WO2022172770A1 - 映像装置を備える電気炉を用いた溶鉄の製造方法 - Google Patents
映像装置を備える電気炉を用いた溶鉄の製造方法 Download PDFInfo
- Publication number
- WO2022172770A1 WO2022172770A1 PCT/JP2022/003174 JP2022003174W WO2022172770A1 WO 2022172770 A1 WO2022172770 A1 WO 2022172770A1 JP 2022003174 W JP2022003174 W JP 2022003174W WO 2022172770 A1 WO2022172770 A1 WO 2022172770A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iron source
- extruder
- cold iron
- melting chamber
- melting
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 348
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 174
- 238000003384 imaging method Methods 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title abstract description 33
- 238000002844 melting Methods 0.000 claims abstract description 107
- 230000008018 melting Effects 0.000 claims abstract description 107
- 230000000007 visual effect Effects 0.000 claims abstract description 31
- 238000001125 extrusion Methods 0.000 claims description 26
- 239000002893 slag Substances 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 238000010079 rubber tapping Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000007664 blowing Methods 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 238000010309 melting process Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910000805 Pig iron Inorganic materials 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000112 cooling gas Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/56—Manufacture of steel by other methods
- C21C5/562—Manufacture of steel by other methods starting from scrap
- C21C5/565—Preheating of scrap
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B11/00—Making pig-iron other than in blast furnaces
- C21B11/10—Making pig-iron other than in blast furnaces in electric furnaces
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/46—Details or accessories
- C21C5/4673—Measuring and sampling devices
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C5/527—Charging of the electric furnace
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/56—Manufacture of steel by other methods
- C21C5/567—Manufacture of steel by other methods operating in a continuous way
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B3/00—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
- F27B3/10—Details, accessories, or equipment peculiar to hearth-type furnaces
- F27B3/18—Arrangements of devices for charging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B3/00—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
- F27B3/10—Details, accessories, or equipment peculiar to hearth-type furnaces
- F27B3/28—Arrangement of controlling, monitoring, alarm or the like devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D13/00—Apparatus for preheating charges; Arrangements for preheating charges
- F27D13/002—Preheating scrap
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D19/00—Arrangements of controlling devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D21/00—Arrangements of monitoring devices; Arrangements of safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D21/00—Arrangements of monitoring devices; Arrangements of safety devices
- F27D21/02—Observation or illuminating devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/0025—Charging or loading melting furnaces with material in the solid state
- F27D3/0031—Charging with tiltable dumpers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/04—Ram or pusher apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/08—Screw feeders; Screw dischargers
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C2005/5288—Measuring or sampling devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D21/00—Arrangements of monitoring devices; Arrangements of safety devices
- F27D21/02—Observation or illuminating devices
- F27D2021/026—Observation or illuminating devices using a video installation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a method for producing molten iron from a cold iron source using an electric furnace equipped with a video device.
- the present invention is a molten iron melt that can observe how the cold iron source is supplied from the preheating chamber to the melting chamber, and based on this visual information, can control the supply conditions of the cold iron source to the melting chamber. related to the manufacturing method of
- molten iron is obtained by melting cold iron sources such as scrap with arc heat, so there is a problem of consuming a large amount of electric power to generate arc heat.
- the method of preheating the cold iron source before melting with a burner using fossil fuel, etc. A method of preheating using high-temperature exhaust gas generated during melting; a method of blowing coke into the melting chamber as an auxiliary heat source; and other methods are adopted.
- Patent Document 1 in an electric furnace in which a preheating shaft and a melting chamber are directly connected, a cold iron source is continuously connected to the preheating shaft so as to maintain a state in which the cold iron source is continuously present in the melting chamber and the preheating shaft.
- Techniques have been disclosed for arc melting a source of cold iron in a melting chamber with a steady or intermittent supply.
- the cold iron source preheated by high-temperature exhaust gas melts into the melted molten iron using an electric furnace that does not particularly require a device for conveying and supplying the cold iron source to the melting chamber. This effectively dissolves the cold iron source.
- Patent Document 2 discloses an operation control system for an electric furnace, in which an input unit that accepts setting items that are operating conditions for electrorefining and setting items are input to a neural network, and based on the operation result estimated value
- a control system for an electric furnace is disclosed having a controller for performing electric furnace smelting.
- Patent Document 3 discloses a method for producing molten metal by melting an iron source using arc melting equipment, wherein a state change is detected in the melting chamber when an arc discharge is generated.
- a method of manufacture is disclosed.
- the technique of Patent Document 1 basically feeds the cold iron source to the melting chamber continuously while gradually melting the cold iron source by preheating the cold iron source and its own weight.
- the supply of the cold iron source was interrupted in the path from the preheating shaft to the melting chamber. This has been found to be due to unintended circumstances, for example, the cold iron source being over-preheated and stuck in large chunks, or gaps forming in the cold iron source tower.
- the state of the cold iron source in the melting chamber cannot be directly observed with the technique of Patent Document 1, it was not possible to grasp the above unintended situation during operation. It was also found that such an irregular supply of the cold iron source increases power consumption in the electric furnace.
- Patent Document 2 is an electric furnace operation control system that constructs a neural network that reflects the immediate state of the electric furnace and can estimate the end point carbon concentration of molten steel to be tapped with high accuracy.
- the data is the data photographed by the scrap charging device, that is, the cold iron source before being charged into the electric furnace.
- the temperature of the cold iron source differs before and after being charged into the electric furnace, and the stacking method of each cold iron source changes after charging into the electric furnace. It cannot be said that the above technology is sufficient to provide a sufficient supply.
- the above-described techniques are capable of controlling the end-point carbon concentration and temperature, they are still insufficient in terms of obtaining molten iron with high efficiency and low electric power consumption.
- Patent Document 3 describes adjusting the supply speed when supplying the iron source to the melting chamber based on the result of the detection process, but regarding the movement of the cold iron source in the electric furnace However, it is not enough to provide a stable supply of cold iron sources.
- the present invention has been made in view of the above circumstances, and is an electric furnace that can reliably supply a cold iron source to a melting chamber and obtain molten iron with high efficiency and low power consumption.
- An object of the present invention is to provide a method for producing molten iron.
- an electric furnace is equipped with a device (extruder) for conveying and supplying cold iron sources to the melting chamber, and the inside of the melting chamber
- a device extruder
- a stable supply of cold iron source to the melting chamber can be ensured by providing an observable imaging device and optimizing the operating conditions of the extruder immediately based on the state of the melting chamber obtained from the imaging device. I found what I can do. It was also found that by stably supplying the cold iron source in this way, it is possible to prevent operational troubles and effectively reduce the power unit consumption in manufacturing.
- a method for producing molten iron using an electric furnace equipped with a preheating chamber and a melting chamber The electric furnace further comprises an extruder provided in the preheating chamber and a video device for observing the inside of the melting chamber, an extruding step of supplying the cold iron source preheated in the preheating chamber to the melting chamber by the extruder; a melting step of obtaining molten iron in the melting chamber by melting the cold iron source supplied to the melting chamber by arc heat;
- the "movement amount of the extruder” means the movement distance of the extruder along the extrusion direction when the extruder moves once from the preheating chamber side to the melting chamber side.
