WO2022168847A1 - 非水電解質二次電池用正極添加剤、それを含む非水電解質二次電池用正極活物質組成物、非水電解質二次電池用正極およびこれを備える非水電解質二次電池 - Google Patents

非水電解質二次電池用正極添加剤、それを含む非水電解質二次電池用正極活物質組成物、非水電解質二次電池用正極およびこれを備える非水電解質二次電池 Download PDF

Info

Publication number
WO2022168847A1
WO2022168847A1 PCT/JP2022/003970 JP2022003970W WO2022168847A1 WO 2022168847 A1 WO2022168847 A1 WO 2022168847A1 JP 2022003970 W JP2022003970 W JP 2022003970W WO 2022168847 A1 WO2022168847 A1 WO 2022168847A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
electrolyte secondary
nonaqueous electrolyte
active material
Prior art date
Application number
PCT/JP2022/003970
Other languages
English (en)
French (fr)
Inventor
祥平 小林
修志 西村
秀治 岩崎
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020237026734A priority Critical patent/KR20230142723A/ko
Priority to US18/275,454 priority patent/US20240120493A1/en
Priority to CN202280013524.7A priority patent/CN116964783A/zh
Priority to EP22749719.5A priority patent/EP4290601A1/en
Priority to JP2022579563A priority patent/JPWO2022168847A1/ja
Publication of WO2022168847A1 publication Critical patent/WO2022168847A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • C01B32/324Preparation characterised by the starting materials from waste materials, e.g. tyres or spent sulfite pulp liquor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/384Granulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode additive for nonaqueous electrolyte secondary batteries, a positive electrode active material composition for nonaqueous electrolyte secondary batteries containing the same, a positive electrode for nonaqueous electrolyte secondary batteries, and a nonaqueous electrolyte secondary battery comprising the same. .
  • Non-aqueous electrolyte secondary batteries such as lithium-ion secondary batteries
  • electrochemical elements such as lithium-ion secondary batteries
  • It is a battery that exhibits a discharge voltage twice or more as high as that of a battery and exhibits a high energy density.
  • Lithium having a structure capable of intercalating lithium such as LiCoO 2 , LiMn 2 O 4 and LiNi 1-x CoxO 2 (0 ⁇ X ⁇ 1) is used as a positive electrode active material for lithium ion secondary batteries. and transition metal oxides are mainly used.
  • this lithium-ion secondary battery uses a non-aqueous electrolyte, water in the battery can compromise safety.
  • the above metal oxides which are positive electrode active materials used in lithium ion secondary batteries, are fragile in water and easily decomposed.
  • attempts have been made to increase the Ni content in order to improve the battery capacity of the positive electrode and the presence of more water tends to have a greater effect on performance.
  • the presence of water accelerates the elution of Ni, deposits it on the negative electrode side due to the shuttle reaction, and significantly reduces the stability of the battery.
  • Patent Documents 1 and 2 disclose technologies related to lithium-ion secondary batteries that can reduce the decrease in battery capacity by effectively removing moisture in the battery.
  • water adsorbents such as zeolite, activated alumina, activated carbon, and silica gel are added to the inside of the lithium ion secondary battery to effectively remove the water in the battery. , suppresses the decrease in the capacity of the lithium-ion secondary battery.
  • Patent Document 2 exemplifies a group of zeolites containing lithium.
  • Patent Document 3 exemplifies addition of activated carbon having an electric double layer capacity to the positive electrode of a lithium ion secondary battery.
  • Patent Document 4 discloses a non-aqueous alkali metal storage element using activated carbon as a positive electrode active material.
  • activated carbon is added to the positive electrode active material, and the amount of mesopores in the positive electrode active material contained in the positive electrode active material layer derived from pores having a diameter of 20 ⁇ or more and 500 ⁇ or less calculated by the BJH method is V1 (cc / g), and when the amount of micropores derived from pores with a diameter of less than 20 ⁇ calculated by the MP method is V2 (cc/g), 0.3 ⁇ V1 ⁇ 0.8 and 0.5 ⁇ V2 ⁇ 1 .0 and the specific surface area measured by the BET method is 1500 m 2 /g or more and 3000 m 2 /g or less.
  • Patent Document 5 exemplifies the use of activated carbon, which is heat-treated to control the specific surface area and the amount of functional groups, as an electrode of an electric double layer capacitor.
  • JP-A-2001-126766 JP 2014-26819 A JP-A-2004-296431 Japanese Patent Application Laid-Open No. 2020-13881 Japanese Patent No. 5027849
  • Patent Document 1 As described in Background Art, in the technology disclosed in Patent Document 1, a moisture adsorbent is added to the inside of the lithium ion secondary battery to remove moisture in the battery, thereby improving the lithium ion secondary battery. It suppresses the capacity decrease.
  • Patent Document 2 discloses a zeolite that contains Li and contributes to capacity. There is room for improvement.
  • the lithium secondary battery electrode described in Patent Document 3 is required to have a pore volume of 20 ⁇ or more as a material (activated carbon) having an electric double layer capacity of 0.418 cc/g or more. Adsorption of anions to such activated carbon having an excessively large mesopore volume is strong, and there is a possibility that the diffusibility of ions is reduced, resulting in a decrease in electrical conductivity and an increase in direct current resistance.
  • Patent Document 4 The invention described in Patent Document 4 is used for a device using a non-faradaic reaction such as a lithium ion capacitor, and substantially uses activated carbon with a relatively large mesopore volume and micropore volume, Also, the amount of activated carbon added is large. In addition, it is specialized for output, and does not take into consideration the suitability as a secondary battery, that is, the viewpoint of the actual capacity of the positive electrode and the direct current resistance.
  • Patent Document 5 relates to a method for manufacturing activated carbon used in electric double layer capacitors, and does not describe non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries. Moreover, since there is no description of the amount of micropores that develops the capacity of the electric double layer capacitor, there is no mention of suitability as a lithium ion battery positive electrode.
  • an object of the present invention is to improve the conductivity of the electrode, reduce the electrode resistance, and improve the utilization efficiency of cationic species such as lithium ions, sodium ions, various quaternary ammonium salts, and phosphonium salts.
  • an additive for a positive electrode of a non-aqueous electrolyte secondary battery a positive electrode active material composition for a non-aqueous electrolyte secondary battery containing the additive for the positive electrode of a non-aqueous electrolyte secondary battery, a positive electrode comprising a layer comprising the composition and a collecting electrode
  • An object of the present invention is to provide a non-aqueous electrolyte secondary battery comprising the positive electrode.
  • An additive for a positive electrode of a secondary battery a positive electrode active material composition for a non-aqueous electrolyte secondary battery containing the additive for the positive electrode of a non-aqueous electrolyte secondary battery, a positive electrode comprising a layer comprising the composition and a collecting electrode, and the positive electrode
  • An object of the present invention is to provide a non-aqueous electrolyte secondary battery.
  • the present invention includes the following aspects.
  • the specific surface area by the BET method is 1000 m 2 /g or more and 2000 m 2 /g or less, the micropore volume obtained by the DFT method is less than 0.60 cm 3 /g, and the oxygen content measured by elemental analysis is An additive for a positive electrode of a non-aqueous electrolyte secondary battery comprising a carbonaceous material of 0.5% by mass or more and less than 1.3% by mass.
  • a positive electrode active material composition for non-aqueous electrolyte secondary batteries comprising the positive electrode additive for non-aqueous electrolyte secondary batteries according to any one of [1] to [4], a positive electrode active material and a binder.
  • Composition. [7] A positive electrode for a non-aqueous electrolyte secondary battery comprising a positive electrode active material layer made of the positive electrode active material composition for a non-aqueous electrolyte secondary battery according to any one of [5] or [6] and a current collector. [8] A non-aqueous electrolyte secondary battery comprising the positive electrode according to [7]. [9] The non-aqueous electrolyte secondary battery according to [8], which operates at 2V to 5V.
  • the positive electrode of a non-aqueous electrolyte secondary battery can improve the conductivity of the electrode, reduce the electrode resistance, and improve the utilization efficiency of cationic species such as sodium ions, various quaternary ammonium salts, and phosphonium salts.
  • a liquid secondary battery can be provided.
  • the conductivity of the electrode can be improved, the electrode resistance can be reduced, and the utilization efficiency of the cation species can be improved, even when a positive electrode active material in which the presence of water greatly affects the performance is used. can improve.
  • the positive electrode additive for a non-aqueous electrolyte secondary battery of the present invention has a specific surface area of 1000 m 2 /g or more and 2000 m 2 /g or less as determined by the BET method, and a micropore volume of less than 0.60 cm 3 /g as determined by the DFT method. , the carbonaceous material having an oxygen content of 0.5% by mass or more and 1.3% by mass or less as measured by elemental analysis.
  • the carbonaceous material used in the present invention has a BET specific surface area of 1000 m 2 /g or more and 2000 m 2 /g or less.
  • the specific surface area by the BET method is preferably 1100 m 2 /g or more, more preferably 1150 m 2 /g or more.
  • the specific surface area by the BET method is preferably 1900 m 2 /g or less, more preferably 1850 m 2 /g or less.
  • the carbonaceous material used in the present invention has a micropore volume of less than 0.60 cm 3 /g determined by the DFT method using nitrogen adsorption.
  • micropores refer to pores with a pore diameter of less than 2 nm.
  • the micropore volume is preferably 0.58 cm 3 /g or less, more preferably 0.55 cm 3 /g or less, even more preferably 0.53 cm 3 /g or less, even more preferably 0.52 cm 3 . / g or less is particularly preferred.
  • micropore volume is preferably 0.35 cm 3 /g or more, more preferably 0.38 cm 3 / g or more, in order to adsorb water and electrolyte decomposition products in the battery and contribute to stabilization of battery behavior. and more preferably 0.40 cm 3 /g or more.
  • the carbonaceous material used in the present invention has a pore volume (mesopore volume) with a pore diameter of 2 nm or more, measured by pore distribution analysis by a DFT method using a nitrogen adsorption method, of 0.35 cm 3 /g or less. is preferably 0.33 cm 3 /g or less, more preferably 0.30 cm 3 /g or less, and particularly preferably 0.25 cm 3 /g or less.
  • the lower limit is preferably 0.02 cm 3 /g or more, more preferably 0.04 cm 3 /g or more.
  • the electrolyte retention capacity is excellent, and a sufficient electrolyte environment can be maintained around the positive electrode active material in the positive electrode to provide a rapid ion transfer environment. This makes it possible to improve high rate characteristics.
  • the electrolyte retention ability prevents depletion of the electrolyte in the positive electrode during the charge-discharge cycle and maintains the ion transfer environment around the active material, thereby improving the cycle life.
  • the carbonaceous material used in the present invention has an oxygen content of 0.5% by mass or more and less than 1.3% by mass as measured by elemental analysis. A method for measuring the oxygen content by elemental analysis will be described later in Examples.
  • the amount of oxygen is at least the above lower limit, the affinity with the electrolytic solution is appropriately maintained, and penetration of the electrolytic solution into the electrode is less likely to be inhibited.
  • the amount of oxygen is equal to or less than the above upper limit, electrochemical stability is maintained, and affinity with hydrophobic binders such as PVDF is also maintained.
  • the oxygen on the surface of the carbonaceous material suppresses the attraction and adsorption of water while maintaining the affinity with the electrolyte, thereby avoiding the electrolysis of the electrolyte, resulting in It contributes to the improvement of the charging efficiency and the reduction of the DC resistance to avoid the coating of decomposition products.
  • the metal eluted from the positive electrode especially nickel-cobalt-manganese co-oxide has come to be used as a positive electrode material for lithium ion batteries due to the recent increase in battery capacity, and the tendency to lower durability against water is increasing.
  • Ni which is easily eluted with a coordinating solvent, extracts the fluorine from the binder polyvinylidene fluoride and gels when the electrode is produced.
  • Oxygen existing on the surface of the carbonaceous material is coordinated with the eluted nickel and has the effect of reducing the above concerns.
  • the oxygen content is preferably 0.52% by mass or more. Also, the oxygen content is preferably 1.25% by mass or less.
  • the carbonaceous material used in the present invention is the ratio of the oxygen content in the quinone group measured by surface functional group titration by Boehm titration to the oxygen content measured by elemental analysis (measured by surface functional group titration by Boehm titration).
  • the ratio of oxygen content in quinone group/oxygen content measured by elemental analysis ⁇ 100 [%]) is preferably 30% or more and 70% or less.
  • a Boehm titration measurement method is described later in Examples.
  • the ratio is more preferably 33% or more, and even more preferably 35% or more.
  • the above ratio is more preferably 60% or less, further preferably 59% or less, and particularly preferably 58% or less.
  • the quinone functional group on the surface of the carbonaceous material is formed by dehydrogenation of the phenolic functional group during the formation of the aromatic nucleus in the carbonaceous material if the quinone present on the surface of the raw material of the carbonaceous material remains as it is during the production of the carbonaceous material. In such a case, it may be generated by being induced by desorption of carboxylic acid on the surface of the carbonaceous material.
  • the quinone functional group is in a certain proportion of the total oxygen content, the existing amount of the carbonyl group, which is easily decomposed thermally, can be reduced without impairing the affinity with the electrolyte or binder. In addition to suppressing gas generation induced by the decomposition of the functional group of , it significantly reduces hygroscopicity, and is presumed to contribute to the simplification of the battery manufacturing process and the stability of the battery.
  • the carbonaceous material used in the present invention preferably has an ash content of 0.5% by mass or less, more preferably 0.48% by mass or less, and even more preferably 0.46% by mass or less. It is undeniable that heavy metal compounds contained in the ash may diffuse in the positive electrode and precipitate during discharge. Therefore, nickel is preferably 100 ppm or less, more preferably 80 ppm or less. Also, the content of iron is preferably 100 ppm or less, more preferably 50 ppm or less.
  • the carbonaceous material used in the present invention preferably has an average particle size (D50) of 2 ⁇ m to 20 ⁇ m as determined by a laser scattering method.
  • D50 average particle size
  • the average particle diameter is the above upper limit or less, the conductivity in the positive electrode is easily maintained, and when the average particle diameter is the above lower limit or more, the carbonaceous material can be sufficiently bound with a binder or the like, and the carbonaceous material fine powder is isolated from the electrode and the deterioration of battery performance such as short circuit can be suppressed.
  • the carbon precursor of the carbonaceous material used in the present invention is not particularly limited, but examples thereof include coconut shells, coffee beans, tea leaves, sugarcane, fruits (e.g., mandarin oranges, bananas), straw, rice husks, hardwoods, conifers, and bamboo.
  • plant materials plant material processed products such as lignin and lignocellulose, thermosetting resins such as phenol resin, furan resin and melamine resin, and fossil fuels such as coal, coal pitch and petroleum pitch. These raw materials may be used alone or in combination of two or more.
  • plant-derived materials are preferable, and coconut shells are preferable, because they are readily available and can produce carbonaceous materials having various properties.
  • the coconut shell is not particularly limited, but includes, for example, coconut shells such as palm (oil palm), coconut, salak, and Omiya. These coconut shells may be used alone or in combination of two or more.
  • coconut and palm shells which are biomass wastes generated in large amounts after coconuts are used as foods, raw materials for detergents, raw materials for biodiesel oil, etc., are particularly preferable from the viewpoint of availability.
  • the carbonaceous material used in the present invention is obtained by a method comprising carbonizing a carbon precursor, primary activation, washing, optionally high-order activation, and heat treatment to obtain a carbonaceous material. can be manufactured.
  • the method of carbonization and activation is not particularly limited, but for example, it can be produced by known methods such as fixed bed method, moving bed method, fluidized bed method, multi-stage bed method, and rotary kiln.
  • a carbon precursor (preferably a plant-derived carbon precursor) is carbonized.
  • the carbonization method is not particularly limited, but inert gases such as nitrogen, carbon dioxide, helium, argon, carbon monoxide or fuel exhaust gas, mixed gases of these inert gases, or other gases containing these inert gases as main components
  • inert gases such as nitrogen, carbon dioxide, helium, argon, carbon monoxide or fuel exhaust gas, mixed gases of these inert gases, or other gases containing these inert gases as main components
  • a method of sintering at a temperature of about 400 to 800° C. in an atmosphere of a mixed gas with a gas can be mentioned.
