WO2023112505A1 - 溶鉄の製造方法 - Google Patents
溶鉄の製造方法 Download PDFInfo
- Publication number
- WO2023112505A1 WO2023112505A1 PCT/JP2022/040024 JP2022040024W WO2023112505A1 WO 2023112505 A1 WO2023112505 A1 WO 2023112505A1 JP 2022040024 W JP2022040024 W JP 2022040024W WO 2023112505 A1 WO2023112505 A1 WO 2023112505A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iron source
- preheating
- exhaust gas
- cold iron
- preheated
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 622
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 310
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 238000002844 melting Methods 0.000 claims abstract description 97
- 230000008018 melting Effects 0.000 claims abstract description 97
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000012790 confirmation Methods 0.000 claims description 36
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000007789 gas Substances 0.000 description 149
- 238000001125 extrusion Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 229910000831 Steel Inorganic materials 0.000 description 9
- 239000010959 steel Substances 0.000 description 9
- 238000010079 rubber tapping Methods 0.000 description 8
- 239000002893 slag Substances 0.000 description 8
- 238000009434 installation Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 229910000805 Pig iron Inorganic materials 0.000 description 4
- 238000007664 blowing Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B11/00—Making pig-iron other than in blast furnaces
- C21B11/10—Making pig-iron other than in blast furnaces in electric furnaces
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C5/5211—Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C5/527—Charging of the electric furnace
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/56—Manufacture of steel by other methods
- C21C5/562—Manufacture of steel by other methods starting from scrap
- C21C5/565—Preheating of scrap
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B3/00—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
- F27B3/08—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces heated electrically, with or without any other source of heat
- F27B3/085—Arc furnaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B3/00—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
- F27B3/10—Details, accessories, or equipment peculiar to hearth-type furnaces
- F27B3/18—Arrangements of devices for charging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D13/00—Apparatus for preheating charges; Arrangements for preheating charges
- F27D13/002—Preheating scrap
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D19/00—Arrangements of controlling devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/0025—Charging or loading melting furnaces with material in the solid state
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/04—Ram or pusher apparatus
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C2005/5288—Measuring or sampling devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a method for efficiently melting a cold iron source to produce molten iron in an electric furnace having a preheating chamber and a melting chamber.
- molten iron is obtained by melting cold iron sources such as scrap with arc heat, so a large amount of electric power is consumed to generate arc heat.
- the method of preheating the cold iron source before melting with a burner using fossil fuel, etc. A method of preheating using high-temperature exhaust gas generated during melting of the source; a method of blowing coke into the cold iron source during melting as an auxiliary heat source; and other methods are adopted.
- Patent Document 1 in an electric furnace in which a preheating shaft is directly connected above a melting chamber, a cold iron source is connected to the preheating shaft so as to maintain a state in which the cold iron source exists continuously between the melting chamber and the preheating shaft.
- Techniques are disclosed for arc melting a source of cold iron in a melting chamber with a continuous or intermittent supply.
- the cold iron source preheated by high-temperature exhaust gas melts into the melted molten iron using an electric furnace that does not particularly require a device for conveying and supplying the cold iron source to the melting chamber. This effectively dissolves the cold iron source.
- Patent Document 2 in steelmaking equipment in which an electric furnace and a scrap preheating device are separated by a bypass pipe, when preheating scrap, the temperature of the exhaust gas on the entrance side to the scrap preheating device is is measured, the amount of exhaust gas to be sent to the scrap preheating device is determined, and the supply amount of the exhaust gas is controlled by the number of revolutions of the fan, thereby preheating the scrap to a predetermined temperature.
- Patent Document 3 in a facility configuration having a duct for charging exhaust gas emitted from an electric furnace into a preheating tank containing scrap, with the aim of protecting the preheating tank and preventing scrap from melting, It is disclosed to measure the temperature of the exhaust gas on the inlet side and the outlet side of the preheating tank, control the opening and closing of the damper according to the temperature, and preheat the scrap.
- Patent Document 1 The technology described in Patent Document 1 is basically preheated by the exhaust gas of the cold iron source and its own weight, so that the cold iron source is gradually melted and continuously supplied to the melting chamber.
- Patent Literature 1 describes the concept of continuously or intermittently supplying the cold iron source from the preheating chamber to the melting chamber, it does not disclose specific control indicators regarding the supply of the cold iron source.
- the cold iron source is excessively preheated and remains as a large lump, or the cold iron source is melted while preheating is insufficient. An unintended situation may occur, such as supplying a room.
- Patent Document 1 it is not possible to grasp the excess or deficiency of preheating of the cold iron source, and when the excess or deficiency of preheating of the cold iron source occurs, the power consumption in the electric furnace increases. It turned out that there were cases. Therefore, means for grasping the preheating status of the cold iron source is required.
- Patent Document 2 changes and controls the amount of exhaust gas itself for preheating scrap while measuring the temperature of the exhaust gas on the inlet side of the scrap preheating device arranged away from the electric furnace. It is something that makes However, as a result of investigation by the present inventors, it was found that there are cases in which the scrap in the scrap preheating device is not preheated to the calculated temperature, which also increases the power consumption of the electric furnace. . However, even in Patent Document 2, it is not possible to grasp the actual excess or deficiency of preheating of the scrap, and a means capable of grasping the preheating state of the scrap is required.
- Patent Document 3 is a technology in which the exhaust gas discharged from the electric furnace is directly introduced into the preheating furnace through a duct, and the scrap is preheated while being controlled by the exhaust gas damper.
- the main aim is to keep the temperatures of both the preheating tank below the set value from the viewpoint of protecting the preheating tank and preventing the melting of the scrap. It is necessary to accurately grasp the preheating status of the scrap.
- the present invention has been made in view of the above circumstances, and it is possible to obtain molten iron with a low power consumption rate by grasping the preheating status of the cold iron source and preheating the cold iron source efficiently and reliably. It is an object of the present invention to provide a method for manufacturing molten iron by an electric furnace.
- the inventors of the present invention have extensively studied methods capable of solving the above problems.
- a method of confirming after the fact that the cold iron source has actually been preheated to a predetermined temperature by the exhaust gas (preheating This led to the idea of providing a confirmation step).
- the sensible heat of the exhaust gas is effectively transferred to the cold iron source and used in the electric furnace. It was found that the power consumption rate, which is an index of energy, can be effectively reduced.
- the present invention has been made based on the above findings, and has the following gist.
- a method for producing molten iron in an electric furnace having a preheating chamber and a melting chamber A cold iron source introduction step of introducing a cold iron source into the preheating chamber; a cold iron source preheating step of preheating the cold iron source supplied in the cold iron source supplying step to a predetermined temperature by exhaust gas generated in the melting chamber to obtain a preheated iron source;
- the cold iron source preheating step includes a preheating confirmation step of confirming that the cold iron source is a preheated iron source preheated to a predetermined temperature, a supply step of supplying the preheated iron source, which has been confirmed to have been preheated to a predetermined temperature in the preheat confirmation step, to the melting chamber; and a melting step of melting the preheated iron source supplied to the melting chamber in the supplying step by arc heating.
- the cold iron source is a preheated iron source preheated to a predetermined temperature. , the method for producing molten iron according to 2 or 3 above.
- ⁇ Q
- Q 1 Amount of sensible heat of the exhaust gas at the timing when the cold iron source is put into the preheating chamber [kJ/(seconds ⁇ tons)]
- Q N Continuously calculated sensible heat amount of exhaust gas at any timing N after the timing when the cold iron source is introduced into the preheating chamber [kJ/(seconds ⁇ tons)]
- c Specific heat of exhaust gas [kJ/( m3 ⁇ °C)]
- F 1 Flow rate of exhaust gas at the timing when the cold iron source is put into the preheating chamber [m 3 /sec]
- F N Continuously measured flow rate of exhaust gas [m 3 /sec] at an arbitrary timing N after the timing at which the cold iron source is introduced into the
- the preheating state of the cold iron source is grasped.
- the melting time per charge until tapping can be shortened, and the electric power consumption rate, which is a major indicator of the energy used in electric furnaces, can be reduced. can be reduced exponentially.