- the "time interval for moving the extruder” means the interval from the time when the extruder starts moving one time (T0 START ) to the time when the extruder starts moving the next time (T1 START ). (see FIGS. 2A and 2B).
- the cold iron source can be stably and reliably supplied to the melting chamber in the electric furnace. This leads to an increase in the melting efficiency of the cold iron source, an effective reduction in the power unit consumption, prevention of operational troubles, and the like, and produces exceptional industrial effects.
- FIG. 1 is a longitudinal sectional view of an electric furnace equipped with a video device used in one embodiment of the present invention
- FIG. FIG. 2A is a conceptual diagram for explaining the amount of movement of the extruder and the time interval for moving the extruder, FIG. 2A shows the behavior of extrusion at a certain timing, and FIG. show.
- the method for producing molten iron of the present invention is a method using an electric furnace having a predetermined structure, and includes an extrusion step of supplying a cold iron source preheated in a preheating chamber to the melting chamber by an extruder, and a melting step of melting the cold iron source by arc heat to obtain molten iron, and may optionally further include other steps.
- the operating conditions of the extruder are controlled based on visual information obtained from a video device for observing the inside of the melting chamber.
- the electric furnace 1 includes a melting chamber 2 which melts a cold iron source 15 by heat from an arc 18 to obtain molten iron 16, and a melting chamber 2 which preheats the cold iron source 15 and extruder 10 melts the preheated cold iron source 15. 2, and a video device 30 installed at an arbitrary position.
- a cold iron source 15 as a raw material is loaded into a supply bucket 14 and transported to above a desired cold iron source supply port 19 via a traveling carriage 23 .
- the cold iron source supply port 19 is opened to supply the cold iron source 15 to the preheating chamber 3 from above.
- the cold iron source 15 supplied to the preheating chamber 3 is preheated by any method. For example, if the cold iron source 15 is preheated by passing the hot exhaust gas generated in the melting chamber 2 to the preheating chamber 3, the production efficiency can be improved. Exhaust gas may be sucked through the duct 20 and passed through the preheating chamber 3 , and excess exhaust gas may be exhausted through the duct 20 .
- a preheated cold iron source 15 is continuously supplied to the melting chamber 2 by the extruder 10 .
- the extruder 10 continues to push out the cold iron source 15 in the preheating chamber 3 into the melting chamber by repeatedly moving its tip toward the melting chamber.
- the supply amount and supply timing of the cold iron source 15 to the melting chamber 2 by the extruder 10 can usually be adjusted by the amount of movement of the extruder 10 and the time interval for moving the extruder 10 .
- the supply of the cold iron source 15 is accelerated as the amount of movement of the extruder 10 is increased or the time interval for moving the extruder 10 is shortened.
- these moving amounts and time intervals are usually automatically operated after being initially set to certain values.
- the extruder 10 usually has a cylinder structure.
- the melting chamber 2 is partitioned by a furnace wall 4 and a furnace lid 5, and usually includes an electrode 6 for generating an arc 18 for heating, an oxygen blowing lance 7 for maintaining a desired high temperature state, and a carbon material. It is equipped with a blowing lance 8 and a burner 9 for locally heating cold spots.
- the cold iron source 15 supplied to the melting chamber 2 is melted by arc heat to become molten iron 16 and molten slag 17 .
- the obtained molten iron 16 can be tapped from the tapping port 12 by opening the tapping door 21 . Further, the molten slag 17 can be discharged from the slag discharge port 13 by opening the slag discharge door 22 .
- the cold iron source 15 generally includes, but is not limited to, in-house scraps generated at ironworks, scrap generated from the city, and pig iron made by solidifying hot metal.
- In-house scrap generated at steelworks includes, for example, unsteady parts of slabs cast by continuous casting or ingot casting (parts generated at the start of casting and parts generated at the end of casting), rolling of steel materials such as steel strips, etc.
- Scrap generated in the market includes recycled materials such as construction steel (H-beam, etc.), automobile steel, and cans.
- Pig iron obtained by hardening hot metal is obtained by tapping and hardening hot metal obtained from iron ore and coke as raw materials in a blast furnace such as a blast furnace.
- the video device 30 is not particularly limited, and may be any device capable of capturing an image of an observation target, and normally includes a lens and a camera. It is preferable to flow the cooling gas at an arbitrary flow rate around the lens (not shown) installed at the tip of the imaging device 30 .
- Cooling gases include air and inert gases such as nitrogen. Further, for example, when the imaging apparatus 30 is installed on the furnace wall 4, it is preferable that the furnace wall 4 is also cooled by water cooling or air cooling.
- the video device 30 is preferably installed on the furnace wall 4 or the furnace lid 5 that defines the melting chamber 2. , more preferably on the furnace wall 4 . Also, from the same point of view as above, it is preferable to install at an appropriate height in the melting chamber 2 at which slag and molten steel are less likely to scatter.
- the installation method is not particularly limited, when the imaging device 30 is installed on the furnace wall 4, if the imaging device 30 is attached through a hole (not shown) made in the furnace wall 4, the lens can be installed in the melting chamber 2.
- the camera can be positioned outside the electric furnace 1 while being positioned, and it is possible to achieve both a clear visual field and simple operability. Images captured by the imaging device 30 are generally connected to a monitor and a recording device (both not shown) in an operation room operated by an operator via a cable (not shown).
- the cold iron source 15 preheated in the preheating chamber 3 is extruded and supplied to the melting chamber 2 by the extruder 10 provided in the preheating chamber 3 .
- the supply amount and supply timing of the cold iron source 15 for one extrusion are governed by the amount of movement of the extruder 10 and the time interval for moving the extruder 10 .
- the setting pattern of the movement amount and/or the time interval can be controlled to continue automatic operation without changing
- the supply of the cold iron source 15 may be delayed for some reason.
- the visual information from the video device 30 for example, the movement of the cold iron source 15 entering the melting chamber 2 becomes sluggish and intermittent, or it completely stops, or the molten iron 16 in the melting chamber 2 In some cases, it is confirmed that the interface does not rise to the desired position.
- the imaging device 30 that the cold iron source 15 is not supplied from the preheating chamber 3 to the melting chamber 2
- the setting pattern of the movement amount and/or time interval of the extruder 10 is immediately set. can be changed and controlled.
- the automatic operation is temporarily switched to the manual setting, and when the good supply of the cold iron source 15 is confirmed again, the automatic operation is resumed with the normal setting pattern. do it.
- Amount of Movement It is one of the features of the present invention to control whether or not to change the amount of movement of the extruder 10 based on the visual information obtained from the imaging device 30 .
- the movement of the extruder 10 is increased to push out the extruder 10 a longer distance, thereby smoothing the movement of the cold iron source 15. should be promoted.