  • a gas activation method can be performed by reacting a carbonized carbon precursor with an activation gas (eg, water vapor, carbon dioxide, etc.).
  • an activation gas eg, water vapor, carbon dioxide, etc.
  • the primary activation from the viewpoint of efficient activation, a mixture of inert gas and water vapor similar to those used for carbonization is preferable, and the partial pressure of water vapor at that time is in the range of 10 to 60%. is preferred.
  • the water vapor partial pressure is 10% or more, the activation can be sufficiently progressed, and when it is 60% or less, the rapid activation reaction can be suppressed and the reaction can be easily controlled.
  • the total amount of activation gas supplied in the primary activation is preferably 50 to 10,000 parts by mass, more preferably 100 to 5,000 parts by mass, and still more preferably 200 to 3,000 parts by mass with respect to 100 parts by mass of the carbon precursor.
  • the total amount of the supplied activation gas is within the above range, the activation reaction can proceed more efficiently.
  • the activation temperature in the primary activation is usually 700-1100°C, preferably 800-1000°C.
  • the activation time and heating rate are not particularly limited, and needless to say, they differ depending on the type, shape, size, desired pore size distribution, and the like of the plant-derived carbon precursor to be selected. Incidentally, when the activation temperature in the primary activation is increased or the activation time is increased, the BET specific surface area of the obtained carbonaceous material tends to increase. Therefore, the activation temperature and activation time are adjusted in order to obtain a carbonaceous material having a BET specific surface area within the desired range.
  • washing can be performed by immersing the carbonaceous material obtained after the primary activation in a washing solution containing an acid.
  • Cleaning liquids include, for example, mineral acids or organic acids.
  • Mineral acids include, for example, hydrochloric acid, sulfuric acid, and the like.
  • organic acids include saturated carboxylic acids such as formic acid, acetic acid, propionic acid, oxalic acid and tartaric acid, and citric acid, and aromatic carboxylic acids such as benzoic acid and terephthalic acid.
  • the acid used in the cleaning liquid is preferably mineral acid, more preferably hydrochloric acid, from the viewpoint of cleaning properties.
  • after washing with acid it is preferable to wash with water or the like to remove excess acid. load can be reduced.
  • the washing solution can usually be prepared by mixing an acid and an aqueous solution.
  • the aqueous solution includes water, a mixture of water and a water-soluble organic solvent, and the like.
  • water-soluble organic solvents include alcohols such as methanol, ethanol, propylene glycol, and ethylene glycol.
  • the concentration of the acid in the cleaning solution is not particularly limited, and the concentration may be appropriately adjusted according to the type of acid used.
  • the acid concentration of the cleaning liquid is preferably 0.01 to 3.5% by mass, more preferably 0.02 to 2.2% by mass, and still more preferably 0.03 to 1% by mass, based on the total amount of the cleaning liquid. .6 mass %. It is preferable that the concentration of the acid in the cleaning solution is within the above range, since impurities contained in the carbonaceous material can be efficiently removed.
  • the temperature of the cleaning liquid when the carbonaceous material is immersed is not particularly limited, it is preferably 0 to 98°C, more preferably 10 to 95°C, and still more preferably 15 to 90°C. If the temperature of the cleaning liquid when the carbonaceous material is immersed is within the above range, it is possible to carry out cleaning in a practical time and with reduced load on the apparatus, which is desirable.
  • the method for washing the carbonaceous material is not particularly limited as long as the carbonaceous material can be immersed in the washing liquid.
  • a method of immersing the carbonaceous material in the cleaning liquid, allowing it to stay for a predetermined period of time, removing the liquid, adding a new cleaning liquid, and repeating the immersion and removal of the liquid may also be used. Further, a method of renewing the entire cleaning liquid or a method of renewing a part of the cleaning liquid may be used.
  • the time for which the carbonaceous material is immersed in the cleaning liquid can be appropriately adjusted according to the acid used, the concentration of the acid, the treatment temperature, and the like.
  • washing time is not particularly limited, it is preferably 0.05 to 4 hours, more preferably 0.1 to 3 hours, from the viewpoint of the economic efficiency of the reaction equipment and the structural retention of the carbonaceous material.
  • the mass ratio of the cleaning liquid and the carbonaceous material may be appropriately adjusted according to the type, concentration, temperature, etc. of the cleaning liquid used.
  • the mass of the carbonaceous material to be immersed is usually 0.1 to 50% by mass, preferably 1 to 20% by mass, more preferably 1.5 to 10% by mass with respect to the mass of the cleaning liquid.
  • impurities eluted in the cleaning liquid are less likely to precipitate out of the cleaning liquid, reattachment to the carbonaceous material is likely to be suppressed, and the volumetric efficiency is appropriate, which is desirable from an economical point of view.
  • the atmosphere for cleaning is not particularly limited, and may be appropriately selected according to the method used for cleaning.
  • cleaning is usually carried out in an air atmosphere.
  • secondary activation may be performed on the carbonaceous material obtained after washing after the primary activation.
  • the secondary activation can be carried out under the same range of conditions as the primary activation.
  • the activation temperature and activation time should be adjusted in order to obtain a carbonaceous material having a BET specific surface area within the desired range.
  • a tertiary activation may be performed, and a higher order activation may be performed. Further, washing may be performed between each activation after the secondary activation. From the viewpoint of economy, it is preferable to carry out up to secondary activation or tertiary activation.
  • the tertiary activation and higher-order activation can be performed under the same conditions as the primary activation.
  • the carbonaceous material obtained after the secondary activation or higher-order activation can be further washed to remove ash and metal impurities contained in the carbonaceous material.
  • the carbonaceous material used in the present invention is obtained by heat-treating a carbonaceous material obtained after primary activation, secondary activation, or higher-order activation.
  • the surface properties of the carbonaceous material can be adjusted. Specifically, it is possible to remove moisture and the like adsorbed on the carbonaceous material, and further remove functional groups newly generated by washing or the like, thereby adjusting the amount of micropores.
  • the heat treatment is performed by heating the carbonaceous material under an inert gas such as nitrogen, argon, or carbon dioxide.
  • heat treatment may be performed by means of, for example, reduced pressure or reduced pressure heating to prepare the carbonaceous material.
  • the heat treatment temperature is preferably 500° C. or higher, more preferably 550° C. or higher, even more preferably 600° C. or higher, and 700° C. or higher. is even more preferable, and 800° C. or higher is particularly preferable.
  • the heat treatment temperature is preferably 1200° C. or lower, more preferably 1150° C. or lower, and even more preferably 1100° C. or lower.
  • the heat treatment time depends on the heat treatment temperature employed, but is preferably 0.1 hours or longer, more preferably 0.5 hours or longer, and still more preferably 1 hour or longer from the viewpoint of adjusting the carbonaceous material. Also, from the viewpoint of economy, the time is preferably 24 hours or less, more preferably 18 hours or less, and even more preferably 10 hours or less.
  • the carbonaceous material thus obtained may then be pulverized.
  • the pulverization method is not particularly limited, but a known pulverization method such as a ball mill, roll mill, or jet mill, or a combination thereof can be employed.
  • the carbonaceous material obtained by pulverization may be classified.
  • the classification method is not particularly limited, and examples include classification using a sieve, wet classification, and dry classification.
  • wet classifiers include classifiers utilizing the principles of gravity classification, inertia classification, hydraulic classification, centrifugal classification, and the like.
  • dry classifiers include classifiers using the principles of sedimentation classification, mechanical classification, centrifugal classification, and the like. From the viewpoint of economy, it is preferable to use a dry classifier.
  • the carbonaceous material obtained as described above can be preferably used as an additive for the positive electrode of the non-aqueous electrolyte secondary battery of the present invention.
  • the positive electrode active material composition for a non-aqueous electrolyte secondary battery of the present invention (also referred to as a positive electrode composition for a non-aqueous electrolyte secondary battery) comprises the above-described positive electrode additive for a non-aqueous electrolyte secondary battery, a positive electrode active material and a binder.
  • a positive electrode composition for a non-aqueous electrolyte secondary battery of the present invention may optionally contain other components than those described above.
  • the content of the nonaqueous electrolyte secondary battery positive electrode additive is preferably 10% by mass or less, more preferably 8% by mass or less, relative to the total mass of the solid content of the nonaqueous electrolyte secondary battery positive electrode composition. Preferably, 6% by mass or less is more preferable.
  • the lower limit of the content of the positive electrode additive is not particularly limited, but is preferably 0.5% by mass or more, more preferably 1% by mass or more.
  • the mixing ratio of the positive electrode additive for the non-aqueous electrolyte secondary battery and the positive electrode active material described later may be 1:99 to 10:90 in terms of mass ratio.
  • the mixing ratio of the positive electrode additive for the non-aqueous electrolyte secondary battery and the positive electrode active material is within this range, excellent output characteristics and capacity characteristics are obtained.
  • the positive electrode active material contained in the positive electrode composition for a non-aqueous electrolyte secondary battery is not particularly limited, and known positive electrode active materials can be used.
  • lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), and lithium of Co—Ni—Mn are preferred as the positive electrode active material from the viewpoint of improving the battery capacity of the secondary battery.
  • containing composite oxides such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2.
  • Ni--Co--Al lithium-containing composite oxides such as LiNi 0.8 Co 0.1 Al 0.1 O 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2 are preferably used.
  • the particle size of the positive electrode active material is not particularly limited, and can be the same as that of conventionally used positive electrode active materials. It is usually in the range of 0.1 ⁇ m to 40 ⁇ m, more preferably 0.5 ⁇ m to 20 ⁇ m.
  • the content of the positive active material may be 99 wt% or less, or 95 wt% or less, based on the total solid content of the composition. , 90% by mass or less. Moreover, it may be 30% by mass or more, 40% by mass or more, or 50% by mass or more.
  • the positive electrode composition for a non-aqueous electrolyte secondary battery of the present invention contains a binder for good adhesion of the positive electrode active material particles to each other and good adhesion of the positive electrode active material to the current collector.
  • binders include, for example, polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, diacetylcellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethanes, polytetrafluoroethylene.
  • the content of the binder may be 0.5 to 10% by mass, or 1 to 7% by mass, relative to the total mass of the positive electrode in the composition. may be
  • the positive electrode composition for a non-aqueous electrolyte secondary battery of the present invention may further contain a conductive material in order to further increase the conductivity of the positive electrode formed on the current collector.
  • a conductive material any electronically conductive material that does not cause a chemical change in the electrochemical element to be constructed can be used.
  • Specific examples of the conductive material include natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powders such as copper, nickel, aluminum, and silver, and metal fibers.
  • one or a mixture of one or more conductive materials such as polyphenylene derivatives may be used.
  • the content of the conductive material may be 0.5 to 10% by mass with respect to the total mass of solids in the composition, and 1 to 7 % by mass.
  • the positive electrode composition for a non-aqueous electrolyte secondary battery of the present invention may contain a solvent.
  • a solvent for example, an organic solvent can be used, and among them, a polar organic solvent capable of dissolving the binder is preferable.
  • the organic solvent acetonitrile, N-methylpyrrolidone, acetylpyridine, cyclopentanone, N,N-dimethylacetamide, dimethylformamide, dimethylsulfoxide, methylformamide, methylethylketone, furfural, ethylenediamine and the like can be used.
  • NMP N-methylpyrrolidone
  • These organic solvents may be used alone, or two or more of them may be mixed and used.
  • the amount of the solvent used is such that the solid content concentration in the electrochemical element positive electrode composition is preferably 1 to 80% by mass, more preferably 5 to 70% by mass, and still more preferably 10 to 60% by mass. is the amount.
  • Method for producing positive electrode composition for non-aqueous electrolyte secondary battery As a method for producing the positive electrode composition for a non-aqueous electrolyte secondary battery of the present invention, the above-described positive electrode additive for a non-aqueous electrolyte secondary battery, the positive electrode active material, and, if necessary, a solvent and other components are mixed. can be manufactured.
  • the mixing method is not particularly limited, and general mixing devices such as dispersers, mills and kneaders can be used. For example, it is preferable to stir for 20 minutes or more and 120 minutes or less.
  • the mixing temperature is also not particularly limited, and is, for example, in the range of 0°C to 160°C, more preferably in the range of 20°C to 80°C. A temperature that is too low is not preferable because the viscosity is high and coating cannot be performed.
  • Non-aqueous electrolyte secondary battery Such a non-aqueous electrolyte positive electrode composition according to one embodiment of the present invention can be usefully used in a non-aqueous electrolyte secondary battery.
  • the present invention also includes an electrochemical device having a positive electrode produced using the positive electrode composition for a non-aqueous electrolyte secondary battery described above.
  • the electrochemical device of the present invention can improve the conductivity of the positive electrode and reduce the electrode resistance by containing the additive for the positive electrode of a non-aqueous electrolyte secondary battery. In addition, the lithium utilization efficiency can be improved and the irreversible capacity can be reduced.
  • the nonaqueous electrolyte secondary battery of the present invention preferably operates at 2V to 5V, and examples thereof include lithium ion secondary batteries.
  • the nonaqueous electrolyte secondary battery of the present invention is a lithium ion secondary battery
  • the lithium ion secondary battery includes a positive electrode, a negative electrode and an electrolyte.
  • the positive electrode is produced using the positive electrode composition for a non-aqueous electrolyte secondary battery of the present invention, and includes a current collector and a positive electrode active material layer.
  • the positive electrode active material layer is formed, for example, by applying the positive electrode composition of the present invention to the current collector.
  • the positive electrode active material layer is often used by applying the composition for the positive electrode of a non-aqueous electrolyte secondary battery to a current collector and drying it. I understand.
  • the method for applying the positive electrode composition for a non-aqueous electrolyte secondary battery onto the current collector is not particularly limited, and a known method can be used. Specifically, as the coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used. At this time, the positive electrode composition may be applied to only one side of the current collector, or may be applied to both sides. The thickness of the composition film on the current collector after application and before drying can be appropriately set according to the thickness of the positive electrode active material layer obtained by drying.
  • a material that is electrically conductive and electrochemically durable is used as the current collector to which the positive electrode composition is applied.
  • a current collector made of aluminum or an aluminum alloy can be used as the current collector.
  • aluminum and an aluminum alloy may be used in combination, or aluminum alloys of different types may be used in combination.
  • Aluminum and aluminum alloys are excellent current collector materials because they are heat resistant and electrochemically stable.
  • the method for drying the positive electrode composition on the current collector is not particularly limited, and known methods can be used.
  • the drying process in order to maintain the metal-capturing power of the added carbonaceous material, it is preferable to sufficiently perform the drying process during the production of the positive electrode, and the current collector (e.g., aluminum foil) is not affected, and the positive electrode It is preferable to dry to the extent that water adsorbed on the surface of the active material and the carbonaceous material can volatilize. Drying is preferably carried out at a drying temperature of 100° C. or higher and 160° C. or lower under atmospheric pressure or reduced pressure for 1 hour to 12 hours.
  • the positive electrode active material layer may be pressurized using a mold press, a roll press, or the like.
  • the pressure treatment can improve the adhesion between the positive electrode active material layer and the current collector.
  • the positive electrode for non-aqueous electrolyte secondary batteries manufactured in this manner forms a good conductive network inside. Therefore, by using the positive electrode for a non-aqueous electrolyte secondary battery, the internal resistance of the non-aqueous electrolyte secondary battery can be reduced, and the performance of the secondary battery can be improved.
  • the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer includes the negative electrode active material.
  • the negative electrode active material is a material capable of reversibly intercalating/deintercalating lithium ions, such as lithium metal, a lithium metal alloy, a material capable of doping and dedoping lithium, or a transition metal oxide. including.
  • any carbon-based negative electrode active material commonly used in lithium ion secondary batteries which is a carbon material
  • crystalline carbon and amorphous carbon both of which may be used.
  • the crystalline carbon include graphite such as amorphous, plate-like, scale-like, spherical or fibrous natural graphite or artificial graphite.
  • the amorphous carbon include soft carbon or hard carbon. Carbon, mesophase pitch carbide, baked coke, and the like.
  • lithium metal alloy the group consisting of lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al and Sn Alloys with more selected metals may be used.
  • substances capable of doping and dedoping lithium include Si, SiOx (0 ⁇ x ⁇ 2), Si—Q alloys (where Q is an alkali metal, an alkaline earth metal, a group 13 element, a group 14 element, a group 15 Elements selected from the group consisting of elements, group 16 elements, transition metals, rare earth elements, and combinations thereof, and are not Si), Sn, SnO 2 , Sn—R (above R is an alkali metal, alkaline earth) an element selected from the group consisting of metals, Group 13 elements, Group 14 elements, Group 15 elements, Group 16 elements, transition metals, rare earth elements, and combinations thereof, and not Sn); At least one of them and SiO 2 may be mixed and used.
  • the elements Q and R include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Those selected from the group consisting of Bi, S, Se, Te, Po, and combinations thereof may be used.
  • transition metal oxides examples include vanadium oxide and lithium vanadium oxide.
  • the content of the negative electrode active material in the negative electrode active material layer may be 90% by mass to 100% by mass, or may be 95% by mass to 99% by mass with respect to the total mass of the negative electrode active material layer.
  • the negative electrode active material layer may consist of only the negative electrode.
  • the negative electrode active material layer contains a binder and may optionally further contain a conductive material.
  • the content of the binder in the negative active material layer may be 1 wt % to 10 wt % based on the total weight of the negative active material layer.
  • a conductive material is further included, 80% by mass (preferably 90% by mass) to 98% by mass of the negative electrode active material, 1% to 10% by mass of the binder, and 1% to 10% by mass of the conductive material are used. You may
  • the binder serves to adhere the negative electrode active material particles to each other well and to adhere the negative electrode active material to the current collector well.
  • a water-insoluble binder, a water-soluble binder, or a combination thereof may be used as the binder.
  • water-insoluble binder examples include polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, polyamideimide, polyimides or combinations thereof.
  • water-soluble binder examples include styrene-butadiene rubber, acrylated styrene-butadiene rubber, polyvinyl alcohol, sodium polyacrylate, propylene and an olefin copolymer having 2 to 8 carbon atoms, (meth)acrylic acid and (meth) Copolymers of acrylic acid alkyl esters or combinations thereof are included.
  • a cellulose-based compound capable of imparting viscosity may be further used as a thickener.
  • the cellulosic compound include carboxymethylcellulose, hydroxypropylmethylcellulose, methylcellulose and alkali metal salts thereof, and two or more of these may be used in combination. Na, K or Li may be used as the alkali metal.
  • the amount of such a thickening agent used may be 0.1 to 150 parts by mass with respect to 100 parts by mass of the binder.
  • the conductive material is used to impart conductivity to the electrodes, and any electronically conductive material that does not cause a chemical change can be used in the constructed battery.
  • Examples include carbon-based substances such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fibers; metal powders such as copper, nickel, aluminum, and silver; metal-based substances such as metal fibers; conductive polymers such as; or mixtures thereof.
  • the current collector is selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, polymeric substrates coated with conductive metals, and combinations thereof. You can use things.
  • the electrolyte preferably contains a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or non-protic solvent may be used.
  • the carbonate-based solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), methyl ethyl carbonate (MEC), and ethyl methyl carbonate.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • MPC methyl propyl carbonate
  • EPC ethyl propyl carbonate
  • MEC methyl ethyl carbonate
  • EMC ethyl methyl carbonate
  • EMC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • ester solvent examples include n-methyl acetate, n-ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone, and the like.
  • ether solvent dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, etc.
  • Cyclohexanone or the like may be used as the ketone-based solvent.
  • the alcohol-based solvent may be used as the alcohol-based solvent.
  • the non-protic solvent include R—CN (R is a hydrocarbon group having a linear, branched, or cyclic structure having 2 to 20 carbon atoms, and may include a double bond direction ring or an ether bond.
  • Nitriles such as dimethylformamide, amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolanes, and the like may be used.
  • the non-aqueous organic solvent may be used alone or in combination of two or more, and when two or more are used in combination, the mixing ratio may be appropriately adjusted according to the desired battery performance. .
  • the carbonate-based solvent it is preferable to use a mixture of a cyclic carbonate and a chain carbonate.
  • the cyclic carbonate and the chain carbonate are mixed in a volume ratio of 1:1 to 1:9, and the performance of the electrolyte can be more excellent.
  • the lithium salt is dissolved in an organic solvent and acts as a source of lithium ions within the battery to enable operation of the basic lithium ion secondary battery and facilitate lithium ion transfer between the positive and negative electrodes. It is a substance that plays a role.
  • Typical examples of such lithium salts include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiCF 3 SO 3 , LiN(SO 2 C 2 F 5 ) 2 , Li(CF 3 SO 2 ) 2 N, LiC4F9SO3 , LiClO4, LiAlO4 , LiAlCl4 , LiN ( CxF2x + 1SO2 )( CyF2y+ 1SO2 ) (where x and y are natural numbers), LiCl, LiI and LiB (C 2 O 4 ) 2 (lithium bisoxalatoborate (LiBOB), etc.
  • the concentration of the lithium salt is 0.1 to 2 0 M. If the concentration of the lithium salt is less than 0.1 M, the conductivity of the electrolyte tends to decrease and the performance of the electrolyte tends to decrease. The viscosity of the electrolyte increases and tends to reduce the mobility of lithium ions.
  • the electrolyte may further contain a vinylene carbonate- or ethylene carbonate-based compound as a life-extending agent in order to improve battery life.
  • ethylene carbonate-based compounds include difluoroethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, fluoroethylene carbonate, and the like.
  • the amount used may be adjusted appropriately.
  • a separator may exist between the positive electrode and the negative electrode.
  • a separator polyethylene, polypropylene, polyvinylidene fluoride, or a multilayer film of two or more layers thereof may be used.
  • Mixed multilayer films such as polyethylene/polypropylene tri-layer separators may also be used.
  • v m is the adsorption amount (cm 3 /g) required to form a monomolecular layer on the sample surface
  • v is the measured adsorption amount (cm 3 /g)
  • p 0 is the saturated vapor pressure
  • p is the absolute pressure
  • c is a constant (reflecting the heat of adsorption)
  • N is Avogadro's number 6.022 ⁇ 10 23
  • a (nm 2 ) is the area occupied by adsorbate molecules on the sample surface (molecular occupied cross-sectional area).
  • the amount of nitrogen adsorbed by the carbonaceous material at liquid nitrogen temperature was measured as follows. A carbonaceous material that is a measurement sample is filled in a sample tube, and the sample tube is cooled to -196 ° C. (77 K). ) was adsorbed. The amount of nitrogen adsorbed by the sample when the equilibrium pressure was reached at each desired relative pressure was defined as the adsorbed gas amount v. Based on this measured value, the specific surface area was determined by the BET method from the above formulas (I) and (II).
  • the adsorption isotherm obtained from the measurement of the nitrogen adsorption amount was analyzed by the DFT method, and the volume of pores having a pore diameter (pore diameter) of less than 2 nm was defined as the micropore volume, and the pore diameter of 2 nm or more and 50 nm or less ( pore diameter) was calculated as the mesopore volume.
  • Oxygen content measured by elemental analysis Using an oxygen/nitrogen/hydrogen analyzer EMGA-930 manufactured by Horiba, Ltd., elemental analysis was performed based on the inert gas dissolution method.
  • the detection method of the device is oxygen: inert gas fusion-non-dispersive infrared absorption spectroscopy (NDIR), and the calibration is (oxygen/nitrogen) Ni capsule, TiH2 (H standard sample), SS-3 (N, 20 mg of a sample of the carbonaceous material, which was pretreated at 250° C. for about 10 minutes, was placed in a Ni capsule, degassed for 30 seconds in an elemental analyzer, and then measured. Three specimens were analyzed in the test, and the average value was taken as the analysis value (oxygen amount (mass%) in the carbonaceous material measured by elemental analysis: (A)).
  • each carbonaceous material sample was placed in a 100 milliliter (mL) Erlenmeyer flask, and N/10 alkaline reagents ((a) sodium hydrogen carbonate, (b) sodium carbonate, (c) caustic soda, (d) Sodium ethoxide) was added (50 mL each), shaken for 24 hours, filtered, and the unreacted alkaline reagent was titrated with N/10 hydrochloric acid. , the lactone group reacts with (b) to (d), the hydroxyl group reacts with (c) to (d), and the quinone group reacts with (d). ) was quantified.
  • N/10 alkaline reagents ((a) sodium hydrogen carbonate, (b) sodium carbonate, (c) caustic soda, (d) Sodium ethoxide) was added (50 mL each), shaken for 24 hours, filtered, and the unreacted alkaline reagent was titrated with N/10 hydrochloric acid.
  • the amount of oxygen in the quinone group contained in the carbonaceous material obtained is divided by the amount of oxygen in the elemental analysis, and the amount of oxygen in the quinone group measured by surface functional group titration by Boehm titration in the carbonaceous material was determined (formula (IV)).
  • the average particle size (particle size distribution) of plant-derived char and carbonaceous material was measured by the following method.
  • the sample was placed in an aqueous solution containing 5% by mass of a surfactant (“ToritonX100” manufactured by Wako Pure Chemical Industries, Ltd.), treated with an ultrasonic cleaner for 10 minutes or more, and dispersed in the aqueous solution.
  • the particle size distribution was measured using this dispersion.
  • the particle size distribution was measured using a particle size/particle size distribution analyzer (“Microtrac MT3300EXII” manufactured by Microtrac Bell Co., Ltd.).
  • D50 is the particle diameter at which the cumulative volume is 50%, and this value was used as the average particle diameter.
  • the hygroscopicity of the carbonaceous material was measured by Karl Fischer titration (coulometric titration) using a Karl Fischer moisture analyzer (trace moisture analyzer CA-200 manufactured by Mitsubishi Chemical Analytech). Measurement is carried out by heating and drying 1 g of the carbonaceous material at 120 ° C. and 10 mmHg for 24 hours, measuring the mass of the residue, setting the temperature of the Karl Fischer moisture measuring device to 250 ° C., exposing the measurement sample to this temperature, and discharging The moisture content was measured.
  • composition for lithium secondary battery positive electrode 30 parts by mass of N-methylpyrrolidone solution in which 3 parts by mass of polyvinylidene fluoride (KF Polymer 7200 manufactured by Kureha Co., Ltd.) is dissolved, LiNi 0.33 Co 0.33 Mn 0.33 O 2 (manufactured by Nippon Kagaku Kogyo Co., Ltd., "Cellseed C") as a positive electrode active material ) 93 parts by mass, 2 parts by mass of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., "Denka Black”) as a conductive aid, and 2 parts by mass of the carbonaceous material prepared in Example were added and mixed, and the positive electrode material solid content concentration While adding N-methylpyrrolidone appropriately, the mixture was stirred and dispersed with a homomixer (4500 rpm) manufactured by Primix Co., Ltd. to obtain a slurry composition for a lithium secondary battery electrode.
  • the slurry composition for a lithium secondary battery electrode is coated on an aluminum foil (“1N30-H”, manufactured by Fuji Kakoshi) as a current collector using a bar coater (“T101”, manufactured by Matsuo Sangyo), After primary drying at 80° C. for 30 minutes with a hot air dryer (manufactured by Yamato Kagaku), rolling treatment was performed using a roll press (manufactured by Hosen). Then, after punching out a lithium secondary battery electrode ( ⁇ 14 mm), secondary drying was performed under reduced pressure conditions at 120° C. for 3 hours to prepare a lithium secondary battery electrode (positive electrode).
  • the water content at this time was measured by taking a prepared and dried electrode ( ⁇ 14 mm), heating it to 250 ° C. with a Karl Fischer (manufactured by Mitsubishi Chemical Analytech), and measuring the water content under a nitrogen stream. was controlled so as to be 20 ppm or less so that the added carbonaceous material could exhibit functions other than water absorption.
  • the lithium ion secondary battery electrode was transferred to a glove box (manufactured by Miwa Seisakusho) under an argon gas atmosphere.
  • the lithium secondary battery electrode was used as a positive electrode.
  • a laminate comprising a metallic lithium foil (thickness: 0.2 mm, ⁇ 16 mm) as a negative electrode active material layer and a steel foil (thickness: 0.2 mm, ⁇ 17 mm) as a current collector was used.
  • a polypropylene separator (Celgard #2400, manufactured by Polypore) was used as the separator, and the electrolyte was lithium hexafluorophosphate (LiPF6) ethylene carbonate (EC), ethyl methyl carbonate (EMC), and vinylene carbonate (VC).
  • LiPF6 lithium hexafluorophosphate
  • EMC ethylene carbonate
  • EMC ethyl methyl carbonate
  • VC vinylene carbonate
  • Example 1 Char (specific surface area: 370 m 2 /g) made from Philippine coconut shells was subjected to primary activation at 850° C. using propane combustion gas and water vapor (water vapor partial pressure: 25%). Then, using hydrochloric acid (concentration: 0.5 N, diluent: ion-exchanged water), after pickling at a temperature of 85 ° C. for 30 minutes, wash thoroughly with ion-exchanged water to remove residual acid, and dry. did. The specific surface area of the carbonaceous material obtained at this point was 1685 m 2 /g. The obtained carbonaceous material is heat-treated at 900° C.
  • Example 2 The granular carbonaceous material before heat treatment obtained by primary activation, pickling, water washing and drying in the same manner as in Example 1 was further subjected to secondary activation at 970° C. using propane combustion gas (water vapor partial pressure 15%). to obtain a granular carbonaceous material.
  • the specific surface area of the carbonaceous material obtained at this point was 2184 m 2 /g.
  • the obtained secondary activated granular carbonaceous material is further pickled at a temperature of 85° C. for 30 minutes, thoroughly washed with ion-exchanged water, dried, and then heat-treated at 900° C. under normal pressure for 1 hour in a nitrogen atmosphere.
  • Example 3 The activation time of the primary activation in Example 1 was extended, followed by pickling, water washing and drying to obtain a primary activated granular carbonaceous material (carbonaceous material before heat treatment) having a specific surface area of 1810 m 2 /g.
  • This granular carbonaceous material was further subjected to secondary activation at 970° C. using propane combustion gas (water vapor partial pressure of 15%) to obtain a granular carbonaceous material.
  • the specific surface area at this point was 1834 m 2 /g.
  • the obtained secondary activated granular carbonaceous material is further pickled at a temperature of 85° C. for 30 minutes, thoroughly washed with ion-exchanged water, dried, and then heat-treated at 900° C.
  • lithium ion secondary batteries were produced according to the above description.
  • the obtained lithium ion secondary battery was subjected to a charge/discharge test using a charge/discharge tester ("TOSCAT" manufactured by Toyo System Co., Ltd.) after measuring the DC resistance value before the initial charge.
  • TOSCAT charge/discharge tester
  • the resistance value was measured when 0.5 mA was applied for 3 seconds.
  • Doping with lithium was performed at a rate of 70 mA/g with respect to the mass of the active material, and doping was performed to 1 mV with respect to the potential of lithium.
  • Example 6 A lithium ion battery was produced in the same manner as in Example 1, except that no carbonaceous material was added, and battery characteristics were measured. Table 2 shows the results obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、電極の導電性を改善し、電極抵抗を低下、リチウムイオン、ナトリウムイオン、各種四級アンモニウム塩、ホスホニウム塩等カチオン種の利用効率を向上させることができる非水電解質二次電池正極用添加剤を提供する。 BET法による比表面積が1000m2/g以上2000m2/g以下であり、DFT法で求められるマイクロ孔容積が0.60cm3/g未満であり、元素分析で測定される酸素量が0.5質量%以上1.3質量%未満である炭素質材料からなる非水電解質二次電池正極用添加剤を開示する。

Description

[規則26に基づく補充 16.03.2022] 非水電解質二次電池用正極添加剤、それを含む非水電解質二次電池用正極活物質組成物、非水電解質二次電池用正極およびこれを備える非水電解質二次電池
 本特許出願は日本国特許出願第2021-017338号(出願日:2021年2月5日)についてパリ条約上の優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
 本発明は、非水電解質二次電池用正極添加剤、それを含む非水電解質二次電池用正極活物質組成物、非水電解質二次電池用正極およびこれを備える非水電解質二次電池に関する。
 最近、携帯用小型電子機器の電源として脚光を浴びているリチウムイオン二次電池等の電気化学素子(非水電解質二次電池)は、有機電解液を使用して、既存のアルカリ水溶液を使用した電池よりも2倍以上の高い放電電圧を示し、高いエネルギー密度を示す電池である。リチウムイオン二次電池の正極活物質としては、LiCoO、LiMn、LiNi1-xCoxO(0<X<1)などのようにリチウムのインターカレーションが可能な構造を有する、リチウムと遷移金属からなる酸化物が主に使用される。
 このリチウムイオン二次電池は非水電解質を使用するため、電池内の水は安全性を損なう原因となり得る。また、リチウムイオン二次電池に使用される正極活物質である上記金属酸化物は水に脆く、容易に分解する。さらに、近年正極の電池容量を向上させるためにNiの含有量を増加させる試みがなされるようになり、より水が存在することによる性能への影響が大きくなる傾向にある。水の存在は、Niの溶出を促進し、シャトル反応により負極側に析出、電池の安定性を著しく低下させる。
 特許文献1および2には、電池内の水分を効果的に除去することで、電池容量の減少を低減することができるリチウムイオン二次電池に関する技術が開示されている。特許文献1に開示されている技術では、リチウムイオン二次電池の内部に、水分吸着剤であるゼオライト、活性アルミナ、活性炭、シリカゲル等を添加して電池内の水分を効果的に除去することで、リチウムイオン二次電池の容量の減少を抑制している。特許文献2では、リチウムを含むゼオライト群を例示している。
 特許文献3では、電気二重層容量を有する活性炭をリチウムイオン二次電池の正極に添加することを例示している。また、特許文献4では、活性炭を正極活物質として用いる、非水系アルカリ金属型蓄電素子について開示している。具体的には、正極活物質に活性炭を加え、前記正極活物質層に含まれる前記正極活物質が、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1500m/g以上3000m/g以下であることを示している。
 特許文献5では、活性炭を熱処理して、比表面積および官能基の量を制御した活性炭を電気二重層キャパシタの電極として使用することを例示している。
特開2001-126766号公報 特開2014-26819号公報 特開2004-296431号公報 特開2020-13881号公報 特許第5027849号公報
 背景技術で説明したように、特許文献1に開示されている技術では、リチウムイオン二次電池の内部に水分吸着剤を添加して電池内の水分を除去することで、リチウムイオン二次電池の容量が減少することを抑制している。
 しかしながら、リチウムイオン二次電池の内部に設けられた水分吸着剤は水分を吸着した後は不要な部材となる。つまり、水分吸着剤は水分を吸着した後は、それ自体が電池特性の向上に寄与しないため、不要な部材が電池内部に存在し続けることとなる。このように、不要な部材が電池内部に存在し続けることは、電池特性向上の観点からも好ましくない。この問題に対し、特許文献2では、Liを含有し、容量に寄与するゼオライトを開示しているが、導電性の無い物質であることは変わりなく、正極容量を低下させないための方策としては未だ改善の余地がある。
 特許文献3に記載のリチウム二次電池用電極は、電気二重層容量を有する材料(活性炭)として、20Å以上の細孔容積を0.418cc/g以上持たせる必要が示されているが、このようなメソ孔容積の過大な活性炭に対する陰イオンの吸着は強固であり、イオンの拡散性を低下させ、結果として導電性が低下して直流電流抵抗が増加する恐れがある。
 特許文献4に記載の発明は、リチウムイオンキャパシタのような非ファラデー反応を利用したデバイスに用いられるものであり、実質的にはメソ孔容積及びマイクロ孔容積の比較的大きな活性炭を用いており、また、活性炭の添加量が多い。また、出力に特化しており、二次電池としての適合性、即ち正極の実容量や直流電流抵抗の観点が配慮されたものではない。
 特許文献5では、電気二重層キャパシタに用いられる活性炭の製法に関するものであり、リチウムイオン二次電池等非水電解質二次電池に関する記載はない。また、電気二重層キャパシタの容量を発現するミクロ孔の量に関する記載もないため、リチウムイオン電池正極としての適合性に関して言及もない。
 上記課題に鑑み本発明の目的は、電極の導電性を改善し、電極抵抗を低下させ、リチウムイオン、ナトリウムイオン、各種四級アンモニウム塩、ホスホニウム塩等カチオン種の利用効率を向上させることができる非水電解質二次電池正極用添加剤、該非水電解質二次電池正極用添加剤を含む非水電解質二次電池用正極活物質組成物、該組成物からなる層および集電極を備える正極、および該正極を備える非水電解液二次電池を提供することである。特に、水の存在がより性能に大きく影響するような正極活物質を用いた場合にも、電極の導電性の改善、電極抵抗の低下ができ、カチオン種の利用効率を向上できる非水電解質二次電池正極用添加剤、該非水電解質二次電池正極用添加剤を含む非水電解質二次電池用正極活物質組成物、該組成物からなる層および集電極を備える正極、および該正極を備える非水電解液二次電池を提供することである。
 すなわち、本発明は、以下の態様を包含する。
[1]BET法による比表面積が1000m/g以上2000m/g以下であり、DFT法で求められるマイクロ孔容積が0.60cm/g未満であり、元素分析で測定される酸素量が0.5質量%以上1.3質量%未満である炭素質材料からなる非水電解質二次電池正極用添加剤。
[2]元素分析で測定される酸素量に対するBoehm滴定による表面官能基滴定で測定されるキノン基中の酸素量の割合が、30%以上70%以下である、[1]記載の非水電解質二次電池正極用添加剤。
[3]前記炭素質材料の平均粒径が2μm~20μmである、[1]又は[2]に記載の非水電解質二次電池正極用添加剤。
[4]前記炭素質材料のDFT法で求められるメソ孔容積が0.35cm/g以下である、[1]~[3]のいずれかに記載の非水電解質二次電池正極用添加剤。
[5][1]~[4]のいずれかに記載の非水電解質二次電池正極用添加剤、正極活物質及びバインダーを含む非水電解質二次電池用正極活物質組成物。
[6]正極活物質組成物の全体質量に対する前記非水電解質二次電池正極用添加剤の含有量が10質量%以下である、[5]に記載の非水電解質二次電池用正極活物質組成物。
[7][5]又は[6]のいずれかに記載の非水電解質二次電池用正極活物質組成物からなる正極活物質層と集電体とを備える非水電解質二次電池用正極。
[8][7]に記載の正極を備える非水電解質二次電池。
[9]2V~5Vで作動する、[8]に記載の非水電解質二次電池。
 本発明によれば、電極の導電性を改善し、電極抵抗を低下させ、ナトリウムイオン、各種四級アンモニウム塩、ホスホニウム塩等カチオン種の利用効率を向上させることができる非水電解質二次電池正極用添加剤、該非水電解質二次電池正極用添加剤を含む非水電解質二次電池用正極活物質組成物、該組成物からなる層および集電極を備える正極、および該正極を備える非水電解液二次電池を提供できる。本発明によれば、特に、水の存在がより性能に大きく影響するような正極活物質を用いた場合にも、電極の導電性の改善、電極抵抗の低下ができ、カチオン種の利用効率を向上できる。
 以下、本発明の一実施形態を詳細に説明する。ただし、これは例示として提示されるものであり、これによって本発明は制限されず、本発明は特許請求の範囲により定義される。
(非水電解質二次電池正極用添加剤)
 本発明の非水電解質二次電池正極用添加剤は、BET法による比表面積が1000m/g以上2000m/g以下であり、DFT法で求められるマイクロ孔容積が0.60cm/g未満、元素分析で測定される酸素量が0.5質量%以上1.3質量%以下である炭素質材料からなる。
 本発明に用いられる炭素質材料は、BET法による比表面積が1000m/g以上2000m/g以下である。比表面積が上記範囲内であると、電池内に存在する水分を十分吸着することができ、かつ、機械強度を維持し、電池内での粉化による充放電中の電極内からの遊離・短絡等電池性能の低下を抑制できる。BET法による比表面積は、1100m/g以上であることが好ましく、1150m/g以上であることがより好ましい。またBET法による比表面積は、1900m/g以下であることが好ましく、1850m2/g以下であることがより好ましい。
 本発明に用いられる炭素質材料は、窒素吸着によるDFT法で求められるマイクロ孔容積が0.60cm/g未満である。ここで、マイクロ孔とは、細孔径が2nm未満の細孔を指す。マイクロ孔容積が0.60cm/g未満であると、炭素質材料自体に吸着されている水分を低減でき、電池作製時の乾燥工程を簡略・短縮でき、電池活物質の活性の損失を抑制できる。マイクロ孔容積は、0.58cm/g以下であることが好ましく、0.55cm/g以下であることがより好ましく、0.53cm/g以下であることがさらに好ましく、0.52cm/g以下であることが特に好ましい。また、マイクロ孔容積は、電池内の水、および電解質分解物を吸着し、電池挙動の安定化に寄与するため、0.35cm/g以上であることが好ましく、0.38cm/g以上であることがより好ましく、0.40cm/g以上であることがさらに好ましい。
 本発明に用いられる炭素質材料は、窒素吸着法によるDFT法による細孔分布解析により測定される、細孔径2nm以上の細孔容積(メソ孔容積)が0.35cm/g以下であることが好ましく、0.33cm/g以下であることがより好ましく、0.30cm/g以下であることがさらに好ましく、0.25cm/g以下であることが特に好ましい。また、下限としては0.02cm/g以上が好ましく、0.04cm/g以上がより好ましい。メソ孔容積がこの範囲に含まれる場合、電解質保持能に優れており、正極中で正極活物質周辺に十分な電解質環境を保持させることができて速いイオン伝達環境を提供することができる。これによって、高率特性を向上させることができる。また、このような電解質保持能は充放電サイクルが進行される間、正極中で電解質が枯渇しないようにして活物質周辺のイオン伝達環境を保持させるため、サイクル寿命を向上させることができる。
 本発明で用いられる炭素質材料は、元素分析で測定される酸素量が、0.5質量%以上1.3質量%未満である。元素分析で測定される酸素量の測定方法は、実施例に後述する。酸素量が上記下限以上であると、電解液との親和性が適度に保たれ、電極内への電解液浸透が阻害されにくい。酸素量が上記上限以下であると、電気化学安定性が保たれ、PVDFなどの疎水性バインダーとの親和性も保たれる。また、酸素量が上記範囲内であると、電解液との親和性を維持しつつ、炭素質材料表面の酸素が水の誘引、吸着を抑制するため、電解液の電気分解を回避、結果として充電効率の向上、また更に分解物の被覆を回避するため直流抵抗の低減に寄与する。また、正極から溶出した金属、特に昨今電池容量の増加に伴い、ニッケル-コバルト-マンガンの共酸化物がリチウムイオン電池正極材として用いられるようになり、水に対する耐久性が低くなる傾向が強まるなか、N-メチルピロリドンなどの配位性溶媒で溶出しやすいニッケルが電極作製時に、バインダーであるポリフッ化ビニリデンのフッ素を引き抜き、ゲル化すること、更に、電池駆動時の充放電により、ニッケルが負極上で成長する危険性が高まっている。炭素質材料表面に存在する酸素は、溶出したニッケルに配位し、上記懸念を低減させる効果がある。酸素量としては、0.52質量%以上であることが好ましい。また、酸素量としては1.25質量%以下であることが好ましい。
 本発明で用いられる炭素質材料は、元素分析で測定される酸素量に対するBoehm滴定による表面官能基滴定で測定されるキノン基中の酸素量の割合(Boehm滴定による表面官能基滴定で測定されるキノン基中の酸素量/元素分析で測定される酸素量×100[%])が、30%以上70%以下であることが好ましい。Boehm滴定の測定方法は、実施例に後述する。上記比率は、33%以上であることがより好ましく、35%以上であることがさらに好ましい。また、上記割合は60%以下であることがより好ましく、59%以下であることがさらに好ましく、58%以下であることが特に好ましい。炭素質材料表面のキノン官能基は、炭素質材料製造時に、炭素質材料原料の表面に存在するキノンがそのまま残留する場合、炭素質材料中の芳香核形成時にフェノール系官能基の脱水素により形成する場合、炭素質材料表面のカルボン酸の脱離などから誘発して生成する場合などが考えられる。キノン官能基が全酸素量に対して、一定の割合にある場合、電解液やバインダーなどとの親和性を損なうことなく、熱的に容易に分解するカルボニル基の存在量を下げ、電池内での官能基の分解により誘発されるガス発生を抑制できるだけでなく、吸湿性を著しく低下させ、電池の製造工程の簡略化および電池の安定性に寄与すると推測される。
 本発明で用いられる炭素質材料は、灰分が0.5質量%以下であることが好ましく、より好ましくは0.48質量%以下、さらに好ましくは、0.46質量%以下である。灰分に含まれる重金属化合物は、正極内で拡散、放電時に析出する可能性が否定できないため、特に、ニッケルは100ppm以下が好ましく、80ppm以下がより好ましい。また、鉄は100ppm以下であることが好ましく、50ppm以下であることがより好ましい。
 本発明で用いられる炭素質材料は、レーザー散乱法で求められる平均粒径(D50)が2μm~20μmであることが好ましい。平均粒径が上記上限以下であると、正極内での導電性を保持しやすく、平均粒径が上記下限以上であると、バインダー等で炭素質材料を十分に結着でき、炭素質材料微粉が電極内から遊離して短絡等電池性能が低下することを抑制できる。
 本発明で用いられる炭素質材料の炭素前駆体としては、特に制限されないが、例えば椰子殻、珈琲豆、茶葉、サトウキビ、果実(例えば、みかん、バナナ)、藁、籾殻、広葉樹、針葉樹、竹などの植物材料、リグニン、リグノセルロースなどの植物材料加工品、フェノール樹脂、フラン樹脂、メラミン樹脂などの熱硬化性樹脂、石炭、石炭ピッチ、石油ピッチなどの化石燃料が例示される。これらの原料を、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの植物原料の中でも、入手が容易で種々の特性を有する炭素質材料を製造できることから、植物由来原料が好ましく、椰子殻が好ましい。
 椰子殻としては、特に限定されないが、例えばパームヤシ(アブラヤシ)、ココヤシ、サラク、オオミヤシ等の椰子殻が挙げられる。これらの椰子殻を、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。椰子を、食品、洗剤原料、バイオディーゼル油原料等として利用した後に大量に発生するバイオマス廃棄物であるココヤシ及びパームヤシの椰子殻は、入手容易性の観点から、特に好ましい。
 本発明で用いられる炭素質材料は、炭素前駆体を、炭化し、一次賦活し、洗浄し、必要に応じて高次賦活し、さらに熱処理をすることにより炭素質材料を得ることを含む方法によって製造することができる。
 上記炭化および賦活の方式は、特に限定されないが、例えば、固定床方式、移動床方式、流動床方式、多段床方式、ロータリーキルンなどの公知の方式により製造できる。
 本発明で用いられる炭素質材料の製造方法において、まず炭素前駆体(好適には植物由来の炭素前駆体)を炭化する。炭化方法としては特に限定されないが、窒素、二酸化炭素、ヘリウム、アルゴン、一酸化炭素もしくは燃料排ガスなどの不活性ガス、これら不活性ガスの混合ガス、またはこれら不活性ガスを主成分とする他のガスとの混合ガスの雰囲気下、400~800℃程度の温度で焼成する方法が挙げられる。
 上記炭素前駆体を炭化した後、一次賦活を行う。賦活方法としては、ガス賦活法と薬品賦活法があるが、本発明では、不純物の残留が少ないという観点からガス賦活法が好ましい。ガス賦活法は、炭化された炭素前駆体を、賦活ガス(例えば、水蒸気、炭酸ガスなど)と反応させることにより行うことができる。
 一次賦活において、効率良く賦活を進行させる観点から、炭化の際に用いるものと同様の不活性ガスと水蒸気との混合物が好ましく、その際の水蒸気の分圧は10~60%の範囲であることが好ましい。水蒸気分圧が10%以上であると賦活を十分に進行させやすく、60%以下であると、急激な賦活反応を抑制し、反応をコントロールしやすい。
 一次賦活において供給する賦活ガスの総量は、炭素前駆体100質量部に対して、好ましくは50~10000質量部、より好ましくは100~5000質量部、さらに好ましくは200~3000質量部である。供給する賦活ガスの総量が上記範囲内であると、賦活反応をより効率良く進行させることができる。
 一次賦活における賦活温度は、通常700~1100℃、好ましくは800~1000℃である。賦活時間および昇温速度は特に限定されず、選択する植物由来の炭素前駆体の種類、形状、サイズ、および所望の細孔径分布等により異なることは言うまでもない。なお、一次賦活における賦活温度を高くしたり、賦活時間を長くしたりすると、得られる炭素質材料のBET比表面積は大きくなる傾向がある。そのため、所望の範囲のBET比表面積を有する炭素質材料を得るために、賦活温度や賦活時間の調整がなされる。
 次に、一次賦活後に得られた炭素質材料を洗浄して、灰分の低減を行う。洗浄は、一次賦活後に得られた炭素質材料を、酸を含む洗浄液に浸漬することによって行うことができる。洗浄液としては、例えば鉱酸又は有機酸が挙げられる。鉱酸としては、例えば、塩酸、硫酸等が挙げられる。有機酸としては、例えば、ギ酸、酢酸、プロピオン酸、シュウ酸及び酒石酸、クエン酸等の飽和カルボン酸、安息香酸及びテレフタル酸等の芳香族カルボン酸等が挙げられる。洗浄液に用いる酸は、洗浄性の観点から、好ましくは鉱酸であり、より好ましくは塩酸である。なお、酸を用いて洗浄を行った後、さらに水等を用いて洗浄して余剰の酸の除去を行うことが好ましく、この操作によって必要に応じて行う2次賦活以降での賦活設備への負荷を軽減することができる。
 洗浄液は、通常、酸と水性溶液とを混合して調製することができる。水性溶液としては、水、水と水溶性有機溶媒との混合物などが挙げられる。水溶性有機溶媒としては、例えばメタノール、エタノール、プロピレングリコール、エチレングリコールなどのアルコールが挙げられる。
 洗浄液中の酸の濃度は特に限定されるものではなく、用いる酸の種類に応じて濃度を適宜調節して用いてよい。洗浄液の酸濃度は、洗浄液の総量に基づいて、好ましくは0.01~3.5質量%であり、より好ましくは0.02~2.2質量%であり、さらに好ましくは0.03~1.6質量%である。洗浄液中の酸の濃度が上記範囲内であると、炭素質材料中に含まれる不純物を効率的に除去できるため好ましい。
 炭素質材料を浸漬する際の洗浄液の温度は特に限定されないが、好ましくは0~98℃であり、より好ましくは10~95℃であり、さらに好ましくは15~90℃である。炭素質材料を浸漬する際の洗浄液の温度が上記範囲内であれば、実用的な時間かつ装置への負荷を抑制した洗浄の実施が可能となるため望ましい。
 炭素質材料を洗浄する方法としては、炭素質材料を洗浄液に浸漬させることができる限り特に限定されず、洗浄液を連続的に添加し、所定の時間滞留させ、抜き取りながら浸漬を行う方法であってよく、炭素質材料を洗浄液に浸漬し、所定の時間滞留させ、脱液した後、新たに洗浄液を添加して浸漬-脱液を繰り返す方法であってもよい。また、洗浄液の全部を更新する方法であってもよいし、洗浄液の一部を更新する方法であってもよい。炭素質材料を洗浄液に浸漬する時間としては、用いる酸、酸の濃度、処理温度等に応じて適宜調節することができる。
 洗浄の時間は特に限定されないが、反応設備の経済効率、炭素質材料の構造保持性の観点から、好ましくは0.05~4時間であり、より好ましくは0.1~3時間である。
 炭素質材料を洗浄液に浸漬する際の、洗浄液と炭素質材料との質量割合は、用いる洗浄液の種類、濃度及び温度等に応じて適宜調節してよい。洗浄液の質量に対する、浸漬させる炭素質材料の質量は、通常0.1~50質量%であり、好ましくは1~20質量%であり、より好ましくは1.5~10質量%である。上記範囲内であれば、洗浄液に溶出した不純物が洗浄液から析出しにくく、炭素質材料への再付着を抑制しやすく、また、容積効率が適切となるため経済性の観点から望ましい。
 洗浄を行う雰囲気は特に限定されず、洗浄に使用する方法に応じて適宜選択してよい。本発明において洗浄は、通常、大気雰囲気中で実施する。
 本発明に用いられる炭素質材料の製造において、上記一次賦活後の洗浄後に得られた炭素質材料の二次賦活を行ってもよい。二次賦活は、上記一次賦活と同様の条件範囲で行うことができる。なお、二次賦活についても同様に、賦活温度を高くしたり、賦活時間を長くしたりすると、得られる炭素質材料のBET比表面積は大きくなる傾向がある。そのため、所望の範囲のBET比表面積を有する炭素質材料を得るために、賦活温度や賦活時間を調整すればよい。
 二次賦活の後に、さらに三次賦活を行ってよく、さらに高次の賦活を行ってもよい。また、二次賦活以降の各賦活の間に洗浄を行ってもよい。経済性の観点から、二次賦活または三次賦活まで行うことが好ましい。本発明において、三次賦活およびさらに高次の賦活も一次賦活と同様の条件範囲で行うことができる。
 二次賦活またはさらに高次の賦活後に得られる炭素質材料を、さらに洗浄し、炭素質材料中に含まれる灰分、金属不純物を除去することもできる。
 本発明に用いられる炭素質材料は、一次賦活または二次賦活もしくはさらに高次の賦活後に得られた炭素質材料を熱処理することにより得られる。該熱処理を行うことにより、炭素質材料の表面性状を調整することができる。具体的には、炭素質材料に吸着している水分等を除去、更に、洗浄等で新たに生成した官能基を除去、微細孔量を調整することができる。熱処理は、炭素質材料を不活性ガス、例えば、窒素、アルゴン、二酸化炭素などの不活性ガス下で加熱することにより行う。あるいは、上記熱処理に加え、または、不活性ガスに代えて、例えば減圧、減圧加熱などの手段により熱処理を行い、炭素質材料を調製することもできる。
 上記熱処理温度は、炭素質材料の細孔調整の観点から、500℃以上であることが好ましく、550℃以上であることがより好ましく、600℃以上であることがさらに好ましく、700℃以上であることがよりさらに好ましく、800℃以上であることが特に好ましい。また、上記熱処理温度は、1200℃以下であることが好ましく、1150℃以下であることがより好ましく、1100℃以下であることがさらに好ましい。
 熱処理時間は、採用する熱処理温度にもよるが、炭素質材料の調整の観点から、好ましくは0.1時間以上、より好ましくは0.5時間以上、さらに好ましくは1時間以上である。また、経済性の観点から、好ましくは24時間以下、より好ましくは18時間以下、さらに好ましくは10時間以下である。
 本発明において、このようにして得られた炭素質材料を次に粉砕してもよい。粉砕方法としては特に制限されないが、ボールミル、ロールミルもしくはジェットミル等の公知の粉砕方法、またはこれらの組み合わせを採用することができる。
 本発明において、粉砕して得られた炭素質材料を分級してもよい。例えば、粒子径が1μm以下の粒子を除くことにより狭い粒度分布幅を有する炭素質材料の粒子を得ることが可能となる。このような微粒子除去により、電極構成時のバインダー量を少なくすることが可能となる。分級方法は、特に制限されないが、例えば篩を用いた分級、湿式分級、乾式分級を挙げることができる。湿式分級機としては、例えば重力分級、慣性分級、水力分級、遠心分級等の原理を利用した分級機を挙げることができる。乾式分級機としては、沈降分級、機械的分級、遠心分級等の原理を利用した分級機を挙げることができる。経済性の観点から、乾式分級装置を用いることが好ましい。
 上記のようにして得られた炭素質材料は、本発明の非水電解質二次電池正極用添加剤として好ましく用いることができる。
 本発明の非水電解質二次電池用正極活物質組成物(非水電解質二次電池正極用組成物とも称する)は、上述した非水電解質二次電池正極用添加剤、正極活物質及びバインダーを含む。また、本発明の非水電解質二次電池正極用組成物は、任意で上記以外のその他の成分を含有してもよい。
 非水電解質二次電池正極用添加剤の含有量は、非水電解質二次電池正極用組成物の固形分の全体質量に対して10質量%以下であることが好ましく、8質量%以下がより好ましく、6質量%以下がさらに好ましい。また、正極用添加剤の含有量の下限は特に限定されないが、0.5質量%以上が好ましく、1質量%以上がより好ましい。
 また、非水電解質二次電池正極用添加剤と後述する正極活物質との混合比率は、質量比で1:99~10:90であってもよい。非水電解質二次電池正極用添加剤と正極活物質の混合比率がこの範囲に含まれる場合、出力特性および容量特性がすべて優秀に得られる。
(正極活物質)
 非水電解質二次電池正極用組成物に含まれる正極活物質としては、特に限定されることなく、既知の正極活物質を用いることができる。例えば、リチウム含有コバルト酸化物(LiCoO)、マンガン酸リチウム(LiMn)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム含有複合酸化物、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、オリビン型リン酸鉄リチウム(LiFePO)、オリビン型リン酸マンガンリチウム(LiMnPO)、Li1+xMn2-x(0<X<2)で表されるリチウム過剰のスピネル化合物、Li[Ni0.17Li0.2Co0.07Mn0.56]O、LiNi0.5Mn1.5等の金属酸化物、硫黄、ニトロキシルラジカルを有する化合物やポリマー、オキシラジカルを有する化合物やポリマー、窒素ラジカルを有する化合物やポリマー、フルバレン骨格を有する化合物やポリマー等の有機ラジカルが挙げられる。
 これらは1種単独で、または、2種以上を組み合わせて用いることができる。そして上述した中でも、二次電池の電池容量などを向上させる観点からは、正極活物質としてリチウム含有コバルト酸化物(LiCoO)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム含有複合酸化物、例えば、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3、LiNi0.8Co0.1Mn0.1、Ni-Co-Alのリチウム含有複合酸化物、例えばLiNi0.8Co0.1Al0.1、LiNi0.8Co 0.15Al0.05を用いることが好ましい。
 なお、正極活物質の粒径は、特に限定されることなく、従来使用されている正極活物質と同様とすることができる。通常、0.1μm~40μmの範囲、より好ましくは、0.5μm~20μmである。
 本発明の一実施形態による正極活物質組成物で上記正極活物質の含量は、組成物の固形分全体質量に対して99質量%以下であってもよく、95質量%以下であってもよく、90質量%以下であってもよい。また、30質量%以上であってもよく、40質量%以上であってもよく、50質量%以上であってもよい。
(バインダー)
 本発明の非水電解質二次電池正極用組成物は、正極活物質粒子を互いに良好に付着させ、また正極活物質を電流集電体に良好に付着させるためのバインダーを含有する。バインダーの例としては、例えばポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ジアセチルセルロース、ポリ塩化ビニル、カルボキシル化されたポリ塩化ビニル、ポリビニルフルオライド、エチレンオキシドを含むポリマー、ポリビニルピロリドン、ポリウレタン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、スチレン-ブタジエンラバー、アクリレイテッドスチレン-ブタジエンラバー、エポキシ樹脂、ナイロンなどを使用してもよいが、これに限定されない。これは単独で使用しても、混合して使用しても構わない。本発明の非水電解質二次電池正極用組成物において、上記バインダーの含有量は、組成物中の正極全体質量に対して0.5~10質量%であってもよく、1~7質量%であってもよい
(導電材)
 本発明の非水電解質二次電池正極用組成物は、集電体上に形成される正極の導電性をより高めるため、導電材をさらに含有してもよい。導電材としては、構成される電気化学素子において、化学変化を招かない電子伝導性材料であれば如何なるものでも使用可能である。導電材の具体的な例として、天然黒鉛、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、銅、ニッケル、アルミニウム、銀などの金属粉末、金属繊維などを使用してもよく、また、ポリフェニレン誘導体などの導電性材料を1種または1種以上を混合して使用してもよい。本発明の非水電解質二次電池正極用組成物において、上記導電材の含有量は、組成物中の個体分全体質量に対して0.5~10質量%であってもよく、1~7質量%であってもよい。
(溶媒)
 本発明の非水電解質二次電池正極用組成物は、溶媒を含有してもよい。溶媒としては、例えば、有機溶媒を用いることができ、中でも前記バインダーを溶解可能な極性有機溶媒が好ましい。具体的には、有機溶媒としては、アセトニトリル、N-メチルピロリドン、アセチルピリジン、シクロペンタノン、N,N-ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、メチルホルムアミド、メチルエチルケトン、フルフラール、エチレンジアミンなどを用いることができる。これらの中でも、取扱い易さ、安全性、合成の容易さなどの観点から、N-メチルピロリドン(NMP)が最も好ましい。なお、これらの有機溶媒は、単独で使用してもよいし、2種以上を混合して使用してもよい。
 前記溶媒の使用量としては、電気化学素子正極用組成物中の固形分濃度が、好ましくは1~80質量%、より好ましくは5~70質量% 、さらに好ましくは10~60質量%の範囲となる量である。固形分濃度を上記範囲とすることにより、正極活物質、電気化学素子正極用添加剤及び含有するその他の成分を均一に分散させることができるため、好適である。
(非水電解質二次電池正極用組成物の製造方法)
 本発明の非水電解質二次電池正極用組成物の製造方法としては、上述の非水電解質二次電池正極用添加剤、正極活物質、及び必要に応じ溶媒やその他の成分を混合することによって製造できる。混合方法には特に制限は無く、例えば、ディスパー、ミル、ニーダーなどの一般的な混合装置を用いることができる。例えば、20分以上120分以下攪拌することが好ましい。
 混合する温度としても特に制限されるものではなく、例えば、0℃~160℃範囲、より好ましくは、20℃~80℃の範囲で行われる。低すぎる温度は粘度が高く、塗工することが出来なくなるため好ましくなく、高すぎる温度では、有機溶媒の揮発、付随する粘度変化など安全性、機器操作性の観点から好ましくない。
[非水電解質二次電池]
 このような本発明の一実施形態による非水電解質正極用組成物は、非水電解質二次電池に有用に使用され得る。本発明はまた、上述の非水電解質二次電池正極用組成物を用いて作製された正極を有する電気化学素子も含む。本発明の電気化学素子は、上述の非水電解質二次電池正極用添加剤を含有することにより、正極の導電性が改善され、電極抵抗を低下させることができる。また、リチウム利用効率を向上させ、不可逆容量を低減させることができる。本発明の非水電解質二次電池は、2V~5Vで作動するものが好ましく、その例としてリチウムイオン二次電池が挙げられる。
 例えば、本発明の非水電解質二次電池がリチウムイオン二次電池である場合、前記リチウムイオン二次電池は、正極、負極および電解質を含む。
(正極)
 上記正極は、本発明の非水電解質二次電池正極用組成物を用いて作製されたものであって、集電体と正極活物質層を含む。上記正極活物質層は、例えば、本発明の正極用組成物を上記集電体に塗布して形成される。また、正極活物質層は、上記非水電解質二次電池正極用組成物を集電体に塗布して乾燥させて用いられることが多く、通常、非水電解質二次電池正極用組成物の固形分からなる。
 上記非水電解質二次電池正極用組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、正極用組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上の組成物膜の厚みは、乾燥して得られる正極活物質層の厚みに応じて適宜に設定しうる。
 正極用組成物を塗布する集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、アルミニウムまたはアルミニウム合金からなる集電体を用い得る。この際、アルミニウムとアルミニウム合金とを組み合わせて用いてもよく、種類が異なるアルミニウム合金を組み合わせて用いてもよい。アルミニウムおよびアルミニウム合金は耐熱性を有し、電気化学的に安定であるため、優れた集電体材料である。
 集電体上の正極用組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上の正極用組成物を乾燥することで、集電体上に正極活物質層を形成し、集電体と正極活物質層とを備える正極を得ることができる。
 特に、添加した炭素質材料の金属捕捉力を維持するために、正極製造時の乾燥工程を十分に行うことが好ましく、集電体(例えば、アルミニウム箔)が影響を受けない範囲、かつ、正極活物質および炭素質材料表面に吸着した水が揮散できる範囲で乾燥を行うことが好ましい。乾燥は、好ましくは、乾燥温度100℃以上160℃以下で大気圧下、もしくは減圧下に、1時間から12時間の範囲で実施される。
 なお、乾燥工程の後、金型プレスまたはロールプレスなどを用い、正極活物質層に加圧処理を施してもよい。加圧処理により、正極活物質層と集電体との密着性を向上させることができる。
 このようにして製造された非水電解質二次電池用正極は、内部に良好な導電ネットワークを形成している。従って、当該非水電解質二次電池用正極を用いれば、非水電解質二次電池の内部抵抗を低減させて、二次電池の性能を向上させることができる。
(負極)
 上記負極は、集電体および上記集電体の上に形成された負極活物質層を含み、上記負極活物質層は負極活物質を含む。
 上記負極活物質は、リチウムイオンを可逆的にインターカレーション/デインターカレーションすることができる物質であり、リチウム金属、リチウム金属の合金、リチウムにドープおよび脱ドープ可能な物質または遷移金属酸化物を含む。
 上記リチウムイオンを可逆的にインターカレーション/デインターカレーションすることができる物質としては、炭素物質であって、リチウムイオン二次電池で一般に使用される炭素系負極活物質は如何なるものでも使用可能であり、その代表的な例としては、結晶質炭素、非晶質炭素が挙げられ、これらを共に使用してもよい。上記結晶質炭素の例としては、無定形、板状、鱗片状、球状または繊維状の天然黒鉛または人造黒鉛のような黒鉛が挙げられ、上記非晶質炭素の例としては、ソフトカーボンまたはハードカーボン、メソフェーズピッチ炭化物、焼成されたコークスなどが挙げられる。
 上記リチウム金属の合金としては、リチウムとNa、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Si、Sb、Pb、In、Zn、Ba、Ra、Ge、AlおよびSnからなる群より選択される金属との合金が使用されてもよい。
 上記リチウムにドープおよび脱ドープ可能な物質としては、Si、SiOx(0<x<2)、Si-Q合金(上記Qは、アルカリ金属、アルカリ土金属、13族元素、14族元素、15族元素、16族元素、遷移金属、希土類元素およびこれらの組み合わせからなる群より選択される元素であって、Siではない)、Sn、SnO、Sn-R(上記Rは、アルカリ金属、アルカリ土金属、13族元素、14族元素、15族元素、16族元素、遷移金属、希土類元素およびこれらの組み合わせからなる群より選択される元素であり、Snではない)などが挙げられ、またこれらのうちの少なくとも一つとSiOを混合して使用してもよい。上記元素QおよびRとしては、Mg、Ca、Sr、Ba、Ra、Sc、Y、Ti、Zr、Hf、Rf、V、Nb、Ta、Db、Cr、Mo、W、Sg、Tc、Re、Bh、Fe、Pb、Ru、Os、Hs、Rh、Ir、Pd、Pt、Cu、Ag、Au、Zn、Cd、B、Al、Ga、Sn、In、Ti、Ge、P、As、Sb、Bi、S、Se、Te、Po、およびこれらの組み合わせからなる群より選択されるものを使用してもよい。
 上記遷移金属酸化物としては、バナジウム酸化物、リチウムバナジウム酸化物などが挙げられる。
 上記負極活物質層における負極活物質の含量は、負極活物質層全体質量に対して90質量%~100質量%であってもよく、95質量%~99質量%であってもよい。負極活物質層は負極のみからなるものであってもよい。
 上記負極活物質層はバインダーを含み、選択的に導電材をさらに含んでもよい。上記負極活物質層でバインダーの含量は、負極活物質層全体質量に対して1質量%~10質量%であってもよい。また導電材をさらに含む場合には、負極活物質を80質量%(好ましくは90質量%)~98質量%、バインダーを1質量%~10質量%、導電材を1質量%~10質量%使用してもよい。
 上記バインダーは、負極活物質粒子を互いに良好に付着させ、また負極活物質を電流集電体に良好に付着させる役割を果たす。上記バインダーとしては、非水溶性バインダー、水溶性バインダーまたはこれらの組み合わせを使用してもよい。
 上記非水溶性バインダーとしては、ポリ塩化ビニル、カルボキシル化されたポリ塩化ビニル、ポリビニルフルオライド、エチレンオキシドを含むポリマー、ポリビニルピロリドン、ポリウレタン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、ポリアミドイミド、ポリイミドまたはこれらの組み合わせが挙げられる。
 上記水溶性バインダーとしては、スチレン-ブタジエンラバー、アクリレイテッドスチレン-ブタジエンラバー、ポリビニルアルコール、ポリアクリル酸ナトリウム、プロピレンと炭素数が2~8のオレフィン共重合体、(メタ)アクリル酸と(メタ)アクリル酸アルキルエステルの共重合体またはこれらの組み合わせが挙げられる。
 上記負極バインダーとして水溶性バインダーを使用する場合、粘性を付与することができるセルロース系化合物を増粘剤としてさらに使用してもよい。このセルロース系化合物としては、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロースおよびそれらのアルカリ金属塩などが挙げられ、これらを2種以上混合して使用してもよい。上記アルカリ金属としては、Na、KまたはLiを使用してもよい。このような増粘剤使用量は、バインダー100質量部に対して0.1質量部~150質量部であってもよい。
 上記導電材は、電極に導電性を付与するために使用されるものであって、構成される電池において、化学変化を招かない電子伝導性材料であれば如何なるものでも使用可能である。その例として、天然黒鉛、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維などの炭素系物質;銅、ニッケル、アルミニウム、銀などの金属粉末または金属繊維などの金属系物質;ポリフェニレン誘導体などの導電性ポリマー;またはこれらの混合物を含む導電性材料が挙げられる。
 上記集電体としては、銅箔、ニッケル箔、ステレンス鋼箔、チタニウム箔、ニッケル発泡体、銅発泡体、伝導性金属がコーティングされたポリマー基材、およびこれらの組み合わせからなる群より選択されるものを使用してもよい。
(電解質)
 上記電解質は、非水性有機溶媒とリチウム塩を含むものが好ましい。
 上記非水性有機溶媒は、電池の電気化学的反応に関与するイオンが移動することができる媒質の役割を果たす。
 非水性有機溶媒としては、カーボネート系、エステル系、エーテル系、ケトン系、アルコール系、または非陽子性溶媒を使用してもよい。上記カーボネート系溶媒としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)、メチルプロピルカーボネート(MPC)、エチルプロピルカーボネート(EPC)、メチルエチルカーボネート(MEC)、エチルメチルカーボネート(EMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)などが使用されてよい。上記エステル系溶媒としては、n-メチルアセテート、n-エチルアセテート、n-プロピルアセテート、ジメチルアセテート、メチルプロピオネート、エチルプロピオネート、γ-ブチロラクトン、デカノライド、バレロラクトン、メバロノラクトン、カプロラクトンなどが使用されてよい。上記エーテル系溶媒としては、ジブチルエーテル、テトラグライム、ジグライム、ジメトキシエタン、2-メチルテトラヒドロフラン、テトラヒドロフランなどが使用されてよい。上記ケトン系溶媒としては、シクロヘキサノンなどが使用されてよい。また、上記アルコール系溶媒としては、エチルアルコール、イソプロピルアルコールなどが使用されてよい。上記非陽子性溶媒としては、R-CN(Rは、炭素数2~20の直鎖状、分枝状、または環構造の炭化水素基であり、二重結合方向環またはエーテル結合を含んでもよい)などのニトリル類、ジメチルホルムアミドなどのアミド類、1,3-ジオキソランなどのジオキソラン類スルホラン類などが使用されてよい。
 上記非水性有機溶媒は、単独でまたは二つ以上混合して使用されてもよく、二つ以上混合して使用する場合の混合比率は目的とする電池性能に応じて適切に調節してもよい。
 また、上記カーボネート系溶媒の場合、環状カーボネートと鎖状カーボネートを混合して使用することがよい。この場合、環状カーボネートと鎖状カーボネートは、1:1~1:9の体積比で混合して使用することが電解液の性能がより優秀に示され得る。
 上記リチウム塩は、有機溶媒に溶解され、電池内でリチウムイオンの供給源として作用して基本的なリチウムイオン二次電池の作動を可能にし、正極と負極の間のリチウムイオンの移動を促進する役割を果たす物質である。このようなリチウム塩の代表的な例としては、例えばLiPF、LiBF、LiSbF、LiAsF、LiCFSO、LiN(SO、Li(CFSON、LiCSO、LiClO、LiAlO、LiAlCl、LiN(CxF2x+1SO)(CyF2y+1SO)(ここで、xおよびyは、自然数である)、LiCl、LiIおよびLiB(C(リチウムビスオキサラトボレート(LiBOB)などが挙げられる。これらは単独でまたは二種以上を混合して使用してもよい。リチウム塩の濃度は、0.1~2.0Mの範囲内で使用することがよい。リチウム塩の濃度が0.1M未満であれば、電解質の電導度が低くなって電解質性能が低下する傾向があり、2.0Mを超える場合には電解質の粘度が増加してリチウムイオンの移動性が減少する傾向がある。
 上記電解質は、電池寿命を向上させるためにビニレンカーボネートまたはエチレンカーボネート系化合物を寿命向上剤としてさらに含んでもよい。
 上記エチレンカーボネート系化合物の代表的な例としては、ジフルオロエチレンカーボネート、クロロエチレンカーボネート、ジクロロエチレンカーボネート、ブロモエチレンカーボネート、ジブロモエチレンカーボネート、ニトロエチレンカーボネート、シアノエチレンカーボネートまたはフルオロエチレンカーボネートなどが挙げられる。このような寿命向上剤をさらに使用する場合、その使用量は適切に調節してもよい。
 本発明の非水電解質二次電池において、正極と負極の間にセパレータが存在してもよい。このようなセパレータとしては、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデンまたはこれらの2層以上の多層膜が使用されて
もよく、ポリエチレン/ポリプロピレンの2層セパレータ、ポリエチレン/ポリプロピレン/ポリエチレンの3層セパレータ、ポリプロピレン/ポリエチレン/ポリプロピレンの3層セパレータなどのような混合多層膜が使用されてもよい。
 以下、実施例および比較例を説明する。ただし、下記の実施例は本発明をより具体的に説明するものであって、本発明の思想は下記の実施例に限定されない。
(窒素吸着BET法による比表面積、NL-DFT法による細孔容積)
 以下にBETの式から誘導された近似式を記す。
Figure JPOXMLDOC01-appb-M000001
 上記の近似式(I)を用いて、液体窒素温度における、窒素吸着による多点法により所定の相体圧(p/p)において実測される吸着量(v)を代入してvを求め、次式(II)により試料の比表面積(SSA:単位はm/g)を計算した。
Figure JPOXMLDOC01-appb-M000002
 上記の式(I)及び(II)中、vは試料表面に単分子層を形成するに必要な吸着量(cm/g)、vは実測される吸着量(cm/g)、pは飽和蒸気圧、pは絶対圧、cは定数(吸着熱を反映)、Nはアボガドロ数6.022×1023、a(nm)は吸着質分子が試料表面で占める面積(分子占有断面積)である。
 具体的には、カンタクローム社製「Autosorb-iQ-MP」を用いて、以下のようにして液体窒素温度における炭素質材料への窒素の吸着量を測定した。測定試料である炭素質材料を試料管に充填し、試料管を-196℃(77K)に冷却した状態で、一旦減圧し、その後所望の相対圧にて測定試料に窒素(純度99.999%)を吸着させた。各所望の相対圧にて平衡圧に達した時の試料に吸着した窒素量を吸着ガス量vとした。この測定された値を基に、上記式(I)及び(II)からBET法による比表面積を求めた。
 さらに、上記の窒素の吸着量の測定より得られた吸着等温線をDFT法により解析し、2nm未満の孔径(細孔直径)を有する孔の容積をマイクロ孔容積、2nm以上50nm以下の孔径(細孔直径)を有する孔の容積をメソ孔容積として算出した。
(元素分析で測定される酸素量)
 株式会社堀場製作所製、酸素・窒素・水素分析装置EMGA-930を用いて、不活性ガス溶解法に基づいて元素分析を行った。
 当該装置の検出方法は、酸素:不活性ガス融解-非分散型赤外線吸収法(NDIR)であり、校正は、(酸素・窒素)Niカプセル、TiH2(H標準試料)、SS-3(N、O標準試料)で行い、前処理として250℃、約10分で水分量を測定した炭素質材料の試料20mgをNiカプセルに取り、元素分析装置内で30秒脱ガスした後に測定した。試験は3検体で分析し、平均値を分析値(元素分析で測定される炭素質材料中の酸素量(質量%):(A))とした。
(Boehm法による官能基滴定)
 炭素質材料の官能基量の定量方法は一般的に知られている、例えば、表面、34[2](1996)音羽p.62又はCatal.,1966[16](米)p.179に詳述されている方法により行うことができる。具体的には、炭素質材料試料各2gを100ミリリットル(mL)のエルレンマイヤーフラスコに取り、N/10のアルカリ試薬((a)炭酸水素ナトリウム、(b)炭酸ナトリウム、(c)苛性ソーダ、(d)ナトリウムエトキシド)を各々50mL加え、24時間振とうした後濾別し、未反応のアルカリ試薬をN/10塩酸で滴定し、カルボキシル基は(a)~(d)全ての試薬と、ラクトン基は(b)~(d)、水酸基は(c)~(d)、キノン基は(d)と反応するので、各々の滴定量を差し引きすることによって、官能基量(meq/g)を定量した。
(元素分析で測定された酸素量に対するBoehm法による官能基滴定で測定されたキノン基中の酸素量の割合)
 炭素質材料中の元素分析で測定された酸素量(A)に対するBoehm法による官能基滴定で測定されたキノン基中の酸素量(B)の割合は、以下の方法によって算出した。上記で求められたキノン基量から、炭素質材料中に含まれるキノン基中の酸素量(質量%)を下記式(III)によって求めた。さらに、求めた炭素質材料中に含まれるキノン基中の酸素量を元素分析による酸素量により除することで炭素質材料中のBoehm滴定による表面官能基滴定で測定されるキノン基中の酸素量の割合を求めた(式(IV))。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
(レーザー散乱法による平均粒径)
 植物由来のチャーおよび炭素質材料の平均粒径(粒度分布)は、以下の方法により測定した。試料を界面活性剤(和光純薬工業株式会社製「ToritonX100」)が5質量%含まれた水溶液に投入し、超音波洗浄器で10分以上処理し、水溶液中に分散させた。この分散液を用いて粒度分布を測定した。粒度分布測定は、粒子径・粒度分布測定装置(マイクロトラック・ベル株式会社製「マイクロトラックMT3300EXII」)を用いて行った。D50は、累積体積が50%となる粒子径であり、この値を平均粒径として用いた。
(灰分の測定方法)
 900℃で空焼きし、シリカゲルを入れたデシケータ中で放冷したアルミナるつぼの質量を測定する。120℃に調節した恒温乾燥器で8~10時間真空乾燥後、乾燥剤としてシリカゲルを入れたデシケータ中で放冷した活性炭を容積50mlのアルミナるつぼに20g入れ、るつぼ質量+炭素質材料質量を0.1mg単位まで正確に量り取った。試料を入れたアルミナるつぼを電気炉に入れ、電気炉内に乾燥空気を20L/分で導入した状態で、1時間で200℃まで昇温し、更に2時間かけて700℃に昇温し、700℃にて14時間保持し、灰化した。灰化終了後、シリカゲルを入れたデシケータ中で放冷し、るつぼ+灰の質量を0.1mg単位まで正確に量り取り、式(V)から灰分を算出した。
Figure JPOXMLDOC01-appb-M000005
(含水量)
 カールフィッシャー水分測定装置(三菱化学アナリテック社製  微量水分測定装置CA-200)を用いてカールフィッシャー滴定法(電量滴定法)により炭素質材料の吸湿性を測定した。測定は炭素質材料1gを120℃、10mmHgで24時間加熱乾燥し、残留物の質量を測定した後、カールフィッシャー水分測定装置の温度を250℃とし、測定試料を本温度下に暴露し、排出された水分を計測した。
(リチウム二次電池正極用組成物)
 ポリフッ化ビニリデン(株式会社クレハ製 KFポリマー 7200)3質量部を溶解したN-メチルピロリドン溶液30質量部、正極活物質としてLiNi0.33Co0.33Mn0.33(日本化学工業社製、「セルシードC」)93質量部、導電助剤としてアセチレンブラック(電気化学工業社製、「デンカブラック」)2質量部、実施例にて作製した炭素質材料2質量部を加えて混合し、正極材固形分濃度が50質量%になるように、N-メチルピロリドンを適宜添加しながら、プライミクス社製ホモミクサー(4500rpm)で攪拌分散して、リチウム二次電池電極用スラリー組成物を得た。
(リチウム二次電池用正極)
 上記リチウム二次電池電極用スラリー組成物を、バーコーター(「T101」、松尾産業製)を用いて集電体のアルミニウム箔(「1N30-H」、富士加工紙製)上に塗工し、80℃で30分間熱風乾燥機(ヤマト科学製)にて一次乾燥後、ロールプレス(宝泉製)を用いて圧延処理を行なった。その後、リチウム二次電池用電極(φ14mm)として打ち抜き後、120℃で3時間減圧条件の二次乾燥によって、リチウム二次電池用電極(正極)を作製した。この時の含水量は、作製し、乾燥した電極(φ14mm)を取り、カールフィッシャー(三菱化学アナリテック社製)にて、250℃に加熱し、窒素気流下に水分量を測定し、含水量が20ppm以下になるように管理し、添加した炭素質材料が吸水以外の作用を発揮できるようにした。
(リチウムイオン二次電池の作製)
 上記リチウムイオン二次電池用電極をアルゴンガス雰囲気下のグローブボックス(美和製作所製)に移送した。該リチウム二次電池用電極は正極として用いた。負極には、負極活物質層として金属リチウム箔(厚さ0.2mm、φ16mm)、集電体として鋼箔(厚さ0.2mm、φ17mm)からなる積層体を用いた。また、セパレータとしてポリプロピレン系(セルガード#2400、ポリポア製)を使用して、電解液は六フッ化リン酸リチウム(LiPF6)のエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)にビニレンカーボネート(VC)を添加した混合溶媒系(1M-LiPF6、EC/EMC=3/7体積%、VC2質量%)を用いて注入し、コイン型のリチウム二次電池(2032タイプ)を作製した。
[実施例1]
 フィリピン産ココナツのヤシ殻を原料とするチャー(比表面積:370m/g)に対し、プロパン燃焼ガス及び水蒸気(水蒸気分圧:25%)を用いて、850℃で一次賦活を行った。その後、塩酸(濃度:0.5規定、希釈液:イオン交換水)を用いて、温度85℃で30分酸洗した後、残留した酸を除去するため、イオン交換水で十分に水洗、乾燥した。この時点で得られた炭素質材料の比表面積は1685m/gであった。得られた炭素質材料を、窒素雰囲気下、常圧、900℃で1時間熱処理を実施し、熱処理排出時に純度99.99%の窒素流通容器内に排出、窒素ガス雰囲気下で200℃以下まで冷却して、二次洗浄粒状炭素質材料を得た。この粒状炭素質材料を平均粒子径が6μmになるように微粉砕して得た炭素質材料の各種物性を測定した。結果を表1に示す。
[実施例2]
 実施例1と同様に一次賦活、酸洗、水洗および乾燥して得られた熱処理前の粒状炭素質材料をさらに、プロパン燃焼ガス(水蒸気分圧15%)を用い、970℃で二次賦活を行い、粒状炭素質材料を得た。この時点で得られた炭素質材料の比表面積は2184m/gであった。得られた二次賦活粒状炭素質材料に対し、更に温度85℃で30分酸洗し、イオン交換水で十分に水洗、乾燥した後、窒素雰囲気下、常圧、900℃で1時間熱処理を実施し、熱処理排出時に純度99.99%の窒素流通容器内に排出、窒素ガス雰囲気下で200℃以下まで冷却して、二次洗浄粒状炭素質材料を得た。この粒状炭素質材料を平均粒子径が6μmになるように微粉砕して得た炭素質材料の各種物性を測定した。結果を表1に示す。
[実施例3]
 実施例1の一次賦活の賦活時間を延長し、酸洗、水洗及び乾燥して、比表面積が1810m/gの一次賦活粒状炭素質材料(熱処理前の炭素質材料)を得た。この粒状炭素質材料をさらに、プロパン燃焼ガス(水蒸気分圧15%)を用い、970℃で二次賦活を行い、粒状炭素質材料を得た。この時点での比表面積は、1834m/gであった。得られた二次賦活粒状炭素質材料に対し、更に温度85℃で30分酸洗し、イオン交換水で十分に水洗、乾燥した後、窒素雰囲気下、常圧、900℃で1時間熱処理を実施し、二次洗浄粒状炭素質材料を得た。この粒状炭素質材料を平均粒子径が6μmになるように微粉砕して得た炭素質材料の各種物性を測定した。結果を表1に示す。
[比較例1~3]
 実施例1~3それぞれにおいて、賦活、洗浄後の窒素雰囲気下での熱処理を行わず、120℃、1Torr下の減圧乾燥を12時間行った以外は、実施例1~3それぞれと同様にして得られた炭素質材料をそれぞれ比較例1~3の非水電解質二次電池正極用添加剤とした。結果を表1に示す。
[比較例4]
 実施例1と同様にして得られた炭素質材料をさらにESPEC製高温チャンバーにて大気下230℃で3時間加熱した。
[比較例5]
 熱処理を780℃で実施したこと以外は実施例1と同様の操作を行い、得られた炭素質材料の各種物性を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000006
[実施例1~3及び比較例1~4の電池特性]
 実施例1~3及び比較例1~4で得た炭素質材料を使用して、上述の記載に従って、リチウムイオン二次電池を作製した。得られたリチウムイオン二次電池について、充放電試験装置(東洋システム株式会社製、「TOSCAT」)を用いて、初期充電前に直流抵抗値を測定後、充放電試験を行った。直流抵抗については、0.5mAを3秒間流したときの抵抗値を測定した。リチウムのドーピングは、活物質質量に対し70mA/gの速度で行い、リチウム電位に対して1mVになるまでドーピングした。さらにリチウム電位に対して1mVの定電圧を8時間印加して、ドーピングを終了した。このときの容量(mAh/g)を充電容量とした。次いで、活物質質量に対し70mA/gの速度で、リチウム電位に対して2.5Vになるまで脱ドーピングを行い、このとき放電した容量を放電容量とした。放電容量/充電容量の百分率を充放電効率(初回充放電効率)とし、電池内におけるリチウムイオンの利用効率の指標とした。また、充電容量から放電容量を差し引くことによって、不可逆容量を算出した。得られた結果を表2に示す。
[比較例6]
 炭素質材料を添加しなかった以外は、実施例1と同様にリチウムイオン電池を作製し、電池特性を測定した。得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000007
 上記結果より、本願発明の規定をすべて満たす実施例において、本願発明の規定を満たさない比較例に比べ、電極の導電性の改善、電極抵抗が低下し、カチオン種の利用効率が向上することが示された。特に、水の存在がより性能に大きな影響を与える正極活物質(今回の場合はニッケルの含有量が比較的少ない正極活物質)を用いた場合にも、電極の導電性の改善、電極抵抗の低下、カチオン種の利用効率の向上が示された。

Claims (9)

  1.  BET法による比表面積が1000m/g以上2000m/g以下であり、DFT法で求められるマイクロ孔容積が0.60cm/g未満であり、元素分析で測定される酸素量が0.5質量%以上1.3質量%未満である炭素質材料からなる非水電解質二次電池正極用添加剤。
  2.  元素分析で測定される酸素量に対するBoehm滴定による表面官能基滴定で測定されるキノン基中の酸素量の割合が30%以上70%以下である、請求項1記載の非水電解質二次電池正極用添加剤。
  3.  前記炭素質材料の平均粒径が2μm~20μmである、請求項1又は2に記載の非水電解質二次電池正極用添加剤。
  4.  前記炭素質材料のDFT法で求められるメソ孔容積が0.35cm/g以下である、請求項1~3のいずれかに記載の非水電解質二次電池正極用添加剤。
  5.  請求項1~4のいずれかに記載の非水電解質二次電池正極用添加剤、正極活物質及びバインダーを含む非水電解質二次電池用正極活物質組成物。
  6.  正極活物質組成物の全体質量に対する前記非水電解質二次電池正極用添加剤の含有量が10質量%以下である、請求項5に記載の非水電解質二次電池用正極活物質組成物。
  7.  請求項5又は6のいずれかに記載の非水電解質二次電池用正極活物質組成物からなる正極活物質層と集電体とを備える非水電解質二次電池用正極。
  8.  請求項7に記載の正極を備える非水電解質二次電池。
  9.  2V~5Vで作動する、請求項8に記載の非水電解質二次電池。
PCT/JP2022/003970 2021-02-05 2022-02-02 非水電解質二次電池用正極添加剤、それを含む非水電解質二次電池用正極活物質組成物、非水電解質二次電池用正極およびこれを備える非水電解質二次電池 WO2022168847A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237026734A KR20230142723A (ko) 2021-02-05 2022-02-02 비수 전해질 이차 전지용 정극 첨가제, 그것을 포함하는비수 전해질 이차 전지용 정극 활물질 조성물, 비수 전해질 이차 전지용 정극 및 이것을 구비하는 비수 전해질 이차 전지
US18/275,454 US20240120493A1 (en) 2021-02-05 2022-02-02 Positive electrode additive for nonaqueous electrolyte secondary battery, positive electrode active material composition for nonaqueous electrolyte secondary battery containing said additive, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery provided with same
CN202280013524.7A CN116964783A (zh) 2021-02-05 2022-02-02 非水电解质二次电池用正极添加剂、包含其的非水电解质二次电池用正极活性物质组合物、非水电解质二次电池用正极和具备其的非水电解质二次电池
EP22749719.5A EP4290601A1 (en) 2021-02-05 2022-02-02 Positive electrode additive for nonaqueous electrolyte secondary battery, positive electrode active material composition for nonaqueous electrolyte secondary battery containing said additive, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery provided with same
JP2022579563A JPWO2022168847A1 (ja) 2021-02-05 2022-02-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-017338 2021-02-05
JP2021017338 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022168847A1 true WO2022168847A1 (ja) 2022-08-11

Family

ID=82741514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003970 WO2022168847A1 (ja) 2021-02-05 2022-02-02 非水電解質二次電池用正極添加剤、それを含む非水電解質二次電池用正極活物質組成物、非水電解質二次電池用正極およびこれを備える非水電解質二次電池

Country Status (6)

Country Link
US (1) US20240120493A1 (ja)
EP (1) EP4290601A1 (ja)
JP (1) JPWO2022168847A1 (ja)
KR (1) KR20230142723A (ja)
CN (1) CN116964783A (ja)
WO (1) WO2022168847A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024040048A1 (en) * 2022-08-19 2024-02-22 Novonix Anode Materials Llc Method for producing a battery active material and product thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126766A (ja) 1999-10-22 2001-05-11 Sony Corp 非水電解液二次電池
JP2004296431A (ja) 2003-03-07 2004-10-21 Denso Corp リチウム二次電池用電極およびリチウム二次電池
JP2008112595A (ja) * 2006-10-30 2008-05-15 Hitachi Vehicle Energy Ltd リチウム二次電池
JP2012059690A (ja) * 2010-09-13 2012-03-22 Samsung Sdi Co Ltd リチウム二次電池
JP5027849B2 (ja) 2009-06-30 2012-09-19 関西熱化学株式会社 活性炭の製造方法、および該製造方法により得られた活性炭を用いた電気二重層キャパシタ
JP2014026819A (ja) 2012-07-26 2014-02-06 Gunma Univ 正極合剤および非水電解液二次電池
JP2016054113A (ja) * 2014-09-04 2016-04-14 日本ゼオン株式会社 二次電池電極用複合体の製造方法、二次電池電極用複合体、二次電池用電極および二次電池
JP2020013881A (ja) 2018-07-18 2020-01-23 旭化成株式会社 非水系リチウム型蓄電素子
JP2021017338A (ja) 2019-07-22 2021-02-15 コニカミノルタ株式会社 紙粉判定装置および用紙搬送装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027849B1 (ja) 1969-11-25 1975-09-10

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126766A (ja) 1999-10-22 2001-05-11 Sony Corp 非水電解液二次電池
JP2004296431A (ja) 2003-03-07 2004-10-21 Denso Corp リチウム二次電池用電極およびリチウム二次電池
JP2008112595A (ja) * 2006-10-30 2008-05-15 Hitachi Vehicle Energy Ltd リチウム二次電池
JP5027849B2 (ja) 2009-06-30 2012-09-19 関西熱化学株式会社 活性炭の製造方法、および該製造方法により得られた活性炭を用いた電気二重層キャパシタ
JP2012059690A (ja) * 2010-09-13 2012-03-22 Samsung Sdi Co Ltd リチウム二次電池
JP2014026819A (ja) 2012-07-26 2014-02-06 Gunma Univ 正極合剤および非水電解液二次電池
JP2016054113A (ja) * 2014-09-04 2016-04-14 日本ゼオン株式会社 二次電池電極用複合体の製造方法、二次電池電極用複合体、二次電池用電極および二次電池
JP2020013881A (ja) 2018-07-18 2020-01-23 旭化成株式会社 非水系リチウム型蓄電素子
JP2021017338A (ja) 2019-07-22 2021-02-15 コニカミノルタ株式会社 紙粉判定装置および用紙搬送装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024040048A1 (en) * 2022-08-19 2024-02-22 Novonix Anode Materials Llc Method for producing a battery active material and product thereof

Also Published As

Publication number Publication date
KR20230142723A (ko) 2023-10-11
JPWO2022168847A1 (ja) 2022-08-11
CN116964783A (zh) 2023-10-27
EP4290601A1 (en) 2023-12-13
US20240120493A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
KR20180017796A (ko) 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지
US20090191458A1 (en) Porous network negative electrodes for non-aqueous electrolyte secondary battery
KR20120027780A (ko) 리튬 이차 전지
KR102704586B1 (ko) 산소가 존재하는 다공성 탄소에 고정화된 셀레늄, 재충전식 전지에서 고정화된 셀레늄의 제조 방법 및 이의 용도
US12002948B2 (en) Immobilized selenium in a porous carbon with the presence of oxygen, a method of making, and uses of immobilized selenium in a rechargeable battery
KR20170131407A (ko) 비수 전해질 이차전지용 혼합 음극 재료의 제조 방법 및 이의 제조 방법에 의해 얻어지는 비수 전해질 이차전지용 혼합 음극 재료
JP2024063046A (ja) 酸素の存在下において多孔質炭素中で固定化されたセレン、充電式電池における固定化セレンの製造方法および使用
KR101659349B1 (ko) 리튬 설퍼 전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 설퍼 전지
WO2022168847A1 (ja) 非水電解質二次電池用正極添加剤、それを含む非水電解質二次電池用正極活物質組成物、非水電解質二次電池用正極およびこれを備える非水電解質二次電池
US11870059B2 (en) Immobilized selenium in a porous carbon with the presence of oxygen, a method of making, and uses of immobilized selenium in a rechargeable battery
JP2016184568A (ja) 二次電池用正極活物質及びその製造方法
JP2001126762A (ja) 非水系電解液二次電池
WO2021221129A1 (ja) 電気化学素子用正極添加剤、電気化学素子正極用組成物、電気化学素子正極およびこれを含む電気化学素子
US20230178748A1 (en) Additive for electrochemical element positive electrode, composition for electrochemical element positive electrode including said additive, and electrochemical element
WO2022255359A1 (ja) 非水系電解質二次電池の正極添加剤用の多孔質炭素、非水系電解質二次電池用正極添加剤、非水系電解質二次電池ならびに多孔質炭素の製造方法
WO2024000337A1 (zh) 电化学装置和电子装置
JP2000294280A (ja) 非水系電解液二次電池
WO2022039081A1 (ja) 電気化学素子用正極添加剤、電気化学素子正極用組成物、電気化学素子用正極およびこれを含む電気化学素子
JP4534527B2 (ja) リチウムイオン二次電池用非水系電解液及びリチウムイオン二次電池
CN116417617A (zh) 正极材料、正极极片、钠离子二次电池和用电装置
CN115417395A (zh) 一种锰铁铜磷酸三元锂材料及其制备方法
JP2015070137A (ja) 電極材料、電極及び蓄電デバイス
JP2017157347A (ja) 非水電解液蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579563

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18275454

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280013524.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022749719

Country of ref document: EP

Effective date: 20230905