- a method for producing molten iron according to the present invention is a method using an electric furnace having a predetermined structure, and includes a cold iron source charging step of charging a cold iron source into a preheating chamber; a cold iron source preheating step for preheating the cold iron source to a predetermined temperature by exhaust gas generated in the melting chamber; a supply step for supplying the preheated iron source to the melting chamber; and optionally other steps.
- the cold iron source preheating step further comprises a preheat confirmation step of confirming that the cold iron source is a preheated iron source that has been preheated to a predetermined temperature, and the subsequent supplying step preheats to this predetermined temperature. It is characterized by supplying a preheating iron source that has been confirmed to be heated to the melting chamber.
- the production method of the present invention further includes a preheating confirmation step and a subsequent supply step, so that after confirming that the cold iron source has actually been preheated to a predetermined temperature, the preheating is immediately performed.
- An iron source can be fed into the melting chamber. Therefore, it is possible to avoid excessively preheating the cold iron source and supplying an insufficiently preheated cold iron source to the melting chamber. Therefore, according to the production method of the present invention, the cold iron source can be reliably preheated by the exhaust gas, and the sensible heat of the exhaust gas can be effectively transferred to the cold iron source. The unit can be effectively reduced to produce molten iron.
- the illustrated electric furnace is shown as a preferred example, and it goes without saying that any electric furnace having a melting chamber and a preheating chamber into which the exhaust gas from the melting chamber can be introduced can be applied.
- the electric furnace 1 illustrated in FIG. a preheating chamber 3 rising toward the front for preheating a cold iron source 15 and supplying the obtained preheated iron source to the melting chamber 2, for example by means of an extruder 10; a duct 20 from which 24 flows; Moreover, the electric furnace 1 further comprises a thermometer 30 and a flow meter 31 installed at arbitrary positions, preferably within the path of the duct 20 .
- the thermometer 30 and the flow meter 31 By arranging the thermometer 30 and the flow meter 31 in the path of the duct 20, the temperature and flow rate of the exhaust gas 24 after flowing through the cold iron source 15 and being used for preheating the cold iron source 15 can be timely measured. can be measured.
- a cold iron source 15 as a raw material is loaded into a supply bucket 14 and transported to above a desired cold iron source supply port 19 via a traveling carriage 23 .
- the cold iron source supply port 19 is opened to supply the cold iron source 15 to the preheating chamber 3 from above.
- the cold iron source 15 supplied to the preheating chamber 3 is preheated using the exhaust gas generated in the melting chamber 2 as described above, and becomes a preheated iron source. For example, if the high-temperature exhaust gas 24 generated in the melting chamber 2 is directly passed through the preheating chamber 3 (without passing through a pipe connecting the melting chamber 2 and the preheating chamber 3) to preheat the cold iron source 15. , can increase the production efficiency. Exhaust gas may be drawn through the duct 20 and passed through the preheating chamber 3 , and excess exhaust gas may be exhausted through the duct 20 .
- the preheated iron source obtained by preheating the cold iron source 15 to a predetermined temperature can be continuously supplied to the melting chamber 2 by the extruder 10 in the case of the electric furnace 1 shown in FIG.
- the extruder 10 continues to push out the preheated iron source in the preheating chamber 3 to the melting chamber 2 by repeatedly reciprocating the tip of the extruder 10 toward the melting chamber 2 .
- the supply amount and supply timing of the preheating iron source to the melting chamber 2 by the extruder 10 can be adjusted by, for example, the time interval (extrusion interval) for moving the extruder 10 and/or the amount of movement of the extruder 10.
- these extrusion intervals and travel distances are usually automatically operated after being initially set to a certain value.
- the supply schedule of the preheated iron source to the melting chamber 2 depends on the confirmation result of whether or not the cold iron source 15 has been preheated to a predetermined temperature. can be effectively controlled.
- the amount of change in the amount of sensible heat of the exhaust gas can be monitored, the preheat confirmation step can be performed based on the monitoring results, and the operating conditions of the extruder 10 can be controlled simultaneously.
- the extruder 10 usually has a cylinder structure.
- the preheating iron source confirmed in the preheating confirmation step is placed in the preheating chamber in the direction of the melting chamber. It is also possible to transport the preheated iron source to the melting chamber by free fall from the belt conveyor.
- the supply timing of the preheating iron source to the melting chamber can be controlled by controlling the moving speed of the belt conveyor. The higher the moving speed of the belt conveyor, the more the supply of the preheating iron source can be promoted, and the lower the moving speed of the belt conveyor, the more the supply of the preheating iron source can be suppressed.
- the moving speed of this belt conveyor is also usually set to a certain value and then automatically operated.
- the present invention has a preheating confirmation step, as another example, the amount of change in the amount of sensible heat of the exhaust gas is monitored, the preheating confirmation step is performed based on the monitoring result, and the cold iron source is preheated to a predetermined temperature.
- the operating conditions of the belt conveyor can be controlled concurrently depending on the confirmation result of whether or not the preheating iron source is being used.
- the melting chamber 2 is defined by a furnace wall 4 and a furnace lid 5, and typically includes an electrode 6 for generating an arc 18 for heating and an oxygen blowing lance for maintaining a desired high temperature state. 7, a carbon material injection lance 8, and a burner 9 for locally heating a low-temperature spot.
- the preheated iron source supplied to the melting chamber 2 is melted by arc heat to form molten iron 16 and molten slag 17 .
- the obtained molten iron 16 can be tapped from the tapping port 12 by opening the tapping door 21 . Further, the molten slag 17 can be discharged from the slag discharge port 13 by opening the slag discharge door 22 .
- in-house scrap generated at ironworks includes, for example, unsteady parts of slabs cast by continuous casting or ingot casting (parts generated at the start of casting and parts generated at the end of casting), rolling of steel materials such as steel strips, etc.
- crops that occur in Scraps generated in the market include recycled materials such as construction steel materials (H-beam steel, etc.), automobile steel materials, and cans.
- Pig iron obtained by solidifying molten pig iron is obtained by tapping and solidifying molten pig iron obtained from iron ore and coke as raw materials in a blast furnace such as a blast furnace.
- Reduced iron is a raw material that is an iron source obtained by directly reducing iron ore with a reducing gas such as natural gas.
- the thermometer 30 may be of any measuring method as long as it can measure the correct temperature of the exhaust gas 24, but generally the thermometer 30 that measures with a thermocouple is desirable.
- the installation position of the thermometer 30 is an arbitrary position such as the wall surface of the preheating chamber 3 or the wall surface of the duct 20, but it should be installed behind the exhaust gas 24 passing through the cold iron source 15 (preheating iron source in some cases). is preferred. This is because the temperature measured at the location where the thermometer is installed upstream of the preheating is not only the temperature indicating the sensible heat of the exhaust gas required in the step for confirmation in the present invention, but also the radiant heat directly transmitted from the molten steel. It may indicate the contained temperature.
- thermometer 30 is installed on the downstream side of the cold iron source 15 of the exhaust gas 24, the movement of the sensible heat of the exhaust gas 24 to the cold iron source 15 can be grasped well.
- thermometer 30 candidates for the suitable installation position of the thermometer 30 include the upper wall surface of the preheating chamber 3 above the top surface where the cold iron sources 15 are stacked, or the preheating chamber shown in FIG. 3 and the duct 20 are connected to the downstream side where the exhaust gas 24 flows.
- the former position there is a possibility that the measured value will change depending on the injection of the cold iron source 15 into the preheating chamber 3 . Therefore, the latter position is more preferable because the temperature for confirming the overall sensible heat amount of the exhaust gas and the amount of change thereof can be measured.
- the candidate for the suitable installation position of the thermometer is the side close to the melting chamber as in the case where the preheating chamber exists in the vertical direction.
- it is desirable to install the preheating chamber downstream of the preheating chamber because there is a possibility that the temperature fluctuation due to the direct radiation from the molten steel will be included in addition to the exhaust gas temperature.
- thermocouple When using a thermocouple, it is desirable to place the tip of the thermocouple directly in contact with the exhaust gas from the viewpoint of improving responsiveness, but the reducing gas can accelerate the corrosion of the tip of the thermocouple. There is concern that the replacement frequency and temperature measurement accuracy will be inferior. Therefore, the thermocouple itself may be entirely covered with a protective tube made of alumina or the like. However, in this case, in order to improve the accuracy of temperature measurement, the responsiveness in the state covered with the protective tube should be grasped in advance, and the possible difference in the measured temperature should be grasped and adjusted for management. Data taken in from the thermometer 30 is generally sent to a predetermined location, for example, a monitor or recording device (none of which is shown) in an operation room operated by an operator, via a compensating lead wire (not shown). Connect and transmit.
- a monitor or recording device one of which is shown
- the flow meter 31 may be of any measurement method as long as it can measure the correct flow rate of the exhaust gas 24.
- a throttle mechanism was provided in the duct 20, and a plurality of pressure gauges were installed at portions of the duct 20 having different cross-sectional areas.
- a venturi tube type that can calculate the flow rate of the exhaust gas from the pressure measured by the pressure measured in the Venturi tube system is one of the candidates for the suitable measuring means.
- a pitot tube is installed in the duct 20 to measure both the static pressure and the dynamic pressure. There is a method of converting to the flow rate of
- the installation position of the flow meter 31 is an arbitrary position such as the wall surface of the preheating chamber 3 or the wall surface of the duct 20, like the thermometer 30. From the viewpoint of better grasping the movement of the sensible heat of the exhaust gas 24 to the cold iron source 15, and from the viewpoint of avoiding the influence of the change in the measured value caused by the introduction of the cold iron source 15 into the preheating chamber 3, FIG. In the case of the electric furnace 1 shown in FIG. 2, it is preferable to install the cold iron sources 15 stacked in the preheating chamber 3 downstream and rearward of the tower where the exhaust gas 24 flows.
- the candidate for the suitable installation position of the thermometer is the side close to the melting chamber as in the case where the preheating chamber exists in the vertical direction.
- it is desirable to install the preheating chamber downstream of the preheating chamber because there is a possibility that the temperature fluctuation due to the direct radiation from the molten steel will be included in addition to the exhaust gas temperature.
- Cold iron source input step In the cold iron source charging step, a cold iron source is charged into the preheating chamber.
- the above-described traveling carriage 23, supply bucket 14, and cold iron source supply port 19 can be preferably used for the cold iron source input step.
- the amount of the cold iron source to be charged can be appropriately determined according to the specifications of the electric furnace to be used, the target production amount of molten iron, and the like. In the case of continuous operation by dividing the injection of the cold iron source into multiple times and/or in the case of continuous operation over multiple charges, the molten iron obtained in the previous melting step has already accumulated in the melting chamber.
- the amount of cold iron source to be fed at a certain timing can be determined based on the capacity of the preheating chamber, the target amount of molten iron, and the like. On the other hand, when operating the first charge, since the melting chamber is empty, the cold iron source can be supplied so that the cold iron source exists in both the melting chamber and the preheating chamber.
- Cold iron source preheating step In the cold iron source preheating step, the cold iron source in the preheating chamber introduced in the cold iron source introducing step is preheated to a predetermined temperature by the exhaust gas generated in the melting chamber to obtain a preheated iron source.
- the exhaust gas 24 and the duct 20 described above can be preferably used for the cold iron source preheating step.
- thermometer 30 and flowmeter 31 can be preferably used for the preheating confirmation step.
- Confirmation that the cold iron source is a preheated iron source preheated to a predetermined temperature can be preferably carried out based on the amount of change in the amount of sensible heat of the exhaust gas. In particular, it can be carried out more preferably based on the amount of change in the amount of sensible heat of the exhaust gas after being used for preheating the cold iron source, starting from the timing of supplying the cold iron source.
- the amount of change in the amount of sensible heat of the exhaust gas after it has been used for preheating the cold iron source can be checked by, for example, providing the thermometer 30 and the flow meter 31 at the above-mentioned suitable installation positions.
- the amount of change in the amount of sensible heat of the exhaust gas after it is used for preheating the cold iron source is a parameter corresponding to the amount of heat given to the cold iron source by the exhaust gas (which cannot be grasped by simply measuring the exhaust gas temperature). Therefore, it is most suitable for confirming that the preheating iron source has definitely reached the preheating temperature.
- the amount of change ⁇ Q in the amount of sensible heat of the exhaust gas is determined by the temperature T of the exhaust gas and the flow rate F of the exhaust gas, which are continuously measured using, for example, the above-described thermometer 30 and flow meter 31, and the cooling It can be calculated from the weight W of the iron source according to the following equations (1) and (2).
- ⁇ Q
- Q 1 Amount of sensible heat of the exhaust gas at the timing when the cold iron source is put into the preheating chamber [kJ/(seconds ⁇ tons)]
- Q N Continuously calculated sensible heat amount of exhaust gas at any timing N after the timing when the cold iron source is introduced into the preheating chamber [kJ/(seconds ⁇ tons)]
- c Specific heat of exhaust gas [kJ/( m3 ⁇ °C)]
- F 1 Flow rate of exhaust gas at the timing when the cold iron source is put into the preheating chamber [m 3 /sec]
- F N Continuously measured flow rate of exhaust gas [m 3 /sec] at an arbitrary timing N after the timing when the cold iron source is introduced into the
- the amount of change ⁇ Q in the amount of sensible heat of the exhaust gas can be calculated, for example, in the following manner. That is, using the flow rate F 1 of the exhaust gas, the temperature T 1 of the exhaust gas, the weight W 1 of the cold iron source in the preheating chamber, and the specific heat c of the exhaust gas measured at the timing of turning on the cold iron source, first, is introduced into the preheating chamber, the sensible heat quantity Q1 of the exhaust gas is obtained. After that, while performing the cold iron source preheating step, the above parameters F 2,3 . . . N ;T 2,3 . , 3 . . . N ; and Q 2, 3 . The obtained Q1 and Q2 , 3, .
- the flow rate of the exhaust gas per unit time can be obtained by multiplying the cross-sectional area of the duct by the flow velocity of the exhaust gas calculated from the pressure of the flow meter.
- F v ⁇ S (2) here, v: flow velocity of exhaust gas [m/sec] S: Duct area through which exhaust gas passes [m 2 ]
- the flow rate F of the exhaust gas can also be continuously measured according to the above equation (2).
- the amount of change ⁇ Q (kJ/(second ⁇ ton)) in the amount of sensible heat of the exhaust gas can also be calculated continuously.
- the following criteria are used as judgment criteria for confirming that the cold iron source has been preheated to a predetermined temperature, that is, that preheating of the cold iron source has been completed.
- An example is That is, the sensible heat amount Q of the exhaust gas is reduced by preheating by transferring heat to the cold iron source in the preheating chamber.
- the amount of change ⁇ Q in the amount of sensible heat of the exhaust gas from the timing at which the cold iron source is turned on increases as the cold iron source is preheated.
- the amount of change ⁇ Q in the amount of sensible heat of the exhaust gas calculated as described above is 700 kJ/(second/ton) or more, the temperature rise to the cold iron source is around 250° C. or more. Therefore, it can be determined that the cold iron source in the preheating chamber has been sufficiently preheated.
- the amount of change ⁇ Q in the amount of sensible heat is more preferably 800 kJ/(second ⁇ ton) or more, more preferably 1000 kJ/(second ⁇ ton) or more.
- the amount of change ⁇ Q in the amount of sensible heat is preferably 1200 kJ/(second ⁇ ton) or less.
- the preheated iron source which has been confirmed to have been preheated to a predetermined temperature in the preheating confirmation step, is supplied to the melting chamber.
- the extruder 10 described above or a belt conveyor (not shown) can be suitably used for the supply step.
- the supply amount and supply timing of the cold iron source 15 are determined by the amount of movement of the extruder 10 per extrusion and the time interval for moving the extruder 10 ( extrusion spacing) and Alternatively, in the case of an electric furnace in which the preheating chamber is arranged mainly horizontally, it is governed by the moving speed of the belt conveyor.
- the preheating confirmation step is provided first, depending on whether or not the preheating iron source can be confirmed, the supply amount and/or supply timing of the cold iron source 15 can be appropriately changed.
- the "extrusion interval" is defined as the time from the time when the extruder starts moving toward the melting chamber to the time when the extruder starts moving toward the melting chamber the next time in order to repeatedly extrude the preheated iron source and supply it to the melting chamber. Means the time interval until the start of movement.
- the cold iron source is a preheated iron source preheated to a predetermined temperature
- the amount of change ⁇ Q in the amount of sensible heat of the exhaust gas is equal to or greater than the preferred lower limit
- extruder travel can be increased to facilitate the supply of preheated iron source to the melting chamber.
- the cold iron source is a preheated iron source preheated to a predetermined temperature
- the extrusion of the extruder The spacing and/or travel may remain unchanged, or the extrusion spacing may be increased and/or travel reduced to reduce the supply of the preheat iron source to the melting chamber.
- the extruding interval of the extruder when it is confirmed that the preheating iron source is at a predetermined temperature is basically fixed at 20 seconds.
- the amount of change ⁇ Q in the amount of sensible heat of the exhaust gas is 5% or more higher than the predetermined value, it is preferable to reduce it by 10% or more, and when it is 10% or more higher, it is preferable to reduce it by 20% or more.
- the speed of the belt conveyor can be increased to immediately supply the preheated iron source to the melting chamber.
- the cold iron source is a preheated iron source preheated to a predetermined temperature, as a specific example, if the amount of change in the amount of sensible heat of the exhaust gas is less than the above preferable lower limit, the movement of the belt conveyor The speed can be slowed down to suppress the supply of the preheated iron source to the melting chamber.
- the belt conveyor is operated at a constant moving speed of 1 m/min.
- the amount of change ⁇ Q in the amount of sensible heat of the exhaust gas is 5% or more higher than the predetermined value, it is preferably increased by 10% or more, and when it is 10% or more higher than the predetermined value, it is preferably increased by 20% or more.
- the preheated iron source supplied to the melting chamber in the supplying step is melted by arc heating.
- a specific melting method is as described above for the electric furnace, and the electrode 6, the oxygen blowing lance 7, the carbon material blowing lance 8, and the burner 9 can be suitably used for the melting step.
- the preheating confirmation step is provided first, the preheated iron source that has been surely preheated is immediately supplied to the melting chamber, so that the power consumption required for the melting step can be reduced.
- Other steps include, for example, a tapping step.
- the tapping step the molten iron 16 accumulated in the melting chamber 2 can be taken out of the electric furnace 1 through the tapping port 12 after the melting step.
- the thermometer 30 used a sheath type K type thermocouple with a tip diameter of 3.2 mm.
- the thermometer 30 was inserted so that the tip of the thermocouple was positioned up to the central portion in the duct 20 by opening a hole with a dedicated flange in the side surface of the duct 20 . Since the sheath-type thermocouple was expected to be bent by high-temperature exhaust gas, it was covered with an alumina protective tube with a diameter of 32 mm, and the tip portion was exposed by a length of about 3 mm. From the outside of the furnace in the duct 20, digital data regarding the measured temperature was captured and recorded in a personal computer via a data recording/collecting device (not shown) through a compensating lead connected to a thermometer 30.
- the flowmeter 31 was installed by inserting a pitot tube through another hole with a dedicated flange installed on the side of the duct 20.
- two pitot tubes are inserted at the same position, and the open surface of the static pressure measurement tube is positioned so that the hole is located downstream of the exhaust gas flow.
- the open side of the tube for dynamic pressure measurement was set so that the hole was located in front of the exhaust gas flow.
- thermocouple Since the pitot tube is also exposed to high-temperature exhaust gas in the same way as the thermocouple, a total of two tubes for dynamic pressure and static pressure, each of which has a diameter of 12 mm and is made of SUS316, is bundled, and the tip portion is replaced with alumina with a diameter of 32 mm. was covered with a protective tube of From the outside of the furnace in the duct 20, the digital data on the measured flow rate was captured and recorded in a personal computer via a data collection and recording device through an auxiliary lead connected to a flow meter 31.
- the amount of change ⁇ Q in the amount of sensible heat of the exhaust gas was calculated using the obtained temperature and flow rate data.
- a new monitor was newly installed to enable the operator to directly monitor the exhaust gas sensible heat quantity and its change.
- data such as the amount of movement of the extruder 10 and the extrusion interval are transferred to the electric control room, so that the operation parameters of the extruder 10 and the data on the amount of change in the amount of sensible heat of the exhaust gas can be checked and controlled at the same time. made it
- the conventional example is a reference example in which neither a thermometer nor a flow meter are used, the preheating confirmation step is not performed, and the operation is performed within the range of the normal power consumption rate.
- the exhaust gas temperature in the duct 20 during operation at timing N is 198° C.
- the exhaust gas flow rate is 58 Nm 3 /sec
- the exhaust gas sensible heat amount per unit time per 1 ton of cold iron source weight in the preheating chamber is 418 kJ/(t ⁇ seconds).
- the extruder 10 was moved 1000 mm at intervals of 20 seconds without taking any particular action.
- the ambient temperature of the exhaust gas 24 existing inside the melting chamber 2 containing the molten iron 16 and the molten slag 17 is about 1100° C. on average. It is considered that the sensible heat of the exhaust gas is transmitted to the cold iron source. However, the temperature of the exhaust gas 24 is always fluctuating, and if the sensible heat amount of the exhaust gas 24 calculated from the measurement data of the thermometer 30 and the flow meter 31 is not monitored as in the present invention, the main operating cost is It is not possible to further reduce the power consumption rate, which is the cause.
- the electric power unit consumption per 1ch at the time of this assumption was 353 kWh/t.
- Comparative Example 1 cannot confirm that the cold iron source is a preheated iron source preheated to a predetermined temperature based on the amount of change ⁇ Q in the amount of sensible heat of the exhaust gas calculated using a thermometer and a flow meter.
- the cold iron source is supplied to the melting chamber as is (that is, as preheating is insufficient). That is, the exhaust gas temperature in the duct 20 during operation at the timing N is 201° C., the exhaust gas flow rate is 58 Nm 3 /sec, and the exhaust gas sensible heat amount per unit time and cold iron source weight of 1 ton in the preheating chamber is 424 kJ/. (t ⁇ seconds). When this was left as it was, the power unit consumption per channel was 358 kWh/t, which was worse than expected, when no action was taken with the interval of the extruder 10 of the cold iron source kept at 20 seconds.
- the cold iron source is a preheated iron source preheated to a predetermined temperature based on the amount of change ⁇ Q in the sensible heat amount of the exhaust gas calculated using a thermometer and a flow meter.
- the interval of the extruder 10 of the cold iron source was not changed and overlooked because the preheating confirmation step was not performed and confirmation was not performed. That is, the exhaust gas temperature in the duct 20 during operation at the timing N is 321° C., the exhaust gas flow rate is 62 Nm 3 /sec, and the exhaust gas sensible heat amount per unit time and cold iron source weight of 1 ton in the preheating chamber is 718 kJ/. (t ⁇ seconds). When this was left unattended, the interval of the extruder 10 of the cold iron source was kept at 20 seconds, and no action was taken, the power unit consumption per channel was 367 kWh/t, which was worse than expected.
- the cold iron source is a preheated iron source preheated to a predetermined temperature based on the amount of change ⁇ Q in the amount of sensible heat of the exhaust gas calculated using a thermometer and a flow meter.
- the preheating confirmation step was not performed and the confirmation was not performed, so the extrusion interval of the extruder 10 of the cold iron source was overlooked without changing, resulting in excessive preheating.
- the temperature of the exhaust gas in the duct 20 during operation at the timing N is 578° C.
- the exhaust gas flow rate is 69 Nm 3 /sec
- the sensible heat amount of the exhaust gas per ton of cold iron source weight in the preheating chamber and per unit time is 1441 kJ/. (t ⁇ seconds).
- Comparative Example 4 is an example in which the sensible heat amount of the exhaust gas could not be calculated and the amount of change ⁇ Q in the sensible heat amount could not be grasped because only the thermometer was used for measurement and the flowmeter was not used for measurement.
- the temperature of the exhaust gas in the duct 20 during operation at the timing N is 244° C., and in this case, it would have been better to advance the timing of pushing out in order to shorten the pushing interval of the extruder 10 of the cold iron source. be.