- the displacement of the extruder 10 can be increased by about 10%.
- the changed amount of movement may be used until the cold iron source 15 is supplied normally again.
- the displacement of the extruder 10 can be constantly monitored by a position sensor.
- Time Interval It is also one of the features of the present invention to control whether or not to change the time interval for moving the extruder 10 based on the visual information obtained from the imaging device 30 .
- the time interval is reduced to push the extruder 10 more times within a certain period of time, thereby increasing the cold iron source 15.
- the time interval for moving the extruder 10 can be shortened by about 20%.
- the changed time interval may be adopted until the cold iron source 15 is supplied normally again.
- the time intervals of the extruder 10 can also be constantly monitored by timers and position sensors.
- the pressure on the extruder 10 can be measured at any time. Further investigation by the present inventors revealed that there is a correlation between the visual information from the imaging device 30 and the extrusion pressure when the extruder 10 moves toward the melting chamber 2 side. In other words, the visual information from the imaging device 30 indicates that the cold iron source 15 is not supplied normally. In this case, it was newly found that the extrusion pressure of the extruder 10 was 40 MPa or less.
- the visual information from the imaging device 30 is primarily information about the surface of the cold iron source 15 that is present in the visual field of the imaging device 30 .
- the extrusion pressure applied to the extruder 10 is used as an indicator in addition to the visual information from the imaging device 30, the normal supply of the cold iron source 15 to the melting chamber 2 can be controlled more accurately. That is, when the cold iron source 15 is not normally supplied in the visual information from the imaging device 30 and the extrusion pressure of the extruder 10 is 40 MPa or less, as described above, the movement amount of the extruder 10 is It is preferred to increase and/or decrease the time interval over which the extruder 10 is moved.
- molten iron is obtained in the melting chamber 2 by melting the preheated cold iron source 15 supplied to the melting chamber 2 by arc heat.
- a specific melting method is as described above for the electric furnace.
- the operating conditions of the extruder 10 are timely controlled during operation so as to smoothly supply the cold iron source 15 from the preheating chamber 3 to the melting chamber 2 while observing the inside of the melting chamber 2 using the imaging device 30. Therefore, power consumption required in the melting process can be reduced.
- Other processes include, for example, a preheating process and a tapping process.
- the preheating step prior to the extrusion step, the cold iron source 15 can be preheated by any heating method to enhance the efficiency of the subsequent melting step.
- the power consumption required for the preheating process can be reduced.
- the tapping process the molten iron 16 accumulated in the melting chamber 2 can be taken out of the electric furnace 1 through the tapping port 12 after the melting process.
- Conventional example 1 is an example in which the production method does not use an imaging device and is operated within the range of a normal power consumption rate.
- the extruder (cylinder) was set to move 1,000 mm once at a certain timing, and the time interval of movement was 20 seconds. Moreover, the pressure applied to the cylinder when extruded under these conditions was 58 MPa. After 20 seconds, the cylinder was pushed out with a movement amount of 1000 mm without changing the movement amount and time interval of the cylinder at the next timing, and the pressure applied to the cylinder was 64 MPa. Thus, one charge of molten iron was obtained without changing the extrusion conditions.
- Conventional Example 2 is an example of a manufacturing method that does not use a video device, in which the power consumption rate is higher than usual.
- the amount of movement set for one cylinder at a certain timing was 1000 mm, and the time interval for movement was 20 seconds.
- the pressure applied to the cylinder when extruded under these conditions was 33 MPa, which was lower than that of Conventional Example 1. Since the imaging device was not used, the reason why the pressure became lower than usual was not clarified, and the amount of movement and time interval of the cylinder at the next timing was not changed, and the amount of movement was 1000 mm after 20 seconds. When the cylinder was pushed out, the pressure on the cylinder remained low at 31 MPa.
- Comparative Example A comparative example is an example in which the extrusion conditions were not controlled based on the visual information obtained from the imaging device in the manufacturing method using the imaging device.
- the amount of movement set for one cylinder at a certain timing was 1000 mm, and the time interval for movement was 20 seconds.
- the pressure applied to the cylinder when extruded under these conditions was 34 MPa, which was lower than that of Conventional Example 1.
- the visual information obtained from the video equipment it was confirmed that the cold iron source did not move to the melting chamber and was stagnant. Even though it was confirmed by the video device that the cold iron source was not being supplied to the melting chamber normally, the amount of movement of the cylinder at the next timing and the time interval were not changed, and the amount of movement continued after 20 seconds.
- Invention Examples 1 to 6 are examples in which the extrusion conditions are controlled based on the visual information obtained from the imaging device in the manufacturing method using the imaging device.
- Invention example 1 The amount of movement set for one cylinder at a certain timing was 1000 mm, and the time interval for movement was 20 seconds. Moreover, the pressure applied to the cylinder when extruded under these conditions was 30 MPa, which was lower than that of Conventional Example 1. In fact, from the visual information obtained from the video equipment, it was confirmed that the cold iron source did not move to the melting chamber and was stagnant. Therefore, the time interval for moving the cylinder at the next timing was shortened to 5 seconds.
- a set pattern in which the time interval was shortened to 5 seconds while the amount of movement of the cylinder was kept at 1000 mm was repeated several times until it was confirmed by the image device that the cold iron source started to be supplied normally.
- the pressure applied to the cylinder recovered to 58 MPa when it was confirmed that the cold iron source started to be supplied normally.
- the time interval was temporarily returned to 20 seconds, but stagnation of the cold iron source was also confirmed (at this time, the cylinder pressure was 40 MPa or less), so the time interval was temporarily changed as described above. changed to 5 seconds. While repeating this operation, one charge of molten iron was obtained. As a result, the electric power unit consumption per charge was 327 kWh/t, which was better than that of Conventional Example 1. Therefore, the overall evaluation was ⁇ (accepted).
- Invention example 2 The amount of movement set for one cylinder at a certain timing was 1000 mm, and the time interval for movement was 20 seconds. Moreover, the pressure applied to the cylinder when extruded under these conditions was 34 MPa, which was lower than that of Conventional Example 1. In fact, from the visual information obtained from the video equipment, it was confirmed that the cold iron source did not move to the melting chamber and was stagnant. Therefore, the amount of movement of the cylinder at the next timing was increased to 1200mm. A setting pattern in which the time interval for moving the cylinder was kept at 20 seconds and the amount of movement was increased to 1200 mm was repeated several times until it was confirmed by the imaging device that the cold iron source started to be supplied normally.
- the pressure applied to the cylinder recovered to 62 MPa when it was confirmed that the cold iron source started to be supplied normally. After that, the movement amount was temporarily returned to 1000 mm, but similarly the stagnation of the cold iron source was confirmed (at this time, the cylinder pressure was 40 MPa or less). Changed to 1200mm. While repeating this operation, one charge of molten iron was obtained. As a result, the electric power unit consumption per charge was 329 kWh/t, which was better than that of Conventional Example 1. Therefore, the overall evaluation was ⁇ (accepted).
- Invention example 3 The amount of movement set for one cylinder at a certain timing was 1000 mm, and the time interval for movement was 20 seconds. Moreover, the pressure applied to the cylinder when extruded under these conditions was 31 MPa, which was lower than that of Conventional Example 1. In fact, from the visual information obtained from the video equipment, it was confirmed that the cold iron source did not move to the melting chamber and was stagnant. Therefore, the time interval for moving the cylinder at the next timing was shortened to 5 seconds, and the amount of movement of the cylinder was increased to 1200 mm. This setting pattern was repeated several times until it was confirmed on the imaging device that the cold iron source started to be supplied normally. The pressure applied to the cylinder recovered to 67 MPa when it was confirmed that the cold iron source started to be supplied normally.
- the time interval was once returned to 20 seconds and the amount of movement was set to 1000 mm, but stagnation of the cold iron source was also confirmed (at this time, the cylinder pressure was 40 MPa or less).
- the time interval and travel were temporarily changed to 5 seconds and 1200 mm, respectively. While repeating this operation, one charge of molten iron was obtained. As a result, the electric power unit consumption per charge was 326 kWh/t, which was better than that of Conventional Example 1. Therefore, the overall evaluation was ⁇ (accepted).
- Invention example 4 The amount of movement set for one cylinder at a certain timing was 1000 mm, and the time interval for movement was 20 seconds. Moreover, the pressure applied to the cylinder when extruded under these conditions was 32 MPa, which was lower than that of Conventional Example 1. In fact, from the visual information obtained from the video equipment, it was confirmed that the cold iron source was moving to the melting chamber, but the movement was sluggish. Therefore, the amount of movement of the cylinder at the next timing was increased to 1200mm. A setting pattern in which the time interval for moving the cylinder was kept at 20 seconds and the amount of movement was increased to 1200 mm was repeated several times until it was confirmed by the imaging device that the cold iron source started to be supplied normally.
- the pressure applied to the cylinder recovered to 66 MPa at the time when it was confirmed that the cold iron source started to be supplied normally. After that, the movement amount was once returned to 1000 mm, but the phenomenon that the movement of the cold iron source was similarly dulled was confirmed (at this time, the cylinder pressure was 40 MPa or less). was temporarily changed to 1200 mm. While repeating this operation, one charge of molten iron was obtained. As a result, the electric power unit consumption per charge was 319 kWh/t, which was better than that of Conventional Example 1. Therefore, the overall evaluation was ⁇ (accepted).
- Invention example 5 The amount of movement set for one cylinder at a certain timing was 1000 mm, and the time interval for movement was 20 seconds. Moreover, the pressure applied to the cylinder when extruded under these conditions was 35 MPa, which was lower than that of Conventional Example 1. In fact, from the visual information obtained from the video equipment, it was confirmed that the cold iron source was moving to the melting chamber, but the movement was sluggish. Therefore, the time interval for moving the cylinder at the next timing was shortened to 5 seconds, and the amount of movement of the cylinder was increased to 1200 mm. This setting pattern was repeated several times until it was confirmed on the imaging device that the cold iron source started to be supplied normally.
- the pressure applied to the cylinder recovered to 71 MPa when it was confirmed that the cold iron source started to be supplied normally. After that, the time interval was once returned to 20 seconds and the movement amount was returned to 1000 mm, but the phenomenon that the movement of the cold iron source was similarly dulled was confirmed (at this time, the cylinder pressure was 40 MPa or less). Similarly, the time interval and the amount of movement were temporarily changed to 5 seconds and 1200 mm, respectively. While repeating this operation, one charge of molten iron was obtained. As a result, the electric power unit consumption per charge was 315 kWh/t, which was better than that of Conventional Example 1. Therefore, the overall evaluation was ⁇ (accepted).
- Invention example 6 The amount of movement set for one cylinder at a certain timing was 1000 mm, and the time interval for movement was 20 seconds. Moreover, the pressure applied to the cylinder when extruded under these conditions was 30 MPa, which was lower than that of Conventional Example 1. In fact, from the visual information obtained from the video equipment, it was confirmed that the cold iron source was moving to the melting chamber, but the movement was sluggish. Therefore, the time interval for moving the cylinder at the next timing was shortened to 5 seconds. A set pattern in which the time interval was shortened to 5 seconds while the amount of movement of the cylinder was kept at 1000 mm was repeated several times until it was confirmed by the image device that the cold iron source started to be supplied normally.
- the pressure applied to the cylinder recovered to 69 MPa when it was confirmed that the cold iron source started to be supplied normally. After that, the time interval was once returned to 20 seconds, but the phenomenon of slowing down the movement of the cold iron source was also confirmed (at this time, the cylinder pressure was 40 MPa or less). Temporarily changed the interval to 5 seconds. While repeating this operation, one charge of molten iron was obtained. As a result, the electric power unit consumption per charge was 318 kWh/t, which was better than that of Conventional Example 1. Therefore, the overall evaluation was ⁇ (accepted).
- the supply of the cold iron source is unexpectedly controlled by controlling the extrusion conditions of the extruder in a timely manner based on the visual information in the melting chamber obtained from the video equipment. Even in this situation, the cold iron source continued to be well supplied to the melting chamber, and molten iron was obtained with high efficiency. As a result, it was possible to greatly reduce the power unit consumption, which accounts for a large part of the manufacturing cost, and the effect was very large.
- the cold iron source can be stably and reliably supplied to the melting chamber in the electric furnace, and the melting efficiency of the cold iron source can be enhanced.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Environmental & Geological Engineering (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Furnace Details (AREA)
- Furnace Charging Or Discharging (AREA)
- Ink Jet (AREA)
Abstract
Description
1.予熱室と溶解室とを備える電気炉を用いる、溶鉄の製造方法であって、
前記電気炉が、前記予熱室に設けられた押し出し機と、前記溶解室内を観察するための映像装置とを更に備え、
前記予熱室において、前記予熱室で予熱された冷鉄源を前記押し出し機によって前記溶解室に供給する押し出し工程と、
前記溶解室において、前記溶解室に供給された冷鉄源をアーク熱によって溶解して溶鉄を得る溶解工程と、を有し、
前記押し出し工程において、前記映像装置から得られた視覚情報に基づき、前記押し出し機の移動量及び前記押し出し機を移動させる時間間隔のいずれか一方又は両方を制御する、溶鉄の製造方法。
以下の実施形態は、本発明の好適な一例を示すものであり、これらの例によって何ら限定されるものではない。
本発明の溶鉄の製造方法は、所定の構造を有する電気炉を用いる方法であって、予熱室で予熱された冷鉄源を押し出し機によって溶解室に供給する押し出し工程と、溶解室に供給された冷鉄源をアーク熱によって溶解して溶鉄を得る溶解工程とを有し、任意にその他の工程を更に有し得る。また、本発明の押し出し工程では、溶解室内を観察するための映像装置から得られた視覚情報に基づき、押し出し機の操作条件を制御する。
溶解室内の視覚情報に基づいて押し出し機の操作条件を適切かつ適時に制御することにより、冷鉄源を溶解室へ安定的かつ確実に供給することができ、電気炉での電力消費を効果的に低減することができる。
以下、本発明が好適に用い得る電気炉について、図を参照して詳述する。
電気炉1は、冷鉄源15をアーク18からの熱によって溶解して溶鉄16を得る溶解室2と、冷鉄源15を予熱し、予熱された冷鉄源15を押し出し機10で溶解室2に供給するための予熱室3と、任意の位置に設置された映像装置30とを備える。
予熱室3に供給された冷鉄源15は、任意の方法で予熱される。例えば、先に溶解室2で発生した高熱の排ガスを予熱室3へと通過させることにより冷鉄源15を予熱すれば、製造効率を高めることができる。ダクト20により排ガスを吸引して予熱室3内を通過させ、余分な排ガスはダクト20を通じて排気してもよい。
なお、押し出し機10は、通常はシリンダー構造である。
映像装置30は、予熱室3から溶解室2へと冷鉄源15が押し出される挙動を良好に把握する観点からは、溶解室2を区画する炉壁4又は炉蓋5に設置することが好ましく、炉壁4に設置することがより好ましい。また、上記同様の観点から、溶解室2の中でも、スラグや溶鋼が飛散し難い適切な高さに取り付けるのが好ましい。設置方法は特に限定されないが、映像装置30を炉壁4に設置する場合、映像装置30を、炉壁4に空けた孔(図示せず)に通して取り付ければ、レンズを溶解室2内に位置させつつカメラを電気炉1の外部に位置させることができ、鮮明な映像視野と簡便な操作性とを両立できるので好適である。映像装置30で取り込んだ映像は、一般的にはケーブル(図示せず)を介して、オペレーターが操作する操作室のモニターや記録装置(いずれも、図示せず)へ繋ぐ。
本発明における押し出し工程では、予熱室3で予熱された冷鉄源15を、予熱室3に設けられた押し出し機10によって、溶解室2へと押し出して供給する。1回の押し出しによる冷鉄源15の供給量及び供給タイミングは、押し出し機10の移動量と、押し出し機10を移動させる時間間隔とに支配される。そして、通常の操業では、この移動量及び時間間隔の値について、冷鉄源の種類や予熱状況に応じて設定パターンを複数有しており、適した設定パターンを採用して自動運転する。本発明では、映像装置30から得られた視覚情報の結果、冷鉄源15が溶解室2内に問題なく供給される様子が確認されている間は、移動量及び/又は時間間隔の設定パターンを変更することなく自動運転を続ける、という制御を行うことができる。
映像装置30から得られた視覚情報に基づき、押し出し機10の移動量を変更する/しないを制御することは本発明の特徴の一つである。特に、映像装置30によって冷鉄源15が正常に供給されていない事態が確認された場合は、移動量を増大させて押し出し機10をより長い距離押し出すことにより、冷鉄源15のスムーズな動きを促進することが好ましい。例えば、1トンの冷鉄源15を意図的に移動させるために、押し出し機10の移動量を10%程度増大させることができる。
変更後の移動量は、冷鉄源15が再び正常に供給されるまでの間採用すればよい。押し出し機10の移動量は、位置センサーにより常時モニタリングすることが可能である。
映像装置30から得られた視覚情報に基づき、押し出し機10を移動させる時間間隔を変更する/しないを制御することも本発明の特徴の一つである。特に、映像装置30によって冷鉄源15が正常に供給されていない事態が確認された場合は、時間間隔を低減させて押し出し機10をある時間内により多くの回数押し出すことにより、冷鉄源15のスムーズな動きを促進することが好ましい。例えば、1トンの冷鉄源15を意図的に移動させるために、押し出し機10を移動させる時間間隔を20%程度短縮させることができる。
変更後の時間間隔は、冷鉄源15が再び正常に供給されるまでの間採用すればよい。押し出し機10の時間間隔にも、タイマー及び位置センサーにより常時モニタリングすることが可能である。
押し出し機10にかかる圧力は常時測定することができる。本発明者らが更に検討したところ、映像装置30からの視覚情報と、押し出し機10が溶解室2側へと移動する際の押し出し圧力とには、相関関係があることも判明した。すなわち、映像装置30からの視覚情報において、冷鉄源15が正常に供給されていない、具体的には、次回の押し出しタイミングまで冷鉄源15が完全に止まっている、又は、その動きが鈍い場合は、押し出し機10の押し出し圧力が40MPa以下であることが新たに判明した。
映像装置30からの視覚情報は、映像装置30の視野に入るように存在する冷鉄源15の表面に関する情報が主である。したがって、例えば、この表面よりも冷鉄源15の塔内部に存在する冷鉄源15の状況まで映像装置30で確認することは困難であり、冷鉄源15の塔の奥行き全体が移動しているかを判断することは困難である。しかしながら、映像装置30からの視覚情報に加え、押し出し機10にかかる押し出し圧力をも指標とすれば、溶解室2への冷鉄源15の正常な供給をより正確に制御可能となる。つまり、映像装置30からの視覚情報において冷鉄源15が正常に供給されておらず、かつ、押し出し機10の押し出し圧力が40MPa以下である場合に、上述のとおり、押し出し機10の移動量を増大させる、及び/又は、押し出し機10を移動させる時間間隔を低減させることが好ましい。
本発明における溶解工程では、溶解室2において、溶解室2に供給された、予熱された冷鉄源15をアーク熱によって溶解して溶鉄を得る。具体的な溶解方法は、電気炉について上述したとおりである。本発明では、映像装置30を用いて溶解室2内を観察しながら、冷鉄源15を予熱室3から溶解室2へと滞りなく供給すべく押し出し機10の操作条件を操業中に適時制御するため、溶解工程で要する電力消費を低減させることができる。
その他の工程としては、例えば、予熱工程、出鋼工程などが挙げられる。
予熱工程では、押し出し工程に先立ち、冷鉄源15を任意の加熱方法で予熱して、後の溶解工程の効率を高めることができる。また、上述のとおり、先に溶解室2で発生した高温の排ガスを予熱工程に利用すれば、予熱工程で要する電力消費も低減させることができる。
出鋼工程では、溶解工程の後に、溶解室2に溜まった溶鉄16を出湯口12を介して電気炉1の外部に取り出すことができる。
溶解室の溶鉄容量:130トン
電力:交流50Hz
トランス容量:75MVA
電極数:3
映像装置30は、溶鉄130トンが得られた場合の設計上の溶鉄界面より500mm高い位置の炉壁4に孔を設け、その孔を介して設置した。映像装置30の外表面に沿って、冷却用エアーとして、工場内で供給準備されているエアーを200NL/分の流量で流した。また、そのエアーの乾燥には加熱によるドライヤー方式を用いた。映像装置30からの視覚情報(映像)は、電気炉1を操業する司令室及び電気制御室までケーブルを延長させ、別個の記録媒体に保存した。司令室には、電気炉1を操業するオペレーターが映像装置30からの映像を直接監視できるようにモニターを新規に準備した。また電気制御室には、押し出し機10の移動量、押し出し機10を移動させる時間間隔、押し出し圧力のデータが転送され、これらのデータと映像情報とを同時に確認できるようにした。
従来例1は、映像装置を使用しない製造方法において、通常の電力原単位の範囲内で操業した例である。
あるタイミングでの押し出し機(シリンダー)に設定された1回の移動量は1000mm、移動させる時間間隔は20秒であった。また、この条件にて押し出した際にシリンダーにかかった圧力は58MPaであった。
次回のタイミングでのシリンダーの移動量及び時間間隔を変更することなく、引き続き20秒後に移動量1000mmでシリンダーを押し出すと、シリンダーにかかった圧力は64MPaであった。このように、押し出し条件を変更することなく1チャージ分の溶鉄を得た。
映像装置を設置していないので冷鉄源の供給状態を確認することができないものの、オペレーターの経験上、従来例1では、冷鉄源が一定間隔で一定量、溶解室へ想定通りに供給されていたと考えられた。その結果、電気炉の操業において1チャージあたりの電力原単位は333kWh/tであった。
従来例2は、映像装置を使用しない製造方法において、電力原単位が通常よりも高まった例である。
あるタイミングでのシリンダーに設定された1回の移動量は1000mm、移動させる時間間隔は20秒であった。また、この条件にて押し出した際にシリンダーにかかった圧力は33MPaと従来例1よりも低かった。
映像装置を使用していないため、圧力が通常よりも低くなった原因が明らかとならないまま、次回のタイミングでのシリンダーの移動量及び時間間隔を変更することなく、引き続き20秒後に移動量1000mmでシリンダーを押し出すと、シリンダーにかかった圧力は31MPaと低いままであった。このように、押し出し条件を変更することなく1チャージ分の溶鉄を得た。1チャージ分の溶鉄を得るのに要した溶解時間は、設計上想定される時間よりも長くなった。
映像装置を設置していないので冷鉄源の供給状態を確認することができないものの、従来例2では、何らかの原因で冷鉄源が溶解室へ想定通り供給されず、冷鉄源を効率的に溶解できなかったことが考えられた。その結果、1チャージあたりの電力原単位は362kWh/tと従来例1よりも悪化した。
比較例は、映像装置を使用した製造方法において、映像装置から得られる視覚情報に基づいて押し出し条件を制御しなかった例である。
あるタイミングでのシリンダーに設定された1回の移動量は1000mm、移動させる時間間隔は20秒であった。また、この条件にて押し出した際にシリンダーにかかった圧力は34MPaと従来例1よりも低かった。実際、映像装置から得られた視覚情報から、冷鉄源が溶解室へと移動せずに停滞している様子が確認された。
映像装置により冷鉄源が溶解室へ正常に供給されていないことが確認されたにもかかわらず、次回のタイミングでのシリンダーの移動量及び時間間隔を変更することなく、引き続き20秒後に移動量1000mmでシリンダーを押し出すと、シリンダーにかかった圧力は34MPaと低いままであった。実際、映像装置から得られた視覚情報から、冷鉄源が溶解室へと移動せずになお停滞している様子が確認された。このように、押し出し条件を変更することなく1チャージ分の溶鉄を得た。1チャージ分の溶鉄を得るのに要した溶解時間は、設計上想定される時間よりも長くなった。その結果、1チャージあたりの電力原単位は347kWh/tと従来例1よりも悪化した。よって総合評価を×(不合格)とした。
発明例1
あるタイミングでのシリンダーに設定された1回の移動量は1000mm、移動させる時間間隔は20秒であった。また、この条件にて押し出した際にシリンダーにかかった圧力は30MPaと従来例1よりも低かった。実際、映像装置から得られた視覚情報から、冷鉄源が溶解室へと移動せずに停滞している様子が確認された。
そこで、次回のタイミングでのシリンダーを移動させる時間間隔を5秒に短縮した。1回のシリンダーの移動量は1000mmのまま、時間間隔を5秒に短縮した設定パターンを、映像装置にて冷鉄源が正常に供給され始めるのが確認されるまで数回繰り返した。冷鉄源が正常に供給され始めるのが確認された回におけるシリンダーにかかった圧力は58MPaに回復した。その後、一旦、時間間隔を20秒に戻したが、同様に冷鉄源の停滞が確認された(このとき、シリンダー圧力は40MPa以下であった)ため、上記と同様に、時間間隔を一時的に5秒に変更した。この操作を繰り返しながら、1チャージ分の溶鉄を得た。その結果、1チャージあたりの電力原単位は327kWh/tと従来例1よりも良好であった。よって総合評価を○(合格)とした。
あるタイミングでのシリンダーに設定された1回の移動量は1000mm、移動させる時間間隔は20秒であった。また、この条件にて押し出した際にシリンダーにかかった圧力は34MPaと従来例1よりも低かった。実際、映像装置から得られた視覚情報から、冷鉄源が溶解室へと移動せずに停滞している様子が確認された。
そこで、次回のタイミングでのシリンダーの移動量を1200mmに増大した。シリンダーを移動させる時間間隔は20秒のまま、移動量を1200mmに増大した設定パターンを、映像装置にて冷鉄源が正常に供給され始めるのが確認されるまで数回繰り返した。冷鉄源が正常に供給され始めるのが確認された回におけるシリンダーにかかった圧力は62MPaに回復した。その後、一旦、移動量を1000mmに戻したが、同様に冷鉄源の停滞が確認された(このとき、シリンダー圧力は40MPa以下であった)ため、上記と同様に、移動量を一時的に1200mmに変更した。この操作を繰り返しながら、1チャージ分の溶鉄を得た。その結果、1チャージあたりの電力原単位は329kWh/tと従来例1よりも良好であった。よって総合評価を○(合格)とした。
あるタイミングでのシリンダーに設定された1回の移動量は1000mm、移動させる時間間隔は20秒であった。また、この条件にて押し出した際にシリンダーにかかった圧力は31MPaと従来例1よりも低かった。実際、映像装置から得られた視覚情報から、冷鉄源が溶解室へと移動せずに停滞している様子が確認された。
そこで、次回のタイミングでのシリンダーを移動させる時間間隔を5秒に短縮し、かつ、シリンダーの移動量を1200mmに増大した。この設定パターンを、映像装置にて冷鉄源が正常に供給され始めるのが確認されるまで数回繰り返した。冷鉄源が正常に供給され始めるのが確認された回におけるシリンダーにかかった圧力は67MPaに回復した。その後、一旦、時間間隔を20秒かつ移動量を1000mmに戻したが、同様に冷鉄源の停滞が確認された(このとき、シリンダー圧力は40MPa以下であった)ため、上記と同様に、時間間隔及び移動量をそれぞれ一時的に5秒及び1200mmに変更した。この操作を繰り返しながら、1チャージ分の溶鉄を得た。その結果、1チャージあたりの電力原単位は326kWh/tと従来例1よりも良好であった。よって総合評価を○(合格)とした。
あるタイミングでのシリンダーに設定された1回の移動量は1000mm、移動させる時間間隔は20秒であった。また、この条件にて押し出した際にシリンダーにかかった圧力は32MPaと従来例1よりも低かった。実際、映像装置から得られた視覚情報から、冷鉄源が溶解室へと移動してはいるものの、その動きが鈍い様子が確認された。
そこで、次回のタイミングでのシリンダーの移動量を1200mmに増大した。シリンダーを移動させる時間間隔は20秒のまま、移動量を1200mmに増大した設定パターンを、映像装置にて冷鉄源が正常に供給され始めるのが確認されるまで数回繰り返した。冷鉄源が正常に供給され始めるのが確認された回におけるシリンダーにかかった圧力は66MPaに回復した。その後、一旦、移動量を1000mmに戻したが、同様に冷鉄源の移動が鈍くなる現象が確認された(このとき、シリンダー圧力は40MPa以下であった)ため、上記と同様に、移動量を一時的に1200mmに変更した。この操作を繰り返しながら、1チャージ分の溶鉄を得た。その結果、1チャージあたりの電力原単位は319kWh/tと従来例1よりも良好であった。よって総合評価を○(合格)とした。
あるタイミングでのシリンダーに設定された1回の移動量は1000mm、移動させる時間間隔は20秒であった。また、この条件にて押し出した際にシリンダーにかかった圧力は35MPaと従来例1よりも低かった。実際、映像装置から得られた視覚情報から、冷鉄源が溶解室へと移動してはいるものの、その動きが鈍い様子が確認された。
そこで、次回のタイミングでのシリンダーを移動させる時間間隔を5秒に短縮し、かつ、シリンダーの移動量を1200mmに増大した。この設定パターンを、映像装置にて冷鉄源が正常に供給され始めるのが確認されるまで数回繰り返した。冷鉄源が正常に供給され始めるのが確認された回におけるシリンダーにかかった圧力は71MPaに回復した。その後、一旦、時間間隔を20秒かつ移動量を1000mmに戻したが、同様に冷鉄源の移動が鈍くなる現象が確認された(このとき、シリンダー圧力は40MPa以下であった)ため、上記と同様に、時間間隔及び移動量をそれぞれ一時的に5秒及び1200mmに変更した。この操作を繰り返しながら、1チャージ分の溶鉄を得た。その結果、1チャージあたりの電力原単位は315kWh/tと従来例1よりも良好であった。よって総合評価を○(合格)とした。
あるタイミングでのシリンダーに設定された1回の移動量は1000mm、移動させる時間間隔は20秒であった。また、この条件にて押し出した際にシリンダーにかかった圧力は30MPaと従来例1よりも低かった。実際、映像装置から得られた視覚情報から、冷鉄源が溶解室へと移動してはいるものの、その動きが鈍い様子が確認された。
そこで、次回のタイミングでのシリンダーを移動させる時間間隔を5秒に短縮した。1回のシリンダーの移動量は1000mmのまま、時間間隔を5秒に短縮した設定パターンを、映像装置にて冷鉄源が正常に供給され始めるのが確認されるまで数回繰り返した。冷鉄源が正常に供給され始めるのが確認された回におけるシリンダーにかかった圧力は69MPaに回復した。その後、一旦、時間間隔を20秒に戻したが、同様に冷鉄源の移動が鈍くなる現象が確認された(このとき、シリンダー圧力は40MPa以下であった)ため、上記と同様に、時間間隔を一時的に5秒に変更した。この操作を繰り返しながら、1チャージ分の溶鉄を得た。その結果、1チャージあたりの電力原単位は318kWh/tと従来例1よりも良好であった。よって総合評価を○(合格)とした。
2 溶解室
3 予熱室
4 炉壁
5 炉蓋
6 電極
7 酸素吹き込みランス
8 炭材吹き込みランス
9 バーナー
10 押し出し機
12 出湯口
13 出滓口
14 供給用バケット
15 冷鉄源
16 溶鉄
17 溶融スラグ
18 アーク
19 冷鉄源供給口
20 ダクト
21 出湯用扉
22 出滓用扉
23 走行台車
30 映像装置
Claims (3)
- 予熱室と溶解室とを備える電気炉を用いる、溶鉄の製造方法であって、
前記電気炉が、前記予熱室に設けられた押し出し機と、前記溶解室内を観察するための映像装置とを更に備え、
前記予熱室において、前記予熱室で予熱された冷鉄源を前記押し出し機によって前記溶解室に供給する押し出し工程と、
前記溶解室において、前記溶解室に供給された冷鉄源をアーク熱によって溶解して溶鉄を得る溶解工程と、を有し、
前記押し出し工程において、前記映像装置から得られた視覚情報に基づき、前記押し出し機の移動量及び前記押し出し機を移動させる時間間隔のいずれか一方又は両方を制御する、溶鉄の製造方法。 - 前記押し出し工程において、前記映像装置から得られた視覚情報により、前記冷鉄源が前記予熱室から前記溶解室へと供給されていないことが確認された場合に、前記移動量の増大及び前記時間間隔の低減のいずれか一方又は両方を行う、請求項1に記載の溶鉄の製造方法。
- 前記押し出し工程において、更に、前記押し出し機の押し出し圧力が40MPa以下である場合に、前記移動量の増大及び前記時間間隔の低減のいずれか一方又は両方を行う、請求項1又は2に記載の溶鉄の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280013906.XA CN116867914A (zh) | 2021-02-10 | 2022-01-27 | 使用具备影像装置的电炉的铁水的制造方法 |
JP2022534342A JP7126081B1 (ja) | 2021-02-10 | 2022-01-27 | 映像装置を備える電気炉を用いた溶鉄の製造方法 |
EP22752599.5A EP4273276A4 (en) | 2021-02-10 | 2022-01-27 | METHOD FOR MANUFACTURING MILD STEEL USING AN ELECTRIC FURNACE PROVIDED WITH AN IMAGING DEVICE |
US18/263,538 US20240085110A1 (en) | 2021-02-10 | 2022-01-27 | Method of producing molten iron using electric furnace including video device |
MX2023009357A MX2023009357A (es) | 2021-02-10 | 2022-01-27 | Metodo de produccion de hierro fundido utilizando un horno electrico que incluye un dispositivo de video. |
KR1020237028148A KR20230132833A (ko) | 2021-02-10 | 2022-01-27 | 영상 장치를 구비하는 전기로를 사용한 용철의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021019718 | 2021-02-10 | ||
JP2021-019718 | 2021-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022172770A1 true WO2022172770A1 (ja) | 2022-08-18 |
Family
ID=82838741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/003174 WO2022172770A1 (ja) | 2021-02-10 | 2022-01-27 | 映像装置を備える電気炉を用いた溶鉄の製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20240085110A1 (ja) |
EP (1) | EP4273276A4 (ja) |
JP (1) | JP7126081B1 (ja) |
KR (1) | KR20230132833A (ja) |
CN (1) | CN116867914A (ja) |
MX (1) | MX2023009357A (ja) |
TW (1) | TWI789232B (ja) |
WO (1) | WO2022172770A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10292990A (ja) | 1997-02-24 | 1998-11-04 | Nkk Corp | 冷鉄源の溶解方法および溶解設備 |
JP2001074377A (ja) * | 1999-07-08 | 2001-03-23 | Nkk Corp | 冷鉄源の溶解方法及び溶解設備 |
JP2002121611A (ja) * | 2000-10-18 | 2002-04-26 | Nkk Corp | 冷鉄源の溶解方法及び溶解設備 |
JP2011069606A (ja) | 2009-08-27 | 2011-04-07 | Jp Steel Plantech Co | アーク溶解設備および当該アーク溶解設備を用いた溶湯の製造方法 |
JP2018070926A (ja) | 2016-10-27 | 2018-05-10 | Jfe条鋼株式会社 | 電気炉の運転制御システムおよび電気炉ならびに電気炉の運転制御方法 |
CN109517941A (zh) * | 2018-12-29 | 2019-03-26 | 中冶京诚工程技术有限公司 | 一种水平连续加料竖式废钢预热装置及其应用 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004250724A (ja) * | 2003-02-18 | 2004-09-09 | Jfe Engineering Kk | 効率的金属溶解方法及び装置 |
JP2011033217A (ja) * | 2009-07-30 | 2011-02-17 | Jp Steel Plantech Co | アーク溶解設備及びアーク溶解設備を用いた溶湯の製造方法 |
JP5700506B2 (ja) * | 2010-08-09 | 2015-04-15 | スチールプランテック株式会社 | アーク溶解設備及びアーク溶解設備を用いた溶湯の製造方法 |
CN107340040B (zh) * | 2017-07-10 | 2019-06-18 | 浙江大学 | 一种基于分布参数模型的感应电炉铁水在线称重方法 |
CN110273042B (zh) * | 2019-07-08 | 2021-05-07 | 湖南福华信息工程有限公司 | 一种资源化利用炼钢炉监测系统 |
-
2022
- 2022-01-27 KR KR1020237028148A patent/KR20230132833A/ko unknown
- 2022-01-27 WO PCT/JP2022/003174 patent/WO2022172770A1/ja active Application Filing
- 2022-01-27 US US18/263,538 patent/US20240085110A1/en active Pending
- 2022-01-27 JP JP2022534342A patent/JP7126081B1/ja active Active
- 2022-01-27 MX MX2023009357A patent/MX2023009357A/es unknown
- 2022-01-27 CN CN202280013906.XA patent/CN116867914A/zh active Pending
- 2022-01-27 EP EP22752599.5A patent/EP4273276A4/en active Pending
- 2022-02-07 TW TW111104344A patent/TWI789232B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10292990A (ja) | 1997-02-24 | 1998-11-04 | Nkk Corp | 冷鉄源の溶解方法および溶解設備 |
JP2001074377A (ja) * | 1999-07-08 | 2001-03-23 | Nkk Corp | 冷鉄源の溶解方法及び溶解設備 |
JP2002121611A (ja) * | 2000-10-18 | 2002-04-26 | Nkk Corp | 冷鉄源の溶解方法及び溶解設備 |
JP2011069606A (ja) | 2009-08-27 | 2011-04-07 | Jp Steel Plantech Co | アーク溶解設備および当該アーク溶解設備を用いた溶湯の製造方法 |
JP2018070926A (ja) | 2016-10-27 | 2018-05-10 | Jfe条鋼株式会社 | 電気炉の運転制御システムおよび電気炉ならびに電気炉の運転制御方法 |
CN109517941A (zh) * | 2018-12-29 | 2019-03-26 | 中冶京诚工程技术有限公司 | 一种水平连续加料竖式废钢预热装置及其应用 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4273276A4 |
Also Published As
Publication number | Publication date |
---|---|
MX2023009357A (es) | 2023-08-16 |
EP4273276A4 (en) | 2024-08-07 |
KR20230132833A (ko) | 2023-09-18 |
TW202246530A (zh) | 2022-12-01 |
JP7126081B1 (ja) | 2022-08-26 |
EP4273276A1 (en) | 2023-11-08 |
TWI789232B (zh) | 2023-01-01 |
US20240085110A1 (en) | 2024-03-14 |
CN116867914A (zh) | 2023-10-10 |
JPWO2022172770A1 (ja) | 2022-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2852500C (en) | Reduction processing apparatus for steel-making slag and reduction processing system for steel-making slag | |
EP2877606B1 (en) | Starting a smelting process | |
JP7126081B1 (ja) | 映像装置を備える電気炉を用いた溶鉄の製造方法 | |
JP2827126B2 (ja) | 溶湯・溶滓の連続排出方法及びその装置 | |
US20180112917A1 (en) | Slag notch | |
RU2817084C1 (ru) | Способ производства расплавленного чугуна с использованием электропечи, содержащей видеоустройство | |
JP3204202B2 (ja) | 冷鉄源の溶解方法および溶解設備 | |
JP3645306B2 (ja) | 電気炉設備 | |
JP3746921B2 (ja) | 電気溶融炉の運転方法 | |
JP4307686B2 (ja) | 原料供給装置および還元鉄製造方法 | |
JP5411466B2 (ja) | 鉄浴式溶解炉およびそれを用いた溶鉄製造方法 | |
WO2023112505A1 (ja) | 溶鉄の製造方法 | |
WO2022172771A1 (ja) | 映像装置付き電気炉 | |
JP2019200012A (ja) | 電気炉の水冷パネルの冷却方法 | |
JPS63137113A (ja) | 溶融還元方法及び装置 | |
AU768223B2 (en) | A direct smelting process | |
JP2001207208A (ja) | 冷鉄源の溶解方法 | |
JPH08176639A (ja) | アーク炉製鋼法 | |
JP2001172713A (ja) | 冷鉄源の溶解方法 | |
JP2001220618A (ja) | 冷鉄源の溶解方法 | |
JP2000080420A (ja) | 銅製錬自溶炉におけるスラグの管理方法 | |
JPH021899B2 (ja) | ||
JP2001255067A (ja) | 冷鉄源の溶解設備及び溶解方法 | |
JPH03238151A (ja) | 溶鋼槽内溶鋼の加熱方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022534342 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22752599 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18263538 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2022752599 Country of ref document: EP Effective date: 20230731 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280013906.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2023/009357 Country of ref document: MX |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112023015894 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20237028148 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317055428 Country of ref document: IN Ref document number: 1020237028148 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 112023015894 Country of ref document: BR Kind code of ref document: A2 Effective date: 20230808 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |