WO2022170680A1 - 一种测定滤膜孔径及孔径分布的方法 - Google Patents

一种测定滤膜孔径及孔径分布的方法 Download PDF

Info

Publication number
WO2022170680A1
WO2022170680A1 PCT/CN2021/090288 CN2021090288W WO2022170680A1 WO 2022170680 A1 WO2022170680 A1 WO 2022170680A1 CN 2021090288 W CN2021090288 W CN 2021090288W WO 2022170680 A1 WO2022170680 A1 WO 2022170680A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent beads
pore size
diameter
emission wavelength
polystyrene
Prior art date
Application number
PCT/CN2021/090288
Other languages
English (en)
French (fr)
Inventor
王金杰
李光辉
饶品华
郭健
张君伟
朱佳颖
Original Assignee
上海工程技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海工程技术大学 filed Critical 上海工程技术大学
Priority to US18/274,523 priority Critical patent/US20240085303A1/en
Publication of WO2022170680A1 publication Critical patent/WO2022170680A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/0806Details, e.g. sample holders, mounting samples for testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/084Testing filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/0846Investigating permeability, pore-volume, or surface area of porous materials by use of radiation, e.g. transmitted or reflected light

Definitions

  • the invention relates to a method for measuring the pore size and pore size distribution of a filter membrane, and belongs to the technical field of filter membrane characterization.
  • the methods for measuring the pore size and pore size distribution of filter membranes at home and abroad can be divided into two categories: 1) direct method: mainly electron microscope method, commonly used mainly scanning electron microscope, transmission electron microscope, etc.; 2) indirect method: using and For the physical phenomena related to the pore size, the corresponding physical parameters are measured through experiments, and then the equivalent pore size of the membrane is calculated under the assumption that the pore size is a uniform straight hole.
  • the bubble pressure method is only limited to the determination of the maximum pore size in the membrane pores, and the pressure required for the measurement of small-pore ultrafiltration membranes is much higher than the operating pressure of the membrane, so it is generally considered to be only suitable for the measurement of microfiltration membranes.
  • the pores measured by the mercury intrusion method are void pores, not all of them are "active pores" that penetrate the membrane, and the pressure required for the test is large, which is easy to cause deformation of the sample and distort the measurement results. Therefore, the mercury intrusion method is not suitable for ultra-high temperature. Determination of filter membrane pore size.
  • the liquid-liquid replacement method can measure the pore size and pore size distribution of the ultrafiltration membrane with an average pore size of less than 0.02 ⁇ M (relative error ⁇ 10%), but n-butanol and water have an impact on the membrane material, even if the solution of the liquid-liquid system is changed, other systems There may also be an effect on the membrane material.
  • the molecular weight cut-off method is suitable for the determination of ultrafiltration membranes with small pore size, but the detection results of different reference substances will be different.
  • the suspension filtration method can directly measure the separation performance of the membrane, and has the advantages of more accurate test results and a wide range of test pore sizes.
  • the method of pore size distribution is based on the suspension filtration method to determine the pore size of ultra-microfiltration membrane, by selecting polystyrene nanoparticles as a reference, and then using an ultraviolet spectrophotometer to scan the polystyrene nanoparticles of each particle size in the The maximum absorption wavelength in the ultraviolet-visible wavelength range, and the standard curve of polystyrene nanoparticles with this particle size is made at the maximum absorption wavelength; then polystyrene nanoparticles with a single particle size are selected to prepare a solution with a mass concentration of C 0 , using ultrasound to make the polystyrene nanoparticles of this particle size evenly dispersed in the water, using the suspension filtration method to carry out a filtration experiment on the ultra-microfiltration membrane, selecting the filtered solution, and measuring the polystyrene nanop
  • the retention rate R of the polystyrene nanoparticles of this particle size is selected and used repeatedly for the retention of polystyrene nanoparticles of different particle sizes, and the membrane pore diameter of the ultra-microfiltration membrane is calculated according to the measured retention rate.
  • this method can more accurately determine the pore size and pore size distribution of ultra-microfiltration membranes, this method still has the following defects: 1) Each operation can only obtain the interception information of the filter membrane under one particle size, which needs to be repeated at least 3 times.
  • the pore size and pore size distribution of the filter membrane can only be calculated by the interception experiment of various particle sizes, which is not only complicated to operate (the interception experiments of each particle size involve solution preparation, filtration and detection steps), and the testing device is relatively complex, and the measurement cycle It takes at least 5 to 6 hours to complete the entire measurement process of the filter membrane pore size (excluding the production process of the standard curve); 2) the measurement cost of this method is high, not only the loss of the filter membrane is large (a particle size interception experiment requires If one filter membrane sample is lost, 3 filter membrane samples will be lost in the retention experiment of 3 particle sizes), and the consumption of the reference substance is also very large (the solution concentration of the reference substance required for each retention experiment requires 25 ⁇ g/mL, and each Secondary filtration requires at least tens to hundreds of milliliters of solution).
  • the purpose of the present invention is to provide a method for measuring filter membrane pore size and pore size distribution which is not only simple in operation, short in measurement period, but also in high measurement accuracy and low in measurement cost.
  • a method for measuring filter membrane pore size and pore size distribution comprising the steps of:
  • step d) filter the mixed suspension prepared in step c) by using the filter membrane to be tested, and then perform fluorescence detection on the obtained filtrate, and calculate the concentration of various fluorescent beads in the filtrate according to the standard curve obtained in step b).
  • C t and then according to the following formula:
  • the fluorescent beads are selected from polystyrene fluorescent beads.
  • step a) selects the following group of polystyrene fluorescent beads as the benchmark:
  • Polystyrene fluorescent beads with a diameter of 20nm and an emission wavelength of 488nm;
  • Polystyrene fluorescent beads with a diameter of 77nm and an emission wavelength of 695nm;
  • Polystyrene fluorescent beads with a diameter of 100nm and an emission wavelength of 460nm;
  • Polystyrene fluorescent beads with a diameter of 200 nm and an emission wavelength of 615 nm.
  • step a) selects the following group of polystyrene fluorescent beads as the benchmark:
  • Polystyrene fluorescent beads with a diameter of 20nm and an emission wavelength of 488nm;
  • Polystyrene fluorescent beads with a diameter of 100nm and an emission wavelength of 460nm;
  • Polystyrene fluorescent beads with a diameter of 200nm and an emission wavelength of 615nm;
  • Polystyrene fluorescent beads with a diameter of 300 nm and an emission wavelength of 695 nm.
  • step a) selects the following group of polystyrene fluorescent beads as the benchmark:
  • Polystyrene fluorescent beads with a diameter of 77nm and an emission wavelength of 695nm;
  • Polystyrene fluorescent beads with a diameter of 100nm and an emission wavelength of 460nm;
  • Polystyrene fluorescent beads with a diameter of 200nm and an emission wavelength of 615nm;
  • Polystyrene fluorescent beads with a diameter of 500 nm and an emission wavelength of 488 nm.
  • step a) selects the following group of polystyrene fluorescent beads as the benchmark:
  • Polystyrene fluorescent beads with a diameter of 100nm and an emission wavelength of 460nm;
  • Polystyrene fluorescent beads with a diameter of 200 nm and an emission wavelength of 615 nm.
  • Polystyrene fluorescent beads with a diameter of 300nm and an emission wavelength of 695nm;
  • Polystyrene fluorescent beads with a diameter of 500 nm and an emission wavelength of 488 nm.
  • a preferred solution, the C 0 described in step c) is 0.1-2.0 ⁇ g/mL.
  • the C 0 described in step c) is 0.5-1.0 ⁇ g/mL.
  • the filtration described in step d) adopts a syringe filter, and the amount of the mixed suspension used for the filtration operation is 2-4 mL.
  • the fluorescence detection in step d) refers to sequentially performing fluorescence detection on the obtained filtrate at the emission wavelengths corresponding to the fluorescent beads of each composition in the mixed suspension.
  • step e) first uses origin software to make a nonlinear fitting curve between the diameter of the fluorescent sphere and the retention rate R, and then obtains the values of pore diameter d 50 and d 90 from the fitting curve, and then according to the pore size distribution formula :
  • the present invention has the following significant beneficial effects:
  • the determination of the pore size and pore size distribution of filter membranes of various specifications can be realized only by selecting fluorescent beads with a suitable diameter range as the reference material. Mixing the suspension and one-time filtration, the measurement cycle is very short, and the entire measurement process of the filter membrane pore size only takes 1 to 5 minutes, which is a significant improvement compared to the 5 to 6 hours in the prior art;
  • the method of the present invention only needs to lose one filter membrane sample in the whole measurement process (while the prior art requires at least 3 filter membrane samples), and the solution concentration of the required reference substance only needs to be 0.1-2.0 ⁇ g/mL (while the current technology requires at least 3 filter membrane samples)
  • the prior art requires 25 ⁇ g/mL), and the total amount of solution required for the filtration operation is only 2 to 4 mL (while the prior art requires at least several hundred mL). significantly reduced;
  • the present invention not only produces significant progress, but also produces unexpected technical effects.
  • Fig. 1 is a fluorescence emission spectrum showing that the fluorescence signals of the four kinds of fluorescent beads in Example 1 do not interfere with each other;
  • Figure 2 is a standard curve showing the concentration and fluorescence intensity of four kinds of fluorescent beads in Example 1 at their emission wavelengths, wherein: Figure A is the standard curve of No. 1 fluorescent beads, and Figure B is No. 2 fluorescent beads The standard curve of the sphere, picture C is the standard curve of No. 3 fluorescent beads, and D picture is the standard curve of No. 4 fluorescent beads;
  • Fig. 3 is the nonlinear fitting curve between the fluorescent bead diameter and the rejection rate R described in Example 1;
  • Fig. 4 is the pore size distribution diagram obtained in Example 1.
  • Fig. 5 is the standard curve between the concentration and fluorescence intensity of No. 5 fluorescent beads in Example 2 under its emission wavelength;
  • Fig. 7 is the pore size distribution diagram that embodiment 2 obtains
  • Fig. 8 is the standard curve between the concentration and fluorescence intensity of No. 6 fluorescent beads in Example 3 at the emission wavelength;
  • Fig. 10 is the pore size distribution diagram obtained in Example 3.
  • Figure 11 is the pore size distribution diagram obtained in Example 4.
  • Figure 12 is the pore size distribution diagram obtained in Example 5.
  • Figure 13 is the pore size distribution diagram obtained in Example 6.
  • Fig. 14 is the ultraviolet detection spectrum obtained by comparative experiment 1;
  • Fig. 15 is the ultraviolet detection spectrum obtained by comparative experiment 2;
  • Figure 16 is the fluorescence detection pattern obtained in Comparative Experiment 2.
  • Figure A is the standard curve of the No. 1 fluorescent beads
  • Figure B is the standard curve of No. 2 fluorescent beads
  • Figure C is the standard curve of No. 3 fluorescent beads
  • Figure D is the standard curve of No. 4 fluorescent beads
  • the pore size distribution f(d) can be calculated and the pore size distribution diagram can be drawn (see Figure 4 for details), where d is the pore size and ⁇ is the pi.
  • the pore size distribution f(d) can be calculated and the pore size distribution diagram can be drawn (see Figure 7 for details), where d is the pore size and ⁇ is the pi.
  • the pore size distribution f(d) can be calculated and the pore size distribution diagram can be drawn (see Figure 10 for details), where d is the pore size and ⁇ is the pi.
  • Example 2 The only difference between this example and Example 2 is that the filter membrane used is a commercially available 0.22 ⁇ m PES filter membrane, and the rest of the content is the same as that described in Example 2.
  • Figure 11 shows the pore size distribution obtained in this example.
  • Example 2 The only difference between this example and Example 2 is that the filter membrane used is a commercially available 0.2 ⁇ m silicon carbide inorganic ceramic membrane, and the rest of the content is the same as that described in Example 2.
  • Figure 12 shows the pore size distribution obtained in this example.
  • Example 1 The only difference between this example and Example 1 is that the filter membrane used is a commercially available 0.1 ⁇ m alumina inorganic ceramic membrane, and the rest of the content is the same as that described in Example 1.
  • Figure 13 shows the pore size distribution obtained in this example.
  • the suspension of a single particle with a mass concentration of 25 ⁇ g/mL and a mixed suspension of the three particles were prepared with water, respectively, and then subjected to ultraviolet detection respectively.
  • the detection pattern is shown in Figure 14; it can be seen from Figure 14 that although the particle sizes are different, The absorbance of polystyrene particles with the same concentration at the detection wavelength of 220nm will be different, but the UV absorption peaks are basically the same, so it is impossible to distinguish whether the absorbance is different due to the change of concentration or the difference of absorbance caused by the change of particle size. It can be proved that: For the UV detection method disclosed in the Chinese Patent Application No. 201710107174.1, only one particle size can be detected in one interception experiment, and the interception experiment operation should be repeated for different particle diameters.
  • the fluorescence signal of the suspension is still strong and stable; it can be proved that the method of fluorescence detection in the present invention can achieve a mass concentration of 0.1 ⁇ g/mL, while the existing technology (Chinese patent with application number 201710107174.1) will not be able to The realization shows that the present invention not only produces unexpected technical effects, but also produces significant progress, which can significantly reduce the loss of reference materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种测定滤膜孔径及孔径分布的方法,该方法包括:选取一组具有不同直径且发射波长不相同的荧光小球作为基准物;对作为基准物的每种荧光小球作在其发射波长下的浓度与荧光强度标准曲线;将作为基准物的一组荧光小球均匀分散在水中,配制成每种荧光小球的质量浓度为C 0的混合悬浮液;利用待测滤膜对配制的混合悬浮液进行一次性过滤,然后对得到的滤液进行荧光检测,并依据标准曲线计算出滤液中各种荧光小球的浓度C t,再计算待测滤膜对每种荧光小球的截留率R;最后根据得到的一组荧光小球直径和截留率R,计算待测滤膜的孔径及孔径分布。该方法具有适用范围广、操作简单、测定周期短、检测损耗和检测成本低等优点。

Description

一种测定滤膜孔径及孔径分布的方法 技术领域
本发明是涉及一种测定滤膜孔径及孔径分布的方法,属于滤膜表征技术领域。
背景技术
近年来,膜分离技术在各个领域都有了较为广泛的应用,而滤膜的孔径及孔径分布是影响滤膜的重要性能,因此对滤膜的孔径及孔径分布的准确测试具有极其重要性。
目前,国内外对滤膜的孔径及孔径分布的测定方法可以分为两类:1)直接法:主要为电子显微镜法,常用的主要有扫描电镜、透射电镜等;2)间接法:利用与孔径相关的物理现象,通过实验测出相应的物理参数,再假设孔径为均匀直通圆孔的假设条件下,计算得到膜的等效孔径,主要有泡点法、压汞法、氮气吸附法、液液置换法、气体渗透法、截留分子量法、悬浮液过滤法等。电镜法虽然比较直观,但属于破坏性检测,且观察范围小,测定信息的代表性不强。而泡压法只局限于测定膜孔中的最大孔径,用于小孔径超滤膜的测定时所需压力远高于膜的使用压力,故一般认定为只适用于微滤膜的测定。压汞法所测出的孔为空隙孔,不全是贯穿膜的“活性孔”,且所需测试的压力大,容易引起试样变形而使测定结果失真,因此,压汞法不适用于超滤膜孔径的测定。液液置换法能测定平均孔径小于0.02μM膜的超滤膜的孔径及孔径分布(相对误差<10%),但正丁醇和水对膜材料有影响,即使改换液液体系的溶液,其他体系也可能对膜材料有影响。截留分子量法适合测定孔径较小的超滤膜,但是选择不同的基准物检测的结果会有差别。
悬浮液过滤法能够直接测得膜的分离性能,具有测试结果较准确、测试孔径范围广的优点,例如:申请号为CN201710107174.1的中国发明专利中公开了一种测定超微滤膜孔径及孔径分布的方法,所述方法是基于悬浮液过滤法测定超微滤膜孔径,通过选择聚苯乙烯纳米颗粒作为基准物,然后采用紫外分光光度计扫描每种粒径的聚苯乙烯纳米颗粒在紫外可见波长范围内的最大吸收波长,并在最大吸收波长下作该粒径的聚苯乙烯纳米颗粒的标准曲线;再选取单一粒径的聚苯乙烯纳米颗粒配成质量浓度为C 0的溶液,用超声使该粒径的聚苯乙烯纳米颗粒均匀分散在水中,采用悬浮液过滤法对超微滤膜进行过滤实验,选取过滤后的溶液,测得该粒径的聚苯乙烯纳米颗粒在最大吸收波长下的吸光度,并采用该粒径的聚苯乙烯纳米颗粒所对应的标准曲线计算出过滤后溶液中该粒径的聚苯乙烯纳米颗粒的浓度C t,进而计算超微滤膜对该粒径的聚苯乙烯纳米颗粒的截留率R,并选用不同粒径 的聚苯乙烯纳米颗粒重复进行截留使用,根据测得的截留率计算该超微滤膜的膜孔直径。虽然该方法能够较准确测定超微滤膜的孔径及孔径分布,但该方法还存在如下缺陷:1)每次操作只能得到滤膜在一种粒径下的截留信息,需要至少重复做3种粒径的截留实验,才能计算出滤膜的孔径及孔径分布,不仅操作比较繁琐(每种粒径的截留实验,均涉及溶液配制及过滤和检测步骤),且测试装置较为复杂,测定周期长,完成滤膜孔径的整个测定过程(不包含标准曲线的制作过程)至少需要5~6个小时;2)该方法测定成本高,不仅滤膜损耗大(一种粒径的截留实验就需要损耗一片滤膜样品,3种粒径的截留实验就要损耗3片滤膜样品),而且基准物的耗费也很大(每次截留实验所需基准物的溶液浓度需要25μg/mL,且每次过滤需要溶液用量至少几十至几百毫升)。
发明内容
针对现有技术存在的上述问题,本发明的目的是提供一种不仅操作简单、测定周期短,而且测定准确性高、测定成本低的测定滤膜孔径及孔径分布的方法。
为实现上述发明目的,本发明采用的技术方案如下:
一种测定滤膜孔径及孔径分布的方法,包括如下步骤:
a)选取一组具有不同直径且发射波长不相同的荧光小球作为基准物;
b)对作为基准物的每种荧光小球作在其发射波长下的浓度与荧光强度间的标准曲线;
c)将作为基准物的一组荧光小球均匀分散在水中,配制成每种荧光小球的质量浓度均为C 0的混合悬浮液;
d)利用待测滤膜对步骤c)配制的混合悬浮液进行一次性过滤,然后对得到的滤液进行荧光检测,并依据步骤b)得到的标准曲线计算出滤液中各种荧光小球的浓度C t,再依据如下公式:
R=(1-C t/C 0)×100%
计算得到待测滤膜对每种荧光小球的截留率R;
e)根据得到的一组荧光小球直径和截留率R,计算该待测滤膜的孔径及孔径分布。
一种优选方案,所述荧光小球选用聚苯乙烯荧光小球。
一种实施方案,步骤a)选取如下一组聚苯乙烯荧光小球作为基准物:
直径为20nm、发射波长为488nm的聚苯乙烯荧光小球;
直径为77nm、发射波长为695nm的聚苯乙烯荧光小球;
直径为100nm、发射波长为460nm的聚苯乙烯荧光小球;
直径为200nm、发射波长为615nm的聚苯乙烯荧光小球。
另一种实施方案,步骤a)选取如下一组聚苯乙烯荧光小球作为基准物:
直径为20nm、发射波长为488nm的聚苯乙烯荧光小球;
直径为100nm、发射波长为460nm的聚苯乙烯荧光小球;
直径为200nm、发射波长为615nm的聚苯乙烯荧光小球;
直径为300nm、发射波长为695nm的聚苯乙烯荧光小球。
另一种实施方案,步骤a)选取如下一组聚苯乙烯荧光小球作为基准物:
直径为77nm、发射波长为695nm的聚苯乙烯荧光小球;
直径为100nm、发射波长为460nm的聚苯乙烯荧光小球;
直径为200nm、发射波长为615nm的聚苯乙烯荧光小球;
直径为500nm、发射波长为488nm的聚苯乙烯荧光小球。
另一种实施方案,步骤a)选取如下一组聚苯乙烯荧光小球作为基准物:
直径为100nm、发射波长为460nm的聚苯乙烯荧光小球;
直径为200nm、发射波长为615nm的聚苯乙烯荧光小球。
直径为300nm、发射波长为695nm的聚苯乙烯荧光小球;
直径为500nm、发射波长为488nm的聚苯乙烯荧光小球。
一种优选方案,步骤c)中所述的C 0在0.1~2.0μg/mL。
进一步优选方案,步骤c)中所述的C 0在0.5~1.0μg/mL。
一种实施方案,步骤d)中所述的过滤采用针头式过滤器,用于过滤操作的混合悬浮液的用量为2~4mL。
一种实施方案,步骤d)中所述的荧光检测,是指对得到的滤液在混合悬浮液中各组成荧光小球所对应的发射波长下依次进行荧光检测。
一种实施方案,步骤e)先采用origin软件制作荧光小球直径与截留率R之间的非线性拟合曲线,然后由拟合曲线得到孔径d 50和d 90的值,再根据孔径分布公式:
Figure PCTCN2021090288-appb-000001
计算出孔径分布f(d)并画出孔径分布图,式中:d为孔径,π为圆周率。
与现有技术相比,本发明具有如下显著性有益效果:
采用本发明方法,只需通过选取合适直径范围的荧光小球作为基准物,即可实现各种 规格的滤膜孔径大小和孔径分布的测定,不仅适用范围广,而且操作简单,仅需直接配制混合悬浮液和一次性过滤,测定周期非常短,完成滤膜孔径的整个测定过程只需1~5分钟,相对现有技术的5~6小时,具有显著性进步;
另外,本发明方法在整个测定过程中只需损耗一片滤膜样品(而现有技术至少需要3片滤膜样品),且所需基准物的溶液浓度只需0.1~2.0μg/mL(而现有技术需要25μg/mL),过滤操作所需溶液的用量总计只要2~4mL(而现有技术至少需要几百毫升),因此,本发明相对现有技术,也可使检测损耗和检测成本均得到显著降低;
总之,本发明相对于现有技术,不仅产生了显著性进步,而且产生了出乎意料的技术效果。
附图说明
图1是显示实施例1中4种荧光小球间荧光信号互不干扰的荧光发射图谱;
图2是显示实施例1中4种荧光小球分别在其发射波长下的浓度与荧光强度间的标准曲线,其中:A图为1号荧光小球的标准曲线,B图为2号荧光小球的标准曲线,C图为3号荧光小球的标准曲线,D图为4号荧光小球的标准曲线;
图3为实施例1中所述的荧光小球直径与截留率R之间的非线性拟合曲线;
图4为实施例1所获得的孔径分布图;
图5为实施例2中5号荧光小球在其发射波长下的浓度与荧光强度间的标准曲线;
图6为实施例2中所述的荧光小球直径与截留率R之间的非线性拟合曲线;
图7为实施例2所获得的孔径分布图;
图8为实施例3中6号荧光小球在其发射波长下的浓度与荧光强度间的标准曲线;
图9为实施例3中所述的荧光小球直径与截留率R之间的非线性拟合曲线;
图10为实施例3所获得的孔径分布图;
图11为实施例4所获得的孔径分布图;
图12为实施例5所获得的孔径分布图;
图13为实施例6所获得的孔径分布图;
图14为对比实验1所获得的紫外检测图谱;
图15为对比实验2所获得的紫外检测图谱;
图16为对比实验2所获得的荧光检测图谱。
具体实施方式
下面结合具体实施例对本发明技术方案做进一步详细、完整地说明。
实施例1
本实施例提供的一种测定滤膜孔径及孔径分布的方法,包括如下步骤:
a)选取如下一组具有不同直径且发射波长均不相同的聚苯乙烯荧光小球作为基准物:
序号 直径(nm) 激发波长(nm) 发射波长(nm)
1 20 465 488
2 77 532 695
3 100 410 460
4 200 335 615
由图1所示可见,所选取的4种荧光小球之间,荧光信号互不干扰,可作为基准物;
b)对作为基准物的上述4种荧光小球分别作在其发射波长下的浓度与荧光强度间的标准曲线,详见图2所示,其中:A图为1号荧光小球的标准曲线,B图为2号荧光小球的标准曲线,C图为3号荧光小球的标准曲线,D图为4号荧光小球的标准曲线;
c)将作为基准物的1~4号荧光小球均匀分散在水中,配制成1~3号荧光小球的质量浓度C 0均为1μg/mL,4号荧光小球的质量浓度C 0为0.5μg/mL的混合悬浮液;
d)取上述混合悬浮液2mL,采用针头式过滤器用直径为25mm的圆形滤膜片(为市购的商品化0.1μm的PVDF滤膜)进行过滤,然后取1mL滤液依次进行在1号荧光小球所对应的发射波长488nm下的荧光检测、在2号荧光小球所对应的发射波长695nm下的荧光检测、在3号荧光小球所对应的发射波长460nm下的荧光检测、在4号荧光小球所对应的发射波长615nm下的荧光检测;然后依据图2所示的4个标准曲线分别计算出滤液中4种荧光小球的浓度C t,再依据如下公式:
R=(1-C t/C 0)×100%
分别计算得到待测滤膜对4种荧光小球的截留率R,详见下表所示:
序号 直径(nm) 截留率R
1 20 15.02%
2 77 26.39%
3 100 60.54%
4 200 99.63%
e)根据上表得到的4种荧光小球直径和截留率R,采用origin软件制作荧光小球直径与截 留率R之间的非线性拟合曲线(详阅图3所示),然后由该拟合曲线即可得到孔径d 50=96和d 90=155;再根据孔径分布公式:
Figure PCTCN2021090288-appb-000002
即可计算出孔径分布f(d)并画出孔径分布图(详阅图4所示),式中:d为孔径,π为圆周率。
实施例2
本实施例提供的一种测定滤膜孔径及孔径分布的方法,包括如下步骤:
a)选取如下一组具有不同直径且发射波长均不相同的聚苯乙烯荧光小球作为基准物:
序号 直径(nm) 激发波长(nm) 发射波长(nm)
1 20 465 488
3 100 410 460
4 200 335 615
5 300 532 695
b)对作为基准物的上述4种荧光小球分别作在其发射波长下的浓度与荧光强度间的标准曲线,详见图2和图5所示;
c)将作为基准物的1、3、4、5号荧光小球均匀分散在水中,配制成1、3、5号荧光小球的质量浓度C 0均为1μg/mL,4号荧光小球的质量浓度C 0为0.5μg/mL的混合悬浮液;
d)取上述混合悬浮液2mL,采用针头式过滤器用直径为25mm的圆形滤膜片(为市购的商品化0.22μm的PVDF滤膜)进行过滤,然后取1mL滤液依次进行在1号荧光小球所对应的发射波长488nm下的荧光检测、在3号荧光小球所对应的发射波长460nm下的荧光检测、在4号荧光小球所对应的发射波长615nm下的荧光检测、在5号荧光小球所对应的发射波长695nm下的荧光检测;然后依据图2和图5所示的相应标准曲线分别计算出滤液中4种荧光小球的浓度C t,再依据如下公式:
R=(1-C t/C 0)×100%
分别计算得到待测滤膜对4种荧光小球的截留率R,详见下表所示:
序号 直径(nm) 截留率R
1 20 0.17%
3 100 8.73%
4 200 92.35%
5 300 98.33%
e)根据上表得到的4种荧光小球直径和截留率R,采用origin软件制作荧光小球直径与截留率R之间的非线性拟合曲线(详阅图6所示),然后由该拟合曲线即可得到孔径d 50=146和d 90=193;再根据孔径分布公式:
Figure PCTCN2021090288-appb-000003
即可计算出孔径分布f(d)并画出孔径分布图(详阅图7所示),式中:d为孔径,π为圆周率。
实施例3
本实施例提供的一种测定滤膜孔径及孔径分布的方法,包括如下步骤:
a)选取如下一组具有不同直径且发射波长均不相同的聚苯乙烯荧光小球作为基准物:
序号 直径(nm) 激发波长(nm) 发射波长(nm)
3 100 410 460
4 200 335 615
5 300 532 695
6 500 465 488
b)对作为基准物的上述4种荧光小球分别作在其发射波长下的浓度与荧光强度间的标准曲线,详见图2和图8所示;
c)将作为基准物的3~6号荧光小球均匀分散在水中,配制成3、5、6号荧光小球的质量浓度C 0均为1μg/mL,4号荧光小球的质量浓度C 0为0.5μg/mL的混合悬浮液;
d)取上述混合悬浮液2mL,采用针头式过滤器用直径为25mm的圆形滤膜片(为市购的商品化0.45μm的PVDF滤膜)进行过滤,然后取1mL滤液依次进行在3号荧光小球所对应的发射波长460nm下的荧光检测、在4号荧光小球所对应的发射波长615nm下的荧光检测、在5号荧光小球所对应的发射波长695nm下的荧光检测、在6号荧光小球所对应的发射波长488nm下的荧光检测;然后依据图2和图8所示的相应标准曲线分别计算出滤液中4种荧光小球的浓度C t,再依据如下公式:
R=(1-C t/C 0)×100%
分别计算得到待测滤膜对4种荧光小球的截留率R,详见下表所示:
序号 直径(nm) 截留率R
3 100 1.26%
4 200 11.56%
5 300 56.10%
6 500 94.97%
e)根据上表得到的4种荧光小球直径和截留率R,采用origin软件制作荧光小球直径与截留率R之间的非线性拟合曲线(详阅图9所示),然后由该拟合曲线即可得到孔径d 50=289和d 90=404;再根据孔径分布公式:
Figure PCTCN2021090288-appb-000004
即可计算出孔径分布f(d)并画出孔径分布图(详阅图10所示),式中:d为孔径,π为圆周率。
实施例4
本实施例与实施例2的区别仅在于,所用的滤膜片为市购的商品化0.22μm的PES滤膜,其余内容均同实施例2中所述。
图11所示为本实施例得到的孔径分布图。
实施例5
本实施例与实施例2的区别仅在于,所用的滤膜片为市购的商品化0.2μm的碳化硅无机陶瓷膜,其余内容均同实施例2中所述。
图12所示为本实施例得到的孔径分布图。
实施例6
本实施例与实施例1的区别仅在于,所用的滤膜片为市购的商品化0.1μm的氧化铝无机陶瓷膜,其余内容均同实施例1中所述。
图13所示为本实施例得到的孔径分布图。
对比实验1
选择如下3种不同粒径的普通聚苯乙烯粒子:
序号 厂家提供粒径(nm) 动态光散射(DLS)测试结果(nm)
1 20 20.6
2 50 53.3
3 100 108.7
分别用水配制成质量浓度为25μg/mL的单一粒子的悬浮液和三种粒子的混合悬浮液,然后分别进行紫外检测,检测图谱详见图14所示;由图14可见:虽然不同粒径但同浓度的聚苯乙烯粒子在检测波长220nm处的吸光度会有不同,但是紫外吸收峰基本一致,因此无法区分是因为浓度变化导致的吸光度不同还是粒径变化导致的吸光度不同,由此可证明:申请号为201710107174.1的中国专利中所公开的紫外检测方法,一次截留实验只能检测一种粒径,不同粒径要重复进行截留实验操作。
对比实验2
分别选取20nm的普通聚苯乙烯粒子和20nm的聚苯乙烯荧光小球,并分别用水配制成质量浓度为0.1μg/mL的悬浮液,然后对由20nm普通聚苯乙烯粒子形成的悬浮液重复进行3次紫外扫描检测,对由20nm聚苯乙烯荧光小球形成的悬浮液重复进行3次荧光扫描检测;具体检测结果分别见图15和图16所示;结合图15和图16可见:由普通聚苯乙烯粒子形成的质量浓度为0.1μg/mL的悬浮液的紫外吸收非常弱,已接近仪器检测限,且信号不稳定,而由聚苯乙烯荧光小球形成的质量浓度为0.1μg/mL的悬浮液的荧光信号仍旧较强且很稳定;由此可证明,本发明采用荧光检测的方法可实现质量浓度为0.1μg/mL,而现有技术(申请号为201710107174.1的中国专利)将无法实现,说明本发明不仅产生了出乎意料的技术效果,而且产生了显著性进步,可使基准物损耗得到显著降低。
最后需要在此指出的是:以上仅是本发明的部分优选实施例,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容做出的一些非本质的改进和调整均属于本发明的保护范围。

Claims (10)

  1. 一种测定滤膜孔径及孔径分布的方法,其特征在于,所述方法包括如下步骤:
    a)选取一组具有不同直径且发射波长不相同的荧光小球作为基准物;
    b)对作为基准物的每种荧光小球作在其发射波长下的浓度与荧光强度间的标准曲线;
    c)将作为基准物的一组荧光小球均匀分散在水中,配制成每种荧光小球的质量浓度均为C 0的混合悬浮液;
    d)利用待测滤膜对步骤c)配制的混合悬浮液进行一次性过滤,然后对得到的滤液进行荧光检测,并依据步骤b)得到的标准曲线计算出滤液中各种荧光小球的浓度C t,再依据如下公式:
    R=(1-C t/C 0)×100%
    计算得到待测滤膜对每种荧光小球的截留率R;
    e)根据得到的一组荧光小球直径和截留率R,计算该待测滤膜的孔径及孔径分布。
  2. 根据权利要求1所述的方法,其特征在于:所述荧光小球选用聚苯乙烯荧光小球。
  3. 根据权利要求1所述的方法,其特征在于,步骤a)选取如下一组聚苯乙烯荧光小球作为基准物:
    直径为20nm、发射波长为488nm的聚苯乙烯荧光小球;
    直径为77nm、发射波长为695nm的聚苯乙烯荧光小球;
    直径为100nm、发射波长为460nm的聚苯乙烯荧光小球;
    直径为200nm、发射波长为615nm的聚苯乙烯荧光小球。
  4. 根据权利要求1所述的方法,其特征在于,步骤a)选取如下一组聚苯乙烯荧光小球作为基准物:
    直径为20nm、发射波长为488nm的聚苯乙烯荧光小球;
    直径为100nm、发射波长为460nm的聚苯乙烯荧光小球;
    直径为200nm、发射波长为615nm的聚苯乙烯荧光小球;
    直径为300nm、发射波长为695nm的聚苯乙烯荧光小球。
  5. 根据权利要求1所述的方法,其特征在于,步骤a)选取如下一组聚苯乙烯荧光小球作为基准物:
    直径为77nm、发射波长为695nm的聚苯乙烯荧光小球;
    直径为100nm、发射波长为460nm的聚苯乙烯荧光小球;
    直径为200nm、发射波长为615nm的聚苯乙烯荧光小球;
    直径为500nm、发射波长为488nm的聚苯乙烯荧光小球。
  6. 根据权利要求1所述的方法,其特征在于,步骤a)选取如下一组聚苯乙烯荧光小球作为基准物:
    直径为100nm、发射波长为460nm的聚苯乙烯荧光小球;
    直径为200nm、发射波长为615nm的聚苯乙烯荧光小球。
    直径为300nm、发射波长为695nm的聚苯乙烯荧光小球;
    直径为500nm、发射波长为488nm的聚苯乙烯荧光小球。
  7. 根据权利要求1所述的方法,其特征在于:步骤c)中所述的C 0在0.1~2.0μg/mL。
  8. 根据权利要求1所述的方法,其特征在于:步骤d)中所述的过滤采用针头式过滤器,用于过滤操作的混合悬浮液的用量为2~4mL。
  9. 根据权利要求1所述的方法,其特征在于:步骤d)中所述的荧光检测,是指对得到的滤液在混合悬浮液中各组成荧光小球所对应的发射波长下依次进行荧光检测。
  10. 根据权利要求1所述的方法,其特征在于:步骤e)先采用origin软件制作荧光小球直径与截留率R之间的非线性拟合曲线,然后由拟合曲线得到孔径d 50和d 90的值,再根据孔径分布公式:
    Figure PCTCN2021090288-appb-100001
    计算出孔径分布f(d)并画出孔径分布图,式中:d为孔径,π为圆周率。
PCT/CN2021/090288 2021-02-09 2021-04-27 一种测定滤膜孔径及孔径分布的方法 WO2022170680A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/274,523 US20240085303A1 (en) 2021-02-09 2021-04-27 Method for measuring pore size and pore size distribution of filter membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110181501.4 2021-02-09
CN202110181501.4A CN114904397B (zh) 2021-02-09 2021-02-09 一种测定滤膜孔径及孔径分布的方法

Publications (1)

Publication Number Publication Date
WO2022170680A1 true WO2022170680A1 (zh) 2022-08-18

Family

ID=82762230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090288 WO2022170680A1 (zh) 2021-02-09 2021-04-27 一种测定滤膜孔径及孔径分布的方法

Country Status (3)

Country Link
US (1) US20240085303A1 (zh)
CN (1) CN114904397B (zh)
WO (1) WO2022170680A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068634A (ja) * 2004-09-01 2006-03-16 Fuji Electric Systems Co Ltd ろ過膜異常検知方法およびその装置
JP2011223924A (ja) * 2010-04-20 2011-11-10 Panasonic Corp プランクトン計数方法およびプランクトン計数装置
US20130075331A1 (en) * 2010-06-10 2013-03-28 Ramila Hishantha Peiris Method for fluorescence-based fouling forecasting and optimization in membrane filtration operations
CN103506013A (zh) * 2013-10-08 2014-01-15 江苏大学 用于多场助滤膜损的实验方法与微流控实验装置
CN104101586A (zh) * 2014-07-23 2014-10-15 中国计量科学研究院 一种微球荧光强度标准物质的定值方法
CN205461841U (zh) * 2016-01-08 2016-08-17 南京高谦功能材料科技有限公司 管式膜测试组件
CN105865988A (zh) * 2015-01-23 2016-08-17 中国科学院重庆绿色智能技术研究院 一种浮游植物细胞粒径分布的检测分析方法
CN106823823A (zh) * 2017-02-27 2017-06-13 中国人民大学 一种测定超微滤膜孔径及孔径分布的方法
CN109224867A (zh) * 2018-09-21 2019-01-18 湖州师范学院求真学院 一种微孔膜膜孔径的表征方法
CN111773932A (zh) * 2020-07-21 2020-10-16 杭州瑞纳膜工程有限公司 一种孔径可调的纳滤膜及制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0148871B1 (ko) * 1995-03-13 1998-12-01 강필종 광투과도를 이용한 다공성 분리막의 기공크기분포 측정법
JP3339679B2 (ja) * 2000-11-22 2002-10-28 クァンジュ インスティテュート オブ サイエンスアンド テクノロジー 溶質の特定分子量部分除去率を用いた膜孔サイズ分布測定方法および装置
JP5586842B2 (ja) * 2006-10-19 2014-09-10 デンカ生研株式会社 試料ろ過フィルターを用いる簡易メンブレンアッセイ方法及びキット
CN101464409B (zh) * 2007-12-19 2013-10-30 中国科学院电子学研究所 快速定量检测细菌的装置及方法
JP2012163468A (ja) * 2011-02-08 2012-08-30 Sysmex Corp 迅速測定方法
CN103012812A (zh) * 2012-12-05 2013-04-03 南京工业大学 一种水溶性荧光纳米微球的制备方法
CN104121859A (zh) * 2014-07-29 2014-10-29 天津力神电池股份有限公司 一种隔膜孔径大小及分布情况的检测方法
SG11202106255SA (en) * 2018-12-21 2021-07-29 Ecolab Usa Inc Quick tracer injection for monitoring osmosis membrane integrity
JP6768889B2 (ja) * 2019-07-04 2020-10-14 水ing株式会社 分離膜の汚染状態分析方法及びその方法を用いるろ過対象水の水質評価方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068634A (ja) * 2004-09-01 2006-03-16 Fuji Electric Systems Co Ltd ろ過膜異常検知方法およびその装置
JP2011223924A (ja) * 2010-04-20 2011-11-10 Panasonic Corp プランクトン計数方法およびプランクトン計数装置
US20130075331A1 (en) * 2010-06-10 2013-03-28 Ramila Hishantha Peiris Method for fluorescence-based fouling forecasting and optimization in membrane filtration operations
CN103506013A (zh) * 2013-10-08 2014-01-15 江苏大学 用于多场助滤膜损的实验方法与微流控实验装置
CN104101586A (zh) * 2014-07-23 2014-10-15 中国计量科学研究院 一种微球荧光强度标准物质的定值方法
CN105865988A (zh) * 2015-01-23 2016-08-17 中国科学院重庆绿色智能技术研究院 一种浮游植物细胞粒径分布的检测分析方法
CN205461841U (zh) * 2016-01-08 2016-08-17 南京高谦功能材料科技有限公司 管式膜测试组件
CN106823823A (zh) * 2017-02-27 2017-06-13 中国人民大学 一种测定超微滤膜孔径及孔径分布的方法
CN109224867A (zh) * 2018-09-21 2019-01-18 湖州师范学院求真学院 一种微孔膜膜孔径的表征方法
CN111773932A (zh) * 2020-07-21 2020-10-16 杭州瑞纳膜工程有限公司 一种孔径可调的纳滤膜及制备方法

Also Published As

Publication number Publication date
CN114904397B (zh) 2023-09-19
CN114904397A (zh) 2022-08-16
US20240085303A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
CN106823823B (zh) 一种测定超微滤膜孔径及孔径分布的方法
CN106833628B (zh) 表面修饰的碳纳米点的制备方法和作为荧光探针检测Cu2+及谷胱甘肽的应用
CN108489945A (zh) 一种基于明胶制备碳量子点检测六价铬离子的方法及其应用
CN106338542A (zh) 一种利用质谱检测血清小分子代谢物的方法
CN108195816A (zh) 以间苯三酚为碳源微波快速合成碳点检测溶液pH的方法
WO2022170680A1 (zh) 一种测定滤膜孔径及孔径分布的方法
CN107356756A (zh) 一种荧光探针及其合成方法和在循环肿瘤细胞检测中的应用
CN111504870B (zh) 检测样品中聚集体颗粒在目标粒径下浓度的非标记方法
CN110849854B (zh) 采用BA-Eu-MOF复合材料测定Hg2+和CH3Hg+含量的方法
CN110470663B (zh) 用于快速检测人胃幽门螺旋杆菌的试剂和试剂盒
CN107907470A (zh) 一种细胞培养收获液中病毒颗粒的电镜定量检测方法
CN115232616B (zh) 基于防己诺林碱碳点的比率型荧光探针的制备方法及应用
CN110068529A (zh) 一种外囊泡的表征方法
CN114660103B (zh) 一种重金属痕量检测方法及其应用
CN111504869B (zh) 流式聚集体杂质分析仪
CN109738473B (zh) 一种测量多孔材料气孔曲折因子的方法
CN102288556A (zh) 基于半胱胺修饰的纳米金溶液检测硫酸根离子的用途及方法
CN116952811B (zh) 一种基于纳米流式检测仪检测外泌体膜完整性的方法及其应用
CN106018531B (zh) 用于咖啡因检测的化学修饰电极及其制备和应用
CN110441223A (zh) 一种利用发光细菌进行固体颗粒毒性评估的方法
CN112444468B (zh) 一种乳剂的过滤过程监测方法
CN112577935B (zh) 一种汞离子检测试纸及其使用方法
CN106814127A (zh) 一种利用基质辅助激光解析电离质谱检测尿液的方法
CN112798532B (zh) 一种核电厂痕量悬浮固体测量标准比色卡及其制作方法
CN109324028A (zh) 一种以乙二胺和硝酸为原料微波快速合成碳点溶液检测Cr(VI)的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925335

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18274523

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925335

Country of ref document: EP

Kind code of ref document: A1