピーダンスが揃っている場合だけでなく、実質的にインピーダンスが同等の場合を含む。
 容量11bの容量値C1及び容量12bの容量値C2は異なる値であるが、共に動作周波数において実質的に短絡と見なせるだけの十分に大きな容量値を有する。従って、接続点A1から見込んだ差周波短絡回路11及び接続点A2から見込んだ差周波短絡回路12は、共に動作周波数において実質的に同一と見なせるインピーダンスを示す。
 つまり、実施の形態1に係る電力増幅器100は、複数の増幅素子の増幅信号を合成するトーナメント型合成回路を備える。トーナメント型合成回路の増幅素子に最も近い段のノードは接続点A1及び接続点A2である。
 接続点A1に接続される差周波短絡回路11及び、接続点A2に接続される差周波短絡回路12は、動作周波数において実質的に同一と見なせるインピーダンスを有する。よって、動作周波数においてすべての増幅素子から見た出力回路のインピーダンスが均一となるので、増幅素子が均一となる効果を奏する。
 また、差周波短絡回路11及び12は、共振周波数が異なる。よって、パッケージサイズの拡大をせずとも、後述するように増幅素子1の出力側から見込んだ整合回路のインピーダンスを広い差周波の周波数の範囲で低いインピーダンスを実現できる
 差周波短絡回路11を構成する並列インダクタ11a及び差周波短絡回路12を構成する並列インダクタ12aは、差周波短絡回路11及び12が電力増幅器100のインピーダンス整合に寄与するように、動作周波数において電気長がλ/4未満に設定された伝送線路である。
 つまり増幅素子に近い位置にインピーダンス整合に寄与する回路を配置できるので、動作周波数の帯域を広くできる効果を奏する。差周波短絡回路11及び12が動作周波数の広帯域化と、トーナメント型合成回路の差周波における低インピーダンス化の両方の役割を担うので、パッケージサイズの拡大を押さえる事が出来る。
 図3は実施の形態1に係る電力増幅器の出力側のVSWRを示す図である。図3の横軸は周波数を示し、縦軸はVSWR(Voltage Standing Wave Ratio)を示す。図3には、実施の形態1に係る電力増幅器100のパッケージ端子9に対するVSWRを実線で示している。これと合わせて図3には比較例として、差周波短絡回路11の並列インダクタ11a及び差周波短絡回路12の並列インダクタ12aの電気長がλ/4である、従来の回路構成におけるVSWRを破線で示している。
 なお図3において、実施の形態1に係る電力増幅器100及び比較例は、中心周波数を13.75GHzとしてそれぞれ回路を最適化して設計されている。
 図3において、12GHz~15.5GHzの範囲について着目する。これは中心周波数13.75GHzに対して比帯域が25%となる範囲である。従来の回路構成では図3に示されるように、VSWRの最大値が1.5以上であり大きな不整合を生じている。一方、実施の形態1に係る電力増幅器100における整合回路では、VSWRの最大値は1.3である。つまり比較例と比較して広帯域に渡り良好なインピーダンス整合を実現できている。
 次に電力増幅器100の差周波におけるインピーダンスについて考える。図4は、実施の形態1に係る電力増幅器の出力回路の差周波インピーダンスを示す図である。図4の縦軸は増幅素子1の出力側からパッケージ端子9側を見込んだインピーダンスを対数で示し、横軸は1MHzから1GHzの周波数を対数で示す。
 実施の形態1では差周波短絡回路11、12及び21のキャパシタンスを適切に設定することで、5MHz、30MHz、400MHzに共振点を作り、3つの共振点近傍のインピーダンスを1Ω以下に低減させている。
 具体的には差周波短絡回路11が400MHz(Δf1)の共振点を、差周波短絡回路12が30MHz(Δf2)の共振点を、差周波短絡回路21が5MHz(Δf3)の共振点を作り出している。この結果、3つの共振点近傍を含め1GHz以下の広い周波数の範囲で、1Ω以下の低いインピーダンスが実現できている。
 図5は、実施の形態1に係る電力増幅器100の歪特性の評価結果である。図5には、周波数がf1とf2であり電力値が等しい2つの信号を、実施の形態1に係る電力増幅器100に入力した場合の3次変調歪み(IM3)を評価した結果を示す。ここでIM3は周波数(2×f1-f2)とf1又はf2との電力比としている。図5の横軸は電力増幅器100の出力電力を示し、縦軸は3次変調歪み(IM3)を示す。
 図5において、四角(□)はf1が13.75GHz、f2が13.755GHzであり、2波が5MHz離れた場合のIM3を示す。丸(○)は、f1が13.75GHz、f2が13.95GHzであり2波が200MHz離れた場合のIM3を示す。三角(△)は、f1が13.75GHz、f2が14.15GHzであり、2波が400MHz離れた場合のIM3を示す。
 このように本実施形態に係る電力増幅器100では、差周波短絡回路11、12及び21のキャパシタンスを適切に設定することで、キャリア周波数の間隔が大きくなった場合であっても、相互変調歪みの劣化を防止することができる。その結果、出力電力が44dBm以下、離調周波数が400MHz以下の範囲において、IM3が-25dBc以下に抑えられている。
 図6は、実施の形態1に係る電力増幅器100の歪特性の評価結果である。図6の横軸は離調周波数(offset frequency)を示す。図6の縦軸は、電力増幅器100及び比較例の出力電力が42dBm時の3次変調歪み(IM3)を示す。図6において黒丸(●)は電力増幅器100の評価結果であり、合わせて比較例に係る電力増幅器の評価結果を白丸(○)で示してある。
 電力増幅器100及び比較例に係る電力増幅器には、f1を13.75GHz一定とし、f2はf1より離調周波数だけ高い周波数とした2波が入力されている。差周波短絡回路の容量11bと12bは、それぞれ電力増幅器100及び比較例に係る電力増幅器において同じ容量値とし、他の回路素子はそれぞれ最適となるように調整されている。
 図6を参照すると、IM3が-25dBc以下となる離調周波数は、比較例では50MHzなのに対し、電力増幅器100では400MHzまで拡大していることが分かる。
 以上のように、実施の形態1によれば増幅素子1にそれぞれ直列に接続された直列インダクタ2同士の接続点A1及びA2から見込んだインピーダンスの容量成分と、接続点A1に並列に接続された差周波短絡回路11及び接続点A2に並列に接続された差周波短絡回路12のインダクタンス成分とを共振するようにした。
 よって、広帯域に良好なインピーダンス整合を実現するだけでなく、増幅素子1から見た出力回路のインピーダンスをΔf1からΔf3にわたり低減できるため、離調周波数に発生する歪成分をΔf1からΔf3に跨る周波数帯域において連続的に抑圧できる。
 この結果、回路の小型化と、所望の離調周波数が拡がった場合において最小離調周波数から最大離調周波数にわたって歪特性の劣化防止が可能となる。
 なお、実施の形態1おいては、電力増幅器100の出力インピーダンスをパッケージ端子9において50Ωとなるよう、直列インダクタ4によりインピーダンス変成したが、直列インダクタ4に別の特性インピーダンスを有する伝送線路を直列に接続して、いわゆる2段のインピーダンス変成により50Ωにインピーダンス変成してもよい。
 実施の形態1に係る電力増幅器は、その特徴を失わない範囲で様々な変形をなし得る。例えば、実施の形態1では、パッケージ10の中に差周波短絡回路を2つ配置したが、パッケージ10内部の部品実装領域の制約を考慮しながらその数を増加させることができる。
 図7は、変形例に係る電力増幅器110の回路図である。電力増幅器110は、補足用差周波短絡回路13を備えている。その他は電力増幅器100と同じである。補足用差周波短絡回路13は、並列インダクタ13aと容量13bを有し、直列インダクタ4のノードである接続点B1にシャント接続された直列LC回路である。並列インダクタ13aは動作周波数においてλ/4となる電気長を有している。
 ここで、補足用差周波短絡回路13の共振周波数Δf4は、Δf1>Δf2>Δf4>Δf3となる関係を有する。共振周波数が大きい差周波短絡回路11、12が増幅素子1a、1b、1c、1dに最も近い段の接続点A1又はA2に接続され、次に共振周波数の大きい補足用差周波短絡回路13が次に増幅素子に近い段の接続点B1に接続され、最も共振周波数の大きい差周波短絡回路21が増幅素子から最も遠くに接続されている。
 電力増幅器110は電力増幅器100と比較して、増幅素子1の出力側から見込んだ整合回路のインピーダンスを、より平坦に低いインピーダンスとすることが出来るので、より低歪み化を実現しやすくなる。
 図8は、別の変形例に係る電力増幅器120の回路図である。電力増幅器120は差周波短絡回路11に替えて差周波短絡回路31aを備え、差周波短絡回路12に替えて差周波短絡回路32aを備える。その他は電力増幅器100と同じである。
 差周波短絡回路31aは、容量11bと並列に補足用容量11cを備えた点で差周波短絡回路11と異なる。差周波短絡回路32aは、容量12bと並列に補足用容量12cを備えた点で差周波短絡回路12と異なる。補足用容量11c及び12cは動作周波数で短絡となる容量を有している。
 電力増幅器100の差周波短絡回路11の容量11b及び差周波短絡回路12の容量12bは、動作時に該容量を流れるマイクロ波電力によって該容量が加熱され、該容量の温度が上昇する。
 温度上昇は容量に対して、静電容量が小さくなる、高周波領域で等価直列抵抗が大きくなる、あるいは絶縁抵抗が低くなるといった影響を及ぼす可能性がある。特に比誘電率が温度依存性を持つ誘電体磁器を使用した容量の場合に、静電容量が大幅に変化する可能性がある。
 これに対し電力増幅器120では、差周波短絡回路31a、32aが動作周波数で短絡となる補足用容量11c、12cを更に備える。容量1つ当たりに流れる動作周波数でのマイクロ波電流を低減されるので、容量の温度上昇を抑える事が出来る。よって容量の静電容量の変化による電力増幅器120の特性変動を抑えることが出来る。
 実施の形態2.
 図9は、実施の形態2に係る電力増幅器130の回路図である。電力増幅器130は、実施の形態1で説明した技術的特徴を増幅素子1a、1b、1c、1dの入力側に適用したものである。実施の形態1で説明した構成を、増幅素子1に対して入出力反転させることで実施の形態2の電力増幅器が得られる。
 実施の形態2のトーナメント型回路は直列インダクタ2a、2b,2c,2d,3a、3b、4を有し、複数の増幅素子へ入力信号を分配するトーナメント型分配回路である。なお、増幅素子1a、1b、1c、1dの出力側には、実施の形態1で説明したトーナメント型合成回路を接続しうる。実施の形態2における端子P1は入力端子として機能する。実施の形態2の構成によれば、実施の形態1で説明した様々な技術的特徴を、増幅素子1の入力側の回路で実現することが出来る。
 実施の形態2の構成によれば、実施の形態1で説明した差周波短絡回路をトランジスタの入力側に備えたことで、広帯域に良好なインピーダンス整合を実現するだけでなく、増幅素子1から見た入力回路のインピーダンスをΔf1からΔf3にわたり低減できる。よって離調周波数に発生する歪成分をΔf1からΔf3に跨る周波数帯域において連続的に抑圧できる。この結果、回路の小型化と、所望の離調周波数が拡がった場合において最小離調周波数から最大離調周波数にわたって歪特性の劣化防止が可能となる。
 図10は、実施の形態2の変形例に係る電力増幅器140の回路図である。
 電力増幅器140は差周波短絡回路11に替えて差周波短絡回路31bを備え、差周波短絡回路12に替えて差周波短絡回路32bを備える。差周波短絡回路31bは差周波短絡回路11と比較して、並列インダクタ11a及び容量11bに直列に接続された抵抗体R1を備えた点で異なる。差周波短絡回路32bは差周波短絡回路12と比較して、並列インダクタ12a及び容量12bに直列に接続された抵抗体R2を備えた点で異なる。
 電力増幅器140は抵抗体R1及びR2を備えた事により、電力増幅器130と同様の効果に加え、不要発振が抑圧されるという効果を奏する。
 その他は電力増幅器130と同じである。
 なお、抵抗体R1と抵抗体R2の抵抗値は同一でも異なっていても良い。図10において抵抗体R1は並列インダクタ11aと容量11bの間に接続されているが、並列インダクタ11a又は容量11bに直列接続されればよく、別の位置に設け得る。また図10において抵抗体R2は並列インダクタ12aと容量12bの間に接続されているが、並列インダクタ12a又は容量12bに直列接続されればよく、別の位置に設け得る。
 本開示は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1、1a、1b、1c、1d 増幅素子、2、2a、2b、2c、2d、3、3a、3b、4,5 直列インダクタ、8 基板、9 パッケージ端子、10 パッケージ、11、12、21、31a,31b,32a,32b 差周波短絡回路、11a、12a、13a、21a 並列インダクタ、11b、12b、13b、21b 容量、11c、12c 補足用容量、13 補足用差周波短絡回路、100、110、120、130,140 電力増幅器、A1、A2,B1 接続点、R1、R2 抵抗体

Claims (9)

  1.  複数の増幅素子と、
     前記複数の増幅素子に接続されトーナメント型に複数の伝送線路を有するトーナメント型回路と、
     直列接続されたインダクタと容量を有する複数の差周波短絡回路と
    を備え、
     前記複数の差周波短絡回路の共振周波数は前記複数の増幅素子から離れるほど小さく、
     前記複数の差周波短絡回路のうちで前記トーナメント型回路の前記増幅素子に最も近い段の複数のノードに接続された差周波短絡回路は、該差周波短絡回路が接続された該ノードから前記増幅素子を見込んだインピーダンスと動作周波数において共振する誘導性リアクタンスを有するとともにそれぞれ異なる共振周波数を有する
     ことを特徴とする電力増幅器。
  2.  前記複数の増幅素子を搭載したパッケージを備え、予め定められた特定共振周波数と等しいか前記特定共振周波数より大きい共振周波数の前記差周波短絡回路を前記パッケージに搭載し、前記特定共振周波数より小さい共振周波数の前記差周波短絡回路を前記パッケージの外に設けたことを特徴とする請求項1に記載の電力増幅器。
  3.  前記特定共振周波数は10MHzであることを特徴とする請求項2に記載の電力増幅器。
  4.  前記トーナメント型回路は、前記複数の増幅素子の増幅信号を合成するトーナメント型合成回路であることを特徴とする請求項1から3のいずれか1項に記載の電力増幅器。
  5.  前記トーナメント型回路は、前記複数の増幅素子へ入力信号を分配するトーナメント型分配回路であることを特徴とする請求項1から3のいずれか1項に記載の電力増幅器。
  6.  前記複数の増幅素子の出力端子に接続される線路に所定の直流バイアス電圧を供給する直流バイアス電圧供給手段を備えることを特徴とする請求項3記載の電力増幅器。
  7.  前記直流バイアス電圧供給手段は、前記動作周波数においてλ/4の電気長を有するマイクロストリップ線路と、前記マイクロストリップ線路を接地する容量と、を備え、前記マイクロストリップ線路と前記マイクロストリップ線路を接地する容量との間に直流バイアス源が接続されること
     を特徴とする請求項6記載の電力増幅器。
  8.  前記差周波短絡回路は、前記インダクタ及び容量に直列接続された抵抗体を備えたことを特徴とする請求項5に記載の電力増幅器。
  9.  前記複数の差周波短絡回路の共振周波数は、前記複数の増幅素子で増幅される高周波信号の高域端と低域端の差分周波数として取り得る最小値から最大値の間に存在することを特徴とする請求項1から8のいずれか1項に記載の電力増幅器。
PCT/JP2021/006738 2021-02-24 2021-02-24 電力増幅器 WO2022180658A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/247,867 US20240014784A1 (en) 2021-02-24 2021-02-24 Power amplifier
PCT/JP2021/006738 WO2022180658A1 (ja) 2021-02-24 2021-02-24 電力増幅器
JP2023501694A JPWO2022180658A1 (ja) 2021-02-24 2021-02-24
CN202180078155.5A CN116783819A (zh) 2021-02-24 2021-02-24 功率放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/006738 WO2022180658A1 (ja) 2021-02-24 2021-02-24 電力増幅器

Publications (1)

Publication Number Publication Date
WO2022180658A1 true WO2022180658A1 (ja) 2022-09-01

Family

ID=83047815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006738 WO2022180658A1 (ja) 2021-02-24 2021-02-24 電力増幅器

Country Status (4)

Country Link
US (1) US20240014784A1 (ja)
JP (1) JPWO2022180658A1 (ja)
CN (1) CN116783819A (ja)
WO (1) WO2022180658A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536861A (ja) * 1999-01-27 2002-10-29 キネティック リミテッド マイクロ波増幅器
JP2008263438A (ja) * 2007-04-12 2008-10-30 Toshiba Corp F級増幅回路
JP2008263439A (ja) * 2007-04-12 2008-10-30 Toshiba Corp F級増幅回路
WO2014087479A1 (ja) * 2012-12-04 2014-06-12 三菱電機株式会社 高周波電力増幅器
WO2020202532A1 (ja) * 2019-04-04 2020-10-08 三菱電機株式会社 電力増幅器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536861A (ja) * 1999-01-27 2002-10-29 キネティック リミテッド マイクロ波増幅器
JP2008263438A (ja) * 2007-04-12 2008-10-30 Toshiba Corp F級増幅回路
JP2008263439A (ja) * 2007-04-12 2008-10-30 Toshiba Corp F級増幅回路
WO2014087479A1 (ja) * 2012-12-04 2014-06-12 三菱電機株式会社 高周波電力増幅器
WO2020202532A1 (ja) * 2019-04-04 2020-10-08 三菱電機株式会社 電力増幅器

Also Published As

Publication number Publication date
US20240014784A1 (en) 2024-01-11
JPWO2022180658A1 (ja) 2022-09-01
CN116783819A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
US10673387B2 (en) Amplifiers with in-package radial stub harmonic traps
US7567128B2 (en) Power amplifier suppressing radiation of second harmonic over wide frequency band
US6724263B2 (en) High-frequency power amplifier
US7119623B2 (en) Output circuit for a semiconductor amplifier element
US6538537B2 (en) Integrated circuit and resonance circuit
JP2010068261A (ja) カスコード回路
JP2008541648A (ja) 高出力効率の集積ドハティ型増幅装置
JP2005516444A6 (ja) 補償されたrf増幅器デバイス
JP2005516444A (ja) 補償されたrf増幅器デバイス
JP2010087934A (ja) 整合回路、高周波電力増幅器および携帯電話機
JP2002335136A (ja) 高周波半導体装置
CN110785927A (zh) 效率提高的对称多尔蒂功率放大器
JPH11136045A (ja) マイクロ波増幅器
WO2022180658A1 (ja) 電力増幅器
WO2020202674A1 (ja) 高周波増幅器
JP7024838B2 (ja) ドハティ増幅器
JP2722054B2 (ja) 増幅器
WO2021100176A1 (ja) ドハティ増幅器
JP2008236354A (ja) 増幅器
WO2023144891A1 (ja) 電力増幅器
WO2022254875A1 (ja) 高周波回路および通信装置
US20240171132A1 (en) Power amplifier devices with in-package matching circuits that provide pseudo inverse class f operation
US20050104664A1 (en) Intergrated power amplifier arrangement
US11677367B2 (en) Power amplifier circuit
WO2022249380A1 (ja) ドハティ増幅器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023501694

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18247867

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180078155.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927762

Country of ref document: EP

Kind code of ref document: A1