WO2022164226A1 - C-글리코실전이효소 변이체 및 이의 용도 - Google Patents

C-글리코실전이효소 변이체 및 이의 용도 Download PDF

Info

Publication number
WO2022164226A1
WO2022164226A1 PCT/KR2022/001485 KR2022001485W WO2022164226A1 WO 2022164226 A1 WO2022164226 A1 WO 2022164226A1 KR 2022001485 W KR2022001485 W KR 2022001485W WO 2022164226 A1 WO2022164226 A1 WO 2022164226A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyketide
glycosyltransferase
recombinant microorganism
present
glycoside
Prior art date
Application number
PCT/KR2022/001485
Other languages
English (en)
French (fr)
Inventor
이상엽
양동수
장우대
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220011630A external-priority patent/KR20220109336A/ko
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to JP2023545885A priority Critical patent/JP2024505906A/ja
Priority to US18/263,127 priority patent/US20240102068A1/en
Priority to CN202280016203.2A priority patent/CN117425727A/zh
Priority to EP22746252.0A priority patent/EP4286515A1/en
Publication of WO2022164226A1 publication Critical patent/WO2022164226A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1229Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1288Transferases for other substituted phosphate groups (2.7.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/01Oxidoreductases acting on the CH-CH group of donors (1.3) with NAD+ or NADP+ as acceptor (1.3.1)
    • C12Y103/01085Crotonyl-CoA carboxylase/reductase (1.3.1.85)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01039[Acyl-carrier-protein] S-malonyltransferase (2.3.1.39)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01084Arginine--pyruvate transaminase (2.6.1.84)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/04Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • C12Y207/04006Nucleoside-diphosphate kinase (2.7.4.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07009UTP-glucose-1-phosphate uridylyltransferase (2.7.7.9), i.e. UDP-glucose-pyrophosphorylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/08Transferases for other substituted phosphate groups (2.7.8)
    • C12Y207/08007Holo-[acyl-carrier-protein] synthase (2.7.8.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/02Phosphotransferases (phosphomutases) (5.4.2)
    • C12Y504/02002Phosphoglucomutase (5.4.2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y604/00Ligases forming carbon-carbon bonds (6.4)
    • C12Y604/01Ligases forming carbon-carbon bonds (6.4.1)
    • C12Y604/01002Acetyl-CoA carboxylase (6.4.1.2)

Definitions

  • the present invention relates to novel C-glycosyltransferase mutants and uses thereof, and more particularly, amino acids located at the active site of C-glycosyltransferase are mutated so that the glycosylation reaction of substrate carbon is C-glycosyltransferase variants characterized in that they are fortified and to the use of said variants in the production of polyketide glycosides and phenylpropanoid glycosides.
  • Polyketide is a class of attractive natural products with various biological effects, and is widely applied in daily life to foods, cosmetics, drugs, and the like.
  • a group of enzymes that biosynthesize polyketide are collectively called polyketide biosynthetic enzymes (PKS), which are classified into three types, type I, II, and III, according to the biosynthetic mechanism.
  • PKS polyketide biosynthetic enzymes
  • macrolide-based polyketides are produced through type I PKS
  • aromatic polyketides are mainly produced through types II and III.
  • glycosides with significantly improved stability, resistance to hydrolysis, and bioavailability, etc. are preferred compared to non-glycosides through the generation of glycosidic bonds.
  • Particularly stable C-glycosidic bonds are chemically more stable than O-glycosidic bonds.
  • O-glycosylation of natural products in E. coli Choen, D.; Chen, R.; Xie, K.; Duan, Y.; Dai, J., Production of acetophenone C-glucosides using an engineered C -glycosyltransferase in Escherichia coli. Tetrahedron Lett. 2018, 59 (19), 1875-1878), C-glycosylation has rarely been reported.
  • O-glycosylation compared to C-glycosylation in E. coli as well as in the natural world.
  • Representative C-glycoside natural products include carminic acid, aloesin, and the like.
  • Carminic acid is a widely used red pigment and is used in food, cosmetics and pharmaceuticals. Derived directly from scaly insects such as Cochineal Dactylopius coccus, it is added to foods such as ketchup, strawberry milk and candies, and is added to cosmetics such as eye shadow, nail polish and lipstick.
  • cochineal is slow-growing, growing only in limited areas (it can only be grown in hot and dry areas), so it is difficult to increase production capacity, which is a limitation of commercial production.
  • the extraction process is also very inefficient, for example, it takes 70,000 female cochineals to produce 1 pound of carminic acid. In this situation, it was necessary to develop a more sustainable method for producing carminic acid.
  • Aloecin is extracted from Aloe vera, and is widely used as a whitening agent in the cosmetic industry because of its anti-tyrosinase effect and anti-melanin production effect.
  • aloesin since aloesin exhibits anti-inflammatory and anti-radical effects, it can be used as a main ingredient in various drugs or cosmetics.
  • the amount of aloesin extracted from the aloe plant is very small, and it is necessary to develop a more efficient and sustainable bio-based production method.
  • the demand for C-glycoside natural products is very high, while the supply amount is insufficient, but development of a method capable of effectively producing it is hardly made.
  • the enzyme for this is not well known, or efficient production from a microbial cell factory is impossible because of the low conversion efficiency of the enzyme.
  • Non-Patent Document 1 Chen, D.; Chen, R.; Xie, K.; Duan, Y.; Dai, J., Production of acetophenone C-glucosides using an engineered C-glycosyltransferase in Escherichia coli. Tetrahedron Lett. 2018, 59 (19), 1875-1878
  • the present invention provides a C-glycosyltransferase comprising a mutation in any one or more amino acids selected from the group consisting of F17, V93, V132, Y193, L164 and R322 in C-glycosyltransferase represented by SEQ ID NO: 1 Provides C-glycosyltransferase variants.
  • the present invention also provides a nucleic acid encoding the C-glycosyltransferase variant.
  • the present invention also provides a recombinant microorganism into which the nucleic acid is introduced.
  • the present invention also provides a method for preparing a polyketide glycoside and/or a phenylpropanoid glycoside comprising the steps of:
  • the present invention also provides a method for preparing a polyketide glycoside and/or a phenylpropanoid glycoside comprising the steps of:
  • Figure 2 shows the production of flavokermesic acid when different metabolic engineering strategies are introduced.
  • Type II polyketide biosynthetic enzyme (AntDEFBG from P. luminescens ) and ZhuIJ produced higher concentrations of FK than type III polyketide biosynthetic enzyme (AaPKS5 from Aloe arborescens ) and ZhuIJ.
  • Figure 4 shows the original enzymatic reaction of the candidate C-glycosyltransferase and each candidate enzyme for dcII production.
  • FIG. 6 shows the results of homology modeling and docking simulation for increasing KA and dcII production: (a) KA production capacity of variants selected through simulation for DnrF. (b) Protein structure simulation results for the most effective DnrF mutant (P217K). (c) dcII production capacity of variants selected through simulation for GtCGT. (d) Protein structure for the most efficacious GtCGT variant (V93Q/Y193F).
  • FIG. 7 shows the production of carminic acid from glucose: (a) Carminic acid production under different conditions. (b) Analysis of carminic acid by LC-MS/MS analysis. The upper data is the result of analyzing commercially available carminic acid, and the lower data is the analysis result of a sample containing carminic acid produced in E. coli from glucose. The graphs on the left are extracted ion chromatograms (EIC), and the graphs on the right are the MS/MS fragmentation pattern. (c) Fed-batch fermentation graph for the final strain. Red arrows indicate the time of initiation of gene expression through IPTG, and DCW indicates dry cell weight.
  • EIC ion chromatograms
  • FIG. 10 shows the test results of the additional GtCGT variant for increasing aloesin production. Additional variants were predicted by analyzing the structural model of the GtCGT variant (V93Q/Y193F).
  • FIG. 11 shows the test results of GtCGT additional variants for increasing aloesin production. Additional variants were predicted by performing docking simulation based on the GtCGT variant (V93Q/Y193F).
  • Figure 12 shows the production (expressed in % conversion) of several phenylpropanoid C-glucoside by the GtCGT variant (V93Q/Y193F).
  • the protein structure was predicted in order to discover C-glycosyltransferase mutants with significantly improved glycosidic bond generation ability compared to the wild-type enzyme, and a mutation candidate group with increased activity was derived through protein structure analysis and computer simulation, Among them, it was possible to select an effective variant capable of enhancing substrate binding and enhancing the glucosylation reaction.
  • the present invention relates to a C-glycosyltransferase variant having improved C-glycosylation ability.
  • the C-glycosyltransferase which is the template (or wild-type) of the mutant of the present invention, forms a C-glycosidic bond at the carbon of the substrate (eg, compound, protein, etc.) to induce C-glycosylation.
  • the substrate eg, compound, protein, etc.
  • the C-glycosyltransferase is represented by SEQ ID NO: 1, but is not limited thereto, and should be interpreted to include a protein in which an amino acid residue is conservatively substituted at a specific amino acid residue position.
  • C-glycosyl comprising substituting one or more amino acids with amino acids having similar biochemical properties that do not cause loss of biological or biochemical function of C-glycosyltransferase or a variant thereof. It means the modification of the actual transferase.
  • a "conservative amino acid substitution” is a substitution in which an amino acid residue is replaced with an amino acid residue having a similar side chain.
  • Classes of amino acid residues having similar side chains have been defined in the art and are well known. These classes include amino acids with basic side chains (eg, lysine, arginine, histidine), amino acids with acidic side chains (eg, aspartic acid, glutamic acid), amino acids with uncharged polar side chains (eg glycine) , asparagine, glutamine, serine, threonine, tyrosine, cysteine), amino acids with non-polar side chains (eg, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains amino acids with aromatic side chains (eg, tyrosine, phenylalanine, tryptophan, histidine) and amino acids with aromatic side chains (eg,
  • the C-glycosyltransferase which is the template of the variant of the present invention, has substantially the same functions and/or effects as well as SEQ ID NO: 1, and 40% or more, 50% or more, 60% or more, 70% or more , preferably 80% or more or 85% or more, more preferably 90% or more, 95% or more, most preferably 99% or more amino acid sequence homology with C-glycosyltransferase, recombinant C-glycosyltransferase and fragments thereof.
  • fragment refers to a partial fragment from which the parent protein is cleaved, and may be cleaved at the C'-terminus and/or the N'-terminus.
  • the fragment means a fragment having substantially the same function and/or effect as the deglycosylated C-glycosyltransferase of the present invention.
  • the fragment may include a fragment in which a signal sequence is cleaved from a full-length protein.
  • the C-glycosyltransferase may be derived from other strains or other organisms in addition to GtUF6CGT derived from Gentiana triflora represented by SEQ ID NO: 1.
  • IroB EnCGT
  • coli Nissle Zea mays -derived UGT708A6 (ZmCGT) dual C/O-glycosyltransferase; UGT708C2 (FeCGT) from Fagopyrum esculentum ; MiCGT from Mangifera indica ; OsCGT from Oryza sativa ; Glycine max derived UGT708D1 (GmCGT); GtUF6CGT1 (GtCGT) from Gentiana triflora; It may be Aloe vera -derived AvCGT, preferably Gentiana triflora-derived GtUF6CGT1 (GtCGT) or Zea mays -derived UGT708A6 (ZmCGT) dual C/O-glycosyltransferase, but is not limited thereto.
  • the C-glycosyltransferase when a mutant is generated by substituting a part of the amino acid of the wild-type C-glycosyltransferase, the C-glycosyltransferase exhibits a remarkably excellent ability to induce C-glycosylation, and the C-glycosyltransferase is synthesized by polyketide. It was confirmed that C-glycosylated polyketide can be prepared in a remarkable yield when introduced into a recombinant strain for use.
  • the C-glycosyltransferase variant is any selected from the group consisting of F17, V93, V132, Y193, L164 and R322 in C-glycosyltransferase represented by SEQ ID NO: 1 It may be characterized by including a mutation in one or more amino acids, and more preferably, it may be characterized by including a mutation in the amino acids of V93 and/or Y193.
  • the C-glycosyltransferase variant is any selected from the group consisting of F17, V93, V132, Y193, L164 and R322 in C-glycosyltransferase represented by SEQ ID NO: 1
  • it may be characterized by including a mutation in one or more other amino acids.
  • the C-glycosyltransferase variant is a C-glycosyltransferase represented by SEQ ID NO: 1, F17, V405, P107, L208, L164, P45, I305, L316, F401 , Y94, N57, Y187, C16, P319, F167, V132, N206, R406, Q386, V129, L125, L194, I95, S215, L184, Y158, L29, L27, F202, H159, S370, H365, V329, M301 , V315, V190, C366, W80, L58, Q210, F312, D61, I207, L363, P196, L106, V93, A394, W314, S155, P88, D99, Y284, E189, G49, H328, E399, T392, F387 , A44, P199, E46, R28, V285, I124, R419, L306,
  • the C-glycosyltransferase variant is the C-glycosyltransferase represented by SEQ ID NO: 1, I18, Q20, T50, I95, V290, I323, V22, L29, E46, V48, E51, A mutation may be further included in any one or more amino acids selected from the group consisting of A55, S86, D99, R103, C151, L184, L194, E332 and P385.
  • the C-glycosyltransferase variant is in the C-glycosyltransferase represented by SEQ ID NO: 1, from the group consisting of I323, T50, I18, I95, Q20, P385, L194, V48. It may further include a mutation in any one or more selected amino acids.
  • the term “variant” refers to a mutation of some amino acid residue in the amino acid sequence of a reference sequence (eg, a normal C-glycosyltransferase sequence, SEQ ID NO: 1), preferably substitution, deletion and/or insertion of an amino acid residue, More preferably, the concept includes not only substitution of amino acid residues, but also substitutions, deletions and/or insertions of such amino acid residues, along with deletion of some amino acid residues at the N-terminus or C-terminus. is used as In one embodiment of the present invention, the variant was prepared by substituting some amino acids of SEQ ID NO: 1, but is not limited thereto.
  • the 'mutation' may be characterized in that the substitution of amino acids.
  • the C-glycosyltransferase variant is any selected from the group consisting of F17G, V93Q, V132A, Y193F, L164G and R322D in C-glycosyltransferase represented by SEQ ID NO: 1 It may be characterized as comprising one or more amino acid substitutions, more preferably of V93Q and/or Y193F, most preferably of V93Q and Y193F.
  • the C-glycosyltransferase variant is any selected from the group consisting of F17G, V93Q, V132A, Y193F, L164G and R322D in C-glycosyltransferase represented by SEQ ID NO: 1
  • it may be characterized by further comprising substitution of one or more other amino acids.
  • the C-glycosyltransferase variant is C-glycosyltransferase represented by SEQ ID NO: 1
  • one or more other amino acid substitutions further comprising can be characterized as
  • the substitution of other amino acids that can be further included is a C-glycosyltransferase variant represented by SEQ ID NO: 1 in the C-glycosyltransferase (C-glycosyltransferase), F17G, V405M, P107G, L208G, L164G, P45G, I305A, L316G, F401H, Y94G, N57G, Y187A, C16G, P319G, F167G, V132A, N206E, R406G, Q386H, V129A, L125V, L194A, I95G, S215D, L184G, Y158T, L29A, L27A H159G, S370A, H365G, V329T, M301W, V315A, V190A, C366G, W80Y, L58E, Q210G, F312G, D61G, I207P, L363G, P196G, L
  • the substitution of other amino acids that can be further included is I18P, Q20M, T50N, T50Q, T50K, T50R, T50V, I95M, I95T, V290G, V290A in the C-glycosyltransferase represented by SEQ ID NO: 1 , I323S, I323A, I95L, V22A, L29A, E46G, V48G, E51C, A55S, S86V, D99G, R103V, C151G, L184G, L194A, E332P, characterized in that any one or more amino acid substitutions selected from the group consisting of I18A and P385A can be done with
  • the substitution of other amino acids that can be further included is, in the C-glycosyltransferase represented by SEQ ID NO: 1, I323S, T50R, T50V, I18P, I95T, Q20M, I323A, P385A, L194A and It may be characterized in that the substitution of any one or more amino acids selected from the group consisting of V48G.
  • amino acid mutation may be "amino acid substitution Xn (amino acid substitution Xn)", and in one aspect, it means an amino acid substitution occurring at the amino acid residue X at position n in the amino acid sequence shown in SEQ ID NO: 1, where n is a positive integer and X is an abbreviation for any amino acid residue.
  • amino acid substitution V93 means an amino acid substitution occurring at amino acid residue V corresponding to position 93 of the amino acid sequence shown in SEQ ID NO: 1.
  • a specific amino acid described with reference to SEQ ID NO: 1 Amino acid residues “corresponding” to residues can generally be obtained by alignment of amino acid sequences under optimized conditions.
  • the sequence alignment may be performed by a means understood by those skilled in the art using, for example, BLAST, BLAST-2, ALIGN, NEEDLE or Megalign (DNASTAR) software.
  • BLAST BLAST-2
  • ALIGN ALIGN
  • NEEDLE Megalign
  • the amino acid substitutions of the present invention may be non-conserved substitutions.
  • Such non-conservative substitutions include, for example, replacing an amino acid residue having a particular side chain size or a particular property (e.g., hydrophilicity) with an amino acid residue having a different side chain size or a different property (e.g., hydrophobicity); It may involve altering amino acid residues of the target protein or polypeptide in a non-conservative manner.
  • amino acid substitutions may also be conservative substitutions.
  • conserved substitutions are, for example, replacing an amino acid residue having a particular side chain size or particular characteristic (eg, hydrophilicity) with an amino acid residue having the same or similar side chain size or the same or similar characteristic (eg, still hydrophilicity). altering the amino acid residues of the target protein or polypeptide in a conserved manner.
  • conserved substitutions generally do not significantly affect the structure or function of the produced protein.
  • an amino acid sequence variant, a fragment thereof, or a variant thereof in which one or more amino acids are substituted for a mutation of the fusion protein may include a conserved amino acid substitution that does not significantly change the structure or function of the protein.
  • a group of amino acids with non-polar side chains alanine, valine, leucine, isoleucine, proline, phenylalanine, tryptophan and methionine.
  • a group of uncharged amino acids with polar side chains glycine, serine, threonine, cysteine, tyrosine, asparagine and glutamine.
  • a group of negatively charged amino acids with polar side chains aspartic acid and glutamic acid.
  • a group of positively charged basic amino acids lysine, arginine and histidine.
  • Proteins, polypeptides and/or amino acid sequences encompassed by the present invention may also be understood to include at least the following ranges: variants or homologs having the same or similar function as the protein or polypeptide.
  • the variant may be a protein or polypeptide produced by substitution, deletion or addition of one or more amino acids compared to the amino acid sequence of wild-type C-glycosyltransferase.
  • the functional variant may contain substitutions, deletions and/or insertions of at least one amino acid, for example 1-30, 1-20 or 1-10, alternatively, for example 1, 2, 3, 4 , or a protein or polypeptide having an amino acid change by substitution, deletion and/or insertion of 5 amino acids.
  • the functional variant may substantially retain the biological properties of the protein or polypeptide prior to change (eg, substitution, deletion or addition).
  • the functional variant may retain at least 60%, 70%, 80%, 90% or 100% of the biological activity of the protein or polypeptide prior to alteration.
  • the homologue is at least about 80% (eg, at least about 85%, about 90%, about 91%, about 92%, about 93%) with the amino acid sequence of the protein and/or the polypeptide. %, about 94%, about 95%, about 96%, about 97%, about 98%, about 99% or more) sequence homology.
  • the homology generally refers to similarity, analogousness or association between two or more sequences.
  • Perfect of sequence homology refers to identical nucleic acid bases (eg, A, T, C, G, I) or identical amino acid residues (eg, Ala, Pro, Ser, Thr, Gly, Val, Leu, Ile, Phe, Tyr, Trp, Lys, Arg, His, Asp, Glu, Asn, Gln, Cys and Met) to be calculated by comparing two aligned sequences in a comparison window that determines the number of positions present.
  • the number of matching positions is divided by the total number of positions to give the number of matching positions in the comparison window (ie, window size), and the result is multiplied by 100 to give a percentage of sequence homology.
  • Alignment to determine percent sequence homology can be performed in a variety of ways known in the art using publicly available computer software such as, for example, BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software.
  • BLAST BLAST-2
  • ALIGN ALIGN
  • Megalign DNASTAR
  • One of ordinary skill in the art can determine appropriate parameters for sequence alignment, including any algorithms necessary to achieve maximal alignment within the full-length sequence being compared or within a region of the target sequence.
  • the homology can also be determined by the following methods: FASTA and BLAST.
  • the FASTA algorithm is described, for example, in W. R. Pearson and D. J.
  • the C-glycosyltransferase mutant may be characterized in that it enhances the glycosylation reaction of the substrate carbon compared to the wild type.
  • the mutated amino acid is located at the active site of the enzyme, and the substrate binding force of the mutant through mutation in the amino acid is 10% or more, preferably 20% or more, more preferably than that of the wild type. It may be characterized by an improvement of 50% or more.
  • the C-glycosyltransferase mutant of the present invention when used, various polyketide-based compounds (flavokermesic acid, kermesic acid, aloeson (aloesone)) or a phenylpropanoid compound (naringenin, apigenin, or luteolin) as a substrate, regardless of the type of substrate, significantly higher C-glycosylation compared to the wild type It was confirmed that it can be shown. Therefore, the C-glycosyltransferase mutant of the present invention can be used for C-glycosylation of various compounds and proteins as substrates. For example, it may be characterized in that it is used for C-glycosylation of the polyketide-based compound or the phenylpropanoid-based compound, but is not limited thereto.
  • polyketide or phenylpropanoid-based compound can be used without limitation, and preferably, as confirmed in one embodiment, flavokermesic acid, kermesic acid acid), aloesone, naringenin, apigenin, or luteolin, but is not limited thereto.
  • the substrate is preferably flavokermesic acid or kermesic acid, and the variant is one that glycosylates carbon 2 of the flavokermesic acid. It may be characterized, but is not limited thereto.
  • the substrate is preferably aloesone, and the variant may be characterized by glycosylation of carbon 8 of the aloesone, but is not limited thereto.
  • the present invention relates to a nucleic acid encoding the C-glycosyltransferase variant.
  • the present invention relates to a vector comprising said nucleic acid.
  • the present invention relates to a recombinant microorganism into which the nucleic acid is introduced.
  • the recombinant microorganism may be characterized in that the nucleic acid is introduced into the host microorganism in the form of a plasmid or is inserted into the genome.
  • the recombinant microorganism may be characterized for producing polyketide glycosides and/or phenylpropanoid glycosides, but is not limited thereto.
  • the recombinant microorganism may be characterized in that it has the ability to produce polyketide and/or phenylpropanoid as a substrate of the C-glycosyltransferase of the present invention, the polyketide and / or phenylpropanoid may be glycosylated by C-glycosyltransferase expressed by the recombinant microorganism of the present invention to be converted into polyketide glycosides and / or phenylpropanoid glycosides.
  • the polyketide is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • actinorhodin actinorhodin, doxorubicin, daunorubicin, oxytetracycline, SEK4, SEK4b, SEK34, SEK15, SEK26, FK506, DMAC, aklavinone, aklavinone Composed of aklanonic acid, epsilon-rhodomycinone, doxycycline, anthramycin, tetracenomycin, carminic acid and frenolicin a type II polyketide selected from the group; and
  • aloesin aloenin, barbaloin, 5,7-dihydroxy-2-methylchromone and aloesone It may be characterized as selected from the group consisting of; type III polyketide selected from the group consisting of, but is not limited thereto.
  • the phenylpropanoid is N-(2-aminoethyl)-2-aminoethylpropanoid
  • actinomycin actinomycin, bacitracin, daptomycin, vancomycin, teixobactin, tyrocidine, gramicidin, z wittermicin A, bleomycin, ciclosporin, pyoverdine, enterobactin, myxochelin A, indigoidine, cyanophycin (cyanophycin), etc.
  • non-ribosomal peptide pinocembrin, dihydrokaempferol, eriodictyol, dihydroquercetin, coriferyl alcohol (coniferyl alcohol), silybin ( silybin), isosilybin, silychristin, silinide, 2,3-dehydrosilybin, silydianin, daidzein , genistein, apigenin, luteolin, kaempferol, quercetin, catechin, pelargonidin, cyanidin, drawl Lechin (afzelechin), myricetin, fisetin, galangin, hesperetin, tangeritin, delphinidin, epicatechin, chrysin ( chrysin), resveratrol (resveratrol) and may be characterized as selected from the group consisting of naringenin (naringenin), but is not limited thereto.
  • the host microorganism may be characterized in that it has the ability to produce a polyketide glycoside and/or a precursor of a phenylpropanoid glycoside to be produced.
  • the precursor of the polyketide glycoside and/or phenylpropanoid glycoside may be polyketide and/or phenylpropanoid, preferably unglycosylated polyketide and/or phenylpropanoid It can be a noid.
  • the host microorganism naturally produces a precursor of the polyketide glycoside and/or phenylpropanoid glycoside, or produces a polyketide glycoside and/or a phenylpropanoid glycoside precursor through genetic manipulation. It may be characterized in that it is a recombinant microorganism prepared to do so.
  • the recombinant microorganism may be characterized in that the production of nucleotides, preferably NTP-sugar, is enhanced in order to improve the glycosyltransferase conversion rate by the introduced C-glycosyltransferase. .
  • the recombinant microorganism of the present invention is UTP-glucose-1-phosphate uridyltransferase (UTP-glucose-1-phosphate uridylyltransferase), phosphoglucomutase (phosphoglucomutase) and / or nucleoside-diphosphate It may be further characterized in that the expression of a gene encoding a kinase (nucleoside-diphosphate kinase) is enhanced, but is not limited thereto.
  • the UTP-glucose-1-phosphate uridyltransferase, phosphoglucomutase and / or nucleoside-diphosphate kinase derived from E. coli may be characterized in that the expression of the gene involved in the production of NTP-Sugar is enhanced depending on the host strain.
  • naringenin apigenin or luteolin
  • the precursors of the various polyketide glycosides and/or phenylpropanoid glycosides described above are clearly known in the art. Therefore, it can be easily selected from it.
  • nucleic acid generally refers to an isolated form of nucleotides, deoxyribonucleotides or ribonucleotides isolated from the natural environment or artificially synthesized, or analogs thereof of any length.
  • Nucleic acids of the invention can be isolated. For example, it can be produced or synthesized in the following ways: (i) in vitro amplification such as polymerase chain reaction (PCR) amplification, (ii) clonal recombination, (iii) purification, e.g. restriction enzyme fractionation by digestion and gel electrophoresis, or (iv) synthesis, eg chemical synthesis.
  • PCR polymerase chain reaction
  • purification e.g. restriction enzyme fractionation by digestion and gel electrophoresis
  • synthesis eg chemical synthesis.
  • the isolated nucleic acid is a nucleic acid molecule produced by recombinant DNA technology.
  • the nucleic acid encoding the variant can be prepared by various methods known in the art. Such methods include, but are not limited to, overlap extension PCR using restriction fragment operations or synthetic oligonucleotides. Preparation methods and principles are described in Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989; and Auube et al. Current Protocols in Molecular Biology, Greene Publishing and Wiley-Interscience, New York NY, 1993.
  • the term "plasmid” may be used interchangeably with a vector, and in general, an inserted nucleic acid is transferred to a host cell (including a host microorganism), and the host cell or microorganism Refers to a nucleic acid molecule capable of self-replication.
  • the vector may include a vector mainly used for inserting DNA or RNA into a cell, a vector mainly used for DNA or RNA replication, and a vector mainly used for transcriptional and/or translational expression of DNA or RNA.
  • the vector also includes vectors with multiple functions.
  • the vector may be a polynucleotide capable of being transcribed and translated into a polypeptide when introduced into a suitable host cell.
  • the vector can produce the desired expression product.
  • the vector may include one or more of the nucleic acids.
  • the vector may contain all nucleic acid molecules necessary to encode the variant. In this case, only one vector is required to obtain the fusion protein of the present application.
  • the vector may comprise a nucleic acid molecule encoding a portion of the variant.
  • the vector may comprise a nucleic acid molecule for regulating gene expression, for example in the recombinant microorganism. At this time, in order to obtain the recombinant microorganism of the present invention, two or more different vectors may be required.
  • the vector may contain other genes such as marker genes that select the vector under appropriate host cells and appropriate conditions.
  • the vector may also contain expression control elements that allow the coding region to be properly expressed in an appropriate host.
  • control elements are well known to those skilled in the art.
  • they may include promoters, ribosome binding sites, enhancers and other control elements that regulate gene transcription or mRNA translation.
  • the expression control sequence is a regulatory element.
  • the specific structure of the expression control sequence may vary depending on the function of the species or cell type, but generally 5' non-transcriptional sequences involved in transcription and translation initiation, such as TATA boxes, capped sequences, CAAT sequences, etc. and 5' and 3' non-translated sequences.
  • a 5' non-transcriptional expression control sequence may comprise a promoter region, and the promoter region may comprise a promoter sequence for transcriptional control of a functionally linked nucleic acid.
  • the vector is composed of pET-30a-c(+), pET-22b(+), pCDFDuet-1, pACYCDuet-1, pRSFDuet-1, pBBR1MCS, pSC101, pTac15K, pTrc99A, pCOLADuet-1 and pBR322. It may be selected from the group, but is not limited thereto, and a person skilled in the art will be able to appropriately select and use vectors commonly used in the art in addition to the above-described vectors.
  • the terms "host cell”, “cell”, “host microorganism” and “host” may be used interchangeably, and generally, a plasmid or vector comprising or capable of containing a nucleic acid of the present invention or a plasmid or vector of the present invention Refers to an individual cell, cell line, microorganism or cell culture capable of expressing a variant or a protein or polypeptide whose expression is regulated.
  • the host cell may comprise progeny of a single host cell. Due to natural, accidental or deliberate mutation, the progeny cell and the original parent cell may not necessarily be completely identical in morphology or genome as long as they are capable of expressing the target protein or polypeptide of the present invention.
  • the host cell can be obtained by transfecting the cells in vitro with the vector of the present invention.
  • the host cell is preferably a microorganism, for example, E. coli , Rhizobium , Bifidobacterium , Candida , Erwinia , Enterobacter ( Enterobacter , Pasteurella , Mannheimia , Actinobacillus , Aggregatibacter , Xanthomonas , Vibrio , Azotobacter , Acinetobacter , Ralstonia , Agrobacterium , Rhodobacter , Zymomonas , Bacillus , Staphylococcus , Lactococcus Lactococcus ), Streptococcus ), Lactobacillus , Clostridium ), Corynebacterium ), Streptomyces ), Bifidobacterium ( Bifidobacterium ), Cyanobacterium ) and Cyclobacterium ( Cyclobacter
  • the present invention relates to a recombinant microorganism for the production of polyketide glycosides or phenylpropanoid glycosides into which a nucleic acid encoding a C-glycosyltransferase variant of the present invention is introduced.
  • the polyketide glycoside may be a type I polyketide glycoside, a type II polyketide glycoside, or a type III polyketide glycoside.
  • the polyketide is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • actinorhodin actinorhodin, doxorubicin, daunorubicin, oxytetracycline, SEK4, SEK4b, SEK34, SEK15, SEK26, FK506, DMAC, aklavinone, aklavinone Composed of aklanonic acid, epsilon-rhodomycinone, doxycycline, anthramycin, tetracenomycin, carminic acid and frenolicin a type II polyketide selected from the group; and
  • aloesin aloenin, barbaloin, 5,7-dihydroxy-2-methylchromone and aloesone It may be characterized as selected from the group consisting of; type III polyketide selected from the group consisting of, but is not limited thereto.
  • the recombinant microorganism for the production of the polyketide glycoside or phenylpropanoid glycoside may be characterized in that it produces a precursor of each glycoside.
  • the recombinant microorganism may be characterized in that it produces polyketide or phenylpropanoid, which is a precursor of each glycoside.
  • the recombinant microorganism for production of the polyketide glycoside or phenylpropanoid glycoside may be characterized in that it produces polyketide polyketide or phenylpropanoid through additional gene introduction.
  • Recombinant microorganisms having the ability to synthesize polyketide through gene introduction are, for example, Yang, D., Kim, W.J., Yoo, S.M., Choi, J.H., Ha, S.H., Lee, M.H., and Lee, S. Y. "Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria", Proc. Natl. Acad. Sci.
  • the recombinant microorganism for the production of the polyketide glycoside or phenylpropanoid glycoside may be additionally characterized in that a polyketide synthase or a phenylpropanoid synthetase is introduced.
  • the polyketide synthetase may be, for example, a type I polyketide synthetase, a type II polyketide synthetase, or a type III polyketide synthetase, but is not limited thereto.
  • the recombinant microorganism for the production of the polyketide glycoside or phenylpropanoid glycoside does not produce a precursor of each glycoside
  • the polyketide glycoside or phenylpropane precursor is added to the culture medium.
  • the recombinant microorganism may be characterized in that it is for production of type I polyketide glycosides.
  • the recombinant microorganism for production of the type I polyketide glycoside may be characterized in that it produces a precursor of the type I polyketide glycoside.
  • the precursor of the type I polyketide glycoside may be rapamycin, lovastatin, erythromycin, rifamycin, and the like, but is not limited thereto.
  • the recombinant microorganism for production of the type I polyketide glycoside may be characterized in that it produces a precursor of the type I polyketide glycoside through additional gene introduction.
  • the recombinant microorganism for the production of the type I polyketide glycoside is, for example,
  • the type I polyketide biosynthetic enzyme can be easily selected from various protein and gene databases.
  • a nucleic acid encoding a C-glycosyltransferase variant of the present invention and a type I polyketide biosynthesis enzyme gene; the host microorganism into which it is introduced may be characterized as having an ability to produce coenzyme A, preferably malonyl-CoA or acetyl-CoA.
  • the recombinant microorganism may be characterized in that the production of coenzyme A is enhanced.
  • the recombinant microorganism may be further characterized in that (ii) expression of the pabA gene is suppressed or attenuated, but is not limited thereto, and a large amount of various coenzyme A known in the art.
  • the production strategy can be used to prepare recombinant microorganisms with enhanced production of coenzyme A.
  • the recombinant microorganism may be characterized in that the production of nucleotides, preferably NTP-sugar, is enhanced in order to improve the glycosyltransferase conversion rate by the introduced C-glycosyltransferase. .
  • the recombinant microorganism is (iii) UTP-glucose-1-phosphate uridyltransferase (UTP-glucose-1-phosphate uridylyltransferase), phosphoglucomutase (phosphoglucomutase) and / or Nucleoside-diphosphate kinase (nucleoside-diphosphate kinase) may be further characterized in that the expression of the encoding gene is enhanced, but is not limited thereto.
  • the recombinant microorganism may be characterized in that it is for production of type II polyketide glycosides.
  • the type II polyketide glycoside may be characterized as carminic acid, but is not limited thereto.
  • the recombinant microorganism for production of the type II polyketide glycoside may be characterized in that it produces a precursor of the type II polyketide glycoside.
  • the precursor of the type II polyketide glycoside may be, but is not limited to, flavochermic acid or kermic acid.
  • the recombinant microorganism for production of type II polyketide glycoside may be characterized in that it produces a precursor of type II polyketide glycoside through additional gene introduction.
  • the recombinant microorganism for production of the type II polyketide glycoside may be characterized in that (i) a gene encoding a type II polyketide biosynthesis enzyme is additionally introduced.
  • any one or more genes selected from the group consisting of may be additionally introduced, preferably all of the genes It may be characterized in that it is introduced.
  • the type II polyketide which is a substrate of C-glycosyltransferase of the present invention, is obtained from, for example, coenzyme A (Coenzyme A, CoA) such as malonyl-CoA or acetyl-CoA. It can be converted into type II polyketide, which is a substrate of the C-glycosyltransferase of the present invention, by the enzyme encoded by the introduced gene.
  • a nucleic acid encoding the C-glycosyltransferase variant; and a type II polyketide biosynthetic enzyme gene or a gene of the above (i) to (v); can do.
  • coenzyme A is accumulated through suppression or attenuation of the expression of the pabA gene, and as a result, the synthesis of polyketide, a precursor of the C-glycosyltransferase of the present invention, is improved.
  • the recombinant microorganism may be characterized in that the production of coenzyme A is enhanced.
  • the recombinant microorganism may be further characterized in that (ii) expression of the pabA gene is suppressed or attenuated, but is not limited thereto, and a large amount of various coenzyme A known in the art.
  • the production strategy can be used to prepare recombinant microorganisms with enhanced production of coenzyme A.
  • the recombinant microorganism may be characterized in that the production of nucleotides, preferably NTP-sugar, is enhanced in order to improve the glycosyltransferase conversion rate by the introduced C-glycosyltransferase. .
  • the recombinant microorganism is (iii) UTP-glucose-1-phosphate uridyltransferase (UTP-glucose-1-phosphate uridylyltransferase), phosphoglucomutase (phosphoglucomutase) and / or Nucleoside-diphosphate kinase (nucleoside-diphosphate kinase) may be further characterized in that the expression of the encoding gene is enhanced, but is not limited thereto.
  • the UTP-glucose-1-phosphate uridyltransferase, phosphoglucomutase and / or nucleoside-diphosphate kinase derived from E. coli may be characterized in that the expression of the gene involved in the production of NTP-Sugar is enhanced depending on the host strain.
  • the gene encoding the type II polyketide biosynthesis enzyme is antD (ketosynthase), antE (chain-length factor), antF (ACP), antB (phosphopantetheinyl transferase) and antG (malonyl-CoA:ACP malonyltransferase).
  • antD ketosynthase
  • antE chain-length factor
  • antF ACP
  • antB phosphopantetheinyl transferase
  • antG malonyl-CoA:ACP malonyltransferase
  • the aclavineon 12-hydroxylase may be characterized in that the 217th amino acid in the amino acid sequence shown in SEQ ID NO: 2 includes a mutation (P217K) from proline to lysine, but is not limited thereto does not
  • the type II polyketide biosynthetic enzyme is derived from P. luminescens ;
  • the 4'-phosphopantheinyl transferase is derived from Bacillus subtilis or P. luminescens ;
  • the cyclase is Streptomyces sp. origin
  • the acetyl-CoA carboxylase is derived from Corynebacterium glutamicum ; and/or
  • the aclavineon 12-hydroxylase is derived from Streptomyces peucetius ; it may be characterized in that it is, but is not limited thereto.
  • the recombinant microorganism may be characterized in that it is for production of type III polyketide glycosides.
  • the type III polyketide glycoside may be characterized as aloesin, but is not limited thereto.
  • the recombinant microorganism for production of the type III polyketide glycoside may be characterized in that it produces a precursor of the type III polyketide glycoside.
  • the precursor of type III polyketide glycoside may be characterized as aloeson, but is not limited thereto.
  • the recombinant microorganism for production of type III polyketide glycoside may be characterized in that it produces a precursor of type III polyketide glycoside through additional gene introduction.
  • the recombinant microorganism for the production of type III polyketide glycoside is, for example,
  • the type III polyketide biosynthetic enzyme may be an aloesone synthase, but is not limited thereto.
  • the aloesone synthetase may be characterized in that it is derived from R. palmatum , but is not limited thereto.
  • the type III polyketide (eg, aloeson), which is a substrate of the C-glycosyltransferase of the present invention, is, for example, a coenzyme A such as malonyl-CoA or acetyl-CoA ( Coenzyme A, CoA) can be converted into type III polyketide, which is a substrate of the C-glycosyltransferase of the present invention by the enzyme encoded by the introduced gene.
  • a coenzyme A such as malonyl-CoA or acetyl-CoA
  • a nucleic acid encoding a C-glycosyltransferase variant; and a type III polyketide biosynthesis enzyme gene; the host microorganism into which it is introduced may be characterized as having an ability to produce coenzyme A, preferably malonyl-CoA or acetyl-CoA.
  • the recombinant microorganism may be characterized in that the production of coenzyme A is enhanced.
  • the recombinant microorganism may be further characterized in that (ii) expression of the pabA gene is suppressed or attenuated, but is not limited thereto, and a large amount of various coenzyme A known in the art.
  • the production strategy can be used to prepare recombinant microorganisms with enhanced production of coenzyme A.
  • the recombinant microorganism may be characterized in that the production of nucleotides, preferably NTP-sugar, is enhanced in order to improve the glycosyltransferase conversion rate by the introduced C-glycosyltransferase. .
  • the recombinant microorganism is (iii) UTP-glucose-1-phosphate uridyltransferase (UTP-glucose-1-phosphate uridylyltransferase), phosphoglucomutase (phosphoglucomutase) and / or Nucleoside-diphosphate kinase (nucleoside-diphosphate kinase) may be further characterized in that the expression of the encoding gene is enhanced, but is not limited thereto.
  • the UTP-glucose-1-phosphate uridyltransferase, phosphoglucomutase and / or nucleoside-diphosphate kinase derived from E. coli may be characterized in that the expression of the gene involved in the production of NTP-Sugar is enhanced depending on the host strain.
  • the recombinant microorganism may be characterized in that it is for the production of phenylpropanoid glycosides.
  • the phenylpropanoid glycoside may be characterized as vitexin, naringenin-6-C-glucoside or isoorientin, but is not limited thereto.
  • the recombinant microorganism for the production of the phenylpropanoid glycoside may be characterized in that it produces a precursor of the phenylpropanoid glycoside.
  • the precursor of the phenylpropanoid glycoside may be characterized as apigenin, naringenin, or luteolin, but is not limited thereto.
  • the recombinant microorganism for production of the phenylpropanoid glycoside may be characterized in that it produces a precursor of the phenylpropanoid glycoside through additional gene introduction.
  • the recombinant microorganism for the production of phenylpropanoid glycoside is, for example,
  • Phenylpropanoid is produced by the enzyme encoded by the gene introduced from coenzyme A (Coenzyme A, CoA) such as malonyl-CoA or aromatic-CoA (eg, coumaroyl-CoA) C- of the present invention It can be converted to phenylpropanoid, a substrate of glycosyltransferase.
  • coenzyme A Coenzyme A, CoA
  • the host microorganism into which the phenylpropanoid biosynthesis enzyme gene is introduced may be characterized in that it has the ability to produce coenzyme A, preferably malonyl-CoA or coumaroyl-CoA.
  • the recombinant microorganism may be characterized in that the production of coenzyme A is enhanced.
  • the recombinant microorganism may be further characterized in that (ii) expression of the pabA gene is suppressed or attenuated, but is not limited thereto, and a large amount of various coenzyme A known in the art.
  • the production strategy can be used to prepare recombinant microorganisms with enhanced production of coenzyme A.
  • the recombinant microorganism may be characterized in that the production of nucleotides, preferably NTP-sugar, is enhanced in order to improve the glycosyltransferase conversion rate by the introduced C-glycosyltransferase. .
  • the recombinant microorganism is (iii) UTP-glucose-1-phosphate uridyltransferase (UTP-glucose-1-phosphate uridylyltransferase), phosphoglucomutase (phosphoglucomutase) and / or Nucleoside-diphosphate kinase (nucleoside-diphosphate kinase) may be further characterized in that the expression of the encoding gene is enhanced, but is not limited thereto.
  • the UTP-glucose-1-phosphate uridyltransferase, phosphoglucomutase and / or nucleoside-diphosphate kinase derived from E. coli may be characterized in that the expression of the gene involved in the production of NTP-Sugar is enhanced depending on the host strain.
  • the recombinant microorganism of the present invention is a recombinant microorganism into which a nucleic acid encoding a C-glycosyltransferase of the present invention is introduced,
  • UTP-glucose-1-phosphate uridyltransferase UTP-glucose-1-phosphate uridylyltransferase
  • phosphoglucomutase and / or nucleoside-diphosphate kinase nucleoside-diphosphate kinase
  • Attenuated expression of the pabA gene may be characterized as a recombinant microorganism for the production of carminic acid, in which any one or more genes selected from the group consisting of or in which gene expression is regulated.
  • the nucleic acid encoding the C-glycosyltransferase of the present invention is introduced in the recombinant microorganism,
  • the nucleic acid encoding the C-glycosyltransferase of the present invention is introduced in the recombinant microorganism,
  • UTP-glucose-1-phosphate uridyl transferase UTP-glucose-1-phosphate uridylyltransferase
  • phosphoglucomutase phosphoglucomutase
  • nucleoside-diphosphate kinase nucleoside-diphosphate kinase encoding It can be characterized as a recombinant microorganism for the production of polyketide glycosides or phenylpropanoid glycosides, in which the expression of genes is enhanced.
  • the introduction of a gene means that a foreign gene is introduced into the host microorganism through a means such as a vector, or is directly inserted into the genome of the host microorganism.
  • enhancing the expression of a gene means that, when the peptide or protein produced by the gene is not present in the host microorganism, it is artificially expressed in the host microorganism to have the activity or function of the peptide or protein, and the gene is If it is already in the host microorganism, replacing the endogenous promoter that controls the expression of the gene with a strong constitutive promoter, or increasing the copy number of the gene, such as introducing the gene from the outside using a vector having strong replication ability It means to induce overexpression of the gene by using a series of methods or to modify so that the activity or function of a peptide or protein produced by the gene is enhanced compared to the intrinsic activity or function.
  • Attenuation of gene expression means mutation, substitution, or deletion of some or all bases of the gene, or introduction of an inhibitor (eg, sRNA, etc.) capable of suppressing the gene expression so that the gene is not expressed.
  • an inhibitor eg, sRNA, etc.
  • intrinsic activity or function refers to an activity or function possessed by an enzyme, peptide, protein, etc. that the original microorganism has in an unmodified state.
  • modified to enhance intrinsic activity or function means that a gene exhibiting activity or function is introduced or the copy number of the gene is increased (eg, expression using a plasmid into which the gene is introduced), the gene
  • the activity or function of the microorganism after the manipulation is new compared to the activity of the microorganism before the manipulation, such as deletion of the expression repressor regulatory factor or modification of the expression control sequence, for example, the use of an improved promoter. It means a state that occurs or is increased.
  • modified to be weakened compared to intrinsic activity or function means deletion of a gene exhibiting activity or function or inactivation of a gene (eg, substitution with a mutant gene), attenuation of gene expression (eg, , substitution with a weak promoter, introduction of siRNA, gRNA, sRNA, etc., substitution of the start codon from ATG to GTG, etc.), inhibition of the function of the peptide expressed by the gene (e.g., a non-competitive repressor or a competitive repressor) It refers to a state in which the function of the microorganism after the operation is reduced or lost compared to the function of the microorganism before the operation such as addition) is performed.
  • replacement of a gene or promoter means removing a conventional gene or promoter and introducing a different gene (eg, a mutant gene, etc.) or a promoter having a different strength.
  • the conventional gene or promoter is removed It is a concept encompassing not only deleting the gene or promoter, but also suppressing or reducing its function.
  • overexpression refers to expression at a level higher than the level at which the corresponding gene is expressed in cells under normal conditions. This is a concept that includes increasing the expression level through a method of transforming cells.
  • vector refers to a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing the DNA in a suitable host.
  • a vector can be a plasmid, a phage particle or simply a potential genomic insert. Once transformed into an appropriate host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Since a plasmid is currently the most commonly used form of vector, “plasmid” and “vector” are sometimes used interchangeably in the context of the present invention. For the purposes of the present invention, it is preferred to use a plasmid vector.
  • Typical plasmid vectors that can be used for this purpose include (a) a replication initiation point that allows efficient replication to include several to hundreds of plasmid vectors per host cell, and (b) a host cell transformed with the plasmid vector is selected. It has a structure including an antibiotic resistance gene and (c) a restriction enzyme cleavage site into which a foreign DNA fragment can be inserted. Even if an appropriate restriction enzyme cleavage site does not exist, the vector and foreign DNA can be easily ligated by using a synthetic oligonucleotide adapter or linker according to a conventional method. After ligation, the vector must be transformed into an appropriate host cell. Transformation can be easily accomplished using the calcium chloride method or electroporation (Neumann, et al., EMBO J., 1:841, 1982) and the like.
  • the promoter of the vector may be constitutive or inducible, and may be further modified for the effect of the present invention.
  • the expression vector contains a selectable marker for selecting a host cell containing the vector, and in the case of a replicable expression vector, an origin of replication (Ori).
  • Vectors can be self-replicating or integrated into host genomic DNA.
  • the gene transferred by being inserted into the vector is irreversibly fused into the genome of the host cell so that the gene expression in the cell is stably maintained for a long period of time.
  • a base sequence is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. It can be a gene and regulatory sequence(s) linked in such a way as to enable gene expression when an appropriate molecule (eg, a transcriptional activation protein) is bound to the regulatory sequence(s).
  • an appropriate molecule eg, a transcriptional activation protein
  • DNA for a pre-sequence or secretion leader is operably linked to DNA for a polypeptide when expressed as a preprotein that participates in secretion of the polypeptide;
  • a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or the ribosome binding site is operably linked to a coding sequence if it affects transcription of the sequence; or the ribosome binding site is operably linked to a coding sequence when positioned to facilitate translation.
  • "operably linked” means that the linked DNA sequences are in contact and, in the case of a secretory leader, in contact and in reading frame. However, the enhancer does not need to be in contact. Linking of these sequences is accomplished by ligation (ligation) at convenient restriction enzyme sites. When such a site does not exist, a synthetic oligonucleotide adapter or linker according to a conventional method is used.
  • the gene in order to increase the expression level of a transgene in a host cell, the gene must be operably linked to transcriptional and/or translational expression control sequences to function in the selected expression host.
  • the expression control sequence and/or the gene is included in a single recombinant vector that includes both a bacterial selection marker and a replication origin. If the host cell is a eukaryotic cell, the recombinant vector must further contain an expression marker useful in the eukaryotic expression host.
  • a host cell transformed with the above-described recombinant vector constitutes another aspect of the present invention.
  • transformation refers to the introduction of DNA into a host such that the DNA becomes capable of replication either as an extrachromosomal factor or by chromosomal integrity.
  • the present invention relates to a method for preparing a polyketide glycoside or phenylpropanoid glycoside comprising the steps of:
  • the step (a) is characterized by culturing a recombinant microorganism into which a nucleic acid encoding a C-glycosyltransferase variant is introduced by adding a precursor of a polyketide glycoside or a phenylpropanoid glycoside.
  • the recombinant microorganism into which the nucleic acid encoding the C-glycosyltransferase variant of step (a) is introduced is C- It may be characterized in that a nucleic acid encoding a glycosyltransferase variant is introduced, and the host microorganism may be a recombinant microorganism in which the introduction of a foreign gene or gene expression is regulated.
  • the recombinant microorganism into which the nucleic acid encoding the C-glycosyltransferase variant is introduced may have the same characteristics as those described in the recombinant microorganism for producing polyketide glycosides and/or phenylpropanoid glycosides of the present invention. have.
  • the step (a) may be characterized in that the microorganism is cultured by adding ascorbic acid to the culture medium during culturing, in this case, preferably 0.1 to 1.5 g/L, more preferably It may be characterized by culturing microorganisms by adding 0.2 to 1.0 g/L of ascorbic acid, but is not limited thereto.
  • the manufacturing method of the present invention may have features equivalent to those described in the above other aspects within the range understood by those of ordinary skill in the art.
  • the present invention provides a method for preparing a polyketide glycoside and/or a phenylpropanoid glycoside comprising the steps of:
  • the gene name derived from a specific microorganism is described for the gene introduced in the present invention, the protection scope of the present invention is not limited to the gene name. In the case of introducing a gene derived from another microorganism having a different gene name according to the technical features of the present invention, it is obvious that the recombinant microorganism may also fall within the protection scope of the present invention.
  • Flask culture was performed under the following conditions. Colonies were inoculated into 10 mL LB medium supplemented with an appropriate concentration of antibiotics, and cultured at 37°C overnight. After that, the prepared culture solution was passaged into a 250 mL baffle flask containing 50 mL of R/2 medium supplemented with 3 g/L yeast extract, 20 g/L glucose (and 0.45 g/Lascorbic acid if necessary), 30 Cultivation was performed at 200 rpm.
  • R/2 medium has the following composition (per liter): 2 g (NH4)2HPO4, 6.75 g KH2PO4, 0.85 g citric acid, 0.7 g MgSO4 7H2O, and 5 ml trace metal solution (TMS) [ 10 g FeSO4 ⁇ 7H2O, 2.25 g ZnSO4 ⁇ 7H2O, 1 g CuSO4 ⁇ 5H2O, 0.5 g MnSO4 ⁇ 5H2O, 0.23 g Na2B4O7 ⁇ 10H2O, 2 g CaCl2 ⁇ 2H2O and 0.1 g (NH4)6Mo7O24 per liter of 5 M HCl] .
  • IPTG Isopropyl ⁇ -D-1-thiogalactopyranoside
  • the addition solution contained the following components per liter: 650 g glucose, 5 g ascorbic acid, 6 mL TMS, 8 g MgSO 4 7H 2 O.
  • the pH was higher than 6.85, the addition solution was automatically added to the fermenter. very manipulated.
  • LC-MS/MS analysis was performed through an HPLC Triple Quadrupole Mass Spectrometer (LCMS-8050, Shimadzu) (MRM mode).
  • E. coli BAP1 strain E. coli BL21(DE3) (Invitrogen) in which Bacillus subtilis -derived Sfp was introduced into the genome for the activity of exogenous acyl carrier protein (ACP) was described in B. Pfeifer et al. , Science 2001, 291 (5509), 1790-1792 / D. Yang et al., PNAS 2018, 115 (40) 9835-9844) were utilized. After that, to apply Photorhabdus luminescens -derived type II PKS, P.
  • E. coli BAP1 strain E. coli BL21(DE3) (Invitrogen) in which Bacillus subtilis -derived Sfp was introduced into the genome for the activity of exogenous acyl carrier protein (ACP) was described in B. Pfeifer et al. , Science 2001, 291 (5509), 1790-1792 / D. Yang et al., PNAS 2018, 115 (40) 9835-
  • luminescens -derived antD ketosynthase
  • antE chain-length factor
  • antF ACP
  • antB phosphopantetheinyl transferase
  • antG malonyl-CoA:ACP malonyltransferase
  • the pDS00 plasmid was constructed as follows. The gene fragment containing the T7 promoter, multiple cloning site (MCS), and T7 terminator from pET-30a(+) was amplified using pET_NheI_DraIII and pET_SpeI_SphI primers, and then treated with SphI and DraIII restriction enzymes to treat the pET-30a(+) plasmid.
  • the pDS00 plasmid was constructed by inserting it into the SphI and DraIII sites of Then, antB was amplified from P. luminescence genomic DNA using antB_F primer and antB_R primer and inserted into the HindIII site of pDS00 to construct pDS00-antB plasmid. After digestion with NdeI and EcoRI restriction enzymes, the pDS00-antDEF plasmid was also obtained using NdeI and EcoRI restriction enzymes to obtain an antDEF fragment, and then the two fragments were combined using Gibson assembly to obtain a pDS00-antDEFB plasmid. Then, antG from P.
  • luminescence genomic DNA was amplified using antG_F and antG_R primers and inserted into the NdeI and EcoRI sites of pDS00 to construct a pDS00-antG plasmid.
  • the pDS00-antDEFBG plasmid was constructed by inserting it into the NheI site of the pDS00-antDEFB plasmid.
  • the thus constructed pDS00-zhuIJ was digested with NheI and SpeI restriction enzymes to obtain a zhuIJ fragment, which was inserted into the NheI site of pDS00-antDEFBG to construct pFK.
  • the strain in which BAP1 was transformed with pDS00-antDEFBG-zhuIJ produced 88 mg/L of FK from glucose. It was observed that the color of the culture medium was bright red at the beginning of the culture, and then changed to a turbid brown color over time. It is assumed that FK is converted into melanin analogues, etc., and 0.45 g/L of ascorbic acid was added to the medium to prevent melanization of FK, thereby increasing FK production to 154.9 mg/L.
  • Increasing the intracellular concentration of malonyl-CoA was also predicted as a way to increase the production of FK, and either overexpressed Corynebacterium glutamicum -derived acetyl-CoA carboxylase (encoded by the accBCD1 gene) or knocked down the pabA gene. As a result, the FK production was increased to 180.3 mg/L in the strain overexpressing accBCD1 ( FIG. 2 ).
  • the composition of the R/2 medium is as follows (pH 6.8, per 1 L): 2 g (NH 4 ) 2 HPO 4 , 6.75 g KH 2 PO 4 , 0.85 g citric acid, 0.8 g MgSO 4 .7H 2 O, 5 ml trace metal solution (TMS).
  • TMS trace metal solution
  • the composition of TMS was as follows (based on 0.1 M HCl, per 1 L): 10 g FeSO 4 .7H 2 O, 2.25 g ZnSO 4 .7H 2 O, 1 g CuSO 4 .5H 2 O, 0.58 g MnSO 4 .
  • aklavinone 12-hydroxylase (DnrF) derived from Streptomyces peucetius was predicted to be the enzyme that performs the reaction.
  • the dnrF gene was PCR-amplified using the pET30a_frag_F primer and the pET30a_frag_R primer based on the corresponding plasmid, and the pBBR1-T7 plasmid (Kovach, ME; Phillips, RW; Elzer, PH; Roop, RM, II; Peterson, KM, pBBR1MCS: a broad-host-range cloning vector.
  • FK to carminic acid can take two biosynthetic pathways, both of which require monooxygenase and C-glycosyltransferase.
  • FK can be oxidized to KA or C-glycosylated to dcII.
  • D. coccus It was found that the derived DcUGT2 catalyzes the conversion of FK to dcII (or KA to CA) and S. cerevisiae
  • activity has been demonstrated in (Kanangara et al., Nat Commun 2017, 8), the enzyme must be glycosylated to have activity, and it also has a transmembrane helix and a signal peptide.
  • coli Nissle Zea mays -derived UGT708A6 (ZmCGT) dual C/O-glycosyltransferase; UGT708C2 (FeCGT) from Fagopyrum esculentum ; MiCGT from Mangifera indica ; OsCGT from Oryza sativa ; Glycine max derived UGT708D1 (GmCGT); GtUF6CGT1 (GtCGT) from Gentiana triflora; AvCGT from Aloe vera (Fig. 4).
  • pCDF-DcCGT pCDF-MiCGT, pCDF-SfCGT, pCDF-EnCGT, pCDF-OsCGT, pCDF-FeCGT, pCDF-GmCGT, pCDF-AvCGT, pCDF-AvCGT, pCDF-ZmCGT, pCDF-AvCGT
  • iroB gene amplified using the iroB_gib_F primer and isoB_gib_R primer from E. coli Nissle genomic DNA all were artificially synthesized and inserted into the NdeI site on the pCDFDuet-1 plasmid using Gibson assembly.
  • the galU gene was first amplified from the galU_gib_F and galU_gib_R primers, and then inserted into the EcoRI site on the pBBR1TaC plasmid through Gibson assembly. .
  • the pgm gene was amplified from the pgm_gib_F and pgm_gib_R primers and inserted into the KpnI site of the pBBR1TaC-galU plasmid, and the ndk gene was amplified from the ndk_gib_F and ndk_gib_R primers and inserted into the SphI site of the pBBR1-galU-galU-pgm plasmid.
  • pgm-ndk is built.
  • the Y193F mutation showed the second highest dcII concentration, and after constructing a double mutant to see a synergistic effect between the two mutations (GtCGT V93Q/Y193F ), it was introduced into the FK strain.
  • the double mutant produced 0.74 mg CA eq/L of dcII, which is a 5.3-fold increase compared to wild-type GtCGT ( FIG. 6c ).
  • Tyr193 amino acid forms a hydrogen bond with the carbonyl group of C10 while preventing Gln93 from forming a hydrogen bond with the hydroxyl group of C6. Therefore, it is predicted that, while replacing Tyr193 with Phe193, hydrogen bonding at C10 was inhibited, thereby improving ligand binding of FK ( FIG. 6d ).
  • a mutant library was prepared using the same method, and as a result, the mutation showing the highest KA production was DnrF P217K , and the KA production was increased by about 2.2 times (2.68 mg FK eq/L) ( FIGS. 6a and 6b ) .
  • Primers DnrF_P217K_F and DnrF_P217K_R were used to construct the P217K mutant of DnrF.
  • Primers GtCGT_V93Q_F and GtCGT_V93Q_F_F_F_FY_FY and GtCGT_Y were used to construct the primers Y193F and GtCGT_Y of GtCGT. .
  • the protein sequence of the GtCGTV93Q/Y193F (GtUF6CGT1V93Q/Y193F) mutant constructed in the present invention is as follows:
  • the CA strain was constructed by combining the two mutant enzymes.
  • the CA strain was constructed by transforming the pFK and pCA (pCDF-dnrF P217K -GtCGT V93Q/Y193F ) plasmids into the BAP1 strain.
  • dnrF P217K was amplified through PCR amplification using dnrF_NcoI_F and dnrF_BamHI_R primers from pKA, which was inserted into pdcII as NcoI and BamHI sites to construct pCA.
  • Aloecin is a representative cosmetic additive extracted from Aloe vera . Because of its anti-tyrosinase and anti-melanogenesis effects, aloesin is used as a whitening agent in the cosmetic industry, and it is spotlighted as a potential drug or cosmetic raw material because of its anti-inflammatory and anti-radical properties. However, the content of aloesin in the plant was very low, so a more efficient manufacturing method was needed. Aloesin production has been reported through existing papers (D Yang et al., Proc. Natl. Acad. Sci. USA 2018, 115 (40), 9835-9844.).
  • the present inventors transformed E. coli BL21(DE3) strain with the following plasmids for aloeson production: pCDF-RpALS, pWAS-anti-pabA, pBBR1-zwf. Therefore, the strain expresses the following genes: RpALS (encoding R. palmatum aloesone synthase), anti-pabA synthesis regulatory sRNA, zwf (encoding E.
  • This strain produces 30.9 mg/L of aloeson from glucose.
  • RpALS was additionally introduced on a compatible plasmid to increase the production of aloesone.
  • RpALS was introduced on the pRSFDuet-1 plasmid with a high copy number RSF origin of replication.
  • RpALS was amplified from the previously constructed pCDF-RpALS using ALS_NdeI_F and ALS_NdeI_R primers, and then inserted into the NdeI site on pRSFDuet-1 using Gibson assembly to construct the corresponding plasmid.
  • pCDF-GtCGT or pCDF-GtCGT V93Q/Y193F plasmids were transformed onto BL21 (DE3) strains carrying pWAS-anti-pabA pRSF-RpALS, pBBR1-zwf plasmids to test aloesin production.
  • flask culture was performed.
  • the strain containing GtCGT V93Q/Y193F produced 0.06 ⁇ g/L of aloesin, and succeeded in producing a greater amount of aloesin than the strain containing GtCGT (FIG. 9).
  • RpALS was additionally introduced to increase the production of aloesin.
  • pCDF-GtCGT V93Q/Y193F instead of introducing pCDF-GtCGT V93Q/Y193F , pCDF-RpALS-GtCGT V93Q/Y193F was constructed.
  • RpALS was amplified from pCDF-RpALS using pCDFDuet_F and pCDFDuet_R primers, and NcoI and BamHI sites on pCA plasmid were introduced through Gibson assembly.
  • the ALS strain succeeded in producing 0.3 ⁇ g/L of aloesin from glucose.
  • the authenticity of the produced aloesin was determined through LC-MS/MS as shown in FIG. 9 .
  • the present inventors succeeded in producing aloesin in a state in which even the enzyme was not revealed through the introduction of GtCGT, and the aloesin production ability was remarkably increased through the introduction of GtCGT V93Q/Y193F .
  • the GtCGT V93Q/Y193F enzyme mutation can be said to be an enzyme having the ability to produce glycosides throughout polyketide, and the present inventors used GtCGT V93Q/Y193F to construct a mutation that can further increase the aloesin production ability. Based on this, additional mutations were made.
  • the present inventors further improved the GtCGT V93Q/Y193F mutant showing activity in the previously developed aromatic polyketide to increase the efficiency of conversion from aloesone to aloesin.
  • aloeson a new substrate, was docked on the GtCGT V93Q/Y193F structural model calculated in Example 2.
  • mutations expected to increase enzyme activity by forming a more stable bond with aloeson were selected as shown in Table 10.
  • a plasmid containing a gene mutation was prepared using the primer pairs shown in Table 11 below.
  • the prepared plasmids were transformed on the BL21(DE3) strain together with three plasmids of pWAS-anti-pabA, pRSF-RpALS, and pBBR1-zwf, respectively, and then under the same conditions as in Example 3 using the strains constructed in this way. Flask culture was performed under The concentration of produced aloesin was measured through MRM mode of HPLC Triple Quadrupole Mass Spectrometer (LCMS-8050, Shimadzu) of KAIST Biocore Center.
  • a plasmid containing a gene mutation was prepared using the primer pairs shown in Table 13 below.
  • the prepared plasmids were transformed on the BL21(DE3) strain together with three plasmids of pWAS-anti-pabA, pRSF-RpALS, and pBBR1-zwf, respectively, and then under the same conditions as in Example 3 using the strains constructed in this way. Flask culture was performed under The concentration of produced aloesin was measured through MRM mode of HPLC Triple Quadrupole Mass Spectrometer (LCMS-8050, Shimadzu) of KAIST Biocore Center.
  • a strain transformed with both pCDF-GtCGT V93Q/Y193F and pBBR1-galU-pgm-ndk in E. coli BL21(DE3) was cultured in flask, and cell growth was OD600 When 0.6-0.8 was reached, 1 mM IPTG was administered. At this time, 70 ⁇ M of luteolin, 0.5 mM of naringenin, or 185.2 ⁇ M of apigenin was co-administered, and incubated for an additional 36 hours. The amount of substrate and product was analyzed through LC-MS. Flask culture was carried out in a 250 mL baffle flask containing 50 mL of R/2 medium (including 3 g/L yeast extract, 20 g/L glucose added), and culture was performed at 30°C and 200 rpm.
  • R/2 medium including 3 g/L yeast extract, 20 g/L glucose added
  • the glucosyltransferase of the present invention also exhibits an activity capable of producing various phenylpropanoid C-glucoside, which means that the enzyme of the present invention can produce various polyketide and phenylpropanoid C-glucoside. Indicates that it is a universal enzyme.
  • Each plasmid was constructed by amplifying pCDF-GtCGT and pCDF-GtCGTmut using GtCGT_N_His_IV_F / GtCGT_N_His_IV_R primers and then blunt-end ligation through DpnI treatment and T4 PNK and T4 ligase treatment. After transforming each of the two constructed plasmids on the E. coli BL21 (DE3) strain, seed culture in a test tube containing 10 mL LB was performed until the OD 600 value became 0.8 in a flask containing 500 mL LB 37 Incubated at °C.
  • wash buffer 50 mM NaH 2 PO 4 , 0.3 M NaCl, 20 mM imidazole, pH 7.5
  • the enzyme was washed with an elution buffer containing 90, 160, 230, and 300 mM imidazole on the lysis buffer. Purified.
  • the purified enzyme was buffer exchanged with an enzyme stock solution (50 mM HEPES, 20% glycerol, pH 7.5) using Amicon Ultra-15 Centrifugal Filters (regenerated cellulose, 50,000 NMWL; Merck), and K M and V max values were calculated. In order to do this, it was attempted to convert FK to dcII using a purified enzyme. At this time, UDP-Glo Glycosyltransferase Assay Kit (Promega) was used to determine the degree of reaction.
  • This kit enables the measurement of free UDP, which is generated as a by-product of the reaction, in terms of luminescence, so 200 ⁇ L enzyme reaction solution containing 0.1 M enzyme and various concentrations of FK (50 mM HEPES, 0.1 mM UDP-glucose) , 5 mM MgCl 2 , pH 7.5) at 25° C. After reacting for 1 hour, 25 ⁇ L was removed and the amount of extubation was measured using a kit. K M and V max values of GtCGT and GtCGT V93Q/Y193F were calculated by introducing the reaction rate and substrate concentration into the Michaelis-Menten equation and analyzing it through the OriginPro 2019 program.
  • the K M value of GtCGT V93Q /Y193F decreased by 19.5% compared to GtCGT, while the V max value of GtCGT V93Q/Y193F increased by 18.2% compared to GtCGT ( FIG. 13 ; Table 15). That is, the V max /K M value of GtCGT V93Q /Y193F was improved by 46.8% compared to GtCGT, indicating that the catalytic efficiency of the GtCGT V93Q/Y193F mutant was improved.
  • FK flavokermesic acid
  • the C-glycosyltransferase mutant according to the present invention has an improved ability to form glycoside bonds compared to wild-type C-glycosyltransferase, and thus the polyketide group and similar natural products, especially type I, II, and III polyketides, non It can enhance the glycoside production effect of ribosomal peptides, phenylpropanoids and other aromatic natural products. Therefore, the C-glycosyltransferase mutant according to the present invention may be usefully used in the manufacture of drugs, food additives, nutritional supplements, etc. containing C-glycoside compounds that increase through the production of polyketide glycosides of natural products. will be able

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 신규한 C-글리코실전이효소 변이체 및 이의 용도에 관한 것으로, 본 발명에 따른 C-글리코실전이효소 변이체는 야생형 C-글리코실전이효소에 비해 글리코사이드 결합 형성능이 향상되어 있어, 폴리케타이드 군 및 유사 천연물, 특히 타입 I, II, III 폴리케타이드, 비리보솜 펩티드, 페닐프로파노이드 및 그 외 방향족 천연물의 배당체 생산 효과를 증진시킬 수 있는바, C-글리코사이드 화합물을 구성성분으로 하는 약물, 식품 첨가제, 영양 보조제 등의 제조에 유용하게 활용할 수 있을 것이다.

Description

C-글리코실전이효소 변이체 및 이의 용도
본 발명은 신규한 C-글리코실전이효소 변이체 및 이의 용도에 관한 것으로, 더 상세하게는 C-글리코실전이효소의 활성 부위 (acive site)에 위치하는 아미노산이 변이되어 기질 탄소의 글리코실화 반응이 강화된 것을 특징으로 하는 C-글리코실전이효소 변이체 및 폴리케타이드 배당체 및 페닐프로파노이드 배당체 생산에 있어서 상기 변이체의 용도에 관한 것이다.
폴리케타이드는 다양한 생물학적 효능을 지니는 매력적인 천연물의 한 분류이며, 일상에서 식품, 화장품, 약물 등에 다양하게 응용되고 있다. 폴리케타이드를 생합성하는 효소군을 폴리케타이드 생합성 효소 (PKS)라 총칭하는데, 이는 생합성 메커니즘에 따라 타입 I, II 및 III의 세 가지 종류로 구분된다. 이 중 타입 I PKS을 통해서는 macrolide 계열 폴리케타이드가 생산되며 타입 II 및 III를 통해서는 방향족 폴리케타이드가 주로 생산된다.
약물 또는 영양 보조제 등과 같이 의약적 효능을 지니는 물질의 경우 전반적으로 글리코시드 결합의 생성을 통하여 비배당체에 비하여 안정성, 가수분해 등에 대한 저항성, 생체이용률 등이 훨씬 개선된 배당체가 선호된다. 특히 안정적인 C-글리코사이드 결합은 화학적으로 O-글리코사이드 결합에 비하여 안정하다. 하지만 대장균에서 천연물의 O-glycosylation은 몇 사례가 보고되었으나 (Chen, D.; Chen, R.; Xie, K.; Duan, Y.; Dai, J., Production of acetophenone C-glucosides using an engineered C-glycosyltransferase in Escherichia coli. Tetrahedron Lett. 2018, 59 (19), 1875-1878), C-glycosylation은 거의 보고된 사례가 없다. 대장균뿐만 아니라 자연계에도 C-glycosylation에 비하여 O-glycosylation에 대하여 많은 보고가 되어 있다.
대표적인 C-글리코사이드 천연물로는 카르민산 (carminic acid), 알로에신 (aloesin) 등이 있다.
카르민산은 널리 사용되는 붉은색 색소이며 음식, 화장품 및 의약품 등으로 활용된다. Cochineal Dactylopius coccus와 같은 비늘 곤충으로부터 직접 추출되는데, 케첩, 딸기 우유, 사탕과 같은 식품에 첨가되고 있으며 아이섀도우, 매니큐어, 립스틱과 같은 화장품에 첨가되고 있다. 하지만 cochineal은 느리게 성장하고, 제한된 영역에서만 성장하여 (덥고 건조한 지역에서만 자랄 수 있다), 생산 용량을 쉽게 증가시키기 어렵다는 상업적 생산의 한계를 보이고 있다. 특히, 추출 과정 또한 굉장히 비효율적인데, 예를 들어 1파운드의 카르민산을 생산하기 위해서는 70,000마리의 암컷 cochineal이 필요하다. 이러한 상황에서 카르민산을 생산하기 위한 보다 지속 가능한 방법의 개발이 필요하였다.
알로에신은 알로에 베라(Aloe vera)로부터 추출되며, 항타이로시네이즈 (anti-tyrosinase) 효과 및 항멜라닌 생성 효과 때문에 화장품 업계에서 미백제로써 널리 활용되고 있다. 뿐만 아니라 알로에신은 항염증 및 항라디칼 효과를 보이므로 다양한 약물 또는 화장품 주성분으로 활용될 수 있다. 하지만 알로에 식물로부터 추출되는 알로에신의 양은 극미량으로, 보다 효율적이고 지속 가능한 바이오 기반 생산 방법의 개발이 필요하였다.
상기 서술된 바와 같이 C-글리코사이드 천연물에 대한 수요는 매우 높은 반면, 그 공급량은 미비하나, 이를 효과적으로 생산할 수 있는 방법에 대한 개발이 거의 이루어지지 않은 실정이었다. 특히, 상기 화합물을 생물학적 공정으로 생산하고자 하여도 이를 위한 효소가 잘 밝혀져 있지 않거나, 낮은 효소의 전환 효율 때문에 미생물 세포 공장으로부터 효율적인 생산이 불가능하였다.
이러한 기술적 배경 아래에서, 본 발명자들은 뛰어난 C-글리코실화 능력을 갖는 C-글리코실전이효소를 개발하기 위해 예의 노력한 결과, 아미노산의 치환을 통해 뛰어난 C-글리코실화 능력을 나타내는 C-글리코실전이효소 변이체를 개발하고, 상기 C-글리코실전이효소 변이체 유전자를 도입한 재조합 미생물에서 타입 I, 타입 II 및 타입 III 폴리케타이드, 비리보솜 펩티드, 페닐프로파노이드, 방향족 천연물에 대해 현저히 뛰어난 C-글리코실전이효소 변이체의 배당체 생산능을 나타내는 것을 확인하고 본 발명을 완성하였다.
본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다.
선행기술문헌
비특허문헌
(비특허문헌 1) Chen, D.; Chen, R.; Xie, K.; Duan, Y.; Dai, J., Production of acetophenone C-glucosides using an engineered C-glycosyltransferase in Escherichia coli. Tetrahedron Lett. 2018, 59 (19), 1875-1878
발명의 요약
본 발명의 목적은 신규한 C-글리코실전이효소 변이체 및 이의 용도를 제공하는데 있다.
상기 목적을 달성하기 위하여,
본 발명은 서열번호 1로 표시되는 C-글리코실전이효소(C-glycosyltransferase)에서 F17, V93, V132, Y193, L164 및 R322로 구성된 군에서 선택되는 어느 하나 이상의 아미노산에 변이를 포함하는 C-글리코실전이효소 (C-glycosyltransferase) 변이체를 제공한다.
본 발명은 또한, 상기 C-글리코실전이효소 변이체를 암호화하는 핵산을 제공한다.
본 발명은 또한, 상기 핵산이 도입된 재조합 미생물을 제공한다.
본 발명은 또한, 다음 단계를 포함하는 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체의 제조방법을 제공한다:
(a) 본 발명의 재조합 미생물을 배양하여 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체를 생성시키는 단계; 및
(b) 상기 생성된 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체를 회수하는 단계.
본 발명은 또한, 다음 단계를 포함하는 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체의 제조방법을 제공한다:
(a) 본 발명의 C-글리코실전이효소 변이체 또는 상기 C-글리코실전이효소 변이체를 발현하는 미생물과 폴리케타이드 및/또는 페닐프로파노이드를 반응시켜 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체를 생성시키는 단계; 및
(b) 상기 생성된 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체를 회수하는 단계.
도 1은 carminic acid 생산 경로를 나타낸다.
도 2는 서로 다른 대사공학 전략을 도입하였을 때 flavokermesic acid 생산량을 나타낸다. 타입 III 폴리케타이드 생합성 효소 (Aloe arborescens 유래 AaPKS5)와 ZhuIJ보다 타입 II 폴리케타이드 생합성 효소 (P. luminescens 유래 AntDEFBG)와 ZhuIJ가 보다 높은 농도의 FK를 생산하였다.
도 3은 DnrF의 도입에 따른 kermesic acid 생산량 변화를 나타낸다.
도 4는 dcII 생산을 위한 후보 C-glycosyltransferase 및 각 후보 효소들의 본래의 효소 반응을 나타낸다.
도 5는 아홉 종류의 효소 후보들의 dcII 생산능을 비교한 것이다
도 6은 KA와 dcII 생산량 증대를 위한 homology modeling 및 docking simulation 결과를 나타낸다: (a) DnrF에 대한 시뮬레이션을 통하여 선별된 변이체들의 KA 생산능. (b) 가장 효과가 좋은 DnrF 변이체 (P217K)에 대한 단백질 구조 시뮬레이션 결과. (c) GtCGT에 대한 시뮬레이션을 통해 선별된 변이체들의 dcII 생산능. (d) 가장 효과가 좋은 GtCGT 변이체 (V93Q/Y193F)에 대한 단백질 구조.
도 7은 포도당으로부터 카르민산 생산을 나타낸다: (a) 서로 다른 조건에서의 카르민산 생산량. (b) LC-MS/MS 분석을 통한 카르민산의 분석. 윗쪽 데이터는 시판되는 카르민산을 분석한 결과, 아랫쪽 데이터는 포도당으로부터 대장균에서 생산된 카르민산 함유 샘플 분석 결과. 왼쪽 그래프들은 추출 이온 크로마토그램 (extracted ion chromatogram; EIC), 오른쪽 그래프들은 MS/MS 조각 패턴 (fragmentation pattern). (c) 최종 균주에 대한 유가식 발효 그래프. 붉은색 화살표는 IPTG를 통한 유전자 발현 개시 시점을 나타내고, DCW는 건조 세포 중량을 나타냄.
도 8은 알로에신 생산 경로를 나타낸다.
도 9는 대장균을 통한 알로에신 생산을 보여준다: (a) 알로에손 증산을 위하여 RpALS를 포함하는 또다른 플라스미드를 구축하여 테스트한 결과. (b) 알로에신 생산을 위한 GtCGT 및 그 변이체 테스트 결과. (c) LC-MS/MS 분석을 통한 알로에신의 분석. 윗쪽 데이터는 시판되는 알로에신을 분석한 결과, 아랫쪽 데이터는 포도당으로부터 대장균에서 생산된 알로에신 함유 샘플 분석 결과. 왼쪽 그래프들은 추출 이온 크로마토그램 (extracted ion chromatogram; EIC), 오른쪽 그래프들은 MS/MS 조각 패턴 (fragmentation pattern)을 나타냄.
도 10은 알로에신 생산량 증대를 위한 GtCGT 추가 변이체 테스트 결과를 나타낸다. 추가 변이체는 GtCGT 변이체 (V93Q/Y193F)의 구조 모델을 분석하여 예측하였다.
도 11은 알로에신 생산량 증대를 위한 GtCGT 추가 변이체 테스트 결과를 나타낸다. 추가 변이체는 GtCGT 변이체 (V93Q/Y193F)를 기반으로 docking simulation을 수행하여 예측하였다.
도 12는 GtCGT 변이체 (V93Q/Y193F)에 의한 여러 페닐프로파노이드 C-glucoside의 생산량 (%전환율로 표기)을 나타낸다.
도 13은 GtCGT 및 GtCGT 변이체(V93Q/Y193F)의 KM과 Vmax 값을 계산하기 위한 Lineweaver-Burk plot을 나타낸다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서는 야생형 효소에 비해 글리코사이드 결합 생성능이 현저히 개선된 C-글리코실전이효소 변이체를 발굴하기 위하여 단백질 구조를 예측하고, 단백질 구조 분석과 컴퓨터 시뮬레이션을 통하여 활성이 증대된 변이 후보군을 도출하였으며, 이들 중 특히 기질 결합성이 향상되고 글루코실화 반응을 강화시킬 수 있는 효과 좋은 변이체를 선별할 수 있었다.
따라서, 본 발명은 일 관점에서, C-글리코실화 능력이 향상된 C-글리코실전이효소(C-glycosyltransferase) 변이체에 관한 것이다.
본 발명에 있어서, 본 발명의 변이체의 주형(또는 야생형)이 되는 C-글리코실전이효소는 기질(예, 화합물, 단백질 등)의 탄소에 C-글리코시드 결합을 형성시켜 C-글리코실화를 유도하는 효소를 의미한다.
본 발명에 있어서, 상기 C-글리코실전이효소는 서열번호 1로 표시되었으나, 이에 제한되는 것은 아니며, 특정 아미노산 잔기 위치에서, 아미노산 잔기가 보존적으로 치환된 단백질을 포함하는 의미로 해석되어야 한다.
본 명세서에서 "보존적 치환"이란 1개 이상의 아미노산을 C-글리코실전이효소 또는 이의 변이체의 생물학적 또는 생화학적 기능의 손실을 야기하지 않는 유사한 생화학적 특성을 갖는 아미노산으로 치환하는 것을 포함하는 C-글리코실전이효소의 변형을 의미한다.
본 발명의 용어, "보존적 아미노산 치환"은 아미노산 잔기를 유사한 측쇄를 갖는 아미노산 잔기로 대체시키는 치환이다. 유사한 측쇄를 갖는 아미노산 잔기 부류는 해당 기술분야에 규정되어 있으며, 잘 알려져 있다. 이들 부류는 염기성 측쇄를 갖는 아미노산(예를 들어, 라이신, 아르기닌, 히스티딘), 산성 측쇄를 갖는 아미노산(예를 들어, 아스파르트산, 글루탐산), 대전되지 않은 극성 측쇄를 갖는 아미노산(예를 들어, 글리신, 아스파라진, 글루타민, 세린, 트레오닌, 티로신, 시스테인), 비-극성 측쇄를 갖는 아미노산(예를 들어, 알라닌, 발린, 류신, 이소류신, 프롤린, 페닐알라닌, 메티오닌, 트립토판), 베타-분지된 측쇄를 갖는 아미노산(예를 들어, 트레오닌, 발린, 이소류신) 및 방향족 측쇄를 갖는 아미노산(예를 들어, 티로신, 페닐알라닌, 트립토판, 히스티딘)을 포함한다.
따라서, 본 발명의 변이체의 주형이 되는 C-글리코실전이효소는 서열번호 1뿐만 아니라, 이와 실질적으로 동일한 기능 및/또는 효과를 가지며, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 바람직하게는 80% 이상 또는 85% 이상, 더욱 바람직하게는 90% 이상 95% 이상, 가장 바람직하게는 99% 이상의 아미노산 서열 상동성을 가지는 C-글리코실전이효소, 재조합 C-글리코실전이효소 및 이의 절편들을 모두 포함하는 의미로 해석된다.
본 발명의 용어, "절편"은 모 단백질이 절단된 일부 단편을 의미하며, C'-말단 및/또는 N'-말단이 절단된 것일 수 있다. 본 발명에 있어서, 상기 절편은 본 발명의 탈당화된 C-글리코실전이효소와 실질적으로 동일한 기능 및/또는 효과를 갖는 절편을 의미한다. 예를 들어, 상기 절편은 전장 단백질에서 신호 서열이 절단된 단편을 포함할 수 있다.
본 발명에 있어서, 상기 C-글리코실전이효소는 서열번호 1로 표시되는 Gentiana triflora 유래 GtUF6CGT이외에도 다른 균주 또는 다른 생물로부터 유래될 수 있다. 예를 들어 E. coli Nissle 유래 IroB (EnCGT); Zea mays 유래 UGT708A6 (ZmCGT) dual C/O-glycosyltransferase; Fagopyrum esculentum 유래 UGT708C2 (FeCGT); Mangifera indica 유래 MiCGT; Oryza sativa 유래 OsCGT; Glycine max 유래 UGT708D1 (GmCGT); Gentiana triflora 유래 GtUF6CGT1 (GtCGT); Aloe vera 유래 AvCGT일 수 있으며, 바람직하게는 Gentiana triflora 유래 GtUF6CGT1 (GtCGT) 또는 Zea mays 유래 UGT708A6 (ZmCGT) dual C/O-glycosyltransferase일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 실시예에서, 야생형 C-글리코실전이효소의 아미노산 일부를 치환하여 변이체를 생성하는 경우, 현저히 뛰어난 C-글리코실화 유도능력을 나타내며, 상기 C-글리코실전이효소를 폴리케타이드 합성용 재조합 균주에 도입하는 경우 C-당화된 폴리케타이드를 현저한 수율로 제조할 수 있음을 확인하였다.
본 발명에 있어서, 상기 C-글리코실전이효소 변이체는 서열번호 1로 표시되는 C-글리코실전이효소(C-glycosyltransferase)에서 F17, V93, V132, Y193, L164 및 R322로 구성된 군에서 선택되는 어느 하나 이상의 아미노산에 변이를 포함하는 것을 특징으로 할 수 있으며, 보다 바람직하게는 V93 및/또는 Y193의 아미노산에 변이를 포함하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 C-글리코실전이효소 변이체는 서열번호 1로 표시되는 C-글리코실전이효소(C-glycosyltransferase)에서 F17, V93, V132, Y193, L164 및 R322로 구성된 군에서 선택되는 어느 하나 이상의 아미노산 이외에도 하나 이상의 다른 아미노산에 변이를 포함하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 C-글리코실전이효소 변이체는 서열번호 1로 표시되는 C-글리코실전이효소(C-glycosyltransferase)에서, F17, V405, P107, L208, L164, P45, I305, L316, F401, Y94, N57, Y187, C16, P319, F167, V132, N206, R406, Q386, V129, L125, L194, I95, S215, L184, Y158, L29, L27, F202, H159, S370, H365, V329, M301, V315, V190, C366, W80, L58, Q210, F312, D61, I207, L363, P196, L106, V93, A394, W314, S155, P88, D99, Y284, E189, G49, H328, E399, T392, F387, A44, P199, E46, R28, V285, I124, R419, L306, Y157, Y200, E373, P191, L214, S376, V15, E332, E51, I417, L98, I323, H161, T383, P127, E309, N84, L313, Q104, T371, N213, G79, L330, N307, K105, L128, A152, , I18, N59, W147, S86, L293, E296, S377, L185, K216, F89, S286, F396, F211, Y303, D223, R415, N96, V22, S153, F154, D192, Y193, H195, P201, Y292, 및 R322로 구성된 군에서 선택되는 어느 하나 이상의 아미노산에 변이를 추가로 포함할 수 있다.
본 발명에 있어서, 상기 C-글리코실전이효소 변이체는 서열번호 1로 표시되는 C-글리코실전이효소에서, I18, Q20, T50, I95, V290, I323, V22, L29, E46, V48, E51, A55, S86, D99, R103, C151, L184, L194, E332 및 P385로 구성된 군에서 선택되는 어느 하나 이상의 아미노산에 변이를 추가로 포함할 수 있다.
본 발명에 있어서, 바람직하게는 상기 C-글리코실전이효소 변이체는 서열번호 1로 표시되는 C-글리코실전이효소에서, I323, T50, I18, I95, Q20, P385, L194, V48로 구성된 군에서 선택되는 어느 하나 이상의 아미노산에 변이를 추가로 포함할 수 있다.
본 발명의 용어 “변이체”는 참조서열(정상 C-글리코실전이효소 서열 예, 서열번호 1)의 아미노산 서열에서, 일부 아미노산 잔기의 변이, 바람직하게는 아미노산 잔기의 치환, 결실 및/또는 삽입, 더욱 바람직하게는 아미노산 잔기의 치환을 포함하는 것뿐 아니라, 그러한 아미노산 잔기의 치환, 결실 및/또는 삽입 과 함께, N-말단 또는 C-말단에서의 일부 아미노산 잔기의 결실이 일어난 것을 모두 포함하는 개념으로 사용된다. 본 발명의 일 실시예에서, 상기 변이체는 서열번호 1의 일부 아미노산을 치환하여 제조하였으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 ‘변이’는 아미노산의 치환인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 C-글리코실전이효소 변이체는 서열번호 1로 표시되는 C-글리코실전이효소(C-glycosyltransferase)에서 F17G, V93Q, V132A, Y193F, L164G 및 R322D로 구성된 군에서 선택되는 어느 하나 이상의 아미노산 치환을 포함하는 것을 특징으로 할 수 있으며, 보다 바람직하게는 V93Q 및/또는 Y193F, 가장 바람직하게는 V93Q 및 Y193F의 아미노산 치환을 포함하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 C-글리코실전이효소 변이체는 서열번호 1로 표시되는 C-글리코실전이효소(C-glycosyltransferase)에서 F17G, V93Q, V132A, Y193F, L164G 및 R322D로 구성된 군에서 선택되는 어느 하나 이상의 아미노산 치환 이외에도 하나 이상의 다른 아미노산의 치환을 추가로 포함하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 C-글리코실전이효소 변이체는 서열번호 1로 표시되는 C-글리코실전이효소(C-glycosyltransferase)에서 V93Q 및 Y193F 아미노산 치환 이외에도, 하나 이상의 다른 아미노산의 치환을 추가로 포함하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 추가로 포함 가능한 다른 아미노산의 치환은 C-글리코실전이효소 변이체는 서열번호 1로 표시되는 C-글리코실전이효소(C-glycosyltransferase)에서, F17G, V405M, P107G, L208G, L164G, P45G, I305A, L316G, F401H, Y94G, N57G, Y187A, C16G, P319G, F167G, V132A, N206E, R406G, Q386H, V129A, L125V, L194A, I95G, S215D, L184G, Y158T, L29A, L27A, F202S, H159G, S370A, H365G, V329T, M301W, V315A, V190A, C366G, W80Y, L58E, Q210G, F312G, D61G, I207P, L363G, P196G, L106G, V93G, A394G, W314C, S155A, P88D, D99G, Y284H, E189A, G49TH328G, E399D, T392A, F387T, A44G, P199E, E46G, R28G, V285I, I124T, R419A, L306M, Y157T, Y200L, E373A, P201G, P191G, L214A, S376G, V15G, E332P, E51C, I417L, L98G, I323A, H161G, T383C, P127A, E309N, N84S, L313T, Q104D, T371A, N213L, G79S, L330G, N307A, K105G, L128D, A152G, S153G, I18A, N59V, W147F, S86V, L293V, E296D, S377A, L185V, K216R, F89A, S286C, F396L, F211G, Y303A, D223G, R415L, N96A, V22H, V93Q, V93L, S153C, F154L, D192S, Y193F, H195Y, H195L, P201T, Y292H, Y292F, R322D 및 R322A로 구성된 군에서 선택되는 어느 하나 이상의 아미노산 치환인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 추가로 포함 가능한 다른 아미노산의 치환은 서열번호 1로 표시되는 C-글리코실전이효소에서, I18P, Q20M, T50N, T50Q, T50K, T50R, T50V, I95M, I95T, V290G, V290A, I323S, I323A, I95L, V22A, L29A, E46G, V48G, E51C, A55S, S86V, D99G, R103V, C151G, L184G, L194A, E332P, I18A 및 P385A로 구성된 군에서 선택되는 어느 하나 이상의 아미노산 치환인 것을 특징으로 할 수 있다.
본 발명에 있어서, 바람직하게는 상기 추가로 포함 가능한 다른 아미노산의 치환은 서열번호 1로 표시되는 C-글리코실전이효소에서, I323S, T50R, T50V, I18P, I95T, Q20M, I323A, P385A, L194A 및 V48G로 구성된 군에서 선택되는 어느 하나 이상의 아미노산의 치환인 것을 특징으로 할 수 있다.
본 발명의 일 실시예에서,
i) 서열번호 1로 표시되는 C-글리코실전이효소(C-glycosyltransferase)에서 V93Q 및 Y193F 아미노산 치환;
ii) 서열번호 1로 표시되는 C-글리코실전이효소(C-glycosyltransferase)에서 V93Q, Y193F 및 I323S 아미노산 치환; 또는
iii) 서열번호 1로 표시되는 C-글리코실전이효소(C-glycosyltransferase)에서 V93Q, Y193F 및 P385A 아미노산 치환을 포함하는 C-글리코실전이효소 변이체가 가장 뛰어난 C-글리코실화를 나타내는 것을 확인하였으나, 이에 제한되는 것은 아니다.
아미노산 변이의 아미노산 잔기의 상기 위치는 참조로써(as reference) 서열번호 1로 표시되는 아미노산 서열을 사용하여 정확하게 잔기를 넘버링할 수 있으며, 여기서 "잔기 Xn(residue Xn)"은 서열번호 1로 표시되는 아미노산 서열에서 위치 n에 상응하는 잔기 X를 나타내고, n은 양의 정수이며, X는 임의의 아미노산 잔기의 약어이다. 예를 "잔기 V93"은 서열번호 1 표시되는 아미노산 서열에서 위치 93에 상응하는 아미노산 잔기 V를 지칭한다.
본 발명에서 "아미노산 변이"는 "아미노산 치환 Xn(amino acid substitution Xn)"일 수 있으며, 일 양태로서 서열번호 1로 표시되는 아미노산 서열 중 위치 n의 아미노산 잔기 X에서 발생하는 아미노산 치환을 의미하고, 여기서 n은 양의 정수이고, X는 임의의 아미노산 잔기의 약어이다. 예를 들어, "아미노산 치환 V93"은 서열번호 1로 표시되는 아미노산 서열의 위치 93에 상응하는 아미노산 잔기 V에서 발생한 아미노산 치환을 의미한다.
본 발명에 있어서, 참조서열로 사용되는 서열번호 1의 C-글리코실전이효소 외의 다른 아미노산 서열을 갖는 C-글리코실전이효소를 참조서열로 사용하는 경우, 서열번호 1을 참조로 하여 기재된 특정 아미노산 잔기에 "상응하는" 아미노산 잔기는 일반적으로 최적화 조건 하에서 아미노산 서열의 정렬에 의해 얻어 질 수 있다. 상기 서열 정렬은 당업자가 예를 들어 BLAST, BLAST-2, ALIGN, NEEDLE 또는 Megalign (DNASTAR) 소프트웨어 등을 사용하여 이해하는 수단에 의해 수행될 수 있다. 당업자는 비교되는 전장 서열에서 최적의 정렬을 달성하는 데 필요한 임의의 알고리즘을 포함하여 정렬에 사용하기 위한 적절한 파라미터를 결정할 수 있다.
본 발명의 아미노산 치환은 비 보존 치환(non-conserved substitutions)일 수 있다. 상기 비 보존 치환은, 예를 들어, 특정 측쇄 크기 또는 특정 특성 (예를 들어, 친수성)을 갖는 아미노산 잔기를 상이한 측쇄 크기 또는 상이한 특성 (예를 들어, 소수성)을 갖는 아미노산 잔기로 대체하는 것과 같은 비 보존 방식으로, 표적 단백질 또는 폴리펩티드의 아미노산 잔기를 변경하는 것을 포함할 수 있다.
상기 아미노산 치환은 또한 보존된 치환(conserved substitutions)일 수 있다. 상기 보존된 치환은, 예를 들어, 특정 측쇄 크기 또는 특정 특징 (예를 들어, 친수성)을 갖는 아미노산 잔기를 동일하거나 유사한 측쇄 크기 또는 동일하거나 유사한 특성 (예 : 여전히 친수성)을 갖는 아미노산 잔기로 대체하는 것과 같이, 보존된 방식으로 표적 단백질 또는 폴리펩티드의 아미노산 잔기를 변경하는 것을 포함할 수 있다. 이러한 보존된 치환은 일반적으로 생산된 단백질의 구조 또는 기능에 큰 영향을 미치지 않는다. 본 출원에서, 융합 단백질의 돌연변이인 아미노산 서열 변이체, 이의 단편, 또는 하나 이상의 아미노산이 치환된 이의 변이체는 단백질의 구조 또는 기능을 현저하게 변화시키지 않는 보존된 아미노산 치환을 포함할 수 있다.
예를 들어, 다음 그룹 각각에서 아미노산 간의 상호 치환(mutual substitutions)은 본 출원에서 보존적 치환으로 간주될 수 있다:
비극성 측쇄를 갖는 아미노산 그룹: 알라닌, 발린, 류신, 이소류신, 프롤린, 페닐알라닌, 트립토판 및 메티오닌.
극성 측쇄를 갖는 비하전 아미노산 그룹: 글리신, 세린, 트레오닌, 시스테인, 티로신, 아스파라긴 및 글루타민.
극성 측쇄를 갖는 음전하 아미노산 그룹: 아스파르트산 및 글루탐산.
양전하를 띤 염기성 아미노산 그룹: 라이신, 아르기닌 및 히스티딘.
페닐을 갖는 아미노산 그룹: 페닐알라닌, 트립토판 및 티로신
본 발명에 포함된 단백질, 폴리펩티드 및/또는 아미노산 서열은 또한 적어도 다음 범위를 포함하는 것으로 이해될 수 있다: 상기 단백질 또는 폴리펩티드와 동일하거나 유사한 기능을 갖는 변이체 또는 상동체(homologues).
본 발명에서, 상기 변이체는 야생형 C-글리코실화전이효소의 아미노산 서열과 비교하여 하나 이상의 아미노산의 치환, 결실 또는 첨가에 의해 생성된 단백질 또는 폴리펩티드 일 수 있다. 예를 들어, 상기 기능적 변이체는 적어도 1 개의 아미노산의 치환, 결실 및/또는 삽입, 예를 들어 1-30, 1-20 또는 1-10, 대안적으로, 예를 들어 1, 2, 3, 4, 또는 5 아미노산의 치환, 결실 및/또는 삽입에 의한 아미노산 변화를 갖는 단백질 또는 폴리펩티드를 포함할 수 있다. 상기 기능적 변이체는 변화 (예를 들어, 치환, 결실 또는 첨가) 전에 상기 단백질 또는 상기 폴리펩티드의 생물학적 특성을 실질적으로 보유할 수 있다. 예를 들어, 상기 기능적 변이체는 변경 전에 상기 단백질 또는 상기 폴리펩티드의 생물학적 활성의 60 %, 70 %, 80 %, 90 % 또는 100 % 이상을 보유할 수 있다.
본 발명에서, 상기 상동체(homologue)는 상기 단백질 및/또는 상기 폴리펩티드의 아미노산 서열과 적어도 약 80 % (예를 들어, 적어도 약 85 %, 약 90 %, 약 91 %, 약 92 %, 약 93 %, 약 94 %, 약 95 %, 약 96 %, 약 97 %, 약 98 %, 약 99 % 이상) 서열 상동성을 갖는 단백질 또는 폴리펩티드 일 수 있다.
본 발명에서, 상기 상동성은 일반적으로 둘 이상의 서열 간의 유사성(similarity), 유의성(analogousness) 또는 연관성(association)을 지칭한다. "서열 상동성 백분율(percent of sequence homology)"은 동일한 핵산 염기 (예: A, T, C, G, I) 또는 동일한 아미노산 잔기 (예 : Ala, Pro, Ser, Thr, Gly, Val, Leu, Ile, Phe, Tyr, Trp, Lys, Arg, His, Asp, Glu, Asn, Gln, Cys 및 Met)가 존재하는 위치의 수를 결정하는 비교 창에서 정렬된 두 서열을 비교하는 방식에 의해 계산될 수 있으며, 비교 창(즉, 윈도우 사이즈)의 일치하는 위치의 수를 제공하기 위하여 일치하는 위치의 수를 총 위치 수로 나누고, 결과에 100을 곱하여 서열 상동성의 백분율을 제공한다. 서열 상동성의 백분율을 결정하기 위한 정렬은 예를 들어 BLAST, BLAST-2, ALIGN 또는 Megalign (DNASTAR) 소프트웨어와 같은 공개적으로 이용 가능한 컴퓨터 소프트웨어를 사용하여 당업계에 알려진 다양한 방식으로 수행될 수 있다. 당업자는 비교되는 전장 서열 내에서 또는 표적 서열 영역 내에서 최대 정렬을 달성하는 데 필요한 임의의 알고리즘을 포함하여 서열 정렬을 위한 적절한 파라미터를 결정할 수 있다. 상기 상동성은 또한 다음 방법에 의해 결정될 수 있다: FASTA 및 BLAST. FASTA 알고리즘은 예를 들어 W. R. Pearson and D. J. Lipman's "Improved Tool for Biological Sequence Comparison", Proc. Natl. Acad. Sci., 85: 2444-2448, 1988; 및 D, J. Lipman and W. R. Pearson's "Fast and Sensitive Protein Similarity Search", Science, 227:1435-1441, 1989에 개시되어 있고, BLAST 알고리즘에 대한 설명은 S. Altschul, W. Gish, W. Miller, E. W. Myers and D. Lipman, "A Basic Local Alignment Search Tool", Journal of Molecular Biology, 215: 403-410, 1990를 참조할 수 있다.
본 발명에 있어서, 상기 C-글리코실전이효소 변이체는 야생형에 비해 기질 탄소의 글리코실화(glycosylation) 반응을 강화시키는 것을 특징으로 하는 할 수 있다.
본 발명에 있어서, 상기 변이된 아미노산은 효소의 활성 부위(acive site)에 위치하고, 상기 아미노산에 변이를 통하여 변이체의 기질 결합력이 야생형에 비해 10% 이상, 바람직하게는 20% 이상, 더욱 바람직하게는 50% 이상 향상된 것을 특징으로 할 수 있다.
본 발명의 일 실시예에서, 본 발명의 C-글리코실전이효소 변이체를 사용하는 경우, 다양한 폴리케타이드계 화합물(플라보케르메신 산(flavokermesic acid), 케르메신 산(kermesic acid), 알로에손(aloesone)) 또는 페닐프로파노이드계 화합물(나린제닌(naringenin), 아피제닌(apigenin) 또는 루테올린(luteolin))을 기질로 하여 기질의 종류에 관계없이 야생형에 비해 현저히 높은 C-글리코실화를 나타낼 수 있음을 확인하였다. 따라서, 본 발명의 C-글리코실전이효소 변이체는 다양한 화합물, 단백질을 기질로 하여, 상기 기질을 C-글리코실화 하기위한 용도로 사용될 수 있다. 예를 들어, 상기 폴리케타이드계 화합물 또는 페닐프로파노이드계 화합물의 C-글리코실화에 사용되는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 기질은 폴리케타이드 또는 페닐프로파노이드계 화합물을 제한없이 사용가능하며, 바람직하게는 일 실시예에서 확인한 것과 같이 플라보케르메신 산(flavokermesic acid), 케르메신 산(kermesic acid), 알로에손(aloesone), 나린제닌(naringenin), 아피제닌(apigenin) 또는 루테올린(luteolin)일 수 있으나, 이에 제한되는 것은 아니다.
상기 기질은 바람직하게는 플라보케르메신 산(flavokermesic acid) 또는 케르메신 산(kermesic acid) 이고, 상기 변이체는 상기 플라보케르메신 산(flavokermesic acid)의 2번 탄소를 글리코실화(glycosylation) 시키는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
상기 기질은 바람직하게는 알로에손(aloesone)이고, 상기 변이체는 상기 알로에손의 8번 탄소를 글리코실화(glycosylation)시키는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명은 다른 관점에서, 상기 C-글리코실전이효소 변이체를 암호화하는 핵산에 관한 것이다.
또 다른 관점에서, 본 발명은 상기 핵산을 포함하는 벡터에 관한 것이다.
또 다른 관점에서, 본 발명은 상기 핵산이 도입된 재조합 미생물에 관한 것이다.
본 발명에 있어서, 상기 재조합 미생물에는 숙주 미생물에 상기 핵산이 플라스미드 형태로 도입되어 있거나 게놈에 삽입되어 있는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 재조합 미생물은 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체 생산용인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 재조합 미생물은 본 발명의 C-글리코실전이효소의 기질로서, 폴리케타이드 및/또는 페닐프로파노이드를 생산하는 능력을 갖는 것을 특징으로 할 수 있으며, 상기 폴리케타이드 및/또는 페닐프로파노이드는 본 발명의 재조합 미생물이 발현하는 C-글리코실전이효소에 의해 당화되어 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체로 전환될 수 있다.
본 발명에 있어서, 상기 폴리케타이드는
라파마이신(rapamycin), 로바스타틴(lovastatin), 에리트로마이신(erythromycin), 리파마이신(rifamycin), 아버멕틴(avermectin), 겔다나마이신(geldanamycin), 이버멕틴(ivermectin), 칼리케아마이신(calicheamicin), 에포타일론(epothilone), 트라이아세트산 락톤(triacetic acid lactone) 및 6-메틸살리실산(6-methylsalicylic acid)로 구성된 군에서 선택되는 타입 I 폴리케타이드;
액티로노딘(actinorhodin), 독소루비신(doxorubicin), 다우노루비신(daunorubicin), 옥시테트라사이클린(oxytetracycline), SEK4, SEK4b, SEK34, SEK15, SEK26, FK506, DMAC, 아클라비논(aklavinone), 아클라노닉산(aklanonic acid), 엡실론 로도마이시논(epsilon-rhodomycinone), 독시사이클린(doxycycline), 안트라마이신(anthramycin), 테트라세노마이신(tetracenomycin), 카르민산(Carminic acid) 및 프레놀리신(frenolicin)로 구성된 군에서 선택되는 타입 II 폴리케타이드; 및
알로에신(aloesin), 알로에닌(aloenin), 바바로인(barbaloin), 5,7-다이하이드록시-2-메틸크로몬(5,7-dihydroxy-2-methylchromone) 및 알로에손(aloesone)로 구성된 군에서 선택되는 타입 III 폴리케타이드;로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 페닐프로파노이드는
액티노마이신(actinomycin), 바키트라신(bacitracin), 답토마이신(daptomycin), 밴코마이신(vancomycin), 테익소박틴(teixobactin), 타이로시딘(tyrocidine), 그라미시딘(gramicidin), 즈위터미신 A(zwittermicin A), 블레오마이신(bleomycin), 시클로스포린(ciclosporin), 피오버딘(pyoverdine), 엔테로박틴(enterobactin), 믹소켈린 A(myxochelin A), 인디고이딘(indigoidine), 사이아노피신(cyanophycin) 등으로 구성된 비리보솜 펩티드, 피노켐브린(pinocembrin), 다이하이드로캄페롤(dihydrokaempferol), 에리오딕티올(eriodictyol), 다이하이드로쿼세틴(dihydroquercetin), 코리페릴알코올(coniferyl alcohol), 실리빈 (silybin), 아이소실리빈 (isosilybin), 실리크리스틴 (silychristin), 실리나이드(silinide), 2,3-디하이드로실리빈(2,3-dehydrosilybin), 실리다이아닌(silydianin), 다이드제인(daidzein), 게니스타인(genistein), 아피게닌(apigenin), 루테올린(luteolin), 캄페롤(kaempferol), 쿼세틴(quercetin), 카테킨(catechin), 페라고니딘(pelargonidin), 시아니딘(cyanidin), 압젤레친(afzelechin), 미리세틴(myricetin), 피세틴(fisetin), 갈랑긴(galangin), 헤스페레틴(hesperetin), 탄제리틴(tangeritin), 델피니딘(delphinidin), 에피카테킨(epicatechin), 크리신(chrysin), 레스베라트롤(resveratrol) 및 나린제닌(naringenin)으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 숙주 미생물은 생산하고자 하는 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체의 전구체의 생산능을 갖는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체의 전구체는 폴리케타이드 및/또는 페닐프로파노이드 일 수 있으며, 바람직하게는 당화되지 않은 폴리케타이드 및/또는 페닐프로파노이드 일 수 있다.
본 발명에 있어서, 상기 숙주 미생물은 선천적으로 상기 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체의 전구체를 생산하거나, 유전자 조작을 통해 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체의 전구체를 생산하도록 제조된 재조합 미생물인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 재조합 미생물은 도입된 C-글리코실전이효소에 의한 배당체 전환율을 향상시키기 위해, 뉴클레오타이드, 바람직하게는 NTP-당(NTP-sugar)의 생산이 강화된 것을 특징으로 할 수 있다. 예를 들어, 본 발명의 재조합 미생물은 UTP-글루코오스-1-포스페이트 우리딜트렌스퍼라아제 (UTP-glucose-1-phosphate uridylyltransferase), 포스포글루코뮤타아제(phosphoglucomutase) 및/또는 뉴클레오시드-디포스페이트 키나제(nucleoside-diphosphate kinase)를 암호화하는 유전자의 발현이 강화된 것을 추가적인 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 UTP-글루코오스-1-포스페이트 우리딜트렌스퍼라아제, 포스포글루코뮤타아제 및/또는 뉴클레오시드-디포스페이트 키나제는 E. coli 유래;인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니며 숙주 균주에 따라 NTP-Sugar의 생성에 관여하는 유전자의 발현이 강화되는 것을 특징으로 할 수 있다.
본 발명의 일 실시예에서, 상기 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체의 전구체로, 플라보케르메신 산(flavokermesic acid), 케르메신 산(kermesic acid), 알로에손(aloesone), 나린제닌(naringenin), 아피제닌(apigenin) 또는 루테올린(luteolin)을 사용하였으나 이에 제한되는 것은 아니며, 상기 기재한 다양한 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체의 전구체는 당업계에 자명하게 공지되어 있으므로, 이로부터 용이하게 선택될 수 있다.
본 발명에서 용어 "핵산(nucleic acid)"은 일반적으로 자연 환경으로부터 분리되거나 인공적으로 합성된 분리된 형태의 뉴클레오티드, 데옥시리보뉴클레오티드 또는 리보뉴클레오티드 또는 임의의 길이의 이들의 유사체를 의미한다. 본 발명의 핵산은 분리될 수 있다. 예를 들어, 이는 다음과 같은 방법으로 생산 또는 합성될 수 있다: (i) 중합 효소 연쇄 반응 (PCR) 증폭과 같은 시험관 내 증폭, (ii) 클론 재조합, (iii) 정제, 예를 들어 제한 효소 분해에 의한 분별 (fractionation) 및 겔 전기 영동, 또는 (iv) 합성, 예를 들어 화학적 합성. 일부 구체예에서, 상기 단리된 핵산은 재조합 DNA 기술에 의해 제조된 핵산 분자이다. 본 발명에서, 상기 변이체를 암호화하는 핵산은 당업계에 공지된 다양한 방법에 의해 제조될 수 있다. 이러한 방법은 제한 단편 작업 또는 합성 올리고 뉴클레오티드를 사용하는 중첩 연장 PCR(overlap extension PCR)을 포함하지만 이에 한정되지는 않는다. 제조 방법과 원리는 Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989; 및 Ausube et al. Current Protocols in Molecular Biology, Greene Publishing and Wiley-Interscience, New York NY, 1993에서 확인할 수 있다.
본 발명에서, 용어 "플라스미드(plasmid)"는 벡터(vector)와 상호 교환적으로 사용될 수 있으며, 일반적으로 삽입된 핵산을 숙주 세포(이는 숙주 미생물을 포함함)로 전달하여, 숙주 세포나 미생물에서 자가 복제가 가능한 핵산 분자를 지칭한다. 상기 벡터는 주로 DNA 또는 RNA를 세포에 삽입하는데 사용되는 벡터, 주로 DNA 또는 RNA 복제에 사용되는 벡터, 및 DNA 또는 RNA의 전사 및/또는 번역 발현에 주로 사용되는 벡터를 포함할 수 있다. 상기 벡터는 또한 다중의 기능을 갖는 벡터를 포함한다. 상기 벡터는 적합한 숙주 세포에 도입될 때 폴리펩티드로 전사 및 번역될 수 있는 폴리뉴클레오티드일 수 있다. 일반적으로, 상기 벡터를 함유하는 적합한 숙주 세포를 배양함으로써, 상기 벡터는 원하는 발현 생성물을 생산할 수 있다. 본 발명에서, 상기 벡터는 상기 핵산 중 하나 이상을 포함할 수 있다. 예를 들어, 상기 벡터는 상기 변이체를 암호화하는데 필요한 모든 핵산 분자를 포함할 수 있다. 이 경우, 본 출원의 융합 단백질을 얻기 위해 오직 하나의 벡터만 필요하다. 일부 구체예에서, 상기 벡터는 상기 변이체의 일부를 암호화하는 핵산 분자를 포함할 수 있다. 대안적으로, 상기 벡터는 예를 들어 상기 재조합 미생물에서 유전자 발현을 조절하기 위한 핵산 분자를 포함할 수 있다. 이때, 본 발명의 재조합 미생물을 얻기 위해서는 2 개 이상의 서로 다른 벡터가 필요할 수 있다.
또한, 상기 벡터는 적절한 숙주 세포 및 적절한 조건 하에서 벡터를 선별하는 마커 유전자와 같은 다른 유전자를 포함할 수도 있다. 또한, 상기 벡터는 적절한 숙주에서 코딩 영역이 적절하게 발현되도록 하는 발현 제어 요소(control element)를 포함할 수도 있다. 이러한 제어 요소는 당업자에게 잘 알려져있다. 예를 들어, 이들은 프로모터, 리보솜 결합 부위, 인핸서 및 유전자 전사 또는 mRNA 번역을 조절하는 기타 제어 요소를 포함할 수 있다. 일부 구체예에서, 상기 발현 제어 서열은 조절 요소(regulatory element)이다. 상기 발현 조절 서열의 특정 구조는 종 또는 세포 유형의 기능에 따라 달라질 수 있지만, 일반적으로 TATA 박스, 캡피드 서열(capped sequences), CAAT 서열 등과 같은 전사 및 번역 개시에 관여하는 5 ' 비-전사 서열 및 5' 및 3' 비-번역 서열을 포함한다. 예를 들어, 5' 비-전사 발현 조절 서열은 프로모터 영역을 포함할 수 있고, 프로모터 영역은 기능적으로 연결된 핵산의 전사 조절을 위한 프로모터 서열을 포함할 수 있다. 본 발명에서, 상기 벡터는 pET-30a-c(+), pET-22b(+), pCDFDuet-1, pACYCDuet-1, pRSFDuet-1, pBBR1MCS, pSC101, pTac15K, pTrc99A, pCOLADuet-1 및 pBR322로 구성된 군에서 선택될 수 있으나, 이에 한정되지는 않으며, 통상의 기술자는 상기한 벡터 이외에도 본 기술분야에서 통상적으로 사용되는 벡터를 적절히 선택하여 사용할 수 있을 것이다.
본 발명에서 용어 "숙주 세포", "세포", "숙주 미생물" 및 "숙주"는 상호 교환적으로 사용될 수 있으며, 일반적으로 본 발명의 핵산을 포함하거나 포함할 수 있는 플라스미드 또는 벡터 또는 본 발명의 변이체 또는 발현이 조절되는 단백질이나 폴리펩티드들을 발현할 수 있는 개별 세포, 세포주, 미생물 또는 세포 배양물을 지칭한다. 상기 숙주 세포는 단일 숙주 세포의 자손을 포함할 수 있다. 자연적, 우발적(accidental) 또는 고의적(deliberate) 돌연변이로 인해, 자손 세포와 원래의 모세포는 본 발명의 목적 단백질이나 폴리펩티드를 발현할 수 있는 한, 형태나 게놈이 반드시 완전히 동일할 수는 없다. 상기 숙주 세포는 본 발명의 벡터로 시험관 내 세포를 형질 감염시킴으로써 수득될 수 있다. 상기 숙주 세포는 바람직하게는 미생물 일 수 있으며, 예컨대, 대장균(E. coli.), 리조비움(Rhizobium), 비피도박테리움 (Bifidobacterium), 칸디다 (Candida), 에르위니아(Erwinia), 엔테로박터 (Enterobacter), 파스테렐라(Pasteurella), 맨하이미아 (Mannheimia), 액티노바실러스 (Actinobacillus), 아그레가티박터 (Aggregatibacter), 잔토모나스(Xanthomonas), 비브리오(Vibrio), 아조토박터(Azotobacter), 애시네토박터(Acinetobacter), 랄스토니아(Ralstonia), 아그로박테리움(Agrobacterium), 로도박터(Rhodobacter), 자이모모나스(Zymomonas), 바실러스(Bacillus), 스테필로코커스(Staphylococcus), 락토코커스(Lactococcus), 스트렙토코커스(Streptococcus), 락토바실러스(Lactobacillus), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 스트렙토마이세스(Streptomyces), 비피도박테리움(Bifidobacterium), 사이아노박테리움(Cyanobacterium) 및 사이클로박테리움(Cyclobacterium)로 구성된 군에서 선택될 수 있으나, 이에 한정되지는 않는다.
한편, 본 발명에서는 상기 C-글리코실전이효소 변이체를 발현할 수 있는 재조합 미생물을 사용하여, 다양한 폴리케타이드 배당체 또는 페닐프로파노이드 배당체를 효과적으로 생산해 낼 수 있음을 확인하였다.
따라서, 본 발명은 또 다른 관점에서, 본 발명의 C-글리코실전이효소 변이체를 암호화하는 핵산이 도입된 폴리케타이드 배당체 또는 페닐프로파노이드 배당체의 생산용 재조합 미생물에 관한 것이다.
본 발명에 있어서, 상기 폴리케타이드 배당체는 타입 I 폴리케타이드 배당체, 타입 II 폴리케타이드 배당체, 또는 타입 III 폴리케타이드 배당체일 수 있다.
본 발명에 있어서, 상기 폴리케타이드는
라파마이신(rapamycin), 로바스타틴(lovastatin), 에리트로마이신(erythromycin), 리파마이신(rifamycin), 아버멕틴(avermectin), 겔다나마이신(geldanamycin), 이버멕틴(ivermectin), 칼리케아마이신(calicheamicin), 에포타일론(epothilone), 트라이아세트산 락톤(triacetic acid lactone) 및 6-메틸살리실산(6-methylsalicylic acid)로 구성된 군에서 선택되는 타입 I 폴리케타이드;
액티로노딘(actinorhodin), 독소루비신(doxorubicin), 다우노루비신(daunorubicin), 옥시테트라사이클린(oxytetracycline), SEK4, SEK4b, SEK34, SEK15, SEK26, FK506, DMAC, 아클라비논(aklavinone), 아클라노닉산(aklanonic acid), 엡실론 로도마이시논(epsilon-rhodomycinone), 독시사이클린(doxycycline), 안트라마이신(anthramycin), 테트라세노마이신(tetracenomycin), 카르민산(Carminic acid) 및 프레놀리신(frenolicin)로 구성된 군에서 선택되는 타입 II 폴리케타이드; 및
알로에신(aloesin), 알로에닌(aloenin), 바바로인(barbaloin), 5,7-다이하이드록시-2-메틸크로몬(5,7-dihydroxy-2-methylchromone) 및 알로에손(aloesone)로 구성된 군에서 선택되는 타입 III 폴리케타이드;로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 폴리케타이드 배당체 또는 페닐프로파노이드 배당체의 생산용 재조합 미생물은 각 배당체의 전구체를 생산하는 것을 특징으로 할 수 있다. 예를 들어, 상기 재조합 미생물은 각 배당체의 전구체인 폴리케타이드 또는 페닐프로파노이드를 생산하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 폴리케타이드 배당체 또는 페닐프로파노이드 배당체의 생산용 재조합 미생물은 추가적인 유전자 도입을 통해 폴리케타이드 폴리케타이드 또는 페닐프로파노이드를 생산하는 것을 특징으로 할 수 있다. 유전자 도입을 통한 폴리케타이드 합성능을 갖는 재조합 미생물은 예를 들어, 본 발명자들의 공개 논문인 Yang, D., Kim, W.J., Yoo, S.M., Choi, J.H., Ha, S.H., Lee, M.H., and Lee, S.Y. "Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria", Proc. Natl. Acad. Sci. (PNAS), 115 (40) 9835-9844 (https://doi.org/10.1073/pnas.1808567115) (2018.10.2) 및 대한민국 등록특허 제10-2187682호에 기재된 유전자 및 방법으로 제조가능하나, 이에 제한되는 것은 아니다. 통상의 기술자는 당업계에 기재된 다양한 폴리케타이드 또는 페닐프로파노이드의 합성경로 및 이에 관여하는 유전자를 사용하여 다양한 숙주 미생물에 도입함으로써, 폴리케타이드 또는 페닐프로파노이드 합성능을 갖는 재조합 미생물을 제작할 수 있다.
본 발명에 있어서, 상기 폴리케타이드 배당체 또는 페닐프로파노이드 배당체의 생산용 재조합 미생물은 폴리케타이드 합성효소 또는 페닐프로파노이드 합성효소가 도입된 것을 추가적인 특징으로 할 수 있다.
본 발명에 있어서, 상기 폴리케타이드 합성효소는 예를 들어, 타입 I 폴리케타이드 합성효소, 타입 II 폴리케타이드 합성효소 또는 타입 III 폴리케타이드 합성효소일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 폴리케타이드 배당체 또는 페닐프로파노이드 배당체의 생산용 재조합 미생물이 각 배당체의 전구체를 생산하지 않는 경우, 배양 배지에 각 배당체의 전구체를 첨가하여 상기 폴리케타이드 배당체 또는 페닐프로파노이드 배당체를 생산할 수 있다.
본 발명에 있어서, 상기 재조합 미생물은 타입 I 폴리케타이드 배당체의 생산용인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 타입 I 폴리케타이드 배당체의 생산용 재조합 미생물은 타입 I 폴리케타이드 배당체의 전구체를 생산하는 것을 특징으로 할 수 있다. 예를 들어, 타입 I 폴리케타이드 배당체의 전구체는 라파마이신(rapamycin), 로바스타틴(lovastatin), 에리트로마이신(erythromycin), 리파마이신(rifamycin) 등일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 타입 I 폴리케타이드 배당체의 생산용 재조합 미생물은 추가적인 유전자 도입을 통해 타입 I 폴리케타이드 배당체의 전구체를 생산하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 타입 I 폴리케타이드 배당체의 생산용 재조합 미생물은 예를 들어,
(i) 타입 I 폴리케타이드 생합성 효소를 암호화하는 유전자가 추가로 도입된 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 타입 I 폴리케타이드 생합성 효소는 다양한 단백질 및 유전자 데이터베이스로부터 쉽게 선택될 수 있다.
따라서, 본 발명의 C-글리코실전이효소 변이체를 암호화하는 핵산; 및 타입 I 폴리케타이드 생합성 효소 유전자;가 도입되는 숙주 미생물은 보조효소 A, 바람직하게는 말로닐-CoA 또는 아세틸-CoA의 생산능을 갖는 것을 특징으로 할 수 있다.
따라서, 본 발명에 있어서, 상기 재조합 미생물은 보조효소 A의 생산이 강화된 것을 특징으로 할 수 있다. 예를 들어, 본 발명에 있어서, 상기 재조합 미생물은 (ii) pabA 유전자의 발현이 억제 또는 약화된 것을 추가적인 특징으로 할 수 있으나, 이에 제한되는 것은 아니며, 당업계에 공지된 다양한 보조효소 A의 대량생산 전략을 이용하여 보조효소 A의 생산이 강화된 재조합 미생물을 제조할 수 있다.
본 발명에 있어서, 상기 재조합 미생물은 도입된 C-글리코실전이효소에 의한 배당체 전환율을 향상시키기 위해, 뉴클레오타이드, 바람직하게는 NTP-당(NTP-sugar)의 생산이 강화된 것을 특징으로 할 수 있다. 예를 들어, 본 발명에 있어서, 상기 재조합 미생물은 (iii) UTP-글루코오스-1-포스페이트 우리딜트렌스퍼라아제 (UTP-glucose-1-phosphate uridylyltransferase), 포스포글루코뮤타아제(phosphoglucomutase) 및/또는 뉴클레오시드-디포스페이트 키나제(nucleoside-diphosphate kinase)를 암호화하는 유전자의 발현이 강화된 것을 추가적인 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 재조합 미생물은 타입 II 폴리케타이드 배당체의 생산용인 것을 특징으로 할 수 있다. 예를 들어, 상기 타입 II 폴리케타이드 배당체는 카르민산인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 타입 II 폴리케타이드 배당체의 생산용 재조합 미생물은 타입 II 폴리케타이드 배당체의 전구체를 생산하는 것을 특징으로 할 수 있다. 예를 들어, 타입 II 폴리케타이드 배당체의 전구체는 플라보케르민산 또는 케르민산인 것을 할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 타입 II 폴리케타이드 배당체의 생산용 재조합 미생물은 추가적인 유전자 도입을 통해 타입 II 폴리케타이드 배당체의 전구체를 생산하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 타입 II 폴리케타이드 배당체의 생산용 재조합 미생물은 (i) 타입 II 폴리케타이드 생합성 효소를 암호화하는 유전자가 추가로 도입된 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 타입 II 폴리케타이드 배당체, 바람직하게는 카르민산의 생산용 재조합 미생물은 예를 들어,
(i) 타입 II 폴리케타이드 생합성 효소를 암호화하는 유전자;
(ii) 4'-포스포판테인닐 전이효소 (4'-phosphopantetheinyl transferase)를 암호화하는 유전자;
(iii) 사이클라아제(cyclase)를 암호화하는 유전자;
(iv) 아세틸-CoA 카르복실화 효소 (acetyl-CoA carboxylase)를 암호화하는 유전자; 및
(v) 아클라비네온 12-수산화효소 (aklavinone 12-hydroxylase)를 암호화하는 유전자로, 구성된 군에서 선택되는 어느 하나 이상의 유전자가 추가로 도입되는 것을 특징으로 할 수 있으며, 바람직하게는 상기 유전자가 전부 도입되는 것을 특징으로 할 수 있다.
도 1에 도시된 것과 같이, 본 발명의 C-글리코실전이효소의 기질인 타입 II 폴리케타이드는 예를 들어, 말로닐-CoA 또는 아세틸-CoA와 같은 보조효소 A(Coenzyme A, CoA)로부터 상기 도입된 유전자가 암호화하는 효소에 의해 본 발명의 C-글리코실전이효소의 기질인 타입 II 폴리케타이드로 변환될 수 있다. 따라서, 상기 C-글리코실전이효소 변이체를 암호화하는 핵산; 및 타입 II 폴리케타이드 생합성 효소 유전자 또는 상기 (i) 내지 (v)의 유전자;가 도입되는 숙주 미생물은 보조효소 A, 바람직하게는 말로닐-CoA 또는 아세틸-CoA의 생산능을 갖는 것을 특징으로 할 수 있다.
본 발명의 실시예에서, pabA 유전자의 발현 억제 또는 약화를 통해 보조효소 A가 축적되며, 결과적으로, 본 발명의 C-글리코실전이효소의 전구체인 폴리케타이드의 합성이 향상되는 것을 확인하였다.
따라서, 본 발명에 있어서, 상기 재조합 미생물은 보조효소 A의 생산이 강화된 것을 특징으로 할 수 있다. 예를 들어, 본 발명에 있어서, 상기 재조합 미생물은 (ii) pabA 유전자의 발현이 억제 또는 약화된 것을 추가적인 특징으로 할 수 있으나, 이에 제한되는 것은 아니며, 당업계에 공지된 다양한 보조효소 A의 대량생산 전략을 이용하여 보조효소 A의 생산이 강화된 재조합 미생물을 제조할 수 있다.
본 발명에 있어서, 상기 재조합 미생물은 도입된 C-글리코실전이효소에 의한 배당체 전환율을 향상시키기 위해, 뉴클레오타이드, 바람직하게는 NTP-당(NTP-sugar)의 생산이 강화된 것을 특징으로 할 수 있다. 예를 들어, 본 발명에 있어서, 상기 재조합 미생물은 (iii) UTP-글루코오스-1-포스페이트 우리딜트렌스퍼라아제 (UTP-glucose-1-phosphate uridylyltransferase), 포스포글루코뮤타아제(phosphoglucomutase) 및/또는 뉴클레오시드-디포스페이트 키나제(nucleoside-diphosphate kinase)를 암호화하는 유전자의 발현이 강화된 것을 추가적인 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 UTP-글루코오스-1-포스페이트 우리딜트렌스퍼라아제, 포스포글루코뮤타아제 및/또는 뉴클레오시드-디포스페이트 키나제는 E. coli 유래;인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니며 숙주 균주에 따라 NTP-Sugar의 생성에 관여하는 유전자의 발현이 강화되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 타입 II 폴리케타이드 생합성 효소를 암호화하는 유전자는 antD (ketosynthase), antE (chain-length factor), antF (ACP), antB (phosphopantetheinyl transferase) 및 antG (malonyl-CoA:ACP malonyltransferase)로 구성된 군에서 선택되는 어느 하나 이상의 유전자 또는 이들의 조합인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 아클라비네온 12-수산화효소는 서열번호 2로 표시되는 아미노산 서열에서 217번째 아미노산이 프롤린에서 라이신으로의 변이(P217K)를 포함하는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에 있어서, 상기 타입 II 폴리케타이드 생합성 효소는 P. luminescens 유래;
상기 4'-포스포판테인닐 전이효소는 Bacillus subtilis 또는 P. luminescens 유래;
상기 사이클라아제는 Streptomyces sp. 유래;
상기 아세틸-CoA 카르복실화 효소는 Corynebacterium glutamicum 유래; 및/또는
상기 아클라비네온 12-수산화효소는 Streptomyces peucetius 유래;인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 재조합 미생물은 타입 III 폴리케타이드 배당체의 생산용인 것을 특징으로 할 수 있다. 예를 들어 본 발명에 있어서, 상기 타입 III 폴리케타이드 배당체는 알로에신인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 타입 III 폴리케타이드 배당체의 생산용 재조합 미생물은 타입 III 폴리케타이드 배당체의 전구체를 생산하는 것을 특징으로 할 수 있다. 예를 들어, 타입 III 폴리케타이드 배당체의 전구체는 알로에손인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 타입 III 폴리케타이드 배당체의 생산용 재조합 미생물은 추가적인 유전자 도입을 통해 타입 III 폴리케타이드 배당체의 전구체를 생산하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 타입 III 폴리케타이드 배당체의 생산용 재조합 미생물은 예를 들어,
(i) 타입 III 폴리케타이드 생합성 효소를 암호화하는 유전자가 도입된 것을 특징으로 할 수 있다. 예를 들어, 상기 타입 III 폴리케타이드 생합성 효소는 알로에손 합성효소(aloesone synthase)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 알로에손 합성효소는 R. palmatum 유래인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
도 8에 도시된 것과 같이, 본 발명의 C-글리코실전이효소의 기질인 타입 III 폴리케타이드(예, 알로에손)는 예를 들어, 말로닐-CoA 또는 아세틸-CoA와 같은 보조효소 A(Coenzyme A, CoA)로부터 상기 도입된 유전자가 암호화하는 효소에 의해 본 발명의 C-글리코실전이효소의 기질인 타입 III 폴리케타이드로 변환될 수 있다. 따라서, C-글리코실전이효소 변이체를 암호화하는 핵산; 및 타입 III 폴리케타이드 생합성 효소 유전자;가 도입되는 숙주 미생물은 보조효소 A, 바람직하게는 말로닐-CoA 또는 아세틸-CoA의 생산능을 갖는 것을 특징으로 할 수 있다.
따라서, 본 발명에 있어서, 상기 재조합 미생물은 보조효소 A의 생산이 강화된 것을 특징으로 할 수 있다. 예를 들어, 본 발명에 있어서, 상기 재조합 미생물은 (ii) pabA 유전자의 발현이 억제 또는 약화된 것을 추가적인 특징으로 할 수 있으나, 이에 제한되는 것은 아니며, 당업계에 공지된 다양한 보조효소 A의 대량생산 전략을 이용하여 보조효소 A의 생산이 강화된 재조합 미생물을 제조할 수 있다.
본 발명에 있어서, 상기 재조합 미생물은 도입된 C-글리코실전이효소에 의한 배당체 전환율을 향상시키기 위해, 뉴클레오타이드, 바람직하게는 NTP-당(NTP-sugar)의 생산이 강화된 것을 특징으로 할 수 있다. 예를 들어, 본 발명에 있어서, 상기 재조합 미생물은 (iii) UTP-글루코오스-1-포스페이트 우리딜트렌스퍼라아제 (UTP-glucose-1-phosphate uridylyltransferase), 포스포글루코뮤타아제(phosphoglucomutase) 및/또는 뉴클레오시드-디포스페이트 키나제(nucleoside-diphosphate kinase)를 암호화하는 유전자의 발현이 강화된 것을 추가적인 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 UTP-글루코오스-1-포스페이트 우리딜트렌스퍼라아제, 포스포글루코뮤타아제 및/또는 뉴클레오시드-디포스페이트 키나제는 E. coli 유래;인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니며 숙주 균주에 따라 NTP-Sugar의 생성에 관여하는 유전자의 발현이 강화되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 재조합 미생물은 페닐프로파노이드 배당체의 생산용인 것을 특징으로 할 수 있다. 예를 들어, 상기 페닐프로파노이드 배당체는 비텍신(Vitexin), naringenin-6-C-glucoside 또는 isoorientin인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 페닐프로파노이드 배당체의 생산용 재조합 미생물은 상기 페닐프로파노이드 배당체의 전구체를 생산하는 것을 특징으로 할 수 있다. 예를 들어, 상기 페닐프로파노이드 배당체의 전구체는 아피제닌(apigenin), 나린제닌(naringenin) 또는 루테올린(luteolin)인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 페닐프로파노이드 배당체의 생산용 재조합 미생물은 추가적인 유전자 도입을 통해 페닐프로파노이드 배당체의 전구체를 생산하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 페닐프로파노이드 배당체의 생산용 재조합 미생물은 예를 들어,
(i) 페닐프로파노이드 생합성 효소를 암호화하는 유전자가 추가로 도입된 것을 특징으로 할 수 있다.
페닐프로파노이드는, 말로닐-CoA 또는 방향족-CoA(예, 쿠마로일-CoA)와 같은 보조효소 A(Coenzyme A, CoA)로부터 상기 도입된 유전자가 암호화하는 효소에 의해 본 발명의 C-글리코실전이효소의 기질인 페닐프로파노이드로 변환될 수 있다. 따라서, 상기 C-글리코실전이효소 변이체를 암호화하는 핵산; 및 페닐프로파노이드 생합성 효소 유전자가 도입되는 숙주 미생물은 보조효소 A, 바람직하게는 말로닐-CoA 또는 쿠마로일-CoA의 생산능을 갖는 것을 특징으로 할 수 있다.
따라서, 본 발명에 있어서, 상기 재조합 미생물은 보조효소 A의 생산이 강화된 것을 특징으로 할 수 있다. 예를 들어, 본 발명에 있어서, 상기 재조합 미생물은 (ii) pabA 유전자의 발현이 억제 또는 약화된 것을 추가적인 특징으로 할 수 있으나, 이에 제한되는 것은 아니며, 당업계에 공지된 다양한 보조효소 A의 대량생산 전략을 이용하여 보조효소 A의 생산이 강화된 재조합 미생물을 제조할 수 있다.
본 발명에 있어서, 상기 재조합 미생물은 도입된 C-글리코실전이효소에 의한 배당체 전환율을 향상시키기 위해, 뉴클레오타이드, 바람직하게는 NTP-당(NTP-sugar)의 생산이 강화된 것을 특징으로 할 수 있다. 예를 들어, 본 발명에 있어서, 상기 재조합 미생물은 (iii) UTP-글루코오스-1-포스페이트 우리딜트렌스퍼라아제 (UTP-glucose-1-phosphate uridylyltransferase), 포스포글루코뮤타아제(phosphoglucomutase) 및/또는 뉴클레오시드-디포스페이트 키나제(nucleoside-diphosphate kinase)를 암호화하는 유전자의 발현이 강화된 것을 추가적인 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 UTP-글루코오스-1-포스페이트 우리딜트렌스퍼라아제, 포스포글루코뮤타아제 및/또는 뉴클레오시드-디포스페이트 키나제는 E. coli 유래;인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니며 숙주 균주에 따라 NTP-Sugar의 생성에 관여하는 유전자의 발현이 강화되는 것을 특징으로 할 수 있다.
예를 들어 본 발명의 재조합 미생물은, 본 발명의 C-글리코실전이효소를 암호화하는 핵산이 도입된 재조합 미생물에서,
(i) 타입 II 폴리케타이드 생합성 효소를 암호화하는 유전자의 도입;
(ii) 4'-포스포판테인닐 전이효소 (4'-phosphopantetheinyl transferase)를 암호화하는 유전자의 도입;
(iii) 사이클라아제(cyclase)를 암호화하는 유전자의 도입;
(iv) 아세틸-CoA 카르복실화 효소 (acetyl-CoA carboxylase)를 암호화하는 유전자의 도입;
(v) 아클라비네온 12-수산화효소 (aklavinone 12-hydroxylase)를 암호화하는 유전자의 도입;
(vi) UTP-글루코오스-1-포스페이트 우리딜트렌스퍼라아제 (UTP-glucose-1-phosphate uridylyltransferase), 포스포글루코뮤타아제(phosphoglucomutase) 및/또는 뉴클레오시드-디포스페이트 키나제(nucleoside-diphosphate kinase)를 암호화하는 유전자의 발현 강화; 및
(vii) pabA 유전자의 발현 약화; 로 구성된 군에서 선택되는 어느 하나 이상의 유전자 도입 또는 유전자 발현이 조절되어 있는, 카르민산 생산용 재조합 미생물인 것을 특징으로 할 수 있다.
또 다른 예를 들어, 본 발명의 재조합 미생물은, 본 발명의 C-글리코실전이효소를 암호화하는 핵산이 도입된 재조합 미생물에서,
(i) 알로에손 합성효소(aloesone synthase)를 암호화하는 유전자의 도입;
(ii) pabA 유전자의 발현 약화; 및
(iii) 글루코오스 6-포스페이트 1-디하이드로게나아제(glucose 6-phosphate 1-dehydrogenase)를 암호화하는 유전자의 발현 강화;로 구성된 군에서 선택되는 어느 하나 이상의 유전자 도입 또는 유전자 발현이 조절되어 있는, 알로에신 생산용 재조합 미생물인 것을 특징으로 할 수 있다.
또 다른 예를 들어, 본 발명의 재조합 미생물은, 본 발명의 C-글리코실전이효소를 암호화하는 핵산이 도입된 재조합 미생물에서,
UTP-글루코오스-1-포스페이트 우리딜트렌스퍼라아제 (UTP-glucose-1-phosphate uridylyltransferase), 포스포글루코뮤타아제(phosphoglucomutase) 및/또는 뉴클레오시드-디포스페이트 키나제(nucleoside-diphosphate kinase)를 암호화하는 유전자의 발현이 강화되어 있는, 폴리케타이드 배당체 또는 페닐프로파노이드 배당체 생산용 재조합 미생물인 것을 특징으로 할 수 있다.
본 발명에서, 유전자의 도입이란 외래의 유전자가 숙주 미생물에 벡터와 같은 수단을 통해 도입되거나, 또는 직접적으로 숙주 미생물의 게놈에 삽입된 것을 의미한다.
본 발명에서, 유전자의 발현 강화란 상기 유전자에 의해 생성되는 펩타이드 또는 단백질이 숙주 미생물에 없는 경우 이를 인위적으로 숙주 미생물에서 발현하도록 하여 펩타이드 또는 단백질의 활성 또는 기능을 갖도록 하는 것을 의미하고, 상기 유전자가 이미 숙주 미생물에 있는 경우 그 유전자의 발현을 조절하는 내재적 프로모터를 강력한 상시 발현 프로모터로 교체하거나, 상기 유전자를 외부에서 복제능이 강한 벡터 등을 이용해 추가로 도입하는 등 유전자의 카피 수를 증가시키는 등의 일련의 방법을 사용하여 상기 유전자의 과발현 등을 유도하거나 상기 유전자에 의해 생성되는 펩타이드 또는 단백질의 활성 또는 기능이 내재적 활성 또는 기능에 비하여 강화되도록 변형하는 것을 의미한다.
본 발명에서, 유전자의 발현 약화란 해당 유전자의 일부 또는 전체염기를 변이, 치환 또는 삭제시키거나, 상기 유전자 발현을 억제할 수 있는 억제제(예컨대, sRNA 등)의 도입을 통해 해당유전자가 발현되지 않도록 하거나 발현되더라도 활성 또는 기능을 나타내지 못하도록 하는 것으로, 상기 유전자에 의해 생성되는 펩타이드 또는 단백질의 활성 또는 기능이 내재적 활성 또는 기능에 비하여 약화되도록 변형됨을 포괄하는 개념이다.
본 발명에서 사용되는 용어 "내재적 활성 또는 기능"이란, 본래 미생물이 변형되지 않은 상태에서 가지고 있는 효소, 펩타이드, 단백질 등이 보유하는 활성 또는 기능을 의미한다.
본 발명에서 "내재적 활성 또는 기능에 비하여 강화되도록 변형"되었다는 것은, 활성 또는 기능을 나타내는 유전자가 도입되거나 또는 당해 유전자의 카피수 증가(예를 들어, 유전자가 도입된 플라스미드를 이용한 발현), 상기 유전자 발현의 억제 조절 인자의 결실 또는 발현조절 서열의 변형, 예를 들어 개량된 프로모터의 사용 등과 같이, 조작이 이루어지기 전의 미생물이 가지는 활성에 비하여 조작이 이루어진 이후의 미생물이 가지고 있는 활성 또는 기능이 새로이 발생하거나 증가된 상태를 의미한다.
본 발명에서 "내재적 활성 또는 기능에 비하여 약화되도록 변형"되었다는 것은, 활성 또는 기능을 나타내는 유전자의 결실이나 유전자의 불활성화(예를 들어, 돌연변이 유전자로의 치환), 유전자 발현의 약화(예를 들어, 약한 프로모터로의 치환, siRNA, gRNA, sRNA 등의 도입, 시작 코돈을 ATG에서 GTG 등으로의 치환), 유전자에 의해 발현된 펩타이드의 기능 억제(예를 들어, 비경쟁적 억제자 또는 경쟁적 억제자 첨가) 등과 같은 조작이 이루어지기 전의 미생물이 가지는 기능에 비하여 조작이 이루어진 이후의 미생물이 가지고 있는 기능이 감소되거나 상실된 상태를 의미한다.
본 발명에서, 유전자 또는 프로모터의 "교체"란 종래 유전자 또는 프로모터를 제거하고 이와 상이한 유전자 (예컨대, 변이 유전자 등) 또는 강도가 상이한 프로모터를 새로이 도입하는 것을 의미하는 것으로, 상기 종래 유전자 또는 프로모터를 제거한다는 것은 해당 유전자 또는 프로모터를 결실시키는 것뿐만 아니라 그 기능을 억제시키거나 감소시키는 것도 포괄하는 개념이다.
본 발명에서 "과발현"이란 보통상태에서 세포내 해당유전자가 발현되는 수준보다 높은 수준의 발현을 일컫는 것으로써, 유전체 상에 존재하는 유전자의 프로모터를 강력한 프로모터로 치환하거나, 발현벡터에 해당유전자를 클로닝하여 세포에 형질전환시키는 방법을 통해 발현량을 증가시키는 것 등을 포함하는 개념이다.
본 발명에서 "벡터(vector)"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 "플라스미드(plasmid)" 및 "벡터(vector)"는 때로 상호 교환적으로 사용된다. 본 발명의 목적상, 플라스미드 벡터를 이용하는 게 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수 개에서 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단 부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다. 라이게이션 후에, 벡터는 적절한 숙주세포로 형질전환되어야 한다. 형질전환은 칼슘 클로라이드 방법 또는 전기천공법(electroporation) (Neumann, et al., EMBO J., 1:841, 1982) 등을 사용해서 용이하게 달성될 수 있다.
상기 벡터의 프로모터는 구성적 또는 유도성일 수 있으며, 본 발명의 효과를 위해 추가적으로 변형될 수 있다. 또한 발현벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택성 마커를 포함하고, 복제 가능한 발현벡터인 경우 복제 기원(Ori)을 포함한다. 벡터는 자가 복제하거나 숙주 게놈 DNA에 통합될 수 있다. 바람직하게는 벡터 내로 삽입되어 전달된 유전자가 숙주세포의 게놈 내로 비가역적으로 융합되어 세포 내에서 유전자 발현이 장기간 안정적으로 지속되도록 하는 것이 바람직하다.
염기서열은 다른 핵산 서열과 기능적 관계로 배치될 때 "작동가능하게 연결(operably linked)"된다. 이것은 적절한 분자(예를 들면, 전사 활성화 단백질)가 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열(pre-sequence) 또는 분비 리더 (leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능 하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, "작동가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는 것을 의미한다. 그러나, 인핸서(enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용한다.
당업계에 주지된 바와 같이, 숙주세포에서 형질전환 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및/또는 해독 발현 조절 서열에 작동가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및/또는 해당 유전자는 세균 선택 마커 및 복제 개시점(replication origin)을 같이 포함하고 있는 하나의 재조합벡터 내에 포함되게 된다. 숙주세포가 진핵세포인 경우에는, 재조합벡터는 진핵 발현숙주 내에서 유용한 발현 마커를 더 포함하여야만 한다.
상술한 재조합 벡터에 의해 형질전환된 숙주 세포는 본 발명의 또 다른 측면을 구성한다. 본원 명세서에 사용된 용어 "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체 외 인자로서 또는 염색체 통합완성에 의해 복제 가능하게 되는 것을 의미한다.
물론 모든 벡터가 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다.
본 발명은 또 다른 관점에서, 다음의 단계를 포함하는 폴리케타이드 배당체 또는 페닐프로파노이드 배당체의 제조방법에 관한 것이다:
(a) 본 발명의 C-글리코실전이효소 변이체를 암호화하는 핵산이 도입된 재조합 미생물을 배양하여, 폴리케타이드 배당체 또는 페닐프로파노이드 배당체를 생산하는 단계; 및
(b) 상기 생성된 폴리케타이드 배당체 또는 페닐프로파노이드 배당체를 회수하는 단계.
본 발명에 있어서, 상기 (a) 단계는 폴리케타이드 배당체 또는 페닐프로파노이드 배당체의 전구체를 첨가하여 C-글리코실전이효소 변이체를 암호화하는 핵산이 도입된 재조합 미생물을 배양하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 (a) 단계의 C-글리코실전이효소 변이체를 암호화하는 핵산이 도입된 재조합 미생물은 폴리케타이드 배당체 또는 페닐프로파노이드 배당체의 전구체의 생산능을 갖는 숙주 미생물에 C-글리코실전이효소 변이체를 암호화하는 핵산이 도입된 것을 특징으로 할 수 있으며, 상기 숙주 미생물은 외래 유전자의 도입 또는 유전자 발현이 조절된 재조합 미생물인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 C-글리코실전이효소 변이체를 암호화하는 핵산이 도입된 재조합 미생물은 본 발명의 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체 생산용 재조합 미생물에서 기재된 것과 동일한 특징을 가질 수 있다.
본 발명에 있어서, 상기 (a)단계는 배양시 배양 배지에 아스코르빈산을 첨가하여 미생물을 배양하는 것을 특징으로 할 수 있으며, 이 경우, 바람직하게는 0.1 내지 1.5 g/L, 더욱 바람직하게는 0.2 내지 1.0 g/L의 아스코르빈산을 첨가하여 미생물을 배양하는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명의 제조방법은 별도로 설명되지 않는 한, 통상의 기술자가 이해할 수 있는 범위에 내에서 상기 다른 관점에서 기재된 내용과 동등한 특징을 가질 수 있다.
본 발명은 또 다른 관점에서, 다음 단계를 포함하는 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체의 제조방법을 제공한다:
(a) 본 발명의 C-글리코실전이효소 변이체 또는 상기 C-글리코실전이효소 변이체를 발현하는 미생물과 폴리케타이드 및/또는 페닐프로파노이드를 반응시켜 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체를 생성시키는 단계; 및
(b) 상기 생성된 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체를 회수하는 단계.
본 발명에서는 특정 유전자 명을 기재하였으나, 본 발명이 해당 유전자에 한정되는 것이 아님은 당업자에게 자명할 것이다.
한편, 본 발명에서 도입한 유전자에 있어서도 특정 미생물 유래의 유전자 명을 기재하였으나, 본 발명의 보호범위가 해당 유전자 명에 한정되는 것은 아니고, 당업자가 해당 유전자와 동일한 기능을 가진 것이라고 인정할 수 있는 범위 내에서 유전자 명을 달리하는 다른 미생물 유래의 유전자를 본 발명의 기술적 특징에 따라 도입하는 경우, 해당 재조합 미생물도 본 발명의 보호범위에 속할 수 있음은 자명하다.
실시예
이하, 본 발명을 구체적인 실시예에 의해 보다 상세히 설명하고자 한다. 하지만, 본 발명은 하기 실시예에 의해 한정되는 것은 아니며, 본 발명의 아이디어와 범위 내에서 여러 가지 변형 또는 수정될 수 있음은 통상의 기술자에게는 자명한 것이다.
실시예 1. 실험방법
1-1. 플라스크 배양
플라스크 배양은 다음과 같은 조건으로 진행하였다. 콜로니를 적절한 농도의 항생제가 첨가된 10 mL LB 배지에 접종하였고, 37 ℃에서 하룻밤동안 배양하였다. 그 후 준비된 배양액을 3 g/L yeast extract, 20 g/L 포도당 (그리고 필요시 0.45 g/Lascorbic acid)이 첨가된 50 mL의 R/2 배지를 담고 있는 250 mL 배플 플라스크로 계대한 후, 30 ℃ 200 rpm에서 배양하였다. R/2 배지 (pH 6.8) 조성은 다음과 같다 (리터 당): 2 g (NH4)2HPO4, 6.75 g KH2PO4, 0.85 g citric acid, 0.7 g MgSO4·7H2O, and 5 ml trace metal solution (TMS) [10 g FeSO4·7H2O, 2.25 g ZnSO4·7H2O, 1 g CuSO4··5H2O, 0.5 g MnSO4·5H2O, 0.23 g Na2B4O7·10H2O, 2 g CaCl2·2H2O and 0.1 g (NH4)6Mo7O24 per liter of 5 M HCl]. 배양액의 OD600가 0.6-0.8이 되었을 때 1 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) 를 첨가하여 외래 유전자 발현을 유도하였다. 유도 후 48시간 동안 배양하였다.
1-2. 유가식 발효
유가식 발효의 경우, 6.6 L BioFlo 320 발효기(Eppendorf)를 이용하여 20 g/L 포도당, 3 g/L yeast extract, 0.45 g/L ascorbic acid 및 적절한 항생제를 포함한 1.95 L R/2 배지 (pH 6.8)에서 수행하였다. 콜로니를 적절한 농도의 항생제가 첨가된 10 mL LB 배지에 접종하였고, 37 ℃에서 하룻밤동안 배양하였다. 그 후 준비된 배양액을 3 g/L yeast extract, 20 g/L 포도당, 0.45 g/L ascorbic acid이 첨가된 50 mL의 R/2 배지를 담고 있는 250 mL 배플 플라스크로 계대한 후, 30 ℃200 rpm에서 OD600이 약 4에 도달할 때까지 배양하였다. 그 후 발효기로 접종되었는데 pH는 암모니아 용액의 자동 첨가를 통해 6.8로 유지되었으며, 온도는 30 ℃로 유지되었다. 산소포화도 (DO)는 공기 포화 수준의 40%로 유지되었고 1 vvm [(air volume) · (working volume) -1 · (minute)-1]의 공기를 지속적으로 불어넣되 교반 속도를 높이거나 첨가되는 순수 산소의 농도를 높이는 방식으로 DO를 유지하였다. IPTG 첨가(0.5 mM)는 OD600이 약 20정도 되었을 때 이루어졌으며, pH-stat 전략을 통하여 고갈된 탄소원 및 기타 영양소를 자동으로 발효기에 첨가하였다. 이 때 첨가액은 리터당 다음과 같은 성분을 포함하였다: 650 g 포도당, 5 g ascorbic acid, 6 mL TMS, 8 g MgSO4·7H2O. pH가 6.85보다 높아지면 자동으로 첨가액이 발효기로 첨가되게 조작하였다.
1-3. 생산량 분석
배양 후 다음과 같은 조건으로 생산량 분석을 진행하였다. 플라스크 배양 후 50 mL의 배양액을 4,000 g에서 30 분 동안 원심분리한 후, 상층액의 염을 제거하고 농축하는 과정을 진행하였다. 이 때 Oasis HLB Cartridge (Water)를 사용하였다. FK의 경우 1배, KA의 경우 30배, dcII의 경우 45배, 카르민산의 경우 200배 농축하였다. 농축된 샘플은 적절한 부피의 DMSO에 다시 녹인 후 0.22 μm PTFE필터로 불순물을 제거하였다. 준비된 샘플은 HPLC (1100 series; Agilent)와 연동된 MS (LC/MSD VL; Agilent)로 분석하였다. Eclipse XDB-C18 컬럼을 활용하였고, A 버퍼는 0.1% formic acid를, B 버퍼는 methanol을 활용하였다. ESI negative mode로 분석하였다. 카르민산의 보다 정확한 분석을 위하여 HPLC Triple Quadrupole Mass Spectrometer (LCMS-8050, Shimadzu)를 통하여 LC-MS/MS 분석을 진행하였다 (MRM mode).
한편, 알로에신 분석을 위하여 LC-MS/MS 분석에서는, ultra HPLC (UHPLC; 1290 Infinity II LC System; Agilent)와 연동된 MS (Agilent 6550 iFunnel Q-TOF LC/MS System)을 이용하였다. 이 때 Eclipse-plus C18 column을 사용하였고, 버퍼 A로는 0.1% formic acid, 버퍼 B로는 0.1% formic acid를 첨가한 acetonitrile을 사용하였다.
실시예 2: 카르민산 생산을 위한 C-glycosyltransferase 규명
카르민산의 생산 경로는 아직 구체적으로 규명되어 있지 않지만, 카르민산의 탄소 골격은 안트라퀴논(anthraquinone) 계열의 구조를 지니고 있으므로, PKS를 이용하여 카르미산 생산을 유도하고자 하였다 (도 1).
이에 따라 외래 acyl carrier protein (ACP)의 활성을 위하여 Bacillus subtilis 유래 Sfp가 게놈 상에 도입된 E. coli BAP1 균주 (E. coli BL21(DE3) (Invitrogen)으로부터의 제조방법은 B. Pfeifer et al., Science 2001, 291 (5509), 1790-1792 / D. Yang et al., PNAS 2018, 115(40) 9835-9844 논문 참조)를 활용하였다. 그 후 Photorhabdus luminescens 유래 타입 II PKS를 적용하고자 P. luminescens 유래 antD (ketosynthase), antE (chain-length factor), antF (ACP), antB (phosphopantetheinyl transferase), antG (malonyl-CoA:ACP malonyltransferase)를 도입하기 위하여 pDS00-antDEFBG를 구축하였다. 우선 antDEF유전자를 P. luminescens의 genomic DNA로부터 antDE_F 프라이머와 antDEF_R 프라이머를 이용하여 PCR 증폭한 후, pDS00 (제한효소 배열을 제외하고 pET-30a(+) 프라이머와 동일한 플랫폼 플라스미드, Novagen)의 NdeI과 EcoRI 제한효소 부위에 삽입하였다. pDS00 플라스미드는 다음과 같이 구축되었다. pET-30a(+)로부터 T7 프로모터, multiple cloning site (MCS), T7 터미네이터가 포함된 유전자 조각을 pET_NheI_DraIII와 pET_SpeI_SphI 프라이머를 이용하여 증폭한 후, SphI, DraIII 제한효소 처리하여 pET-30a(+) 플라스미드의 SphI과 DraIII 사이트로 삽입하여 pDS00 플라스미드를 구축하였다. 그 후, P. luminescence genomic DNA로부터 antB를 antB_F 프라이머와 antB_R 프라이머를 이용하여 증폭하여 pDS00의 HindIII 사이트에 삽입하여 pDS00-antB 플라스미드를 구축하였다. 연이어 NdeI와 EcoRI 제한효소를 이용하여 digestion 시킨 후 pDS00-antDEF 플라스미드 역시 NdeI와 EcoRI 제한효소를 이용하여 antDEF 조각을 얻은 후 두 조각을 Gibson assembly를 이용하여 합쳐서 pDS00-antDEFB 플라스미드를 얻었다. 그리고 P. luminescence genomic DNA로부터 antG를 antG_F 프라이머와 antG_R 프라이머를 이용하여 증폭하여 pDS00의 NdeI, EcoRI 사이트에 삽입하여 pDS00-antG 플라스미드를 구축하였다. 구축된 플라스미드를 NheI, SpeI 제한효소로 digestion하여 antG 조각을 얻은 후, pDS00-antDEFB 플라스미드의 NheI 사이트로 삽입하여 pDS00-antDEFBG 플라스미드를 구축하였다.
Figure PCTKR2022001485-appb-img-000001
그 다음으로는 flavokermesic acid (FK) 생산을 위하여 Streptomyces sp. R1128 유래 cyclase인 ZhuI와 ZhuJ를 도입하였는데, 이를 위하여 pFK (pDS00-antDEFBG-zhuIJ) 플라스미드를 구축하였다. 우선 대장균에서의 발현을 위해 코돈 최적화된 zhuIJ DNA를 기반으로 하여 zhuI_F 프라이머와 zhuJ_R 프라이머를 이용하여 zhuIJ조각을 PCR 증폭하였고, pDS00의 NdeI, EcoRI 사이트에 삽입하였다. 이렇게 구축된 pDS00-zhuIJ를 NheI, SpeI 제한효소로 절단하여 zhuIJ조각을 얻었으며, 이를 pDS00-antDEFBG의 NheI 사이트에 삽입하여 pFK를 구축하였다.
BAP1에 pDS00-antDEFBG-zhuIJ가 형질전환된 균주는 포도당으로부터 88 mg/L의 FK를 생산하였다. 배양액의 색이 배양 초반에는 밝은 붉은색이었다가 시간이 갈수록 탁한 갈색으로 변하는 것이 관찰되었다. 이는 FK가 멜라닌 유사체 등으로 전환되는 것이라 가정되는바, FK의 멜라닌화를 막기 위하여 배지에 0.45 g/L의 ascorbic acid를 첨가하였고, 이로써 FK 생산량을 154.9 mg/L까지 증산할 수 있었다.
Figure PCTKR2022001485-appb-img-000002
Malonyl-CoA의 세포 내 농도를 증가시키는 것 또한 FK의 생산량을 늘일 수 있는 방안으로 예측하고, Corynebacterium glutamicum 유래 acetyl-CoA carboxylase (accBCD1 유전자에 의해 코딩됨)를 과발현시키거나 pabA 유전자를 낙다운하였다. 그 결과 accBCD1을 과발현시킨 균주에서 FK 생산량이 180.3 mg/L까지 증산되었다 (도 2).
플라스크 배양 시에는 LB 아가 플레이트 상의 콜로니를 10 mL의 LB가 포함된 테스트 튜브 상에 접종하는 것으로 시작하였다. 이 때 적절한 농도의 항생제를 추가하였고, 37 ℃에서 220 rpm으로 밤새 배양하였다. 이렇게 준비된 시드 배양 중 1 mL을 50 mL의 R/2 배지(3 g/L yeast extract, 20 g/L 포도당 추가 포함)를 포함하고 있는 250 mL 배플 플라스크로 접종하였고, 30 ℃와 200 rpm에서 배양을 진행하였다. R/2 배지의 조성은 다음과 같다 (pH 6.8, 1 L당): 2 g (NH4)2HPO4, 6.75 g KH2PO4, 0.85 g citric acid, 0.8 g MgSO4·7H2O, 5 ml trace metal solution (TMS). TMS의 조성은 다음과 같다 (0.1 M HCl 기반, 1 L당): 10 g FeSO4·7H2O, 2.25 g ZnSO4·7H2O, 1 g CuSO4·5H2O, 0.58 g MnSO4·5H2O, 0.02 g Na2B4O7·10H2O, 2 g CaCl2·2H2O, 0.1 g (NH4)6Mo7O24·4H2O. 배양액의 OD600이 0.6-0.8이 되었을 때 0.5 mM의 IPTG를 첨가하여 외래 효소 발현을 유도하였다. 그 후 48 시간동안 배양을 진행하였다. Flavokermesic acid, kermesic acid, dcII, carminic acid 생산 실험의 경우에는 모두 0.45 g/L의 ascorbic acid를 추가로 첨가해 주었다.
상기 플라스크 컬쳐 결과, 소량의 kermesic acid (KA) 또한 관찰되었다 (0.14 mg FK equivalent/L; 즉, mg FK eq/L). 이는 대장균 내재 산화효소 또는 ZhuIJ에 의한 것으로 생각되었으나, 전환 효율이 너무 낮고, 해당 반응을 수행하는 효소는 아직 규명되지 않은 바, 본 발명에서는 기존 보고된 문헌과 화합물 데이터베이스를 활용하여 생화학 반응 분석을 수행하였다.
그 결과 Streptomyces peucetius 유래 aklavinone 12-hydroxylase (DnrF)를 암호화하는 유전자가 해당 반응을 수행하는 효소로 예측되어, dnrF_F 프라이머와 dnrF_R 프라이머를 이용하여 증폭 후 pDS00에 NdeI, EcoRI 사이트에 삽입하여 pDS00-dnrF를 구축하고, 해당 플라스미드를 기반으로 pET30a_frag_F 프라이머와 pET30a_frag_R 프라이머를 이용하여 dnrF 유전자를 PCR 증폭하였고, pBBR1-T7 플라스미드 (Kovach, M. E.; Phillips, R. W.; Elzer, P. H.; Roop, R. M., II; Peterson, K. M., pBBR1MCS: a broad-host-range cloning vector. Biotechniques 1994, 16 (5), 800-802.)로부터 S.Y.Park et al., bioRxiv, DOI: 10.1101/2020.11.27.401000 방법으로 구축됨)를 pET30a_IV_R 프라이머와 rrnB_IV_F 프라이머를 이용하여 역 PCR 증폭하여 Gibson assembly를 이용하여 두 DNA 조각을 라이게이션하여 pBBR1-dnrF를 구축하였다. FK 생산 균주에 pBBR1-dnrF를 도입한 후 플라스크 배양을 진행하였다. 그 결과, 1.20 mg FK eq/L의 KA를 생산하였다 (도 3a).
Figure PCTKR2022001485-appb-img-000003
FK에서 카르민산 (carminic acid; CA)으로의 생산은 두 종류의 생합성 경로를 택할 수 있는데, 모두 monooxygenase와 C-glycosyltransferase를 필요로 한다. FK는 산화되어 KA로 전환되거나 C-글리코실화 되어 dcII로 전환될 수 있다. D. coccus 유래 DcUGT2가 FK에서 dcII (또는 KA에서 CA)로의 전환을 촉매한다는 것이 밝혀졌고 S. cerevisiae에서 활성이 증명되었지만 (Kannangara et al., Nat Commun 2017, 8), 해당 효소가 활성을 지니기 위해서는 글리코실화(glycosylation) 되어야 하고, 막관통 나선(transmembrane helix)과 신호 펩타이드(signal peptide)도 가지고 있기 때문에 대장균과 같은 세포에서는 성공적으로 발현되기 어려울 것으로 예상되었다. 실제로 DcUGT2는 FK 생산 대장균에 도입되었을 때 dcII를 생산하지 못하였다. 이와 같은 DcUGT2의 발현 상의 문제를 해결하기 위하여 N 말단 신호 펩타이드 (signal peptide)를 제거한 Ntr-DcUGT2, C 말단 막관통 나선 (transmembrane helix)을 제거한 Ctr-DcUGT2, N 말단 신호 펩타이드 (signal peptide) 및 C 말단 막관통 나선 (transmembrane helix)을 모두 제거한 Ntr-Ctr-DcUGT2를 제작하고, Ntr-DcUGT2와 Ntr-Ctr-DcUGT2의 N 말단에는 대장균 OmpA signal peptide를 부착한 플라스미드 또한 구축하였지만, 모두 dcII를 생산하는데 실패하였다. 따라서 DcUGT2가 대장균에서 활성을 지니지 않는 것으로 결론내렸다.
대장균에서 천연물의 O-글리코실화 (O-glycosylation)는 몇 사례가 보고되었으나, C-글리코실화 (C-glycosylation)는 거의 보고된 사례가 없다. 따라서 본 발명에서는 생화학 반응 분석을 통하여 대장균에서 C-글리코실화 반응을 수행한다고 밝혀진 UDP-glycosyltransferase를 선정하였다. 선정된 여덟 효소 후보는 다음과 같다: E. coli Nissle 유래 IroB (EnCGT); Zea mays 유래 UGT708A6 (ZmCGT) dual C/O-glycosyltransferase; Fagopyrum esculentum 유래 UGT708C2 (FeCGT); Mangifera indica 유래 MiCGT; Oryza sativa 유래 OsCGT; Glycine max 유래 UGT708D1 (GmCGT); Gentiana triflora 유래 GtUF6CGT1 (GtCGT); Aloe vera 유래 AvCGT (도 4).
상기 선정된 효소에 대해 pCDF-DcCGT, pCDF-MiCGT, pCDF-SfCGT, pCDF-EnCGT, pCDF-OsCGT, pCDF-FeCGT, pCDF-GmCGT, pCDF-AvCGT, pCDF-AvCGT, pCDF-ZmCGT, pCDF-GtCGT를 구축하였는데, E. coli Nissle genomic DNA로부터 iroB_gib_F 프라이머 및 isoB_gib_R 프라이머를 이용하여 증폭된 iroB 유전자 제외하고는 모두 인공 합성하고 pCDFDuet-1 플라스미드 상의 NdeI 사이트에 Gibson assembly를 이용하여 삽입하여 구축되었다.
Figure PCTKR2022001485-appb-img-000004
GtCGT와 ZmCGT만이 FK를 dcII로 성공적으로 전환시킬 수 있었는데, ZmCGT의 경우 주요 생산물은 O-글리코실화된 FK (O-glycosylated FK)였으며 dcII는 매우 소량 생산되었다. GtCGT의 경우, 0.13 mg CA equivalent/L (mg CA eq/L)의 dcII가 생산되었다 (도 5). C-글리코실화 (C-glycosylation) 반응은 높은 수준의 UDP-glucose 양이 필요하므로, galU (encoding UTP-glucose-1-phosphate uridylyltransferase), pgm (encoding phosphoglucomutase), 그리고 ndk (encoding nucleoside-diphosphate kinase)를 과발현하였고, 그 결과 dcII의 생산량이 0.30 mg CA eq/L로 증산되었다 (도 5). pBBR1-galU-pgm-ndk 플라스미드를 제작하기 위하여 (세 유전자 모두 대장균 BL21(DE3) 균주로부터 증폭됨) 우선 galU 유전자가 galU_gib_F와 galU_gib_R 프라이머로부터 증폭되었고, pBBR1TaC 플라스미드 상의 EcoRI 사이트에 Gibson assembly를 통하여 삽입되었다. 그리고 pgm 유전자는 pgm_gib_F와 pgm_gib_R 프라이머로부터 증폭되어 pBBR1TaC-galU 플라스미드의 KpnI 사이트에 삽입되었고, ndk 유전자는 ndk_gib_F와 ndk_gib_R 프라이머로부터 증폭되어 pBBR1-galU-pgm 플라스미드의 SphI 사이트에 삽입되었고, 이로써 pBBR1-galU-pgm-ndk가 구축되었다.
Figure PCTKR2022001485-appb-img-000005
GtCGT와 DnrF의 활성을 향상시켜 성공적으로 카르민산을 생산하기 위하여 본 발명에서는 컴퓨터 시뮬레이션을 통하여 활성이 증대된 돌연변이를 제작하고자 하였다. 하지만 해당 효소들의 구조가 밝혀져 있지 않았으므로 우선 MODELLER (Webb, B.; Sali, A., Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 2016, 54, 5.6.1-5.6.37)을 이용하여 단백질 구조를 예측하였다. 그 후 PyRosetta를 통한 docking simulation (Chaudhury, S.; Lyskov, S.; Gray, J. J., PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 2010, 26 (5), 689-691)을 통하여 활성이 증대된 돌연변이를 스크리닝하고자 하였다. 컴퓨터 시뮬레이션 기반 예측 외에도 구조 분석 결과를 통해 활성을 증대시킬 것으로 예상되는 돌연변이를 추가적으로 선정하였다.
GtCGT에 대한 homology modelling을 TcCGT (Trollius chinensis 유래 C-glycosyltransferase; PDB ID 6JTD; 단백질 서열 유사도 35.1%)을 비교군으로 활용하여 수행하였다. 산출된 GtCGT 구조 모델을 이용하여 FK를 리간드로 하는 컴퓨터 기반 docking simulation (SW: AutoDock Vina)을 수행하였다. 그 결과 239개의 돌연변이가 산출되었는데, 이 중 122개의 돌연변이가 야생형 효소에 비하여 높은 docking 점수를 보여주었다 (표 6). 이 중 상위 20개의 돌연변이에 대하여 실험을 수행하였는데, GtCGT의 예측된 구조 분석 결과 활성을 증대시킬 수 있을 것으로 예상되는 14개의 돌연변이 또한 추가로 테스트하였다. 상기 34개의 돌연변이를 FK 균주에 형질전환 후 플라스크 배양을 수행한 결과, 야생형 GtCGT 대비 높은 KA 생산량을 보이는 여섯 개의 돌연변이가 선정되었다 (V93Q, Y193F, L164G, F17G, R322D, V132A). 이들 중 가장 높은 dcII 생산량을 보여준 돌연변이는 GtCGTV93Q였으며, 생산량이 약 2.9배 가량 증가되는 것으로 나타났다 (도 6c). 해당 돌연변이에서 Gln93 아미노산이 활성화 부위(active site)에 위치해 있어, 직접적으로 FK와 결합하는 것으로 판단되었다. Gln93 아미노산은 C6의 히드록시기(hydroxyl group)와 수소결합을 형성하는데, 이는 FK 리간드가 C2에서 C-글리코실화 (C-glycosylation) 되기 위하여 정확한 방향을 잡아주는 것으로 예측된다. Y193F 돌연변이는 두 번째로 높은 dcII 농도를 보여주었는데, 해당 두 돌연변이 간의 시너지 효과를 보기 위하여 이중 돌연변이를 구축한 후 (GtCGTV93Q/Y193F) FK 균주에 도입하였다. 해당 이중 돌연변이는 0.74 mg CA eq/L의 dcII를 생산하였는데, 이는 야생형 GtCGT에 비하여 5.3배 증산된 결과이다 (도 6c). V93Q 돌연변이에서, Tyr193 아미노산은 C10의 카르보닐기(carbonyl group)와 수소 결합을 형성하면서 Gln93이 C6의 히드록시기(hydroxyl group)와 수소결합을 형성하는 것을 방해한다. 따라서, Tyr193을 Phe193으로 바꾸어 주면서 C10에서의 수소결합이 저해되어 FK의 리간드 결합이 개선된 것으로 예측된다 (도 6d).
Figure PCTKR2022001485-appb-img-000006
*가장 docking 점수가 높은 20개는 볼드체로 표기; 구조 기반 추가로 선택된 돌연변이는 파란색으로 표기함; ‡야생형 GtCGT
DnrF에 대해서도 동일한 방법을 이용하여 돌연변이 라이브러리를 제작하였고, 그 결과 가장 높은 KA 생산량을 보여준 돌연변이는 DnrFP217K였으며, 약 2.2배 KA 생산량이 증가되었다 (2.68 mg FK eq/L) (도 6a, 6b).
특정 서열에 대한 돌연변이 발생은 기존 문헌에서 보고된 바와 동일하게 진행되었다 (Zheng, L.; Baumann, U.; Reymond, J. L., An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 2004, 32 (14), e115.). 이 때 dnrF P217K가 도입된 플라스미드 pBBR1-T7는 pKA로, GtCGT V93Q/Y193F가 도입된 pCDFDuet-1 플라스미드는 pdcII로 명명하였다. DnrF의 P217K 돌연변이를 제작하기 위하여 DnrF_P217K_F프라이머와 DnrF_P217K_R프라이머가 사용되었고, GtCGT의 V93Q 돌연변이를 제작하기 위하여 GtCGT_V93Q_F 프라이머와 GtCGT_V93Q_R 프라이머가 사용되었으며, GtCGT의 Y193F 돌연변이를 제작하기 위하여 GtCGT_Y193F_F 프라이머와 GtCGT_Y193F_R 프라이머가 사용되었다.
Figure PCTKR2022001485-appb-img-000007
본 발명에서 제작된 GtCGTV93Q/Y193F (GtUF6CGT1V93Q/Y193F) 돌연변이의 단백질 서열은 아래와 같다:
MGSLTNNDNLHIFLVCFIGQGVVNPMLRLGKAFASKGLLVTLSAPEIVGTEIRKANNLNDDQPIKVGSGMIRFEFFDDGWESVNGSKPFDVWQYINHLDQTGRQKLPIMLKKHEETGTPVSCLILNPLVPWVADVADSLQIPCATLWVQSCASFSAYYHYHHGLVPFPTESEPEIDVQLPGMPLLKYDEVPDFLHPRTPYPFFGTNILGQFKNLSKNFCILMDTFYELEHEIIDNMCKLCPIKPIGPLFKIPKDPSSNGITGNFMKVDDCKEWLDSRPTSTVVYVSVGSVVYLKQEQVTEMAYGILNSEVSFLWVLRPPSKRIGTEPHVLPEEFWEKAGDRGKVVQWSPQEQVLAHPATVGFLTHCGWNSTQEAISSGVPVITFPQFGDQVTNAKFLVEEFKVGVRLGRGELENRIITRDEVERALREITSGPKAEEVKENALKWKKKAEETVAKGGYSERNLVGFIEEVARKTGTK
상기와 같이 활성이 증대된 DnrF와 GtCGT 돌연변이를 구축한 후, 해당 두 돌연변이 효소를 조합하여 CA 균주를 구축하였다. CA 균주는 pFK와 pCA (pCDF-dnrFP217K-GtCGTV93Q/Y193F) 플라스미드를 BAP1 균주에 형질전환하여 제작하였다. 이 때 두 유전자를 하나의 플라스미드로 삽입하기 위하여 pKA로부터 dnrF_NcoI_F와 dnrF_BamHI_R 프라이머를 이용한 PCR 증폭을 통해 dnrF P217K를 증폭하였고, 이는 pdcII에 NcoI, BamHI 사이트로 삽입하여 pCA를 구축하였다. 구축된 CA 균주를 플라스크에서 배양한 결과 22.2 μg/L의 카르민산 (carminic acid)이 생산되었다 (도 7). 포도당으로부터 생산된 카르민산의 진위는 도 7과 같이 LC-MS/MS 분석을 통하여 판별하였다.
카르민산 생산능을 증가시키기 위하여 C. glutamicumacc BCD1 과발현, pabA 낙다운, galU-pgm-ndk 과발현을 각각 또는 조합으로 테스트 하였고, 각 균주의 생산량은 다음과 같다 (도7a): pabA KD, 25.9 μg/L; accBCD1 OE, 74.9 μg/L; galU-pgm-ndk OE, 41.0 μg/L; accBCD1 OE-galU-pgm-ndk OE, 49.9 μg/L; pabA KD-galU-pgm-ndk OE, 57.7 μg/L; pabA KD-accBCD1 OE, 57.2 μg/L; pabA KD-accBCD1 OE-galU-pgm-ndk OE, 25.2 μg/L로 나타나, accBCD1을 과발현한 균주(BL21(DE3) harboring pFK, pCA, pACC; pFK : pDS00 derivative containing antDEFBG from P. luminiscens and codon optimized zhuIJ from Streptomyces sp. R1128 (PT7 - antDEFBG - T7 T - PT7 - zhuIJ - T7 T); pCA : pCDFDuet-1 derivative containing dnrF P217K and GtCGT V93Q/Y193F in different operons (PT7 - dnrF P217K - T7 T - PT7 - GtCGT V93Q/Y193F - T7 T); pACC : pBBR1TaC derivative containing accBC and accD1 from Corynebacterium glutamicum ATCC 13032)에서 가장 높은 카르민산 농도인 74.9 μg/L가 생산되는 것을 확인하였다. 또한, 해당 균주에 대한 유가식 발효 수행 결과 0.65 mg/L의 카르민산이 생산되었다.
Figure PCTKR2022001485-appb-img-000008
실시예 3: GtCGTV93Q/Y193F을 통한 알로에신 생산
알로에신은 알로에 베라(Aloe vera)로부터 추출되는 대표적인 화장품 첨가제이다. 알로에신은 anti-tyrosinase와 anti-melanogenesis 효과 때문에 화장품업계에서 미백제로 활용되고 있으며, 항염증 및 항라디칼 특성 때문에 잠재적 약물 또는 화장품 원재료로 각광받고 있다. 하지만 식물에서의 알로에신의 함량은 대단히 낮아 보다 효율적인 제조방법이 필요하였다. 알로에신 생산에 대해서는 기존 논문 발표를 통하여 보고된 바 있다 (D Yang et al., Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (40), 9835-9844.). 하지만 알로에손에서 알로에신으로 전환하는 C-glycosyltransferase는 아직 보고된 바 없어 (도 8), 본 발명에서는 상기 실시예 2를 통하여 개발한 GtCGT 돌연변이가 알로에신을 생산하는 효과가 있는지 테스트하고자 하였다.
본 발명자들은 알로에손 생산을 위하여 E. coli BL21(DE3) 균주에 다음의 플라스미드들이 형질전환하였다: pCDF-RpALS, pWAS-anti-pabA, pBBR1-zwf. 따라서 해당 균주는 다음의 유전자들을 발현하고 있다: RpALS (R. palmatum aloesone synthase를 코딩한다), anti-pabA 합성 조절 sRNA, zwf (E. coli glucose 6-phosphate 1-dehydrogenase를 코딩한다) (Yang, D.; Kim, W. J.; Yoo, S. M.; Choi, J. H.; Ha, S. H.; Lee, M. H.; Lee, S. Y., Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (40), 9835-9844 참조).
해당 균주는 30.9 mg/L의 알로에손을 포도당으로부터 생산한다. 알로에신의 생산에 앞서, 알로에손의 생산량을 증가시키기 위하여 호환 가능한 플라스미드 상에 RpALS를 추가로 도입하여 알로에손의 생산량을 증가시키고자 하였다. 이를 위해 높은 카피 수(copy number)의 RSF 복제 원점을 지닌 pRSFDuet-1 플라스미드 상에 RpALS를 도입하였다. RpALS를 기존 구축한 pCDF-RpALS로부터 ALS_NdeI_F와 ALS_NdeI_R 프라이머를 이용하여 증폭한 후 pRSFDuet-1 상의 NdeI 사이트에 Gibson assembly를 이용하여 삽입하여 해당 플라스미드를 구축하였다. 그 후 pCDF-RpALS와 pRSF-RpALS를 동시에 pWAS-anti-pabA와 pBBR1-zwf 플라스미드를 이미 보유하고 있는 E. coli BL21(DE3) 균주에 형질전환시키고, 해당 균주에 대한 플라스크 배양을 수행하였다. 그 결과, 102.1 mg/L의 알로에손이 생산되어, 개량 전에 비해 알로에손 생산량이 현저히 증가됨을 확인하였다.
Figure PCTKR2022001485-appb-img-000009
그 후, 알로에신 생산을 테스트하기 위하여 pWAS-anti-pabA pRSF-RpALS, pBBR1-zwf 플라스미드를 보유하고 있는 BL21(DE3) 균주 상에 pCDF-GtCGT 또는 pCDF-GtCGTV93Q/Y193F 플라스미드를 형질전환한 후, 플라스크 배양을 수행하였다. 그 결과, GtCGTV93Q/Y193F를 포함하고 있는 균주가 0.06 μg/L의 알로에신을 생산하여, GtCGT를 포함하고 있는 균주보다 많은 양의 알로에신을 생산하는데 성공하였다 (도9).
알로에손의 증산을 위해 테스트하였던 것과 동일하게 RpALS를 추가 도입하여 알로에신의 생산량을 증가시키고자 하였다. 이를 위해 pCDF-GtCGTV93Q/Y193F를 도입하는 대신 pCDF-RpALS-GtCGTV93Q/Y193F를 구축하였다. 이를 위해 RpALS를 pCDF-RpALS로부터 pCDFDuet_F와 pCDFDuet_R 프라이머를 이용하여 증폭하였고, pCA 플라스미드 상의 NcoI, BamHI 사이트로 Gibson assembly를 통하여 도입하였다. 이 후 pRSF-RpALS, pCDF-RpALS-GtCGTV93Q/Y193, pWAS-anti-pabA, pBBR1-zwf의 네 종의 플라스미드를 E. coli BL21(DE3)에 형질전환한 후 ALS 균주라 명명하였다.
ALS 균주는 포도당으로부터 0.3 μg/L의 알로에신을 생산하는데 성공하였다. 생산된 알로에신의 진위는 도 9와 같이 LC-MS/MS를 통하여 판별되었다.
이와 같이 본 발명자들은 GtCGT의 도입을 통하여 효소조차 밝혀지지 상태로 알로에신 생산에 성공하였고, GtCGTV93Q/Y193F의 도입을 통하여 알로에신 생산능을 현저히 높일 수 있었다. 이와 같이 GtCGTV93Q/Y193F 효소 돌연변이는 폴리케타이드 전반에 걸쳐 배당체를 생산할 수 있는 능력이 있는 효소라 할 수 있으며, 본 발명자들은 알로에신 생산능을 더욱 높일 수 있는 돌연변이를 구축하고자 GtCGTV93Q/Y193F를 기반으로 추가 돌연변이 제작을 진행하게 되었다.
실시예 4: GtCGTV93Q/Y193F에의 추가 돌연변이 도입을 통한 알로에신 증산
본 발명자들은 앞서 개발한 방향족 폴리케타이드에 활성을 보이는 GtCGTV93Q/Y193F 돌연변이를 추가로 개량하여 알로에손으로부터 알로에신으로의 전환 효율을 높이고자 하였다. 이를 위해 실시예 2를 통해 산출한 GtCGTV93Q/Y193F 구조 모델 상에 새로운 기질인 알로에손을 도킹하였다. 이를 통하여 알로에손과 더욱 안정한 결합을 형성하여 효소 활성을 높일 것으로 예상되는 돌연변이를 표 10과 같이 선정하였다.
Figure PCTKR2022001485-appb-img-000010
특정 서열에 대한 돌연변이 발생은 실시예 2와 동일한 방법으로 진행되었다. 이 때 pCDF-RpALS-GtCGTV93Q/Y193F를 주형으로 하여 아래 표 11의 프라이머 쌍을 이용하여 유전자 돌연변이를 포함하는 플라스미드를 제작하였다. 제작된 플라스미드들은 각각 pWAS-anti-pabA, pRSF-RpALS, pBBR1-zwf 세 종의 플라스미드와 함께 BL21(DE3) 균주 상에 형질전환된 후, 이와 같이 구축된 균주들을 이용하여 실시예 3과 동일한 조건 하에서 플라스크 배양을 수행하였다. 생산된 알로에신의 농도는 카이스트 바이오코어 센터의 HPLC Triple Quadrupole Mass Spectrometer (LCMS-8050, Shimadzu)의 MRM 모드를 통해 측정되었다.
Figure PCTKR2022001485-appb-img-000011
플라스크 배양 결과 I323S, T50R, T50V, I18P, I95T, Q20M, I323A 추가 돌연변이 도입을 통해 알로에신 생산량이 10배 이상 증가하였으며, 특히 GtCGT V93Q/Y193F/I323S 돌연변이를 통해 7.75 μg/L의 알로에신이 생산되었다 (도 10). 이는 기존 농도인 0.3 μg/L에 비해 25.8배 이상 증가한 결과이다.
구조 기반 추가 돌연변이 탐색 외에도 더욱 효소 활성을 높이기 위해 GtCGT 구조 모델을 이용하여 알로에손을 리간드로 하는 컴퓨터 기반 docking simulation (SW: AutoDock Vina)을 수행하였다. 그 결과 15개의 돌연변이가 야생형 효소에 비하여 높은 docking 점수를 보여주었다 (표 12).
Figure PCTKR2022001485-appb-img-000012
특정 서열에 대한 돌연변이 발생은 실시예 2와 동일한 방법으로 진행되었다. 이 때 pCDF-RpALS-GtCGTV93Q/Y193F를 주형으로 하여 아래 표 13의 프라이머 쌍을 이용하여 유전자 돌연변이를 포함하는 플라스미드를 제작하였다. 제작된 플라스미드들은 각각 pWAS-anti-pabA, pRSF-RpALS, pBBR1-zwf 세 종의 플라스미드와 함께 BL21(DE3) 균주 상에 형질전환된 후, 이와 같이 구축된 균주들을 이용하여 실시예 3과 동일한 조건 하에서 플라스크 배양을 수행하였다. 생산된 알로에신의 농도는 카이스트 바이오코어 센터의 HPLC Triple Quadrupole Mass Spectrometer (LCMS-8050, Shimadzu)의 MRM 모드를 통해 측정되었다.
플라스크 배양 결과 P385A, L194A, V48G 추가 돌연변이 도입을 통해 알로에신 생산량이 5배 이상 증가하였으며, 특히 GtCGT V93Q/Y193F/P385A 돌연변이를 통해 4.23 μg/L의 알로에신이 생산되었다 (도 11). 이는 기존 농도인 0.3 μg/L에 비해 14.1배 이상 증가한 결과이다.
Figure PCTKR2022001485-appb-img-000013
Figure PCTKR2022001485-appb-img-000014
실시예 5: GtCGTV93Q/Y193F을 통한 페닐프로파노이드 배당체 생산
본 발명을 통하여 개발한 C-글리코실전이효소의 페닐프로파노이드 계 천연물로의 확장성을 테스트하기 위하여 본 발명자들은 하기와 같은 실험을 진행하였다.
세포 내 발현된 GtCGTV93Q/Y193F의 효소 활성을 확인하고자 대장균 BL21(DE3)에 pCDF-GtCGTV93Q/Y193F 와 pBBR1-galU-pgm-ndk이 모두 형질전환된 균주를 플라스크 배양하였고, 세포의 성장이 OD600 0.6-0.8에 도달하였을 때 1 mM의 IPTG를 투여하였다. 이 때, 70 μM의 luteolin, 0.5 mM의 naringenin 또는 185.2 μM의 apigenin을 함께 투여하였고, 추가로 36 시간동안 배양하였다. LC-MS를 통하여 기질 및 생산물의 양을 분석하였다. 플라스크 배양은 50 mL의 R/2 배지(3 g/L yeast extract, 20 g/L 포도당 추가 포함)를 포함하고 있는 250 mL 배플 플라스크에서 진행되었고, 30℃ 와 200 rpm에서 배양을 진행하였다.
배양 결과, 185.2 μM의 apigenin으로부터 15.0 μM의 vitexin이 생산되었고, 0.5 mM의 naringenin으로부터 51.6 μM의 naringenin-6-C-glucoside가 생산되었으며, 70 μM의 luteolin으로부터 27.9 μM의 isoorientin이 생산되었다. 이는 각각 8.1%, 10.3% 및 27.9%의 전환율에 해당하는 값이다 (도 10).
상기와 같이 본원 발명의 글루코실전이효소는 다양한 페닐프로파노이드 C-glucoside 역시 생산할 수 있는 활성 또한 보이고 있으며, 이는 본원 발명의 효소가 다양한 폴리케타이드 및 페닐프로파노이드 C-glucoside를 생산할 수 있는 범용 효소라는 것을 나타낸다.
실시예 6: GtCGTV93Q/Y193F 정제 및 KM, Vmax 측정
본 발명을 통하여 개발한 C-글리코실전이효소 GtCGTV93Q/Y193F의 특성을 보다 자세히 규명하기 위해 효소를 정제하여 효소반응속도론적 변수를 측정하고자 하였다. His-tag을 이용한 효소 정제를 위하여, N-말단에 각각 6xHis-tag가 연결된 GtCGT와 GtCGTV93Q/Y193F를 발현시키는 pCDF-NHis-GtCGT와 pCDF-NHis-GtCGTmut 플라스미드를 구축하였다. pCDF-GtCGT와 pCDF-GtCGTmut를 GtCGT_N_His_IV_F / GtCGT_N_His_IV_R 프라이머를 이용하여 PCR 증폭한 후 DpnI 처리 및 T4 PNK와 T4 ligase 처리를 통하여 blunt-end ligation 시킴으로써 각 플라스미드를 구축하였다. 구축된 두 플라스미드를 E. coli BL21(DE3) 균주 상에 각각 형질전환한 후 10 mL LB를 포함한 테스트 튜브 상에서의 시드 배양을 거쳐 500 mL LB를 포함한 플라스크에서 OD600 값이 0.8이 될 때까지 37℃ 에서 배양하였다. 효소 발현을 위해 1 mM IPTG 처리 후 20℃ 에서 16 시간 동안 추가 배양하였고, 원심분리를 통해 세포 포집 후 30 mL의 lysis buffer (50 mM NaH2PO4, 0.3 M NaCl, 10 mM imidazole, pH 7.5)에 재현탁하였다. 초음파를 통해 세포를 파쇄 후, 10,000 rpm, 4℃, 40 min의 조건으로 원심분리하여 수용성 단백질을 포함하고 있는 상등액을 얻었다. 상등액을 TALON 레진 (Clontech)에 흘려 보냄으로써 His-tag가 결합된 단백질만을 정제하고자 하였다. Wash buffer (50 mM NaH2PO4, 0.3 M NaCl, 20 mM imidazole, pH 7.5)를 통해 불순물 제거 후 lysis buffer 상에 90, 160, 230, 300 mM의 imidazole이 첨가된 elution buffer를 처리하여 효소를 정제하였다.
Figure PCTKR2022001485-appb-img-000015
정제된 효소는 Amicon Ultra-15 Centrifugal Filters (regenerated cellulose, 50,000 NMWL; Merck)를 이용하여 효소 보관 용액 (50 mM HEPES, 20% glycerol, pH 7.5)으로 버퍼 교환되었고, KM과 Vmax 값을 계산하기 위하여 정제된 효소를 이용하여 FK를 dcII로 전환하고자 하였다. 이 때 반응 정도를 파악하기 위하여 UDP-Glo Glycosyltransferase Assay Kit (Promega)를 활용하였다. 해당 kit는 반응의 부산물로 발생하는 free UDP를 발광량으로 측정할 수 있게 해주므로, 0.1 □M의 효소 및 다양한 농도의 FK를 포함하는 200 □L 효소 반응액 (50 mM HEPES, 0.1 mM UDP-glucose, 5 mM MgCl2, pH 7.5)을 25℃ 에서 1 시간 반응시킨 후 25 □L를 덜어내어 kit를 활용하여 발관량을 측정하였다. 반응 속도 및 기질의 농도를 Michaelis-Menten 식에 도입한 후 OriginPro 2019 프로그램을 통해 분석함으로써 GtCGT와 GtCGTV93Q/Y193F의 KM과 Vmax 값을 계산하였다. 그 결과 GtCGTV93Q/Y193F의 KM 값은 GtCGT와 비교했을 때 19.5% 감소한 반면, GtCGTV93Q/Y193F의 Vmax 값은 GtCGT에 비해 18.2% 증가하였다 (도 13; 표 15). 즉, GtCGTV93Q/Y193F의 Vmax/KM 값은 GtCGT에 비해 46.8% 향상되었고, 이는 GtCGTV93Q/Y193F 돌연변이체의 촉매 효율이 향상되었음을 나타낸다.
Figure PCTKR2022001485-appb-img-000016
실시예 7. 유전자 정보
Figure PCTKR2022001485-appb-img-000017
Figure PCTKR2022001485-appb-img-000018
Figure PCTKR2022001485-appb-img-000019
Figure PCTKR2022001485-appb-img-000020
Figure PCTKR2022001485-appb-img-000021
Figure PCTKR2022001485-appb-img-000022
Figure PCTKR2022001485-appb-img-000023
Figure PCTKR2022001485-appb-img-000024
Figure PCTKR2022001485-appb-img-000025
Figure PCTKR2022001485-appb-img-000026
Figure PCTKR2022001485-appb-img-000027
Figure PCTKR2022001485-appb-img-000028
Figure PCTKR2022001485-appb-img-000029
Figure PCTKR2022001485-appb-img-000030
Figure PCTKR2022001485-appb-img-000031
Figure PCTKR2022001485-appb-img-000032
Figure PCTKR2022001485-appb-img-000033
Figure PCTKR2022001485-appb-img-000034
Figure PCTKR2022001485-appb-img-000035
Figure PCTKR2022001485-appb-img-000036
Figure PCTKR2022001485-appb-img-000037
Figure PCTKR2022001485-appb-img-000038
Figure PCTKR2022001485-appb-img-000039
Figure PCTKR2022001485-appb-img-000040
Figure PCTKR2022001485-appb-img-000041
Figure PCTKR2022001485-appb-img-000042
Figure PCTKR2022001485-appb-img-000043
Figure PCTKR2022001485-appb-img-000044
Figure PCTKR2022001485-appb-img-000045
Figure PCTKR2022001485-appb-img-000046
Figure PCTKR2022001485-appb-img-000047
Figure PCTKR2022001485-appb-img-000048
Figure PCTKR2022001485-appb-img-000049
Figure PCTKR2022001485-appb-img-000050
Figure PCTKR2022001485-appb-img-000051
Figure PCTKR2022001485-appb-img-000052
부호의 설명
FK: flavokermesic acid
KA: kermesic acid
CA: carminic acid
본 발명에 따른 C-글리코실전이효소 변이체는 야생형 C-글리코실전이효소에 비해 글리코사이드 결합 생성능이 향상되어 있어, 폴리케타이드 군 및 유사 천연물, 특히 타입 I, II, III 폴리케타이드, 비리보솜 펩티드, 페닐프로파노이드 및 그 외 방향족 천연물의 배당체 생산 효과를 증진시킬 수 있다. 따라서, 본 발명에 따른 C-글리코실전이효소 변이체는 천연물의 폴리케타이드 배당체 생산을 통하여 증가하는 C-글리코사이드 화합물을 구성성분으로 하는 약물, 식품 첨가제, 영양 보조제 등의 제조에 유용하게 활용될 수 있을 것이다.
전자파일 첨부하였음.

Claims (26)

  1. 서열번호 1로 표시되는 C-글리코실전이효소(C-glycosyltransferase)에서 F17, V93, V132, Y193, L164 및 R322로 구성된 군에서 선택되는 어느 하나 이상의 아미노산에 변이를 포함하는 C-글리코실전이효소 (C-glycosyltransferase) 변이체.
  2. 제1항에 있어서, 상기 변이체는 서열번호 1로 표시되는 C-글리코실 전이효소에서, 다음으로 구성된 군에서 선택되는 어느 하나 이상의 아미노산에 변이를 추가로 포함하는 C-글리코실전이효소 변이체:
    F17, V405, P107, L208, L164, P45, I305, L316, F401, Y94, N57, Y187, C16, P319, F167, V132, N206, R406, Q386, V129, L125, L194, I95, S215, L184, Y158, L29, L27, F202, H159, S370, H365, V329, M301, V315, V190, C366, W80, L58, Q210, F312, D61, I207, L363, P196, L106, V93, A394, W314, S155, P88, D99, Y284, E189, G49, H328, E399, T392, F387, A44, P199, E46, R28, V285, I124, R419, L306, Y157, Y200, E373, P191, L214, S376, V15, E332, E51, I417, L98, I323, H161, T383, P127, E309, N84, L313, Q104, T371, N213, G79, L330, N307, K105, L128, A152, I18, N59, W147, S86, L293, E296, S377, L185, K216, F89, S286, F396, F211, Y303, D223, R415, N96, V22, S153, F154, D192, Y193, H195, P201, Y292, 및 R322.
  3. 제1항에 있어서, 상기 아미노산 변이는 V93 및 Y193 아미노산에 변이를 포함하는 것을 특징으로 하는, C-글리코실전이효소 (C-glycosyltransferase) 변이체.
  4. 제1항에 있어서, F17G, V93Q, V132A, Y193F, L164G 및 R322D로 구성된 군에서 선택되는 어느 하나 이상의 아미노산 치환을 포함하는 것을 특징으로 하는 C-글리코실전이효소 (C-glycosyltransferase) 변이체.
  5. 제3항에 있어서, V93Q 및 Y193F 아미노산 치환을 포함하는 것을 특징으로 하는 C-글리코실전이효소 (C-glycosyltransferase) 변이체.
  6. 제2항에 있어서, 다음으로 구성된 군에서 선택되는 어느 하나 이상의 아미노산 치환을 추가로 포함하는 것을 특징으로 하는 C-글리코실 전이효소 변이체:
    F17G, V405M, P107G, L208G, L164G, P45G, I305A, L316G, F401H, Y94G, N57G, Y187A, C16G, P319G, F167G, V132A, N206E, R406G, Q386H, V129A, L125V, L194A, I95G, S215D, L184G, Y158T, L29A, L27A, F202S, H159G, S370A, H365G, V329T, M301W, V315A, V190A, C366G, W80Y, L58E, Q210G, F312G, D61G, I207P, L363G, P196G, L106G, V93G, A394G, W314C, S155A, P88D, D99G, Y284H, E189A, G49TH328G, E399D, T392A, F387T, A44G, P199E, E46G, R28G, V285I, I124T, R419A, L306M, Y157T, Y200L, E373A, P201G, P191G, L214A, S376G, V15G, E332P, E51C, I417L, L98G, I323A, H161G, T383C, P127A, E309N, N84S, L313T, Q104D, T371A, N213L, G79S, L330G, N307A, K105G, L128D, A152G, S153G, I18A, N59V, W147F, S86V, L293V, E296D, S377A, L185V, K216R, F89A, S286C, F396L, F211G, Y303A, D223G, R415L, N96A, V22H, V93Q, V93L, S153C, F154L, D192S, Y193F, H195Y, H195L, P201T, Y292H, Y292F, R322D 및 R322A.
  7. 제4항에 있어서, 다음으로 구성된 군에서 선택되는 어느 하나 이상의 아미노산 치환을 추가로 포함하는 것을 특징으로 하는 C-글리코실 전이효소 변이체:
    I18P, Q20M, T50N, T50Q, T50K, T50R, T50V, I95M, I95T, V290G, V290A, I323S, I323A, I95L, V22A, L29A, E46G, V48G, E51C, A55S, S86V, D99G, R103V, C151G, L184G, L194A, E332P, I18A 및 P385A.
  8. 제7항에 있어서, 다음으로 구성된 군에서 선택되는 어느 하나 이상의 아미노산 치환을 추가로 포함하는 것을 특징으로 하는 C-글리코실 전이효소 변이체:
    I323S, T50R, T50V, I18P, I95T, Q20M, I323A, P385A, L194A 및 V48G.
  9. 제1항 내지 제8항 중 어느 한 항의 변이체를 암호화하는 핵산.
  10. 제9항의 핵산이 도입된 재조합 미생물.
  11. 제10항에 있어서, 상기 재조합 미생물은 UTP-글루코오스-1-포스페이트 우리딜트렌스퍼라아제 (UTP-glucose-1-phosphate uridylyltransferase), 포스포글루코뮤타아제(phosphoglucomutase) 및/또는 뉴클레오시드-디포스페이트 키나제(nucleoside-diphosphate kinase)를 암호화하는 유전자의 발현이 강화되어 있는 것을 특징으로 하는 재조합 미생물.
  12. 제10항에 있어서, 상기 재조합 미생물은 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체 생산용인 것을 특징으로 하는 재조합 미생물.
  13. 제12항에 있어서, 상기 재조합 미생물은 폴리케타이드 합성효소 또는 페닐프로파노이드 합성효소가 추가로 도입된 것을 특징으로 하는 재조합 미생물.
  14. 제12항에 있어서, 상기 재조합 미생물은 pabA 유전자의 발현이 약화되어 있는 것을 특징으로 하는 재조합 미생물.
  15. 제12항에 있어서, 상기 폴리케타이드는
    라파마이신(rapamycin), 로바스타틴(lovastatin), 에리트로마이신(erythromycin), 리파마이신(rifamycin), 아버멕틴(avermectin), 겔다나마이신(geldanamycin), 이버멕틴(ivermectin), 칼리케아마이신(calicheamicin), 에포타일론(epothilone), 트라이아세트산 락톤(triacetic acid lactone) 및 6-메틸살리실산(6-methylsalicylic acid)로 구성된 군에서 선택되는 타입 I 폴리케타이드;
    액티로노딘(actinorhodin), 독소루비신(doxorubicin), 다우노루비신(daunorubicin), 옥시테트라사이클린(oxytetracycline), SEK4, SEK4b, SEK34, SEK15, SEK26, FK506, DMAC, 아클라비논(aklavinone), 아클라노닉산(aklanonic acid), 엡실론 로도마이시논(epsilon-rhodomycinone), 독시사이클린(doxycycline), 안트라마이신(anthramycin), 테트라세노마이신(tetracenomycin), 카르민산(Carmin acid) 및 프레놀리신(frenolicin)로 구성된 군에서 선택되는 타입 II 폴리케타이드; 및
    알로에신(aloesin), 알로에닌(aloenin), 바바로인(barbaloin), 5,7-다이하이드록시-2-메틸크로몬(5,7-dihydroxy-2-methylchromone) 및 알로에손(aloesone)로 구성된 군에서 선택되는 타입 III 폴리케타이드;로 구성된 군에서 선택되고,
    상기 페닐프로파노이드는 액티노마이신(actinomycin), 바키트라신(bacitracin), 답토마이신(daptomycin), 밴코마이신(vancomycin), 테익소박틴(teixobactin), 타이로시딘(tyrocidine), 그라미시딘(gramicidin), 즈위터미신 A(zwittermicin A), 블레오마이신(bleomycin), 시클로스포린(ciclosporin), 피오버딘(pyoverdine), 엔테로박틴(enterobactin), 믹소켈린 A(myxochelin A), 인디고이딘(indigoidine), 사이아노피신(cyanophycin) 등으로 구성된 비리보솜 펩티드, 피노켐브린(pinocembrin), 다이하이드로캄페롤(dihydrokaempferol), 에리오딕티올(eriodictyol), 다이하이드로쿼세틴(dihydroquercetin), 코리페릴알코올(coniferyl alcohol), 실리빈 (silybin), 아이소실리빈 (isosilybin), 실리크리스틴 (silychristin), 실리나이드(silinide), 2,3-디하이드로실리빈(2,3-dehydrosilybin), 실리다이아닌(silydianin), 다이드제인(daidzein), 게니스타인(genistein), 아피게닌(apigenin), 루테올린(luteolin), 캄페롤(kaempferol), 쿼세틴(quercetin), 카테킨(catechin), 페라고니딘(pelargonidin), 시아니딘(cyanidin), 압젤레친(afzelechin), 미리세틴(myricetin), 피세틴(fisetin), 갈랑긴(galangin), 헤스페레틴(hesperetin), 탄제리틴(tangeritin), 델피니딘(delphinidin), 에피카테킨(epicatechin), 크리신(chrysin), 레스베라트롤(resveratrol) 및 나린제닌(naringenin)으로 구성된 군에서 선택되는 것을 특징으로 하는 재조합 미생물.
  16. 제12항에 있어서,
    (i) 타입 II 폴리케타이드 생합성 효소를 암호화하는 유전자;
    (ii) 4'-포스포판테인닐 전이효소 (4'-phosphopantetheinyl transferase)를 암호화하는 유전자;
    (iii) 사이클라아제(cyclase)를 암호화하는 유전자;
    (iv) 아세틸-CoA 카르복실화 효소 (acetyl-CoA carboxylase)를 암호화하는 유전자; 및
    (v) 아클라비네온 12-수산화효소 (aklavinone 12-hydroxylase)를 암호화하는 유전자;로 구성된 군에서 선택되는 어느 하나 이상의 유전자가 도입되고,
    상기 폴리케타이드 배당체는 카르민산인 것을 특징으로 하는 재조합 미생물.
  17. 제16항에 있어서, 상기 타입 II 폴리케타이드 생합성 효소를 암호화하는 유전자는 antD (ketosynthase), antE (chain-length factor), antF (ACP), antB (phosphopantetheinyl transferase) 및 antG (malonyl-CoA:ACP malonyltransferase)로 구성된 군에서 선택되는 어느 하나 이상의 유전자 또는 이들의 조합인 것을 특징으로 하는 재조합 미생물.
  18. 제16항에 있어서, 상기 아클라비네온 12-수산화효소는 서열번호 2로 표시되는 아미노산 서열에서 217번째 아미노산이 프롤린에서 라이신으로의 변이(P217K)를 포함하는 것을 재조합 미생물.
  19. 제16항에 있어서,
    상기 타입 II 폴리케타이드 생합성 효소는 P. luminescens 유래;
    상기 4'-포스포판테인닐 전이효소는 Bacillus subtilis 또는 P. luminescens 유래;
    상기 사이클라아제는 Streptomyces sp. 유래;
    상기 아세틸-CoA 카르복실화 효소는 Corynebacterium glutamicum 유래; 및/또는
    상기 아클라비네온 12-수산화효소는 Streptomyces peucetius 유래;인 것을 특징으로 하는 재조합 미생물.
  20. 제12항에 있어서,
    (i) 알로에손 합성효소(aloesone synthase)를 암호화하는 유전자가 도입되어 있고,
    상기 폴리케타이드 배당체는 알로에신인 것을 특징으로 하는 재조합 미생물.
  21. 제20항에 있어서,
    상기 알로에손 합성효소는 R. palmatum 유래인 것을 특징으로 하는 재조합 미생물.
  22. 다음 단계를 포함하는 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체의 제조방법:
    (a) 제10항의 재조합 미생물을 배양하여 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체를 생성시키는 단계; 및
    (b) 상기 생성된 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체를 회수하는 단계.
  23. 제22항에 있어서, 상기 재조합 미생물은 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체의 전구체 생산능을 갖는 것을 특징으로 하는 제조방법.
  24. 제22항에 있어서, 상기 (a) 단계는 제10항의 재조합 미생물을 폴리케타이드 및/또는 페닐프로파노이드가 첨가된 배지에서 배양하는 것을 특징으로 하는 제조방법.
  25. 제22항에 있어서, 상기 폴리케타이드 배당체는 카르민산이고, 상기 (a)단계는 배양시 배양 배지에 아스코르빈산을 첨가하여 미생물을 배양하는 것을 특징으로 하는 제조방법.
  26. 다음 단계를 포함하는 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체의 제조방법:
    (a) 제1항 내지 제8항 중 어느 한 항의 C-글리코실전이효소 변이체 또는 상기 C-글리코실전이효소 변이체를 발현하는 미생물과 폴리케타이드 및/또는 페닐프로파노이드를 반응시켜 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체를 생성시키는 단계; 및
    (b) 상기 생성된 폴리케타이드 배당체 및/또는 페닐프로파노이드 배당체를 회수하는 단계.
PCT/KR2022/001485 2021-01-27 2022-01-27 C-글리코실전이효소 변이체 및 이의 용도 WO2022164226A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023545885A JP2024505906A (ja) 2021-01-27 2022-01-27 C-グリコシルトランスフェラーゼ変異体およびその用途
US18/263,127 US20240102068A1 (en) 2021-01-27 2022-01-27 C-glycosyltransferase variants and use thereof
CN202280016203.2A CN117425727A (zh) 2021-01-27 2022-01-27 C-葡糖基转移酶变体及其用途
EP22746252.0A EP4286515A1 (en) 2021-01-27 2022-01-27 C-glycosyltransferase variants and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210011326 2021-01-27
KR10-2021-0011326 2021-01-27
KR10-2022-0011630 2022-01-26
KR1020220011630A KR20220109336A (ko) 2021-01-27 2022-01-26 C-글리코실전이효소 변이체 및 이의 용도

Publications (1)

Publication Number Publication Date
WO2022164226A1 true WO2022164226A1 (ko) 2022-08-04

Family

ID=82653672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001485 WO2022164226A1 (ko) 2021-01-27 2022-01-27 C-글리코실전이효소 변이체 및 이의 용도

Country Status (4)

Country Link
US (1) US20240102068A1 (ko)
EP (1) EP4286515A1 (ko)
JP (1) JP2024505906A (ko)
WO (1) WO2022164226A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160376569A1 (en) * 2013-12-18 2016-12-29 Kobenhavns Universitet Glycosyltransferase glycosylating flavokermesic acid and/or kermesic acid
JP2020506704A (ja) * 2017-02-03 2020-03-05 コデクシス, インコーポレイテッド 操作されたグリコシルトランスフェラーゼおよびステビオール配糖体グルコシル化方法
KR102187682B1 (ko) 2018-06-08 2020-12-07 한국과학기술원 타입 iii 폴리케타이드 합성 효소 기반 신규 말로닐-코에이 바이오센서 및 그 용도
US20210009968A1 (en) * 2019-06-25 2021-01-14 Manus Bio, Inc. Uridine diphosphate-dependent glycosyltransferase enzyme

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160376569A1 (en) * 2013-12-18 2016-12-29 Kobenhavns Universitet Glycosyltransferase glycosylating flavokermesic acid and/or kermesic acid
JP2020506704A (ja) * 2017-02-03 2020-03-05 コデクシス, インコーポレイテッド 操作されたグリコシルトランスフェラーゼおよびステビオール配糖体グルコシル化方法
KR102187682B1 (ko) 2018-06-08 2020-12-07 한국과학기술원 타입 iii 폴리케타이드 합성 효소 기반 신규 말로닐-코에이 바이오센서 및 그 용도
US20210009968A1 (en) * 2019-06-25 2021-01-14 Manus Bio, Inc. Uridine diphosphate-dependent glycosyltransferase enzyme

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
AUUBE ET AL.: "Current Protocols in Molecular Biology", 1993, GREENE PUBLISHING AND WILEY-INTERSCIENCE
B. PFEIFER ET AL., SCIENCE, vol. 291, no. 5509, 2001, pages 1790 - 1792
CHAUDHURY, S.LYSKOV, S.GRAY, J. J.: "PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta", BIOINFORMATICS, vol. 26, no. 5, 2010, pages 689 - 691, XP055621111, DOI: 10.1093/bioinformatics/btq007
CHEN DAWEI, CHEN RIDAO, XIE KEBO, DUAN YANGYANG, DAI JUNGUI: "Production of acetophenone C-glucosides using an engineered C-glycosyltransferase in Escherichia coli", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM , NL, vol. 59, no. 19, 1 May 2018 (2018-05-01), Amsterdam , NL , pages 1875 - 1878, XP055954233, ISSN: 0040-4039, DOI: 10.1016/j.tetlet.2018.04.006 *
CHEN, D.CHEN, R.XIE, K.DUAN, Y.DAI, J.: "Production of acetophenone C-glucosides using an engineered C-glycosyltransferase in Escherichia coli", TETRAHEDRON LETT., vol. 59, no. 19, 2018, pages 1875 - 1878, XP055954233, DOI: 10.1016/j.tetlet.2018.04.006
D, J. LIPMANW. R. PEARSON'S: "Fast and Sensitive Protein Similarity Search", SCIENCE, vol. 227, 1989, pages 1435 - 1441
D. YANG ET AL., PNAS, vol. 115, no. 40, 2018, pages 9835 - 9844
DATABASE Protein GenPept; ANONYMOUS : "UDP-glycosyltransferase UF6CGT1; Short=GtUF6CGT1", XP055954232, retrieved from NCBI *
KANNANGARA ET AL., NAT COMMUN, vol. 8, 2017
KOVACH, M. E.PHILLIPS, R. W.ELZER, P. H.ROOP, R. M.PETERSON, K. M.: "pBBRIMCS: a broad-host-range cloning vector", BIOTECHNIQUES, vol. 16, no. 5, 1994, pages 800 - 802
NEUMANN ET AL., EMBO J., vol. 1, 1982, pages 841
S. ALTSCHULW. GISHW. MILLERE. W. MYERSD. LIPMAN: "A Basic Local Alignment Search Tool", JOURNAL OF MOLECULAR BIOLOGY, vol. 215, 1990, pages 403 - 410
S.Y.PARK ET AL., BIORXIV
SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
W. R. PEARSOND. J. LIPMAN'S: "Improved Tool for Biological Sequence Comparison", PROC. NATL. ACAD. SCI., vol. 85, 1988, pages 2444 - 2448
WEBB, B.SALI, A.: "Comparative protein structure modeling using MODELLER", CURR. PROTOC. BIOINFORMATICS, vol. 54, 2016, pages 1 - 37
YANG, D.KIM, W. J.YOO, S. M.CHOI, J. H.HA, S. H.LEE, M. H.LEE, S. Y.: "Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria", PROC. NATL. ACAD. SCI. U. S. A., vol. 115, no. 40, 2018, pages 9835 - 9844, XP055663078, DOI: 10.1073/pnas.1808567115
YANG, D.KIM, W.J.YOO, S.M.CHOI, J.H.HA, S.H.LEE, M.H.LEE, S.Y.: "Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria", PROC. NATL. ACAD. SCI. (PNAS, vol. 115, no. 40, 2 October 2018 (2018-10-02), pages 9835 - 9844, XP055663078, Retrieved from the Internet <URL:https://doi.org/10.1073/pnas.1808567115> DOI: 10.1073/pnas.1808567115
ZHENG, L.BAUMANN, U.REYMOND, J. L.: "An efficient one-step site-directed and site-saturation mutagenesis protocol", NUCLEIC ACIDS RES, vol. 32, no. 14, 2004, pages e115

Also Published As

Publication number Publication date
JP2024505906A (ja) 2024-02-08
EP4286515A1 (en) 2023-12-06
US20240102068A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
WO2019235688A1 (ko) 타입 iii 폴리케타이드 합성 효소 기반 신규 말로닐-코에이 바이오센서 및 그 용도
WO2015167282A1 (en) A novel method for glycosylation of ginsenoside using a glycosyltransferase derived from panax ginseng
WO2020027362A1 (ko) 신규 아데닐로석시네이트 신세타아제 및 이를 이용한 퓨린 뉴클레오티드 생산방법
WO2018124440A2 (ko) 신규한 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법
WO2021125896A1 (ko) 내막 단백질의 변이체 및 이를 이용한 목적 산물 생산 방법
WO2010064764A1 (en) Method of preparing piceatannol using bacterial cytochrome p450 and composition therefor
WO2015199396A1 (ko) O-아세틸 호모세린을 생산하는 미생물 및 상기 미생물을 이용하여 o-아세틸 호모세린을 생산하는 방법
WO2019164351A1 (ko) 마이코스포린 유사 아미노산을 생산하는 미생물 및 이를 이용한 마이코스포린 유사 아미노산의 생산방법
WO2015199387A2 (ko) 가용성 단백질 발현량 및 활성이 증대된 헬리코박터 파일로리 유래 α-1,3 푸코실 전달효소의 유전자와 단백질 및 α-1,3 푸코실올리고당 생산에의 응용
WO2021201615A1 (ko) 신규한 면역 활성 인터루킨 2 아날로그
WO2023068472A1 (ko) 신규한 당전이효소 및 이의 용도
WO2015199386A1 (ko) 가용성 단백질 발현량이 증대된 헬리코박터 파일로리 유래 α-1,2 푸코실 전달효소의 유전자와 단백질 및 α-1,2 푸코실올리고당 생산에의 응용
WO2022163951A1 (ko) 신규한 단백질 변이체 및 이를 이용한 l-라이신 생산 방법
WO2013085361A2 (ko) 4-하이드록시부티릭산 고생성능을 가지는 변이 미생물 및 이를 이용한 4-하이드록시부티릭산의 제조방법
WO2021060696A1 (ko) 디하이드로디피콜린산 리덕타제 변이형 폴리펩티드 및 이를 이용한 l-쓰레오닌 생산방법
WO2020077367A1 (en) Biosynthesis of homoeriodictyol
WO2021261733A1 (ko) L-쓰레오닌 디하이드라타아제의 신규 변이체 및 이를 이용한 l-이소류신 생산 방법
WO2022164226A1 (ko) C-글리코실전이효소 변이체 및 이의 용도
WO2022164118A1 (ko) 프리페네이트 탈수 효소 변이체 및 이를 이용한 분지쇄 아미노산 생산 방법
WO2018182361A1 (ko) CRISPR/Cas 시스템과 재조합 효소 및 단일가닥 올리고디옥시리보핵산을 이용한 코리네박테리움 변이균주 제조방법
WO2023121426A1 (ko) 레바우디오사이드의 생산
WO2019004779A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2016013844A1 (ko) 페닐아세틸 호모세린 락톤 유도체의 생산 방법
WO2016122058A1 (ko) 세포성점균을 이용한 인간 페닐알라닌 수산화효소의 활성분석 방법
WO2019004780A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22746252

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18263127

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023545885

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280016203.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022746252

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022746252

Country of ref document: EP

Effective date: 20230828