WO2022179178A1 - 显示基板及其制备方法、显示装置 - Google Patents

显示基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2022179178A1
WO2022179178A1 PCT/CN2021/129394 CN2021129394W WO2022179178A1 WO 2022179178 A1 WO2022179178 A1 WO 2022179178A1 CN 2021129394 W CN2021129394 W CN 2021129394W WO 2022179178 A1 WO2022179178 A1 WO 2022179178A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sub
layer
flexible light
shielding
Prior art date
Application number
PCT/CN2021/129394
Other languages
English (en)
French (fr)
Inventor
夏维
王彦强
郭远征
韩永占
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/925,855 priority Critical patent/US20230200151A1/en
Publication of WO2022179178A1 publication Critical patent/WO2022179178A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display substrate, a preparation method thereof, and a display device.
  • the transparent display screen can not only display images, but also have a certain light transmittance. Through the transparent display screen, the scene on the other side can be seen.
  • Transparent display screens can be widely used in building exterior walls, display windows, exhibition panels, airports, hotels or stages and other occasions.
  • a display substrate in one aspect, includes: a flexible light-transmitting base; a light-shielding layer disposed on one side of the flexible light-transmitting base; and a plurality of sub-pixels disposed on a side of the light-shielding layer away from the flexible light-transmitting base.
  • One side of the flexible light-transmitting substrate has a plurality of grooves.
  • the light-shielding layer includes a plurality of light-shielding patterns, and one light-shielding pattern is located in a groove; the light-shielding pattern includes a first sub-light-shielding pattern and a second sub-light-shielding pattern, and the first sub-light-shielding pattern covers the groove. On the side wall, the second sub-light-shielding pattern covers the bottom surface of the groove.
  • Each sub-pixel includes a pixel driving circuit and a light emitting device.
  • the pixel driving circuit includes a plurality of transistors, and the active layer of one transistor is located in a groove; relative to the flexible light-transmitting substrate, the active layer is close to one side surface of the flexible light-transmitting substrate, A surface of one side that is lower than the first sub light-shielding pattern and away from the flexible light-transmitting substrate.
  • the active layer is on a side surface away from the flexible light-transmitting substrate
  • the first sub-light-shielding pattern is on a side away from the flexible light-transmitting substrate
  • the surface is flat, or lower than the surface of one side of the first sub light-shielding pattern away from the flexible light-transmitting substrate.
  • a plurality of active layers are disposed in one groove.
  • the plurality of active layers belong to transistors in at least one pixel driving circuit.
  • the included angle between the first sub-light-shielding pattern and the second sub-light-shielding pattern is greater than or equal to 90°.
  • the display substrate further includes: a blocking layer disposed between the flexible light-transmitting substrate and the plurality of sub-pixels.
  • the barrier layer has a plurality of openings that expose the plurality of grooves.
  • the orthographic projection of the first sub light-shielding pattern on the flexible light-transmitting substrate is tangent to or partially overlapping the orthographic projection of the blocking layer on the flexible light-transmitting substrate.
  • the light shielding layer includes a metal layer.
  • the light shielding layer is grounded.
  • the display substrate further includes: a buffer layer disposed between the light shielding pattern and the active layer.
  • the buffer layer covers the first sub-light-shielding pattern and the second sub-light-shielding pattern. In a direction parallel to the flexible light-transmitting substrate, there is a spacing between the first sub-light-shielding pattern and the active layer.
  • the gate of the transistor is located on a side of the active layer of the transistor away from the flexible light-transmitting substrate.
  • a method for preparing a display substrate includes: providing a flexible light-transmitting film; patterning the flexible light-transmitting film to form a plurality of grooves to obtain a flexible light-transmitting substrate; forming a flexible light-transmitting substrate on one side of the flexible light-transmitting substrate A light-shielding layer; a plurality of sub-pixels are formed on the side of the light-shielding layer away from the flexible light-transmitting substrate.
  • the light-shielding layer includes a plurality of light-shielding patterns, and one light-shielding pattern is located in a groove; the light-shielding pattern includes a first sub-light-shielding pattern and a second sub-light-shielding pattern, and the first sub-light-shielding pattern covers the groove. On the side wall, the second sub-light-shielding pattern covers the bottom surface of the groove.
  • Each sub-pixel includes a pixel driving circuit and a light emitting device.
  • the pixel driving circuit includes a plurality of transistors, and the active layer of one transistor is located in a groove; relative to the flexible light-transmitting substrate, the active layer is close to one side surface of the flexible light-transmitting substrate, A surface of one side that is lower than the first sub light-shielding pattern and away from the flexible light-transmitting substrate.
  • forming a plurality of grooves by patterning the flexible light-transmitting film includes: forming a barrier film on one side of the flexible light-transmitting film; forming a barrier film on one side of the flexible light-transmitting film; A first photoresist layer is formed on one side of the flexible light-transmitting film; the first photoresist layer is patterned, and the patterned first photoresist layer is used as a mask to pattern the barrier film forming a plurality of openings to obtain a barrier layer; using the barrier layer as a mask, patterning the flexible light-transmitting film to form a plurality of grooves to obtain the flexible light-transmitting substrate.
  • forming a plurality of grooves by patterning the flexible light-transmitting film includes: forming a barrier film on one side of the flexible light-transmitting film; forming a barrier film on one side of the flexible light-transmitting film; A second photoresist layer is formed on one side of the flexible light-transmitting film; the second photoresist layer is patterned, and the patterned second photoresist layer is used as a mask to pattern the barrier film forming a plurality of openings to obtain a barrier layer, and patterning the flexible light-transmitting film to form a plurality of grooves to obtain the flexible light-transmitting substrate.
  • the forming a light-shielding layer on one side of the flexible light-transmitting substrate includes: forming a light-shielding film on the side of the flexible light-transmitting substrate where the plurality of grooves are formed; A third photoresist layer is formed on the side of the light-shielding film away from the flexible light-transmitting substrate; the third photoresist layer is patterned, and the patterned third photoresist layer is used as a mask, and the third photoresist layer is patterned.
  • the light-shielding film is patterned to form a light-shielding pattern in the groove to obtain the light-shielding layer.
  • the providing a flexible light-transmitting film includes: providing a rigid substrate; and forming a flexible light-transmitting film on the rigid substrate.
  • the manufacturing method of the display substrate further includes: after forming the plurality of sub-pixels, removing the rigid substrate.
  • the forming a plurality of sub-pixels on the side of the light-shielding layer away from the flexible light-transmitting substrate includes: forming an active film on the side of the light-shielding layer away from the flexible light-transmitting substrate; A fourth photoresist layer is formed on the side of the active film away from the flexible light-transmitting substrate; the fourth photoresist layer is patterned, and the patterned fourth photoresist layer is used as a mask film, and patterning the active thin film to obtain an active layer located in each groove.
  • forming a plurality of sub-pixels on a side of the light shielding layer away from the flexible light-transmitting substrate further includes: forming a plurality of sub-pixels on a side of the light-shielding layer away from the flexible light-transmitting substrate, on a side of the active layer located in each groove away from the flexible light-transmitting substrate.
  • the sides form the gates of the corresponding transistors.
  • a display device in yet another aspect, includes: the display substrate as described in any of the above embodiments.
  • FIG. 1 is a structural diagram of a display substrate according to some embodiments of the present disclosure
  • FIG. 2 is a structural diagram of a sub-pixel according to some embodiments of the present disclosure.
  • FIG. 3 is a structural diagram of a flexible light-transmitting substrate, a light-shielding layer, and an active layer according to some embodiments of the present disclosure
  • Fig. 4 is a kind of sectional view along the M-M' direction of the structure shown in Fig. 3;
  • Fig. 5 is another sectional view along the M-M' direction of the structure shown in Fig. 3;
  • FIG. 6 is a structural diagram of another flexible light-transmitting substrate, a light-shielding layer, and an active layer according to some embodiments of the present disclosure
  • FIG. 7 is a structural diagram of another display substrate according to some embodiments of the present disclosure.
  • FIG. 8 is a structural diagram of yet another display substrate according to some embodiments of the present disclosure.
  • FIG. 9 is a flowchart of a method for fabricating a display substrate according to some embodiments of the present disclosure.
  • Figure 10 is a flow chart of S100 in the flow chart shown in Figure 9;
  • Fig. 11 is a kind of flow chart of S200 in the flow chart shown in Fig. 9;
  • Fig. 12 is another flow chart of S200 in the flow chart shown in Fig. 9;
  • Figure 13 is a flow chart of S300 in the flow chart shown in Figure 9;
  • Figure 14 is a flow chart of S400 in the flow chart shown in Figure 9;
  • 15a-15n are diagrams showing the steps of preparing a display substrate according to some embodiments of the present disclosure.
  • 16a-16c are diagrams showing the steps of preparing a light shielding layer according to some embodiments of the present disclosure.
  • FIG. 17 is a structural diagram of a display device according to some embodiments of the present disclosure.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • connection and its derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C”, and both include the following combinations of A, B, and C: A only, B only, C only, A and B , A and C, B and C, and A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Exemplary embodiments are described herein with reference to cross-sectional and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes of the drawings due to, for example, manufacturing techniques and/or tolerances, are contemplated.
  • example embodiments should not be construed as limited to the shapes of the regions shown herein, but to include deviations in shapes due, for example, to manufacturing. For example, an etched area shown as a rectangle will typically have curved features.
  • the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example embodiments.
  • the transparent display screen is basically a rigid display screen.
  • rigid displays are difficult to bend, which limits the application range of transparent displays.
  • the sub-pixels in the transparent display screen include a pixel driving circuit including a plurality of transistors.
  • the external ambient light is easily irradiated on the active layer of the transistor, resulting in a decrease in the carrier mobility of the active layer, affecting the working performance of the transistor, and further affecting the display quality of the transparent display screen.
  • some embodiments of the present disclosure provide a display substrate 100 .
  • the structure of the display substrate 100 will be schematically described below with reference to the accompanying drawings.
  • the above-mentioned display substrate 100 may include: a flexible light-transmitting substrate 1 .
  • the above-mentioned flexible light-transmitting substrate 1 has better flexibility, supporting strength and higher light transmittance.
  • the support strength of the flexible light-transmitting substrate 1 can be used to form a support for the subsequently formed structure
  • the flexibility of the flexible light-transmitting substrate 1 can be used to make the display substrate 100 have a foldable function
  • the higher strength of the flexible light-transmitting substrate 1 can be used.
  • the light transmittance enables the display substrate 100 to achieve transparent display. This is beneficial to expand the application range of the display substrate 100 .
  • the above-mentioned flexible light-transmitting substrate 1 includes various materials, which can be selected and set according to actual needs, so as to enable the display substrate 100 to have a folding function and realize transparent display.
  • the material of the flexible light-transmitting substrate 1 may be colorless polyimide (Colorless Polyimide, referred to as CPI), polypropylene (Polypropylene, referred to as PP), polyethylene (Polyethylene, referred to as PE) or polystyrene ( Polystyrene, referred to as PS) and so on.
  • CPI Colorless Polyimide
  • PP polypropylene
  • PE polyethylene
  • PS polystyrene
  • PS Polystyrene
  • the above-mentioned display substrate 100 may further include: a plurality of sub-pixels 2 disposed on one side of the flexible light-transmitting substrate 1 .
  • the plurality of sub-pixels 2 may be arranged in an array, for example.
  • each sub-pixel 2 includes a pixel driving circuit 21 and a light-emitting device 22 .
  • the light emitting device 22 can be disposed on the side of the pixel driving circuit 21 away from the flexible light-transmitting substrate 1 , and is electrically connected to the pixel driving circuit 21 .
  • the pixel driving circuit 21 is configured to provide a driving voltage to the light emitting device 22 electrically connected thereto to control the light emitting state of the light emitting device 22 . In this way, the light emitting devices 22 of the plurality of sub-pixels 2 can cooperate with each other, so that the display substrate 100 can perform image display.
  • the light-emitting device 22 may be an OLED (Organic Light Emitting Diode, organic light-emitting diode).
  • the above-mentioned pixel driving circuit 21 includes a plurality of transistors 211 .
  • the structure of the pixel driving circuit 21 includes various structures, which can be selected and set according to actual needs.
  • the structure of the pixel driving circuit 21 may include structures such as “2T1C”, “6T1C”, “7T1C”, “6T2C” or “7T2C”.
  • T represents transistors
  • the number preceding "T” represents the number of transistors
  • C represents storage capacitors
  • the number preceding "C” represents the number of storage capacitors. That is, the number of transistors 211 included in the pixel driving circuit 21 may be determined according to its structure.
  • the present disclosure takes the pixel driving circuit 21 as an example of a “2T1C” structure for schematic illustration.
  • the structure of the transistor 211 included in the pixel driving circuit 21 includes various structures, which can be selected and set according to actual needs.
  • the transistor 211 may be a top-gate transistor, or the transistor 211 may also be a bottom-gate transistor.
  • the present disclosure takes an example in which the plurality of transistors 211 included in the pixel driving circuit 21 are all top-gate transistors for schematic illustration.
  • the transistor 211 includes: an active layer 2111 and a gate electrode 2112 .
  • the gate electrode 2112 is located on the side of the active layer 2111 away from the flexible light-transmitting substrate 1 .
  • the display substrate 100 may further include a gate insulating layer disposed between the active layer 2111 and the gate electrode 2112.
  • the active layer 2111 and the gate electrode 2112 can be separated by a gate insulating layer, so that the two are insulated from each other, and a short circuit between the two can be avoided.
  • the transistor 211 may further include: a source electrode 2113 and a drain electrode 2114 .
  • the source electrode 2113 and the drain electrode 2114 may be disposed on the side of the gate electrode 2112 away from the flexible light-transmitting substrate 1 .
  • the display substrate 100 may further include an interlayer dielectric layer disposed between the source electrode 2113 and the gate electrode 2112 and the drain electrode 2114 and the gate electrode 2112 .
  • the source electrode 2113 and the gate electrode 2112 and the drain electrode 2114 and the gate electrode 2112 can be separated by an interlayer dielectric layer, so as to avoid the formation of a short circuit between the source electrode 2113 and the gate electrode 2112 and the drain electrode 2114 and the gate electrode 2112 .
  • both the gate insulating layer and the interlayer dielectric layer may have via holes exposing a part of the active layer 2111 .
  • Each source electrode 2113 can be in contact with the corresponding active layer 2111 through the corresponding via hole to form an electrical connection; each drain electrode 2114 can be in contact with the corresponding active layer 2111 through the corresponding via hole respectively to form an electrical connection.
  • the transistor 211 may include the source electrode 2113 and the drain electrode 2114 , or may not include the source electrode 2113 and the drain electrode 2114 , which may be determined according to the actual layout design of the pixel driving circuit 21 .
  • one side of the above-mentioned flexible light-transmitting substrate 1 has a plurality of grooves A.
  • the above-mentioned multiple sub-pixels 2 may be disposed on the side of the flexible light-transmitting substrate 1 having multiple grooves A.
  • the active layer 2111 of one transistor 211 may be located in one groove A.
  • At least one active layer 2111 of the transistor 211 can be disposed in one groove A.
  • one active layer 2111 is disposed in one groove A.
  • the number of grooves A may be greater than or equal to the number of active layers 2111 .
  • a plurality of active layers 2111 are disposed in one groove A.
  • the number of grooves A is smaller than the number of active layers 2111 .
  • the plurality of active layers 2111 disposed in the groove A may belong to the transistors 211 in at least one pixel driving circuit 21 .
  • the above-mentioned multiple active layers 2111 may belong to the transistors 211 in one pixel driving circuit 21 .
  • the plurality of active layers 2111 may belong to some transistors 211 of the plurality of transistors 211 in the pixel driving circuit 21 , or may belong to all the transistors 211 in the pixel driving circuit 21 .
  • the above-mentioned multiple active layers 2111 may belong to the transistors 211 in multiple pixel driving circuits 21 .
  • the plurality of pixel driving circuits 21 may belong to a plurality of adjacent sub-pixels 2, and the plurality of sub-pixels 2 may be sub-pixels 2 of the same color (for example, all are red sub-pixels, green sub-pixels or blue sub-pixels), or Sub-pixels 2 of different colors (for example, at least two of red sub-pixels, green sub-pixels and blue sub-pixels).
  • each groove A includes: a side wall A1 and a bottom surface A2 .
  • the side wall A1 is annular, and one end of the side wall A1 is connected to the edge of the bottom surface A2.
  • the cross-sectional shape of the groove A includes various shapes, which can be selected and set according to actual needs.
  • the cross-sectional shape of the groove A may be a rectangle or a trapezoid.
  • the side wall A1 and the bottom surface A2 are perpendicular to each other; when the cross-sectional shape of the groove A is a trapezoid, the angle between the side wall A1 and the bottom surface A2 greater than 90°.
  • the plan view shape of the groove A includes various shapes. Since the active layer 2111 is disposed in the groove A, the top-view shape of the groove A can be selected and set according to the actual layout design of the active layer 2111 .
  • the top-view shape of the groove A is substantially the same as the planar shape of the bottom surface A2 thereof.
  • the top-view shape of the grooves A may be substantially the same as the orthographic shape of the active layer 2111 on the flexible light-transmitting substrate 1 .
  • the orthographic shape of the active layer 2111 on the flexible light-transmitting substrate 1 is a rectangle
  • the top-view shape of the groove A is a rectangle
  • the orthographic shape of the active layer 2111 on the flexible light-transmitting substrate 1 is a trapezoid
  • the top view shape of the groove A is a trapezoid
  • the orthographic shape of the active layer 2111 on the flexible light-transmitting substrate 1 is a U shape
  • the top view shape of the groove A is U shape.
  • the top-view shape of the groove A can match the orthographic projection of the plurality of active layers 2111 on the flexible light-transmitting substrate 1
  • the outer contours of the shapes are basically the same.
  • the outer contour of the orthographic shape of the plurality of active layers 2111 on the flexible light-transmitting substrate 1 is a rectangle
  • the top-view shape of the groove A is a rectangle.
  • the side wall A1 and/or the bottom surface A2 of the groove A may not be absolutely flat. That is, the side wall A1 and/or the bottom surface A2 of the groove A may be uneven.
  • the cross-sectional shape of the groove A may be an irregular rectangle or a trapezoid
  • the top view shape of the groove A may be an irregular rectangle, a trapezoid or a U-shape.
  • the irregularity means that, due to process errors, the side of the cross-sectional shape of the groove A or the top-view shape of the groove A is a curved segment rather than a straight segment.
  • the above-mentioned display substrate 100 may further include: a light-shielding layer 3 on one side of the flexible light-transmitting substrate 1 .
  • the light shielding layer 3 is configured to shield (eg, absorb or reflect) light to prevent the light from passing through the light shielding layer 3 itself and entering from one side of the light shielding layer 3 to the opposite side.
  • the above-mentioned light shielding layer 3 may be disposed on the side of the flexible light-transmitting substrate 1 having a plurality of grooves A. Based on this, the above-mentioned plurality of sub-pixels 2 can be arranged on the side of the light shielding layer 3 away from the flexible light-transmitting substrate 1 .
  • Each light shielding pattern 31 is located between the corresponding groove A and the corresponding active layer 2111 .
  • the light shielding layer 3 includes a plurality of light shielding patterns 31 , and one light shielding pattern 31 is located in one groove A.
  • the number of shading patterns 31 can be selected and set according to actual needs.
  • the number of the light shielding patterns 31 is less than or equal to the number of the grooves A.
  • the light-shielding patterns 31 and the grooves A may be arranged in a one-to-one correspondence.
  • the light-shielding pattern 31 may include a first sub-light-shielding pattern 311 and a second sub-light-shielding pattern 312 .
  • the first sub light shielding pattern 311 covers the side wall A1 of the groove A
  • the second sub light shielding pattern 312 covers the bottom surface A2 of the groove A.
  • the first sub-light-shielding pattern 311 is annular, and one end of the first sub-light-shielding pattern 311 is connected to the edge of the second sub-light-shielding pattern 312 .
  • the light-shielding patterns 31 are in direct contact with the corresponding grooves A, and the shape of the light-shielding patterns 31 is the same or substantially the same as that of the corresponding grooves A. In this way, the light-shielding pattern 31 can also form a groove-like structure with substantially the same shape as the groove A, so as to shield the inner space enclosed by the light-shielding pattern 31 .
  • the shape of the shading pattern 31 reference may be made to the description of the shape of the groove A, which will not be repeated here.
  • the active layer 2111 located in the groove A is close to the flexible light-transmitting substrate relative to the flexible light-transmitting substrate 1
  • One side surface of 1 is lower than the one side surface of the first sub light-shielding pattern 311 away from the flexible light-transmitting substrate 1 .
  • the first sub-light-shielding pattern 311 in the light-shielding pattern 31 is far away from the edge of the flexible light-transmitting substrate 1 .
  • the surface of one side may not be absolutely flat, that is, the surface of the side of the first sub light-shielding pattern 311 away from the flexible light-transmitting substrate 1 may be uneven.
  • the side surface of the active layer 2111 close to the flexible light-transmitting substrate 1 is lower than the side surface of the first sub-light-shielding pattern 311 away from the flexible light-transmitting substrate 1 . It may mean that the active layer 2111 is close to the flexible light-transmitting substrate 1
  • the distance (for example, the minimum distance) between the side surface of the substrate 1 and the flexible light-transmitting substrate 1 is smaller than the maximum distance between the side surface of the first sub-light-shielding pattern 311 away from the flexible light-transmitting substrate 1 and the flexible light-transmitting substrate 1 .
  • the active layer 2111 can be ensured to sink into the space enclosed by the light-shielding pattern 31 , and then the light-shielding pattern 31 can be used to shield at least a part of the side surface and the side surface of the active layer 2111 close to the flexible light-transmitting substrate 1 from light. .
  • the flexible light-transmitting substrate 1 can be used to realize flexible display, and the application of the display substrate 100 can be expanded. scope.
  • the light-shielding pattern 31 included in the light-shielding layer 3 is only located in the groove A of the flexible light-transmitting substrate 1, and the sub-pixels
  • the active layer 2111 of the transistor 211 in the pixel 2 is arranged in the groove A, so that the active layer 2111 is close to one side surface of the flexible light-transmitting substrate 1, and is lower than the first sub-shielding in the light-shielding pattern 31 relative to the flexible light-transmitting substrate 1.
  • the pattern 311 is far away from the side surface of the flexible light-transmitting substrate 1 , which can ensure that at least a part of the active layer 2111 sinks into the space enclosed by the light-shielding pattern 31 . In this way, it can not only ensure that the light radiating toward the part of the flexible light-transmitting substrate 1 that is not provided with the light-shielding pattern 31 can pass through the flexible light-transmitting substrate 1, so that the display substrate 100 can realize flexible and transparent display, but also can use the light-shielding pattern 31 to The light passing through the corresponding part of the flexible light-transmitting substrate 1 (that is, the part provided with the light-shielding pattern 31 ) is shielded, that is, the first sub-light-shielding pattern 311 can be used to block at least a part of the light directed to the side of the active layer 2111 .
  • the second sub-shielding pattern 312 can be used to shield the light emitted to the side surface of the active layer 2111 close to the flexible light-transmitting substrate 1, so that the shielding pattern 31 has a larger light shielding range for the active layer 2111, Therefore, the amount of light emitted to the active layer 2111 can be effectively reduced, thereby avoiding affecting the carrier mobility of the transistor 211 , avoiding affecting the working performance of the transistor 211 , and improving the display quality of the display substrate 100 .
  • the gate 2112 can also be used to block the light emitted to the side surface of the active layer 2111 away from the flexible light-transmitting substrate 1, so that the gate 2112 can interact with the light-shielding pattern. 31, to form a more comprehensive light shielding range for the active layer 2111, further reduce the amount of light incident to the active layer 2111, avoid affecting the carrier mobility of the transistor 211, and further avoid affecting the working performance of the transistor 211, The display quality of the display substrate 100 is improved.
  • the active layer 2111 is far away from one side surface of the flexible light-transmitting substrate 1
  • the first sub-light-shielding pattern 311 is far away from the flexible light-transmitting substrate 1 .
  • One side surface of the light-transmitting substrate 1 is flat, or lower than the side surface of the first sub light-shielding pattern 311 away from the flexible light-transmitting substrate 1 .
  • the distance (eg, the maximum distance) between the surface of the active layer 2111 away from the flexible light-transmitting substrate 1 and the flexible light-transmitting substrate 1 is less than or equal to, and the first sub-light-shielding pattern 311 is far away from the flexible light-transmitting substrate 1
  • the active layer 2111 may be completely submerged in the space enclosed by the light shielding pattern 31 .
  • the side surfaces of the active layer 2111 can be completely or relatively completely shielded from light by the first sub-shading patterns 311 , so as to prevent light from emitting to the side surfaces of the active layer 2111 .
  • This further expands the light-shielding range of the side surface of the active layer 2111, thereby further reducing the amount of light emitted to the active layer 2111, avoiding affecting the carrier mobility of the transistor 211, and further avoiding affecting the working performance of the transistor 211.
  • the display quality of the display substrate 100 is improved.
  • the included angle between the first sub light shielding pattern 311 and the second sub light shielding pattern 312 is greater than or equal to 90°.
  • the thickness uniformity of the light shielding pattern 31 is high.
  • the angle between the first sub-light-shielding pattern 311 and the second sub-light-shielding pattern 312 may refer to that the first sub-light-shielding pattern 311 is close to the side surface of the side wall A1 of the groove A and the second sub-light-shielding pattern 312 is close to the recess.
  • the thickness uniformity of the light shielding pattern 31 is low.
  • the angle between the first sub-light-shielding pattern 311 and the second sub-light-shielding pattern 312 may refer to that the first sub-light-shielding pattern 311 is close to the side surface of the side wall A1 of the groove A and the second sub-light-shielding pattern 312 is close to the recess. The angle between the side surfaces of the bottom surface A2 of the groove A.
  • the included angle between the first sub-light-shielding pattern 311 and the second sub-light-shielding pattern 312 is substantially equal to the included angle between the side wall A1 and the bottom surface A2 of the groove A.
  • the light-shielding pattern is set as a planar structure and is tiled on one side of the flexible light-transmitting substrate 1, a larger area of the light-shielding pattern is required, so that the active layer can be protected by the light-shielding pattern of the planar structure.
  • the side of the 2111 is shaded.
  • this also increases the area ratio between the light-shielding pattern of the planar structure and the flexible light-transmitting substrate 1 , reduces the light transmittance, and affects the effect of flexible and transparent display.
  • the light-shielding pattern 31 is set as the first sub-light-shielding pattern 311 and the second sub-light-shielding pattern 312 which are connected, and the included angle between the first sub-light-shielding pattern 311 and the second sub-light-shielding pattern 312 is connected to the groove.
  • the angle between the side wall A1 and the bottom surface A2 of A is substantially equal, and the first sub-shading pattern 311 with a smaller area can be used to shade at least a part of the side surface of the active layer 2111 to reduce the flexibility of the light-shielding pattern 31 to transmit light.
  • the area ratio between the orthographic projection on the substrate 1 and the flexible light-transmitting substrate 1 ensures that the display substrate 100 has a high light transmittance, thereby ensuring that the display substrate 100 has a better flexible and transparent display effect.
  • the size component of the first sub light-shielding pattern 311 may range from 1 ⁇ m to 3 ⁇ m.
  • the size component may be 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.6 ⁇ m or 3 ⁇ m, or the like.
  • the first sub light-shielding pattern 311 can have a smaller area to avoid reducing the light transmittance of the display substrate 100, and at least part of the side surface of the active layer 2111 can be shielded from light.
  • the size component of the first sub-light-shielding pattern 311 and the size of the side wall A1 of the groove A are The components can be approximately equal.
  • the size component of the side wall A1 of the groove A may range from 1 ⁇ m to 3 ⁇ m.
  • the thickness of the above-mentioned light shielding layer 3 can be selected and set according to actual needs.
  • the thickness of the light shielding layer 3 may be 50 nm ⁇ 300 nm.
  • the thickness of the light shielding layer 3 may be 50 nm, 100 nm, 200 nm, 270 nm, or 300 nm, or the like.
  • the materials of the light shielding layer 3 include various materials, which can be selected and set according to actual needs.
  • the material of the light shielding layer 3 may be a metal material, that is, the light shielding layer 3 is a metal layer. In this case, the light shielding layer 3 is grounded. In this way, adverse effects of the light shielding layer 3 on the active layer 2111 can be avoided.
  • the material of the light shielding layer 3 may be silver, copper, aluminum, molybdenum, or the like.
  • the material of the light shielding layer 3 may be metal oxides or organic materials or the like.
  • the material of the light-shielding layer 3 may be copper oxide, cuprous oxide, silver peroxide, etc.; or, the material of the light-shielding layer 3 may be amorphous silicon; or, the material of the light-shielding layer 3 may be doped with black particles (eg carbon, copper or chromium etc.) polystyrene, epoxy resin or polyacrylate etc.
  • black particles eg carbon, copper or chromium etc.
  • the above-mentioned display substrate 100 may further include: a buffer layer 4 disposed between the light shielding pattern 311 and the active layer 2111 .
  • the buffer layer 4 covers the first sub-light-shielding pattern 311 and the second sub-light-shielding pattern 312 .
  • the active layer 2111 and the buffer layer 4 may be in direct contact.
  • the orthographic projections of the first sub-light-shielding patterns 311 and the second sub-light-shielding patterns 312 on the flexible light-transmitting substrate 1 are located within the orthographic projection range of the buffer layer 4 on the flexible light-transmitting substrate 1 .
  • the buffer layer 4 forms shielding and protection for the first sub-light-shielding pattern 311 and the second sub-light-shielding pattern 312 to avoid causing damage to the light-shielding pattern 31 in the process of preparing and forming subsequent thin films (eg, the active layer 2111 or the gate 2112 , etc.). damage.
  • the buffer layer 4 has a whole-layer structure.
  • the buffer layer 4 shields and protects the first sub-light-shielding pattern 311 and the second sub-light-shielding pattern 312, and at the same time shields and protects the surface of the flexible light-transmitting substrate 1, so as to avoid the formation of subsequent films (for example, there are During the process of the source layer 2111 or the gate electrode 2112, etc.), the flexible light-transmitting substrate 1 is damaged.
  • the above-mentioned distance is greater than or equal to the thickness of the buffer layer 4 .
  • the buffer layer 4 can be used to separate the first sub-shading pattern 311 from the active layer 2111 .
  • the buffer layer 4 can also be used to insulate the light shielding layer 3 and the active layer 2111 from each other.
  • the thickness of the buffer layer 4 may range from 300 nm to 1000 nm.
  • the thickness of the buffer layer 4 may be 300 nm, 400 nm, 510 nm, 730 nm, or 1000 nm, or the like.
  • the above-mentioned display substrate 100 may further include: a blocking layer 5 disposed between the flexible light-transmitting substrate 1 and the plurality of sub-pixels 2 .
  • the blocking layer 5 has a plurality of openings K, and the plurality of openings K expose a plurality of grooves A.
  • the orthographic projection of the first sub light-shielding pattern 311 on the flexible light-transmitting substrate 1 is tangent to or partially overlapping with the orthographic projection of the barrier layer 5 on the flexible light-transmitting substrate 1 .
  • the barrier layer 5 is in the shape of a grid, covering one side surface of the flexible light-transmitting substrate 1 close to the plurality of sub-pixels 2 , and only exposing the plurality of grooves A through the above-mentioned plurality of openings K.
  • the plurality of openings K correspond to the plurality of grooves A one-to-one.
  • the boundary of each opening K may coincide with the edge of the side wall A1 of the corresponding groove A away from the ground A2.
  • the barrier layer 5 is formed before the light shielding layer 3 . In this way, after the light-shielding layer 3 is prepared and formed, at least a part of the first sub-light-shielding pattern 311 in the light-shielding pattern 31 can be overlapped on the portion of the barrier layer 5 close to the opening K, so that the first sub-light-shielding pattern 311 is on the flexible light-transmitting substrate 1 .
  • the orthographic projection of the light shielding layer 3 on the flexible light-transmitting substrate 1 overlaps with the orthographic projection of the blocking layer 5 on the flexible light-transmitting substrate 1
  • the projection is complementary, that is, the orthographic projection of the first sub light-shielding pattern 311 on the flexible light-transmitting substrate 1 is tangent to the orthographic projection of the barrier layer 5 on the flexible light-transmitting substrate 1 .
  • the barrier layer 5 is located between the flexible light-transmitting substrate 1 and the buffer layer 4 . That is, the barrier layer 5 is formed earlier than the buffer layer 4 .
  • Some embodiments of the present disclosure provide a preparation method of a display substrate, as shown in FIG. 9 , the preparation method includes: S100 ⁇ S400.
  • a flexible light-transmitting film 1a is provided.
  • the above-mentioned flexible light-transmitting film 1a can be made of colorless polyimide (Colorless Polyimide, referred to as CPI), polypropylene (Polypropylene, referred to as PP), polyethylene (Polyethylene, referred to as PE) or polystyrene (Polystyrene, referred to as PS) and so on.
  • CPI Colorless Polyimide
  • PP polypropylene
  • PE Polyethylene
  • PS polystyrene
  • the flexible light-transmitting film 1a is provided, which may include: S110-S120.
  • the material of the rigid substrate 1b includes a variety of materials, which can be selected and set according to actual needs, so as to form a stable support for the subsequently formed flexible light-transmitting film 1a, and in the subsequent process of removing the rigid substrate 1b, the flexible transparent film 1b will not be exposed.
  • the photosubstrate 1 or the like is subject to damage.
  • the rigid substrate 1b may be, for example, a glass substrate or a PMMA (Polymethyl methacrylate, polymethyl methacrylate) substrate or the like.
  • a flexible light-transmitting film 1a is formed on the rigid substrate 1b.
  • the material based on the flexible light-transmitting film 1a is an organic material, and in the process of forming the flexible light-transmitting film 1a, a coating process (such as a spraying process or a spin coating process, etc.) and a curing process (such as UV curing can be used in sequence). process) formed.
  • the thickness of the flexible light-transmitting film 1a is, for example, greater than or equal to 6 ⁇ m.
  • the flexible light-transmitting film 1a has good flexibility.
  • the rigid substrate 1b can be used to form a relatively stable support for the flexible light-transmitting film 1a, so as to avoid bending during the subsequent patterning process of the flexible light-transmitting film 1a , thereby ensuring the accuracy of the size and shape of the grooves A formed subsequently, and improving the yield of the display substrate 100 .
  • the flexible light-transmitting film 1a is patterned to form a plurality of grooves A, including: S210a-S240a.
  • a barrier film 5a is formed on one side of the flexible light-transmitting film 1a.
  • the material of the barrier film 5a is an inorganic material.
  • the inorganic material may be SiN or SiO 2 or the like.
  • the barrier film 5a may be formed by a plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD for short) process.
  • PECVD plasma enhanced chemical vapor deposition
  • a photolithography process may be used. Since the material of the flexible light-transmitting film 1a is an organic material, it is difficult to use a patterned photoresist layer as a mask to etch the flexible light-transmitting film 1a.
  • the flexible light-transmitting film 1a and the subsequently formed photoresist can be separated by the barrier film 5a, so that the flexible light-transmitting film 1a can be patterned by a photolithography process change.
  • a first photoresist layer 6a is formed on the side of the barrier film 5a away from the flexible light-transmitting film 1a.
  • the first photoresist layer 6a may be formed by a coating process (eg, a spray coating process or a spin coating process, etc.).
  • the material of the first photoresist layer 6a is, for example, positive photoresist.
  • a mask plate may be provided on the side of the first photoresist layer 6a away from the blocking film 5a, and the mask plate has the same characteristics as the one to be formed.
  • the top-view shape of the groove A is the same pattern; then the first photoresist layer 6a is exposed through the mask; then the first photoresist layer 6a is developed, and the exposed layers in the first photoresist layer 6a are removed. , the patterned first photoresist layer 6b is obtained.
  • the patterned first photoresist layer 6b exposes a part of the blocking film 5a, and the position of the part corresponds to the position of the groove A to be formed.
  • the barrier film 5a can be patterned (ie, etched) by using the patterned first photoresist layer 6b as a mask, The exposed portion of the first photoresist layer 6b after the patterning in the barrier film 5a is removed to form a plurality of openings K, and the barrier layer 5 is also obtained.
  • the patterned first photoresist layer 6b can be removed.
  • the flexible light-transmitting film 1a is patterned to form a plurality of grooves A, and the flexible light-transmitting substrate 1 is obtained.
  • the plurality of openings K in the above-mentioned barrier layer 5 expose a part of the flexible light-transmitting film 1a, and this part corresponds to the position where the groove A to be formed is located.
  • the flexible light-transmitting film 1a can be patterned (ie, etched) using the barrier layer 5 as a mask, and a part of the flexible light-transmitting film 1a exposed by the plurality of openings K can be partially removed to form
  • the flexible light-transmitting substrate 1 is also obtained by a plurality of grooves A.
  • the depth of etching the flexible light-transmitting film 1 a may be determined according to the size of the groove A to be formed along the direction perpendicular to the flexible light-transmitting substrate 1 .
  • the size of the groove A may range from 1 ⁇ m to 3 ⁇ m.
  • the ratio between the size and the thickness of the flexible light-transmitting film 1a is less than or equal to 1/2, which can not only avoid affecting the overall structural stability of the flexible light-transmitting substrate 1, but also ensure that the light-shielding layer 3 formed subsequently can protect the transistor 211.
  • the active layer 2111 has a better shading effect.
  • the flexible light-transmitting film 1a is patterned to form a plurality of grooves A, including: S210b-S230b.
  • a barrier film 5a is formed on one side of the flexible light-transmitting film 1a.
  • a second photoresist layer 7a is formed on the side of the barrier film 5a away from the flexible light-transmitting film 1a.
  • a coating process may be used to form the second photoresist layer 7a.
  • the material of the second photoresist layer 7a is, for example, positive photoresist.
  • the patterned second photoresist layer 7b can be used as a mask to simultaneously pattern the barrier film 5a and the flexible light-transmitting film 1a. (also etched). That is to say, the barrier film 5a and the flexible light-transmitting film 1a can be etched in the same etching process to obtain the barrier layer 5 and the flexible light-transmitting substrate 1 in sequence.
  • the patterned second photoresist layer 7b needs to be retained.
  • the light shielding layer 3 includes a plurality of light shielding patterns 31 , and one light shielding pattern 31 is located in one groove A.
  • the light-shielding pattern 31 includes a first sub-light-shielding pattern 311 and a second sub-light-shielding pattern 312.
  • the first sub-light-shielding pattern 311 covers the side wall A1 of the groove A
  • the second sub-light-shielding pattern 312 covers the bottom surface A2 of the groove A.
  • a light shielding layer 3 is formed on one side of the flexible light-transmitting substrate 1 , including: S310 to S330 .
  • a light-shielding film 3a is formed on the side of the flexible light-transmitting substrate 2 where the plurality of grooves A are formed.
  • the light-shielding film 3a when the material of the light-shielding film 3a is a metal material, the light-shielding film 3a can be formed by a magnetron sputtering process; when the material of the light-shielding film 3a is an inorganic material, a PECVD process can be used to form the light-shielding film 3a. ; When the material of the light-shielding film 3a is an organic material, a coating process can be used to form the light-shielding film 3a.
  • the light shielding film 3 a covers the plurality of grooves A and at least a part of the barrier layer 5 .
  • a third photoresist layer 8a is formed on the side of the light-shielding film 3a away from the flexible light-transmitting substrate 1 .
  • the third photoresist layer 8a may be formed by a coating process.
  • the material of the third photoresist layer 8a is, for example, positive photoresist.
  • a mask plate may be provided on the side of the third photoresist layer 8a away from the flexible light-transmitting substrate 1, and the mask plate has the same Then, the third photoresist layer 8a is exposed through the mask plate; then the third photoresist layer 8a is developed, and the exposed third photoresist layer 8a is removed. , the patterned third photoresist layer 8b is obtained. The patterned third photoresist layer 8b protects and shields the portion of the light shielding film 3a located in the groove A.
  • the patterned third photoresist layer 8b can be used as a mask to pattern (ie, etch) the light-shielding film 3a,
  • the part of the light-shielding film 3a that is not blocked and protected by the patterned third photoresist layer 8b is removed, and the part of the light-shielding film 3a that is blocked and protected by the patterned third photoresist layer 8b is retained, and this part includes A plurality of patterns, each of which is located in the groove A, thus also obtains a light shielding layer 3 including a plurality of light shielding patterns 31 .
  • Each sub-pixel 2 includes a pixel driving circuit 21 and a light-emitting device 22 .
  • the pixel driving circuit 21 includes a plurality of transistors 211 , and the active layer 2111 of one transistor 211 is located in one groove A. Relative to the flexible light-transmitting substrate 1 , the active layer 2111 is close to a side surface of the flexible light-transmitting substrate 1 , and is lower than a side surface of the first sub-light-shielding pattern 31 away from the flexible light-transmitting substrate 1 .
  • the preparation method of the display substrate further includes: forming a buffer layer 4 on a side of the light shielding layer 3 away from the flexible light-transmitting substrate 1 .
  • the present disclosure may use a PECVD process to form the buffer layer 4 .
  • a plurality of sub-pixels 2 are formed on the side of the light shielding layer 3 away from the flexible light-transmitting substrate 1 , including: S410 to S430 .
  • an active thin film 2111 a is formed on the side of the light shielding layer 3 away from the flexible light-transmitting substrate 1 .
  • the present disclosure may use a PECVD process to form three layers of thin films stacked in sequence, and the three layers of thin films constitute the active thin film 2111a.
  • the active film 2111a covers the light-shielding layer 3 and the part of the flexible light-transmitting substrate 1 that is not covered by the light-shielding layer 3 .
  • the material of one film is silicon nitride (SiN), the material of one film is silicon oxide (SiO), and the material of one film is amorphous silicon (a-Si).
  • a fourth photoresist layer 9 a is formed on the side of the active film 2111 a away from the flexible light-transmitting substrate 1 .
  • a coating process may be used to form the fourth photoresist layer 9a.
  • the material of the fourth photoresist layer 9a is, for example, positive photoresist.
  • the fourth photoresist layer 9a is patterned, and the patterned fourth photoresist layer 9b is used as a mask to pattern the active film 2111a to obtain a The active layer 2111 in each groove A.
  • the process of patterning the fourth photoresist layer 9a in S430 is the same as the process of patterning the third photoresist layer 8a in the above S330, and the patterning process of the active film 2111a in S430 is the same.
  • the process is the same as the process of patterning the light shielding film 3a in the above S330.
  • a plurality of sub-pixels 2 are formed on the side of the light shielding layer 3 away from the flexible light-transmitting substrate 1 , which further includes: S440 .
  • the gate electrode 2112 of the corresponding transistor 211 is formed on the side of the active layer 2111 located in each groove A away from the flexible light-transmitting substrate 1 .
  • the present disclosure may sequentially use a magnetron sputtering process and a photolithography process to form the above gate 2112 .
  • the source electrode 2113 , the drain electrode 2114 of the transistor 2111 in the pixel driving circuit 21 , the light emitting device 22 and the like can be sequentially prepared.
  • beneficial effects that can be achieved by the method for fabricating a display substrate provided by some embodiments of the present disclosure are the same as the beneficial effects that can be achieved by the display substrate 100 provided in some of the above-mentioned embodiments, and are not repeated here.
  • the manufacturing method of the display substrate further includes: after forming the plurality of sub-pixels 2, removing the rigid substrate 1b.
  • the present disclosure may employ a laser lift-off technique to remove the rigid substrate 1b. After removing the rigid substrate 1b, the display substrate 100 with flexible transparent display function can be obtained.
  • the display device 1000 includes: the display substrate 100 according to any of the above embodiments.
  • the display device 100 may further include a carrier frame 200 .
  • the carrier frame can carry the display substrate 100 .
  • the beneficial effects that can be achieved by the display device 1000 provided by some embodiments of the present disclosure are the same as the beneficial effects that can be achieved by the display substrate 100 provided in some of the above-mentioned embodiments, and will not be repeated here.
  • display device 1000 may be any device that displays text or images, whether in motion (eg, video) or stationary (eg, still images). More specifically, it is contemplated that the embodiments may be implemented in or associated with a wide variety of electronic devices, such as, but not limited to, mobile phones, wireless devices, personal data assistants (Personal Digital Assistants) Assistant (PDA), handheld or portable computer, Global Positioning System (GPS) receiver/navigator, camera, Moving Picture Experts Group 4 (MP4) video player, video camera , game consoles, watches, clocks, calculators, television monitors, computer monitors, automotive displays (eg, odometer displays, etc.), navigators, cockpit controls and/or displays, camera-view displays (eg, vehicles rear view camera displays), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging and aesthetic structures (eg, displays for an image of a piece of jewelry), etc.
  • PDA Personal Data assistants
  • GPS Global Positioning System
  • MP4 Moving Picture Experts Group 4
  • video player video camera

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板,包括:柔性透光基底;设置在所述柔性透光基底一侧的遮光层;以及,设置在所述遮光层远离所述柔性透光基底一侧的多个子像素。所述柔性透光基底的一侧具有多个凹槽。所述遮光层包括多个遮光图案,一个遮光图案位于一个凹槽内;所述遮光图案包括第一子遮光图案和第二子遮光图案,所述第一子遮光图案覆盖在所述凹槽的侧壁上,所述第二子遮光图案覆盖在所述凹槽的底面上。各子像素包括像素驱动电路和发光器件。其中,所述像素驱动电路包括多个晶体管,一个晶体管的有源层位于一个凹槽内;相对于所述柔性透光基底,所述有源层靠近所述柔性透光基底的一侧表面,低于所述第一子遮光图案远离所述柔性透光基底的一侧表面。

Description

显示基板及其制备方法、显示装置
本申请要求于2021年02月24日提交的、申请号为202110210135.0的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示基板及其制备方法、显示装置。
背景技术
随着科学技术的发展,透明显示技术愈发引起人们的关注。
透明显示屏既能够显示图像,又能够具有一定的光线透过率,透过透明显示屏,能够看到另外一侧的景象。透明显示屏可以广泛应用于建筑物外墙、展示橱窗、展会展板、机场、酒店或舞台等场合。
发明内容
一方面,提供一种显示基板。所述显示基板包括:柔性透光基底;设置在所述柔性透光基底一侧的遮光层;以及,设置在所述遮光层远离所述柔性透光基底一侧的多个子像素。所述柔性透光基底的一侧具有多个凹槽。所述遮光层包括多个遮光图案,一个遮光图案位于一个凹槽内;所述遮光图案包括第一子遮光图案和第二子遮光图案,所述第一子遮光图案覆盖在所述凹槽的侧壁上,所述第二子遮光图案覆盖在所述凹槽的底面上。各子像素包括像素驱动电路和发光器件。其中,所述像素驱动电路包括多个晶体管,一个晶体管的有源层位于一个凹槽内;相对于所述柔性透光基底,所述有源层靠近所述柔性透光基底的一侧表面,低于所述第一子遮光图案远离所述柔性透光基底的一侧表面。
在一些实施例中,相对于所述柔性透光基底,所述有源层远离所述柔性透光基底的一侧表面,与所述第一子遮光图案远离所述柔性透光基底的一侧表面持平,或者,低于所述第一子遮光图案远离所述柔性透光基底的一侧表面。
在一些实施例中,一个凹槽内设置有多个有源层。所述多个有源层属于至少一个像素驱动电路中的晶体管。
在一些实施例中,所述第一子遮光图案和所述第二子遮光图案之间的夹角大于或等于90°。
在一些实施例中,所述显示基板,还包括:设置在所述柔性透光基底和所述多个子像素之间的阻隔层。所述阻隔层具有多个开口,所述多个开口暴 露所述多个凹槽。所述第一子遮光图案在所述柔性透光基底上的正投影,与所述阻隔层在所述柔性透光基底上的正投影相切或部分重叠。
在一些实施例中,所述遮光层包括金属层。所述遮光层接地设置。
在一些实施例中,所述显示基板,还包括:设置在所述遮光图案和所述有源层之间的缓冲层。所述缓冲层覆盖所述第一子遮光图案和所述第二子遮光图案。沿平行于所述柔性透光基底的方向,所述第一子遮光图案和所述有源层之间具有间距。
在一些实施例中,所述晶体管的栅极位于所述晶体管的有源层远离所述柔性透光基底的一侧。
另一方面,提供一种显示基板的制备方法。所述显示基板的制备方法包括:提供柔性透光薄膜;对所述柔性透光薄膜进行图案化处理,形成多个凹槽,得到柔性透光基底;在所述柔性透光基底的一侧形成遮光层;在所述遮光层远离所述柔性透光基底的一侧形成多个子像素。所述遮光层包括多个遮光图案,一个遮光图案位于一个凹槽内;所述遮光图案包括第一子遮光图案和第二子遮光图案,所述第一子遮光图案覆盖在所述凹槽的侧壁上,所述第二子遮光图案覆盖在所述凹槽的底面上。各子像素包括像素驱动电路和发光器件。其中,所述像素驱动电路包括多个晶体管,一个晶体管的有源层位于一个凹槽内;相对于所述柔性透光基底,所述有源层靠近所述柔性透光基底的一侧表面,低于所述第一子遮光图案远离所述柔性透光基底的一侧表面。
在一些实施例中,所述对所述柔性透光薄膜进行图案化处理,形成多个凹槽,包括:在所述柔性透光薄膜的一侧形成阻隔薄膜;在所述阻隔薄膜远离所述柔性透光薄膜的一侧形成第一光刻胶层;对所述第一光刻胶层进行图案化,以图案化后的第一光刻胶层为掩膜,对所述阻隔薄膜进行图案化,形成多个开口,得到阻隔层;以所述阻隔层为掩膜,对所述柔性透光薄膜进行图案化,形成多个凹槽,得到所述柔性透光基底。
在一些实施例中,所述对所述柔性透光薄膜进行图案化处理,形成多个凹槽,包括:在所述柔性透光薄膜的一侧形成阻隔薄膜;在所述阻隔薄膜远离所述柔性透光薄膜的一侧形成第二光刻胶层;对所述第二光刻胶层进行图案化,以图案化后的第二光刻胶层为掩膜,对所述阻隔薄膜进行图案化,形成多个开口,得到阻隔层,并对所述柔性透光薄膜进行图案化,形成多个凹槽,得到所述柔性透光基底。
在一些实施例中,所述在所述柔性透光基底的一侧形成遮光层,包括:在所述柔性透光基底的形成有所述多个凹槽的一侧形成遮光薄膜;在所述遮 光薄膜远离所述柔性透光基底的一侧形成第三光刻胶层;对所述第三光刻胶层进行图案化,以图案化后的第三光刻胶层为掩膜,对所述遮光薄膜进行图案化,形成位于凹槽内的遮光图案,得到所述遮光层。
在一些实施例中,所述提供柔性透光薄膜,包括:提供刚性衬底;在所述刚性衬底上形成柔性透光薄膜。所述显示基板的制备方法还包括:在形成所述多个子像素之后,去除所述刚性衬底。
在一些实施例中,所述在所述遮光层远离所述柔性透光基底的一侧形成多个子像素,包括:在所述遮光层远离所述柔性透光基底的一侧形成有源薄膜;在所述有源薄膜远离所述柔性透光基底的一侧形成第四光刻胶层;对所述第四光刻胶层进行图案化,以图案化后的第四光刻胶层为掩膜,对所述有源薄膜进行图案化,得到位于各凹槽内的有源层。
在一些实施例中,所述在所述遮光层远离所述柔性透光基底的一侧形成多个子像素,还包括:在位于各凹槽内的有源层远离所述柔性透光基底的一侧形成相应晶体管的栅极。
又一方面,提供一种显示装置。所述显示装置,包括:如上述任一实施例中所述的显示基板。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程等的限制。
图1为根据本公开一些实施例中的一种显示基板的结构图;
图2为根据本公开一些实施例中的一种子像素的结构图;
图3为根据本公开一些实施例中的一种柔性透光基底、遮光层及有源层的结构图;
图4为图3所示结构的沿M-M'向的一种剖视图;
图5为图3所示结构的沿M-M'向的另一种剖视图;
图6为根据本公开一些实施例中的另一种柔性透光基底、遮光层及有源层的结构图;
图7为根据本公开一些实施例中的另一种显示基板的结构图;
图8为根据本公开一些实施例中的又一种显示基板的结构图;
图9为根据本公开一些实施例中的一种显示基板的制备方法的流程图;
图10为图9所示流程图中S100的一种流程图;
图11为图9所示流程图中S200的一种流程图;
图12为图9所示流程图中S200的另一种流程图;
图13为图9所示流程图中S300的一种流程图;
图14为图9所示流程图中S400的一种流程图;
图15a~图15n为根据本公开一些实施例中的一种显示基板的制备步骤图;
图16a~图16c为根据本公开一些实施例中的一种遮光层的制备步骤图;
图17为根据本公开一些实施例中的一种显示装置的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间 有直接物理接触或电接触。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
在相关技术中,透明显示屏基本为刚性显示屏。但是刚性显示屏难以进行弯折,这样限制了透明显示屏的应用范围。
而且,透明显示屏中的子像素包括像素驱动电路,该像素驱动电路包括多个晶体管。外界环境光容易照射到晶体管的有源层上,导致有源层的载流子迁移率下降,影响晶体管的工作性能,进而影响透明显示屏的显示质量。
基于此,本公开的一些实施例提供了一种显示基板100。下面结合附图对显示基板100的结构进行示意性说明。
在一些示例中,如图1、图7和图8所示,上述显示基板100可以包括:柔性透光基底1。
示例性的,上述柔性透光基底1具有较好的柔韧性、支撑强度和较高的光线透过率。这样可以利用柔性透光基底1的支撑强度为后续形成的结构形成支撑,可以利用柔性透光基底1的柔韧性,使得显示基板100具有可折叠 功能,还可以利用柔性透光基底1的较高光线透过率,使得显示基板100实现透明显示。这样有利于扩大显示基板100的应用范围。
上述柔性透光基底1的材料包括多种,可以根据实际需要选择设置,能够使得显示基板100具备折叠功能且能实现透明显示即可。
示例性的,上述柔性透光基底1的材料可以为无色聚酰亚胺(Colorless Polyimide,简称CPI)、聚丙烯(Polypropylene,简称PP)、聚乙烯(Polyethylene,简称PE)或聚苯乙烯(Polystyrene,简称PS)等。
在一些示例中,如图1所示,上述显示基板100还可以包括:设置在柔性透光基底1一侧的多个子像素2。该多个子像素2例如可以呈阵列状排布。
示例性的,如图2所示,各子像素2包括像素驱动电路21和发光器件22。该发光器件22可以设置在像素驱动电路21远离柔性透光基底1的一侧,且与像素驱动电路21电连接。像素驱动电路21被配置为提供驱动电压至与其电连接的发光器件22,以控制该发光器件22的发光状态。这样多个子像素2的发光器件22可以相互配合,使得显示基板100能够进行图像显示。
示例性的,发光器件22可以为OLED(Organic Light Emitting Diode,有机发光二极管)。
示例性的,如图2所示,上述像素驱动电路21包括多个晶体管211。
此处,像素驱动电路21的结构包括多种,可以根据实际需要选择设置。例如,像素驱动电路21的结构可以包括“2T1C”、“6T1C”、“7T1C”、“6T2C”或“7T2C”等结构。此处,“T”表示为晶体管,位于“T”前面的数字表示为晶体管的数量,“C”表示为存储电容器,位于“C”前面的数字表示为存储电容器的数量。也即,像素驱动电路21所包括的晶体管211的数量,可以根据其结构而定。如图2所示,本公开以像素驱动电路21为“2T1C”结构为例进行示意性说明。
像素驱动电路21所包括的晶体管211的结构包括多种,可以根据实际需要选择设置。示例性的,晶体管211可以为顶栅型晶体管,或者,晶体管211也可以为底栅型晶体管。
本公开以像素驱动电路21所包括的多个晶体管211均为顶栅型晶体管为例,进行示意性说明。
示例性的,如图7和图8所示,晶体管211包括:有源层2111和栅极2112。其中,在晶体管211的结构为顶栅型晶体管的情况下,栅极2112位于有源层2111远离柔性透光基底1的一侧。
此处,显示基板100还可以包括设置在有源层2111和栅极2112之间的 栅绝缘层。这样可以利用栅绝缘层将有源层2111和栅极2112隔开,使得两者相互绝缘,避免两者形成短接。
示例性的,如图7和图8所示,晶体管211还可以包括:源极2113和漏极2114。其中,源极2113和漏极2114可以设置在栅极2112远离柔性透光基底1的一侧。
此处,显示基板100还可以包括设置在源极2113和栅极2112及漏极2114和栅极2112之间的层间介质层。这样可以利用层间介质层将源极2113和栅极2112及漏极2114和栅极2112隔开,避免源极2113和栅极2112及漏极2114和栅极2112形成短接。
在此基础上,栅绝缘层和层间介质层中均可以具有暴露有源层2111的一部分的过孔。各源极2113可以分别通过相应的过孔与相应的有源层2111接触,形成电连接;各漏极2114可以分别通过相应的过孔与相应的有源层2111接触,形成电连接。
需要说明的是,晶体管211可以包括源极2113和漏极2114,也可以不包括源极2113和漏极2114,可以根据像素驱动电路21的实际版图设计而定。
在一些示例中,如图4、图5、图7和图8所示,上述柔性透光基底1的一侧具有多个凹槽A。
示例性的,如图7和图8所示,上述多个子像素2可以设置在柔性透光基底1的具有多个凹槽A的一侧。其中,一个晶体管211的有源层2111可以位于一个凹槽A内。
这也就意味着,一个凹槽A内可以设置有至少一个晶体管211的有源层2111。
例如,如图3~图5及图7所示,一个凹槽A内设置一个有源层2111。此时,凹槽A的数量可以大于或等于有源层2111的数量。
又如,如图6及图8所示,一个凹槽A内设置有多个有源层2111。此时,凹槽A的数量小于有源层2111的数量。该凹槽A内设置的多个有源层2111可以属于至少一个像素驱动电路21中的晶体管211。
可选的,上述多个有源层2111可以属于一个像素驱动电路21中的晶体管211。该多个有源层2111可以属于该像素驱动电路21中多个晶体管211的一部分晶体管211,也可以属于该像素驱动电路21中的所有晶体管211。
可选的,上述多个有源层2111可以属于多个像素驱动电路21中的晶体管211。该多个像素驱动电路21可以属于相邻的多个子像素2,该多个子像素2可以为相同颜色的子像素2(例如均为红色子像素、绿色子像素或蓝色子 像素),也可以为不同颜色的子像素2(例如为红色子像素、绿色子像素和蓝色子像素中的至少两种)。
示例性的,如图4、图5、图7和图8所示,每个凹槽A包括:侧壁A1和底面A2。该侧壁A1呈环状,且侧壁A1的一端与底面A2的边缘相连接。
上述凹槽A的剖面形状包括多种,可以根据实际需要选择设置。示例性的,如图4和图5所示,凹槽A的剖面形状可以为矩形或梯形等。其中,在凹槽A的剖面形状为矩形的情况下,侧壁A1和底面A2之间相互垂直;在凹槽A的剖面形状为梯形的情况下,侧壁A1和底面A2之间的夹角大于90°。
上述凹槽A的俯视形状包括多种。由于有源层2111设置在凹槽A内,凹槽A的俯视形状可以根据有源层2111的实际版图设计选择设置。凹槽A的俯视形状与其底面A2的平面形状基本相同。
在有源层2111和凹槽A一一对应设置的情况下,凹槽A的俯视形状,可以与有源层2111在柔性透光基底1上的正投影形状基本相同。例如,有源层2111在柔性透光基底1上的正投影形状为矩形,则凹槽A的俯视形状为矩形;有源层2111在柔性透光基底1上的正投影形状为梯形,则凹槽A的俯视形状为梯形;如图3所示,有源层2111在柔性透光基底1上的正投影形状为U形,则凹槽A的俯视形状为U形。
在一个凹槽A内设置有多个有源层2111的情况下,如图6所示,凹槽A的俯视形状,可以与该多个有源层2111在柔性透光基底1上的正投影形状的外轮廓基本相同。例如,该多个有源层2111在柔性透光基底1上的正投影形状的外轮廓为矩形,则凹槽A的俯视形状为矩形。
此处,考虑到制备形成凹槽A的工艺,难以避免地会具有一定的工艺误差,在制备形成凹槽A后,凹槽A的侧壁A1和/或底面A2可能不会绝对平整,也即,凹槽A的侧壁A1和/或底面A2可能会凹凸不平。这样凹槽A的剖面形状可能是不规整的矩形或梯形,凹槽A的俯视形状可能是不规整的矩形、梯形或U形。其中,不规整指的是,由于工艺误差,凹槽A的剖面形状或凹槽A的俯视形状的边是曲线段,而不是直线段。
在一些示例中,如图3~图8所示,上述显示基板100还可以包括:设置柔性透光基底1一侧的遮光层3。该遮光层3被配置为,对光线进行遮挡(例如吸收或反射),避免光线透过遮光层3自身,从遮光层3的一侧入射至相对的另一侧。
上述遮光层3例如可以设置在柔性透光基底1的具有多个凹槽A的一侧。基于此,上述多个子像素2可以设置在该遮光层3远离柔性透光基底1的一 侧。各遮光图案31则位于相应的凹槽A和相应的有源层2111之间。
示例性的,如图6~图8所示,遮光层3包括多个遮光图案31,一个遮光图案31位于一个凹槽A内。
遮光图案31的数量可以根据实际需要选择设置。例如,遮光图案31的数量小于或等于凹槽A的数量。其中,在遮光图案31的数量等于凹槽A的数量的情况下,遮光图案31和凹槽A可以一一对应设置。
示例性的,如图4、图5、图7和图8所示,遮光图案31可以包括第一子遮光图案311和第二子遮光图案312。第一子遮光图案311覆盖在凹槽A的侧壁A1上,第二子遮光图案312覆盖在凹槽A的底面A2上。其中,第一子遮光图案311呈环状,且第一子遮光图案311的一端与第二子遮光图案312的边缘相连接。
如图4、图5、图7和图8所示,遮光图案31与相应的凹槽A直接接触,遮光图案31的形状与相应的凹槽A的形状相同或基本相同。这样遮光图案31也便可以形成与凹槽A形状基本相同的槽状结构,进而可以对其所围成的内部空间进行遮光。关于遮光图案31的形状可以参照对凹槽A的形状的说明,此处不再赘述。
在一些示例中,如图4、图5、图7和图8所示,位于凹槽A内的有源层2111中,相对于柔性透光基底1,该有源层2111靠近柔性透光基底1的一侧表面,低于第一子遮光图案311远离柔性透光基底1的一侧表面。
需要说明的是,考虑到制备形成遮光图案31的工艺,难以避免地会具有一定的工艺误差,在制备形成遮光图案31后,遮光图案31中第一子遮光图案311远离柔性透光基底1的一侧表面可能不会绝对平整,也即,第一子遮光图案311远离柔性透光基底1的一侧表面可能会凹凸不平。
基于此,有源层2111靠近柔性透光基底1的一侧表面,低于第一子遮光图案311远离柔性透光基底1的一侧表面,可以指的是,有源层2111靠近柔性透光基底1的一侧表面与柔性透光基底1之间的间距(例如最小间距),小于第一子遮光图案311远离柔性透光基底1的一侧表面与柔性透光基底1之间的最大间距。这样可以确保有源层2111的至少一部分沉入遮光图案31所围成的空间内,进而可以利用遮光图案31对有源层2111靠近柔性透光基底1的一侧表面及侧面的至少一部分进行遮光。
由此,本公开的一些实施例所提供的显示基板100,通过将多个子像素2设置在柔性透光基底1的一侧,可以利用柔性透光基底1实现柔性显示,扩大显示基板100的应用范围。
而且,通过在柔性透光基底1和该多个子像素2之间设置遮光层3,使得遮光层3所包括的遮光图案31仅位于柔性透光基底1所具有的凹槽A内,并将子像素2中晶体管211的有源层2111设置在凹槽A内,使得有源层2111靠近柔性透光基底1的一侧表面,相对于柔性透光基底1低于遮光图案31中第一子遮光图案311远离柔性透光基底1的一侧表面,可以确保有源层2111的至少一部分沉入遮光图案31所围成的空间内。这样不仅可以确保射向柔性透光基底1的未设置有遮光图案31的部分的光线能够透过柔性透光基底1,使得显示基板100能够实现柔性透明显示,还可以利用遮光图案31对射向透过柔性透光基底1的相应部分(也即设置有遮光图案31的部分)的光线进行遮挡,也即,可以利用第一子遮光图案311对射向有源层2111的侧面的至少一部分光线进行遮挡,可以利用第二子遮光图案312对射向有源层2111靠近柔性透光基底1的一侧表面的光线进行遮挡,使得遮光图案31对有源层2111具有较大的光线遮挡范围,从而可以有效地减少射向有源层2111的光线的量,进而可以避免影响晶体管211的载流子迁移率,避免影响晶体管211的工作性能,提高显示基板100的显示质量。
此外,在晶体管211为顶栅型晶体管的情况下,还可以利用栅极2112对射向有源层2111远离柔性透光基底1的一侧表面的光线进行遮挡,这样栅极2112可以和遮光图案31相配合,对有源层2111形成较为全面的光线遮挡范围,进一步减少射向有源层2111的光线的量,避免影响晶体管211的载流子迁移率,进一步避免影响晶体管211的工作性能,提高显示基板100的显示质量。
在一些实施例中,如图5、图7和图8所示,相对于柔性透光基底1,有源层2111远离柔性透光基底1的一侧表面,与第一子遮光图案311远离柔性透光基底1的一侧表面持平,或者,低于第一子遮光图案311远离柔性透光基底1的一侧表面。
这也就意味着,有源层2111远离柔性透光基底1的一侧表面与柔性透光基底1之间的间距(例如最大间距),小于或等于,第一子遮光图案311远离柔性透光基底1的一侧表面与柔性透光基底1之间的最大间距。有源层2111可以全部沉入遮光图案31所围成的空间内。
这样可以利用第一子遮光图案311对有源层2111的侧面进行完全或较为完全的遮光,避免光线射向有源层2111的侧面。这样进一步扩大了对有源层2111的侧面的遮光范围,从而可以进一步减少射向有源层2111的光线的量,避免影响晶体管211的载流子迁移率,进一步避免影响晶体管211的工作性 能,提高显示基板100的显示质量。
在一些实施例中,如图4、图5、图7和图8所示,遮光图案31中,第一子遮光图案311和第二子遮光图案312之间的夹角大于或等于90°。
在一些示例中,遮光图案31的厚度均匀性较高。第一子遮光图案311和第二子遮光图案312之间的夹角可以指的是,第一子遮光图案311靠近凹槽A的侧壁A1的一侧表面和第二子遮光图案312靠近凹槽A的底面A2的一侧表面之间的夹角,或者,第一子遮光图案311远离凹槽A的侧壁A1的一侧表面和第二子遮光图案312远离凹槽A的底面A2的一侧表面之间的夹角。
在另一些示例中,遮光图案31的厚度均匀性较低。第一子遮光图案311和第二子遮光图案312之间的夹角可以指的是,第一子遮光图案311靠近凹槽A的侧壁A1的一侧表面和第二子遮光图案312靠近凹槽A的底面A2的一侧表面之间的夹角。
也即,第一子遮光图案311和第二子遮光图案312之间的夹角,与凹槽A的侧壁A1和底面A2之间的夹角基本相等。
需要说明的是,如果将遮光图案设置为面状结构,平铺在柔性透光基底1的一侧,则需要较大面积的遮光图案,以便于能够利用面状结构的遮光图案对有源层2111的侧面进行遮光。但是这样也便增大了该面状结构的遮光图案与柔性透光基底1之间的面积比,降低光线透过率,影响柔性透明显示的效果。
本公开通过将遮光图案31设置为相连接的第一子遮光图案311和第二子遮光图案312,并使得第一子遮光图案311和第二子遮光图案312之间的夹角,与凹槽A的侧壁A1和底面A2之间的夹角基本相等,可以利用较小面积的第一子遮光图案311对有源层2111的侧面的至少一部分进行遮光,减小遮光图案31在柔性透光基底1上的正投影与柔性透光基底1之间的面积比,确保显示基板100具有较高的光线透过率,进而确保显示基板100具有较好的柔性透明显示效果。
在一些示例中,沿垂直于柔性透光基底1的方向,第一子遮光图案311的尺寸分量的范围可以为1μm~3μm。例如,该尺寸分量可以为1μm、1.5μm、2μm、2.6μm或3μm等。
这样既可以使得第一子遮光图案311具有较小的面积,避免减小显示基板100的光线透过率,又可以实现对有源层2111的侧面的至少一部分的遮光。
由于第一子遮光图案311覆盖在凹槽A的侧壁A1上,因此,沿垂直于柔性透光基底1的方向,第一子遮光图案311的尺寸分量和凹槽A的侧壁A1 的尺寸分量可以大致相等。相应的,沿垂直于柔性透光基底1的方向,凹槽A的侧壁A1的尺寸分量的范围可以为1μm~3μm。
上述遮光层3的厚度可以根据实际需要选择设置。示例性的,遮光层3的厚度可以为50nm~300nm。例如,遮光层3的厚度可以为50nm、100nm、200nm、270nm或300nm等。
这样既可以确保遮光层3对光线的遮挡效果,又可以避免增大显示基板100的厚度,减少遮光材料的使用量。
在一些实施例中,遮光层3的材料包括多种,可以根据实际需要选择设置。
在一些示例中,遮光层3的材料可以为金属材料,也即,遮光层3为金属层。在此情况下,遮光层3接地设置。这样可以避免遮光层3对有源层2111产生不良影响。
示例性的,遮光层3的材料可以为银、铜、铝或钼等。
在另一些示例中,遮光层3的材料可以为金属氧化物或有机材料等。
示例性的,遮光层3的材料可以为氧化铜、氧化亚铜或过氧化银等;或者,遮光层3的材料可以为非晶硅;或者,遮光层3的材料可以为掺杂有黑色粒子(例如碳、铜或铬等)的聚苯乙烯、环氧树脂或聚丙烯酸酯等。
在一些实施例中,如图4、图5、图7和图8所示,上述显示基板100还可以包括:设置在遮光图案311和有源层2111之间的缓冲层4。该缓冲层4覆盖第一子遮光图案311和第二子遮光图案312。有源层2111和缓冲层4可以直接接触。
在一些示例中,第一子遮光图案311和第二子遮光图案312在柔性透光基底1上的正投影,位于缓冲层4在柔性透光基底1上的正投影范围内。缓冲层4对第一子遮光图案311和第二子遮光图案312形成遮挡及保护,避免在制备形成后续的薄膜(例如有源层2111或栅极2112等)的过程中,对遮光图案31造成损伤。
示例性的,如图4、图5、图7和图8所示,缓冲层4为整层结构。这样缓冲层4在对第一子遮光图案311和第二子遮光图案312形成遮挡及保护的同时,还对柔性透光基底1的表面形成遮挡及保护,避免在制备形成后续的薄膜(例如有源层2111或栅极2112等)的过程中,对柔性透光基底1造成损伤。
在一些示例中,如图4、图5、图7和图8所示,沿平行于柔性透光基底1的方向,第一子遮光图案311和有源层2111之间具有间距。
示例性的,上述间距大于或等于缓冲层4的厚度。这样可以利用缓冲层4将第一子遮光图案311和有源层2111隔开。在遮光层3为金属层的情况下,还可以利用缓冲层4使得遮光层3和有源层2111之间相互绝缘。
示例性的,缓冲层4的厚度范围可以为300nm~1000nm。例如,缓冲层4的厚度可以为300nm、400nm、510nm、730nm或1000nm等。
在一些实施例中,如图5、图7和图8所示,上述显示基板100还可以包括:设置在柔性透光基底1和多个子像素2之间的阻隔层5。该阻隔层5具有多个开口K,该多个开口K暴露多个凹槽A。第一子遮光图案311在柔性透光基底1上的正投影,与阻隔层5在柔性透光基底1上的正投影相切或部分重叠。
在一些示例中,阻隔层5呈网格状,对柔性透光基底1靠近多个子像素2的一侧表面形成覆盖,仅通过上述多个开口K暴露多个凹槽A。该多个开口K和多个凹槽A一一对应。每个开口K的边界,例如可以与相应凹槽A的侧壁A1远离地面A2的一侧边缘重合。
在一些示例中,阻隔层5相比遮光层3在先形成。这样在制备形成遮光层3后,遮光图案31中第一子遮光图案311的至少一部分可以搭接在阻隔层5靠近开口K的部分上,使得第一子遮光图案311在柔性透光基底1上的正投影,与阻隔层5在柔性透光基底1上的正投影部分重叠;或者,遮光层3在柔性透光基底1上的正投影,与阻隔层5在柔性透光基底1上的正投影互补,也即,第一子遮光图案311在柔性透光基底1上的正投影,与阻隔层5在柔性透光基底1上的正投影相切。
当然,第一子遮光图案311在柔性透光基底1上的正投影边界,与阻隔层5在柔性透光基底1上的正投影边界之间,可以无交叠,且两者之间具有间距。
在一些示例中,在显示基板100还包括缓冲层4的情况下,阻隔层5位于柔性透光基底1和缓冲层4之间。也即,阻隔层5相比缓冲层4在先形成。
本公开的一些实施例提供了一种显示基板的制备方法,如图9所示,该制备方法包括:S100~S400。
S100,提供柔性透光薄膜1a。
示例性的,上述柔性透光薄膜1a可以采用无色聚酰亚胺(Colorless Polyimide,简称CPI)、聚丙烯(Polypropylene,简称PP)、聚乙烯(Polyethylene,简称PE)或聚苯乙烯(Polystyrene,简称PS)等形成。
在一些示例中,如图10所示,在上述S100中,提供柔性透光薄膜1a, 可以包括:S110~S120。
S110,提供刚性衬底1b。
刚性衬底1b的材料包括多种,可以根据实际需要选择设置,以能够对后续形成的柔性透光薄膜1a形成稳定的支撑,且在后续去除刚性衬底1b的过程中,不会对柔性透光基底1等形成损伤为准。
示例性的,刚性衬底1b例如可以为玻璃衬底或PMMA(Polymethyl methacrylate,聚甲基丙烯酸甲酯)衬底等。
S120,如图15a所示,在刚性衬底1b上形成柔性透光薄膜1a。
示例性的,基于柔性透光薄膜1a的材料为有机材料,在形成柔性透光薄膜1a的过程中,可以依次采用涂覆工艺(例如喷涂工艺或旋涂工艺等)及固化工艺(例如UV固化工艺)形成。柔性透光薄膜1a的厚度例如大于或等于6μm。
柔性透光薄膜1a具有较好的柔韧性。通过在刚性衬底1b上形成柔性透光薄膜1a,可以利用刚性衬底1b对柔性透光薄膜1a形成较为稳定的支撑,避免后续对柔性透光薄膜1a进行图案化处理的过程中形成弯折,进而可以确保后续形成的凹槽A的尺寸、形状等的准确性,提高显示基板100的良率。
S200,对柔性透光薄膜1a进行图案化处理,形成多个凹槽A,得到柔性透光基底1。
此处,对柔性透光薄膜1a进行图案化处理以形成多个凹槽A的方式包括多种,可以根据实际需要选择设置。
在一些示例中,如图11所示,对柔性透光薄膜1a进行图案化处理,形成多个凹槽A,包括:S210a~S240a。
S210a,如图15b所示,在柔性透光薄膜1a的一侧形成阻隔薄膜5a。
示例性的,阻隔薄膜5a的材料为无机材料。例如,该无机材料可以为SiN或SiO 2等。
示例性的,可以采用等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,简称PECVD)工艺形成阻隔薄膜5a。
在对柔性透光薄膜1a进行图案化的过程中,可以采用光刻工艺。由于柔性透光薄膜1a的材料为有机材料,因此难以采用具有图案的光刻胶层为掩膜对柔性透光薄膜1a进行刻蚀。
通过在柔性透光薄膜1a的一侧形成阻隔薄膜5a,可以利用阻隔薄膜5a将柔性透光薄膜1a及后续形成的光刻胶隔开,以便能够采用光刻工艺对柔性透光薄膜1a进行图案化。
S220a,如图15c所示,在阻隔薄膜5a远离柔性透光薄膜1a的一侧形成第一光刻胶层6a。
示例性的,可以采用涂覆工艺(例如喷涂工艺或旋涂工艺等)形成第一光刻胶层6a。该第一光刻胶层6a的材料例如为正性光刻胶。
S230a,如图15d所示,对第一光刻胶层6a进行图案化,以图案化后的第一光刻胶层6b为掩膜,对阻隔薄膜5a进行图案化,形成多个开口K,得到阻隔层5。
示例性的,在对第一光刻胶层6a进行图案化的过程中,可以在第一光刻胶层6a远离阻隔薄膜5a的一侧设置掩膜板,该掩膜板具有与待形成的凹槽A的俯视形状相同的图案;然后通过该掩膜板对第一光刻胶层6a进行曝光;然后对第一光刻胶层6a进行显影,去除第一光刻胶层6a中被曝光的部分,得到图案化后的第一光刻胶层6b。图案化后的第一光刻胶层6b暴露阻隔薄膜5a的一部分,该部分所在位置与待形成的凹槽A所在位置相对应。
示例性的,在得到图案化后的第一光刻胶层6b后,便可以以图案化后的第一光刻胶层6b为掩膜,对阻隔薄膜5a进行图案化(也即刻蚀),去除阻隔薄膜5a中被图案化后的第一光刻胶层6b暴露的部分,形成多个开口K,也便得到了阻隔层5。
在得到阻隔层5后,例如可以去除图案化后的第一光刻胶层6b。
S240a,如图15e所示,以阻隔层5为掩膜,对柔性透光薄膜1a进行图案化,形成多个凹槽A,得到柔性透光基底1。
上述阻隔层5中的多个开口K暴露柔性透光薄膜1a的一部分,该部分则对应为待形成的凹槽A所在的位置。
在得到阻隔层5后,便可以以阻隔层5为掩膜,对柔性透光薄膜1a进行图案化(也即刻蚀),部分去除柔性透光薄膜1a中被多个开口K暴露的一部分,形成多个凹槽A,也便得到了柔性透光基底1。
示例性的,对柔性透光薄膜1a进行刻蚀的深度,可以根据所需形成的凹槽A沿垂直于柔性透光基底1的方向上的尺寸而定。
例如,沿垂直于柔性透光基底1的方向,凹槽A的尺寸范围可以为1μm~3μm。该尺寸与柔性透光薄膜1a的厚度之间的比例小于或等于1/2,这样既可以避免影响柔性透光基底1的整体结构稳定性,又可以确保后续形成的遮光层3能够对晶体管211的有源层2111形成较好的遮光效果。
在另一些示例中,如图12所示,对柔性透光薄膜1a进行图案化处理,形成多个凹槽A,包括:S210b~S230b。
S210b,如图15b所示,在柔性透光薄膜1a的一侧形成阻隔薄膜5a。
关于S210b的说明可以参照上述S210a的说明,此处不再赘述。
S220b,如图16a所示,在阻隔薄膜5a远离柔性透光薄膜1a的一侧形成第二光刻胶层7a。
示例性的,可以采用涂覆工艺形成第二光刻胶层7a。该第二光刻胶层7a的材料例如为正性光刻胶。
S230b,如图16b和图16c所示,对第二光刻胶层7a进行图案化,以图案化后的第二光刻胶层7b为掩膜,对阻隔薄膜5a进行图案化,形成多个开口K,得到阻隔层5,并对柔性透光薄膜1a进行图案化,形成多个凹槽A,得到柔性透光基底1。
对第二光刻胶层7a进行图案化的过程,可以参照S230a中对第一光刻胶层6a进行图案化的过程,此处不再赘述。
示例性的,在得到图案化后的第二光刻胶层7b后,可以以图案化后的第二光刻胶层7b为掩膜,同时对阻隔薄膜5a和柔性透光薄膜1a进行图案化(也即刻蚀)。也就是说,可以在同一次刻蚀工艺中,对阻隔薄膜5a和柔性透光薄膜1a进行刻蚀,依次得到阻隔层5和柔性透光基底1。
此处,在对阻隔薄膜5a和柔性透光薄膜1a进行图案化的过程中,需要保留图案化后的第二光刻胶层7b。
S300,在柔性透光基底1的一侧形成遮光层3。遮光层3包括多个遮光图案31,一个遮光图案31位于一个凹槽A内。遮光图案31包括第一子遮光图案311和第二子遮光图案312,第一子遮光图案311覆盖在凹槽A的侧壁A1上,第二子遮光图案312覆盖在凹槽A的底面A2上。
在一些示例中,如图13所示,上述S300中,在柔性透光基底1的一侧形成遮光层3,包括:S310~S330。
S310,如图15f所示,在柔性透光基底2的形成有上述多个凹槽A的一侧形成遮光薄膜3a。
示例性的,在遮光薄膜3a的材料为金属材料的情况下,可以采用磁控溅射工艺形成遮光薄膜3a;在遮光薄膜3a的材料为无机材料的情况下,可以采用PECVD工艺形成遮光薄膜3a;在遮光薄膜3a的材料为有机材料的情况下,可以采用涂覆工艺形成遮光薄膜3a。
上述遮光薄膜3a覆盖上述多个凹槽A,并覆盖阻隔层5的至少一部分。
S320,如图15g所示,在遮光薄膜3a远离柔性透光基底1的一侧形成第三光刻胶层8a。
示例性的,可以采用涂覆工艺形成第三光刻胶层8a。该第三光刻胶层8a的材料例如为正性光刻胶。
S330,如图15h和图15i所示,对第三光刻胶层8a进行图案化,以图案化后的第三光刻胶层8b为掩膜,对遮光薄膜3a进行图案化,形成位于凹槽A内的遮光图案31,得到遮光层3。
示例性的,在对第三光刻胶层8a进行图案化的过程中,可以在第三光刻胶层8a远离柔性透光基底1的一侧设置掩膜板,该掩膜板具有与待形成的遮光层的形状互补的图案;然后通过该掩膜板对第三光刻胶层8a进行曝光;然后对第三光刻胶层8a进行显影,去除第三光刻胶层8a中被曝光的部分,得到图案化后的第三光刻胶层8b。图案化后的第三光刻胶层8b对遮光薄膜3a的位于凹槽A内的部分形成保护、遮挡。
示例性的,在得到图案化后的第三光刻胶层8b后,便可以以图案化后的第三光刻胶层8b为掩膜,对遮光薄膜3a进行图案化(也即刻蚀),去除遮光薄膜3a中未被图案化后的第三光刻胶层8b遮挡、保护的部分,保留遮光薄膜3a中被图案化后的第三光刻胶层8b遮挡、保护的部分,该部分包括多个图案,每个图案位于凹槽A内,这样也便得到了包括多个遮光图案31的遮光层3。
关于遮光图案31的形状、结构等,可以参照上述一些实施例中的说明,此处不再赘述。
S400,在遮光层3远离柔性透光基底1的一侧形成多个子像素2。各子像素2包括像素驱动电路21和发光器件22。其中,像素驱动电路21包括多个晶体管211,一个晶体管211的有源层2111位于一个凹槽A内。相对于柔性透光基底1,该有源层2111靠近柔性透光基底1的一侧表面,低于第一子遮光图案31远离柔性透光基底1的一侧表面。
示例性的,如图15j所示,在形成上述多个子像素2之前,显示基板的制备方法还包括:在遮光层3远离柔性透光基底1的一侧形成缓冲层4。
例如,本公开可以采用PECVD工艺形成该缓冲层4。
关于缓冲层4的形状、结构等,可以参照上述一些实施例中的说明,此处不再赘述。
在一些示例中,如图14所示,上述S400中,在遮光层3远离柔性透光基底1的一侧形成多个子像素2,包括:S410~S430。
S410,如图15j所示,在遮光层3远离柔性透光基底1的一侧形成有源薄膜2111a。
示例性的,本公开可以采用PECVD工艺形成依次层叠的三层薄膜,该三层薄膜构成有源薄膜2111a。该有源薄膜2111a覆盖遮光层3以及柔性透光基底1中未被遮光层3覆盖的部分。
例如,上述三层薄膜中,一层薄膜的材料为氮化硅(SiN),一层薄膜的材料为氧化硅(SiO),一层薄膜的材料为非晶硅(a-Si)。
S420,如图15k所示,在有源薄膜2111a远离柔性透光基底1的一侧形成第四光刻胶层9a。
示例性的,可以采用涂覆工艺形成第四光刻胶层9a。该第四光刻胶层9a的材料例如为正性光刻胶。
S430,如图15l和图15m所示,对第四光刻胶层9a进行图案化,以图案化后的第四光刻胶层9b为掩膜,对有源薄膜2111a进行图案化,得到位于各凹槽A内的有源层2111。
示例性的,S430中对第四光刻胶层9a进行图案化的过程,与上述S330中对第三光刻胶层8a进行图案化的过程相同,S430中对有源薄膜2111a进行图案化的过程,与上述S330中对遮光薄膜3a进行图案化的过程相同,具体可以参照上述S330中的说明,此处不再赘述。
关于有源层2111的形状、结构及设置方式等,可以参照上述一些实施例中的说明,此处不再赘述。
在一些示例中,如图14所示,上述S400中,在遮光层3远离柔性透光基底1的一侧形成多个子像素2,还包括:S440。
S440,如图15n所示,在位于各凹槽A内的有源层2111远离柔性透光基底1的一侧形成相应晶体管211的栅极2112。
示例性的,本公开可以依次采用磁控溅射工艺及光刻工艺形成上述栅极2112。
在制备形成栅极2112后,便可以依次制备形成像素驱动电路21中晶体管2111的源极2113、漏极2114,以及发光器件22等。
本公开的一些实施例所提供的显示基板的制备方法所能实现的有益效果,与上述一些实施例中所提供的显示基板100所能实现的有益效果相同,此处不再赘述。
在一些实施例中,显示基板的制备方法还包括:在形成上述多个子像素2之后,去除刚性衬底1b。
示例性的,本公开可以采用激光剥离技术去除刚性衬底1b。去除刚性衬底1b后,便可以得到具有柔性透明显示功能的显示基板100。
本公开的一些实施例提供了一种显示装置1000。如图17所示,该显示装置1000包括:如上述任一实施例所述的显示基板100。
示例性的,如图17所示,显示装置100还可以包括承载框架200。该承载框架可以对显示基板100进行承载。
本公开的一些实施例所提供的显示装置1000所能实现的有益效果,与上述一些实施例中所提供的显示基板100所能实现的有益效果相同,此处不再赘述。
在一些实施例中,显示装置1000可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字还是图像的任何装置。更明确地说,预期所述实施例可实施在多种电子装置中或与多种电子装置关联,所述多种电子装置例如(但不限于)移动电话、无线装置、个人数据助理(Personal Digital Assistant,简称PDA)、手持式或便携式计算机、全球定位系统(Global Positioning System,简称GPS)接收器/导航器、相机、动态图像专家组(Moving Picture Experts Group 4,简称MP4)视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种显示基板,包括:
    柔性透光基底;所述柔性透光基底的一侧具有多个凹槽;
    设置在所述柔性透光基底一侧的遮光层;所述遮光层包括多个遮光图案,一个遮光图案位于一个凹槽内;所述遮光图案包括第一子遮光图案和第二子遮光图案,所述第一子遮光图案覆盖在所述凹槽的侧壁上,所述第二子遮光图案覆盖在所述凹槽的底面上;以及,
    设置在所述遮光层远离所述柔性透光基底一侧的多个子像素;各子像素包括像素驱动电路和发光器件;
    其中,所述像素驱动电路包括多个晶体管,一个晶体管的有源层位于一个凹槽内;相对于所述柔性透光基底,所述有源层靠近所述柔性透光基底的一侧表面,低于所述第一子遮光图案远离所述柔性透光基底的一侧表面。
  2. 根据权利要求1所述的显示基板,其中,相对于所述柔性透光基底,所述有源层远离所述柔性透光基底的一侧表面,与所述第一子遮光图案远离所述柔性透光基底的一侧表面持平,或者,低于所述第一子遮光图案远离所述柔性透光基底的一侧表面。
  3. 根据权利要求1或2所述的显示基板,其中,一个凹槽内设置有多个有源层;
    所述多个有源层属于至少一个像素驱动电路中的晶体管。
  4. 根据权利要求1~3中任一项所述的显示基板,其中,所述第一子遮光图案和所述第二子遮光图案之间的夹角大于或等于90°。
  5. 根据权利要求1~4中任一项所述的显示基板,还包括:设置在所述柔性透光基底和所述多个子像素之间的阻隔层;
    所述阻隔层具有多个开口,所述多个开口暴露所述多个凹槽;
    所述第一子遮光图案在所述柔性透光基底上的正投影,与所述阻隔层在所述柔性透光基底上的正投影相切或部分重叠。
  6. 根据权利要求1~5中任一项所述的显示基板,其中,所述遮光层包括金属层;
    所述遮光层接地设置。
  7. 根据权利要求1~6中任一项所述的显示基板,还包括:设置在所述遮光图案和所述有源层之间的缓冲层;
    所述缓冲层覆盖所述第一子遮光图案和所述第二子遮光图案;
    沿平行于所述柔性透光基底的方向,所述第一子遮光图案和所述有源层 之间具有间距。
  8. 根据权利要求1~7中任一项所述的显示基板,其中,所述晶体管的栅极位于所述晶体管的有源层远离所述柔性透光基底的一侧。
  9. 一种显示基板的制备方法,包括:
    提供柔性透光薄膜;
    对所述柔性透光薄膜进行图案化处理,形成多个凹槽,得到柔性透光基底;
    在所述柔性透光基底的一侧形成遮光层;所述遮光层包括多个遮光图案,一个遮光图案位于一个凹槽内;所述遮光图案包括第一子遮光图案和第二子遮光图案,所述第一子遮光图案覆盖在所述凹槽的侧壁上,所述第二子遮光图案覆盖在所述凹槽的底面上;
    在所述遮光层远离所述柔性透光基底的一侧形成多个子像素;各子像素包括像素驱动电路和发光器件;
    其中,所述像素驱动电路包括多个晶体管,一个晶体管的有源层位于一个凹槽内;相对于所述柔性透光基底,所述有源层靠近所述柔性透光基底的一侧表面,低于所述第一子遮光图案远离所述柔性透光基底的一侧表面。
  10. 根据权利要求9所述的显示基板的制备方法,其中,所述对所述柔性透光薄膜进行图案化处理,形成多个凹槽,包括:
    在所述柔性透光薄膜的一侧形成阻隔薄膜;
    在所述阻隔薄膜远离所述柔性透光薄膜的一侧形成第一光刻胶层;
    对所述第一光刻胶层进行图案化,以图案化后的第一光刻胶层为掩膜,对所述阻隔薄膜进行图案化,形成多个开口,得到阻隔层;
    以所述阻隔层为掩膜,对所述柔性透光薄膜进行图案化,形成多个凹槽,得到所述柔性透光基底。
  11. 根据权利要求9所述的显示基板的制备方法,其中,所述对所述柔性透光薄膜进行图案化处理,形成多个凹槽,包括:
    在所述柔性透光薄膜的一侧形成阻隔薄膜;
    在所述阻隔薄膜远离所述柔性透光薄膜的一侧形成第二光刻胶层;
    对所述第二光刻胶层进行图案化,以图案化后的第二光刻胶层为掩膜,对所述阻隔薄膜进行图案化,形成多个开口,得到阻隔层,并对所述柔性透光薄膜进行图案化,形成多个凹槽,得到所述柔性透光基底。
  12. 根据权利要求9~11中任一项所述的显示基板的制备方法,其中,所述在所述柔性透光基底的一侧形成遮光层,包括:
    在所述柔性透光基底的形成有所述多个凹槽的一侧形成遮光薄膜;
    在所述遮光薄膜远离所述柔性透光基底的一侧形成第三光刻胶层;
    对所述第三光刻胶层进行图案化,以图案化后的第三光刻胶层为掩膜,对所述遮光薄膜进行图案化,形成位于凹槽内的遮光图案,得到所述遮光层。
  13. 根据权利要求9~12中任一项所述的显示基板的制备方法,其中,所述提供柔性透光薄膜,包括:
    提供刚性衬底;
    在所述刚性衬底上形成柔性透光薄膜;
    所述显示基板的制备方法还包括:
    在形成所述多个子像素之后,去除所述刚性衬底。
  14. 根据权利要求9~13中任一项所述的显示基板的制备方法,其中,所述在所述遮光层远离所述柔性透光基底的一侧形成多个子像素,包括:
    在所述遮光层远离所述柔性透光基底的一侧形成有源薄膜;
    在所述有源薄膜远离所述柔性透光基底的一侧形成第四光刻胶层;
    对所述第四光刻胶层进行图案化,以图案化后的第四光刻胶层为掩膜,对所述有源薄膜进行图案化,得到位于各凹槽内的有源层。
  15. 根据权利要求14所述的显示基板的制备方法,其中,所述在所述遮光层远离所述柔性透光基底的一侧形成多个子像素,还包括:
    在位于各凹槽内的有源层远离所述柔性透光基底的一侧形成相应晶体管的栅极。
  16. 一种显示装置,包括:如权利要求1~8中任一项所述的显示基板。
PCT/CN2021/129394 2021-02-24 2021-11-08 显示基板及其制备方法、显示装置 WO2022179178A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/925,855 US20230200151A1 (en) 2021-02-24 2021-11-08 Display substrate and manufacturing method therefor, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110210135.0A CN113013211B (zh) 2021-02-24 2021-02-24 显示基板及其制备方法、显示装置
CN202110210135.0 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022179178A1 true WO2022179178A1 (zh) 2022-09-01

Family

ID=76386130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129394 WO2022179178A1 (zh) 2021-02-24 2021-11-08 显示基板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US20230200151A1 (zh)
CN (1) CN113013211B (zh)
WO (1) WO2022179178A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013211B (zh) * 2021-02-24 2022-10-25 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN114545695A (zh) * 2022-02-16 2022-05-27 武汉华星光电技术有限公司 显示面板及其制备方法、显示终端
KR20240022009A (ko) * 2022-08-10 2024-02-20 삼성디스플레이 주식회사 표시 패널 및 이의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070157839A1 (en) * 2006-01-06 2007-07-12 Samsung Electronics Co. Ltd. Black matrix of color filter and method of manufacturing the black matrix
CN108573956A (zh) * 2018-04-17 2018-09-25 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN108695394A (zh) * 2017-04-06 2018-10-23 京东方科技集团股份有限公司 薄膜晶体管、其制备方法、阵列基板及显示装置
CN111312722A (zh) * 2019-11-13 2020-06-19 武汉华星光电半导体显示技术有限公司 显示面板及其制造方法
CN212485328U (zh) * 2020-06-16 2021-02-05 山东电子职业技术学院 一种具有凹槽结构的阵列基板及显示面板
CN113013211A (zh) * 2021-02-24 2021-06-22 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4074099B2 (ja) * 2002-02-04 2008-04-09 東芝松下ディスプレイテクノロジー株式会社 平面表示装置およびその製造方法
TWI382207B (zh) * 2008-12-08 2013-01-11 Chimei Innolux Corp 彩色濾光基板、多視液晶顯示裝置及彩色濾光基板的製作方法
CN111816087A (zh) * 2020-07-17 2020-10-23 昆山国显光电有限公司 像素结构及显示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070157839A1 (en) * 2006-01-06 2007-07-12 Samsung Electronics Co. Ltd. Black matrix of color filter and method of manufacturing the black matrix
CN108695394A (zh) * 2017-04-06 2018-10-23 京东方科技集团股份有限公司 薄膜晶体管、其制备方法、阵列基板及显示装置
CN108573956A (zh) * 2018-04-17 2018-09-25 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN111312722A (zh) * 2019-11-13 2020-06-19 武汉华星光电半导体显示技术有限公司 显示面板及其制造方法
CN212485328U (zh) * 2020-06-16 2021-02-05 山东电子职业技术学院 一种具有凹槽结构的阵列基板及显示面板
CN113013211A (zh) * 2021-02-24 2021-06-22 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN113013211A (zh) 2021-06-22
US20230200151A1 (en) 2023-06-22
CN113013211B (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2022179178A1 (zh) 显示基板及其制备方法、显示装置
WO2021023189A1 (zh) 显示基板及其制备方法、显示装置
US11127763B2 (en) Display panel and manufacturing method thereof and display device
CN109343735B (zh) 一种触控显示基板及其制备方法、触控显示装置
US11075228B2 (en) Display substrate, method for manufacturing the same, and display device
US11616113B2 (en) Display substrate, preparation method therefor, and display device
CN108807549B (zh) 薄膜晶体管及其制造方法、阵列基板及其制造方法
TWI483049B (zh) 液晶顯示裝置和其製造方法,以及電子裝置
WO2016062240A1 (zh) 一种顶发射oled器件及其制作方法、显示设备
US11139356B2 (en) Array substrate and manufacturing method thereof, display panel and display device
US20210335940A1 (en) Display device, display substrate and manufacturing method of display substrate
EP3879578B1 (en) Display substrate and display apparatus
US20210343981A1 (en) Display substrate and manufacture method thereof, and display device
US11450839B2 (en) Display device and manufacturing method thereof comprising patterning light-emitting layer in opening region
US11482694B2 (en) Display panel, method for fabricating the same, and display device
US8283197B2 (en) Method for fabricating pixel structure
WO2018129939A1 (zh) 阵列基板及其制备方法、以及对应的显示面板和显示装置
CN113241368B (zh) 显示面板及显示装置
WO2017031940A1 (zh) 一种阵列基板、其制作方法及显示装置
WO2019184543A1 (zh) 显示面板及其制作方法以及显示装置
CN115411080A (zh) 有机发光显示基板及其制作方法、有机发光显示装置
WO2020177666A1 (zh) 像素单元及其制造方法、显示基板
CN111509140B (zh) 显示用基板及其制备方法、显示装置
JP7348075B2 (ja) 画素構造、表示装置及び画素構造の製造方法
WO2023070450A1 (zh) 终端设备、显示装置、显示面板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.01.2024)

122 Ep: pct application non-entry in european phase

Ref document number: 21927602

Country of ref document: EP

Kind code of ref document: A1