- the power unit consumption per channel was 361 kWh/t, which was worse than expected.
- Invention Example 1 Invention Example 1, after using a thermometer and a flow meter, it is confirmed that the cold iron source is a preheated iron source preheated to a predetermined temperature based on the amount of change ⁇ Q in the calculated sensible heat amount of the exhaust gas. 4, the extrusion interval of the extruder 10 is controlled in order to immediately supply the identified preheated iron source to the melting chamber.
- the temperature of the exhaust gas in the duct 20 during operation at the timing N is 211 ° C.
- the exhaust gas flow rate is 55 Nm 3 / sec, which is almost the same as 49 Nm 3 / sec in Comparative Example 1
- the weight of the cold iron source in the preheating chamber The amount of exhaust gas sensible heat per unit time is 418 kJ/(t ⁇ sec).
- the amount of change in the amount of sensible heat of the exhaust gas 24 is 1023 kJ/(t ⁇ sec), which is approximately three times that of Comparative Example 1. Therefore, the interval of the cold iron source extruder 10 was changed from 20 seconds to 15 seconds.
- the amount of sensible heat of the exhaust gas 24 became 332 kJ/(t ⁇ sec) compared to the conventional method, and it is thought that the sensible heat of the exhaust gas is transmitted to the cold iron source side, and the electric power consumption per channel is improved to 341 kWh/t. bottom.
- Invention Example 2 Invention Example 2, after using a thermometer and a flow meter, it is confirmed that the cold iron source is a preheated iron source preheated to a predetermined temperature based on the amount of change ⁇ Q in the calculated sensible heat amount of the exhaust gas.
- the temperature of the exhaust gas in the duct 20 during operation at the timing N is 574 ° C. of Comparative Example 2, the exhaust gas flow rate is 67 Nm 3 / sec, and the exhaust gas per ton of cold iron source weight in the preheating chamber and per unit time The amount of sensible heat is 1394 kJ/(t ⁇ sec).
- the cold iron source is a preheated iron source preheated to a predetermined temperature based on the calculated amount of change ⁇ Q in the amount of sensible heat of the exhaust gas.
- another example of controlling the extrusion interval of the extruder 10 to immediately supply a confirmed preheated iron source to the melting chamber That is, the exhaust gas temperature in the duct 20 during operation at the timing N is 164° C., the exhaust gas flow rate is 49 Nm 3 /sec, and the exhaust gas sensible heat amount per unit time per ton of cold iron source weight in the preheating chamber is 293 kJ/. (t ⁇ seconds).
- the interval of the extruder 10 of the cold iron source was also shortened from 20 seconds to 15 seconds.
- the power consumption per channel was 349 kWh/t, slightly better than expected. If the sensible heat fluctuates too much, the cold iron source melts and crimps in the preheating part, making it difficult for the exhaust gas to flow and preheating is partially weakened. , ⁇ Q.
- the main manufacturing cost is It is possible to greatly improve the electric power consumption rate, which accounts for the portion, and the effect is very large. This is because, in the invention example, the cold iron source was efficiently preheated and the preheated iron source could be sent to the melting step, so the melting time of the preheated iron source was shortened and the tapping time was also shortened. It is thought that
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
Abstract
Description
本発明は、上記の知見に基づきなされたもので、以下を要旨とする。
冷鉄源を予熱室に投入する冷鉄源投入ステップと、
前記冷鉄源投入ステップで投入された前記冷鉄源を、前記溶解室で発生した排ガスにより所定の温度まで予熱し、予熱鉄源とする冷鉄源予熱ステップと、
ここで、前記冷鉄源予熱ステップは、前記冷鉄源が所定の温度まで予熱された予熱鉄源であることを確認する予熱確認ステップを有し、
前記予熱確認ステップで所定の温度まで予熱されたことが確認された前記予熱鉄源を前記溶解室へ供給する供給ステップと、
前記供給ステップで前記溶解室へ供給された前記予熱鉄源をアーク加熱によって溶解する溶解ステップと、を有することを特徴とする、溶鉄の製造方法。
ΔQ=|Q1-QN|
=|{(c×F1×T1)/W1}-{(c×FN×TN)/WN}|・・・(1)
ここで、
ΔQ:排ガスの顕熱量の変化量[kJ/(秒・トン)]
Q1:冷鉄源を予熱室に投入したタイミングでの排ガスの顕熱量[kJ/(秒・トン)]
QN:連続的に算出される、冷鉄源を予熱室に投入したタイミングよりも後の任意のタイミングNでの排ガスの顕熱量[kJ/(秒・トン)]
c:排ガスの比熱[kJ/(m3・℃)]
F1:冷鉄源を予熱室に投入したタイミングでの排ガスの流量[m3/秒]
FN:連続的に測定される、冷鉄源を予熱室に投入したタイミングよりも後の任意のタイミングNでの排ガスの流量[m3/秒]
T1:冷鉄源を予熱室に投入したタイミングでの排ガスの温度[℃]
TN:連続的に測定される、冷鉄源を予熱室に投入したタイミングよりも後の任意のタイミングNでの排ガスの温度[℃]
W1:冷鉄源を予熱室に投入したタイミングでの予熱室内の冷鉄源の重量[トン]
WN:冷鉄源を予熱室に投入したタイミングよりも後の任意のタイミングNでの予熱室内の冷鉄源の重量[トン]
本発明の溶鉄の製造方法は、所定の構造を有する電気炉を用いる方法であって、冷鉄源を予熱室に投入する冷鉄源投入ステップと;冷鉄源投入ステップで投入された冷鉄源を、溶解室で発生した排ガスにより所定の温度まで予熱し、予熱鉄源とする冷鉄源予熱ステップと;予熱鉄源を溶解室へ供給する供給ステップと;供給ステップで溶解室へ供給された予熱鉄源をアーク加熱によって溶解する溶解ステップと;任意にその他のステップと;を有する。とりわけ、上記冷鉄源予熱ステップが、冷鉄源が所定の温度まで予熱された予熱鉄源であることを確認する予熱確認ステップを更に有し、続く上記供給ステップにおいて、この所定の温度まで予熱されたことが確認された予熱鉄源を溶解室へ供給することを特徴とする。
以下、本発明が好適に用い得る電気炉について、図を参照して詳述する。なお、図示した電気炉は好適例として示したものであり、溶解室と、該溶解室からの排ガスを導入可能な予熱室とを有する電気炉であれば、適用可能であることは言うまでもない。
図1に例示する電気炉1は、冷鉄源15を予熱してなる予熱鉄源をアーク18からの熱によって溶解して溶鉄16を得る溶解室2と;溶解室2よりも鉛直方向上方に向かってそびえる予熱室3であり、冷鉄源15を予熱し、得られた予熱鉄源を、例えば押し出し機10で溶解室2に供給するための予熱室3と;溶解室2で発生した排ガス24が流れ出るダクト20と;を備える。また、電気炉1は、任意の位置に設置された、好ましくはダクト20の径路内に配置された温度計30及び流量計31を更に備える。温度計30及び流量計31をダクト20の径路内に配置することにより、冷鉄源15の間を流れ抜けて該冷鉄源15の予熱に使用された後の排ガス24の温度及び流量を適時測定することができる。
予熱室3に供給された冷鉄源15は、上述のとおり溶解室2で発生した排ガスを利用して予熱され、予熱鉄源となる。例えば、先に溶解室2で発生した高熱の排ガス24を直接(溶解室2と予熱室3とを繋ぐ配管を通さずに)そのまま予熱室3へと通過させて冷鉄源15を予熱すれば、製造効率を高めることができる。そして、ダクト20により排ガスを吸引して予熱室3内を通過させ、余分な排ガスはダクト20を通じて排気してもよい。
なぜなら、予熱上流の温度計を設置する場所において測定される温度は、本発明で確認するためのステップで必要な排ガスの顕熱を示す温度だけでなく、溶鋼から直接伝わってくる輻射熱の両方を含有した温度を表示している可能性がある。そこで、予熱部下流において、測温することが、排ガスのもつ顕熱量を正しく示すことになる。従って、排ガス24の冷鉄源15に対して下流側に温度計30を設置すれば、冷鉄源15への排ガス24の顕熱の移動を良好に把握することができる。
冷鉄源投入ステップでは、冷鉄源を予熱室に投入する。冷鉄源投入ステップには、上述の走行台車23、供給用バケット14、冷鉄源供給口19を好適に用いることができる。投入する冷鉄源の量は、使用する電気炉の仕様、溶鉄の製造目標量等によって適宜決定することができる。
冷鉄源の投入を複数回に分けて連続操業する場合、及び/又は、複数チャージに亘って連続操業する場合は、既に先の溶解ステップで得られた溶鉄が溶解室内に溜まっているので、あるタイミングで投入する冷鉄源の量を、予熱室の容量、溶鉄の製造目標量等に基づいて決定することができる。一方、初めてのチャージを操業する場合は、溶解室が空の状態であるため、冷鉄源が溶解室及び予熱室双方に存在するように冷鉄源を供給することができる。
冷鉄源予熱ステップでは、冷鉄源投入ステップで投入された予熱室内の冷鉄源を、溶解室で発生した排ガスにより所定の温度まで予熱し、予熱鉄源とする。冷鉄源予熱ステップには、上述の排ガス24、ダクト20を好適に用いることができる。
ここで、冷鉄源予熱ステップにおいては、冷鉄源が所定の温度まで予熱された予熱鉄源であることを確認する予熱確認ステップを行うことが肝要である。
予熱確認ステップでは、冷鉄源が所定の温度まで予熱された予熱鉄源であることを確認する。つまり、予熱確認ステップでは、予熱鉄源を得るに先立って予熱条件を予め変更するのではなく、予熱鉄源が実際に得られたことの確認を事後的に行う。予熱鉄源が実際に得られたことの確認を事後的に行うことによって、冷鉄源を過剰に予熱することも冷鉄源の予熱が不足することも確実に回避できるので、冷鉄源の予熱を効率的に行い、もって溶鉄の製造に要する電力原単位を低減させることができる。予熱確認ステップには、上述の温度計30、流量計31を好適に用いることができる。
予熱確認ステップにおいて好適に参照可能な、排ガスの顕熱量の変化量の算出方法について具体的に説明する。排ガスの顕熱量の変化量ΔQは、例えば上述の温度計30及び流量計31を用いて、連続的に測定される排ガスの温度T及び排ガスの流量F、並びに、予熱室内に投入されている冷鉄源の重量Wから、以下の式(1)~(2)に従って算出することができる。
ΔQ=|Q1-QN|,
Q1=(c×F1×T1)/W1,
QN=(c×FN×TN)/WN ・・・(1)
ここで、
ΔQ:排ガスの顕熱量の変化量[kJ/(秒・トン)]
Q1:冷鉄源を予熱室に投入したタイミングでの排ガスの顕熱量[kJ/(秒・トン)]
QN:連続的に算出される、冷鉄源を予熱室に投入したタイミングよりも後の任意のタイミングNでの排ガスの顕熱量[kJ/(秒・トン)]
c:排ガスの比熱[kJ/(m3・℃)]
F1:冷鉄源を予熱室に投入したタイミングでの排ガスの流量[m3/秒]
FN:連続的に測定される、冷鉄源を予熱室に投入したタイミングよりも後の任意のタイミングNでの排ガスの流量[m3/秒]
T1:冷鉄源を予熱室に投入したタイミングでの排ガスの温度[℃]
TN:連続的に測定される、冷鉄源を予熱室に投入したタイミングよりも後の任意のタイミングNでの排ガスの温度[℃]
W1:冷鉄源を予熱室に投入したタイミングでの予熱室内の冷鉄源の重量[トン]
WN:冷鉄源を予熱室に投入したタイミングよりも後の任意のタイミングNでの予熱室内の冷鉄源の重量[トン]
F=v×S ・・・(2)
ここで、
v:排ガスの流速[m/秒]
S:排気ガスが通過するダクト面積[m2]
本発明の一実施形態では、排ガスの温度T及び排ガスの流速vを連続して測定することにより、上記式(2)に従って排ガスの流量Fも連続して測定できるため、上記式(1)に従って、排ガスの顕熱量の変化量ΔQ(kJ/(秒・トン))も連続して算出することが可能である。
予熱確認ステップにおいて、冷鉄源が所定の温度まで予熱された予熱鉄源であること、つまり、冷鉄源の予熱が完了したことを確認する判定基準として、以下の一例が挙げられる。すなわち、排ガスの顕熱量Qは、予熱室内の冷鉄源へと熱を伝えて予熱することによって低下する。これに伴い、冷鉄源を投入したタイミングからの排ガスの顕熱量の変化量ΔQは、冷鉄源が予熱されるほど高まる。本発明者らが鋭意検討したところ、上述のとおり算出される排ガスの顕熱量の変化量ΔQが700kJ/(秒・トン)以上であれば、冷鉄源への温度上昇が250℃前後以上あるため、予熱室内の冷鉄源の予熱が十分に行われたと判定することができる。顕熱量の変化量ΔQは、800kJ/(秒・トン)以上がより好ましく、1000kJ/(秒・トン)以上がさらに好ましい。
供給ステップでは、予熱確認ステップで所定の温度まで予熱されたことが確認された予熱鉄源を溶解室へ供給する。供給ステップには、上述の押し出し機10、又は、ベルトコンベア(図示せず)を好適に用いることができる。
冷鉄源15の供給量及び供給タイミングは、予熱室が鉛直方向に沿ってそびえ立つ電気炉の場合は、1回の押し出しあたりの押し出し機10の移動量と、押し出し機10を移動させる時間間隔(押し出し間隔)とに支配される。或いは、予熱室が主に水平方向に配置される電気炉の場合は、ベルトコンベアの移動速度に支配される。そして、通常の操業では、これらの移動量及び押し出し間隔或いは移動速度の値について、冷鉄源の種類や予熱状況に応じて設定パターンを複数有しており、適した設定パターンを採用して自動運転する。しかしながら、本発明では予熱確認ステップを先に設けているので、予熱鉄源の確認の可否によって、冷鉄源15の供給量及び/又は供給タイミングを適宜変更することができる。
ここで、「押し出し間隔」とは、予熱鉄源を繰り返し押し出して溶解室に供給するために、ある回で押し出し機を溶解室方向へ移動開始した時間から、次回に押し出し機を溶解室方向へ移動開始する時間までの、時間的間隔を意味する。
予熱鉄源が所定の温度であることを確認できた場合の押し出し機の押し出し間隔は、基本、20秒間隔一定としている。例えば、排ガスの顕熱量の変化量ΔQが所定値よりも5%以上高い場合には10%以上短縮させることが好ましく、10%以上高い場合には20%以上短縮させることが好ましい。
予熱鉄源が所定の温度であることを確認できた場合のベルトコンベアの移動速度は、1m/分の移動速度一定で操業される。例えば、排ガスの顕熱量の変化量ΔQが所定値よりも5%以上高い場合には10%以上高めることが好ましく、10%以上高い場合には20%以上高めることが好ましい。
溶解ステップでは、供給ステップで溶解室へ供給された予熱鉄源をアーク加熱によって溶解する。具体的な溶解方法は、電気炉について上述したとおりであり、溶解ステップには、上述の電極6、酸素吹き込みランス7、炭材吹き込みランス8、バーナー9を好適に用いることができる。本発明では予熱確認ステップを先に設けているので、確実に予熱された予熱鉄源が直ちに溶解室へと供給されるため、溶解ステップで要する電力消費を低減させることができる。
その他のステップとしては、例えば、出鋼ステップが挙げられる。出鋼ステップでは、溶解ステップの後に、溶解室2に溜まった溶鉄16を出湯口12を介して電気炉1の外部に取り出すことができる。
図1に示す溶解室2と、予熱室3と、ダクト20に温度計30及び流量計31を備えた電気炉1において、以下の要領にて冷鉄源15を予熱して予熱鉄源とし、更に溶解して溶鉄16を製造した。この電気炉の設備諸元を以下に示す。
溶解室の溶鉄容量(出鋼量):130トン
電力:交流50Hz
トランス容量:75MVA
電極数:3
司令室には、電気炉を操業するオペレーターが直接監視できるように、排ガス顕熱量及びその変化量を常時確認可能なモニターを新規に準備した。また電気制御室には、押し出し機10の移動量、押し出し間隔などのデータが転送されてきており、押し出し機10の操作パラメータと排ガスの顕熱量の変化量に関するデータとを同時に確認・制御できるようにした。
従来例は、温度計も流量計も使用せず、予熱確認ステップを実施しない、通常の電力原単位の範囲内で操業した、基準となる例である。
タイミングNでの操業中のダクト20での排ガスの温度が198℃、排ガス流量58Nm3/秒であり、予熱室の冷鉄源重量1トンあたりの単位時間あたりの排ガス顕熱量は418kJ/(t・秒)である。本発明の前は、排ガスの顕熱量がモニタリングされていないため、特にアクションを起こすことなく、20秒間隔で、押し出し機10の移動量1000mmで行っている。溶鉄16および溶融スラグ17がある溶解室2の内部に存在する排ガス24の雰囲気温度は、平均1100℃前後あり、予熱室3の上部における排ガス24の温度が十分に下がっていれば、その下がった分の排ガスの顕熱が冷鉄源に伝わっていると考えられる。しかしながら、排ガス24の温度は常に変動しており、今回の本発明のように、温度計30、流量計31の測定データから算出される排ガス24の顕熱量をモニタリングしていないと操業コストの主要因である電力原単位を更に下げることはできない。この想定時の1chあたりの電力原単位は、353kWh/tであった。
比較例1は、温度計及び流量計を使用したうえで、算出される排ガスの顕熱量の変化量ΔQに基づき、冷鉄源が所定の温度まで予熱された予熱鉄源であることを確認できないまま(つまり、予熱が不足したまま)、冷鉄源を溶解室へ供給した例である。
すなわち、タイミングNでの操業中のダクト20での排ガスの温度は201℃、排ガス流量58Nm3/秒であり、予熱室の冷鉄源重量1トンあたりかつ単位時間あたりの排ガス顕熱量は424kJ/(t・秒)である。これを放置したまま、冷鉄源の押し出し機10の間隔を20秒のままで何もアクションを起こさない場合の1chあたりの電力原単位は、358kWh/tと想定より悪化した。
比較例2は、温度計及び流量計を使用したうえで、算出される排ガスの顕熱量の変化量ΔQに基づき、冷鉄源が所定の温度まで予熱された予熱鉄源であるにも関わらず、予熱確認ステップを実施せずに確認をしなかったため、冷鉄源の押し出し機10の間隔を変化させずに見過ごした例である。
すなわち、タイミングNでの操業中のダクト20での排ガスの温度は321℃、排ガス流量62Nm3/秒であり、予熱室の冷鉄源重量1トンあたりかつ単位時間あたりの排ガス顕熱量は718kJ/(t・秒)である。これを放置したまま、冷鉄源の押し出し機10の間隔を20秒のままで何もアクションを起こさない場合の1chあたりの電力原単位は、367kWh/tと想定より悪化した。
比較例3は、温度計及び流量計を使用したうえで、算出される排ガスの顕熱量の変化量ΔQに基づき、冷鉄源が所定の温度まで予熱された予熱鉄源であるにも関わらず、予熱確認ステップを実施せずに確認をしなかったため、冷鉄源の押し出し機10の押し出し間隔を変化させずに見過ごし、予熱が過剰になった例である。
すなわち、タイミングNでの操業中のダクト20での排ガスの温度は578℃、排ガス流量69Nm3/秒であり、予熱室の冷鉄源重量1トンあたりかつ単位時間あたりの排ガス顕熱量は1441kJ/(t・秒)である。これを放置したまま、冷鉄源の押し出し機10の間隔を20秒のままで何もアクションを起こさない場合の1chあたりの電力原単位は、374kWh/tと想定より、かなり悪化した。
比較例4は、温度計のみの測定を行って流量計による測定を実施しないために排ガスの顕熱量の算出ができず、顕熱量の変化量ΔQが把握できなかった例である。その結果、予熱鉄源を溶解室へ供給するのに時間を要してしまった(つまり、予熱が過剰である、)別の例である。
すなわち、タイミングNでの操業中のダクト20での排ガスの温度は244℃であり、本来なら冷鉄源の押し出し機10の押し出し間隔を短くするために、押し出すタイミングを早めれば良かった事例である。そのため、1chあたりの電力原単位は、361kWh/tと想定より悪化した。
発明例1は、温度計及び流量計を使用したうえで、算出される排ガスの顕熱量の変化量ΔQに基づき、冷鉄源が所定の温度まで予熱された予熱鉄源であることを確認し、確認された予熱鉄源を溶解室へ直ちに供給するために、押し出し機10の押し出し間隔を制御した例である。
すなわち、タイミングNでの操業中のダクト20での排ガスの温度は211℃、排ガス流量は比較例1の49Nm3/秒とほぼ同じである55Nm3/秒であり、予熱室の冷鉄源重量あたりかつ単位時間あたりの排ガス顕熱量は418kJ/(t・秒)である。この排ガス24の顕熱量の変化量は1023kJ/(t・秒)と比較例1のほぼ3倍の値である。そこで、冷鉄源の押し出し機10の間隔を20秒から15秒間隔に変更した。その結果、排ガス24の顕熱量が従来の332kJ/(t・秒)となり、排ガスの顕熱が冷鉄源側に伝わっていると考えられ、1chあたりの電力原単位は、341kWh/tと改善した。
発明例2は、温度計及び流量計を使用したうえで、算出される排ガスの顕熱量の変化量ΔQに基づき、冷鉄源が所定の温度まで予熱された予熱鉄源であることを確認し、確認された予熱鉄源を溶解室へ直ちに供給するために、押し出し機10の押し出し間隔を制御した別の例である。
すなわち、タイミングNでの操業中のダクト20での排ガスの温度は比較例2の574℃、排ガス流量67Nm3/秒であり、予熱室の冷鉄源重量1トンあたりのかつ単位時間あたりの排ガス顕熱量は1394kJ/(t・秒)である。この顕熱量が従来に比べると大きくなっており、冷鉄源の押し出し機10の間隔を20秒から12秒間隔に変更した。その結果、排ガス顕熱量は、969kJ/(t・秒)まで下がり、ガスの熱が冷鉄源側に移動していると考えられ、1chあたりの電力原単位は、324kWh/tと改善した。
発明例3は、温度計及び流量計を使用したうえで、算出される排ガスの顕熱量の変化量ΔQに基づき、冷鉄源が所定の温度まで予熱された予熱鉄源であることを確認し、確認された予熱鉄源を溶解室へ直ちに供給するために、押し出し機10の押し出し間隔を制御した別の例である。
すなわち、タイミングNでの操業中のダクト20での排ガスの温度は164℃、排ガス流量49Nm3/秒であり、予熱室の冷鉄源重量1トンあたりかつ単位時間あたりの排ガス顕熱量は293kJ/(t・秒)である。これを放置したまま、冷鉄源の押し出し機10の間隔を20秒から15秒への短縮も行った。その結果、1chあたりの電力原単位は、349kWh/tと想定より若干、改善された。これは顕熱量の変動が大きすぎると、冷鉄源が予熱部で溶解し、圧着し、排ガスが流れにくくなり予熱は一部弱くなるが、十分に熱エネルギーが伝わる効果が大きい一例であるが、△Qの上限を示す例となった。
2 溶解室
3 予熱室
4 炉壁
5 炉蓋
6 電極
7 酸素吹き込みランス
8 炭材吹き込みランス
9 バーナー
10 押し出し機
12 出湯口
13 出滓口
14 供給用バケット
15 冷鉄源
16 溶鉄
17 溶融スラグ
18 アーク
19 冷鉄源供給口
20 ダクト
21 出湯用扉
22 出滓用扉
23 走行台車
24 排ガス
30 温度計
31 流量計
Claims (6)
- 予熱室と溶解室とを有する電気炉における溶鉄の製造方法であって、
冷鉄源を予熱室に投入する冷鉄源投入ステップと、
前記冷鉄源投入ステップで投入された前記冷鉄源を、前記溶解室で発生した排ガスにより所定の温度まで予熱し、予熱鉄源とする冷鉄源予熱ステップと、
ここで、前記冷鉄源予熱ステップは、前記冷鉄源が所定の温度まで予熱された予熱鉄源であることを確認する予熱確認ステップを有し、
前記予熱確認ステップで所定の温度まで予熱されたことが確認された前記予熱鉄源を前記溶解室へ供給する供給ステップと、
前記供給ステップで前記溶解室へ供給された前記予熱鉄源をアーク加熱によって溶解する溶解ステップと、を有することを特徴とする、溶鉄の製造方法。 - 前記予熱確認ステップにおける、前記冷鉄源が所定の温度まで予熱された予熱鉄源であることの確認を、前記排ガスの顕熱量の変化量に基づいて行う、請求項1に記載の溶鉄の製造方法。
- 前記顕熱量の変化量が、連続的に測定される前記排ガスの温度及び流量、並びに、前記予熱室内に投入されている前記冷鉄源の重量に基づいて算出される、請求項2に記載の溶鉄の製造方法。
- 以下の式(1)に従って算出される前記顕熱量の変化量が700kJ/(秒・トン)以上である場合に、前記冷鉄源が所定の温度まで予熱された予熱鉄源であると判断する、請求項2または3に記載の溶鉄の製造方法。
ΔQ=|Q1-QN|
=|{(c×F1×T1)/W1}-{(c×FN×TN)/WN}|・・・(1)
ここで、
ΔQ:排ガスの顕熱量の変化量[kJ/(秒・トン)]
Q1:冷鉄源を予熱室に投入したタイミングでの排ガスの顕熱量[kJ/(秒・トン)]
QN:連続的に算出される、冷鉄源を予熱室に投入したタイミングよりも後の任意のタイミングNでの排ガスの顕熱量[kJ/(秒・トン)]
c:排ガスの比熱[kJ/(m3・℃)]
F1:冷鉄源を予熱室に投入したタイミングでの排ガスの流量[m3/秒]
FN:連続的に測定される、冷鉄源を予熱室に投入したタイミングよりも後の任意のタイミングNでの排ガスの流量[m3/秒]
T1:冷鉄源を予熱室に投入したタイミングでの排ガスの温度[℃]
TN:連続的に測定される、冷鉄源を予熱室に投入したタイミングよりも後の任意のタイミングNでの排ガスの温度[℃]
W1:冷鉄源を予熱室に投入したタイミングでの予熱室内の冷鉄源の重量[トン]
WN:冷鉄源を予熱室に投入したタイミングよりも後の任意のタイミングNでの予熱室内の冷鉄源の重量[トン] - 前記供給ステップにおける、前記予熱鉄源の前記溶解室への供給が、押し出し機で行われる、請求項1~4のいずれか一項に記載の溶鉄の製造方法。
- 前記供給ステップにおける、前記予熱鉄源の前記溶解室への供給が、ベルトコンベアからの自由落下で行われる、請求項1~4のいずれか一項に記載の溶鉄の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247016685A KR20240090598A (ko) | 2021-12-13 | 2022-10-26 | 용철의 제조 방법 |
EP22907039.6A EP4403651A1 (en) | 2021-12-13 | 2022-10-26 | Method for producing molten iron |
CN202280076058.7A CN118265805A (zh) | 2021-12-13 | 2022-10-26 | 铁水的制造方法 |
JP2023503123A JP7468775B2 (ja) | 2021-12-13 | 2022-10-26 | 溶鉄の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-202068 | 2021-12-13 | ||
JP2021202068 | 2021-12-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023112505A1 true WO2023112505A1 (ja) | 2023-06-22 |
Family
ID=86774471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/040024 WO2023112505A1 (ja) | 2021-12-13 | 2022-10-26 | 溶鉄の製造方法 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4403651A1 (ja) |
JP (1) | JP7468775B2 (ja) |
KR (1) | KR20240090598A (ja) |
CN (1) | CN118265805A (ja) |
WO (1) | WO2023112505A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09159377A (ja) * | 1995-12-08 | 1997-06-20 | Kawasaki Heavy Ind Ltd | 冷鉄源の予熱方法及びその装置 |
JP2021046608A (ja) * | 2019-09-11 | 2021-03-25 | Jfeスチール株式会社 | 電気炉による溶鉄の製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5743191A (en) | 1980-08-29 | 1982-03-11 | Nippon Kokan Kk | Preheating of scrap by gas discharged from electric furnace for making steel |
JPH04273991A (ja) | 1991-02-27 | 1992-09-30 | Kawasaki Steel Corp | 電気製鋼炉の排ガスを利用するスクラップ予熱制御方法 |
JP3204202B2 (ja) | 1997-02-24 | 2001-09-04 | 日本鋼管株式会社 | 冷鉄源の溶解方法および溶解設備 |
-
2022
- 2022-10-26 CN CN202280076058.7A patent/CN118265805A/zh active Pending
- 2022-10-26 KR KR1020247016685A patent/KR20240090598A/ko unknown
- 2022-10-26 JP JP2023503123A patent/JP7468775B2/ja active Active
- 2022-10-26 EP EP22907039.6A patent/EP4403651A1/en active Pending
- 2022-10-26 WO PCT/JP2022/040024 patent/WO2023112505A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09159377A (ja) * | 1995-12-08 | 1997-06-20 | Kawasaki Heavy Ind Ltd | 冷鉄源の予熱方法及びその装置 |
JP2021046608A (ja) * | 2019-09-11 | 2021-03-25 | Jfeスチール株式会社 | 電気炉による溶鉄の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN118265805A (zh) | 2024-06-28 |
EP4403651A1 (en) | 2024-07-24 |
KR20240090598A (ko) | 2024-06-21 |
JPWO2023112505A1 (ja) | 2023-06-22 |
JP7468775B2 (ja) | 2024-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109517941B (zh) | 一种水平连续加料竖式废钢预热装置及其应用 | |
TWI689694B (zh) | 操作批次式熔爐之系統及方法 | |
CN115516113B (zh) | 高炉操作方法 | |
US8617459B2 (en) | Method and apparatus for manufacturing granular metallic iron | |
JP4855002B2 (ja) | 微粉炭吹き込み高炉操業方法 | |
CN110388830A (zh) | 废钢预热装置、电弧熔化设备及预热方法 | |
WO1999023262A1 (fr) | Procede d'exploitation d'un haut-fourneau | |
WO2023112505A1 (ja) | 溶鉄の製造方法 | |
JP2007077440A (ja) | 高炉の減尺休風操業方法 | |
US8192521B2 (en) | Method of suppressing slag foaming in continuous melting furnace | |
KR20220030285A (ko) | 전기로에 의한 용철의 제조 방법 | |
JP2009235437A (ja) | 大減尺休風時の高炉操業管理方法 | |
JP4893291B2 (ja) | 竪型スクラップ溶解炉を用いた溶銑製造方法 | |
JP7126081B1 (ja) | 映像装置を備える電気炉を用いた溶鉄の製造方法 | |
JP6947343B1 (ja) | 凝固層の変動検知方法および高炉操業方法 | |
RU2576213C1 (ru) | Устройство для загрузки металлизованных окатышей в дуговую печь | |
TWI778576B (zh) | 凝固層的變動檢測方法和高爐操作方法 | |
TWI481722B (zh) | 高爐爐下部透液性之判斷方法與判斷系統 | |
JP2022152721A (ja) | 高炉の操業方法 | |
JP7193032B1 (ja) | 供給熱量推定方法、供給熱量推定装置、及び高炉の操業方法 | |
JP5862470B2 (ja) | 高炉休風方法 | |
JP2001188026A (ja) | 自溶炉の温度測定装置及び温度測定方法 | |
JPH11222610A (ja) | 高炉の炉熱制御方法 | |
JP2023172090A (ja) | 高炉操業方法 | |
JPS60208405A (ja) | 高炉操業法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023503123 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22907039 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022907039 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022907039 Country of ref document: EP Effective date: 20240415 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18709516 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280076058.7 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 20247016685 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |