WO2022172770A1 - 映像装置を備える電気炉を用いた溶鉄の製造方法 - Google Patents

映像装置を備える電気炉を用いた溶鉄の製造方法 Download PDF

Info

Publication number
WO2022172770A1
WO2022172770A1 PCT/JP2022/003174 JP2022003174W WO2022172770A1 WO 2022172770 A1 WO2022172770 A1 WO 2022172770A1 JP 2022003174 W JP2022003174 W JP 2022003174W WO 2022172770 A1 WO2022172770 A1 WO 2022172770A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron source
extruder
cold iron
melting chamber
melting
Prior art date
Application number
PCT/JP2022/003174
Other languages
English (en)
French (fr)
Inventor
康一 堤
善広 三輪
祥平 永島
悟郎 奥山
勝俊 遠藤
俊一 川波
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202280013906.XA priority Critical patent/CN116867914A/zh
Priority to JP2022534342A priority patent/JP7126081B1/ja
Priority to EP22752599.5A priority patent/EP4273276A4/en
Priority to US18/263,538 priority patent/US20240085110A1/en
Priority to MX2023009357A priority patent/MX2023009357A/es
Priority to KR1020237028148A priority patent/KR20230132833A/ko
Publication of WO2022172770A1 publication Critical patent/WO2022172770A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • C21C5/562Manufacture of steel by other methods starting from scrap
    • C21C5/565Preheating of scrap
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/10Making pig-iron other than in blast furnaces in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/527Charging of the electric furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • C21C5/567Manufacture of steel by other methods operating in a continuous way
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/18Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/28Arrangement of controlling, monitoring, alarm or the like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D13/00Apparatus for preheating charges; Arrangements for preheating charges
    • F27D13/002Preheating scrap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/02Observation or illuminating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0025Charging or loading melting furnaces with material in the solid state
    • F27D3/0031Charging with tiltable dumpers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/04Ram or pusher apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/08Screw feeders; Screw dischargers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C2005/5288Measuring or sampling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/02Observation or illuminating devices
    • F27D2021/026Observation or illuminating devices using a video installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing molten iron from a cold iron source using an electric furnace equipped with a video device.
  • the present invention is a molten iron melt that can observe how the cold iron source is supplied from the preheating chamber to the melting chamber, and based on this visual information, can control the supply conditions of the cold iron source to the melting chamber. related to the manufacturing method of
  • molten iron is obtained by melting cold iron sources such as scrap with arc heat, so there is a problem of consuming a large amount of electric power to generate arc heat.
  • the method of preheating the cold iron source before melting with a burner using fossil fuel, etc. A method of preheating using high-temperature exhaust gas generated during melting; a method of blowing coke into the melting chamber as an auxiliary heat source; and other methods are adopted.
  • Patent Document 1 in an electric furnace in which a preheating shaft and a melting chamber are directly connected, a cold iron source is continuously connected to the preheating shaft so as to maintain a state in which the cold iron source is continuously present in the melting chamber and the preheating shaft.
  • Techniques have been disclosed for arc melting a source of cold iron in a melting chamber with a steady or intermittent supply.
  • the cold iron source preheated by high-temperature exhaust gas melts into the melted molten iron using an electric furnace that does not particularly require a device for conveying and supplying the cold iron source to the melting chamber. This effectively dissolves the cold iron source.
  • Patent Document 2 discloses an operation control system for an electric furnace, in which an input unit that accepts setting items that are operating conditions for electrorefining and setting items are input to a neural network, and based on the operation result estimated value
  • a control system for an electric furnace is disclosed having a controller for performing electric furnace smelting.
  • Patent Document 3 discloses a method for producing molten metal by melting an iron source using arc melting equipment, wherein a state change is detected in the melting chamber when an arc discharge is generated.
  • a method of manufacture is disclosed.
  • the technique of Patent Document 1 basically feeds the cold iron source to the melting chamber continuously while gradually melting the cold iron source by preheating the cold iron source and its own weight.
  • the supply of the cold iron source was interrupted in the path from the preheating shaft to the melting chamber. This has been found to be due to unintended circumstances, for example, the cold iron source being over-preheated and stuck in large chunks, or gaps forming in the cold iron source tower.
  • the state of the cold iron source in the melting chamber cannot be directly observed with the technique of Patent Document 1, it was not possible to grasp the above unintended situation during operation. It was also found that such an irregular supply of the cold iron source increases power consumption in the electric furnace.
  • Patent Document 2 is an electric furnace operation control system that constructs a neural network that reflects the immediate state of the electric furnace and can estimate the end point carbon concentration of molten steel to be tapped with high accuracy.
  • the data is the data photographed by the scrap charging device, that is, the cold iron source before being charged into the electric furnace.
  • the temperature of the cold iron source differs before and after being charged into the electric furnace, and the stacking method of each cold iron source changes after charging into the electric furnace. It cannot be said that the above technology is sufficient to provide a sufficient supply.
  • the above-described techniques are capable of controlling the end-point carbon concentration and temperature, they are still insufficient in terms of obtaining molten iron with high efficiency and low electric power consumption.
  • Patent Document 3 describes adjusting the supply speed when supplying the iron source to the melting chamber based on the result of the detection process, but regarding the movement of the cold iron source in the electric furnace However, it is not enough to provide a stable supply of cold iron sources.
  • the present invention has been made in view of the above circumstances, and is an electric furnace that can reliably supply a cold iron source to a melting chamber and obtain molten iron with high efficiency and low power consumption.
  • An object of the present invention is to provide a method for producing molten iron.
  • an electric furnace is equipped with a device (extruder) for conveying and supplying cold iron sources to the melting chamber, and the inside of the melting chamber
  • a device extruder
  • a stable supply of cold iron source to the melting chamber can be ensured by providing an observable imaging device and optimizing the operating conditions of the extruder immediately based on the state of the melting chamber obtained from the imaging device. I found what I can do. It was also found that by stably supplying the cold iron source in this way, it is possible to prevent operational troubles and effectively reduce the power unit consumption in manufacturing.
  • a method for producing molten iron using an electric furnace equipped with a preheating chamber and a melting chamber The electric furnace further comprises an extruder provided in the preheating chamber and a video device for observing the inside of the melting chamber, an extruding step of supplying the cold iron source preheated in the preheating chamber to the melting chamber by the extruder; a melting step of obtaining molten iron in the melting chamber by melting the cold iron source supplied to the melting chamber by arc heat;
  • the "movement amount of the extruder” means the movement distance of the extruder along the extrusion direction when the extruder moves once from the preheating chamber side to the melting chamber side.
  • the "time interval for moving the extruder” means the interval from the time when the extruder starts moving one time (T0 START ) to the time when the extruder starts moving the next time (T1 START ). (see FIGS. 2A and 2B).
  • the cold iron source can be stably and reliably supplied to the melting chamber in the electric furnace. This leads to an increase in the melting efficiency of the cold iron source, an effective reduction in the power unit consumption, prevention of operational troubles, and the like, and produces exceptional industrial effects.
  • FIG. 1 is a longitudinal sectional view of an electric furnace equipped with a video device used in one embodiment of the present invention
  • FIG. FIG. 2A is a conceptual diagram for explaining the amount of movement of the extruder and the time interval for moving the extruder, FIG. 2A shows the behavior of extrusion at a certain timing, and FIG. show.
  • the method for producing molten iron of the present invention is a method using an electric furnace having a predetermined structure, and includes an extrusion step of supplying a cold iron source preheated in a preheating chamber to the melting chamber by an extruder, and a melting step of melting the cold iron source by arc heat to obtain molten iron, and may optionally further include other steps.
  • the operating conditions of the extruder are controlled based on visual information obtained from a video device for observing the inside of the melting chamber.
  • the electric furnace 1 includes a melting chamber 2 which melts a cold iron source 15 by heat from an arc 18 to obtain molten iron 16, and a melting chamber 2 which preheats the cold iron source 15 and extruder 10 melts the preheated cold iron source 15. 2, and a video device 30 installed at an arbitrary position.
  • a cold iron source 15 as a raw material is loaded into a supply bucket 14 and transported to above a desired cold iron source supply port 19 via a traveling carriage 23 .
  • the cold iron source supply port 19 is opened to supply the cold iron source 15 to the preheating chamber 3 from above.
  • the cold iron source 15 supplied to the preheating chamber 3 is preheated by any method. For example, if the cold iron source 15 is preheated by passing the hot exhaust gas generated in the melting chamber 2 to the preheating chamber 3, the production efficiency can be improved. Exhaust gas may be sucked through the duct 20 and passed through the preheating chamber 3 , and excess exhaust gas may be exhausted through the duct 20 .
  • a preheated cold iron source 15 is continuously supplied to the melting chamber 2 by the extruder 10 .
  • the extruder 10 continues to push out the cold iron source 15 in the preheating chamber 3 into the melting chamber by repeatedly moving its tip toward the melting chamber.
  • the supply amount and supply timing of the cold iron source 15 to the melting chamber 2 by the extruder 10 can usually be adjusted by the amount of movement of the extruder 10 and the time interval for moving the extruder 10 .
  • the supply of the cold iron source 15 is accelerated as the amount of movement of the extruder 10 is increased or the time interval for moving the extruder 10 is shortened.
  • these moving amounts and time intervals are usually automatically operated after being initially set to certain values.
  • the extruder 10 usually has a cylinder structure.
  • the melting chamber 2 is partitioned by a furnace wall 4 and a furnace lid 5, and usually includes an electrode 6 for generating an arc 18 for heating, an oxygen blowing lance 7 for maintaining a desired high temperature state, and a carbon material. It is equipped with a blowing lance 8 and a burner 9 for locally heating cold spots.
  • the cold iron source 15 supplied to the melting chamber 2 is melted by arc heat to become molten iron 16 and molten slag 17 .
  • the obtained molten iron 16 can be tapped from the tapping port 12 by opening the tapping door 21 . Further, the molten slag 17 can be discharged from the slag discharge port 13 by opening the slag discharge door 22 .
  • the cold iron source 15 generally includes, but is not limited to, in-house scraps generated at ironworks, scrap generated from the city, and pig iron made by solidifying hot metal.
  • In-house scrap generated at steelworks includes, for example, unsteady parts of slabs cast by continuous casting or ingot casting (parts generated at the start of casting and parts generated at the end of casting), rolling of steel materials such as steel strips, etc.
  • Scrap generated in the market includes recycled materials such as construction steel (H-beam, etc.), automobile steel, and cans.
  • Pig iron obtained by hardening hot metal is obtained by tapping and hardening hot metal obtained from iron ore and coke as raw materials in a blast furnace such as a blast furnace.
  • the video device 30 is not particularly limited, and may be any device capable of capturing an image of an observation target, and normally includes a lens and a camera. It is preferable to flow the cooling gas at an arbitrary flow rate around the lens (not shown) installed at the tip of the imaging device 30 .
  • Cooling gases include air and inert gases such as nitrogen. Further, for example, when the imaging apparatus 30 is installed on the furnace wall 4, it is preferable that the furnace wall 4 is also cooled by water cooling or air cooling.
  • the video device 30 is preferably installed on the furnace wall 4 or the furnace lid 5 that defines the melting chamber 2. , more preferably on the furnace wall 4 . Also, from the same point of view as above, it is preferable to install at an appropriate height in the melting chamber 2 at which slag and molten steel are less likely to scatter.
  • the installation method is not particularly limited, when the imaging device 30 is installed on the furnace wall 4, if the imaging device 30 is attached through a hole (not shown) made in the furnace wall 4, the lens can be installed in the melting chamber 2.
  • the camera can be positioned outside the electric furnace 1 while being positioned, and it is possible to achieve both a clear visual field and simple operability. Images captured by the imaging device 30 are generally connected to a monitor and a recording device (both not shown) in an operation room operated by an operator via a cable (not shown).
  • the cold iron source 15 preheated in the preheating chamber 3 is extruded and supplied to the melting chamber 2 by the extruder 10 provided in the preheating chamber 3 .
  • the supply amount and supply timing of the cold iron source 15 for one extrusion are governed by the amount of movement of the extruder 10 and the time interval for moving the extruder 10 .
  • the setting pattern of the movement amount and/or the time interval can be controlled to continue automatic operation without changing
  • the supply of the cold iron source 15 may be delayed for some reason.
  • the visual information from the video device 30 for example, the movement of the cold iron source 15 entering the melting chamber 2 becomes sluggish and intermittent, or it completely stops, or the molten iron 16 in the melting chamber 2 In some cases, it is confirmed that the interface does not rise to the desired position.
  • the imaging device 30 that the cold iron source 15 is not supplied from the preheating chamber 3 to the melting chamber 2
  • the setting pattern of the movement amount and/or time interval of the extruder 10 is immediately set. can be changed and controlled.
  • the automatic operation is temporarily switched to the manual setting, and when the good supply of the cold iron source 15 is confirmed again, the automatic operation is resumed with the normal setting pattern. do it.
  • Amount of Movement It is one of the features of the present invention to control whether or not to change the amount of movement of the extruder 10 based on the visual information obtained from the imaging device 30 .
  • the movement of the extruder 10 is increased to push out the extruder 10 a longer distance, thereby smoothing the movement of the cold iron source 15. should be promoted.
  • the displacement of the extruder 10 can be increased by about 10%.
  • the changed amount of movement may be used until the cold iron source 15 is supplied normally again.
  • the displacement of the extruder 10 can be constantly monitored by a position sensor.
  • Time Interval It is also one of the features of the present invention to control whether or not to change the time interval for moving the extruder 10 based on the visual information obtained from the imaging device 30 .
  • the time interval is reduced to push the extruder 10 more times within a certain period of time, thereby increasing the cold iron source 15.
  • the time interval for moving the extruder 10 can be shortened by about 20%.
  • the changed time interval may be adopted until the cold iron source 15 is supplied normally again.
  • the time intervals of the extruder 10 can also be constantly monitored by timers and position sensors.
  • the pressure on the extruder 10 can be measured at any time. Further investigation by the present inventors revealed that there is a correlation between the visual information from the imaging device 30 and the extrusion pressure when the extruder 10 moves toward the melting chamber 2 side. In other words, the visual information from the imaging device 30 indicates that the cold iron source 15 is not supplied normally. In this case, it was newly found that the extrusion pressure of the extruder 10 was 40 MPa or less.
  • the visual information from the imaging device 30 is primarily information about the surface of the cold iron source 15 that is present in the visual field of the imaging device 30 .
  • the extrusion pressure applied to the extruder 10 is used as an indicator in addition to the visual information from the imaging device 30, the normal supply of the cold iron source 15 to the melting chamber 2 can be controlled more accurately. That is, when the cold iron source 15 is not normally supplied in the visual information from the imaging device 30 and the extrusion pressure of the extruder 10 is 40 MPa or less, as described above, the movement amount of the extruder 10 is It is preferred to increase and/or decrease the time interval over which the extruder 10 is moved.
  • molten iron is obtained in the melting chamber 2 by melting the preheated cold iron source 15 supplied to the melting chamber 2 by arc heat.
  • a specific melting method is as described above for the electric furnace.
  • the operating conditions of the extruder 10 are timely controlled during operation so as to smoothly supply the cold iron source 15 from the preheating chamber 3 to the melting chamber 2 while observing the inside of the melting chamber 2 using the imaging device 30. Therefore, power consumption required in the melting process can be reduced.
  • Other processes include, for example, a preheating process and a tapping process.
  • the preheating step prior to the extrusion step, the cold iron source 15 can be preheated by any heating method to enhance the efficiency of the subsequent melting step.
  • the power consumption required for the preheating process can be reduced.
  • the tapping process the molten iron 16 accumulated in the melting chamber 2 can be taken out of the electric furnace 1 through the tapping port 12 after the melting process.
  • Conventional example 1 is an example in which the production method does not use an imaging device and is operated within the range of a normal power consumption rate.
  • the extruder (cylinder) was set to move 1,000 mm once at a certain timing, and the time interval of movement was 20 seconds. Moreover, the pressure applied to the cylinder when extruded under these conditions was 58 MPa. After 20 seconds, the cylinder was pushed out with a movement amount of 1000 mm without changing the movement amount and time interval of the cylinder at the next timing, and the pressure applied to the cylinder was 64 MPa. Thus, one charge of molten iron was obtained without changing the extrusion conditions.
  • Conventional Example 2 is an example of a manufacturing method that does not use a video device, in which the power consumption rate is higher than usual.
  • the amount of movement set for one cylinder at a certain timing was 1000 mm, and the time interval for movement was 20 seconds.
  • the pressure applied to the cylinder when extruded under these conditions was 33 MPa, which was lower than that of Conventional Example 1. Since the imaging device was not used, the reason why the pressure became lower than usual was not clarified, and the amount of movement and time interval of the cylinder at the next timing was not changed, and the amount of movement was 1000 mm after 20 seconds. When the cylinder was pushed out, the pressure on the cylinder remained low at 31 MPa.
  • Comparative Example A comparative example is an example in which the extrusion conditions were not controlled based on the visual information obtained from the imaging device in the manufacturing method using the imaging device.
  • the amount of movement set for one cylinder at a certain timing was 1000 mm, and the time interval for movement was 20 seconds.
  • the pressure applied to the cylinder when extruded under these conditions was 34 MPa, which was lower than that of Conventional Example 1.
  • the visual information obtained from the video equipment it was confirmed that the cold iron source did not move to the melting chamber and was stagnant. Even though it was confirmed by the video device that the cold iron source was not being supplied to the melting chamber normally, the amount of movement of the cylinder at the next timing and the time interval were not changed, and the amount of movement continued after 20 seconds.
  • Invention Examples 1 to 6 are examples in which the extrusion conditions are controlled based on the visual information obtained from the imaging device in the manufacturing method using the imaging device.
  • Invention example 1 The amount of movement set for one cylinder at a certain timing was 1000 mm, and the time interval for movement was 20 seconds. Moreover, the pressure applied to the cylinder when extruded under these conditions was 30 MPa, which was lower than that of Conventional Example 1. In fact, from the visual information obtained from the video equipment, it was confirmed that the cold iron source did not move to the melting chamber and was stagnant. Therefore, the time interval for moving the cylinder at the next timing was shortened to 5 seconds.
  • a set pattern in which the time interval was shortened to 5 seconds while the amount of movement of the cylinder was kept at 1000 mm was repeated several times until it was confirmed by the image device that the cold iron source started to be supplied normally.
  • the pressure applied to the cylinder recovered to 58 MPa when it was confirmed that the cold iron source started to be supplied normally.
  • the time interval was temporarily returned to 20 seconds, but stagnation of the cold iron source was also confirmed (at this time, the cylinder pressure was 40 MPa or less), so the time interval was temporarily changed as described above. changed to 5 seconds. While repeating this operation, one charge of molten iron was obtained. As a result, the electric power unit consumption per charge was 327 kWh/t, which was better than that of Conventional Example 1. Therefore, the overall evaluation was ⁇ (accepted).
  • Invention example 2 The amount of movement set for one cylinder at a certain timing was 1000 mm, and the time interval for movement was 20 seconds. Moreover, the pressure applied to the cylinder when extruded under these conditions was 34 MPa, which was lower than that of Conventional Example 1. In fact, from the visual information obtained from the video equipment, it was confirmed that the cold iron source did not move to the melting chamber and was stagnant. Therefore, the amount of movement of the cylinder at the next timing was increased to 1200mm. A setting pattern in which the time interval for moving the cylinder was kept at 20 seconds and the amount of movement was increased to 1200 mm was repeated several times until it was confirmed by the imaging device that the cold iron source started to be supplied normally.
  • the pressure applied to the cylinder recovered to 62 MPa when it was confirmed that the cold iron source started to be supplied normally. After that, the movement amount was temporarily returned to 1000 mm, but similarly the stagnation of the cold iron source was confirmed (at this time, the cylinder pressure was 40 MPa or less). Changed to 1200mm. While repeating this operation, one charge of molten iron was obtained. As a result, the electric power unit consumption per charge was 329 kWh/t, which was better than that of Conventional Example 1. Therefore, the overall evaluation was ⁇ (accepted).
  • Invention example 3 The amount of movement set for one cylinder at a certain timing was 1000 mm, and the time interval for movement was 20 seconds. Moreover, the pressure applied to the cylinder when extruded under these conditions was 31 MPa, which was lower than that of Conventional Example 1. In fact, from the visual information obtained from the video equipment, it was confirmed that the cold iron source did not move to the melting chamber and was stagnant. Therefore, the time interval for moving the cylinder at the next timing was shortened to 5 seconds, and the amount of movement of the cylinder was increased to 1200 mm. This setting pattern was repeated several times until it was confirmed on the imaging device that the cold iron source started to be supplied normally. The pressure applied to the cylinder recovered to 67 MPa when it was confirmed that the cold iron source started to be supplied normally.
  • the time interval was once returned to 20 seconds and the amount of movement was set to 1000 mm, but stagnation of the cold iron source was also confirmed (at this time, the cylinder pressure was 40 MPa or less).
  • the time interval and travel were temporarily changed to 5 seconds and 1200 mm, respectively. While repeating this operation, one charge of molten iron was obtained. As a result, the electric power unit consumption per charge was 326 kWh/t, which was better than that of Conventional Example 1. Therefore, the overall evaluation was ⁇ (accepted).
  • Invention example 4 The amount of movement set for one cylinder at a certain timing was 1000 mm, and the time interval for movement was 20 seconds. Moreover, the pressure applied to the cylinder when extruded under these conditions was 32 MPa, which was lower than that of Conventional Example 1. In fact, from the visual information obtained from the video equipment, it was confirmed that the cold iron source was moving to the melting chamber, but the movement was sluggish. Therefore, the amount of movement of the cylinder at the next timing was increased to 1200mm. A setting pattern in which the time interval for moving the cylinder was kept at 20 seconds and the amount of movement was increased to 1200 mm was repeated several times until it was confirmed by the imaging device that the cold iron source started to be supplied normally.
  • the pressure applied to the cylinder recovered to 66 MPa at the time when it was confirmed that the cold iron source started to be supplied normally. After that, the movement amount was once returned to 1000 mm, but the phenomenon that the movement of the cold iron source was similarly dulled was confirmed (at this time, the cylinder pressure was 40 MPa or less). was temporarily changed to 1200 mm. While repeating this operation, one charge of molten iron was obtained. As a result, the electric power unit consumption per charge was 319 kWh/t, which was better than that of Conventional Example 1. Therefore, the overall evaluation was ⁇ (accepted).
  • Invention example 5 The amount of movement set for one cylinder at a certain timing was 1000 mm, and the time interval for movement was 20 seconds. Moreover, the pressure applied to the cylinder when extruded under these conditions was 35 MPa, which was lower than that of Conventional Example 1. In fact, from the visual information obtained from the video equipment, it was confirmed that the cold iron source was moving to the melting chamber, but the movement was sluggish. Therefore, the time interval for moving the cylinder at the next timing was shortened to 5 seconds, and the amount of movement of the cylinder was increased to 1200 mm. This setting pattern was repeated several times until it was confirmed on the imaging device that the cold iron source started to be supplied normally.
  • the pressure applied to the cylinder recovered to 71 MPa when it was confirmed that the cold iron source started to be supplied normally. After that, the time interval was once returned to 20 seconds and the movement amount was returned to 1000 mm, but the phenomenon that the movement of the cold iron source was similarly dulled was confirmed (at this time, the cylinder pressure was 40 MPa or less). Similarly, the time interval and the amount of movement were temporarily changed to 5 seconds and 1200 mm, respectively. While repeating this operation, one charge of molten iron was obtained. As a result, the electric power unit consumption per charge was 315 kWh/t, which was better than that of Conventional Example 1. Therefore, the overall evaluation was ⁇ (accepted).
  • Invention example 6 The amount of movement set for one cylinder at a certain timing was 1000 mm, and the time interval for movement was 20 seconds. Moreover, the pressure applied to the cylinder when extruded under these conditions was 30 MPa, which was lower than that of Conventional Example 1. In fact, from the visual information obtained from the video equipment, it was confirmed that the cold iron source was moving to the melting chamber, but the movement was sluggish. Therefore, the time interval for moving the cylinder at the next timing was shortened to 5 seconds. A set pattern in which the time interval was shortened to 5 seconds while the amount of movement of the cylinder was kept at 1000 mm was repeated several times until it was confirmed by the image device that the cold iron source started to be supplied normally.
  • the pressure applied to the cylinder recovered to 69 MPa when it was confirmed that the cold iron source started to be supplied normally. After that, the time interval was once returned to 20 seconds, but the phenomenon of slowing down the movement of the cold iron source was also confirmed (at this time, the cylinder pressure was 40 MPa or less). Temporarily changed the interval to 5 seconds. While repeating this operation, one charge of molten iron was obtained. As a result, the electric power unit consumption per charge was 318 kWh/t, which was better than that of Conventional Example 1. Therefore, the overall evaluation was ⁇ (accepted).
  • the supply of the cold iron source is unexpectedly controlled by controlling the extrusion conditions of the extruder in a timely manner based on the visual information in the melting chamber obtained from the video equipment. Even in this situation, the cold iron source continued to be well supplied to the melting chamber, and molten iron was obtained with high efficiency. As a result, it was possible to greatly reduce the power unit consumption, which accounts for a large part of the manufacturing cost, and the effect was very large.
  • the cold iron source can be stably and reliably supplied to the melting chamber in the electric furnace, and the melting efficiency of the cold iron source can be enhanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Ink Jet (AREA)

Abstract

溶解室への冷鉄源の安定的な供給を確実に行う。 予熱室と、溶解室と、前記予熱室に設けられた押し出し機と、前記溶解室内を観察するための映像装置とを備える電気炉を用い、前記予熱室で予熱された冷鉄源を前記押し出し機によって前記溶解室に供給する押し出し工程と、前記溶解室に供給された冷鉄源をアーク熱によって溶解して溶鉄を得る溶解工程とを有し、前記押し出し工程では、前記映像装置から得られた視覚情報に基づき、前記押し出し機の移動量及び/又は前記押し出し機を移動させる時間間隔を制御する、溶鉄の製造方法。

Description

映像装置を備える電気炉を用いた溶鉄の製造方法
  本発明は、映像装置を備える電気炉を用いて、冷鉄源から溶鉄を製造する方法に関する。本発明は、特に、冷鉄源が予熱室から溶解室へと供給される様子を観察し、この視覚情報に基づいて、冷鉄源の溶解室への供給条件を制御することのできる、溶鉄の製造方法に関する。
  電気炉を用いた溶鉄の製造では、スクラップなどの冷鉄源をアーク熱で溶解して溶鉄を得るので、アーク熱を生成するために電力を多量に消費する問題がある。従来、電気炉での電力消費を抑えるために、溶解する前の冷鉄源を、化石燃料などを用いたバーナーで予熱する方法;溶解する前の冷鉄源を、先の工程で冷鉄源を溶解中に発生した高温の排ガスを利用して予熱する方法;補助熱源としてコークスを溶解室中に吹き込む方法;などの方法が採られている。
  例えば、特許文献1には、予熱シャフトと溶解室とが直結した電気炉において、冷鉄源が溶解室と予熱シャフトとに連続して存在する状態を保つように予熱シャフトへ冷鉄源を連続的又は断続的に供給しながら、溶解室内の冷鉄源をアークにより溶解する技術が開示されている。特許文献1の技術では、溶解室への冷鉄源の搬送供給のための装置を特に必要としない電気炉を用いて、溶解した溶鉄の中に、高温の排ガスで予熱した冷鉄源が溶け込むことによって、冷鉄源を効率的に溶解させている。
  また、例えば、特許文献2には、電気炉の運転制御システムであって、電気精錬の操業条件となる設定項目を受け入れる入力部と設定項目をニューラルネットワークに入力して操業結果推定値に基づいて電気炉製錬を実行させる制御部を有する、電気炉の制御システムが開示されている。
  また、例えば、特許文献3には、アーク溶解設備を用いて鉄源を溶解して溶湯を製造する方法であって、アーク放電を発生させた際の前記溶解室の状態変化を検出する状態変化検出工程と状態変化検出工程の検出結果に基づいて前記溶解室に前記鉄源を供給する際の供給速度を調整する供給速度調整工程とを含むことを特徴とするアーク溶解設備を用いた溶湯の製造方法が開示されている。
特開平10-292990号公報 特開2018-70926号公報 特開2011-69606号公報
  しかしながら、本発明者らが検討したところ、特許文献1の技術は、基本は冷鉄源の予熱及び自重により、冷鉄源を徐々に溶解させながら溶解室へと連続的に供給するものであるところ、実際には、予熱シャフトから溶解室への径路において、冷鉄源の供給が滞る事態が確認された。これは、例えば、冷鉄源が過剰に予熱されて大きな塊として留まったり、冷鉄源の塔の中に隙間が生じたりする等、意図しない状況に起因するものと判明した。しかし、特許文献1の技術では溶解室内の冷鉄源の様子を直接的に観察することはできないため、上記のような意図しない状況を操業中に把握することはできなかった。そして、このような冷鉄源の不規則な供給が、電気炉での電力消費を高めてしまうことも判明した。
  特許文献2の技術は、電気炉の至近の状態を反映させたニューラルネットワークを構築し、出鋼する溶鋼の終点カーボン濃度を高い精度で推定できる電気炉の運転制御システムであるが、使用する撮像データは、スクラップ装入装置で撮影されたデータ、すなわち、電気炉内に装入される前の冷鉄源である。電気炉内に装入される前と後では、冷鉄源の温度も異なる上、電気炉内に装入された後には冷鉄源それぞれの積み方なども変わるため、冷鉄源の安定的な供給をするのに、上記技術は十分なものとはいえない。さらに、上記技術は、終点カーボン濃度や温度の制御には及んでいるが、高い効率かつ低い電力原単位で溶鉄を得る点においても十分なものとはいえない。
  特許文献3の技術は、検出工程の結果に基づき、溶解室への鉄源を供給する際の供給速度を調整することが述べられているが、電気炉内での冷鉄源の動きについては着目しておらず、冷鉄源の安定的な供給をするのに十分なものとはいえない。
  本発明は、上記事情に鑑みてなされたものであり、溶解室への冷鉄源の安定的な供給を確実に行い、高い効率かつ低い電力原単位で溶鉄を得ることのできる、電気炉による溶鉄の製造方法を提供することを目的とする。
  本発明者らが、上記課題を解決することができる方法について検討を重ねた結果、電気炉に、溶解室への冷鉄源の搬送供給のための装置(押し出し機)、かつ、溶解室内を観察可能な映像装置を設け、当該映像装置から得られる溶解室内の様子に基づいて、即時に押し出し機の操作条件を最適化すれば、溶解室への冷鉄源の安定的な供給を確実にできることを見出した。また、このように冷鉄源を安定的に供給することにより、操業トラブルを防止し、製造上の電力原単位を効果的に低減できることも見出した。
  本発明は、上記の知見に基づきなされたもので、以下を要旨とする。
  1.予熱室と溶解室とを備える電気炉を用いる、溶鉄の製造方法であって、
  前記電気炉が、前記予熱室に設けられた押し出し機と、前記溶解室内を観察するための映像装置とを更に備え、
  前記予熱室において、前記予熱室で予熱された冷鉄源を前記押し出し機によって前記溶解室に供給する押し出し工程と、
  前記溶解室において、前記溶解室に供給された冷鉄源をアーク熱によって溶解して溶鉄を得る溶解工程と、を有し、
  前記押し出し工程において、前記映像装置から得られた視覚情報に基づき、前記押し出し機の移動量及び前記押し出し機を移動させる時間間隔のいずれか一方又は両方を制御する、溶鉄の製造方法。
  ここで、本発明において「押し出し機の移動量」とは、押し出し機が予熱室側から溶解室側へと一回移動する際の、この押し出し方向に沿った押し出し機の移動距離を意味する。また、「押し出し機を移動させる時間間隔」とは、ある回で押し出し機の移動を開始した時間(T0START)から、次回に押し出し機の移動を開始する時間(T1START)までの間隔を意味する(図2A及び図2Bを参照)。
  2.前記押し出し工程において、前記映像装置から得られた視覚情報により、前記冷鉄源が前記予熱室から前記溶解室へと供給されていないことが確認された場合に、前記移動量の増大及び前記時間間隔の低減のいずれか一方又は両方を行う、前記1に記載の溶鉄の製造方法。
  3.前記押し出し工程において、更に、前記押し出し機の押し出し圧力が40MPa以下である場合に、前記移動量の増大及び前記時間間隔の低減のいずれか一方又は両方を行う、前記1又は2に記載の溶鉄の製造方法。
  本発明によれば、電気炉において冷鉄源を溶解室へ安定的かつ確実に供給することができる。このことは、冷鉄源の溶解効率を高めること、電力原単位を効果的に低減すること、操業トラブルを防止することなどに繋がり、産業上格別の効果を奏する。
本発明の一実施形態で使用する、映像装置を備えた電気炉の縦断面図である。 押し出し機の移動量及び押し出し機を移動させる時間間隔を説明する概念図であり、図2Aは、あるタイミングでの押し出しの挙動、図2Bは、該あるタイミングの次のタイミングでの押し出しの挙動を示す。
  次に、本発明の実施形態について、具体的に説明する。
  以下の実施形態は、本発明の好適な一例を示すものであり、これらの例によって何ら限定されるものではない。
 (溶鉄の製造方法)
  本発明の溶鉄の製造方法は、所定の構造を有する電気炉を用いる方法であって、予熱室で予熱された冷鉄源を押し出し機によって溶解室に供給する押し出し工程と、溶解室に供給された冷鉄源をアーク熱によって溶解して溶鉄を得る溶解工程とを有し、任意にその他の工程を更に有し得る。また、本発明の押し出し工程では、溶解室内を観察するための映像装置から得られた視覚情報に基づき、押し出し機の操作条件を制御する。
  溶解室内の視覚情報に基づいて押し出し機の操作条件を適切かつ適時に制御することにより、冷鉄源を溶解室へ安定的かつ確実に供給することができ、電気炉での電力消費を効果的に低減することができる。
 [電気炉]
  以下、本発明が好適に用い得る電気炉について、図を参照して詳述する。
  電気炉1は、冷鉄源15をアーク18からの熱によって溶解して溶鉄16を得る溶解室2と、冷鉄源15を予熱し、予熱された冷鉄源15を押し出し機10で溶解室2に供給するための予熱室3と、任意の位置に設置された映像装置30とを備える。
  原料となる冷鉄源15は、供給用バケット14に装入され、走行台車23を介して所望の冷鉄源供給口19の上方まで運ばれる。次に、冷鉄源供給口19を開けて、冷鉄源15を上方から予熱室3へと供給する。
  予熱室3に供給された冷鉄源15は、任意の方法で予熱される。例えば、先に溶解室2で発生した高熱の排ガスを予熱室3へと通過させることにより冷鉄源15を予熱すれば、製造効率を高めることができる。ダクト20により排ガスを吸引して予熱室3内を通過させ、余分な排ガスはダクト20を通じて排気してもよい。
  予熱された冷鉄源15は、押し出し機10によって連続的に溶解室2へと供給される。押し出し機10は、その先端を溶解室側へと繰り返し移動させることにより、予熱室3内の冷鉄源15を溶解室へ押し出し続ける。押し出し機10による溶解室2への冷鉄源15の供給量及び供給タイミングは、通常、押し出し機10の移動量と、押し出し機10を移動させる時間間隔によって調整可能である。押し出し機10の移動量が大きいほど、又は、押し出し機10を移動させる時間間隔が短いほど、冷鉄源15の供給が促進される。また、これらの移動量及び時間間隔は、操業効率の観点から、ある値に初期設定した後は自動運転させることが常である。しかしながら本発明では、後に詳述のとおり、冷鉄源15が溶解室2へと供給されている様子をその場で確認し、確認結果に基づいて、同時進行的に押し出し機10の操作条件を制御することが肝要である。
  なお、押し出し機10は、通常はシリンダー構造である。
  溶解室2は、炉壁4及び炉蓋5で区画されており、通常、アーク18を発生させて加熱するための電極6、所望の高温状態を維持するための酸素吹き込みランス7、及び炭材吹き込みランス8、低温箇所を局所的に加熱するためのバーナー9を備えている。溶解室2に供給された冷鉄源15は、アーク熱によって溶解して溶鉄16と溶融スラグ17とになる。得られた溶鉄16は、出湯用扉21を開けて出湯口12から出鋼することができる。また、溶融スラグ17は、出滓用扉22を開けて出滓口13から排滓することができる。
  冷鉄源15としては、通常、製鉄所で発生する自所屑、市中から発生するスクラップ、溶銑を固めた銑鉄などがあるが、これらに限定されない。製鉄所で発生する自所屑としては、例えば、連続鋳造や造塊法で鋳造される鋳片の非定常部(鋳込み開始の部分や鋳込み終了時に発生する部分)、鋼帯などの鋼材の圧延で生じるクロップなどがある。また、市中から発生するスクラップとしては、建設鋼材(H型鋼など)、自動車の鋼材、缶類などのようなリサイクル材がある。また、溶銑を固めた銑鉄とは、高炉などの溶鉱炉において、鉄鉱石及びコークスなどを原料として得られた溶銑を出銑し、固めたものである。
  映像装置30は、特に限定されず、観察対象を撮像可能な装置であればよく、通常はレンズ及びカメラを備える。映像装置30の先端に設置したレンズ(図示せず)の周囲に、任意の流速の冷却用気体を流すことが好ましい。映像装置30を適切に冷却することにより、電気炉内の高温にも耐え得るようにすること、スラグや溶鋼が飛散してきた場合に視野が狭まるのを防ぐことができる。冷却用気体としては、空気、並びに、窒素などの不活性ガスが挙げられる。また、例えば炉壁4に映像装置30を設置する場合は、炉壁4に対しても、水冷又は空冷などの冷却を行うことが好ましい。
  映像装置30は、予熱室3から溶解室2へと冷鉄源15が押し出される挙動を良好に把握する観点からは、溶解室2を区画する炉壁4又は炉蓋5に設置することが好ましく、炉壁4に設置することがより好ましい。また、上記同様の観点から、溶解室2の中でも、スラグや溶鋼が飛散し難い適切な高さに取り付けるのが好ましい。設置方法は特に限定されないが、映像装置30を炉壁4に設置する場合、映像装置30を、炉壁4に空けた孔(図示せず)に通して取り付ければ、レンズを溶解室2内に位置させつつカメラを電気炉1の外部に位置させることができ、鮮明な映像視野と簡便な操作性とを両立できるので好適である。映像装置30で取り込んだ映像は、一般的にはケーブル(図示せず)を介して、オペレーターが操作する操作室のモニターや記録装置(いずれも、図示せず)へ繋ぐ。
 [押し出し工程]
  本発明における押し出し工程では、予熱室3で予熱された冷鉄源15を、予熱室3に設けられた押し出し機10によって、溶解室2へと押し出して供給する。1回の押し出しによる冷鉄源15の供給量及び供給タイミングは、押し出し機10の移動量と、押し出し機10を移動させる時間間隔とに支配される。そして、通常の操業では、この移動量及び時間間隔の値について、冷鉄源の種類や予熱状況に応じて設定パターンを複数有しており、適した設定パターンを採用して自動運転する。本発明では、映像装置30から得られた視覚情報の結果、冷鉄源15が溶解室2内に問題なく供給される様子が確認されている間は、移動量及び/又は時間間隔の設定パターンを変更することなく自動運転を続ける、という制御を行うことができる。
  しかし、上述したように、何らかの原因によって冷鉄源15の供給が滞ることがある。具体的には、映像装置30からの視覚情報として、例えば、溶解室2への入る冷鉄源15の動きが鈍く断続的になったり、完全に止まったり、又は、溶解室2内の溶鉄16の界面が所望の位置まで上がらなかったりする様子が確認されることがある。このように、映像装置30によって、冷鉄源15が予熱室3から溶解室2へと供給されていないことが確認された場合、押し出し機10の移動量及び/又は時間間隔の設定パターンを即時に変更して制御することができる。移動量及び/又は時間間隔を異なる値に設定する場合は、自動運転から手動設定に一時的に切り替え、再び冷鉄源15の良好な供給が確認されたら、また通常の設定パターンにて自動運転すればよい。
  移動量
  映像装置30から得られた視覚情報に基づき、押し出し機10の移動量を変更する/しないを制御することは本発明の特徴の一つである。特に、映像装置30によって冷鉄源15が正常に供給されていない事態が確認された場合は、移動量を増大させて押し出し機10をより長い距離押し出すことにより、冷鉄源15のスムーズな動きを促進することが好ましい。例えば、1トンの冷鉄源15を意図的に移動させるために、押し出し機10の移動量を10%程度増大させることができる。
  変更後の移動量は、冷鉄源15が再び正常に供給されるまでの間採用すればよい。押し出し機10の移動量は、位置センサーにより常時モニタリングすることが可能である。
  時間間隔
  映像装置30から得られた視覚情報に基づき、押し出し機10を移動させる時間間隔を変更する/しないを制御することも本発明の特徴の一つである。特に、映像装置30によって冷鉄源15が正常に供給されていない事態が確認された場合は、時間間隔を低減させて押し出し機10をある時間内により多くの回数押し出すことにより、冷鉄源15のスムーズな動きを促進することが好ましい。例えば、1トンの冷鉄源15を意図的に移動させるために、押し出し機10を移動させる時間間隔を20%程度短縮させることができる。
  変更後の時間間隔は、冷鉄源15が再び正常に供給されるまでの間採用すればよい。押し出し機10の時間間隔にも、タイマー及び位置センサーにより常時モニタリングすることが可能である。
  圧力
  押し出し機10にかかる圧力は常時測定することができる。本発明者らが更に検討したところ、映像装置30からの視覚情報と、押し出し機10が溶解室2側へと移動する際の押し出し圧力とには、相関関係があることも判明した。すなわち、映像装置30からの視覚情報において、冷鉄源15が正常に供給されていない、具体的には、次回の押し出しタイミングまで冷鉄源15が完全に止まっている、又は、その動きが鈍い場合は、押し出し機10の押し出し圧力が40MPa以下であることが新たに判明した。
  映像装置30からの視覚情報は、映像装置30の視野に入るように存在する冷鉄源15の表面に関する情報が主である。したがって、例えば、この表面よりも冷鉄源15の塔内部に存在する冷鉄源15の状況まで映像装置30で確認することは困難であり、冷鉄源15の塔の奥行き全体が移動しているかを判断することは困難である。しかしながら、映像装置30からの視覚情報に加え、押し出し機10にかかる押し出し圧力をも指標とすれば、溶解室2への冷鉄源15の正常な供給をより正確に制御可能となる。つまり、映像装置30からの視覚情報において冷鉄源15が正常に供給されておらず、かつ、押し出し機10の押し出し圧力が40MPa以下である場合に、上述のとおり、押し出し機10の移動量を増大させる、及び/又は、押し出し機10を移動させる時間間隔を低減させることが好ましい。
 [溶解工程]
  本発明における溶解工程では、溶解室2において、溶解室2に供給された、予熱された冷鉄源15をアーク熱によって溶解して溶鉄を得る。具体的な溶解方法は、電気炉について上述したとおりである。本発明では、映像装置30を用いて溶解室2内を観察しながら、冷鉄源15を予熱室3から溶解室2へと滞りなく供給すべく押し出し機10の操作条件を操業中に適時制御するため、溶解工程で要する電力消費を低減させることができる。
 [その他の工程]
  その他の工程としては、例えば、予熱工程、出鋼工程などが挙げられる。
  予熱工程では、押し出し工程に先立ち、冷鉄源15を任意の加熱方法で予熱して、後の溶解工程の効率を高めることができる。また、上述のとおり、先に溶解室2で発生した高温の排ガスを予熱工程に利用すれば、予熱工程で要する電力消費も低減させることができる。
  出鋼工程では、溶解工程の後に、溶解室2に溜まった溶鉄16を出湯口12を介して電気炉1の外部に取り出すことができる。
  以下、本発明について実施例に基づき具体的に説明する。なお、以下の実施例は、本発明の好適な一例を示すものであり、本発明を何ら限定するものではない。また、以下の実施例は、本発明の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、そのような態様も本発明の技術的範囲に含まれる。
  図1に示す溶解室2と、予熱室3と、押し出し機10と、溶解室2に設置された映像装置30とを備えた電気炉において、表1に記載される押し出し条件に従って、冷鉄源を溶解して溶鉄を製造した。表1に記載される押し出し条件のうち、移動量及び時間間隔は人為的に設定した値であり、圧力は、これら設定された移動量及び時間間隔で押し出した結果、押し出し機10に結果的にかかった値である。この電気炉の設備諸元を以下に示す。
   溶解室の溶鉄容量:130トン
   電力:交流50Hz
   トランス容量:75MVA
   電極数:3
  映像装置30は、溶鉄130トンが得られた場合の設計上の溶鉄界面より500mm高い位置の炉壁4に孔を設け、その孔を介して設置した。映像装置30の外表面に沿って、冷却用エアーとして、工場内で供給準備されているエアーを200NL/分の流量で流した。また、そのエアーの乾燥には加熱によるドライヤー方式を用いた。映像装置30からの視覚情報(映像)は、電気炉1を操業する司令室及び電気制御室までケーブルを延長させ、別個の記録媒体に保存した。司令室には、電気炉1を操業するオペレーターが映像装置30からの映像を直接監視できるようにモニターを新規に準備した。また電気制御室には、押し出し機10の移動量、押し出し機10を移動させる時間間隔、押し出し圧力のデータが転送され、これらのデータと映像情報とを同時に確認できるようにした。
  従来例1
  従来例1は、映像装置を使用しない製造方法において、通常の電力原単位の範囲内で操業した例である。
  あるタイミングでの押し出し機(シリンダー)に設定された1回の移動量は1000mm、移動させる時間間隔は20秒であった。また、この条件にて押し出した際にシリンダーにかかった圧力は58MPaであった。
  次回のタイミングでのシリンダーの移動量及び時間間隔を変更することなく、引き続き20秒後に移動量1000mmでシリンダーを押し出すと、シリンダーにかかった圧力は64MPaであった。このように、押し出し条件を変更することなく1チャージ分の溶鉄を得た。
  映像装置を設置していないので冷鉄源の供給状態を確認することができないものの、オペレーターの経験上、従来例1では、冷鉄源が一定間隔で一定量、溶解室へ想定通りに供給されていたと考えられた。その結果、電気炉の操業において1チャージあたりの電力原単位は333kWh/tであった。
  従来例2
  従来例2は、映像装置を使用しない製造方法において、電力原単位が通常よりも高まった例である。
  あるタイミングでのシリンダーに設定された1回の移動量は1000mm、移動させる時間間隔は20秒であった。また、この条件にて押し出した際にシリンダーにかかった圧力は33MPaと従来例1よりも低かった。
  映像装置を使用していないため、圧力が通常よりも低くなった原因が明らかとならないまま、次回のタイミングでのシリンダーの移動量及び時間間隔を変更することなく、引き続き20秒後に移動量1000mmでシリンダーを押し出すと、シリンダーにかかった圧力は31MPaと低いままであった。このように、押し出し条件を変更することなく1チャージ分の溶鉄を得た。1チャージ分の溶鉄を得るのに要した溶解時間は、設計上想定される時間よりも長くなった。
  映像装置を設置していないので冷鉄源の供給状態を確認することができないものの、従来例2では、何らかの原因で冷鉄源が溶解室へ想定通り供給されず、冷鉄源を効率的に溶解できなかったことが考えられた。その結果、1チャージあたりの電力原単位は362kWh/tと従来例1よりも悪化した。
  比較例
  比較例は、映像装置を使用した製造方法において、映像装置から得られる視覚情報に基づいて押し出し条件を制御しなかった例である。
  あるタイミングでのシリンダーに設定された1回の移動量は1000mm、移動させる時間間隔は20秒であった。また、この条件にて押し出した際にシリンダーにかかった圧力は34MPaと従来例1よりも低かった。実際、映像装置から得られた視覚情報から、冷鉄源が溶解室へと移動せずに停滞している様子が確認された。
  映像装置により冷鉄源が溶解室へ正常に供給されていないことが確認されたにもかかわらず、次回のタイミングでのシリンダーの移動量及び時間間隔を変更することなく、引き続き20秒後に移動量1000mmでシリンダーを押し出すと、シリンダーにかかった圧力は34MPaと低いままであった。実際、映像装置から得られた視覚情報から、冷鉄源が溶解室へと移動せずになお停滞している様子が確認された。このように、押し出し条件を変更することなく1チャージ分の溶鉄を得た。1チャージ分の溶鉄を得るのに要した溶解時間は、設計上想定される時間よりも長くなった。その結果、1チャージあたりの電力原単位は347kWh/tと従来例1よりも悪化した。よって総合評価を×(不合格)とした。
  発明例1~6は、映像装置を使用した製造方法において、映像装置から得られる視覚情報に基づいて押し出し条件を制御した例である。
  発明例1
  あるタイミングでのシリンダーに設定された1回の移動量は1000mm、移動させる時間間隔は20秒であった。また、この条件にて押し出した際にシリンダーにかかった圧力は30MPaと従来例1よりも低かった。実際、映像装置から得られた視覚情報から、冷鉄源が溶解室へと移動せずに停滞している様子が確認された。
  そこで、次回のタイミングでのシリンダーを移動させる時間間隔を5秒に短縮した。1回のシリンダーの移動量は1000mmのまま、時間間隔を5秒に短縮した設定パターンを、映像装置にて冷鉄源が正常に供給され始めるのが確認されるまで数回繰り返した。冷鉄源が正常に供給され始めるのが確認された回におけるシリンダーにかかった圧力は58MPaに回復した。その後、一旦、時間間隔を20秒に戻したが、同様に冷鉄源の停滞が確認された(このとき、シリンダー圧力は40MPa以下であった)ため、上記と同様に、時間間隔を一時的に5秒に変更した。この操作を繰り返しながら、1チャージ分の溶鉄を得た。その結果、1チャージあたりの電力原単位は327kWh/tと従来例1よりも良好であった。よって総合評価を○(合格)とした。
  発明例2
  あるタイミングでのシリンダーに設定された1回の移動量は1000mm、移動させる時間間隔は20秒であった。また、この条件にて押し出した際にシリンダーにかかった圧力は34MPaと従来例1よりも低かった。実際、映像装置から得られた視覚情報から、冷鉄源が溶解室へと移動せずに停滞している様子が確認された。
  そこで、次回のタイミングでのシリンダーの移動量を1200mmに増大した。シリンダーを移動させる時間間隔は20秒のまま、移動量を1200mmに増大した設定パターンを、映像装置にて冷鉄源が正常に供給され始めるのが確認されるまで数回繰り返した。冷鉄源が正常に供給され始めるのが確認された回におけるシリンダーにかかった圧力は62MPaに回復した。その後、一旦、移動量を1000mmに戻したが、同様に冷鉄源の停滞が確認された(このとき、シリンダー圧力は40MPa以下であった)ため、上記と同様に、移動量を一時的に1200mmに変更した。この操作を繰り返しながら、1チャージ分の溶鉄を得た。その結果、1チャージあたりの電力原単位は329kWh/tと従来例1よりも良好であった。よって総合評価を○(合格)とした。
  発明例3
  あるタイミングでのシリンダーに設定された1回の移動量は1000mm、移動させる時間間隔は20秒であった。また、この条件にて押し出した際にシリンダーにかかった圧力は31MPaと従来例1よりも低かった。実際、映像装置から得られた視覚情報から、冷鉄源が溶解室へと移動せずに停滞している様子が確認された。
  そこで、次回のタイミングでのシリンダーを移動させる時間間隔を5秒に短縮し、かつ、シリンダーの移動量を1200mmに増大した。この設定パターンを、映像装置にて冷鉄源が正常に供給され始めるのが確認されるまで数回繰り返した。冷鉄源が正常に供給され始めるのが確認された回におけるシリンダーにかかった圧力は67MPaに回復した。その後、一旦、時間間隔を20秒かつ移動量を1000mmに戻したが、同様に冷鉄源の停滞が確認された(このとき、シリンダー圧力は40MPa以下であった)ため、上記と同様に、時間間隔及び移動量をそれぞれ一時的に5秒及び1200mmに変更した。この操作を繰り返しながら、1チャージ分の溶鉄を得た。その結果、1チャージあたりの電力原単位は326kWh/tと従来例1よりも良好であった。よって総合評価を○(合格)とした。
  発明例4
  あるタイミングでのシリンダーに設定された1回の移動量は1000mm、移動させる時間間隔は20秒であった。また、この条件にて押し出した際にシリンダーにかかった圧力は32MPaと従来例1よりも低かった。実際、映像装置から得られた視覚情報から、冷鉄源が溶解室へと移動してはいるものの、その動きが鈍い様子が確認された。
  そこで、次回のタイミングでのシリンダーの移動量を1200mmに増大した。シリンダーを移動させる時間間隔は20秒のまま、移動量を1200mmに増大した設定パターンを、映像装置にて冷鉄源が正常に供給され始めるのが確認されるまで数回繰り返した。冷鉄源が正常に供給され始めるのが確認された回におけるシリンダーにかかった圧力は66MPaに回復した。その後、一旦、移動量を1000mmに戻したが、同様に冷鉄源の移動が鈍くなる現象が確認された(このとき、シリンダー圧力は40MPa以下であった)ため、上記と同様に、移動量を一時的に1200mmに変更した。この操作を繰り返しながら、1チャージ分の溶鉄を得た。その結果、1チャージあたりの電力原単位は319kWh/tと従来例1よりも良好であった。よって総合評価を○(合格)とした。
  発明例5
  あるタイミングでのシリンダーに設定された1回の移動量は1000mm、移動させる時間間隔は20秒であった。また、この条件にて押し出した際にシリンダーにかかった圧力は35MPaと従来例1よりも低かった。実際、映像装置から得られた視覚情報から、冷鉄源が溶解室へと移動してはいるものの、その動きが鈍い様子が確認された。
  そこで、次回のタイミングでのシリンダーを移動させる時間間隔を5秒に短縮し、かつ、シリンダーの移動量を1200mmに増大した。この設定パターンを、映像装置にて冷鉄源が正常に供給され始めるのが確認されるまで数回繰り返した。冷鉄源が正常に供給され始めるのが確認された回におけるシリンダーにかかった圧力は71MPaに回復した。その後、一旦、時間間隔を20秒かつ移動量を1000mmに戻したが、同様に冷鉄源の移動が鈍くなる現象が確認された(このとき、シリンダー圧力は40MPa以下であった)ため、上記と同様に、時間間隔及び移動量をそれぞれ一時的に5秒及び1200mmに変更した。この操作を繰り返しながら、1チャージ分の溶鉄を得た。その結果、1チャージあたりの電力原単位は315kWh/tと従来例1よりも良好であった。よって総合評価を○(合格)とした。
  発明例6
  あるタイミングでのシリンダーに設定された1回の移動量は1000mm、移動させる時間間隔は20秒であった。また、この条件にて押し出した際にシリンダーにかかった圧力は30MPaと従来例1よりも低かった。実際、映像装置から得られた視覚情報から、冷鉄源が溶解室へと移動してはいるものの、その動きが鈍い様子が確認された。
  そこで、次回のタイミングでのシリンダーを移動させる時間間隔を5秒に短縮した。1回のシリンダーの移動量は1000mmのまま、時間間隔を5秒に短縮した設定パターンを、映像装置にて冷鉄源が正常に供給され始めるのが確認されるまで数回繰り返した。冷鉄源が正常に供給され始めるのが確認された回におけるシリンダーにかかった圧力は69MPaに回復した。その後、一旦、時間間隔を20秒に戻したが、同様に冷鉄源の移動が鈍くなる現象が確認された(このとき、シリンダー圧力は40MPa以下であった)ため、上記と同様に、時間間隔を一時的に5秒に変更した。この操作を繰り返しながら、1チャージ分の溶鉄を得た。その結果、1チャージあたりの電力原単位は318kWh/tと従来例1よりも良好であった。よって総合評価を○(合格)とした。
Figure JPOXMLDOC01-appb-T000001
  表1から明らかなように、電気炉において、映像装置から得られた溶解室内の視覚情報に基づいて、押し出し機の押し出し条件を適時制御しながら操業することにより、冷鉄源の供給が想定外の事態となった場合であっても、冷鉄源を溶解室へ良好に供給し続け、高い効率で溶鉄を得られた。またその結果、製造コストを大きく占める電力原単位を大幅に低減させることができ、効果は非常に大きかった。
  本発明によれば、電気炉において冷鉄源を溶解室へ安定的かつ確実に供給し、冷鉄源の溶解効率を高めることができる。
1  電気炉
2  溶解室
3  予熱室
4  炉壁
5  炉蓋
6  電極
7  酸素吹き込みランス
8  炭材吹き込みランス
9  バーナー
10 押し出し機
12 出湯口
13 出滓口
14 供給用バケット
15 冷鉄源
16 溶鉄
17 溶融スラグ
18 アーク
19 冷鉄源供給口
20 ダクト
21 出湯用扉
22 出滓用扉
23 走行台車
30 映像装置

Claims (3)

  1.   予熱室と溶解室とを備える電気炉を用いる、溶鉄の製造方法であって、
      前記電気炉が、前記予熱室に設けられた押し出し機と、前記溶解室内を観察するための映像装置とを更に備え、
      前記予熱室において、前記予熱室で予熱された冷鉄源を前記押し出し機によって前記溶解室に供給する押し出し工程と、
      前記溶解室において、前記溶解室に供給された冷鉄源をアーク熱によって溶解して溶鉄を得る溶解工程と、を有し、
      前記押し出し工程において、前記映像装置から得られた視覚情報に基づき、前記押し出し機の移動量及び前記押し出し機を移動させる時間間隔のいずれか一方又は両方を制御する、溶鉄の製造方法。
  2.   前記押し出し工程において、前記映像装置から得られた視覚情報により、前記冷鉄源が前記予熱室から前記溶解室へと供給されていないことが確認された場合に、前記移動量の増大及び前記時間間隔の低減のいずれか一方又は両方を行う、請求項1に記載の溶鉄の製造方法。
  3.   前記押し出し工程において、更に、前記押し出し機の押し出し圧力が40MPa以下である場合に、前記移動量の増大及び前記時間間隔の低減のいずれか一方又は両方を行う、請求項1又は2に記載の溶鉄の製造方法。
PCT/JP2022/003174 2021-02-10 2022-01-27 映像装置を備える電気炉を用いた溶鉄の製造方法 WO2022172770A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202280013906.XA CN116867914A (zh) 2021-02-10 2022-01-27 使用具备影像装置的电炉的铁水的制造方法
JP2022534342A JP7126081B1 (ja) 2021-02-10 2022-01-27 映像装置を備える電気炉を用いた溶鉄の製造方法
EP22752599.5A EP4273276A4 (en) 2021-02-10 2022-01-27 METHOD FOR MANUFACTURING MILD STEEL USING AN ELECTRIC FURNACE PROVIDED WITH AN IMAGING DEVICE
US18/263,538 US20240085110A1 (en) 2021-02-10 2022-01-27 Method of producing molten iron using electric furnace including video device
MX2023009357A MX2023009357A (es) 2021-02-10 2022-01-27 Metodo de produccion de hierro fundido utilizando un horno electrico que incluye un dispositivo de video.
KR1020237028148A KR20230132833A (ko) 2021-02-10 2022-01-27 영상 장치를 구비하는 전기로를 사용한 용철의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021019718 2021-02-10
JP2021-019718 2021-02-10

Publications (1)

Publication Number Publication Date
WO2022172770A1 true WO2022172770A1 (ja) 2022-08-18

Family

ID=82838741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003174 WO2022172770A1 (ja) 2021-02-10 2022-01-27 映像装置を備える電気炉を用いた溶鉄の製造方法

Country Status (8)

Country Link
US (1) US20240085110A1 (ja)
EP (1) EP4273276A4 (ja)
JP (1) JP7126081B1 (ja)
KR (1) KR20230132833A (ja)
CN (1) CN116867914A (ja)
MX (1) MX2023009357A (ja)
TW (1) TWI789232B (ja)
WO (1) WO2022172770A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10292990A (ja) 1997-02-24 1998-11-04 Nkk Corp 冷鉄源の溶解方法および溶解設備
JP2001074377A (ja) * 1999-07-08 2001-03-23 Nkk Corp 冷鉄源の溶解方法及び溶解設備
JP2002121611A (ja) * 2000-10-18 2002-04-26 Nkk Corp 冷鉄源の溶解方法及び溶解設備
JP2011069606A (ja) 2009-08-27 2011-04-07 Jp Steel Plantech Co アーク溶解設備および当該アーク溶解設備を用いた溶湯の製造方法
JP2018070926A (ja) 2016-10-27 2018-05-10 Jfe条鋼株式会社 電気炉の運転制御システムおよび電気炉ならびに電気炉の運転制御方法
CN109517941A (zh) * 2018-12-29 2019-03-26 中冶京诚工程技术有限公司 一种水平连续加料竖式废钢预热装置及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250724A (ja) * 2003-02-18 2004-09-09 Jfe Engineering Kk 効率的金属溶解方法及び装置
JP2011033217A (ja) * 2009-07-30 2011-02-17 Jp Steel Plantech Co アーク溶解設備及びアーク溶解設備を用いた溶湯の製造方法
JP5700506B2 (ja) * 2010-08-09 2015-04-15 スチールプランテック株式会社 アーク溶解設備及びアーク溶解設備を用いた溶湯の製造方法
CN107340040B (zh) * 2017-07-10 2019-06-18 浙江大学 一种基于分布参数模型的感应电炉铁水在线称重方法
CN110273042B (zh) * 2019-07-08 2021-05-07 湖南福华信息工程有限公司 一种资源化利用炼钢炉监测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10292990A (ja) 1997-02-24 1998-11-04 Nkk Corp 冷鉄源の溶解方法および溶解設備
JP2001074377A (ja) * 1999-07-08 2001-03-23 Nkk Corp 冷鉄源の溶解方法及び溶解設備
JP2002121611A (ja) * 2000-10-18 2002-04-26 Nkk Corp 冷鉄源の溶解方法及び溶解設備
JP2011069606A (ja) 2009-08-27 2011-04-07 Jp Steel Plantech Co アーク溶解設備および当該アーク溶解設備を用いた溶湯の製造方法
JP2018070926A (ja) 2016-10-27 2018-05-10 Jfe条鋼株式会社 電気炉の運転制御システムおよび電気炉ならびに電気炉の運転制御方法
CN109517941A (zh) * 2018-12-29 2019-03-26 中冶京诚工程技术有限公司 一种水平连续加料竖式废钢预热装置及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4273276A4

Also Published As

Publication number Publication date
MX2023009357A (es) 2023-08-16
EP4273276A4 (en) 2024-08-07
KR20230132833A (ko) 2023-09-18
TW202246530A (zh) 2022-12-01
JP7126081B1 (ja) 2022-08-26
EP4273276A1 (en) 2023-11-08
TWI789232B (zh) 2023-01-01
US20240085110A1 (en) 2024-03-14
CN116867914A (zh) 2023-10-10
JPWO2022172770A1 (ja) 2022-08-18

Similar Documents

Publication Publication Date Title
CA2852500C (en) Reduction processing apparatus for steel-making slag and reduction processing system for steel-making slag
EP2877606B1 (en) Starting a smelting process
JP7126081B1 (ja) 映像装置を備える電気炉を用いた溶鉄の製造方法
JP2827126B2 (ja) 溶湯・溶滓の連続排出方法及びその装置
US20180112917A1 (en) Slag notch
RU2817084C1 (ru) Способ производства расплавленного чугуна с использованием электропечи, содержащей видеоустройство
JP3204202B2 (ja) 冷鉄源の溶解方法および溶解設備
JP3645306B2 (ja) 電気炉設備
JP3746921B2 (ja) 電気溶融炉の運転方法
JP4307686B2 (ja) 原料供給装置および還元鉄製造方法
JP5411466B2 (ja) 鉄浴式溶解炉およびそれを用いた溶鉄製造方法
WO2023112505A1 (ja) 溶鉄の製造方法
WO2022172771A1 (ja) 映像装置付き電気炉
JP2019200012A (ja) 電気炉の水冷パネルの冷却方法
JPS63137113A (ja) 溶融還元方法及び装置
AU768223B2 (en) A direct smelting process
JP2001207208A (ja) 冷鉄源の溶解方法
JPH08176639A (ja) アーク炉製鋼法
JP2001172713A (ja) 冷鉄源の溶解方法
JP2001220618A (ja) 冷鉄源の溶解方法
JP2000080420A (ja) 銅製錬自溶炉におけるスラグの管理方法
JPH021899B2 (ja)
JP2001255067A (ja) 冷鉄源の溶解設備及び溶解方法
JPH03238151A (ja) 溶鋼槽内溶鋼の加熱方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022534342

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752599

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18263538

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022752599

Country of ref document: EP

Effective date: 20230731

WWE Wipo information: entry into national phase

Ref document number: 202280013906.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/009357

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023015894

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237028148

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317055428

Country of ref document: IN

Ref document number: 1020237028148

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 112023015894

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230808

NENP Non-entry into the national phase

Ref country code: DE