WO2019235688A1 - 타입 iii 폴리케타이드 합성 효소 기반 신규 말로닐-코에이 바이오센서 및 그 용도 - Google Patents

타입 iii 폴리케타이드 합성 효소 기반 신규 말로닐-코에이 바이오센서 및 그 용도 Download PDF

Info

Publication number
WO2019235688A1
WO2019235688A1 PCT/KR2018/010087 KR2018010087W WO2019235688A1 WO 2019235688 A1 WO2019235688 A1 WO 2019235688A1 KR 2018010087 W KR2018010087 W KR 2018010087W WO 2019235688 A1 WO2019235688 A1 WO 2019235688A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
gene
malonyl
recombinant microorganism
synthase
Prior art date
Application number
PCT/KR2018/010087
Other languages
English (en)
French (fr)
Inventor
이상엽
양동수
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to CN201880015083.8A priority Critical patent/CN110896642A/zh
Priority to US16/477,897 priority patent/US20210277428A1/en
Priority to JP2019541153A priority patent/JP2020530757A/ja
Priority to EP18899006.3A priority patent/EP3608417A4/en
Publication of WO2019235688A1 publication Critical patent/WO2019235688A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/008Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions for determining co-enzymes or co-factors, e.g. NAD, ATP
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/025Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)

Definitions

  • the present invention relates to a novel malonyl-CoA biosensor based on a type III polyketide synthase and its use, and more particularly, to a recombinant vector comprising a gene encoding a type III polyketide synthase is introduced.
  • Recombinant microorganisms for detecting malonyl-coei A method of screening a malonyl-coei production-inducing substance using the recombinant microorganism, a gene screening method involved in increasing malonyl-coei production capacity; And knocking down the gene selected by the method in a microorganism to increase the production of malonyl-coei of the microorganism and to produce a useful substance based on malonyl-coei as a precursor.
  • malonyl-CoA is particularly important because it is a major precursor of very useful products such as polyketides, phenylpropanoids, biofuels and the like.
  • malonyl-CoA causes various essential metabolic reactions in cells such as fatty acid biosynthesis, the amount that can be utilized metabolic engineering is very small.
  • high-performance instruments such as LC-MS / MS are needed to measure the concentration of malonyl-CoA in cells, and time is required to measure malonyl-CoAs that are rapidly generated and disappeared within the cell and are sensitive to environmental conditions. Sampling methods that require long and very careful attention are required.
  • the present inventors have developed a novel malonyl-coei biosensor based on type III polyketide synthase to solve the above problems, which is a type III polyketide synthase including RppA. It utilizes the property of converting A into a colored substance through a single step reaction.
  • the biosensor not only can detect malonyl-coei easily, but also malonyl-coei produced strain, It is possible to screen the genes involved in the production of malonyl-coei, and to increase the production ability of malonyl-coei, and to easily construct a method for producing various useful substances using malonyl-coei as a substrate or precursor. By confirming that the present invention was completed, the present invention was completed.
  • the present invention provides a gene encoding a type III polyketide synthetase is inserted into the genome; Or a recombinant microorganism for detecting malonyl-coei, wherein a recombinant vector comprising a gene encoding a type III polyketide synthetase is introduced.
  • the present invention also provides
  • the present invention also provides
  • the present invention also provides
  • An increase in malonyl-coei production capacity characterized by regulating the expression of a gene selected by the above method in microorganisms which have malonyl-coei production capacity intrinsically or have been introduced from the outside. It provides a method for producing a recombinant microorganism.
  • the invention also relates to a microorganism having a malonyl-coeigenic ability
  • cytR transcriptional repressor for deo operon, udp, cdd, tsx, nupC and nupG );
  • yfiD (pyruvate formate lyase subunit);
  • araA L-arabinose isomerase
  • fadR negative regulator for fad regulon and positive regulator of fabA
  • pabA aminodeoxychorismate synthase, subunit II
  • purB (adenylosuccinate lyase).
  • the present invention provides a recombinant microorganism having increased malonyl-Coei production ability, in which the expression of one or more genes selected from the group consisting of hycI (protease involved in processing C-terminal end of HycE) is reduced compared to wild type.
  • hycI prote involved in processing C-terminal end of HycE
  • the present invention also provides
  • the present invention also provides a gene encoding 6-methylsalicylic acid synthase (6MSAS) and 4'-phosphopantaninyl transferase (Sfp) in the recombinant microorganism. Further provided is a recombinant microorganism for 6-methylsalicylic acid production which is introduced or its expression is increased.
  • 6MSAS 6-methylsalicylic acid synthase
  • Sfp 4'-phosphopantaninyl transferase
  • the present invention also provides
  • the present invention also provides a recombinant microorganism for aloeson production, in which a gene encoding aloesone synthase is additionally introduced or its expression is increased in the recombinant microorganism.
  • the present invention also provides
  • the present invention also relates to tyrosine ammonia-lyase (TAL), 4-coumarate: CoA ligase (4CL) and stilbene in the recombinant microorganism.
  • TAL tyrosine ammonia-lyase
  • 4CL CoA ligase
  • stilbene in the recombinant microorganism.
  • the present invention provides a recombinant microorganism for resveratrol production in which a gene encoding synthase (STS)) is additionally introduced or its expression is increased.
  • STS gene encoding synthase
  • the present invention also provides
  • (b) provides a method for preparing resveratrol comprising recovering resveratrol from the cultured microorganism.
  • the present invention also relates to the recombinant microorganism tyrosine ammonia-lyase (TAL), 4-coumarate: CoA ligase (4-coumarate: CoA ligase, 4CL), chalcone synthase (chalcone synthase)
  • TAL tyrosine ammonia-lyase
  • 4-coumarate CoA ligase
  • 4-coumarate CoA ligase
  • 4CL CoA ligase, 4CL
  • chalcone synthase chalcone synthase
  • the present invention provides a recombinant microorganism for producing naringenin, in which a gene encoding CHS) and a chalcone isomerase (CHI) are additionally introduced or its expression is increased.
  • CHI chalcone isomerase
  • the present invention also provides
  • (b) provides a method for producing naringenin comprising recovering naringenin from the cultured microorganism.
  • RppA type III polyketide synthase
  • A RppA can convert five molecules of malonyl-CoA into one molecule of red flaviolin. At this time, it is preferentially converted to 1,3,6,8-tetrahydroxynaphthalene (THN), which is then converted into flaviolin by spontaneous oxidation.
  • B The deeper the red color by the RppA biosensor, the higher the malonyl-coei concentration in the cell.
  • Flaviolin biosynthesis illustrates flaviolin biosynthesis.
  • A Flaviolin production by rppA from five different strains.
  • B Production of flaviolin demonstrated by LC-MS, MS / MS analysis.
  • C Optimization of flaviolin production. Optimization of the 5'UTR increased flaviolin production.
  • D Identification of the effectiveness of RppA biosensors. Changes in signal due to indirect intracellular malonyl-Coei fluctuations with cerulenin.
  • RppA + represents a strain in which RppA is expressed
  • RppA- represents a strain in which RppA is not expressed.
  • RppA biosensor 3 shows the utility and expandability of the RppA biosensor.
  • A Flaviolin production increases as the amount of cerulenin added increases, and (B) this can be seen visually.
  • C Flaviolin production is possible from all 16 strains of E. coli.
  • D The RppA expressing strain (RppA +) and the control strain without RppA (RppA-) had the least noise in the control at 340 nm (indicated by the arrow) and the signal was strong in the RppA + strain at 340 nm. Absorbance at was used as a signal of the RppA biosensor.
  • Figure 4 shows the characterization of three type III polyketide biosynthetic enzymes, AaOKS, AaPKS4 and AaPKS5, into malonyl-CoA biosensors.
  • A extracted ion chromatogram through LC-MS (negative scan mode) of the culture supernatant of E. coli BL21 (DE3) expressing AaOKS, AaPKS4, AaPKS5.
  • the predicted product for each chromatogram is as follows: 5,7-dihydroxy-2-methylchromone (m / z 191); aloesone (m / z 231); SEK4 and SEK4b (m / z 317).
  • B the color of the culture medium under different cerulein concentrations of E.
  • FIG. 5 shows that the three types III polyketide biosynthesis enzymes of AaOKS, AaPKS4 and AaPKS5 can be utilized as malonyl-CoA biosensors.
  • AaOKS AaOKS
  • B AaPKS4
  • C AaPKS5 show increased normalized signal with increasing malonyl-coei concentration (adjusted by addition of cerulenin). Each signal represents each case with or without PKS.
  • Figure 6 shows the results of RppA biosensor test in Pseudomonas putida, Corynebacterium glutamicum, Rhodococcus opacus .
  • A When plasmids designated in P. putida strains were transformed, the production amount of flaviolin was shown.
  • B shows the intensity of the signal according to the concentration of cerulenin of the P. putida pBBR1-rppA sensor strain, and
  • C shows the relative flaviolin production at this time.
  • D When plasmids designated in C. glutamicum strains were transformed, the production amount of flaviolin was shown.
  • E C.
  • glutamicum pCES-His-rppA shows the intensity of the signal according to the cerulein concentration of the strain, and (F) the relative flaviolin production at this time.
  • G The transformed plasmids of the R. opacus strain show the color of the culture.
  • FIG. 7 shows a process for screening strains showing increased malonyl-coei production using RppA biosensors using high-speed screening.
  • FIG. 9 shows the signal generated when 26 E. coli sensor strains were transformed with 26 synthetic regulatory sRNAs that confer increased initially malonyl-Coei production capacity. At this time, 14 synthetic regulatory sRNAs that succeeded in signal increase of 70% or more compared to the control group were selected as the final targets.
  • FIG. 10 shows malonyl-Coei transpiration through FVSEOF simulation.
  • A represents the biosynthetic pathway associated with malonyl-Coei biosynthesis, the letters in bold represent the response, and the letters in normal font represent metabolites. Gray arrows indicate metabolic flux and red arrows indicate metabolic flux represented by overexpression targets.
  • B Biosensor signals appearing when overexpressing gene targets identified with FVSEOF.
  • C List of gene targets identified with FVSEOF.
  • the red X represents the knocked out gene and the blue X represents the knocked down gene.
  • bla beta-lactamase gene
  • kan R kanamycin-resistance gene
  • p15A replication origin
  • ColE replication origin
  • P tac tac promoter
  • P BAD arabinose-inducible promoter
  • P R P R promoter
  • rrnB rrnBT1T2 terminator
  • T1 / TE terminator.
  • Gly glycerol; Gly-3P, glycerol 3-phosphate; DHA, dihydroxyacetone; DHAP, dihydroxyacetone phosphate; G3P, glyceraldehyde 3-phosphate; 1,3BPG, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; OAA, oxaloacetate; E4P, D-erythrose 4-phosphate; DAHP, 3-deoxy-D-arabinoheptulosonate 7-phosphate; CHOR, chorismate; AcCoA, acetyl-CoA; MalCoA, malonyl-CoA; 6MSAS, 6MSA synthase; KS, ketosynthase; AT, acyltransferase; DH, dehydratase; KR, ketoreductase; ACP
  • FIG. 12 shows different gene expression cassettes for 6-methylsalicylic acid production.
  • A shows the plasmid pTac-Pg6MSAS-sfp
  • B shows the sfp expressed on the genome of the plasmid pTac-Pg6MSAS and the E. coli BAP1 strain.
  • C Expression of 6-methylsalicylic acid synthase (Pg6MSAS) and 4'-phosphopantaninyl transferase (Sfp) was confirmed by SDS-PAGE.
  • Pg6MSAS (188 kDa), Sfp (26.1 kDa).
  • FIG. 13 shows the production of 6-methylsalicylic acid from an improved E. coli strain.
  • A shows 6-methylsalicylic acid production in BL21 based strains and BAP1 based strains at various concentrations of glucose / glycerol.
  • B shows the result of LC-MS analysis of 6-methylsalicylic acid produced from Escherichia coli
  • C shows the result of LC-MS analysis of the commercially available 6-methylsalicylic acid compound.
  • D Test-tube scale 6-methylsalicylic acid production in 16 E. coli. The blue part shows a production capacity of 1 mg / L or more.
  • E Hourly 6-methylsalicylic acid production of Escherichia coli BL21 (DE3) pTac-Pg6MSAS-sfp pWAS-anti-pabA (sRNA plasmid for pabA knockdown).
  • F BAP1 pTac-Pg6MSAS pWAS-anti-pabA strain over time 6-methylsalicylic acid production pattern.
  • G fed-batch fermentation pattern of the same strain. Red arrows indicate the time of IPTG induction.
  • the blue lines and dots represent cell growth (OD 600 ) and the red lines and dots represent 6-methylsalicylic acid concentration.
  • FIG. 14 shows the production of 6-methylsalicylic acid when each of the 14 strains of synthetic regulatory sRNA selected in Example 2.1 was introduced into six selected E. coli strains, and then the resulting strains were cultured at the test tube level. .
  • Fig. 15 left graph shows the concentration of 6-methylsalicylic acid on the flask culture when the genes at the bottom of the left graph are overexpressed in E. coli BAP1 pTac-Pg6MSAS pWAS-anti-pabA, the strain having the highest 6-methylsalicylic acid production ability in FIG. Indicates.
  • the graph on the right shows the fed-batch fermentation results of the strain E. coli BAP1 pTac-Pg6MSAS pWAS-anti-pabA pBBR1-accBCD1 which was the best producing strain in the graph on the left.
  • Figure 16 shows the biosynthetic pathway of Aloeson.
  • the red X represents the knocked out gene and the blue X represents the knocked down gene.
  • Glc glucose; G6P, glucose 6-phosphate; F6P, fructose 6-phosphate; F1,6BP, fructose 1,6-bisphosphate; DHAP, dihydroxyacetone phosphate; G3P, glyceraldehyde 3-phosphate; 1,3BPG, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; OAA, oxaloacetate; E4P, D-erythrose 4-phosphate; DAHP, 3-deoxy-D-arabinoheptulosonate 7-phosphate; CHOR, chorismate; AcCoA, acetyl-CoA; MalCoA, malonyl-CoA;
  • bla beta-lactamase gene
  • spc R spectinomycin-resistance gene
  • CDF replication origin
  • ColE replication origin
  • P T7 T7 promoter
  • P BAD arabinose-inducible promoter
  • P R P R promoter
  • rrnB rrnBT1T2 terminator
  • T1 / TE terminator.
  • FIG. 17 shows aloeson production in an improved E. coli strain.
  • A shows the results of SDS-PAGE to confirm the expression of aloe ssontase (RpALS, 43 kDa) and aloe ssontase (AaPKS3, 44 kDa).
  • B shows the production of aloeson when RpALS / AaPKS3 is expressed when glucose / glycerol is used as the carbon source.
  • C is the LC-MS, MS / MS spectrum of Aloeson produced in Escherichia coli.
  • (D) is the time-dependent aloeson production of the BL21 (DE3) pCDF-RpALS strain
  • (E) is a time-dependent aloeson production of the BL21 (DE3) pCDF-RpALS pWAS-anti-pabA strain.
  • the blue lines and dots represent cell growth (OD 600 ) and the red lines and dots represent aloeson concentrations.
  • (F) is a test-tube level culture result of the strains generated after introducing each of the 14 synthetic regulatory sRNAs selected in Example 2.1 into two E. coli DE3 strains.
  • Figure 18 (E) shows the concentration of aloe zon shown on the flask culture when overexpressing the genes in the bottom of the graph in BL21 (DE3) pCDF-RpALS pWAS-anti-pabA, the strain that was the best aloe sson production capacity of FIG.
  • red X represents the knocked out gene and the blue X represents the knocked down gene.
  • Bold letters and bold black arrows indicate overexpressed metabolic flux.
  • Red dashed lines (with-signs in circles) indicate transcription inhibition processes.
  • Black dashed lines (with plus signs in circles) indicate transcriptional activation processes.
  • Gly glycerol; Gly-3P, glycerol 3-phosphate; DHA, dihydroxyacetone; DHAP, dihydroxyacetone phosphate; G3P, glyceraldehyde 3-phosphate; 1,3BPG, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; OAA, oxaloacetate; E4P, D-erythrose 4-phosphate; DAHP, 3-deoxy-D-arabinoheptulosonate 7-phosphate; SHIK, shikimate; CHOR, chorismate; PPHN, prephenate; HPP, 4-hydroxyphenylpyruvate; FOR, formate; AcCoA, acetyl-CoA; MalCoA, malonyl-CoA.
  • bla beta-lactamase gene
  • kan R kanamycin-resistance gene
  • spc R spectinomycin-resistance gene
  • p15A replication origin
  • ColE1 replication origin
  • CDF replication origin
  • P tac tac promoter
  • P BAD arabinose-inducible promoter
  • P R P R promoter
  • P trc trc promoter
  • rrnB rrnBT1T2 terminator
  • T1 / TE terminator.
  • FIG. 20 shows the production of p- coumaric acid and resveratrol using the improved E. coli.
  • A shows the production of p- coumaric acid by various plasmids constructed to see the effect of N-terminal protein tagging. At this time, all but pTY13-HisTAL were transformed into BTY5.13 strain, and in the case of pTY13-HisTAL, BTY5 strain.
  • B SDS-PAGE analysis to see the expression of each protein. At4CL1m (61.1 kDa), At4CL3 (61.3 kDa), At4CL4 (62.6 kDa), Sc4CLm (55.3 kDa), STS (42.8 kDa). CT indicates control. M represents a protein size marker.
  • 1-5 represents a plasmid and each plasmid is as follows. 1, pTac-VvSTS-At4CL1m; 2, pTac-At4CL1m-opr-VvSTS (expressing both genes as one operon); 3, pTac-At4CL1m-fus-VvSTS (fusion protein expression of At4CL1m and STS); 4 and 5, pTacCDF-VvSTS-At4CL1m.
  • the plasmids corresponding to 1-4 were transformed into Escherichia coli BL21 (DE3) and incubated with 2 mM p- coumaric acid and 20 g / L glycerol.
  • the plasmid corresponding to 5 was transferred to BTY5 pTY13-HisTAL strain. Transformed and incubated with 20 g / L glycerol addition.
  • a strain corresponding to 5 was used as the basic resveratrol producing strain, and is represented by a dark blue bar graph.
  • FIG. 21 shows the results of LC-MS performed to determine the authenticity of resveratrol produced from improved E. coli.
  • A shows the resveratrol produced from the improved E. coli
  • B shows the LC-MS spectrum of the commercial resveratrol compound.
  • red X represents the knocked out gene and the blue X represents the knocked down gene.
  • Bold letters and bold black arrows indicate overexpressed metabolic flux.
  • Red dashed lines (with-signs in circles) indicate transcription inhibition processes.
  • Black dashed lines (with plus signs in circles) indicate transcriptional activation processes.
  • bla beta-lactamase gene
  • kan R kanamycin-resistance gene
  • spc R spectinomycin-resistance gene
  • p15A replication origin
  • ColE1 replication origin
  • CDF replication origin
  • P tac tac promoter
  • P BAD arabinose-inducible promoter
  • P R P R promoter
  • P trc trc promoter
  • rrnB rrnBT1T2 terminator
  • T1 / TE terminator.
  • Gly glycerol; Gly-3P, glycerol 3-phosphate; DHA, dihydroxyacetone; DHAP, dihydroxyacetone phosphate; G3P, glyceraldehyde 3-phosphate; 1,3BPG, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; OAA, oxaloacetate; E4P, D-erythrose 4-phosphate; DAHP, 3-deoxy-D-arabinoheptulosonate 7-phosphate; SHIK, shikimate; CHOR, chorismate; PPHN, prephenate; HPP, 4-hydroxyphenylpyruvate; FOR, formate; AcCoA, acetyl-CoA; MalCoA, malonyl-CoA; TYR, L-tyrosine; COU, p -coumaric acid
  • FIG. 23 shows naringenin production in improved E. coli.
  • A shows naringenin production in strains with the pTrcCDF-At4CL1m-AtCHI-PhCHS plasmid, where the strain with the p- coumaric acid pathway was transformed into BTY5 pTY13-HisTAL strain, 2 mM p- coumaric acid was added to the medium after transformation to the BL21 (DE3) strain. 20 g / L of glucose or glycerol were added respectively.
  • B shows SDS-PAGE analysis of foreign enzymes. At4CL1m, PhCHS (42.6 kDa), AtCHI (26.6 kDa).
  • FIG. 24 is an LC-MS result performed to determine the authenticity of naringenin produced in the improved E. coli.
  • A shows the naringenin produced from the improved E. coli
  • B shows the LC-MS spectrum of the commercially available naringenin compound.
  • naringenin production in improved E. coli shows naringenin production in improved E. coli.
  • A Production amount of naringenin produced by transforming the 14 kinds of synthetic regulatory sRNAs selected in Example 2.1 into a basic naringenin strain (BTY5 pTY13-HisTAL pTrcCDF-At4CL1m-AtCHI-PhCHS), followed by flask culture.
  • the sRNAs corresponding to the three strains indicated by darker red graphs were increased in naringenin production capacity by more than 15% compared to the control group, and thus were used for the double simultaneous knockdown test.
  • B The result of double simultaneous knockdown test by combining the three sRNAs previously selected. * P ⁇ 0.05, ** P ⁇ 0.01 (two-tailed Student's t -test).
  • malonyl-Coei concentration significantly improved in time, cost, convenience, etc. compared to the conventional method for measuring malonyl-Coei concentration It was confirmed that can be measured.
  • a gene encoding a type III polyketide synthetase is inserted into the genome; Or to a recombinant microorganism for detecting malonyl-coei, into which a recombinant vector comprising a gene encoding a type III polyketide synthetase is introduced.
  • Streptomyces griseus Streptomyces coelicolor , Streptomyces avermitilis , Saccharopolyspora erythraea , Streptomyces fusettius RppA from microorganisms selected from the group consisting of Streptomyces peucetius and Streptomyces aculeolatus;
  • PhlD Polyketide synthase
  • DpgA Polyketide synthase
  • ALS Aloes synthase
  • PCS (5,7-dihydroxy-2-methylchromone synthase), OKS (octaketide synthase), PKS3 (aloesone synthase), PKS4 (octaketide synthase 2) or PKS5 (octaketide synthase 3) derived from Aloe arborescens ; It may be characterized in that, but is not limited thereto.
  • all other type III polyketide synthase enzymes are also malonyl-coei, but PhlD is the product of phloroglucinol, DpgA is the product of dihydroxyphenylacetate, PCS produces 5,7-dihydroxy-2-methylchromone and OKS, PKS4 and PKS5 produce SEK4 and SEK4b as products.
  • ALS and PKS3 produce Aloe Son as a product.
  • amino acid sequence of each RppA enzyme used in the present invention is as follows:
  • Streptomyces nose elementary color RppA [SEQ ID NO: 94]: matlcrpsvs vpehvitmee tlelarrrht dhpqlplalr lientgvrtr hivqpiedtl ehpgfedrnk vyereaksrv paviqraldd aellatdidv iiyvsctgfm mpsltawlin emgfdsttrq ipiaqlgcaa ggaainrahd fctaypeana livacefcsl cyqptdlgvg sllcnglfgd giaavvrgr ggtgvrschen gsylipkted wimydvkatg fhflldkrvp atmeplapal kelagehgwd asdldfyivh aggprilddl s
  • Streptomyces Abbe reumi subtilis RppA [SEQ ID NO: 95]: matlckpavs vpehvitmee tlelarsrhp dhpqlplalr lientgvhtr hivqpieetl khpgfeernh vyeaeakarv pavvqralde aellttdidv iiyvsctgfm mpsltaylin smdfssdtrq ipiaqlgcaa ggsainrahd fctaypqana livacefcsl cyqptdlgvg sllsnglfgd giaaavrgk ggtgitschreib asylipktde wisydvratg fhflldkrvp gtmeplapal qelasqhgwd asdldfyiih
  • Streptomyces Pew Shetty mouse RppA [SEQ ID NO: 97]: mrvpvavddl vapstmgerh tvidrgtsva avhtalpphr yaqsdlteli adlclepgad rallrrlhts agvrtrhlal pieqyaglgd fgqanaawlt vglalaeeal sgaldaaglt aadidllvct sitgvaapsl darlavrmgm radvkrvpvf glgcvggaag lgrlhdyllg hpddtavlls velcsltlqr dgslanlvag alfgdgaaav varggdagrr gagwpmvaat rghlypdteh llgwrigasg frvvvdagip d
  • Streptomyces ahkul Leo la tooth RppA [SEQ ID NO: 98]: mprlckpavs apeytitmee tlefakqaha gkpqlplalr lirntgvlkr hivqpiektl ghpglternl iyeaeskkmc ppvieealqn admtardida iiyvsctgfl mpsltawlin kmgfrsdtrq ipiaqlgcaa ggaavnrahd fclahpgsnv livacelcsl cyqptaddig sllsdglfgd avaaavvrgn ggvgievern asylipntee wisysvrdtg fhfqldrrvp gtmeplapvl refakdhswd ag
  • amino acid sequence of other type III polyketide synthetase used in the present invention is as follows:
  • DpgA Amicoratopsis orientalis type III polyketide synthetase [SEQ ID NO: 100]:
  • Aloe arborescens type III polyketide synthase (5,7-dihydroxy-2-methylchromone synthase, PCS) [SEQ ID NO: 102]:
  • PKS3 Aloe arborescens aloesone synthase [SEQ ID NO: 104]:
  • mgslsdstpl mkdvqgirka qkadgtatvm aigtahpphi isqdsyadfy frvtnsehkv elkkkfdric kktmigkryf nfdeeflkky pnitsfdkps lndrhdicip gvpalgaeaa vkaieewgrp kseithlvfc tsggvdmpsa dfqcakllgl rtnvnkyciy mqgcyaggtv mryakdlaen nrgarvlmvc aeltiialrg pndshidnai gnslfgdgaa alivgsdpii gvekpmfeiv cakqtvipns eevihlhlre sglmfymtkd s
  • Aloe arborescens type III polyketide synthase (octaketide synthase 2, PKS4) [SEQ ID NO: 105]:
  • Aloe arborescens type III polyketide synthase (octaketide synthase 3, PKS5) [SEQ ID NO: 106]:
  • the amino acid sequence of the type III polyketide synthetase described above illustrates some feasible enzymes for producing the recombinant microorganism for detecting malonyl-coei of the present invention, and the present invention introduces a type III polyketide synthetase.
  • the technical feature of the detection of malonyl-Coei is that the production of recombinant microorganisms incorporating a type III polyketide synthetase other than the type III polyketide synthetase It will be apparent to those skilled in the art that it is possible.
  • the recombinant vector may be operably linked to a gene encoding the type III polyketide synthase to a promoter selected from the group consisting of tac, trc, T7, BAD, ⁇ PR and Anderson synthetic promoters
  • a promoter selected from the group consisting of tac, trc, T7, BAD, ⁇ PR and Anderson synthetic promoters
  • the present invention is not limited thereto.
  • the recombinant microorganism is Escherichia coli, separation tank emptying (Rhizobium), Bifidobacterium (Bifidobacterium), Rhodococcus (Rhodococcus), Candida (Candida), El Winiah (Erwinia), Enterobacter (Enterobacter), wave Ste Pasteurella (Pasteurella), the top high Mia (Mannheimia), liquid Tino Bacillus (Actinobacillus), Agde Leganes tee bakteo (Aggregatibacter), janto Monastir (Xanthomonas), Vibrio (Vibrio), Pseudomonas (Pseudomonas), azo Saturday bakteo (Azotobacter), kids Cine-Saturday bakteo (Acinetobacter), Central Stony Ah (Ralstonia), Agrobacterium (Agrobacterium), Rhodobacter (Rhodobacter), Eisai
  • the present invention may be prepared by introducing a recombinant vector into a microorganism selected from the group consisting of E. coli, Pseudomonas species, Corynebacterium species and Rhodococos species, but is not limited thereto. Although it is preferable to select and use 1 type of E. coli as described in 2, other E. coli may be used within the range which a person skilled in the art can expect similar effect to exhibit.
  • Pseudomonas putida as Pseudomonas strain
  • Corynebacterium glutamicum as Corynebacterium strain
  • Rhodococcus opacus as Rhodococcus opacus as Rhodococcus strain
  • the microorganism to which the present invention is applicable is not limited thereto.
  • malonyl-coy when a gene encoding a type III polyketide synthetase is inserted into the genome or a recombinant vector including the same is introduced, malonyl-coy is used.
  • concentration-dependent color development of A could easily identify the high and low production of malonyl-CoA, and could easily screen the malonyl-CoA production-inducing substance.
  • the present invention relates to a method for screening a malonyl-coei production inducer comprising the following steps.
  • step (c) can clearly observe the change in color with the naked eye, and measure the absorbance to express the change quantitatively.
  • step (c) may be characterized by visual comparison.
  • the color of the step (c) is compared by measuring the absorbance
  • the step (d) may be characterized in that the candidate material when the absorbance after the addition of the candidate material is increased compared to the absorbance before the candidate material is added as malonyl-coei production inducing material.
  • the absorbance can be compared with the OD value in the vicinity of 280 ⁇ 450 nm, preferably 300 ⁇ 340nm, the higher the malonyl-Coei concentration, the higher the OD value.
  • the present invention is another aspect It relates to a method for screening genes involved in increasing malonyl-Coei production capacity comprising the following steps.
  • step (b) can clearly observe the change in color with the naked eye, and measure the absorbance to express the change quantitatively.
  • step (b) may be characterized by visual comparison.
  • the color of the step (b) is compared by measuring the absorbance, and in the step (c) the recombinant microbial library when the absorbance increases compared to the absorbance of the culture supernatant of the recombinant microorganism before the gene control library is introduced It may be characterized by selecting the gene introduced in.
  • the absorbance can be compared with the OD value in the vicinity of 280 ⁇ 450 nm, preferably 300 ⁇ 340nm, the higher the malonyl-Coei concentration, the higher the OD value.
  • the gene regulation library may be a library selected from the group consisting of an sRNA library, a genomic library, a cDNA library, a gRNA library, and an oligonucleotide library for knockout or mutation production, but is not limited thereto. .
  • sRNA library for inhibiting endogenous gene expression of recombinant microorganism or oligonucleotide library for knockout or mutation production for achieving the object of the present invention
  • Genomic library or cDNA library, which is a library for endogenous or foreign gene overexpression
  • gRNA Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Guide RNA used in Cas9 technology
  • CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
  • Example 2 suggests a method of use thereof as an example for explaining the present invention in detail, and any other library reported to have a similar function may be introduced. .
  • the microorganism having the malonyl-Coei production ability in another aspect is The present invention relates to a method for producing a recombinant microorganism having increased malonyl-Coei production capacity, characterized by regulating the expression of a gene selected by the method.
  • Microorganisms having a malonyl-coeigenic ability means a microorganism having an intrinsic malonyl-coeigenic ability or a malonyl-coeigenic ability introduced from the outside.
  • the selected gene in the present invention is
  • cytR transcriptional repressor for deo operon, udp, cdd, tsx, nupC and nupG );
  • yfiD (pyruvate formate lyase subunit);
  • araA L-arabinose isomerase
  • fadR negative regulator for fad regulon and positive regulator of fabA
  • pabA aminodeoxychorismate synthase, subunit II
  • purB (adenylosuccinate lyase).
  • hycI proteomerase involved in processing C-terminal end of HycE
  • fabF is 3-oxoacyl- [acyl-carrier-protein] synthase II
  • yfcY is beta-ketoacyl-coei thiolase (beta-ketoacyl).
  • -CoA thiolase) a xapR is a transcriptional activator (transcriptional activator of xapAB) of xapAB
  • cytR is deo, udp, cdd, tsx, nupC
  • transcription inhibitor for nupG transcriptional repressor for deo operon, udp, cdd, tsx, nupC, nupG
  • fabH for 3-oxoacyl- [acyl-carrier-protein] synthase III
  • mqo for malate dehydrogenase.
  • yfiD denotes pyruvate formate lyase subunit
  • fmt denotes 10-formyltetrahydrofolate: L-methionyl-thialAe (fMet) N-formylpreferase (10-formyltetrahydrofolate: L -methionyl-tRNA (fMet) N-formyltransferase
  • pyrF is orotidine-5'phosphate dicarboxylase 5'-phosphate decarboxylase) a
  • araA is L- arabinose iso Murray's (L-arabinose isomerase)
  • fadR is negative regulator of the fad factor and positive modulator of fabA factor (negative regulator for fad regulon and positive regulator of fabA)
  • PabA is aminodeoxychorismate synthase (subunit II)
  • purB is adenylosuccinate lyase
  • amino acid sequence of each of the enzymes selected and used in the present invention is as follows. However, even if some amino acid sequences are substituted, deleted, or added in these amino acid sequences, they exhibit the same or more functions as in the present invention. If the structural form is the same or similar to the wild type to exert an equivalent or more effect on the substrate, it will be apparent that the sequence is also included in the scope of the present invention. In the same context, in addition to the enzymes used in the present invention, enzymes derived from other microorganisms having the same or similar functions may be appropriately applied to the present invention, and the application of the enzymes within the scope of the present invention is readily applicable to those skilled in the art. It will be obvious that it is included in.
  • the microorganism is E. coli, separation tank emptying (Rhizobium), Bifidobacterium (Bifidobacterium), Rhodococcus (Rhodococcus), Candida (Candida), El Winiah (Erwinia), Enterobacter (Enterobacter), wave Ste Pasteurella ( Pasteurella), the top high Mia (Mannheimia), liquid Tino Bacillus (Actinobacillus), Agde Leganes tee bakteo (Aggregatibacter), janto Monastir (Xanthomonas), Vibrio (Vibrio), Pseudomonas (Pseudomonas), azo Saturday bakteo (Azotobacter), Ke Sine Saturday bakteo (Acinetobacter), Central Stony Ah (Ralstonia), Agrobacterium (Agrobacterium), Rhodobacter (Rhodobacter), Eisai Momo Nas (Zymomonas),
  • the present invention may be prepared by introducing a recombinant vector into a microorganism selected from the group consisting of E. coli, Pseudomonas species, Corynebacterium species and Rhodococos species, but is not limited thereto. Although it is preferable to select and use 1 type of E. coli as described in 2, other E. coli may be used within the range which a person skilled in the art can expect similar effect to exhibit.
  • Pseudomonas putida as Pseudomonas strain
  • Corynebacterium glutamicum as Corynebacterium strain
  • Rhodococcus opacus as Rhodococcus opacus as Rhodococcus strain
  • the microorganism to which the present invention is applicable is not limited thereto.
  • the present invention can produce useful substances containing malonyl-CoA as a substrate or an intermediate with high yields with very simple genetic manipulation.
  • the present invention in another aspect of the microorganism having the ability to produce malonyl-Coei,
  • cytR transcriptional repressor for deo operon, udp, cdd, tsx, nupC and nupG );
  • yfiD (pyruvate formate lyase subunit);
  • araA L-arabinose isomerase
  • fadR negative regulator for fad regulon and positive regulator of fabA
  • pabA aminodeoxychorismate synthase, subunit II
  • purB (adenylosuccinate lyase).
  • the present invention relates to a recombinant microorganism having increased malonyl-coei production ability, in which the expression of one or more genes selected from the group consisting of hycI (protease involved in processing C-terminal end of HycE) is reduced compared to wild type.
  • hycI prote involved in processing C-terminal end of HycE
  • a microorganism having a malonyl-coeigen production capacity refers to a microorganism having an intrinsic malonyl-coeigen production ability or a malonyl-coeiogenic capacity introduced from the outside.
  • the present invention also relates to a method for producing a useful substance using malonyl-CoA as a substrate or intermediate comprising the following steps.
  • the useful material is
  • Lipid-based compounds composed of ceramide, palmitate and sphingosine
  • biosensor ie, recombinant microorganism
  • the biosensor ie, recombinant microorganism
  • the biosensor can be applied not only to the useful materials described above, but also to other value-added products such as natural malonyl-Coei-derived natural products, compounds, and biofuels.
  • the present invention also provides a gene encoding 6-methylsalicylic acid synthase (6MSAS) and 4'-phosphopantaninyl transferase (Sfp) to the recombinant microorganism. It further relates to a recombinant microorganism for 6-methylsalicylic acid production which is introduced or its expression is increased.
  • 6MSAS 6-methylsalicylic acid synthase
  • Sfp 4'-phosphopantaninyl transferase
  • the 6MSAS may be derived from Penicillium patulum ( or Penicillium griseofulvum ), Aspergillus terreus, Aspergillus aculeatus, Aspergillus niger, Aspergillus westerdijkiae, Byssochlamys nivea, Glarea lozoyensis, Penicillium expansum, or Streptomyces antibioticus .
  • the Sfp may be derived from Bacillus subtilis, Corynebacterium ammoniagenes, Escherichia coli , Homo sapiens, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Ricinus communis, Saccharomyces cerevisiae, Spinacia oleracea, Stigmatella aurantiaca, Streptomyces coelicolor, Streptomyces pneumonia, Streptomyces verticillus or Vibrio harveyi, It is not limited to this.
  • the gene whose expression is reduced compared to the wild type may be one or more selected from the group consisting of pabA, fabF, xapR, and ytcY , but is not limited thereto.
  • the recombinant microorganisms for 6-methylsalicylic acid production include glucose 6-phosphate dehydrogenase (Zwf), malate dehydrogenase (Mdh), phosphoglycerate dehydrogenase (SerA), acetyl-Coei carboxylase (AccBC and AccD1), Glyceraldehyde 3-Phosphate Dihydrogenase (GapA), Phosphoglycerate Kinase (Pgk), Acetyl-Coei Synthetase (Acs) and Pyruvate Dehydrogenase (AceEF and Lpd)
  • Zwf glucose 6-phosphate dehydrogenase
  • Mdh malate dehydrogenase
  • SerA phosphoglycerate dehydrogenase
  • AccBC and AccD1 acetyl-Coei carboxylase
  • GapA Glyceraldehyde 3-Phosphat
  • Zwf, Mdh, SerA, GapA, Pgk, Acs, AceE, AceF and Lpd may be derived from Escherichia coli , but are not limited thereto.
  • AccBC and AccD1 may be derived from, but are not limited to, Corynebacterium glutamicum and are scalable to enzymes corresponding to acetyl-Coei carboxylase from other microorganisms.
  • amino acid sequence of each of the enzymes selected and used in the present invention is as follows. However, even if some amino acid sequences are substituted, deleted, or added in these amino acid sequences, they exhibit the same or more functions as in the present invention. If the structural form is the same or similar to the wild type to exert an equivalent or more effect on the substrate, it will be apparent that the sequence is also included in the scope of the present invention. In the same context, in addition to the enzymes used in the present invention, enzymes derived from other microorganisms having the same or similar functions may be appropriately applied to the present invention, and the application of the enzymes within the scope of the present invention is readily applicable to those skilled in the art. It will be obvious that it is included in.
  • GapA [SEQ ID NO: 174]:
  • the invention also relates to a process for preparing 6-methylsalicylic acid comprising the following steps.
  • 1 to 50 g / L of glucose or 1 to 100 g / L of glycerol may be added as a carbon source to culture a recombinant microorganism.
  • the present invention also relates to a recombinant microorganism for aloeson production in which a gene encoding an aloesone synthase is additionally introduced or its expression is increased, wherein the aloeson synthase in the present invention is It may be ALS or PKS3 , the ALS may be derived from Rheum palmatum , the PKS3 may be derived from Aloe arborescens , it will also be possible to apply aloeson synths other than the aloe son synthase to the present invention.
  • the gene whose expression is reduced compared to the wild type may be characterized as pabA , but is not limited thereto.
  • Recombinant microorganisms for the production of aloeson are glucose 6-phosphate dehydrogenase (Zwf), malate dehydrogenase (Mdh), phosphoglycerate dehydrogenase (SerA), acetyl-Coei carboxylase (AccBC And AccD1), Glyceraldehyde 3-Phosphate Dihydrogenase (GapA), Phosphoglycerate Kinase (Pgk), Acetyl-Coei Synthetase (Acs) and Pyruvate Dehydrogenase (AceEF and Lpd)
  • Zwf glucose 6-phosphate dehydrogenase
  • Mdh malate dehydrogenase
  • SerA phosphoglycerate dehydrogenase
  • AccBC And AccD1 acetyl-Coei carboxylase
  • GapA Glyceraldehyde 3-Phosphate Dihydr
  • Zwf, Mdh, SerA, GapA, Pgk, Acs, AceE, AceF and Lpd may be derived from Escherichia coli , but are not limited thereto.
  • AccBC and AccD1 may be derived from, but are not limited to, Corynebacterium glutamicum and are scalable to enzymes corresponding to acetyl-Coei carboxylase from other microorganisms.
  • the present invention also relates to a method for preparing aloe sson comprising the following steps.
  • the method for producing aloe son of the present invention may be characterized by culturing the recombinant microorganism by adding 1 ⁇ 50g / L of glucose or 1 ⁇ 100g / L glycerol as a carbon source.
  • the present invention also relates to tyrosine ammonia-lyase (TAL), 4-coumarate: CoA ligase (4CL) and stilbene in the recombinant microorganism.
  • TAL tyrosine ammonia-lyase
  • 4CL CoA ligase
  • stilbene in the recombinant microorganism.
  • the present invention relates to a recombinant microorganism for producing resveratrol, in which a gene encoding synthase (STS) is additionally introduced or its expression is increased.
  • STS gene encoding synthase
  • the TAL may be derived from Rhodobacter capsulatus, Clitoria ternatea, Fragaria x ananassa, Rhodobacter sphaeroides, Zea mays or Saccharothrix espanaensis ,
  • Said 4CL is Arabidopsis thaliana, Streptomyces coelicolor, Acetobacterium woodii, Agastache rugose, Avena sativa, Camellia sinensis, Centaurium erythraea, Cephalocereus senilis, Cocos nucifera, Eriobotrya japonica, Erythrina cristagalli, Forsythia succian, Frascia succian, Fracia sia max.
  • Hibiscus cannabinus Larix cajanderi, Larix gmelinii, Larix kaempferi, Larix kamtschatica, Larix sibirica, Larix sukaczewii, Lithospermum erythrorhizon, Lolium perenne, Lonicera japonica, Metasequoia glyptostroboides, Nicotiana tabacumum, Ocimum paulownia sativa , Phyllostachys bambusoides, Physcomitrella patens, Picea abies, Pinus radiate, Pinus taeda, Pisum sativum, Platycladus orientalis, Polyporus hispidus, Populus tomentosa, Populus tremuloides, Populus x canadensis, Prunus avium, Pueraria montana, Robinacacaensanas, Rusciata Salix baby
  • the STS may be derived from Arachis hypogaea, Pinus densiflora, Pinus massoniana, Pinus strobus, Polygonum cuspidatum, Psilotum nudum or Vitis vinifera , but is not limited thereto.
  • Coei ligase is an amino acid mutated to I250L / N404K / I461V amino acid sequence shown in SEQ ID NO: 128 or amino acid mutated A294G / A318G in the amino acid sequence represented by SEQ ID NO: 131 It may be characterized as a modified enzyme, but is not limited thereto.
  • the gene whose expression is reduced compared to the wild type is at least one selected from the group consisting of pabA, yfiD, mqo, xapR, purB, fabH, fabF, ytcY, argC, nudD, araA, fadR, cytR, fmt and pyrF. It may be, but is not limited thereto.
  • the present invention also relates to a method for preparing resveratrol comprising the following steps.
  • 1 to 50 g / L of glucose or 1 to 100 g / L of glycerol may be added as a carbon source to culture the recombinant microorganism.
  • the present invention also provides tyrosine ammonia-lyase (TAL), 4-coumarate: CoA ligase (4CL), chalcone synthase to the recombinant microorganism. , CHS) and chalcene isomerase (CHI), and the present invention relates to a recombinant microorganism for producing naringenin, which is further introduced or its expression is increased.
  • TAL tyrosine ammonia-lyase
  • 4CL CoA ligase
  • CHI chalcene isomerase
  • the TAL may be derived from Rhodobacter capsulatus, Clitoria ternatea, Fragaria x ananassa, Rhodobacter sphaeroides, Zea mays or Saccharothrix espanaensis ,
  • Said 4CL is Arabidopsis thaliana, Streptomyces coelicolor, Acetobacterium woodii, Agastache rugose, Avena sativa, Camellia sinensis, Centaurium erythraea, Cephalocereus senilis, Cocos nucifera, Eriobotrya japonica, Erythrina cristagalli, Forsythia succian, Frascia succian, Fracia sia max.
  • Hibiscus cannabinus Larix cajanderi, Larix gmelinii, Larix kaempferi, Larix kamtschatica, Larix sibirica, Larix sukaczewii, Lithospermum erythrorhizon, Lolium perenne, Lonicera japonica, Metasequoia glyptostroboides, Nicotiana tabacumum, Ocimum paulownia sativa , Phyllostachys bambusoides, Physcomitrella patens, Picea abies, Pinus radiate, Pinus taeda, Pisum sativum, Platycladus orientalis, Polyporus hispidus, Populus tomentosa, Populus tremuloides, Populus x canadensis, Prunus avium, Pueraria montana, Robinacacaensanas, Rusciata Salix baby
  • the CHS is Freesia hybrid cultivar, Medicago sativa, Physcomitrella patens, Plagiochasma appendiculatum, Triticum aestivum, Vitis vinifera, Citrus sinensis, Arabidopsis thaliana, Avena sativa, Daucus carota, Fagopyrum esculentum, Glycine max, Glytarus Huzaus e luscher crispum, Physcomitrella patens, Rubus idaeus, Scutellaria baicalensis, Xanthisma gracile, Cosmos sulphureus, Gerbera hybrid cultivar, Hordeum vulgare, Juglans sp., Phaseolus vulgaris, Pueraria montana, Secale cereal, Silene sp, Spina scia alba Tulipa hybrid cultivar, Verbena sp., Or Petunia x hybrida ,
  • the CHI is Perilla frutescens, Ginkgo biloba, Trigonella foenumgraecum, Medicago sativa, Scutellaria baicalensis, Glycine max, Cephalocereus senilis, Citrus sinensis, Glycyrrhiza echinata, Glycyrrhiza uralensis, Lilium candid, Petunia rugarida, Petula Tulixagarida It may be derived from a hybrid cultivar, Arabidopsis thaliana or Nicotiana tabacum , but is not limited thereto.
  • Coei ligase may be characterized in that the mutation is an amino acid mutated to I250L / N404K / I461V in the amino acid sequence represented by SEQ ID NO: 128, but is not limited thereto.
  • the gene whose expression is reduced compared to the wild type may be characterized in that at least one selected from the group consisting of fadR, hycI and xapR .
  • the present invention also relates to a method for preparing naringenin, which comprises the following steps.
  • the recombinant microorganism may be cultured by adding 1-50 g / L of glucose or 1-100 g / L of glycerol as a carbon source.
  • regulation of a gene includes all of the genes induced by expression of genes such as deletion, inhibition of expression, expression enhancement, knockdown, promoter replacement, and introduction of regulatory mechanisms.
  • the concept encompasses the evolution or mutation of one or more of the enzymes present in the biosynthetic pathway.
  • knock-down unlike “knock-out” which completely blocks the expression of a gene, means that the amount of the gene is significantly reduced to reduce the function of the gene. It may be regulated at the transcript level of the gene or may be regulated at the protein level. However, the present invention is meaningful in that the expression of genes encoding enzymes involved in the pathway is inhibited or reduced, so that any of the "knockdown” and “knock-out” may be used to achieve the desired purpose. .
  • vector is meant a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing DNA in a suitable host.
  • Vectors can be plasmids, phage particles or simply potential genomic inserts. Once transformed into the appropriate host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Since plasmids are the most commonly used form of current vectors, “plasmid” and “vector” are sometimes used interchangeably in the context of the present invention. For the purposes of the present invention, it is preferred to use plasmid vectors.
  • Typical plasmid vectors that can be used for this purpose include (a) a replication initiation point that allows for efficient replication, including several to hundreds of plasmid vectors per host cell, and (b) host cells transformed with plasmid vectors. It has a structure that includes an antibiotic resistance gene that allows it to be used and a restriction enzyme cleavage site (c) into which foreign DNA fragments can be inserted. Although no suitable restriction enzyme cleavage site is present, synthetic oligonucleotide adapters or linkers according to conventional methods can be used to facilitate ligation of the vector and foreign DNA. After ligation, the vector should be transformed into the appropriate host cell. Transformation can be readily accomplished using calcium chloride methods or electroporation (Neumann, et al., EMBO J., 1: 841, 1982) and the like.
  • the promoter of the vector may be constitutive or inducible and may be further modified for the effect of the present invention.
  • the expression vector also includes a selectable marker for selecting a host cell containing the vector, and in the case of a replicable expression vector, includes an origin of replication (Ori).
  • Vectors can self replicate or integrate into host genomic DNA.
  • the gene inserted into the vector and delivered is irreversibly fused into the genome of the host cell so that gene expression in the cell can be stably maintained for a long time.
  • Sequences are "operably linked” when placed in a functional relationship with other nucleic acid sequences. This may be genes and regulatory sequence (s) linked in such a way as to enable gene expression when appropriate molecules (eg, transcriptional activating proteins) bind to regulatory sequence (s).
  • DNA for a pre-sequence or secretion leader is operably linked to DNA for a polypeptide when expressed as a shear protein that participates in the secretion of the polypeptide;
  • a promoter or enhancer is operably linked to a coding sequence when it affects the transcription of the sequence;
  • the ribosomal binding site is operably linked to a coding sequence when it affects the transcription of the sequence;
  • the ribosomal binding site is operably linked to a coding sequence when positioned to facilitate translation.
  • "operably linked” means that the linked DNA sequence is in contact, and in the case of a secretory leader, is in contact and present within the reading frame.
  • enhancers do not need to touch. Linking of these sequences is performed by ligation (linking) at convenient restriction enzyme sites. If such sites do not exist, synthetic oligonucleotide adapters or linkers according to conventional methods are used.
  • the gene to raise the expression level of a transgene in a host cell, the gene must be operably linked to a transcriptional and / or translational expression control sequence that functions in the chosen expression host.
  • the expression control sequences and / or genes of interest are included in one recombinant vector containing a bacterial selection marker and a replication origin. If the host cell is a eukaryotic cell, the recombinant vector must further comprise an expression marker useful in the eukaryotic expression host.
  • Host cells transformed with the recombinant vectors described above constitute another aspect of the present invention.
  • transformation means introducing DNA into a host so that the DNA is replicable as an extrachromosomal factor or by chromosomal integration.
  • the gene introduced in the present invention may be introduced into the genome of the host cell and present as a chromosome factor. It will be apparent to those skilled in the art that the present invention may have the same effect as when the recombinant vector is introduced into the host cell even when the gene is inserted into the genomic chromosome of the host cell.
  • red type flaviolin is produced from five malonyl-coei molecules using the type III polyketide synthase RppA, which indicates the concentration of malonyl-coei concentration in cells. It was intended to be used as (FIG. 1). To this end, we first compared and tested the performance of various type III polyketide synthase enzymes.
  • the rppA gene encoding the type III polyketide synthase was cloned from a total of five actinomycetes ( Streptomyces griseus, Streptomyces coelicolor, Streptomyces avermitilis, Saccharopolyspora erythraea, Streptomyces aculeolatus ), and each gene was transformed into E.
  • the resulting plasmids were based on pET-30a (+) (Novagen) and were named pET-Sgr_rppA, pET-Sco_rppA, pET-Sma_rppA, pET-Sen_rppA, pET-Sac_rppA.
  • pET-Sgr_rppA the genomic DNA of S. griseus was used as a template, and the rppA gene was PCR amplified using primer pairs of [SEQ ID NO: 1 / SEQ ID NO: 2].
  • the minimum M9 medium contains the following components per liter: 12.8 g Na 2 HPO 4- ⁇ 7H 2 O, 3 g KH 2 PO 4 , 0.5 g NaCl, 1 g NH 4 Cl, 2 mM MgSO 4 , 0.1 mM CaCl 2 .
  • the platform was moved to a tac promoter-based plasmid to be applicable to all E. coli strains away from the existing system based on the T7 promoter.
  • the pTacCDFS plasmid based on the pCDFDuet-1 (Novagen) plasmid was constructed first, which is a plasmid having a CDF origin of replication, resistance to spectinomycin antibiotics, and a tac promoter-based gene expression cassette.
  • the DNA fragment containing the tac promoter was PCR amplified using the pTac15K plasmid (Lee SY, et al.
  • the plasmid was linearized using the [SEQ ID NO 5 / SEQ ID NO 6] primer. The two DNA fragments thus produced were combined through a Gibson assembly to complete the pTacCDFS plasmid.
  • the pTrcCDFS plasmid was also constructed for later use, which is identical to the pTacCDFS plasmid, except that it contains the trc promoter, and is also trc based on the pTrc99A plasmid (Lee SY, et al.
  • rppA expression plasmid pTac-Sgr_rppA was constructed using the pTacCDFS plasmid.
  • rppA gene was PCR amplified from S. griseus genomic DNA using [SEQ ID NO: 7 / SEQ ID NO: 8] primers, and the pTacCDFS plasmid was linearized using [SEQ ID NO: 9 / SEQ ID NO: 10] primers.
  • the two DNA fragments thus produced were combined using a Gibson assembly to produce a pTac-Sgr_rppA plasmid. Furthermore, 5'untranslated region (5'UTR) was optimized for optimized expression of rppA.
  • the 5'UTR DNA sequence was designed using the previously reported UTR designer (url: https://sbi.postech.ac.kr/utr_designer/) (Seo SW, et al . (2013), Metab Eng 15:67 -74).
  • pTac-5'UTR-Sgr_rppA inverse PCR was carried out using pTac-Sgr_rppA as a template [SEQ ID NO: 9 / SEQ ID NO: 11].
  • the linearized plasmids thus produced were ligated by Tpn polynucleotide kinase (PNK) (Enzynomics, Korea) and T4 ligase (Elpis Biotech, Korea).
  • PNK polynucleotide kinase
  • Elpis Biotech Korea
  • the resulting plasmid was introduced into E. coli BL21 (DE3) strain and flask cultured in M9 minimal medium, producing 17.8 mg / L flaviolin (FIG. 2C).
  • the signal of the RppA malonyl-Coei biosensor was defined as the absorbance at 340 nm of the cell culture supernatant (FIG. 3D).
  • FOG. 3D the absorbance at 340 nm of the cell culture supernatant
  • cerulenin (Sigma-aldrich, USA), which has been reported to block fatty acid biosynthetic pathways, was determined indirectly (Omura S (1976), Bacteriol Rev 40: 681-697.). Since cerulenin blocks the fatty acid biosynthesis pathway, this leads to the accumulation of malonyl-coei, the precursor of fatty acids. Therefore, in the previous study, the concentration of malonyl-coei in Escherichia coli according to the concentration of cerulein was measured (Xu P, Li L, Zhang F, Stephanopoulos G, Koffas M (2014), Proc Natl Acad Sci USA 111: 11299-11304). E.
  • coli BL21 (DE3) strain with plasmid pTac-5'UTR-Sgr_rppA was inoculated in 3 mL LB medium in a 14 mL disposable Falcon round-bottom tube. It was then incubated for 16 hours in an incubator at 30 degrees Celsius, 220 rpm and then inoculated in 3 mL of modified R / 2 medium (pH 6.8) in another 14 mL disposable Falcon round-bottom tube.
  • Modified R / 2 medium was prepared to contain the following components per liter: 3 g yeast extract, 6.75 g KH 2 PO 4 , 2 g (NH 4 ) 2 HPO 4 , 0.8 g MgSO 4 ⁇ 7H 2 O, 3 g (NH 4 ) 2 SO 4 , 0.85g citric acid, 5mL trace metal solution [1L per 0.1M HCl: 10g FeSO 4 ⁇ 7H 2 O, 2.25g ZnSO 4 ⁇ 7H 2 O, 0.58g MnSO 4 ⁇ 5H 2 O, 1g CuSO 4 5H 2 O, 0.1 g (NH 4 ) 6 Mo 7 O 24 4H 2 O, 0.02 g Na 2 B 4 O 7 ⁇ 10H 2 O, 2g CaCl 2 ⁇ 2H 2 O].
  • aloe arborescens type III polyketide synthase (OKS) [SEQ ID NO: 103], aloe arboresense type III polyketide synthase (octaketide synthase 2, PKS4) [SEQ ID NO: 105], aloe Arboresense Type III polyketide synthase (octaketide synthase 3, PKS5) [SEQ ID NO: 106] was tested and plasmids carrying the genes encoding each enzyme, pET-AaOKS, pET-AaPKS4 and pET-AaPKS5 It was constructed as follows.
  • AaOKS PCR amplification using the synthesized AaOKS gene (Integrated DNA Technologies, Inc. USA) as a template using [SEQ ID NO. 137] and [SEQ ID NO. 138], and then NdeI to pET-30a (+) plasmid. And through the EcoRI site.
  • Other plasmids were prepared in the same manner, in which case AaPKS4 [SEQ ID NO: 141 / SEQ ID NO: 142] and AaPKS5 [SEQ ID NO: 143 / SEQ ID NO: 144] were amplified.
  • RppA enzyme not only the RppA enzyme but also all other type III polyketide biosynthetic enzymes capable of producing colored polyketide-based compounds from malonyl-coei may be used as malonyl-coei biosensors. Proved.
  • the pBBR1MCS2 plasmid was linearized using the [SEQ ID NO: 12 / SEQ ID NO: 13] primers. Thereafter, the rppA expression cassette including the tac promoter was PCR amplified by using the pTac-Sgr_rppA plasmid as a template using the [SEQ ID NO: 14 / SEQ ID NO: 15] primer. The two DNA fragments thus obtained were constructed as pBBR1-rppA plasmids through Gibson assembly. Furthermore, we first constructed pTac-His-Sgr_rppA to observe how the poly His-tag attached to the N-terminus affects the expression of enzymes and further the production of flaviolin.
  • rppA gene was combined into one plasmid (pTac-His-Sgr_rppA) using Gibson assembly.
  • the plasmid thus prepared was PCR amplified again using [SEQ ID NO: 14 / SEQ ID NO: 15], and the linearized pBBR1MCS2 plasmid was combined with the Gibson assembly to construct a pBBR1-His-rppA plasmid.
  • pBBR1-rppA and pBBR1-His-rppA plasmids were transformed into P. putida strains, and the strains were inoculated into a test tube containing 5 mL LB medium, followed by incubation at 30 degrees Celsius and 220 rpm for 18 hours. It was. Thereafter, 0.8 g / L MgSO 4 ⁇ 7H 2 O, 10 g / L glucose, and antibiotics were added to 5 mL LB, followed by subculture, followed by sampling after incubation at the same conditions for 24 hours. As a result, higher amounts of flaviolin were produced in strains with the pBBR1-rppA plasmid (44.7 mg / L; FIG.
  • the composition contains the following components per liter: 6.67 g KH 2 PO 4 , 4 g (NH 4 ) 2 HPO 4 , 0.8 g citric acid, 5 mL trace metal solution, 20.09 g MOPS (3- (N-morpholino) propanesulfonic acid), 0.8 g / L MgSO 4 ⁇ 7H 2 O.
  • MOPS 3- (N-morpholino) propanesulfonic acid
  • pCES-H36 was used as a plasmid (Yim SS, An SJ, Kang M, Lee J, Jeong KJ (2013) , Biotechnol Bioeng 110: 2959-2969). At this time, the plasmid was linearized using the [SEQ ID NO: 17 / SEQ ID NO: 18] primer using the pCES-H36-GFP plasmid as a template.
  • These two rppA expression cassettes were previously combined with the linearized pCES-H36 plasmid and Gibson assembly to construct the pCES-rppA and pCES-His-rppA plasmids.
  • the plasmids thus constructed were transformed into C. glutamicum strain and then inoculated in 5 mL LB medium. After incubation for 18 hours in an incubator at 30 degrees Celsius, 220 rpm, sampling was performed after passage for 48 hours in 5 mL LB medium. At this time, production was flaviviruses poster of the His-tag has been added for the rppA expression plasmid (pCES-His-rppA) to have only 3.9 mg / L Strain N-terminal (Fig. 6D). Therefore, using the C.
  • glutamicum pCES-His-rppA strain thus selected, as a result of characterization of malonyl-CoA biosensor using cerulein in the same manner as in Example 1.2, it was also increased in the strain. It was observed that normalized signal and normalized flaviolin production increased with cerulenin concentration (FIGS. 6E and 6F).
  • pCH was used as the base plasmid.
  • Acetamide-inducible promoter G. Roberts et al., FEMS Microbiol. Lett. 222: 131-136, 2003
  • the rppA expression cassette from genomic DNA of S. griseus was prepared using the [SEQ ID NO: 24 / SEQ ID NO: 25] primer, and the rppA expression cassette for the N-terminal His-tag further expression [SEQ ID NO: 26 / SEQ ID NO: 25].
  • PCR amplification using primers Each rppA expression cassette, acetamide-inducible promoter DNA fragment, and pst plasmid linearized with PstI were all combined using a Gibson assembly, resulting in two vectors, pCH-rppA and pCH-His-rppA.
  • the plasmids thus constructed were transformed into R. opacus strain and then inoculated in 5 mL LB medium. After incubation for 18 hours in an incubator at 30 degrees Celsius, 220 rpm, sampling was performed after passage for 48 hours in 5 mL LB medium. At this time, the red color of the flaviolin was seen only in the strain containing pCH-rppA (Fig. 6G).
  • E. coli genome-level synthetic regulatory sRNA library was introduced into the E. coli BL21 (DE3) strain having the pTac-5'UTR_Sgr_rppA plasmid, followed by high-speed screening (FIG. 7).
  • the robotic automated high-speed screening system was used after selecting 11,488 colonies that are 6 times larger than the library size in order to sufficiently select all 1,858 sRNAs.
  • K3 colony picker KBiosystems, Basildon, UK
  • LB medium with antibiotics and 0.2 mM IPTG
  • the K3 colony picker illuminates the LB agar plate, acquires an image, recognizes colonies using a built-in program, and inoculates colonies using a robot arm with multiple pins.
  • the inoculated cells were incubated at HT-MegaGrow incubator (Bionia, Korea) for 24 hours at 30 degrees Celsius, 500 rpm. After incubation, 231 relatively strong strains were selected.
  • the selected strains were incubated for 24 hours at 30 degrees Celsius, 250 rpm, in a 14 mL disposable Falcon round-bottom tube containing 3 mL of LB medium supplemented with antibiotics and 0.2 mM IPTG. Seventy of these strains showed a higher signal than the control (biosensor strain not containing sRNA), and the sequence analysis of sRNA included in these strains was performed (FIG. 8). At this time, three sRNAs were observed in duplicate ( argB, fabF, nudD ). In addition, 26 of these strains showed an increased signal by more than 45% compared to the control. Therefore, sRNA vectors corresponding to 26 strains were again transformed into the original biosensor strains respectively (FIG.
  • overexpressed gene targets were also demonstrated through RppA biosensors, where genetic targets selected using the FVSEOF algorithm were used (Park JM, et al . (2012), BMC Syst Biol 6: 106). . In silico analysis was performed using the E. coli genome level metabolic model iJO1366 (Orth JD, et al . (2011), Mol Syst Biol 7: 535). The nine genetic targets thus selected are as follows: zwf, mdh, fumA, fumB, fumC, serA, serB, serC, tpiA (FIG. 10A, C).
  • Each gene target was amplified in Escherichia coli BL21 (DE3), inserted into the pTrc99A plasmid under the trc promoter, and transformed into the BL21 (DE3) pTac-5'UTR-Sgr_rppA strain.
  • the sensor strains thus constructed were cultured in the test tube in the same manner as in Example 2.1. At this time, when the signal was measured, 8 of the 9 gene targets ( serA, mdh, zwf, tpiA, serB, fumB, serC) , fumC ), an increased signal was observed compared to the control (FIG. 10B).
  • Flask culture conditions utilized in this Example and the following examples, unless otherwise specified, are as follows. Colonies were inoculated in test-tubes containing 10 mL LB medium and incubated in an incubator at 37 degrees Celsius, 200 rpm, and 1 mL of cell culture in a baffle flask containing 50 mL of improved R / 2 medium. It became. Strains grown at 37 ° C. and 200 rpm were induced with 0.5 mM IPTG when OD 600 reached 0.8 and incubated for 48 hours at 30 ° C. and 200 rpm. As the carbon source, glycerol or glucose was added.
  • 6-methylsalicylic acid (6MSA), which is reported to be produced from the strain Penicilium griseofulvum (or Penicilium patulum), was intended to be produced from genetically engineered Escherichia coli.
  • 6-methylsalicylic acid has the effect of antibiotics and antifungal agents (Dimroth P, Ringelmann E, Lynen F (1976), Eur J Biochem 68: 591-596), a type I repeat polyketide synthetase found in fungi It is produced from one molecule of acetyl-CoA and three molecules of malonyl-CoA from 6-methylsalicylic acid synthase (6MSAS) (FIG. 11).
  • 6-methylsalicylic acid synthase (6MSAS) used in the present invention is as follows.
  • 6-methylsalicylic acid synthase [SEQ ID NO: 123]:
  • the pTac15K plasmid was first linearized by inverse PCR using a [SEQ ID NO 27 / SEQ ID NO 28] primer, followed by P. griseofulvum genomic DNA as a template.
  • No.29 / SEQ ID NO: 30] primers were sequentially used to amplify the Pg6MSAS gene encoding 6- methylsalicylic acid synthase .
  • These two DNA fragments were combined using a Gibson assembly to construct the pTac-Pg6MSAS plasmid (FIG. 12B).
  • At the end of the 6MSAS enzyme is an acyl-carrier protein domain, which requires 4'-phosphopantetheinyl transferase (Sfp) to activate this portion.
  • the sequence of 4'-phosphopantathenyl transferase (Sfp) used in the present invention is as follows.
  • the sfp gene fragment encoding 4'-phosphopantaninyl transferase was preferentially PCR amplified using the [SEQ ID NO: 32 / SEQ ID NO: 33] primer from the genomic DNA of Bacillus subtilis , and the pTac15K plasmid through the EcoRI site.
  • the completed plasmid was PCR amplified again through the [SEQ ID NO: 34 / SEQ ID NO: 35] primers, and then inserted into the pTac-Pg6MSAS plasmid through the SphI site, thereby completing the pTac-Pg6MSAS-sfp plasmid (FIG. 12A).
  • the completed plasmid was transformed into E.
  • Colonies were inoculated in test-tubes containing 10 mL of LB medium and then incubated at 37 degrees Celsius and 200 rpm for one day. Thereafter, two baffle flasks each containing 50 mL of improved R / 2 medium were inoculated with 50 g / L of glycerol as the carbon source. The flask culture was continued for about 9 hours until the OD 600 value was about 2, and then inoculated into the fermentor. The pH of the culture was maintained at 6.8 using 28% (v / v) ammonia water, and the dissolved oxygen (DO) value was 2 L / min of air, agitation speed automatically adjustable up to 1,000 rpm, and increasing oxygen flow rate. It was maintained at 40% throughout.
  • DO dissolved oxygen
  • the feeding was carried out in a pH-stat strategy, which was set to automatically feed when the pH was above 6.83.
  • the feed solution contains the following components per liter: 800 g glycerol, 6 mL trace metal solution and 12 g MgSO 4 ⁇ 7H 2 O. Use 0.5 mM IPTG when the OD 600 reaches 2-3 after inoculation. This led to the expression of foreign proteins.
  • the pBBR1TaC plasmid is a tac promoter-based expression plasmid constructed from pBBR1MCS.
  • pBBR1MCS was amplified by inverse PCR using [SEQ ID NO: 147 / SEQ ID NO: 148] primers, and amplified using pTac15K as a template using [SEQ ID NO: 149 / SEQ ID NO: 150].
  • Promoter, MCS, and rrnBT1T2 terminator fragments were cloned via Gibson assembly.
  • glutamicum acetyl-CoA carboxylase consists of the alpha subunit AccBC and the beta subunit AccD1, which were cloned into pBBR1TaC, respectively, to construct pBBR1-accBC and pBBR1-accD1.
  • the accBC gene was amplified through [SEQ ID NO: 153 / SEQ ID NO: 154], and the accD1 gene was amplified through [SEQ ID NO: 155 / SEQ ID NO: 156].
  • These two gene fragments were inserted through Gibson assembly into pBBR1TaC plasmids amplified through [SEQ ID NO: 9 / SEQ ID NO: 10].
  • pBBR1-accD1 was used as a template to amplify a gene fragment containing a tac promoter and accD1 using [SEQ ID NO: 157 / SEQ ID NO: 158], which was pBBR1-accBC plasmid cut through HindIII restriction enzyme. It was inserted through the Gibson assembly to complete the construction of the pBBR1-accBCD1 plasmid.
  • Escherichia coli pyruvate dehydrogenase consists of subunits E1 (AceE), E2 (AceF) and E3 (Lpd), which are first cloned into the pBBR1TaC plasmid by aceEF gene fragment and lpd gene fragment. An attempt was made to construct -lpd plasmid. The gene fragment aceEF was amplified using [SEQ ID NO: 159 / SEQ ID NO: 160], and lpd was amplified through [SEQ ID NO: 161 / SEQ ID NO: 162].
  • coli phosphoglycerate kinase Pgk
  • E. coli acetyl-coei synthetase acetyl
  • the eight plasmids thus constructed were transformed into E. coli BAP1 pTac-Pg6MSAS pWAS-anti-pabA, which is a strain showing a conventional maximum yield, and then the flask culture was performed as shown in FIG. 15A.
  • 6-methylsalicylic acid was increased to 63.6 mg / L when C. glutamicum acetyl-CoA carboxylase was overexpressed.
  • 6-methylsalicylic acid was increased from glycerol to 440.3 mg / L ⁇ 30.2 mg / L as shown in FIG. 15B.
  • Aloesons are produced through one molecule of acetyl-CoA and six molecules of malonyl-CoA (FIG. 16), or R. palmatum aloesone synthase (ALS) or A. arborescens aloeson synthase (ALS). aloesone synthase (PKS3).
  • aloesson synthase derived from R. palmatum.
  • ALS Aloesone synthase
  • PKS3 A. arborescens- derived aloesone synthase
  • PTS3 Aloesson synthase from A. arborescens (SEQ ID NO: 126):
  • mgslsdstpl mkdvqgirka qkadgtatvm aigtahpphi isqdsyadfy frvtnsehkv elkkkfdric kktmigkryf nfdeeflkky pnitsfdkps lndrhdicip gvpalgaeaa vkaieewgrp kseithlvfc tsggvdmpsa dfqcakllgl rtnvnkyciy mqgcyaggtv mryakdlaen nrgarvlmvc aeltiialrg pndshidnai gnslfgdgaa alivgsdpii gvekpmfeiv cakqtvipns eevihlhlre sglmfymtkd s
  • the genes corresponding to these two enzymes are each integrated DNA Technologies Inc. After synthesis from (USA), pCDFDuet-1 (Novagen) plasmid was inserted using Gibson assembly at the NcoI site. The two plasmids pCDF-RpALS and pCDF-AaPKS3 thus constructed were transformed into E. coli BL21 (DE3) strains, and the expression of foreign enzymes was confirmed through SDS-PAGE (FIG. 17A). 20.5 mg / L and 4.7 mg / L aloeson were produced from g / L glucose (FIG. 17B). Therefore plasmid pCDF-RpALS was used in later experiments.
  • PBBR1-zwf, pBBR1-mdh, pBBR1-serA, pBBR1-accBCD1, pBBR1-gapA, pBBR1-pgk, pBBR1-acs, and pBBR1-aceEF-lpd which contain eight plasmids containing the genes, E. coli BL21 (DE3) pCDF-RpALS pWAS-anti-pabA after transforming each flask culture results are shown in Figure 18.
  • aloe son increased to 30.9 mg / L. In this case, 20 g / L of glucose was used as the carbon source.
  • Resveratrol is a substance belonging to stilbenoid among phenylpropanoid natural products, and is a very useful natural product having antioxidant, anti-aging and anticancer effects.
  • Resveratrol is produced from one molecule of p- coumaroyl-CoA and three molecules of malonyl-coei (FIG. 19). Therefore, we first decided to construct a strain that produces p- coumaric acid from a simple carbon source. For this, we used the established tyrosine overproduction strain (Kim B, Binkley R, Kim HU, Lee SY (2016), Biotechnol Bioeng ). ).
  • This strain (BTY5.13) is a plasmid (pTY13) that overexpresses pTac15K plasmid-based Zymomonas mobilis tyrC, E. coli aroG fbr , aroL in E. coli BL21 (DE3) -based tyrR, tyrP knockout strain (BTY5) It is included.
  • Tyrosine ammonia-lyase (TAL) must be expressed in order to convert tyrosine to p- coumaric acid. Therefore, the tyrosine ammonia- is purified from the genomic DNA of Saccharothrix espanaensis using the [SEQ ID NO: 36 / SEQ ID NO: 37] primer.
  • pTrc99A plasmid was linearized by PCR using [SEQ ID NO: 38 / SEQ ID NO: 39] primers, and these two DNA fragments were combined using a Gibson assembly. pTrc-SeTAL was constructed.
  • the sequence of tyrosine ammonia-lyase used in the present invention is as follows.
  • TAL Tyrosine ammonia-lyase
  • His-tag and thioredoxin tag were attached to the N-terminal to optimize the expression of tyrosine ammonia-lyase.
  • S. espanaensis genomic DNA was used as a template for His-tag attachment.
  • His-SeTAL was PCR amplified using primers SEQ ID NO. 40 / SEQ ID NO. 37, and linearized by reverse PCR using primers [SEQ ID NO. 38 / SEQ ID NO. 41] using pTrc-SeTAL as a template. These two DNA fragments were combined through a Gibson assembly to construct pTrc-HisTAL. Thereafter, the genomic DNA of E.
  • TrxA-TAL was PCR amplified using the primers, and these two DNA fragments were subjected to extension PCR using the [SEQ ID NO 46 / SEQ ID NO 37] primer to make one DNA fragment.
  • the combined DNA fragments were combined with the linearized pTrc-SeTAL DNA fragment and Gibson assembly used when the pTrc-HisTAL was manufactured, thereby producing pTrc-TrxTAL.
  • the improved MR medium contains the following components per liter: 6.67 g KH 2 PO 4 , 4 g (NH 4 ) 2 HPO 4 , 0.8 g citric acid, 0.8 g MgSO 4 ⁇ 7H 2 O, 5 mL trace metal solution, 2 g yeast extract and 15 g (NH 4 ) 2 SO 4 .
  • the highest level of p- coumaric acid production (0.41 g / L) was obtained when His-TAL was expressed (Fig.
  • At4CL1 CoA ligase (4CL) of Arabidopsis thaliana .
  • At4CL1m Variant
  • STS stilbene synthase
  • At4CL1 gene was amplified from the cDNA of A. thaliana using the [SEQ ID NO: 49 / SEQ ID NO: 50] primer, and then inserted into the pTac15K plasmid through the Gibson assembly through EcoRI and KpnI sites to generate the pTac-At4CL1 plasmid.
  • pTac-At4CL1m (At4CL1m; I250L / N404K / I461V) was constructed through three repeated point mutagenesis operations, to enhance substrate specificity to p- coumaroyl-CoA (Xiong D, et al. (2017), Metab Eng 40: 115-123.
  • primer pairs of [SEQ ID NO 51 / SEQ ID NO 52], [SEQ ID NO 53 / SEQ ID NO 54] and [SEQ ID NO 55 / SEQ ID NO 56] were used for the point mutation-inducing work.
  • At4CL3 and At4CL4 genes encoding 4- coumarate: Coei ligase 3 and 4- coumarate: Coei ligase 4, respectively, from A. thaliana were identified from S. coelicolor .
  • the Sc4CL gene encoding A ligase was PCR amplified using primer pairs of [SEQ ID NO 57 / SEQ ID NO 58], [SEQ ID NO 59 / SEQ ID NO 60], and [SEQ ID NO 61 / SEQ ID NO 62], respectively. Cloned in the same manner as pTac-At4CL3, pTac-At4CL4, pTac-Sc4CL was constructed.
  • the STS gene encoding Vitis vinifera stilbene synthase was synthesized from Integrated DNA Technologies Inc., and then PCR amplified using [SEQ ID NO: 65 / SEQ ID NO: 66] and the same as Gibson with EcoRI and KpnI sites in pTac15K plasmid.
  • pTac-VvSTS plasmid was prepared by inserting using the assembly.
  • A. thaliana 4-coumarate Coei ligase 1 [SEQ ID NO: 128]:
  • A. thaliana 4-coumarate Coei ligase 3 used in the present invention is as follows.
  • A. thaliana 4-coumarate Coei ligase 3 [SEQ ID NO: 129]:
  • Coei ligase 4 used in the present invention is as follows.
  • A. thaliana 4-coumarate Coei ligase 4 [SEQ ID NO: 130]:
  • the sequence of stilbene synthase used in the present invention is as follows.
  • each of the plasmids were transformed into BL21 (DE3) strain and the expression of foreign enzymes was verified through SDS-PAGE. Then, the following work was performed to combine the 4CL genes and the STS gene into a plasmid.
  • the DNA fragment for stilbene synthase expression (including tac promoter) was amplified from pTac-VvSTS using primers [SEQ ID NO: 47 / SEQ ID NO: 48], which were pTac-At4CL3, pTac-At4CL4l, pTac- Sc4CLm plasmids were inserted through the Gibson assembly through the NheI site to prepare pTac-VvSTS, At4CL3, pTac-VvSTS-At4CL4, pTac-VvSTS-Sc4CLm plasmids.
  • the DNA fragment for 4-coumarate: coai ligase expression was PCR amplified from pTac-At4CL1m using [SEQ ID NO 67 / SEQ ID NO 68] to the PvuII site of the pTac-VvSTS plasmid.
  • the pTac-VvSTS-At4CL1m plasmid was produced.
  • the prepared plasmids pTac-VvSTS-At4CL1m, pTac-VvSTS, At4CL3, pTac-VvSTS-At4CL4, pTac-VvSTS-Sc4CLm were transformed into BL21 (DE3) strains to proceed with flask culture (2 mM p-coumaric acid). Addition to the medium), and the result is shown in FIG. 20C. At this time, the strain showing the highest resveratrol production capacity was the BL21 (DE3) pTac-VvSTS-At4CL1m strain (18.0 mg / L).
  • the PCR sequence of the STS gene was PCR amplified using the [SEQ ID NO: 69 / SEQ ID NO: 70] primer, and then inserted into the SphI site of the pTac-At4CL1m plasmid.
  • At4CL1m-opr-VvSTS plasmid was prepared.
  • the final plasmid was therefore defined as pTac-VvSTS-At4CL1m, which was not compatible with pTY13-HisTAL (both plasmids had a p15A origin of replication), so we decided to move to the pTacCDFS plasmid mentioned above.
  • the STS expression cassette was first PCR-amplified using the [SEQ ID NO: 73 / SEQ ID NO: 74] primer, and then combined through the GiBson assembly with the linearized pTacCDFS plasmid using the [SEQ ID NO: 75 / SEQ ID NO: 76] primer. It became.
  • one plasmid (pTacCDF-VvSTS-At4CL1m) was PCR-amplified At4CL1m expression cassette using Gibson assembly or T4 ligation using the [SEQ ID NO: 75 / SEQ ID 76] primer.
  • the plasmid thus constructed was transformed into the BL21 (DE3) strain, and produced 21.2 mg / L of resveratrol through the flask culture (FIG. 20D).
  • knockdown targets capable of a 2.5-fold increase were selected, and these were combined two by two to construct an sRNA plasmid, and then transformed into a resveratrol producing strain, followed by flask culture to obtain a result as shown in FIG. 20.
  • the highest resveratrol production was 50.0 mg / L when simultaneously knocking down yfiD and purB , so no further increase was achieved in the previous results.
  • the sRNA plasmid for double simultaneous knockdown was constructed as follows. DNA fragments encoding the synthetic regulatory sRNAs to be inserted are amplified from the parent plasmid via [SEQ ID NO 77 / SEQ ID NO 78] primers and then linearized by PCR via [SEQ ID NO 79 / SEQ ID NO 80] primers. Synthetic regulatory sRNA containing plasmids were combined via Gibson assembly.
  • Naringenin is a common precursor of numerous pharmacologically useful products belonging to flavonoids, among phenylpropanoid-based natural products.
  • naringenin has been reported to have anti-Alzheimer's, anticancer, antioxidant, and antibacterial effects.
  • Naringenin, like resveratrol is produced by the condensation reaction of one molecule of p- coumaroyl-CoA with three molecules of malonyl-CoA (FIG. 21). Since p- coumaric acid producing strains were prepared from Example 3.3 at all times, the present invention was intended to establish a lower naringenin biosynthetic pathway.
  • CHS chalcene synthase
  • CHI chalcone isomerase
  • CHI Chalcone isomerase
  • the At4CL1m gene which encodes a variant of 4- coumarate : Coei ligase 1, was PCR amplified using a [SEQ ID NO: 81 / SEQ ID NO: 82] primer using A. thaliana cDNA as a template and encoding a chalcone isomerase
  • the AtCHI gene was PCR amplified using A. thaliana cDNA as a template [SEQ ID NO: 83 / SEQ ID NO: 84]. These two DNA fragments were combined into one DNA fragment by extension PCR using the primers [SEQ ID NO: 81 / SEQ ID NO 84] and inserted through the KpnI and BamHI sites of the pTrc99A plasmid.
  • the PhCHS gene encoding the chalcone synthase was PCR amplified using primers (SEQ ID NO: 85 / SEQ ID NO 86) using DNA fragments synthesized by Integrated DNA Technologies Inc. as a template, and then the BamHI, XbaI sites of the prepared plasmid. was inserted into a pTrc-At4CL1m-AtCHI-PsCHS plasmid.
  • the plasmid pTrc-At4CL1m-AtCHI-PsCHS was cut using NcoI and PstI restriction enzymes, and the DNA fragments thus produced were cut [
  • the pTrcCDF-At4CL1m-AtCHI-PhCHS plasmid was constructed by combining the pTrcCDFS plasmid linearized by reverse PCR with a Gibson assembly using a primer using SEQID 87 / SEQ ID NO: 87.
  • Plasma culture was performed after introducing the plasmid pTrcCDF-At4CL1m-AtCHI-PhCHS prepared as described above into the BTY5 pTY13-HisTAL strain to produce 37.2 mg / L and 64.5 mg / L of naringenin, respectively, from glucose or glycerol ( Figure 23A). Therefore, all of the following experiments related to naringenin production were conducted using glycerol. Foreign enzymes were confirmed by SDS-PAGE expression (FIG. 23B), and the authenticity of the produced naringenin was determined by LC-MS (FIG. 24).
  • the flask culture was carried out as shown in FIG. 25A.
  • the fading -knockdown strain had the best naringenin production (92.3 mg / L), which was 43% higher than the control (naringenin producing strain without sRNA).
  • a double simultaneous knockdown experiment was performed by combining knockdown targets of 15% or more naringenin production compared to the control group, and the results are shown in FIG. 25B.
  • 103.8 mg / L of naringenin was produced from glycerol in a strain knocked down by fadR and xapR , which is a 61% increase compared to the control.
  • the sRNA plasmid for double simultaneous knockdown was constructed as follows. DNA fragments encoding the synthetic regulatory sRNAs to be inserted are amplified from the parent plasmid via [SEQ ID NO: 89 / SEQ ID NO: 90 primers) and then subjected to PCR via [SEQ ID NO: 91 / SEQ ID NO: 92] primers to become linearized parent Regulatory sRNA containing plasmids were combined via Gibson assembly.
  • the knockdown targets for easy and rapid selection of malonyl-coei transcript which were easily and quickly selected through the RppA malonyl-coei biosensor, greatly helped the production of malonyl-coei based useful compounds.
  • All four useful product producing strains discussed in the above examples are not established through many system metabolic strategies as reported in previous studies, but are established in a short time by establishing basic production pathways and simply transforming sRNAs. . It is remarkable in the art that these simply constructed strains show remarkable production capacity.
  • the utility and utility of the RppA biosensor is not limited to the above embodiments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 타입 III 폴리케타이드 합성 효소를 코딩하는 유전자가 게놈에 삽입되어 있거나 이를 포함하는 재조합 벡터가 도입된, 말로닐-코에이 검출용 재조합 미생물; 상기 재조합 미생물을 이용한 말로닐-코에이 생산 유도 물질의 스크리닝 방법, 말로닐-코에이 생산능 증가에 관여하는 유전자 스크리닝 방법; 및 상기 방법에 의해 선별된 유전자를 미생물에서 넉다운(Knock-down)하여 미생물의 말로닐-코에이 생산량을 증가시키고 이를 기초로 하여 말로닐-코에이를 전구체로 하는 유용 물질을 생산하는 방법에 관한 것이다. 본 발명에 따른 바이오센서를 활용하는 경우, 단일 단계의 시그널 발생, 다양한 미생물에서의 활용성, 자체 형광을 띠는 미생물에서의 활용성 및 간단한 구축 방법을 제공할 뿐 아니라, 간단한 스크리닝 방법을 제공해준다. 또한, 본 발명을 고속 스크리닝과 접목시키게 되면 증산된 말로닐-코에이 생산능을 지니는 균주들을 매우 손쉽고 빠르게(~3일) 선별할 수 있으여, 이를 바로 말로닐-코에이 기반 유용 화합물 생산 균주에 적용할 수 있는 장점이 있다.

Description

타입 III 폴리케타이드 합성 효소 기반 신규 말로닐-코에이 바이오센서 및 그 용도
본 발명은 타입 III 폴리케타이드 합성 효소 기반 신규 말로닐-코에이 바이오센서 및 그 용도에 관한 것으로, 더 상세하게는 타입 III 폴리케타이드 합성 효소를 코딩하는 유전자를 포함하는 재조합 벡터가 도입된, 말로닐-코에이 검출용 재조합 미생물; 상기 재조합 미생물을 이용한 말로닐-코에이 생산 유도 물질의 스크리닝 방법, 말로닐-코에이 생산능 증가에 관여하는 유전자 스크리닝 방법; 및 상기 방법에 의해 선별된 유전자를 미생물에서 넉다운(Knock-down)하여 미생물의 말로닐-코에이 생산량을 증가시키고 이를 기초로 하여 말로닐-코에이를 전구체로 하는 유용 물질을 생산하는 방법에 관한 것이다.
전 세계적인 환경문제, 한정된 자원의 고갈, 친환경 에너지원에 대한 수요 증가로 인해 재생산 가능한 생물체 기반의 세포 공장 구축에 대한 관심이 증가하고 있다. 이런 세포 공장은 세포 내의 대사회로 (metabolic network)를 목적대사산물 (바이오 에너지, 친환경 화학물질, 신약 제재 등) 생산에 최적화하여 제조할 수 있는데, 이 기술 과정에 다양한 분자생물학 기술이 요구되고 있다.
미생물 세포 공장을 통하여 만들어질 수 있는 다양한 물질들 중에서도, 말로닐-코에이는 폴리케타이드, 페닐프로파노이드, 바이오 연료 등 매우 유용한 산물들의 주요 전구체이기 때문에 특히 중요하다. 하지만 말로닐-코에이는 지방산 생합성 등 세포 내에서 다양한 필수 대사 반응을 일으키기 때문에 대사공학적으로 활용할 수 있는 양이 매우 적다. 게다가, 세포 내의 말로닐-코에이 농도를 재기 위해서는 LC-MS/MS 등의 고성능 기기가 필요하고, 세포 내에서 빠르게 생성되었다 사라지며 주변 환경 조건에 민감한 말로닐-코에이를 측정하기 위해서는 시간이 오래 걸리고 매우 주의를 기울여야 하는 샘플링 방법이 요구된다. 따라서 세포 내 말로닐-코에이 농도를 더욱 빠르고 수월하게 측정하기 위하여 기존 연구들로부터 전사 인자에 기반한 말로닐-코에이 바이오센서가 개발되었다 (Xu P, Li L, Zhang F, Stephanopoulos G, Koffas M (2014), Proc Natl Acad Sci U S A 111:11299-11304; Li S, Si T, Wang M, Zhao H (2015), ACS Synth Biol 4:1308-1315). 하지만 상기와 같이 전사 인자에 기반한 형광 단백질 기반 센서는 여러 시그널 전달 단계를 거쳐야 했고, 슈도모나스와 같이 자체 형광을 띠는 미생물에서는 활용이 불가능하다는 단점이 있다.
이에 본 발명자들은, 상기한 문제점을 해결하기 위하여 타입 III 폴리케타이드 합성 효소 기반의 신규한 말로닐-코에이 바이오센서를 개발하였는데, 이는 RppA를 비롯한 타입 III 폴리케타이드 합성 효소가 말로닐-코에이를 단일 단계 반응을 통하여 색을 띠는 물질로 변환시키는 성질을 활용한 것으로, 상기 바이오센서를 이용하는 경우 말로닐-코에이를 용이하게 검출할 수 있을 뿐 아니라, 말로닐-코에이 생산균주, 말로닐-코에이 생산 유도 물질, 말로닐-코에이 생산능 증가에 관여하는 유전자의 스크리닝이 가능하고, 말로닐-코에이를 기질이나 전구체로 하는 다양한 유용물질의 생산 방법을 용이하게 구축할 수 있음을 확인함으로써 본 발명을 완성하게 되었다.
발명의 요약
본 발명의 목적은, 말로닐-코에이 검출을 위한 신규한 바이오센서 및 상기 바이오센서의 다양한 활용 방법을 제공하고, 나아가 상기 방법에 의해 말로닐-코에이 생산량을 증가시키고 이를 기초로 하여 말로닐-코에이를 기질 또는 전구체로 하는 유용물질을 생산하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 타입 III 폴리케타이드 합성 효소를 코딩하는 유전자가 게놈에 삽입되어 있거나; 또는 타입 III 폴리케타이드 합성 효소를 코딩하는 유전자를 포함하는 재조합 벡터가 도입되어 있는, 말로닐-코에이 검출용 재조합 미생물을 제공한다.
본 발명은 또한,
(a) 상기 재조합 미생물을 배양하는 단계;
(b) 상기 재조합 미생물에 후보물질을 첨가하는 단계;
(c) 상기 후보물질 첨가 후의 재조합 미생물 배양 상층액과 상기 후보물질 첨가 전의 재조합 미생물 배양 상층액의 색을 비교하는 단계; 및
(d) 상기 후보물질 첨가 후의 재조합 미생물 배양 상층액이 상기 후보물질 첨가 전의 재조합 미생물 배양 상층액에 비해 더 붉은 색을 나타내는 경우의 후보물질을 말로닐-코에이 생산 유도물질로 선별하는 단계;를 포함하는 말로닐-코에이 생산 유도물질을 스크리닝하는 방법을 제공한다.
본 발명은 또한,
(a) 상기 재조합 미생물에 상기 재조합 미생물 내 유전자 발현을 변화시키는 유전자 조절 라이브러리를 도입하여 재조합 미생물 내 유전자 발현이 변화된 재조합 미생물 라이브러리를 제작하는 단계;
(b) 상기 제작된 재조합 미생물 라이브러리를 배양하여 배양 상층액의 흡광도를 측정하고, 유전자 조절 라이브러리가 도입되기 전의 재조합 미생물을 배양하여 배양 상층액의 색을 비교하는 단계; 및
(c) 상기 유전자 조절 라이브러리가 도입되기 전의 재조합 미생물의 배양 상층액의 색에 비해 붉은 색이 증가하는 경우의 재조합 미생물 라이브러리에 도입된 유전자를 선별하는 단계;를 포함하는 말로닐-코에이 생산능 증가에 관여하는 유전자의 스크리닝 방법을 제공한다.
본 발명은 또한,
말로닐-코에이 생성능을 내재적으로 가지고 있거나 말로닐-코에이 생성능이 외부로부터 도입되어 있는 미생물에서 상기의 방법에 의해 선별된 유전자의 발현을 조절하는 것을 특징으로 하는 말로닐-코에이 생성능이 증가된 재조합 미생물의 제조방법을 제공한다.
본 발명은 또한 말로닐-코에이 생성능을 가지고 있는 미생물에서,
fabF (3-oxoacyl-[acyl-carrier-protein] synthase II);
yfcY (beta-ketoacyl-CoA thiolase);
xapR (transcriptional activator of xapAB);
cytR (transcriptional repressor for deo operon, udp, cdd, tsx, nupC and nupG);
fabH (3-oxoacyl-[acyl-carrier-protein] synthase III);
mqo (malate dehydrogenase);
yfiD (pyruvate formate lyase subunit);
fmt (10-formyltetrahydrofolate:L-methionyl-tRNA(fMet)N-formyltransferase);
pyrF (orotidine-5'-phosphate decarboxylase);
araA (L-arabinose isomerase);
fadR (negative regulator for fad regulon and positive regulator of fabA);
pabA (aminodeoxychorismate synthase, subunit II);
purB (adenylosuccinate lyase); 및
hycI (protease involved in processing C-terminal end of HycE)로 구성된 군에서 선택된 하나 이상의 유전자의 발현이 야생형에 비해 감소되어 있는 말로닐-코에이 생성능이 증가된 재조합 미생물을 제공한다.
본 발명은 또한,
(a) 상기 재조합 미생물에 유용물질의 생산에 관여하는 유전자를 추가적으로 도입 또는 발현을 증가시키거나, 유용물질의 생산에 관여하는 유전자를 추가적으로 결손 또는 발현을 억제시킨 재조합 미생물을 제작하는 단계;
(b) 상기 제작된 미생물을 배양하는 단계; 및
(c) 상기 배양된 미생물로부터 유용물질을 회수하는 단계;를 포함하는 말로닐-코에이를 기질 또는 중간물질로 하는 유용물질의 제조방법을 제공한다.
본 발명은 또한, 상기 재조합 미생물에 6-메틸살리실산 신테이즈(6-methylsalicylic acid synthase, 6MSAS) 및 4'-포스포판타테이닐 트렌스퍼레이즈(4'-phosphopantetheinyl transferase, Sfp)를 코딩하는 유전자가 추가적으로 도입되거나 그 발현이 증가되어 있는 6-메틸살리실산 생산용 재조합 미생물을 제공한다.
본 발명은 또한,
(a) 상기 재조합 미생물을 배양하는 단계; 및
(b) 상기 배양된 미생물로부터 6-메틸살리산산을 회수하는 단계;를 포함하는 6-메틸살리산산의 제조방법을 제공한다.
본 발명은 또한, 상기 재조합 미생물에 알로에손 신테이즈(aloesone synthase)를 코딩하는 유전자가 추가적으로 도입되거나 그 발현이 증가되어 있는 알로에손 생산용 재조합 미생물을 제공한다.
본 발명은 또한,
(a) 상기 재조합 미생물을 배양하는 단계; 및
(b) 상기 배양된 미생물로부터 알로에손을 회수하는 단계;를 포함하는 알로에손의 제조방법을 제공한다.
본 발명은 또한, 상기 재조합 미생물에 타이로신 암모니아-라이에이즈(tyrosine ammonia-lyase, TAL), 4-쿠마레이트:코에이 라이게이즈(4-coumarate:CoA ligase, 4CL) 및 스틸벤 신테이즈(stilbene synthase, STS)를 코딩하는 유전자가 추가적으로 도입되거나 그 발현이 증가되어 있는 레스베라트롤 생산용 재조합 미생물을 제공한다.
본 발명은 또한,
(a) 상기 재조합 미생물을 배양하는 단계; 및
(b) 상기 배양된 미생물로부터 레스베라트롤을 회수하는 단계를 포함하는 레스베라트롤 제조방법을 제공한다.
본 발명은 또한, 상기 재조합 미생물에 타이로신 암모니아-라이에이즈(tyrosine ammonia-lyase, TAL), 4-쿠마레이트:코에이 라이게이즈(4-coumarate:CoA ligase, 4CL), 찰콘 신테이즈(chalcone synthase, CHS) 및 찰콘 아이소머레이즈(chalcone isomerase, CHI)를 코딩하는 유전자가 추가적으로 도입되거나 그 발현이 증가되어 있는 나린제닌 생산용 재조합 미생물을 제공한다.
본 발명은 또한,
(a) 상기 재조합 미생물을 배양하는 단계; 및
(b) 상기 배양된 미생물로부터 나린제닌을 회수하는 단계를 포함하는 나린제닌 제조방법을 제공한다.
도 1은 타입 III 폴리케타이드 합성 효소(RppA)를 이용한 말로닐-코에이 바이오센서의 작동 기작을 나타낸다. (A) RppA는 다섯 분자의 말로닐-코에이를 한 분자의 붉은색 플라비올린으로 전환할 수 있다. 이 때 우선적으로 1,3,6,8-tetrahydroxynaphthalene (THN)으로 전환 후, 이는 자발적인 산화반응을 통해 플라비올린으로 전환된다. (B) RppA 바이오센서에 의해 붉은색이 짙을수록, 세포 내의 말로닐-코에이 농도는 높다.
도 2는 플라비올린 생합성에 대하여 설명하고 있다. (A) 서로 다른 5종의 균주로부터의 rppA에 의한 플라비올린 생산량. (B) LC-MS, MS/MS 분석을 통하여 입증된 플라비올린의 생산. (C) 플라비올린 생산량의 최적화. 5'UTR의 최적화를 통해 플라비올린 생산량이 증가되었다. (D) RppA 바이오센서의 효용성 규명. 세룰레닌을 이용한 간접적 세포 내 말로닐-코에이 변동으로 인한 시그널의 변화. RppA+는 RppA가 발현된 균주, RppA-는 RppA를 발현하지 않는 균주를 나타낸다.
도 3은 RppA 바이오센서의 효용성 및 확장성을 나타낸다. (A) 플라비올린 생산은 첨가된 세룰레닌의 양이 많아질 수록 증가하며, (B) 이는 눈으로도 확인이 가능하다. (C) 16 종의 대장균 균주로부터 모두 플라비올린 생산이 가능하다. (D) RppA 발현 균주 (RppA+)와 RppA를 발현하지 않는 대조군 균주 (RppA-)의 경우, 340 nm에서 (화살표로 표기) 대조군에서의 노이즈가 가장 적으며 RppA+ 균주에서 시그널이 강하였으므로, 340 nm에서의 흡광도를 RppA 바이오센서의 시그널로써 활용하였다.
도 4는 AaOKS, AaPKS4, AaPKS5의 세 가지 타입 III 폴리케타이드 생합성 효소의 말로닐-코에이 바이오센서로의 성질 규명을 나타낸다. (A) AaOKS, AaPKS4, AaPKS5를 발현시키는 대장균 BL21(DE3)의 배양 상층액의 LC-MS (negative scan mode)를 통한 extracted ion chromatogram. 각 크로마토그램에서 예측되는 생산물은 다음과 같다: 5,7-dihydroxy-2-methylchromone (m/z 191); aloesone (m/z 231); SEK4 and SEK4b (m/z 317). (B) AaOKS, AaPKS4, AaPKS5를 발현하는 대장균 균주들의 서로 다른 세룰레닌 농도 하의 배양액의 색깔과, (C) 서로 다른 파장에서의 배양액의 흡광도를 나타낸다. CT, 대조군 균주 (BL21(DE3) pET-30a(+)). 이 때 300 nm에서 대조군 대비 말로닐-코에이 바이오센서 균주들의 시그널이 가장 강하였으므로, AaOKS, AaPKS4, AaPKS5의 경우 300 nm에서의 흡광도를 시그널로써 활용하였다. 각 데이터는 세 번의 실험에 의한 평균값을 나타낸다.
도 5는 AaOKS, AaPKS4, AaPKS5의 세 가지 타입 III 폴리케타이드 생합성 효소의 말로닐-코에이 바이오센서로 활용이 가능함을 나타낸다. (A) AaOKS, (B) AaPKS4, (C) AaPKS5는 (세룰레닌의 첨가에 의해 조절되는) 말로닐-코에이 농도의 증가에 따른 증가된 표준화된 시그널을 나타낸다. 각 시그널은 PKS를 포함하고 있거나, 포함하고 있지 않을 때 각각의 경우를 나타낸다.
도 6은 Pseudomonas putida, Corynebacterium glutamicum, Rhodococcus opacus에서의 RppA 바이오센서 테스트 결과를 나타낸다. (A) P. putida 균주에 표기된 플라스미드를 형질전환했을 때 플라비올린의 생산량을 나타낸다. (B) P. putida pBBR1-rppA 센서 균주의 세룰레닌 농도 별 시그널의 세기를 나타내며, (C) 이 때의 상대적인 플라비올린 생산량을 나타낸다. (D) C. glutamicum 균주에 표기된 플라스미드를 형질전환했을 때 플라비올린의 생산량을 나타낸다. (E) C. glutamicum pCES-His-rppA 센서 균주의 세룰레닌 농도 별 시그널의 세기를 나타내며, (F) 이 때의 상대적인 플라비올린 생산량을 나타낸다. (G) R. opacus 균주에 표기된 플라스미드를 형질전환했을 때 배양액의 색을 나타낸다.
도 7은 RppA 바이오센서를 활용하여 증가된 말로닐-코에이 생산량을 보이는 균주들을 고속 스크리닝을 이용하여 선별하는 과정을 나타낸다.
도 8은 대장균 유전체 수준 합성 조절 sRNA 라이브러리를 도입하여 RppA 바이오센서를 활용한 고속 스크리닝을 진행하였을 때, 증가된 말로닐-코에이 농도를 나타내는 균주를 스크리닝한 초기 결과이다.
도 9는 초기에 선별된 증가된 말로닐-코에이 생산능을 부여하는 26 종의 합성 조절 sRNA를 대장균 센서 균주에 형질전환하였을 때 발생하는 시그널을 나타낸다. 이 때 대조군 대비 70% 이상 시그널 증가에 성공한 14 종의 합성 조절 sRNA를 최종 타겟으로 선별하였다.
도 10은 FVSEOF 시뮬레이션을 통한 말로닐-코에이 증산을 나타낸다. (A)은 말로닐-코에이 생합성과 관계된 생합성 경로를 나타내며, 굵은 글씨체로 된 글자들은 반응을 나타내며 일반 글씨체로 된 글자들은 대사체들을 나타낸다. 회색 화살표는 대사 플럭스를, 붉은색 화살표는 과발현 타겟으로 나타난 대사 플럭스를 나타낸다. (B) FVSEOF로 확인된 유전자 타겟들을 과발현 시켰을 때 나타나는 바이오센서 시그널. (C) FVSEOF로 확인된 유전자 타겟들의 리스트.
도 11은 6-메틸살리실산의 생합성 경로를 나타낸다. 이 때 붉은색 X는 낙아웃된 유전자를 나타내며 푸른색 X는 넉다운된 유전자를 나타낸다. bla, beta-lactamase gene; kan R, kanamycin-resistance gene; p15A, replication origin; ColE1, replication origin; Ptac, tac promoter; PBAD, arabinose-inducible promoter; PR, PR promoter; rrnB, rrnBT1T2 terminator; T1/TE, terminator. Gly, glycerol; Gly-3P, glycerol 3-phosphate; DHA, dihydroxyacetone; DHAP, dihydroxyacetone phosphate; G3P, glyceraldehyde 3-phosphate; 1,3BPG, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; OAA, oxaloacetate; E4P, D-erythrose 4-phosphate; DAHP, 3-deoxy-D-arabinoheptulosonate 7-phosphate; CHOR, chorismate; AcCoA, acetyl-CoA; MalCoA, malonyl-CoA; 6MSAS, 6MSA synthase; KS, ketosynthase; AT, acyltransferase; DH, dehydratase; KR, ketoreductase; ACP, acyl carrier protein.
도 12는 6-메틸살리실산 생산을 위한 서로 다른 유전자 발현 카세트를 나타낸다. (A)는 플라스미드 pTac-Pg6MSAS-sfp를, (B)는 플라스미드 pTac-Pg6MSAS와 대장균 BAP1 균주의 게놈 상에서 발현되는 sfp를 나타낸다. (C) 6-메틸살리실산 신테이즈(Pg6MSAS)와 4'-포스포판타테이닐 트렌스퍼레이즈(Sfp)의 발현을 SDS-PAGE로 확인한 결과이다. Pg6MSAS (188 kDa), Sfp (26.1 kDa).
도 13은 개량된 대장균 균주로부터 6-메틸살리실산의 생산을 나타낸다. (A)는 다양한 농도의 포도당/글리세롤에서 BL21 기반 균주와 BAP1 기반 균주에서의 6-메틸살리실산 생산을 나타낸다. (B) 대장균으로부터 생산된 6-메틸살리실산의 LC-MS 분석 결과를 나타내며, (C) 실제 시판되는 6-메틸살리실산 화합물의 LC-MS 분석 결과를 나타낸다. (D) 16 종의 대장균에서의 테스트-튜브 스케일 6-메틸살리실산 생산을 나타낸다. 푸른색 부분은 1 mg/L 이상의 생산능을 나타낸다. (E) 대장균 BL21(DE3) pTac-Pg6MSAS-sfp pWAS-anti-pabA (pabA 넉다운 용 sRNA 플라스미드) 균주의 시간 별 6-메틸살리실산 생산 양상. (F) BAP1 pTac-Pg6MSAS pWAS-anti-pabA 균주의 시간 별 6-메틸살리실산 생산 양상. (G) 동일 균주의 유가식 발효 양상. 붉은색 화살표는 IPTG 유도 시점을 나타낸다. (E), (F), (G)에서 푸른색 선 및 점은 세포 생장(OD600)을 나타내며, 붉은색 선 및 점은 6-메틸살리실산 농도를 나타낸다.
도 14는 선별된 6 종의 대장균 균주들에 실시예 2.1에서 선별된 14 종의 합성 조절 sRNA를 각각 도입한 후, 이렇게 생성된 균주들을 테스트-튜브 수준 배양하였을 때의 6-메틸살리실산 생산을 나타낸다.
도 15 왼쪽 그래프는 도 12에서 6-메틸살리실산 생산능이 제일 좋았던 균주인 E. coli BAP1 pTac-Pg6MSAS pWAS-anti-pabA에 왼쪽 그래프 하단의 유전자들을 과발현하였을 때 플라스크 컬쳐 상에서 나타난 6-메틸살리실산의 농도를 나타낸다. 오른쪽 그래프는, 왼쪽 그래프에서 생산능이 가장 좋았던 균주인 E. coli BAP1 pTac-Pg6MSAS pWAS-anti-pabA pBBR1-accBCD1 균주의 유가식 발효 결과를 나타낸다.
도 16은 알로에손의 생합성 경로를 나타낸다. 이 때 붉은색 X는 낙아웃된 유전자를 나타내며 푸른색 X는 넉다운된 유전자를 나타낸다. Glc, glucose; G6P, glucose 6-phosphate; F6P, fructose 6-phosphate; F1,6BP, fructose 1,6-bisphosphate; DHAP, dihydroxyacetone phosphate; G3P, glyceraldehyde 3-phosphate; 1,3BPG, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; OAA, oxaloacetate; E4P, D-erythrose 4-phosphate; DAHP, 3-deoxy-D-arabinoheptulosonate 7-phosphate; CHOR, chorismate; AcCoA, acetyl-CoA; MalCoA, malonyl-CoA; ALS, aleosone synthase. bla, beta-lactamase gene; spc R, spectinomycin-resistance gene; CDF, replication origin; ColE1, replication origin; PT7, T7 promoter; PBAD, arabinose-inducible promoter; PR, PR promoter; rrnB, rrnBT1T2 terminator; T1/TE, terminator.
도 17은 개량된 대장균 균주에서의 알로에손 생산을 나타낸다. (A)는 알로에손 신테이즈(RpALS, 43 kDa)와 알로에손 신테이즈 (AaPKS3, 44 kDa)의 발현 확인을 위해 SDS-PAGE를 수행한 결과이다. (B)는 포도당/글리세롤이 탄소원으로 사용되었을 때 RpALS/AaPKS3이 발현되었을 때 알로에손의 생산을 나타낸다. (C)는 대장균에서 생산된 알로에손의 LC-MS, MS/MS 스펙트럼이다. (D)는 BL21(DE3) pCDF-RpALS 균주의 시간 별 알로에손 생산 양상이며, (E)는 BL21(DE3) pCDF-RpALS pWAS-anti-pabA 균주의 시간 별 알로에손 생산 양상이다. (D), (E)에서 푸른색 선 및 점은 세포 생장(OD600)을 나타내며, 붉은색 선 및 점은 알로에손 농도를 나타낸다. (F)는 두 종의 대장균 DE3 균주에 실시예 2.1에서 선별된 14 종의 합성 조절 sRNA를 각각 도입한 후 생성된 균주들의 테스트-튜브 수준 배양 결과이다.
도 18은 도 17 (E)의 알로에손 생산능이 제일 좋았던 균주인 BL21(DE3) pCDF-RpALS pWAS-anti-pabA에 그래프 하단의 유전자들을 과발현하였을 때 플라스크 컬쳐 상에서 나타난 알로에손의 농도를 나타낸다.
도 19는 레스베라트롤의 생합성 경로를 나타낸다. 이 때 붉은색 X는 낙아웃된 유전자를 나타내며 푸른색 X는 넉다운된 유전자를 나타낸다. 볼드체 글자로 써진 유전자와 굵은 검정색 화살표는 과발현된 대사 플럭스를 나타낸다. 붉은색 점선(원 안의 - 사인과 함께)은 전사 억제 과정을 나타낸다. 검정색 점선(원 안의 + 사인과 함께)는 전사 활성 과정을 나타낸다. Gly, glycerol; Gly-3P, glycerol 3-phosphate; DHA, dihydroxyacetone; DHAP, dihydroxyacetone phosphate; G3P, glyceraldehyde 3-phosphate; 1,3BPG, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; OAA, oxaloacetate; E4P, D-erythrose 4-phosphate; DAHP, 3-deoxy-D-arabinoheptulosonate 7-phosphate; SHIK, shikimate; CHOR, chorismate; PPHN, prephenate; HPP, 4-hydroxyphenylpyruvate; FOR, formate; AcCoA, acetyl-CoA; MalCoA, malonyl-CoA. bla, beta-lactamase gene; kan R, kanamycin-resistance gene; spc R, spectinomycin-resistance gene; p15A, replication origin; ColE1, replication origin; CDF, replication origin; Ptac, tac promoter; PBAD, arabinose-inducible promoter; PR, PR promoter; Ptrc, trc promoter; rrnB, rrnBT1T2 terminator; T1/TE, terminator.
도 20은 개량된 대장균을 이용한 p-coumaric acid 및 레스베라트롤의 생산을 나타낸다. (A)는 N-말단의 단백질 택의 효과를 보기 위해 구축된 다양한 플라스미드에 의한 p-coumaric acid의 생산을 나타낸다. 이 때, pTY13-HisTAL을 제외하고는 모두 BTY5.13 균주에 형질전환되었고, pTY13-HisTAL의 경우에는 BTY5 균주에 형질전환되었다. (B) 각 단백질의 발현을 보기 위한 SDS-PAGE 분석. At4CL1m (61.1 kDa), At4CL3 (61.3 kDa), At4CL4 (62.6 kDa), Sc4CLm (55.3 kDa), STS (42.8 kDa). CT는 대조군을 나타낸다. M은 단백질 사이즈 마커를 나타낸다. (C) 서로 다른 4CL과 STS의 조합에 의한 레스베라트롤 생산 테스트 결과. (D) 다른 플라스미드 구축 전략에 의한 레스베라트롤의 생산. 이 때 1-5는 플라스미드를 나타내며 각 플라스미드는 다음과 같다. 1, pTac-VvSTS-At4CL1m; 2, pTac-At4CL1m-opr-VvSTS (두 유전자를 하나의 오페론으로 발현); 3, pTac-At4CL1m-fus-VvSTS (At4CL1m와 STS의 퓨전 단백질 발현); 4와 5, pTacCDF-VvSTS-At4CL1m. 이 때, 1-4에 해당하는 플라스미드는 대장균 BL21(DE3)에 형질전환되어 2 mM의 p-coumaric acid와 20 g/L의 글리세롤 첨가 하에 배양되었다 5에 해당하는 플라스미드는 BTY5 pTY13-HisTAL 균주에 형질전환되어 20 g/L의 글리세롤 첨가 하에 배양되었다. 5에 해당하는 균주가 기본 레스베라트롤 생산 균주로 사용되었으며, 진한 푸른색 막대 그래프로 나타내었다. (E) 실시예 2.1에서 선별된 14 종의 합성 조절 sRNA를 기본 레스베라트롤 균주(BTY5 pTY13-HisTAL pTacCDF-VvSTS-At4CL1m)에 형질전환한 후, 플라스크 배양하여 얻어진 레스베라트롤의 생산량. 보다 진한 붉은색 그래프로 표기된 6 종의 균주에 해당하는 sRNA들은 대조군 대비 2.5배 이상 레스베라트롤 생산능이 증산되었으므로, 이중 동시 넉다운 테스트에 사용되었다. (F) 앞서 선별된 6 종의 sRNA들을 조합하여 이중 동시 넉다운 테스트를 수행한 결과. *P < 0.05, **P < 0.01, ***P < 0.001 (two-tailed Student's t-test).
도 21은 개량된 대장균으로부터 생산된 레스베라트롤의 진위를 판단하기 위해 수행한 LC-MS 결과를 나타낸다. (A)는 개량된 대장균으로부터 생산된 레스베라트롤, (B)는 시판되는 레스베라트롤 화합물의 LC-MS 스펙트럼을 나타낸다.
도 22는 나린제닌 생합성 경로를 나타낸다. 이 때 붉은색 X는 낙아웃된 유전자를 나타내며 푸른색 X는 넉다운된 유전자를 나타낸다. 볼드체 글자로 써진 유전자와 굵은 검정색 화살표는 과발현된 대사 플럭스를 나타낸다. 붉은색 점선(원 안의 - 사인과 함께)은 전사 억제 과정을 나타낸다. 검정색 점선(원 안의 + 사인과 함께)는 전사 활성 과정을 나타낸다. bla, beta-lactamase gene; kan R, kanamycin-resistance gene; spc R, spectinomycin-resistance gene; p15A, replication origin; ColE1, replication origin; CDF, replication origin; Ptac, tac promoter; PBAD, arabinose-inducible promoter; PR, PR promoter; Ptrc, trc promoter; rrnB, rrnBT1T2 terminator; T1/TE, terminator. Gly, glycerol; Gly-3P, glycerol 3-phosphate; DHA, dihydroxyacetone; DHAP, dihydroxyacetone phosphate; G3P, glyceraldehyde 3-phosphate; 1,3BPG, 1,3-bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; OAA, oxaloacetate; E4P, D-erythrose 4-phosphate; DAHP, 3-deoxy-D-arabinoheptulosonate 7-phosphate; SHIK, shikimate; CHOR, chorismate; PPHN, prephenate; HPP, 4-hydroxyphenylpyruvate; FOR, formate; AcCoA, acetyl-CoA; MalCoA, malonyl-CoA; TYR, L-tyrosine; COU, p-coumaric acid; CouCoA, p-coumaroyl-CoA.
도 23은 개량된 대장균에서의 나린제닌 생산을 나타낸다. (A)는 pTrcCDF-At4CL1m-AtCHI-PhCHS 플라스미드를 지니고 있는 균주들에서의 나린제닌 생산을 나타내는데, 이 때 p-coumaric acid 경로를 가지고 있는 균주의 경우 BTY5 pTY13-HisTAL 균주에 형질전환되었고, 아닌 경우에는 BL21(DE3) 균주에 형질전환된 후 2 mM의 p-coumaric acid가 배지에 첨가되었다. 각각 20 g/L의 포도당 또는 글리세롤이 첨가되었다. (B)는 외래 효소들의 SDS-PAGE 분석을 나타낸다. At4CL1m, PhCHS (42.6 kDa), AtCHI (26.6 kDa).
도 24는 개량된 대장균에서 생산된 나린제닌의 진위를 판단하기 위하여 수행한 LC-MS 결과이다. (A)는 개량된 대장균으로부터 생산된 나린제닌, (B)는 시판되는 나린제닌 화합물의 LC-MS 스펙트럼을 나타낸다.
도 25는 개량된 대장균에서의 나린제닌 생산을 나타낸다. (A) 실시예 2.1에서 선별된 14 종의 합성 조절 sRNA를 기본 나린제닌 균주(BTY5 pTY13-HisTAL pTrcCDF-At4CL1m-AtCHI-PhCHS)에 형질전환한 후, 플라스크 배양하여 생산된 나린제닌의 생산량. 보다 진한 붉은색 그래프로 표기된 3 종의 균주에 해당하는 sRNA들은 대조군 대비 15% 이상 나린제닌 생산능이 증산되었으므로, 이중 동시 넉다운 테스트에 사용되었다. (B) 앞서 선별된 3 종의 sRNA들을 조합하여 이중 동시 넉다운 테스트를 수행한 결과. *P < 0.05, **P < 0.01 (two-tailed Student's t-test).
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서는 타입 III 폴리케타이드 합성 효소가 도입된 재조합 미생물을 활용하는 경우, 기존의 말로닐-코에이 농도를 측정하는 방법에 비해 시간, 비용, 편리성 등에서 현저히 개선된 말로닐-코에이 농도를 측정할 수 있음을 확인하였다.
따라서, 본 발명은 일 관점에서 타입 III 폴리케타이드 합성 효소를 코딩하는 유전자가 게놈에 삽입되어 있거나; 또는 타입 III 폴리케타이드 합성 효소를 코딩하는 유전자를 포함하는 재조합 벡터가 도입되어 있는, 말로닐-코에이 검출용 재조합 미생물에 관한 것이다.
본 발명에서, 상기 타입 III 폴리케타이드 합성 효소는
스트렙토마이세스 그리세우스(Streptomyces griseus), 스트렙토마이세스 코엘리컬러(Streptomyces coelicolor), 스트렙토마이세스 아베르미틸리스(Streptomyces avermitilis), 사카로폴리스포라 에리트레아(Saccharopolyspora erythraea), 스트렙토마이세스 퓨세티우스(Streptomyces peucetius) 및 스트렙토마이세스 아쿨레오라투스(Streptomyces aculeolatus)로 구성된 군에서 선택된 미생물 유래의 RppA;
슈도모나스 플루오레센스(Pseudomonas fluorescens)유래의 PhlD(polyketide synthase);
아미코라톱시스 메디테라네이(Amycolatopsis mediterranei) 유래의 DpgA(polyketide synthase);
레움 팔마툼(Rheum palmatum) 유래의 ALS(aloesone synthase); 또는
알로에 아르보레센스(Aloe arborescens)유래의 PCS(5,7-dihydroxy-2-methylchromone synthase), OKS(octaketide synthase), PKS3(aloesone synthase), PKS4(octaketide synthase 2) 또는 PKS5(octaketide synthase 3);인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
앞서 언급된 여섯 종의 방선균으로부터 유래한 타입 III 폴리케타이드 합성 효소 RppA는 모두 말로닐-코에이를 기질로 하여 플라비올린을 산물로 생산한다. 또한, 기타 타입 III 폴리케타이드 합성 효소들 역시 모두 말로닐-코에이를 기질로 하지만 PhlD는 플로로글루키놀(phloroglucinol)을 산물로, DpgA는 다이하이드록시페닐아세테이트(dihydroxyphenylacetate)를 산물로, 그리고 PCS는 5,7-다이하이드록시-2-메틸크로몬(5,7-dihydroxy-2-methylchromone)을 산물로, OKS, PKS4, PKS5는 SEK4와 SEK4b를 산물로 생산한다. ALS와 PKS3은 알로에손을 산물로 생산한다.
본 발명에서 사용된 각 RppA 효소의 아미노산 서열은 하기와 같다:
스트렙토마이세스 그리세우스 RppA[서열번호 93]: matlcrpaia vpehvitmqq tldlaretha ghpqrdlvlr liqntgvqtr hlvqpiektl ahpgfevrnq vyeaeaktrv pevvrralan aetepseidl ivyvsctgfm mpsltawiin smgfrpetrq lpiaqlgcaa ggaainrahd fcvaypdsnv livscefcsl cyqptdigvg sllsnglfgd alsaavvrgq ggtgmrlern gshlvpdted wisyavrdtg fhfqldkrvp gtmemlapvl ldlvdlhgws vpnmdffivh aggprilddl chfldlppem frysratlte rgniassvvf dalarlfddg gaaesaqgli agfgpgitae vavgswakeg lgadvgrdld eleltagval sg
스트렙토마이세스 코엘리컬러 RppA[서열번호 94]: matlcrpsvs vpehvitmee tlelarrrht dhpqlplalr lientgvrtr hivqpiedtl ehpgfedrnk vyereaksrv paviqraldd aellatdidv iiyvsctgfm mpsltawlin emgfdsttrq ipiaqlgcaa ggaainrahd fctaypeana livacefcsl cyqptdlgvg sllcnglfgd giaaavvrgr ggtgvrlern gsylipkted wimydvkatg fhflldkrvp atmeplapal kelagehgwd asdldfyivh aggprilddl stflevdpha frfsratlte ygniasavvl dalrrlfdeg gveegargll agfgpgitae mslgcwqtad vrrgirqdvt rtaargvsrr vrqa
스트렙토마이세스 아베르미틸리스 RppA[서열번호 95]: matlckpavs vpehvitmee tlelarsrhp dhpqlplalr lientgvhtr hivqpieetl khpgfeernh vyeaeakarv pavvqralde aellttdidv iiyvsctgfm mpsltaylin smdfssdtrq ipiaqlgcaa ggsainrahd fctaypqana livacefcsl cyqptdlgvg sllsnglfgd giaaaavrgk ggtgitlern asylipktde wisydvratg fhflldkrvp gtmeplapal qelasqhgwd asdldfyiih aggprilddl skflrvppea frfsratlte ygniasavvl dalrrlfdeg gaehaargml agfgpgitae mslgrwhrtd ea
사카로폴리스포라 에리트레아 RppA[서열번호 96]: mavlctpava vpehvitvee tldlarrvha dhpqlplvlr lisntgvrer hlirpiedtl ehpgfevrnr iyeeqakqrv pavvrealds aelgpedidl ivyvsctgfm mpsltawlin smgfrmstrq lpiaqlgcaa ggaainrahd fctaypdana livscefcsl cyqptdddig sllsnglfgd avgaavvrgh ggtgvrlern assmipeted wisyavkatg fhfqldkrvp ktmeplapal ralaedhrwd vagldfyvih aggprilddl tkflgvpsea frhsratlaq ygniasavvl dalrriieeg rlesgargmi agfgpgitae msvgtwvphd vllhgehstt sapggnr
스트렙토마이세스 퓨세티우스 RppA[서열번호 97]: mrvpvavddl vapstmgerh tvidrgtsva avhtalpphr yaqsdlteli adlclepgad rallrrlhts agvrtrhlal pieqyaglgd fgqanaawlt vglalaeeal sgaldaaglt aadidllvct sitgvaapsl darlavrmgm radvkrvpvf glgcvggaag lgrlhdyllg hpddtavlls velcsltlqr dgslanlvag alfgdgaaav varggdagrr gagwpmvaat rghlypdteh llgwrigasg frvvvdagip dvvrthlggd lrnflathgl vpddigtwic hpggpkvlaa vgdalelpdg aldsswrsla gvgnlssasv lrvledvatr crpdpgtwgv llamgpgfca efvllrw
스트렙토마이세스 아쿨레오라투스 RppA[서열번호 98]: mprlckpavs apeytitmee tlefakqaha gkpqlplalr lirntgvlkr hivqpiektl ghpglternl iyeaeskkmc ppvieealqn admtardida iiyvsctgfl mpsltawlin kmgfrsdtrq ipiaqlgcaa ggaavnrahd fclahpgsnv livacelcsl cyqptaddig sllsdglfgd avaaavvrgn ggvgievern asylipntee wisysvrdtg fhfqldrrvp gtmeplapvl refakdhswd agkldfyivh aggprilddl arfldvdrqv frhswstlte ygniasavvf daarrlfeeg sakpdatgmi agfgpgitae malgtwgtdg tgtsn
본 발명에서 사용된 기타 타입 III 폴리케타이드 합성 효소의 아미노산 서열은 하기와 같다:
슈도모나스 플루오레센스 타입 III 폴리케타이드 합성 효소 (PhlD)[서열번호 99]:
MSTLCKPSLL FPHYKITQQQ MIDHLEQLHD DHPRMALAKR MIQNTQVNER YLVLPIDELA VHTGFTHRSI VYEREARRMS SIAARQAIEN AGLTTDDIRM VAVTSCTGFM MPSLTAHLIN DLGLRTSTVQ LPIAQLGCVA GAAAINRAND FASLSPDNHA LIVSLEFSSL CYQPQDTKLH AFISAALFGD AVSACVMRAD DKAPGFKIAK TGSYFLPDSE HYIKYDVKDS GFHFTLDKAV MNSIKDVAPM MEELNFETFN QHCAQNDFFI FHTGGRKILD ELVLQLDLEP GRVAQSRDSL SEAGNIASVV VFDVLKRQFD SGPANGATGM LAAFGPGFTA EMAVGKWVA
아미코라톱시스 오리엔탈리스 타입 III 폴리케타이드 합성 효소 (DpgA)[서열번호 100]:
MDVSMTTGIE LTEELSVLNG LTEITRFAGV GTAVSETSYS QTELLDILDV EDPKIRSVFL NSAIDRRFLT LPPENPGGGR LAEPQGDLLD KHKKIAVDMG CRALEACLKS AGATLSDLRH LCCVTSTGFL TPGLSALIIR EMGIDPHCSR SDIVGMGCNA GLNALNVVSG WSAAHPGELG VVLCSEACSA AYALDGTMRT AVVNSLFGDG SAALAVISGD GRVAGPRVLK FASYIITDAV DAMRYDWDRD QDRFSFFLDP QIPYVVGAHA EIVVDRLLSG TGLRRSDIGH WLVHSGGKKV VDAVVVNLGL SRHDVRHTTG VLRDYGNLSS GSFLFSYERL SEEDVTRPGD YGVLMTMGPG STIEMALIQW
레움 팔마툼 타입 III 폴리케타이드 합성 효소 (aloesone synthase, ALS) [서열번호 101]:
madvlqeirn sqkasgpatv laigtahppt cypqadypdf yfrvcksehm tklkkkmqfi cdrsgirqrf mfhteenlgk npgmctfdgp slnarqdmli mevpklgaea aekaikewgq dksrithlif ctttsndmpg adyqfatlfg lnpgvsrtmv yqqgcfaggt vlrlvkdiae nnkgarvlvv cseivafafr gphedhidsl igqllfgdga aalvvgtdid esverpifqi msatqatipn slhtmalhlt eagltfhlsk evpkvvsdnm eelmleafkp lgitdwnsif wqvhpggrai ldkieeklel tkdkmrdsry ilseygnlts acvlfvmdem rkrsfregkq ttgdgyewgv aiglgpgltv etvvlrsvpi p
알로에 아르보레센스 타입 III 폴리케타이드 합성 효소 (5,7-dihydroxy-2-methylchromone synthase, PCS)[서열번호 102]:
MSSLSNSLPL MEDVQGIRKA QKADGTATVM AIGTAHPPHI FPQDTYADVY FRATNSEHKV ELKKKFDHIC KKTMIGKRYF NYDEEFLKKY PNITSYDEPS LNDRQDICVP GVPALGTEAA VKAIEEWGRP KSEITHLVFC TSCGVDMPSA DFQCAKLLGL HANVNKYCIY MQGCYAGGTV MRYAKDLAEN NRGARVLVVC AELTIMMLRA PNETHLDNAI GISLFGDGAA ALIIGSDPII GVEKPMFEIV CTKQTVIPNT EDVIHLHLRE TGMMFYLSKG SPMTISNNVE ACLIDVFKSV GITPPEDWNS LFWIPHPGGR AILDQVEAKL KLRPEKFRAA RTVLWDYGNM VSASVGYILD EMRRKSAAKG LETYGEGLEW GVLLGFGPGI TVETILLHSL PLM
알로에 아르보레센스 타입 III 폴리케타이드 합성 효소 (octaketide synthase, OKS)[서열번호 103]:
MSSLSNASHL MEDVQGIRKA QRADGTATVM AIGTAHPPHI FPQDTYADFY FRATNSEHKV ELKKKFDRIC KKTMIGKRYF NYDEEFLKKY PNITSFDEPS LNDRQDICVP GVPALGAEAA VKAIAEWGRP KSEITHLVFC TSCGVDMPSA DFQCAKLLGL RTNVNKYCVY MQGCYAGGTV MRYAKDLAEN NRGARVLVVC AELTIIGLRG PNESHLDNAI GNSLFGDGAA ALIVGSDPII GVEKPMFEIV CAKQTVIPNS EDVIHLHMRE AGLMFYMSKD SPETISNNVE ACLVDVFKSV GMTPPEDWNS LFWIPHPGGR AILDQVEAKL KLRPEKFRAT RTVLWDCGNM VSACVLYILD EMRRKSADEG LETYGEGLEW GVLLGFGPGM TVETILLHSL PLM
알로에 아르보레센스 알로에손 신테이즈(aloesone synthase, PKS3)[서열번호 104]:
mgslsdstpl mkdvqgirka qkadgtatvm aigtahpphi isqdsyadfy frvtnsehkv elkkkfdric kktmigkryf nfdeeflkky pnitsfdkps lndrhdicip gvpalgaeaa vkaieewgrp kseithlvfc tsggvdmpsa dfqcakllgl rtnvnkyciy mqgcyaggtv mryakdlaen nrgarvlmvc aeltiialrg pndshidnai gnslfgdgaa alivgsdpii gvekpmfeiv cakqtvipns eevihlhlre sglmfymtkd saatisnnie aclvdvfksv gmtppedwns lfwiphpggr aildqveakl klrpekfsat rtvlwdygnm isacvlyild emrrksaaeg letygeglew gvllgfgpgm tietillhsl ppv
알로에 아르보레센스 타입 III 폴리케타이드 합성 효소 (octaketide synthase 2, PKS4)[서열번호 105]:
MGSLSNYSPV MEDVQAIRKA QKADGTATVM AIGTAHPPHI FPQDTYADFY FRATNSEHKV ELKKKFDRIC KKTMIGKRYF NYDEEFLKKY PNITSFDEPS LNDRQDICVP GVPALGAEAA VKAIAEWGRP KSEITHLVFC TSCGVDMPSA DFQCAKLLGL RTNVNKYCVY MQGCYAGGTV MRYAKDLAEN NRGARVLVVC AELTIIGLRG PNESHLDNAI GNSLFGDGAA ALIVGSDPII GVERPMFEIV CAKQTVIPNS EDVIHLHMRE AGLMFYMSKD SPETISNNVE ACLVDVFKSV GMTPPEDWNS LFWIPHPGGR AILDQVEARL KLRPEKFGAT RTVLWDCGNM VSACVLYILD EMRRKSVADG LATYGEGLEW GVLLGFGPGM TVETILLHSL PPV
알로에 아르보레센스 타입 III 폴리케타이드 합성 효소 (octaketide synthase 3, PKS5)[서열번호 106]:
MGSIAESSPL MSRENVEGIR KAQRAEGTAT VMAIGTAHPP HIFPQDTYAD FYFRATNSEH KVELKKKFDR ICKKTMIGKR YFNYDEEFLK KYPNITSFDE PSLNDRQDIC VPGVPALGKE AALKAIEEWG QPLSKITHLV FCTSCGVDMP SADFQLAKLL GLNTNVNKYC VYMQGCYAGG TVLRYAKDLA ENNRGSRVLV VCAELTIIGL RGPNESHLDN AIGNSLFGDG AAALIVGADP IVGIEKPIFE IVCAKQTVIP DSEDVIHLHL REAGLMFYMS KDSPETISNN VEGCLVDIFK SVGMTPPADW NSLFWIPHPG GRAILDEVEA RLKLRPEKFR ATRHVLWEYG NMVSACVLYI LDEMRNKSAA DGLGTYGEGL EWGVLLGFGP GMTVETILLH SLPPV
상기 기재된 타입 III 폴리케타이드 합성 효소의 아미노산 서열은 본 발명의 말로닐-코에이 검출용 재조합 미생물을 제작하기 위한 일부 실시 가능한 효소를 예시한 것으로, 본 발명은 타입 III 폴리케타이드 합성 효소의 도입에 의해 말로닐-코에이 검출이 가능하다는 점에 기술적 특징이 있는바, 상기 기재된 서열의 타입 III 폴리케타이드 합성 효소 이외의 다른 종류의 타입 III 폴리케타이드 합성 효소가 도입된 재조합 미생물의 제작이 가능하다는 것은 당업자에게 자명할 것이다.
본 발명에서, 상기 재조합 벡터는 tac, trc, T7, BAD, λPR 및 앤더슨 합성 프로모터로 구성된 군에서 선택된 프로모터에 상기 타입 III 폴리케타이드 합성 효소를 코딩하는 유전자가 작동 가능하도록 연결된 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에서, 상기 재조합 미생물은 대장균, 리조비움(Rhizobium), 비피도박테리움 (Bifidobacterium), 로도코커스 (Rhodococcus), 칸디다 (Candida), 에르위니아(Erwinia), 엔테로박터 (Enterobacter), 파스테렐라(Pasteurella), 맨하이미아 (Mannheimia), 액티노바실러스 (Actinobacillus), 아그레가티박터(Aggregatibacter), 잔토모나스(Xanthomonas), 비브리오(Vibrio), 슈도모나스(Pseudomonas), 아조토박터(Azotobacter), 애시네토박터(Acinetobacter), 랄스토니아(Ralstonia), 아그로박테리움(Agrobacterium), 로도박터(Rhodobacter), 자이모모나스(Zymomonas), 바실러스(Bacillus), 스테필로코커스(Staphylococcus), 락토코커스(Lactococcus), 스트렙토코커스(Streptococcus), 락토바실러스(Lactobacillus), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 스트렙토마이세스(Streptomyces), 비피도박테리움(Bifidobacterium), 사이아노박테리움(Cyanobacterium) 및 사이클로박테리움(Cyclobacterium)로 구성되는 군의 균주에서 선택하여 적용 가능하나, 본 발명이 적용 가능한 미생물이 이에 한정되는 것은 아니다. 바람직하게는, 본 발명은 대장균, 슈도모나스 종, 코리네박테리움 종 및 로도코코스 종으로 구성된 군에서 선택되는 미생물에 재조합 벡터가 도입되어 제작될 수 있으나, 이에 한정되지는 않으며, 대장균으로는 하기 표 2에 기재된 대장균 중 1종을 선택하여 사용하는 것이 바람직하나, 당업자가 유사한 효과가 발휘될 것이라고 예상 가능한 범위 내에서 다른 대장균을 사용할 수 있을 것이다. 슈도모나스 균주로는 슈도모나스 푸티다(Pseudomonas putida), 코리네박테리움 균주로는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 로도코커스 균주로는 로도코커스 오파쿠스(Rhodococcus opacus)를 이용하여 재조합 미생물을 제작할 수 있으나, 이는 대표적인 미생물을 예시한 것으로, 본 발명이 적용 가능한 미생물이 이에 한정되는 것은 아니다.
한편, 본 발명에서는 타입 III 폴리케타이드 합성 효소를 코딩하는 유전자가 게놈에 삽입되어 있거나, 이를 포함하는 재조합 벡터가 도입된, 말로닐-코에이 검출용 재조합 미생물을 사용하는 경우, 말로닐-코에이의 농도 의존적인 발색 현상을 통해 말로닐-코에이의 생산량의 많고 적음을 용이하게 확인할 수 있었고, 말로닐-코에이 생산 유도 물질을 용이하게 스크리닝 할 수도 있다.
따라서, 본 발명은 다른 관점에서, 하기 단계를 포함하는 말로닐-코에이 생산 유도물질의 스크리닝 방법에 관한 것이다.
(a) 상기 재조합 미생물을 배양하는 단계;
(b) 상기 재조합 미생물에 후보물질을 첨가하는 단계;
(c) 상기 후보물질 첨가 후의 재조합 미생물 배양 상층액과 상기 후보물질 첨가 전의 재조합 미생물 배양 상층액의 색을 비교하는 단계; 및
(d) 상기 후보물질 첨가 후의 재조합 미생물 배양 상층액이 상기 후보물질 첨가 전의 재조합 미생물 배양 상층액에 비해 더 붉은 색을 나타내는 경우의 후보물질을 말로닐-코에이 생산 유도물질로 선별하는 단계.
본 발명에서, (c) 단계는 육안으로 색의 변화를 명확히 관찰할 수 있고, 흡광도를 측정하여 그 변화를 정량적으로 표현할 수도 있다.
따라서, 상기 (c) 단계의 색은 육안으로 비교하는 것을 특징으로 할 수 있다.
또한, 상기 (c) 단계의 색은 흡광도를 측정하여 비교하고,
상기 (d) 단계는 상기 후보물질 첨가 후 흡광도가 후보물질 첨가 전 흡광도에 비해 증가하는 경우의 후보물질을 말로닐-코에이 생산 유도물질로 선별하는 것을 특징으로 할 수 있다.
본 발명에서 흡광도는 280~450 nm, 바람직하게는 300~340nm 근처에서의 OD 값을 비교할 수 있으며, 말로닐-코에이 농도가 높으면, OD 값이 높게 나타난다.
상기 말로닐-코에이 생산 유도물질은 말로닐-코에이 생산능 증가에 관여하는 유전자의 발현을 조절하는 기전에 의해 말로닐-코에이의 생산을 유도할 수 있으므로, 본 발명은 또 다른 관점에서 하기 단계를 포함하는 말로닐-코에이 생산능 증가에 관여하는 유전자의 스크리닝 방법에 관한 것이다.
(a) 상기 재조합 미생물에 상기 재조합 미생물 내 유전자 발현을 변화시키는 유전자 조절 라이브러리를 도입하여 재조합 미생물 내 유전자 발현이 변화된 재조합 미생물 라이브러리를 제작하는 단계;
(b) 상기 제작된 재조합 미생물 라이브러리를 배양하여 배양 상층액의 흡광도를 측정하고, 유전자 조절 라이브러리가 도입되기 전의 재조합 미생물을 배양하여 배양 상층액의 색을 비교하는 단계; 및
(c) 상기 유전자 조절 라이브러리가 도입되기 전의 재조합 미생물의 배양 상층액의 색에 비해 붉은 색이 증가하는 경우의 재조합 미생물 라이브러리에 도입된 유전자를 선별하는 단계.
본 발명에서, (b) 단계는 육안으로 색의 변화를 명확히 관찰할 수 있고, 흡광도를 측정하여 그 변화를 정량적으로 표현할 수도 있다.
따라서, 상기 (b) 단계의 색은 육안으로 비교하는 것을 특징으로 할 수 있다.
또한, 상기 (b) 단계의 색은 흡광도를 측정하여 비교하고, 상기 (c) 단계에서는 상기 유전자 조절 라이브러리가 도입되기 전의 재조합 미생물의 배양 상층액의 흡광도에 비해 흡광도가 증가하는 경우의 재조합 미생물 라이브러리에 도입된 유전자를 선별하는 것을 특징으로 할 수 있다.
본 발명에서 흡광도는 280~450 nm, 바람직하게는 300~340nm 근처에서의 OD 값을 비교할 수 있으며, 말로닐-코에이 농도가 높으면, OD 값이 높게 나타난다.
본 발명에서 상기 유전자 조절 라이브러리는 sRNA 라이브러리, 게놈 라이브러리, cDNA 라이브러리, gRNA 라이브러리, 및 넉아웃 또는 돌연변이 제작용 올리고뉴클레오티드 라이브러리로 구성된 군에서 선택되는 라이브러리인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
구체적으로, 본 발명의 목적 달성을 위하여 재조합 미생물의 내재적 유전자 발현 억제를 위한 sRNA 라이브러리 또는, 넉아웃 또는 돌연변이 제작용 올리고뉴클레오티드 라이브러리;
내재적 또는 외래 유전자 과발현을 위한 라이브러리인 게놈 라이브러리 (genomic library), 또는 cDNA 라이브러리; 또는
유전자 발현 억제 또는 과발현이 모두 가능한 라이브러리인 gRNA(CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)-Cas9 기술에서 사용되는 가이드 RNA) 라이브러리에서 적절히 선택하여 적용이 가능할 것이다.
즉, 하기 실시예 2에서 설명하는 합성 조절 sRNA 라이브러리의 첨가는 본 발명을 상세히 설명하기 위한 하나의 예시로 그 이용방법을 제시한 것으로, 유사한 기능을 발휘한다고 보고된 다른 어떠한 라이브러리의 도입도 가능할 것이다.
한편, 상기 방법에 의해 선별된 유전자를 미생물에서 넉다운하면, 미생물 내의 말로닐-코에이 생산량을 증가시킬 수 있을 것인데, 따라서 본 발명은 또 다른 관점에서 말로닐-코에이 생성능을 가지고 있는 미생물에서 상기 방법에 의해 선별된 유전자의 발현을 조절하는 것을 특징으로 하는 말로닐-코에이 생성능이 증가된 재조합 미생물의 제조방법에 관한 것이다.
말로닐-코에이 생성능을 가지고 있는 미생물이란, 말로닐-코에이 생성능을 내재적으로 가지고 있거나 말로닐-코에이 생성능이 외부로부터 도입된 미생물을 의미한다.
본 발명에서 상기 선별된 유전자는
fabF (3-oxoacyl-[acyl-carrier-protein] synthase II);
yfcY (beta-ketoacyl-CoA thiolase);
xapR (transcriptional activator of xapAB);
cytR (transcriptional repressor for deo operon, udp, cdd, tsx, nupC and nupG);
fabH (3-oxoacyl-[acyl-carrier-protein] synthase III);
mqo (malate dehydrogenase);
yfiD (pyruvate formate lyase subunit);
fmt (10-formyltetrahydrofolate:L-methionyl-tRNA(fMet)N-formyltransferase);
pyrF (orotidine-5'-phosphate decarboxylase);
araA (L-arabinose isomerase);
fadR (negative regulator for fad regulon and positive regulator of fabA);
pabA (aminodeoxychorismate synthase, subunit II);
purB (adenylosuccinate lyase); 및
hycI (protease involved in processing C-terminal end of HycE)로 구성된 군에서 선택된 하나 이상의 유전자이고,
상기 유전자의 발현을 감소시키는 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명에서, fabF는 3-옥소아실-아실케리어프로테인 신테이즈 II(3-oxoacyl-[acyl-carrier-protein] synthase II)를, yfcY는 베타-케토아실-코에이 싸이올레이즈(beta-ketoacyl-CoA thiolase)를, xapRxapAB의 전사 활성 인자(transcriptional activator of xapAB)를, cytRdeo, udp, cdd, tsx, nupC, nupG에 대한 전사 억제 인자(transcriptional repressor for deo operon, udp, cdd, tsx, nupC, nupG)를, fabH는 3-옥소아실-아실케리어프로테인 신테이즈 III(3-oxoacyl-[acyl-carrier-protein] synthase III)를, mqo은 말산 디하이드로지네이즈(malate dehydrogenase)를, yfiD는 피루브산 포름산 라이에이즈(pyruvate formate lyase subunit)를, fmt는 10-포르밀테트라하이드로폴레이트:L-메티오닐-티알엔에이(fMet)N-포르밀프렌스퍼레이즈 (10-formyltetrahydrofolate:L-methionyl-tRNA(fMet)N-formyltransferase)를, pyrF는 오로티딘-5'포스페이트 디카복실레이즈(orotidine-5'-phosphate decarboxylase)를, araA는 L-아라비노스 아이소머레이즈(L-arabinose isomerase)를, fadRfad의 음성 조절 인자 및 fabA의 양성 조절 인자(negative regulator for fad regulon and positive regulator of fabA)를, pabA는 아미노데옥시코리스메이트 신테이즈, 서브유닛 II(aminodeoxychorismate synthase, subunit II)을, purB는 아데닐로석신네이트 라이에이즈(adenylosuccinate lyase)를, hycI는 HycE의 C-말단에 작용하는 단백질 분해효소(protease involved in processing C-terminal end of HycE)를 각각 코딩한다.
본 발명에서 선별되어 사용되는 각 효소들의 아미노산 서열은 하기와 같으나, 이들 아미노산 서열에서 일부 아미노산 서열이 치환, 결실, 부가되어도 본 발명에서와 동등 또는 그 이상의 기능을 발휘하는 경우로, 예를 들어, 그 구조적 형태가 야생형과 동일 또는 유사하여 기질에 대하여 동등 또는 그 이상의 효과를 발휘하는 경우라면 해당 서열도 본 발명의 권리범위에 포함되는 것임은 자명할 것이다. 같은 맥락에서, 본 발명에서 사용된 효소 이외에도 동일 또는 유사한 기능을 갖는 다른 미생물 유래의 효소를 본 발명에 적절히 응용 가능하고, 당업자가 용이하게 응용 가능한 범위 내에서 해당 효소의 적용이 본 발명의 권리범위에 포함되는 것임은 자명할 것이다.
FabF[서열번호 107]:
MSKRRVVVTGLGMLSPVGNTVESTWKALLAGQSGISLIDHFDTSAYATKFAGLVKDFNCEDIISRKEQRKMDAFIQYGIVAGVQAMQDSGLEITEENATRIGAAIGSGIGGLGLIEENHTSLMNGGPRKISPFFVPSTIVNMVAGHLTIMYGLRGPSISIATACTSGVHNIGHAARIIAYGDADVMVAGGAEKASTPLGVGGFGAARALSTRNDNPQAASRPWDKERDGFVLGDGAGMLVLEEYEHAKKRGAKIYAELVGFGMSSDAYHMTSPPENGAGAALAMANALRDAGIEASQIGYVNAHGTSTPAGDKAEAQAVKTIFGEAASRVLVSSTKSMTGHLLGAAGAVESIYSILALRDQAVPPTINLDNPDEGCDLDFVPHEARQVSGMEYTLCNSFGFGGTNGSLIFKKI
YfcY[서열번호 108]:
MGQVLPLVTRQGDRIAIVSGLRTPFARQATAFHGIPAVDLGKMVVGELLARSEIPAEVIEQLVFGQVVQMPEAPNIAREIVLGTGMNVHTDAYSVSRACATSFQAVANVAESLMAGTIRAGIAGGADSSSVLPIGVSKKLARVLVDVNKARTMSQRLKLFSRLRLRDLMPVPPAVAEYSTGLRMGDTAEQMAKTYGITREQQDALAHRSHQRAAQAWSDGKLKEEVMTAFIPPYKQPLVEDNNIRGNSSLADYAKLRPAFDRKHGTVTAANSTPLTDGAAAVILMTESRAKELGLVPLGYLRSYAFTAIDVWQDMLLGPAWSTPLALERAGLTMSDLTLIDMHEAFAAQTLANIQLLGSERFAREALGRAHATGEVDDSKFNVLGGSIAYGHPFAATGARMITQTLHELRRRGGGFGLVTACAAGGLGAAMVLEAE
XapR[서열번호 109]:
MERVYRTDLKLLRYFLAVAEELHFGRAAARLNMSQPPLSIHIKELENQLGTQLFIRHSRSVVLTHAGKILMEESRRLLVNANNVLARIEQIGRGEAGRIELGVVGTAMWGRMRPVMRRFLRENPNVDVLFREKMPAMQMALLERRELDAGIWRMATEPPTGFTSLRLHESAFLVAMPEEHHLSSFSTVPLEALRDEYFVTMPPVYTDWDFLQRVCQQVGFSPVVIREVNEPQTVLAMVSMGIGITLIADSYAQMNWPGVIFRPLKQRIPADLYIVYETQQVTPAMVKLLAALTQ
CytR[서열번호 110]:
MKAKKQETAATMKDVALKAKVSTATVSRALMNPDKVSQATRNRVEKAAREVGYLPQPMGRNVKRNESRTILVIVPDICDPFFSEIIRGIEVTAANHGYLVLIGDCAHQNQQEKTFIDLIITKQIDGMLLLGSRLPFDASIEEQRNLPPMVMANEFAPELELPTVHIDNLTAAFDAVNYLYEQGHKRIGCIAGPEEMPLCHYRLQGYVQALRRCGIMVDPQYIARGDFTFEAGSKAMQQLLDLPQPPTAVFCHSDVMALGALSQAKRQGLKVPEDLSIIGFDNIDLTQFCDPPLTTIAQPRYEIGREAMLLLLDQMQGQHVGSGSRLMDCELIIRGSTRALP
FabH[서열번호 111]:
MYTKIIGTGSYLPEQVRTNADLEKMVDTSDEWIVTRTGIRERHIAAPNETVSTMGFEAATRAIEMAGIEKDQIGLIVVATTSATHAFPSAACQIQSMLGIKGCPAFDVAAACAGFTYALSVADQYVKSGAVKYALVVGSDVLARTCDPTDRGTIIIFGDGAGAAVLAASEEPGIISTHLHADGSYGELLTLPNADRVNPENSIHLTMAGNEVFKVAVTELAHIVDETLAANNLDRSQLDWLVPHQANLRIISATAKKLGMSMDNVVVTLDRHGNTSAASVPCALDEAVRDGRIKPGQLVLLEAFGGGFTWGSALVRF
Mqo[서열번호 112]:
MKKVTAMLFSMAVGLNAVSMAAKAKASEEQETDVLLIGGGIMSATLGTYLRELEPEWSMTMVERLEGVAQESSNGWNNAGTGHSALMELNYTPQNADGSISIEKAVAINEAFQISRQFWAHQVERGVLRTPRSFINTVPHMSFVWGEDNVNFLRARYAALQQSSLFRGMRYSEDHAQIKEWAPLVMEGRDPQQKVAATRTEIGTDVNYGEITRQLIASLQKKSNFSLQLSSEVRALKRNDDNTWTVTVADLKNGTAQNIRAKFVFIGAGGAALKLLQESGIPEAKDYAGFPVGGQFLVSENPDVVNHHLAKVYGKASVGAPPMSVPHIDTRVLDGKRVVLFGPFATFSTKFLKNGSLWDLMSSTTTSNVMPMMHVGLDNFDLVKYLVSQVMLSEEDRFEALKEYYPQAKKEDWRLWQAGQRVQIIKRDAEKGGVLRLGTEVVSDQQGTIAALLGASPGASTAAPIMLNLLEKVFGDRVSSPQWQATLKAIVPSYGRKLNGDVAATERELQYTSEVLGLNYDKPQAADSTPKPQLKPQPVQKEVADIAL
YfiD[서열번호 113]:
MITGIQITKAANDDLLNSFWLLDSEKGEARCIVAKAGYAEDEVVAVSKLGDIEYREVPVEVKPEVRVEGGQHLNVNVLRRETLEDAVKHPEKYPQLTIRVSGYAVRFNSLTPEQQRDVIARTFTESL
Fmt[서열번호 114]:
MSESLRIIFAGTPDFAARHLDALLSSGHNVVGVFTQPDRPAGRGKKLMPSPVKVLAEEKGLPVFQPVSLRPQENQQLVAELQADVMVVVAYGLILPKAVLEMPRLGCINVHGSLLPRWRGAAPIQRSLWAGDAETGVTIMQMDVGLDTGDMLYKLSCPITAEDTSGTLYDKLAELGPQGLITTLKQLADGTAKPEVQDETLVTYAEKLSKEEARIDWSLSAAQLERCIRAFNPWPMSWLEIEGQPVKVWKASVIDTATNAAPGTILEANKQGIQVATGDGILNLLSLQPAGKKAMSAQDLLNSRREWFVPGNRLV
PyrF[서열번호 115]:
MTLTASSSSRAVTNSPVVVALDYHNRDDALAFVDKIDPRDCRLKVGKEMFTLFGPQFVRELQQRGFDIFLDLKFHDIPNTAAHAVAAAADLGVWMVNVHASGGARMMTAAREALVPFGKDAPLLIAVTVLTSMEASDLVDLGMTLSPADYAERLAALTQKCGLDGVVCSAQEAVRFKQVFGQEFKLVTPGIRPQGSEAGDQRRIMTPEQALSAGVDYMVIGRPVTQSVDPAQTLKAINASLQRSA
AraA[서열번호 116]:
MTIFDNYEVWFVIGSQHLYGPETLRQVTQHAEHVVNALNTEAKLPCKLVLKPLGTTPDEITAICRDANYDDRCAGLVVWLHTFSPAKMWINGLTMLNKPLLQFHTQFNAALPWDSIDMDFMNLNQTAHGGREFGFIGARMRQQHAVVTGHWQDKQAHERIGSWMRQAVSKQDTRHLKVCRFGDNMREVAVTDGDKVAAQIKFGFSVNTWAVGDLVQVVNSISDGDVNALVDEYESCYTMTPATQIHGKKRQNVLEAARIELGMKRFLEQGGFHAFTTTFEDLHGLKQLPGLAVQRLMQQGYGFAGEGDWKTAALLRIMKVMSTGLQGGTSFMEDYTYHFEKGNDLVLGSHMLEVCPSIAAEEKPILDVQHLGIGGKDDPARLIFNTQTGPAIVASLIDLGDRYRLLVNCIDTVKTPHSLPKLPVANALWKAQPDLPTASEAWILAGGAHHTVFSHALNLNDMRQFAEMHDIEITVIDNDTRLPAFKDALRWNEVYYGFRR
ArgC[서열번호 117]:
MLNTLIVGASGYAGAELVTYVNRHPHMNITALTVSAQSNDAGKLISDLHPQLKGIVDLPLQPMSDISEFSPGVDVVFLATAHEVSHDLAPQFLEAGCVVFDLSGAFRVNDATFYEKYYGFTHQYPELLEQAAYGLAEWCGNKLKEANLIAVPGCYPTAAQLALKPLIDADLLDLNQWPVINATSGVSGAGRKAAISNSFCEVSLQPYGVFTHRHQPEIATHLGADVIFTPHLGNFPRGILETITCRLKSGVTQAQVAQVLQQAYAHKPLVRLYDKGVPALKNVVGLPFCDIGFAVQGEHLIIVATEDNLLKGAAAQAVQCANIRFGYAETQSLI
FadR[서열번호 118]:
MVIKAQSPAGFAEEYIIESIWNNRFPPGTILPAERELSELIGVTRTTLREVLQRLARDGWLTIQHGKPTKVNNFWETSGLNILETLARLDHESVPQLIDNLLSVRTNISTIFIRTAFRQHPDKAQEVLATANEVADHADAFAELDYNIFRGLAFASGNPIYGLILNGMKGLYTRIGRHYFANPEARSLALGFYHKLSALCSEGAHDQVYETVRRYGHESGEIWHRMQKNLPGDLAIQGR
NudD[서열번호 119]:
MFLRQEDFATVVRSTPLVSLDFIVENSRGEFLLGKRTNRPAQGYWFVPGGRVQKDETLEAAFERLTMAELGLRLPITAGQFYGVWQHFYDDNFSGTDFTTHYVVLGFRFRVSEEELLLPDEQHDDYRWLTSDALLASDNVHANSRAYFLAEKRTGVPGL
PabA[서열번호 120]:
MILLIDNYDSFTWNLYQYFCELGADVLVKRNDALTLADIDALKPQKIVISPGPCTPDEAGISLDVIRHYAGRLPILGVCLGHQAMAQAFGGKVVRAAKVMHGKTSPITHNGEGVFRGLANPLTVTRYHSLVVEPDSLPACFDVTAWSETREIMGIRHRQWDLEGVQFHPESILSEQGHQLLANFLHR
PurB[서열번호 121]:
MELSSLTAVSPVDGRYGDKVSALRGIFSEYGLLKFRVQVEVRWLQKLAAHAAIKEVPAFAADAIGYLDAIVASFSEEDAARIKTIERTTNHDVKAVEYFLKEKVAEIPELHAVSEFIHFACTSEDINNLSHALMLKTARDEVILPYWRQLIDGIKDLAVQYRDIPLLSRTHGQPATPSTIGKEMANVAYRMERQYRQLNQVEILGKINGAVGNYNAHIAAYPEVDWHQFSEEFVTSLGIQWNPYTTQIEPHDYIAELFDCVARFNTILIDFDRDVWGYIALNHFKQKTIAGEIGSSTMPHKVNPIDFENSEGNLGLSNAVLQHLASKLPVSRWQRDLTDSTVLRNLGVGIGYALIAYQSTLKGVSKLEVNRDHLLDELDHNWEVLAEPIQTVMRRYGIEKPYEKLKELTRGKRVDAEGMKQFIDGLALPEEEKARLKAMTPANYIGRAITMVDELK
HycI[서열번호 122]:
MTDVLLCVGNSMMGDDGAGPLLAEKCAAAPKGNWVVIDGGSAPENDIVAIRELRPTRLLIVDATDMGLNPGEIRIIDPDDIAEMFMMTTHNMPLNYLIDQLKEDIGEVIFLGIQPDIVGFYYPMTQPIKDAVETVYQRLEGWEGNGGFAQLAVEEE
본 발명에서, 상기 미생물은 대장균, 리조비움(Rhizobium), 비피도박테리움 (Bifidobacterium), 로도코커스 (Rhodococcus), 칸디다 (Candida), 에르위니아(Erwinia), 엔테로박터 (Enterobacter), 파스테렐라(Pasteurella), 맨하이미아 (Mannheimia), 액티노바실러스 (Actinobacillus), 아그레가티박터(Aggregatibacter), 잔토모나스(Xanthomonas), 비브리오(Vibrio), 슈도모나스(Pseudomonas), 아조토박터(Azotobacter), 애시네토박터(Acinetobacter), 랄스토니아(Ralstonia), 아그로박테리움(Agrobacterium), 로도박터(Rhodobacter), 자이모모나스(Zymomonas), 바실러스(Bacillus), 스테필로코커스(Staphylococcus), 락토코커스(Lactococcus), 스트렙토코커스(Streptococcus), 락토바실러스(Lactobacillus), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 스트렙토마이세스(Streptomyces), 비피도박테리움(Bifidobacterium), 사이아노박테리움(Cyanobacterium) 및 사이클로박테리움(Cyclobacterium)로 구성되는 군의 균주에서 선택하여 적용 가능하나, 본 발명이 적용 가능한 미생물이 이에 한정되는 것은 아니다. 바람직하게는, 본 발명은 대장균, 슈도모나스 종, 코리네박테리움 종 및 로도코코스 종으로 구성된 군에서 선택되는 미생물에 재조합 벡터가 도입되어 제작될 수 있으나, 이에 한정되지는 않으며, 대장균으로는 하기 표 2에 기재된 대장균 중 1종을 선택하여 사용하는 것이 바람직하나, 당업자가 유사한 효과가 발휘될 것이라고 예상 가능한 범위 내에서 다른 대장균을 사용할 수 있을 것이다. 슈도모나스 균주로는 슈도모나스 푸티다(Pseudomonas putida), 코리네박테리움 균주로는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 로도코커스 균주로는 로도코커스 오파쿠스(Rhodococcus opacus)를 이용하여 재조합 미생물을 제작할 수 있으나, 이는 대표적인 미생물을 예시한 것으로, 본 발명이 적용 가능한 미생물이 이에 한정되는 것은 아니다.
또한, 상기 스크리닝 된 유전자를 이용하면 본 발명에서는 말로닐-코에이를 기질 또는 중간물질로 하는 유용물질을 매우 단순한 유전자 조작만으로 높은 수율로 생산할 수 있다.
따라서, 본 발명은 또 다른 관점에서 말로닐-코에이 생성능을 가지고 있는 미생물에서,
fabF (3-oxoacyl-[acyl-carrier-protein] synthase II);
yfcY (beta-ketoacyl-CoA thiolase);
xapR (transcriptional activator of xapAB);
cytR (transcriptional repressor for deo operon, udp, cdd, tsx, nupC and nupG);
fabH (3-oxoacyl-[acyl-carrier-protein] synthase III);
mqo (malate dehydrogenase);
yfiD (pyruvate formate lyase subunit);
fmt (10-formyltetrahydrofolate:L-methionyl-tRNA(fMet)N-formyltransferase);
pyrF (orotidine-5'-phosphate decarboxylase);
araA (L-arabinose isomerase);
fadR (negative regulator for fad regulon and positive regulator of fabA);
pabA (aminodeoxychorismate synthase, subunit II);
purB (adenylosuccinate lyase); 및
hycI (protease involved in processing C-terminal end of HycE)로 구성된 군에서 선택된 하나 이상의 유전자의 발현이 야생형에 비해 감소되어 있는 말로닐-코에이 생성능이 증가된 재조합 미생물에 관한 것이다.
본 발명에서 말로닐-코에이 생성능을 가지고 있는 미생물은 말로닐-코에이 생성능을 내재적으로 가지고 있거나 말로닐-코에이 생성능이 외부로부터 도입되어 있는 미생물을 의미한다.
본 발명은 또한, 하기 단계를 포함하는 말로닐-코에이를 기질 또는 중간물질로 하는 유용물질의 생산방법에 관한 것이다.
(a) 상기 재조합 미생물에 유용물질의 생산에 관여하는 유전자를 추가적으로 도입 또는 발현을 증가시키거나, 유용물질의 생산에 관여하는 유전자를 추가적으로 결손 또는 발현을 억제시킨 재조합 미생물을 제작하는 단계;
(b) 상기 제작된 미생물을 배양하는 단계; 및
(c) 상기 배양된 미생물로부터 유용물질을 회수하는 단계.
본 발명에 있어서, 상기 유용 물질은
액티로노딘(actinorhodin), 독소루비신(doxorubicin), 다우노루비신(daunorubicin), 옥시테트라사이클린(oxytetracycline), 라파마이신(rapamycin), 로바스타틴(lovastatin), SEK4, SEK4b, SEK34, SEK15, SEK26, FK506, DMAC, 아클라비논(aklavinone), 아클라노닉산(aklanonic acid), 엡실론 로도마이시논(epsilon-rhodomycinone), 알로에신(aloesin), 알로에닌(aloenin), 바바로인(barbaloin), 5,7-다이하이드록시-2-메틸크로몬(5,7-dihydroxy-2-methylchromone), 에리트로마이신(erythromycin), 리파마이신(rifamycin), 아버멕틴(avermectin), 겔다나마이신(geldanamycin), 이버멕틴(ivermectin), 독시사이클린(doxycycline), 안트라마이신(anthramycin), 페니실릭산(penicillic acid), 칼리케아마이신(calicheamicin), 에포타일론(epothilone), 테트라세노마이신(tetracenomycin), 프레놀리신(frenolicin), 트라이아세트산 락톤(triacetic acid lactone), 6-메틸살리실산(6-methylsalicylic acid) 및 알로에손(aloesone)으로 구성되는 폴리케타이드계 화합물;
피노켐브린(pinocembrin), 다이하이드로캄페롤(dihydrokaempferol), 에리오딕티올(eriodictyol), 다이하이드로쿼세틴(dihydroquercetin), 다이드제인(daidzein), 게니스타인(genistein), 아피게닌(apigenin), 루테올린(luteolin), 캄페롤(kaempferol), 쿼세틴(quercetin), 카테킨(catechin), 페라고니딘(pelargonidin), 시아니딘(cyanidin), 압젤레친(afzelechin), 미리세틴(myricetin), 피세틴(fisetin), 갈랑긴(galangin), 헤스페레틴(hesperetin), 탄제리틴(tangeritin), 델피니딘(delphinidin), 에피카테킨(epicatechin), 크리신(chrysin), 레스베라트롤(resveratrol) 및 나린제닌(naringenin)으로 구성되는 페닐프로파노이드계 화합물; 및
펜테인(pentane), 헥세인(hexane), 헵테인(heptane), 옥테인(octane), 노네인(nonane), 데케인(decane), 운데케인(undecane), 도데케인(dodecane), 트라이데케인(tridecane), 테트라데케인(tetradecane), 펜타데케인(pentadecane), 헥사데케인(hexadecane), 헵타데케인(heptadecane), 옥타데케인(octadecane), 노나데케인(nonadecane), 이코세인(icosane), 펜탄올(pentanol), 헥산올(hexanol), 헵탄올(heptanol), 옥탄올(octanol), 노난올(nonanol), 데칸올(decanol), 운데칸올(undecanol), 도데칸올(dodecanol), 트라이데칸올(tridecanol), 테트라데칸올(tetradecanol), 펜타데칸올(pentadecanol), 헥사데칸올(hexadecanol), 헵타데칸올(heptadecanol), 옥타데칸올(octadecanol), 노나데칸올(nonadecanol), 이코산올(icosanol), 메틸카프레이트(methyl caprate), 메틸라우레이트(methyl laurate), 메틸미리스테이트(methyl myristate), 메틸팔미테이트(methyl palmitate), 메틸팔미토레이트(methyl palmitoleate), 메틸스테아레이트(methyl stearate), 메틸올레이트(methyl oleate), 메틸리놀레이트(methyl linoleate), 메틸리놀레네이트(methyl linolenate), 메틸아라키데이트(methyl arachidate), 메틸파울리네이트(methyl paullinate), 메틸에루케이트(methyl erucate), 에틸카프레이트(ethyl caprate), 에틸라우레이트(ethyl laurate), 에틸미리스테이트(ethyl myristate), 에틸팔미테이트(ethyl palmitate), 에틸팔미토레이트(ethyl palmitoleate), 에틸스테아레이트(ethyl stearate), 에틸올레이트(ethyl oleate), 에틸리놀레이트(ethyl linoleate), 에틸리놀레네이트(ethyl linolenate), 에틸아라키데이트(ethyl arachidate), 에틸파울리네이트(ethyl paullinate) 및 에틸에루케이트(methyl erucate)로 구성되는 바이오연료 군;
세라마이드(ceramide), 팔미테이트(palmitate) 및 스핑고신(sphingosine) 으로 구성되는 지질계 화합물; 및
3-하이드록시프로피온산(3-hydroxypropionic acid)에서 선택되는 어느 하나 이상의 유용물질인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다. 즉, 상기 기재된 유용물질 뿐만 아니라, 다른 어떠한 말로닐-코에이 유래 천연물, 화합물, 바이오연료 등의 부가가치 산물에도 본 발명의 바이오센서(즉, 재조합 미생물)가 적용 가능하다고 할 수 있다.
본 발명은 또한, 상기 재조합 미생물에 6-메틸살리실산 신테이즈(6-methylsalicylic acid synthase, 6MSAS) 및 4'-포스포판타테이닐 트렌스퍼레이즈(4'-phosphopantetheinyl transferase, Sfp)를 코딩하는 유전자가 추가적으로 도입되거나 그 발현이 증가되어 있는 6-메틸살리실산 생산용 재조합 미생물에 관한 것이다.
상기 6MSAS는 Penicillium patulum (또는 Penicillium griseofulvum), Aspergillus terreus, Aspergillus aculeatus, Aspergillus niger, Aspergillus westerdijkiae, Byssochlamys nivea, Glarea lozoyensis, Penicillium expansum, 또는 Streptomyces antibioticus로부터 유래될 수 있으나, 이에 한정되지는 않는다.
상기 Sfp는 Bacillus subtilis, Corynebacterium ammoniagenes, Escherichia coli, Homo sapiens, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Ricinus communis, Saccharomyces cerevisiae, Spinacia oleracea, Stigmatella aurantiaca, Streptomyces coelicolor, Streptomyces pneumonia, Streptomyces verticillus 또는 Vibrio harveyi에서 유래될 수 있으나, 이에 한정되지는 않는다.
상기 발현이 야생형에 비해 감소되어 있는 유전자는 pabA, fabF, xapRytcY로 구성된 군에서 선택된 하나 이상인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
상기 6-메틸살리실산 생산용 재조합 미생물은 글루코오스 6-포스페이트 디하이드로게나아제(Zwf), 말레이트 디하이드로게나아제(Mdh), 포스포글리세레이트 디하이드로게나아제(SerA), 아세틸-코에이 카복실레이즈(AccBC 및 AccD1), 글리세르알데하이드 3-인산 디하이드로지네이즈(GapA), 포스포글리세레이트 카이네이즈(Pgk), 아세틸-코에이 신테타아제(Acs) 및 피루브산 디하이드로지네이즈(AceEF 및 Lpd)로 구성된 군에서 선택된 하나 이상의 효소를 코딩하는 유전자가 추가적으로 도입되거나 그 발현이 증가되어 있는 것을 특징으로 할 수 있다.
상기 Zwf, Mdh, SerA, GapA, Pgk, Acs, AceE, AceF 및 Lpd는 Escherichia coli로부터 유래될 수 있으나, 이에 한정되지는 않는다. AccBC 및 AccD1은 Corynebacterium glutamicum로부터 유래될 수 있으나, 이에 한정되지는 않으며 다른 미생물 유래의 아세틸-코에이 카복실레이즈에 해당하는 효소들로 확장 가능하다.
본 발명에서 선별되어 사용되는 각 효소들의 아미노산 서열은 하기와 같으나, 이들 아미노산 서열에서 일부 아미노산 서열이 치환, 결실, 부가되어도 본 발명에서와 동등 또는 그 이상의 기능을 발휘하는 경우로, 예를 들어, 그 구조적 형태가 야생형과 동일 또는 유사하여 기질에 대하여 동등 또는 그 이상의 효과를 발휘하는 경우라면 해당 서열도 본 발명의 권리범위에 포함되는 것임은 자명할 것이다. 같은 맥락에서, 본 발명에서 사용된 효소 이외에도 동일 또는 유사한 기능을 갖는 다른 미생물 유래의 효소를 본 발명에 적절히 응용 가능하고, 당업자가 용이하게 응용 가능한 범위 내에서 해당 효소의 적용이 본 발명의 권리범위에 포함되는 것임은 자명할 것이다.
Zwf[서열번호 171]:
MAVTQTAQACDLVIFGAKGDLARRKLLPSLYQLEKAGQLNPDTRIIGVGRADWDKAAYTKVVREALETFMKETIDEGLWDTLSARLDFCNLDVNDTAAFSRLGAMLDQKNRITINYFAMP
PSTFGAICKGLGEAKLNAKPARVVMEKPLGTSLATSQEINDQVGEYFEECQVYRIDHYLGKETVLNLLALRFANSLFVNNWDNRTIDHVEITVAEEVGIEGRWGYFDKAGQMRDMIQNHLLQILCMIAMSPPSDLSADSIRDEKVKVLKSLRRIDRSNVREKTVRGQYTAGFAQGKKVPGYLEEEGANKSSNTETFVAIRVDIDNWRWAGVPFYLRTGKRLPTKCSEVVVYFKTPELNLFKESWQDLPQNKLTIRLQPDEGVDIQVLNKVPGLDHKHNLQITKLDLSYSETFNQTHLADAYERLLLETMRGIQALFVRRDEVEEAWKWVDSITEAWAMDNDAPKPYQAGTWGPVASVAMITRDGRSWNEFE
Mdh[서열번호 172]:
MKVAVLGAAGGIGQALALLLKTQLPSGSELSLYDIAPVTPGVAVDLSHIPTAVKIKGFSGEDATPALEGADVVLISAGVARKPGMDRSDLFNVNAGIVKNLVQQVAKTCPKACIGIITNPVNTTVAIAAEVLKKAGVYDKNKLFGVTTLDIIRSNTFVAELKGKQPGEVEVPVIGGHSGVTILPLLSQVPGVSFTEQEVADLTKRIQNAGTEVVEAKAGGGSATLSMGQAAARFGLSLVRALQGEQGVVECAYVEGDGQYARFFSQPLLLGKNGVEERKSIGTLSAFEQNALEGMLDTLKKDIALGEEFVNK
SerA[서열번호 173]:
MAKVSLEKDKIKFLLVEGVHQKALESLRAAGYTNIEFHKGALDDEQLKESIRDAHFIGLRSRTHLTEDVINAAEKLVAIGCFCIGTNQVDLDAAAKRGIPVFNAPFSNTRSVAELVIGELLLLLRGVPEANAKAHRGVWNKLAAGSFEARGKKLGIIGYGHIGTQLGILAESLGMYVYFYDIENKLPLGNATQVQHLSDLLNMSDVVSLHVPENPSTKNMMGAKEISLMKPGSLLINASRGTVVDIPALCDALASKHLAGAAIDVFPTEPATNSDPFTSPLCEFDNVLLTPHIGGSTQEAQENIGLEVAGKLIKYSDNGSTLSAVNFPEVSLPLHGGRRLMHIHENRPGVLTALNKIFAEQGVNIAAQYLQTSAQMGYVVIDIEADEDVAEKALQAMKAIPGTIRARLLY
GapA[서열번호 174]:
MTIKVGINGFGRIGRIVFRAAQKRSDIEIVAINDLLDADYMAYMLKYDSTHGRFDGTVEVKDGHLIVNGKKIRVTAERDPANLKWDEVGVDVVAEATGLFLTDETARKHITAGAKKVVMTGPSKDNTPMFVKGANFDKYAGQDIVSNASCTTNCLAPLAKVINDNFGIIEGLMTTVHATTATQKTVDGPSHKDWRGGRGASQNIIPSSTGAAKAVGKVLPELNGKLTGMAFRVPTPNVSVVDLTVRLEKAATYEQIKAAVKAAAEGEMKGVLGYTEDDVVSTDFNGEVCTSVFDAKAGIALNDNFVKLVSWYDNETGYSNKVLDLIAHISK
Pgk[서열번호 175]:
MSVIKMTDLDLAGKRVFIRADLNVPVKDGKVTSDARIRASLPTIELALKQGAKVMVTSHLGRPTEGEYNEEFSLLPVVNYLKDKLSNPVRLVKDYLDGVDVAEGELVVLENVRFNKGEKKDDETLSKKYAALCDVFVMDAFGTAHRAQASTHGIGKFADVACAGPLLAAELDALGKALKEPARPMVAIVGGSKVSTKLTVLDSLSKIADQLIVGGGIANTFIAAQGHDVGKSLYEADLVDEAKRLLTTCNIPVPSDVRVATEFSETAPATLKSVNDVKADEQILDIGDASAQELAEILKNAKTILWNGPVGVFEFPNFRKGTEIVANAIADSEAFSIAGGGDTLAAIDLFGIADKISYISTGGGAFLEFVEGKVLPAVAMLEERAKK
Acs[서열번호 176]:
MSQIHKHTIPANIADRCLINPQQYEAMYQQSINVPDTFWGEQGKILDWIKPYQKVKNTSFAPGNVSIKWYEDGTLNLAANCLDRHLQENGDRTAIIWEGDDASQSKHISYKELHRDVCRFANTLLELGIKKGDVVAIYMPMVPEAAVAMLACARIGAVHSVIFGGFSPEAVAGRIIDSNSRLVITSDEGVRAGRSIPLKKNVDDALKNPNVTSVEHVVVLKRTGGKIDWQEGRDLWWHDLVEQASDQHQAEEMNAEDPLFILYTSGSTGKPKGVLHTTGGYLVYAALTFKYVFDYHPGDIYWCTADVGWVTGHSYLLYGPLACGATTLMFEGVPNWPTPARMAQVVDKHQVNILYTAPTAIRALMAEGDKAIEGTDRSSLRILGSVGEPINPEAWEWYWKKIGNEKCPVVDTWWQTETGGFMITPLPGATELKAGSATRPFFGVQPALVDNEGNPLEGATEGSLVITDSWPGQARTLFGDHERFEQTYFSTFKNMYFSGDGARRDEDGYYWITGRVDDVLNVSGHRLGTAEIESALVAHPKIAEAAVVGIPHNIKGQAIYAYVTLNHGEEPSPELYAEVRNWVRKEIGPLATPDVLHWTDSLPKTRSGKIMRRILRKIAAGDTSNLGDTSTLADPGVVEKLLEEKQAIAMPS
AceE[서열번호 177]:
MSERFPNDVDPIETRDWLQAIESVIREEGVERAQYLIDQLLAEARKGGVNVAAGTGISNYINTIPVEEQPEYPGNLELERRIRSAIRWNAIMTVLRASKKDLELGGHMASFQSSATIYDVCFNHFFRARNEQDGGDLVYFQGHISPGVYARAFLEGRLTQEQLDNFRQEVHGNGLSSYPHPKLMPEFWQFPTVSMGLGPIGAIYQAKFLKYLEHRGLKDTSKQTVYAFLGDGEMDEPESKGAITIATREKLDNLVFVINCNLQRLDGPVTGNGKIINELEGIFEGAGWNVIKVMWGSRWDELLRKDTSGKLIQLMNETVDGDYQTFKSKDGAYVREHFFGKYPETAALVADWTDEQIWALNRGGHDPKKIYAAFKKAQETKGKATVILAHTIKGYGMGDAAEGKNIAHQVKKMNMDGVRHIRDRFNVPVSDADIEKLPYITFPEGSEEHTYLHAQRQKLHGYLPSRQPNFTEKLELPSLQDFGALLEEQSKEISTTIAFVRALNVMLKNKSIKDRLVPIIADEARTFGMEGLFRQIGIYSPNGQQYTPQDREQVAYYKEDEKGQILQEGINELGAGCSWLAAATSYSTNNLPMIPFYIYYSMFGFQRIGDLCWAAGDQQARGFLIGGTSGRTTLNGEGLQHEDGHSHIQSLTIPNCISYDPAYAYEVAVIMHDGLERMYGEKQENVYYYITTLNENYHMPAMPEGAEEGIRKGIYKLETIEGSKGKVQLLGSGSILRHVREAAEILAKDYGVGSDVYSVTSFTELARDGQDCERWNMLHPLETPRVPYIAQVMNDAPAVASTDYMKLFAEQVRTYVPADDYRVLGTDGFGRSDSRENLRHHFEVDASYVVVAALGELAKRGEIDKKVVADAIAKFNIDADKVNPRLA
AceF[서열번호 178]:
MAIEIKVPDIGADEVEITEILVKVGDKVEAEQSLITVEGDKASMEVPSPQAGIVKEIKVSVGDKTQTGALIMIFDSADGAADAAPAQAEEKKEAAPAAAPAAAAAKDVNVPDIGSDEVEVTEILVKVGDKVEAEQSLITVEGDKASMEVPAPFAGTVKEIKVNVGDKVSTGSLIMVFEVAGEAGAAAPAAKQEAAPAAAPAPAAGVKEVNVPDIGGDEVEVTEVMVKVGDKVAAEQSLITVEGDKASMEVPAPFAGVVKELKVNVGDKVKTGSLIMIFEVEGAAPAAAPAKQEAAAPAPAAKAEAPAAAPAAKAEGKSEFAENDAYVHATPLIRRLAREFGVNLAKVKGTGRKGRILREDVQAYVKEAIKRAEAAPAATGGGIPGMLPWPKVDFSKFGEIEEVELGRIQKISGANLSRNWVMIPHVTHFDKTDITELEAFRKQQNEEAAKRKLDVKITPVVFIMKAVAAALEQMPRFNSSLSEDGQRLTLKKYINIGVAVDTPNGLVVPVFKDVNKKGIIELSRELMTISKKARDGKLTAGEMQGGCFTISSIGGLGTTHFAPIVNAPEVAILGVSKSAMEPVWNGKEFVPRLMLPISLSFDHRVIDGADGARFITIINNTLSDIRRLVM
Lpd[서열번호 179]:
MSTEIKTQVVVLGAGPAGYSAAFRCADLGLETVIVERYNTLGGVCLNVGCIPSKALLHVAKVIEEAKALAEHGIVFGEPKTDIDKIRTWKEKVINQLTGGLAGMAKGRKVKVVNGLGKFTGANTLEVEGENGKTVINFDNAIIAAGSRPIQLPFIPHEDPRIWDSTDALELKEVPERLLVMGGGIIGLEMGTVYHALGSQIDVVEMFDQVIPAADKDIVKVFTKRISKKFNLMLETKVTAVEAKEDGIYVTMEGKKAPAEPQRYDAVLVAIGRVPNGKNLDAGKAGVEVDDRGFIRVDKQLRTNVPHIFAIGDIVGQPMLAHKGVHEGHVAAEVIAGKKHYFDPKVIPSIAYTEPEVAWVGLTEKEAKEKGISYETATFPWAASGRAIASDCADGMTKLIFDKESHRVIGGAIVGTNGGELLGEIGLAIEMGCDAEDIALTIHAHPTLHESVGLAAEVFEGSITDLPNPKAKKK
AccBC[서열번호 180]:
VSVETRKITKVLVANRGEIAIRVFRAARDEGIGSVAVYAEPDADAPFVSYADEAFALGGQTSAESYLVIDKIIDAARKSGADAIHPGYGFLAENADFAEAVINEGLIWIGPSPESIRSLGDKVTARHIADTAKAPMAPGTKEPVKDAAEVVAFAEEFGLPIAIKAAFGGGGRGMKVAYKMEEVADLFESATREATAAFGRGECFVERYLDKARHVEAQVIADKHGNVVVAGTRDCSLQRRFQKLVEEAPAPFLTDDQRERLHSSAKAICKEAGYYGAGTVEYLVGSDGLISFLEVNTRLQVEHPVTEETTGIDLVREMFRIAEGHELSIKEDPAPRGHAFEFRINGEDAGSNFMPAPGKITSYREPQGPGVRMDSGVVEGSEISGQFDSMLAKLIVWGDTREQALQRSRRALAEYVVEGMPTVIPFHQHIVENPAFVGNDEGFEIYTKWIEEVWDNPIAPYVDASELDEDEDKTPAQKVVVEINGRRVEVALPGDLALGGTAGPKKKAKKRRAGGAKAGVSGDAVAAPMQGTVIKVNVEEGAEVNEGDTVVVLEAMKMENPVKAHKSGTVTGLTVAAGEGVNKGVVLLEIK
AccD1[서열번호 181]:
MTISSPLIDVANLPDINTTAGKIADLKARRAEAHFPMGEKAVEKVHAAGRLTARERLDYLLDEGSFIETDQLARHRTTAFGLGAKRPATDGIVTGWGTIDGREVCIFSQDGTVFGGALGEVYGEKMIKIMELAIDTGRPLIGLYEGAGARIQDGAVSLDFISQTFYQNIQASGVIPQISVIMGACAGGNAYGPALTDFVVMVDKTSKMFVTGPDVIKTVTGEEITQEELGGATTHMVTAGNSHYTAATDEEALDWVQDLVSFLPSNNRSYTPLEDFDEEEGGVEENITADDLKLDEIIPDSATVPYDVRDVIECLTDDGEYLEIQADRAENVVIAFGRIEGQSVGFVANQPTQFAGCLDIDSSEKAARFVRTCDAFNIPIVMLVDVPGFLPGAGQEYGGILRRGAKLLYAYGEATVPKITVTMRKAYGGAYCVMGSKGLGSDINLAWPTAQIAVMGAAGAVGFIYRKELMAADAKGLDTVALAKSFEREYEDHMLNPYHAAERGLIDAVILPSETRGQISRNLRLLKHKNVTRPARKHGNMPL
본 발명은 또한, 하기 단계를 포함하는 6-메틸살리산산의 제조방법에 관한 것이다.
(a) 상기 재조합 미생물을 배양하는 단계; 및
(b) 상기 배양된 미생물로부터 6-메틸살리산산을 회수하는 단계.
본 발명의 6-메틸살리산산의 제조방법에서는 탄소원으로 1~50g/L의 포도당 또는 1~100g/L의 글리세롤을 첨가하여 재조합 미생물을 배양하는 것을 특징으로 할 수 있다.
본 발명은 또한, 상기 재조합 미생물에 알로에손 신테이즈(aloesone synthase)를 코딩하는 유전자가 추가적으로 도입되거나 그 발현이 증가되어 있는 알로에손 생산용 재조합 미생물에 관한 것으로, 본 발명에서 상기 알로에손 신테이즈는 ALS 또는 PKS3일 수 있으며, 상기 ALS는 Rheum palmatum 유래일 수 있고, 상기 PKS3는 Aloe arborescens 유래일 수 있으나, 상기 알로에손 신테이즈 이외의 알로에손 신테이즈를 본 발명에 적용하는 것도 가능할 것이다.
상기 발현이 야생형에 비해 감소되어 있는 유전자는 pabA인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
상기 알로에손 생산용 재조합 미생물은 글루코오스 6-포스페이트 디하이드로게나아제(Zwf), 말레이트 디하이드로게나아제(Mdh), 포스포글리세레이트 디하이드로게나아제(SerA), 아세틸-코에이 카복실레이즈(AccBC 및 AccD1), 글리세르알데하이드 3-인산 디하이드로지네이즈(GapA), 포스포글리세레이트 카이네이즈(Pgk), 아세틸-코에이 신테타아제(Acs) 및 피루브산 디하이드로지네이즈(AceEF 및 Lpd)로 구성된 군에서 선택된 하나 이상의 효소를 코딩하는 유전자가 추가적으로 도입되거나 그 발현이 증가되어 있는 것을 특징으로 할 수 있다.
상기 Zwf, Mdh, SerA, GapA, Pgk, Acs, AceE, AceF 및 Lpd는 Escherichia coli로부터 유래될 수 있으나, 이에 한정되지는 않는다. AccBC 및 AccD1은 Corynebacterium glutamicum로부터 유래될 수 있으나, 이에 한정되지는 않으며 다른 미생물 유래의 아세틸-코에이 카복실레이즈에 해당하는 효소들로 확장 가능하다.
본 발명은 또한, 하기 단계를 포함하는 알로에손의 제조방법에 관한 것이다.
(a) 상기 재조합 미생물을 배양하는 단계; 및
(b) 상기 배양된 미생물로부터 알로에손을 회수하는 단계.
본 발명의 알로에손 제조방법에서는 탄소원으로 1~50g/L의 포도당 또는 1~100g/L의 글리세롤을 첨가하여 재조합 미생물을 배양하는 것을 특징으로 할 수 있다.
본 발명은 또한, 상기 재조합 미생물에 타이로신 암모니아-라이에이즈(tyrosine ammonia-lyase, TAL), 4-쿠마레이트:코에이 라이게이즈(4-coumarate:CoA ligase, 4CL) 및 스틸벤 신테이즈(stilbene synthase, STS)를 코딩하는 유전자가 추가적으로 도입되거나 그 발현이 증가되어 있는 레스베라트롤 생산용 재조합 미생물에 관한 것으로,
상기 TAL은 Rhodobacter capsulatus, Clitoria ternatea, Fragaria x ananassa, Rhodobacter sphaeroides, Zea mays 또는 Saccharothrix espanaensis 유래일 수 있고,
상기 4CL은 Arabidopsis thaliana, Streptomyces coelicolor, Acetobacterium woodii, Agastache rugose, Avena sativa, Camellia sinensis, Centaurium erythraea, Cephalocereus senilis, Cocos nucifera, Eriobotrya japonica, Erythrina cristagalli, Forsythia sp., Fragaria x ananassa, Glycine max, Gossypium hirsutum, Hibiscus cannabinus, Larix cajanderi, Larix gmelinii, Larix kaempferi, Larix kamtschatica, Larix sibirica, Larix sukaczewii, Lithospermum erythrorhizon, Lolium perenne, Lonicera japonica, Metasequoia glyptostroboides, Nicotiana tabacum, Ocimum basilicum, Ocimum tenuiflorum, Oryza sativa, Paulownia tomentosa, Petroselinum crispum, Phyllostachys bambusoides, Physcomitrella patens, Picea abies, Pinus radiate, Pinus taeda, Pisum sativum, Platycladus orientalis, Polyporus hispidus, Populus tomentosa, Populus tremuloides, Populus x canadensis, Prunus avium, Pueraria montana, Robinia pseudoacacia, Ruta graveolens, Saccharomyces cerevisiae, Salix babylonica, Solanum lycopersicum, Solanum tuberosum, Sorbus aucuparia, Triticum aestivum 또는 Vitis vinifera 유래일 수 있으며,
상기 STS 는 Arachis hypogaea, Pinus densiflora, Pinus massoniana, Pinus strobus, Polygonum cuspidatum, Psilotum nudum 또는 Vitis vinifera 유래일 수 있으나, 이에 한정되지는 않는다.
상기 4-쿠마레이트:코에이 라이게이즈는 서열번호 128로 표시되는 아미노산 서열에서 I250L/N404K/I461V으로 아미노산이 변이된 변이 효소 또는 서열번호 131로 표시되는 아미노산 서열에서 A294G/A318G로 아미노산이 변이된 변이 효소인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
상기 발현이 야생형에 비해 감소되어 있는 유전자는 pabA, yfiD, mqo, xapR, purB, fabH, fabF, ytcY, argC, nudD, araA, fadR, cytR, fmt 및 pyrF로 구성된 군에서 선택된 하나 이상인 것을 특징으로 할 수 있으나, 이에 한정되지는 않는다.
본 발명은 또한, 하기 단계를 포함하는 레스베라트롤의 제조방법에 관한 것이다.
(a) 상기 재조합 미생물을 배양하는 단계; 및
(b) 상기 배양된 미생물로부터 레스베라트롤을 회수하는 단계
본 발명의 라스베라트롤 제조방법에서는 탄소원으로 1~50g/L의 포도당 또는 1~100g/L의 글리세롤을 첨가하여 재조합 미생물을 배양하는 것을 특징으로 할 수 있다.
본 발명은 또한, 상기 재조합 미생물에 타이로신 암모니아-라이에이즈(tyrosine ammonia-lyase, TAL), 4-쿠마레이트:코에이 라이게이즈(4-coumarate:CoA ligase, 4CL), 찰콘 신테이즈(chalcone synthase, CHS) 및 찰콘 아이소머레이즈(chalcone isomerase, CHI)를 코딩하는 유전자가 추가적으로 도입되거나 그 발현이 증가되어 있는 나린제닌 생산용 재조합 미생물에 관한 것이다.
상기 TAL은 Rhodobacter capsulatus, Clitoria ternatea, Fragaria x ananassa, Rhodobacter sphaeroides, Zea mays 또는 Saccharothrix espanaensis 유래일 수 있고,
상기 4CL은 Arabidopsis thaliana, Streptomyces coelicolor, Acetobacterium woodii, Agastache rugose, Avena sativa, Camellia sinensis, Centaurium erythraea, Cephalocereus senilis, Cocos nucifera, Eriobotrya japonica, Erythrina cristagalli, Forsythia sp., Fragaria x ananassa, Glycine max, Gossypium hirsutum, Hibiscus cannabinus, Larix cajanderi, Larix gmelinii, Larix kaempferi, Larix kamtschatica, Larix sibirica, Larix sukaczewii, Lithospermum erythrorhizon, Lolium perenne, Lonicera japonica, Metasequoia glyptostroboides, Nicotiana tabacum, Ocimum basilicum, Ocimum tenuiflorum, Oryza sativa, Paulownia tomentosa, Petroselinum crispum, Phyllostachys bambusoides, Physcomitrella patens, Picea abies, Pinus radiate, Pinus taeda, Pisum sativum, Platycladus orientalis, Polyporus hispidus, Populus tomentosa, Populus tremuloides, Populus x canadensis, Prunus avium, Pueraria montana, Robinia pseudoacacia, Ruta graveolens, Saccharomyces cerevisiae, Salix babylonica, Solanum lycopersicum, Solanum tuberosum, Sorbus aucuparia, Triticum aestivum 또는 Vitis vinifera 유래일 수 있으며,
상기 CHS는 Freesia hybrid cultivar, Medicago sativa, Physcomitrella patens, Plagiochasma appendiculatum, Triticum aestivum, Vitis vinifera, Citrus sinensis, Arabidopsis thaliana, Avena sativa, Daucus carota, Fagopyrum esculentum, Glycine max, Glycyrrhiza echinata, Humulus lupulus, Hypericum androsaemum, Petroselinum crispum, Physcomitrella patens, Rubus idaeus, Scutellaria baicalensis, Xanthisma gracile, Cosmos sulphureus, Gerbera hybrid cultivar, Hordeum vulgare, Juglans sp., Phaseolus vulgaris, Pueraria montana, Secale cereal, Silene sp., Sinapis alba, Spinacia oleracea, Stellaria longipes, Tulipa hybrid cultivar, Verbena sp., 또는 Petunia x hybrida 유래일 수 있고,
상기 CHI는 Perilla frutescens, Ginkgo biloba, Trigonella foenumgraecum, Medicago sativa, Scutellaria baicalensis, Glycine max, Cephalocereus senilis, Citrus sinensis, Glycyrrhiza echinata, Glycyrrhiza uralensis, Lilium candidum, Morella rubra, Petunia x hybrid, Phaseolus vulgaris, Soja hispida, Tulipa hybrid cultivar, Arabidopsis thaliana 또는 Nicotiana tabacum 유래일 수 있으나, 이에 한정되지는 않는다.
상기 4-쿠마레이트:코에이 라이게이즈는 서열번호 128로 표시되는 아미노산 서열에서 I250L/N404K/I461V으로 아미노산이 변이된 변이 효소인 것을 특징으로할 수 있으나, 이에 한정되지는 않는다.
상기 발현이 야생형에 비해 감소되어 있는 유전자는 fadR, hycIxapR로 구성된 군에서 선택된 하나 이상인 것을 특징으로 할 수 있다.
본 발명은 또한, 하기 단계를 포함하는 나린제닌의 제조방법에 관한 것이다.
(a) 상기 재조합 미생물을 배양하는 단계; 및
(b) 상기 배양된 미생물로부터 나린제닌을 회수하는 단계.
본 발명의 나린제린 제조방법에서는 탄소원으로 1~50g/L의 포도당 또는 1~100g/L의 글리세롤을 첨가하여 재조합 미생물을 배양하는 것을 특징으로 할 수 있다.
본 발명에서 유전자의 "조절"은 유전자의 결실(deletion), 발현저해, 발현증진, 넉다운(knockdown), 프로모터 교체, 조절기작의 도입 등의 기법으로 유전자의 발현을 유발한 것까지 모두 포함하며, 생합성 경로에 존재하는 효소들 중 1개 이상을 진화(evolution) 시키거나 변이(mutation) 시키는 것을 포괄하는 개념이다.
본 발명에서 "넉다운"은 유전자의 발현을 완전히 차단시키는 "넉-아웃"과는 달리, 유전자의 발현양을 상당량 줄여 유전자의 기능이 감소되도록 하는 것을 의미한다. 이는 유전자의 전사체 수준에서 조절될 수도 있고, 단백질 수준에서 조절될 수도 있다. 그러나, 본 발명은 해당 경로에 관여하는 효소를 코딩하는 유전자의 발현이 억제 또는 감소시키는데 의의가 있으므로, "넉다운" 및 "넉-아웃" 중 어느 것을 사용하여도 소기의 목적을 달성할 수 있을 것이다.
본 발명에서 "벡터(vector)"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 "플라스미드(plasmid)" 및 "벡터(vector)"는 때로 상호 교환적으로 사용된다. 본 발명의 목적상, 플라스미드 벡터를 이용하는 게 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수 개에서 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단 부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다. 라이게이션 후에, 벡터는 적절한 숙주세포로 형질전환되어야 한다. 형질전환은 칼슘 클로라이드 방법 또는 전기천공법(electroporation) (Neumann, et al., EMBO J., 1:841, 1982) 등을 사용해서 용이하게 달성될 수 있다.
상기 벡터의 프로모터는 구성적 또는 유도성일 수 있으며, 본 발명의 효과를 위해 추가적으로 변형될 수 있다. 또한 발현벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택성 마커를 포함하고, 복제 가능한 발현벡터인 경우 복제 기원(Ori)을 포함한다. 벡터는 자가 복제하거나 숙주 게놈 DNA에 통합될 수 있다. 바람직하게는 벡터 내로 삽입되어 전달된 유전자가 숙주세포의 게놈 내로 비가역적으로 융합되어 세포 내에서 유전자 발현이 장기간 안정적으로 지속되도록 하는 것이 바람직하다.
염기서열은 다른 핵산 서열과 기능적 관계로 배치될 때 "작동가능하게 연결(operably linked)"된다. 이것은 적절한 분자(예를 들면, 전사 활성화 단백질)가 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열(pre-sequence) 또는 분비 리더 (leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능 하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, "작동가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는 것을 의미한다. 그러나, 인핸서(enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용한다.
당업계에 주지된 바와 같이, 숙주세포에서 형질전환 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및/또는 해독 발현 조절 서열에 작동가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및/또는 해당 유전자는 세균 선택 마커 및 복제 개시점(replication origin)을 같이 포함하고 있는 하나의 재조합벡터 내에 포함되게 된다. 숙주세포가 진핵세포인 경우에는, 재조합벡터는 진핵 발현숙주 내에서 유용한 발현 마커를 더 포함하여야만 한다.
상술한 재조합 벡터에 의해 형질전환된 숙주 세포는 본 발명의 또 다른 측면을 구성한다. 본원 명세서에 사용된 용어 "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체 외 인자로서 또는 염색체 통합완성에 의해 복제 가능하게 되는 것을 의미한다.
물론 모든 벡터가 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다.
아울러, 본 발명에서 도입된 유전자는 숙주세포의 게놈에 도입되어 염색체 상 인자로서 존재하는 것을 특징으로 할 수 있다. 본 발명이 속하는 기술분야의 당업자에게 있어 상기 유전자를 숙주세포의 게놈 염색체에 삽입하여서도 상기와 같이 재조합 벡터를 숙주세포에 도입한 경우와 동일한 효과를 가질 것은 자명하다 할 것이다.
실시예
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1. 타입 III 폴리케타이드 합성 효소 기반 말로닐-코에이 바이오센서 구축
1.1. 다양한 타입 III 폴리케타이드 합성 효소 성능 테스트
본 실시예 및 하기 실시예에서 사용한 제한효소는 New England Labs (미국) 또는 Enzynomics (대한민국), PCR 중합효소는 Biofact (대한민국)에서 구입하였다. 이외의 것에 대해서는 별도로 표기하였다. 또한, 본 실시예 및 하기 실시예들에서 도입된 외래 유전자들은 표 1에 그 정보 및 서열이 수록되어 있는 데이터베이스 일련번호를 정리하였다. 또한, 별도의 기재가 없는 경우 클로닝에 사용된 대장균 균주는 DH5α 균주이며, 이는 LB 배지 (per liter: 10g tryptone, 5g yeast extract 및 10g NaCl) 또는 LB 아가 플레이트 (1/5%, v/v) 상에서 배양되었다. 또한, 필요할 경우, 적절한 농도의 항생제(50μg/mL kanamycin, 100μg/mL ampicillin 및/또는 100μg/mL spectinomycin)가 첨가되었다.
본 발명에서는 타입 III 폴리케타이드 합성 효소 RppA를 활용하여 다섯 개의 말로닐-코에이 분자로부터 붉은 색을 띠는 플라비올린(flaviolin)을 생산하여, 이를 세포 내 말로닐-코에이 농도의 지시물질로 사용하고자 하였다 (도 1). 이를 위하여 우선 다양한 타입 III 폴리케타이드 합성 효소들의 성능을 비교하고 테스트하고자 하였다. 총 5종의 방선균 (Streptomyces griseus, Streptomyces coelicolor, Streptomyces avermitilis, Saccharopolyspora erythraea, Streptomyces aculeolatus)으로부터 타입 III 폴리케타이드 합성 효소를 코딩하는 rppA 유전자를 클로닝하였고, 각각의 유전자를 대장균 BL21(DE3) 균주에 형질전환시킨 후 제작된 균주를 10 g/L 포도당이 첨가된 M9 최소배지를 포함하는 플라스크에 접종 후 초기 exponential phase에서 0.5 mM isopropyl-β-D-1-thiogalactopyranoside (IPTG) 처리 후, 48시간 동안 배양하여 플라비올린의 생산을 관찰하였다. 이 때 S. griseus 기반의 효소 Sgr_RppA를 발현시킨 균주로부터 가장 높은 플라비올린 생산이 관찰되었다 (25.7 mg/L; 도 2A). 각각 생성된 플라스미드는 pET-30a(+) (Novagen)를 기반으로 하고 있으며, pET-Sgr_rppA, pET-Sco_rppA, pET-Sma_rppA, pET-Sen_rppA, pET-Sac_rppA로 명명되었다. pET-Sgr_rppA의 구축을 위하여 S. griseus의 게놈 DNA를 템플릿으로 하여 [서열번호1/서열번호2]의 프라이머 쌍을 활용하여 rppA 유전자를 PCR 증폭하였다. 이는 pET-30a(+) 플라스미드의 EcoRI과 BamHI 사이트를 통하여 Gibson assembly로 클로닝되었다 (Gibson DG, et al. (2009), Nature Methods 6:343-345). 다른 플라스미드들 또한 동일한 방법을 통하여 제작되었다. M9 최소배지는 1 L 당 다음과 같은 성분들을 포함하고 있다: 12.8 g Na2HPO4-·7H2O, 3 g KH2PO4, 0.5 g NaCl, 1 g NH4Cl, 2 mM MgSO4, 0.1 mM CaCl2.
[서열번호1] 5'- CTTTAAGAAGGAGATATACATATGGCGACCCTGTGCCGACC-3'
[서열번호2] 5'- CTTGTCGACGGAGCTCGAATTCATTAGCCGGACAGCGCAACGC-3'
Figure PCTKR2018010087-appb-T000001
Figure PCTKR2018010087-appb-I000001
도 1A에서 말로닐-코에이는 RppA 효소에 의해 THN으로 전환되며, 이는 곧이어 자발적인 산화 반응을 통하여 플라비올린으로 전환된다. 이 때 WhiE_ORFIII가 이 마지막 스텝에 관여를 한다는 보고가 있었으므로 (Austin MB, et al. (2004), J Biol Chem 279:45162-45174.), 본 발명에서는 해당 유전자를 pET-30a(+)에 추가적으로 클로닝 하였으나, 이는 오히려 감소된 플라비올린 생산능을 야기시켰고, 따라서 rppA 단일 유전자가 플라비올린 생산에 충분하다는 사실을 증명하였다. 생산된 플라비올린은 LC-MS, MS/MS를 통하여 확인하였다(도 2B). 이후, T7 프로모터 기반의 기존 시스템에서 벗어나 모든 대장균 균주에서 적용이 가능하도록 tac 프로모터 기반의 플라스미드로 플랫폼을 이전하고자 하였다. 이를 위하여 우선적으로 pCDFDuet-1 (Novagen) 플라스미드 기반의 pTacCDFS 플라스미드가 구축되었는데, 이는 CDF 복제원점을 지니고 spectinomycin 항생제 내성을 지니며 tac 프로모터 기반 유전자 발현 카세트를 지니는 플라스미드이다. 이를 위해 pTac15K 플라스미드 (Lee SY, et al. (2008), US patent 20110269183)를 템플릿으로 하여 [서열번호3/서열번호4] 프라이머를 활용하여 tac 프로모터를 포함한 DNA 조각을 PCR 증폭하였고, pCDFDuet-1 플라스미드를 템플릿으로 하여 [서열번호5/서열번호6] 프라이머를 활용하여 해당 플라스미드를 선형화하였다. 이렇게 생산된 두 DNA 조각들은 Gibson assembly를 통하여 합쳐져 pTacCDFS 플라스미드가 완성되었다. 추후 활용을 위하여 pTrcCDFS 플라스미드 또한 제작되었는데, 이는 trc 프로모터를 포함하는 것을 제외하곤 pTacCDFS 플라스미드와 동일한 것으로써 제작 과정에서 역시 pTrc99A 플라스미드 (Lee SY, et al. (2008), US patent 20110269183)를 템플릿으로 trc 프로모터를 포함한 DNA 조각을 PCR 증폭하였다는 것 외에 다른 모든 방법은 동일하였다. 그 후, pTacCDFS 플라스미드 기반의 rppA 발현 플라스미드 pTac-Sgr_rppA를 제작하기 위하여 다음과 같은 방법이 사용되었다. 우선 S. griseus 게놈 DNA로부터 rppA 유전자가 [서열번호7/서열번호8] 프라이머를 활용하여 PCR 증폭되었고, pTacCDFS 플라스미드는 [서열번호9/서열번호10] 프라이머를 활용하여 선형화되었다. 이렇게 생성된 두 DNA 조각들은 Gibson assembly를 활용하여 합쳐져, pTac-Sgr_rppA 플라스미드가 제작되었다. 나아가, rppA의 최적화된 발현을 위하여 5'untranslated region (5'UTR)의 최적화를 진행하였다. 5'UTR DNA 서열은 기존 보고된 UTR designer (url: https://sbi.postech.ac.kr/utr_designer/)를 활용하여 디자인되었다 (Seo SW, et al. (2013), Metab Eng 15:67-74). 해당 플라스미드인 pTac-5'UTR-Sgr_rppA의 제작을 위하여 pTac-Sgr_rppA를 템플릿으로 하여 [서열번호9/서열번호11] 프라이머를 활용하여 inverse PCR이 수행되었다. 이렇게 생성된 선형화된 플라스미드는 DpnI을 통하여 템플릿이 제거되었고, T4 polynucleotide kinase (PNK) (Enzynomics, 대한민국)과 T4 ligase (Elpis Biotech, 대한민국) 처리를 통하여 라이게이션되었다. 이렇게 생성된 플라스미드는 대장균 BL21(DE3) 균주에 도입되어 M9 최소배지에서 플라스크 배양되었고, 17.8 mg/L의 플라비올린을 생산하였다 (도 2C).
[서열번호3] 5'- CGACTCCTGCATTAGGAAATGACTGCACGGTGCACCAATG-3'
[서열번호4] 5'- GCGTTTCACTTCTGAGTTCG-3'
[서열번호5] 5'- CGAACTCAGAAGTGAAACGCCTGAAACCTCAGGCATTTGAG-3'
[서열번호6] 5'- ATTTCCTAATGCAGGAGTCG-3'
[서열번호7] 5'- CAATTTCACACAGGAAACAGAATGGCGACCCTGTGCCGACC-3'
[서열번호8] 5'- CTCTAGAGGATCCCCGGGTACCATTAGCCGGACAGCGCAACGC-3'
[서열번호9] 5'- GGTACCCGGGGATCCTCTAGAG-3'
[서열번호10] 5'- TCTGTTTCCTGTGTGAAATTG-3'
[서열번호11] 5'- GATGCTCCTTTCTTGTTATTGAAATTGTTATCCGCTCACAATTC-3'
1.2. 타입 III 폴리케타이드 합성 효소 기반 말로닐-코에이 바이오센서의 활용성 규명
S. griseus RppA에 기반한 말로닐-코에이 바이오센서를 구축한 후, 이의 활용성을 규명하고자 다음과 같은 실험을 수행하였다. 우선, RppA 말로닐-코에이 바이오센서의 시그널은 세포 배양 상층액의 340 nm에서의 흡광도로 정의되었다 (도 3D). 바이오센서의 성질을 규명할 때 타겟이 되는 화합물을 농도별로 첨가하였을 때 증가된 시그널이 발생되는지를 살펴보게 되는데, 말로닐-코에이의 경우 세포막을 통과하지 못하는 물질이므로 배지에 첨가해주는 것은 무의미하므로, 지방산 생합성 경로를 막는다고 보고된 세룰레닌(Sigma-aldrich, 미국)을 활용하여 이를 간접적으로 규명하기로 하였다(Omura S (1976), Bacteriol Rev 40:681-697.). 세룰레닌은 지방산 생합성 경로를 막으므로, 이는 지방산의 전구체인 말로닐-코에이의 축적으로 이어진다. 따라서 기존 연구를 통해 세룰레닌의 농도별 첨가에 따른 대장균 내부의 말로닐-코에이의 농도가 측정되었다 (Xu P, Li L, Zhang F, Stephanopoulos G, Koffas M (2014), Proc Natl Acad Sci U S A 111:11299-11304). 플라스미드 pTac-5'UTR-Sgr_rppA를 지니는 대장균 BL21(DE3) 균주는 14mL disposable Falcon round-bottom tube에 담긴 3mL의 LB 배지에 접종되었다. 그 후 섭씨 30도, 220 r.p.m의 배양기에서 16 시간동안 배양된 후 다른 14mL disposable Falcon round-bottom tube에 담긴 3mL의 수정된 R/2 배지 (pH 6.8) 에 접종되었다. 수정된 R/2 배지는 1 L 당 다음의 성분들을 포함하도록 제작되었다: 3g yeast extract, 6.75g KH2PO4, 2g (NH4)2HPO4, 0.8g MgSO7H2O, 3g (NH4)2SO4, 0.85g citric acid, 5mL trace metal solution [1L의 0.1M HCl 당: 10g FeSO7H2O, 2.25g ZnSO7H2O, 0.58g MnSO5H2O, 1g CuSO5H2O, 0.1g (NH4)6Mo7O24·4H2O, 0.02g Na2B4O10H2O, 2g CaCl2H2O]. 여기에 20g/L 포도당, 100μg/mL spectinomycin, 0.2 mM IPTG, 적절한 농도의 세룰레닌이 첨가되었다. 첨가된 세룰레닌의 농도는 다음과 같다: 0, 5, 10, 15, 20, 25, 50, 100 μM. 접종된 세포들은 섭씨 30도, 220 r.p.m.의 배양기에서 16 시간동안 배양되었으며, 이후 세포의 성장 (OD600)과 배양 상층액의 340 nm에서의 흡광도를 측정하여 도 2D와 같은 결과를 얻었다. 이 때, RppA를 발현하는 균주는 발현하지 않는 균주와 비교하였을 때 세룰레닌의 농도가 증가함에 따라 확연히 증가하는 표준화된 시그널을 발생시킨다는 사실을 알 수 있었다. 도 3A에서 확인되는 바와 같이 증가하는 세룰레닌 농도에 따라 플라비올린의 표준화된 생산량 또한 증가하는 사실을 확인할 수 있었고, 이는 눈으로도 관찰할 수 있었다 (도 3B). 또한, pTac-5'UTR-Sgr_rppA 플라스미드를 서로 다른 16 종의 대장균 균주 (표 2)에 도입하였을 때, 모든 균주들로부터 플라비올린이 생산된다는 사실을 입증하여, 본 발명에서 제시하는 말로닐-코에이 바이오센서는 모든 대장균 균주에 적용 가능하다는 사실을 증명하였다(도 3C).
Figure PCTKR2018010087-appb-T000002
또한 S. griseus RppA에 기반한 말로닐-코에이 바이오센서 외에 다른 타입 III 폴리케타이드 또한 말로닐-코에이 바이오센서로 활용이 가능하다는 점을 증명하기 위하여 3개의 타입 III 폴리케타이드 생합성 효소들을 테스트하고자 하였다. 이를 위하여 알로에 아르보레센스 타입 III 폴리케타이드 합성 효소 (octaketide synthase, OKS)[서열번호 103], 알로에 아르보레센스 타입 III 폴리케타이드 합성 효소 (octaketide synthase 2, PKS4)[서열번호 105], 알로에 아르보레센스 타입 III 폴리케타이드 합성 효소 (octaketide synthase 3, PKS5)[서열번호 106]가 테스트 되었고, 각 효소를 코딩하는 유전자를 보유하는 플라스미드들인)pET-AaOKS, pET-AaPKS4 및 pET-AaPKS5를 하기와 같이 구축하였다. 우선 AaOKS의 경우, 합성된 AaOKS 유전자 (Integrated DNA Technologies, Inc. 미국)를 템플릿으로 하여 [서열번호137], [서열번호138]을 활용하여 PCR 증폭한 후, pET-30a(+) 플라스미드에 NdeI과 EcoRI 사이트를 통하여 삽입되었다. 다른 플라스미드들의 경우 역시 동일한 방법으로 제작되었는데, 이 때, AaPKS4의 경우 [서열번호141/서열번호142], AaPKS5의 경우 [서열번호143/서열번호144]를 통하여 증폭되었다.
[서열번호135] 5'- CTTTAAGAAGGAGATATACATATGAGTTCACTCTCCAACTCTC-3'
[서열번호136] 5'- CTTGTCGACGGAGCTCGAATTCATTACATGAGAGGCAGGCTGTG-3'
[서열번호137] 5'- CTTTAAGAAGGAGATATACATATGAGTTCACTCTCCAACGCTTC-3'
[서열번호138] 5'- CTTGTCGACGGAGCTCGAATTCATTACATGAGAGGCAGGCTGTG-3'
[서열번호139] 5'- CTTTAAGAAGGAGATATACATATGGGTTCACTCTCCGACTCTAC-3'
[서열번호140] 5'- CTTGTCGACGGAGCTCGAATTCATTACACAGGAGGCAGGCTATG-3'
[서열번호141] 5'-CTTTAAGAAGGAGATATACATATGGGTTCACTCTCCAACTAC-3'
[서열번호142] 5'- CTTGTCGACGGAGCTCGAATTCATTACACAGGGGGCAGGCTG-3'
[서열번호143] 5'- CTTTAAGAAGGAGATATACATATGGGTTCGATCGCCGAG-3'
[서열번호144] 5'- CTTGTCGACGGAGCTCGAATTCATTAGACAGGAGGCAGGCTG-3'
[서열번호145] 5'-GCTCACCATCATTGGGCTCCGTGGCCCCAATG-3'
[서열번호146] 5'- CATTGGGGCCACGGAGCCCAATGATGGTGAGC-3'
상기 구축된 플라스미드들을 각각 포함하고 있는 대장균 BL21(DE3) 균주를 배양하였을 때, AaOKS, AaPKS4, AaPKS5를 발현시키는 균주들의 배양액의 색 변화를 관찰할 수 있었다. 따라서 LC-MS 분석을 통하여 색 변화에 기여한 폴리케타이드를 분석하였고 (도 4A), 상기 명시된 바와 같이 세룰레닌을 이용한 말로닐-코에이 적정 실험을 수행하여 세포 내의 증가된 말로닐-코에이 농도에 따라 각 균주가 나타내는 시그널이 증가한다는 것을 증명하였다 (도 4, 도 5). 이 때, 시그널이란 배양액 상층액의 300 nm에서의 흡광도를 나타낸다 (도 4C). 따라서 본 발명에서는 RppA 효소뿐만 아니라 말로닐-코에이로부터 색을 띠는 폴리케타이드 계 화합물을 생산할 수 있는 다른 모든 타입 III 폴리케타이드 생합성 효소들 또한 말로닐-코에이 바이오센서로 활용이 가능하다는 것을 증명하였다.
하기 실시예들에서는 상기 타입 III 폴리케타이드 생합성 효소 중 RppA를 이용하여 추가실험을 진행하였다.
1.3. 산업적으로 유용한 다른 균주로의 확장성 규명
위 실시예로부터 대장균에서의 활용성을 증명한 다음, 본 RppA 말로닐-코에이 바이오센서의 다른 산업적으로 유용한 균주로의 확장성을 규명하였다. 이를 위하여 예시로 드는 균주는 대장균에 이어 대표적인 그람-음성균인 Pseudomonas putida와 대표적인 그람-양성균인 Corynebacterium glutamicumRhodococcus opacus이다. 우선 P. putida 균주에서 플라비올린을 생산하기 위한 플라스미드를 구축하였는데, 이 때 기반이 되는 플라스미드는 pBBR1MCS2를 활용하였다 (Kovach ME, et al. (1995), Gene 166:175-176). 우선 pBBR1MCS2 플라스미드는 [서열번호12/서열번호13] 프라이머를 이용하여 선형화되었다. 그 후 pTac-Sgr_rppA 플라스미드를 템플릿으로 활용하여 [서열번호14/서열번호15] 프라이머를 활용하여 tac 프로모터를 포함한 rppA 발현 카세트가 PCR 증폭되었다. 이렇게 얻어진 두 DNA 조각은 Gibson assembly를 통하여 pBBR1-rppA 플라스미드로 제작되었다. 나아가, N-말단에 poly His-tag을 붙이는 것이 효소 발현에, 그리고 나아가 플라비올린 생산에 어떠한 영향을 끼치는지 관찰하기 위하여 우선적으로 pTac-His-Sgr_rppA를 구축하였다. 이 때, [서열번호9/서열번호10] 프라이머와 PCR을 이용하여 선형화된 pTacCDFS 플라스미드와 S. griseus 게놈 DNA로부터 [서열번호16/서열번호8]을 이용하여 PCR 증폭된 His-tag이 부착된 rppA 유전자는 Gibson assembly를 이용하여 하나의 플라스미드(pTac-His-Sgr_rppA)로 합쳐졌다. 이렇게 제작된 플라스미드는 다시 [서열번호14/서열번호15]를 활용하여 PCR 증폭되었고, 상기 선형화된 pBBR1MCS2 플라스미드와 Gibson assembly를 이용하여 합쳐져, pBBR1-His-rppA 플라스미드가 구축되었다. 이때, pBBR1-rppA와 pBBR1-His-rppA 플라스미드를 각각 P. putida 균주에 형질전환된 후, 해당 균주들을 5mL LB 배지가 든 테스트 튜브에 접종한 후, 18 시간동안 섭씨 30도, 220 r.p.m.에서 배양하였다. 그 후, 5 mL LB에 0.8 g/L MgSO7H2O, 10 g/L glucose, 그리고 항생제를 첨가한 후, 계대 배양을 실시하였고, 24 시간동안 동일 조건에서 배양 후 샘플링을 진행하였다. 그 결과, pBBR1-rppA 플라스미드를 지니는 균주에서 더 많은 양의 플라비올린이 생산되었다 (44.7 mg/L; 도 6A). 따라서 이렇게 선별된 P. putida pBBR1-rppA 균주를 이용하여 상기 실시예 1.2와 동일하게 세룰레닌을 활용한 말로닐-코에이 바이오센서로써의 성질 규명을 진행한 결과, 해당 균주에서 역시 증가하는 세룰레닌 농도에 따라 표준화된 시그널과 표준화된 플라비올린 생산량이 증가하는 것을 관찰할 수 있었다 (도 6B, 6C). 이 때, 계대 배양은 2mL의 MR-MOPS 배지에 20g/L 포도당, 25 μg/mL kanamycin, 0.5mM IPTG, 적절한 농도의 세룰레닌이 첨가된 상태에서 수행되었고, MR-MOPS 배지 (pH 7.0)의 조성은 1L 당 다음과 같은 성분을 포함하고 있다: 6.67g KH2PO4, 4g (NH4)2HPO4, 0.8 g citric acid, 5mL trace metal solution, 20.09g MOPS (3-(N-morpholino)propanesulfonic acid), 0.8g/L MgSO7H2O. 따라서, RppA 말로닐-코에이 바이오센서가 P. putida에서 성공적으로 작동함을 증명하였다.
[서열번호12] 5'- CGAACTCAGAAGTGAAACGCTGCCTAATGAGTGAGCTAAC -3'
[서열번호13] 5'- CATTGGTGCACCGTGCAGTCAAAATTCGCGTTAAATTTTTG-3'
[서열번호14] 5'- GACTGCACGGTGCACCAATG-3'
[서열번호15] 5'- GCGTTTCACTTCTGAGTTCG-3'
[서열번호16] 5'- CAATTTCACACAGGAAACAGAATGCACCATCACCATCACCATGCGACCCTGTGCCGACC-3'
또한, C. glutamicum 균주에 본 바이오센서를 적용하고자 rppA 발현 플라스미드를 제작하고자 하였는데, 이 때 pCES-H36을 기반 플라스미드로 활용하였다 (Yim SS, An SJ, Kang M, Lee J, Jeong KJ (2013), Biotechnol Bioeng 110:2959-2969). 이 때, pCES-H36-GFP 플라스미드를 템플릿으로 하여 [서열번호17/서열번호18] 프라이머를 활용하여 해당 플라스미드를 선형화하였다. tac 프로모터 기반의 rppA 발현 카세트는, pTac-Sgr_rppA를 템플릿으로 하여 [서열번호19/서열번호20] 프라이머를 활용하여 PCR 증폭되었고, tac 프로모터 기반의 N-말단 His-tag 부착 rppA 발현 카세트는, pTac-His-Sgr_rppA를 템플릿으로 하여 [서열번호21/서열번호20] 프라이머를 활용하여 PCR 증폭되었다. 이 두 가지 rppA 발현 카세트는 앞서 선형화된 pCES-H36 플라스미드와 Gibson assembly를 통하여 합쳐셔 pCES-rppA와 pCES-His-rppA 플라스미드가 구축되었다. 이렇게 구축된 플라스미드들은 C. glutamicum 균주에 형질전환 된 후, 5 mL LB 배지에 접종되었다. 섭씨 30도씨, 220 r.p.m.의 배양기에서 18 시간동안 배양된 후, 5 mL LB 배지에서 48 시간 동안 계대배양된 후 샘플링을 진행하였다. 이 때, N 말단의 His-tag가 추가된 rppA 발현 플라스미드 (pCES-His-rppA)를 보유한 균주에서만 3.9 mg/L의 플라비올린이 생산되었다 (도 6D). 따라서 이렇게 선별된 C. glutamicum pCES-His-rppA 균주를 이용하여 상기 실시예 1.2와 동일하게 세룰레닌을 활용한 말로닐-코에이 바이오센서로써의 성질 규명을 진행한 결과, 해당 균주에서 역시 증가하는 세룰레닌 농도에 따라 표준화된 시그널과 표준화된 플라비올린 생산량이 증가하는 것을 관찰할 수 있었다 (도 6E, 6F).
[서열번호17] 5'- CCATTATAATTAGGCCTCGG-3'
[서열번호18] 5'- CCATGCTACTCCTACCAACC-3'
[서열번호19] 5'- GGTTGGTAGGAGTAGCATGGGATCCATGGCGACCCTGTGCCGACC-3'
[서열번호20] 5'- CCGAGGCCTAATTATAATGGATTAGCCGGACAGCGCAACGC-3'
[서열번호21] 5'- GGTTGGTAGGAGTAGCATGGGATCCATGCACCATCACCATCACCATGC-3'
또 다른 예시로써 R. opacus 균주에 본 바이오센서를 적용하기 위해 rppA 발현 플라스미드를 제작하고자 하였는데, 이 때 pCH를 기반 플라스미드로 활용하였다. Acetamide-inducible 프로모터 (G. Roberts et al., FEMS Microbiol. Lett. 222:131-136, 2003)가 활용되었는데, 이는 [서열번호22/서열번호23] 프라이머를 사용하여 PCR 증폭되었다. 또한, S. griseus의 게놈 DNA로부터 rppA 발현 카세트가 [서열번호24/서열번호25] 프라이머를 이용하여, N-말단 His-tag 추가 발현을 위한 rppA 발현 카세트가 [서열번호26/서열번호25] 프라이머를 이용하여 PCR 증폭되었다. 각각의 rppA 발현 카세트, acetamide-inducible 프로모터 DNA 조각, 그리고 PstI으로 선형화된 pCH 플라스미드 모두를 Gibson assembly를 이용하여 합치게 되었고, 이를 통해 두 개의 벡터 pCH-rppA와 pCH-His-rppA가 제작되었다. 이렇게 구축된 플라스미드들은 R. opacus 균주에 형질전환 된 후, 5 mL LB 배지에 접종되었다. 섭씨 30도씨, 220 r.p.m.의 배양기에서 18 시간동안 배양된 후, 5 mL LB 배지에서 48 시간 동안 계대배양된 후 샘플링을 진행하였다. 이 때, pCH-rppA를 보유한 균주에서만 플라비올린의 붉은 색이 나타남을 알 수 있었다 (도 6G).
[서열번호22] 5'- CTTGATCAGCTTGCATGCCTGCAGAAGCTTTCTAGCAGAAATAATTC-3'
[서열번호23] 5'- GTGCATGTGGACTCCCTTTCTCTTATC-3'
[서열번호24] 5'- GATAAGAGAAAGGGAGTCCACATGGCGACCCTGTGCCGACC-3'
[서열번호25] 5'- GGATCCTCTAGAGTCGACCTGCAGATTAGCCGGACAGCGCAACGC-3'
[서열번호26] 5'- GATAAGAGAAAGGGAGTCCACATGCACCATCACCATCACCATGC-3'
실시예 2. RppA 바이오센서를 활용한 증가된 말로닐-코에이 생산능 보유 균주 고속 스크리닝
2.1. 대장균 유전체 수준 합성 조절 sRNA 라이브러리의 도입을 통한 증가된 말로닐-코에이 생산능 보유 균주 고속 스크리닝
RppA 말로닐-코에이 바이오센서 구축, 성공적인 작동 규명 및 본 바이오센서의 응용성 및 확장성 입증 후 이를 활용하여 증가된 말로닐-코에이 생산능 보유 균주를 선별하기 위해 본 발명자들이 기존 개발한 합성 조절 sRNA 기술을 도입하고자 하였다 (KR 10-1575587, US 9388417, EP 13735942.8, CN 201380012767.X, KR 10-1690780, KR 10-1750855, US 15317939, CN 201480081132.X; Na D, et al. (2013), Nat Biotechnol 31:170-174; Yoo SM, Na D, Lee SY (2013), Nat Protoc 8:1694-1707). 또한, 대장균 내의 모든 주요 유전자들을 포함시키기 위하여, 기존 구축된 대장균 유전체 수준 합성 조절 sRNA 라이브러리 (E. coli K-12 W3110 균주 내 1,858 유전자를 포함하는)를 도입하여 유전체 수준에서 넉다운 하였을 때, 말로닐-코에이의 증산에 효과적인 발현 억제 유전자 타겟을 찾고자 하였다. 따라서 pTac-5'UTR_Sgr_rppA 플라스미드를 지니는 대장균 BL21(DE3) 균주에 대장균 유전체 수준 합성 조절 sRNA 라이브러리를 도입한 후, 고속 스크리닝을 진행하였다 (도 7). 이렇게 얻어진 콜로니들 중 1,858개의 sRNA를 모두 포함할 수 있도록 충분히 선택하기 위하여 라이브러리 크기의 6배 이상인 11,488개의 콜로니를 선택한 후 로보틱 자동화 고속 스크리닝 시스템을 이용하였다. 이를 위해 K3 colony picker (KBiosystems, Basildon, UK)이 활용되었고, 로봇에 의하여 각 콜로니는 96-well microplate 내의 LB 배지 (항생제와 0.2 mM IPTG 첨가)에 접종되었다 (한국생명공학연구원 정읍분원, 대한민국). K3 colony picker은 LB 아가 플레이트를 비추고 이미지를 얻어내어, 내장 프로그램을 이용하여 콜로니를 인식하고, 핀이 여러 개 달린 로봇 암을 이용하여 콜로니를 찍어 접종해주는 역할을 한다. 이렇게 접종된 세포들은 HT-MegaGrow 인큐베이터 (바이오니아, 대한민국)에서 섭씨 30도, 500 r.p.m.에서 24 시간동안 배양되었다. 배양 후 231개의 상대적으로 센 시그널을 띠는 균주들이 선별되었다. 이렇게 선별된 균주들은 항생제와 0.2 mM IPTG가 첨가된 3 mL의 LB 배지가 들어있는 14 mL disposable Falcon round-bottom tube에서 섭씨 30도, 250 r.p.m., 24 시간 동안 배양되었다. 이들 중 70개의 균주들이 대조군 (sRNA를 포함하고 있지 않은 바이오센서 균주) 대비 높은 시그널을 보였으며, 이들 균주에 포함되어 있는 sRNA의 시퀀스 분석을 진행하였다 (도 8). 이 때, 세 개의 sRNA가 중복으로 관찰되었다 (argB, fabF, nudD). 또한, 이들 중 26개의 균주들이 대조군과 비교하여 45% 이상 증가된 시그널을 보였다. 따라서 26개의 균주에 해당하는 sRNA 벡터들은 다시 본래 바이오센서 균주에 각각 형질전환되었고(도 9), 다시 위와 같이 3 mL LB에서 배양되었다. 그 결과, 이들 중 대조균 균주 대비 70% 이상 시그널이 증가된 14개의 sRNA가 최종 선별되었다. 이렇게 선별된 증가된 말로닐-코에이 생산을 위한 14 종의 넉다운 유전자 타겟은 아래 표 3에 나열되어 있다.
Figure PCTKR2018010087-appb-T000003
Figure PCTKR2018010087-appb-I000002
2.2. FVSEOF 알고리즘을 이용하여 선별된 증가된 말로닐-코에이 생산을 위한 과발현 유전자 타겟의 RppA 바이오센서를 통한 입증
넉다운 유전자 타겟 뿐만 아니라 과발현 유전자 타겟 또한 RppA 바이오센서를 통하여 증명하고자 하였는데, 이 때 FVSEOF 알고리즘을 활용하여 선별된 유전자 타겟들이 사용되었다 (Park JM, et al. (2012), BMC Syst Biol 6:106). 인실리코 분석은 대장균 유전체 수준 대사 모델 iJO1366이 사용되었다 (Orth JD, et al. (2011), Mol Syst Biol 7:535). 이렇게 선별된 9개의 유전자 타겟은 다음과 같다: zwf, mdh, fumA, fumB, fumC, serA, serB, serC, tpiA (도 10A,C). 각 유전자 타겟은 대장균 BL21(DE3) 에서 증폭되어 pTrc99A 플라스미드에 trc 프로모터 아래에 삽입되었으며, BL21(DE3) pTac-5'UTR-Sgr_rppA 균주에 형질전환되었다. 이렇게 구축된 센서 균주들은 상기 실시예 2.1과 동일하게 테스트-튜브에서 배양되었는데, 이 때 시그널을 측정한 결과 9개의 유전자 타겟 중 8개의 유전자 타겟(serA, mdh, zwf, tpiA, serB, fumB, serC, fumC)에서 대조군과 비교하여 증가된 시그널이 관찰되었다 (도 10B).
실시예 3. RppA 바이오센서를 활용하여 선별된 넉다운 유전자 타겟을 활용한 유용 산물의 증산
본 실시예 및 하기 실시예들에서 활용된 플라스크 배양 조건은, 따로 명시되지 아니한 경우, 다음과 같다. 콜로니는 10 mL LB 배지를 포함하는 테스트-튜브에 접종되어 섭씨 37도, 200 r.p.m.의 인큐베이터에서 배양되었으며, 1 mL의 세포 배양액은 50 mL의 개량된 R/2 배지를 포함하고 있는 배플 플라스크에 접종되었다. 섭씨 37도, 200 r.p.m.에서 길러지던 균주들은 OD600 값이 0.8에 도달하였을 때 0.5 mM의 IPTG를 이용하여 생산이 유도되었고, 섭씨 30도씨, 200 r.p.m.에서 48시간동안 배양되었다. 탄소원으로는 글리세롤 또는 포도당이 첨가되었다.
3.1. 선별된 넉다운 유전자 타겟을 활용한 6-메틸살리실산의 증산
다음 단계로써, 상기 실시예를 통하여 선별된 증가된 말로닐-코에이 생성능을 가능케하는 넉다운 유전자 타겟을 실제 유용 산물 생산에 적용하고자 하였다. 이로써 본 바이오센서가 성공적으로 효과적인 넉다운 유전자 타겟을 선별할 수 있었다는 점을 증명하고자 하였다. 따라서 그 첫 번째 산물로써 Penicilium griseofulvum (또는 Penicilium patulum) 균주로부터 생산된다고 보고되어 있는 6-메틸살리실산(6-methylsalicylic acid, 6MSA)를 유전자 조작된 대장균으로부터 생산하고자 하였다. 6-메틸살리실산은 항생제 및 항진균제로써의 효과를 보유하고 있으며 (Dimroth P, Ringelmann E, Lynen F (1976), Eur J Biochem 68:591-596), 진균류에서 발견되는 타입 I 반복성 폴리케타이드 합성 효소 6-메틸살리실산 신테이즈 (6-methylsalicylic acid synthase, 6MSAS)로부터 한 분자의 아세틸-코에이와 세 분자의 말로닐-코에이로부터 생산된다(도 11).
본 발명에서 사용한, 6-메틸살리실산 신테이즈(6MSAS)의 서열은 아래와 같다.
6-메틸살리실산 신테이즈(6MSAS) [서열번호 123]:
mhsaatstyp sgktspapvg tpgteyseye fsndvavvgm acrvaggnhn pellwqslls qksamgeipp mrwepyyrrd arnekflknt tsrgyfldrl edfdcqffgi spkeaeqmdp qqrvslevas ealedagipa kslsgsdtav fwgvnsddys klvledlpnv eawmgigtay cgvpnrisyh lnlmgpstav daacasslva ihhgvqairl geskvaivgg vnalcgpglt rvldkagais sdgscksfdd dahgyargeg agalvlkslh ralldhdnvl avikgsavcq dgktngimap nsvaqqlaan nalsaanidp htvryveaha tstplgdpte isaiasvyga drpaddpcyi gsikpnighl eagagvmgfi kavlaiqkgv lppqanltkl nsridwktag vkvvqeatpw pesdpirrag vcsygyggtv shavieefsp ilqpdplgng avsgpgllll sgpqekrlal qaktlrdwmt aegkdhnlsd ilttlatrrd hhdyraalvv ddyrdaeqvl qslangvdht fttqsrvlgs diskdvvwvf sghgaqwpdm gkqlihnpvf faaiqpldel iqaeiglspi ellrtgdfes sdrvqiltyv mqiglsallq sngitpqavi ghsvgeiaas vvagalspae galivtrral lyrqvmgkgg milvnlpsae teeilgsrsd lvvaidssps scvvagdkel vaetaealka rgvktftvks diafhsptln glvdplrdvl aetlspvspn vklystalad prgqdlrdve ywagnmvnrv rltsavkaav edgyrlflev sthpvvshsi netlmdagme dfaviptllr kkptekhilh siaqlhcrga evnwaaqmpg rwatgvpttt wmhkpiwrki etaplhtglt hdvekhtllg qripvpgtdt yvyttrldnd tkpfpgshpl hgteivpaag lintflkgtg gqmlqnvvlr vpvainaprs vqvvvqqdqv kvvsrlipse psqldddasw vthttaywdr kvagsedrid faavksrlvt kladnfsidy ldkvgvsamg fpwavtehyr ndkemlarvd vnpaisgdap lpwdssswap vldaatsvgs tifptpalrm paqiervevf tsqdppkisw lyvqeasdsv ptshvsvvse agevlakfta mrfseiegtp gvsgsmeslv hqiawppatp aeeplsietv ilvspdattr alyaaslptr vnsfqfsstq effsnasslp lekgtvvtyi pgevaslaev paasesftwn llelikftvn gslpikvftl tanigegqtp talaqsplyg larviasehp dlgtlidvee pviplstmry iqgadiirin dgiartsrfr slprnkllpa segprllprp egtylitggl gvlglevadf lvekgarrll lisrralppr rtwdqvsedl qptiakirll esrgasvhvl plditkpdav eqlttaldrl slpsvqgvvh aagvldnelv mqttrdafnr vlapkiagal alhevfppks vdffvmfssc gnlvgftgqa sygsgnafld tlathrarlg daavsfqwts wrglgmgast dfinaelesk gitdvtrdea faawqhlaky dmdhgvvlrs rafedgepip vsilndiavr rvgtvsntsp aaagssdavp tsgpelkayl dekirgcvak vlqmtaedvd skaaladlgv dsvmtvtlrr qlqltlkiav pptltwshpt vshlavwfae klak
6-메틸살리실산을 생산 가능한 대장균 균주를 구축하기 위하여 우선적으로 pTac15K 플라스미드를 [서열번호27/서열번호28] 프라이머를 이용하여 inverse PCR을 통해 선형화시킨 후, P. griseofulvum 게놈 DNA를 템플릿으로 하여 [서열번호29/서열번호30], [서열번호31/서열번호30] 프라이머들을 순차적으로 이용하여 6-메틸살리실산 신테이즈를 코딩하는 Pg6MSAS 유전자를 증폭하였다. 이 두 DNA 조각들은 Gibson assembly를 이용하여 합쳐져 pTac-Pg6MSAS 플라스미드가 구축되었다 (도 12B). 6MSAS 효소의 말단에는 acyl-carrier protein 도메인이 존재하는데, 이 부분이 활성화되기 위해서는 4'-포스포판타테이닐 트렌스퍼레이즈(4'-phosphopantetheinyl transferase, Sfp)가 필요하다.
본 발명에서 사용한 4'-포스포판타테이닐 트렌스퍼레이즈(Sfp)의 서열은 아래와 같다.
4'-포스포판타테이닐 트렌스퍼레이즈(Sfp)[서열번호 124]:
mkiygiymdr plsqeenerf msfispekre kcrrfyhked ahrtllgdvl vrsvisrqyq ldksdirfst qeygkpcipd lpdahfnish sgrwvicafd sqpigidiek tkpisleiak rffskteysd llakdkdeqt dyfyhlwsmk esfikqegkg lslpldsfsv rlhqdgqvsi elpdshspcy iktyevdpgy kmavcavhpd fpeditmvsy eell
따라서 우선적으로 Bacillus subtilis의 게놈 DNA로부터 [서열번호32/서열번호33] 프라이머를 이용하여 4'-포스포판타테이닐 트렌스퍼레이즈를 코딩하는 sfp 유전자 조각이 PCR 증폭되었으며, EcoRI 사이트를 통해 pTac15K 플라스미드로 삽입되었으며, 이렇게 완성된 플라스미드는 [서열번호34/서열번호35] 프라이머를 통하여 또다시 PCR 증폭된 후 pTac-Pg6MSAS 플라스미드에 SphI 사이트를 통하여 삽입되어 pTac-Pg6MSAS-sfp 플라스미드가 완성되었다 (도 12A). 완성된 플라스미드는 대장균 BL21(DE3) 균주에 형질전환되었으며, SDS-PAGE를 통한 효소 발현을 체크한 후 (도 12C), 여러 농도의 포도당 또는 글리세롤의 존재 하에 개조된 R/2 배지에서 플라스크 컬쳐를 진행한 결과 100 g/L의 글리세롤 첨가 시 4.7 mg/L의 6-메틸살리실산이 생산되었음을 알 수 있었다 (도 13A). 생산된 6-메틸살리실산의 진위는 LC-MS를 통하여 검증하였다 (도 13B, 13C). 상기 실시예에서 선별된 sRNA를 도입하기 이전, 서로 다른 대장균 균주에서 6-메틸살리실산의 생산능을 알아보기 위하여 표 1의 16종의 대장균 균주에 pTac-Pg6MSAS-sfp 플라스미드를 도입한 후 테스트-튜브 수준 컬쳐 (3 mL 개량된 R/2 배지)를 진행하여 이들 중 1 mg/L 이상의 6MSA를 생산해내는 6종의 균주들 (NM522, BL21, S17-1, JM110, HB101, XL1-Blue)을 선별하였다 (도 13D). 그리고 선별된 균주들 각각에 14개의 선별된 sRNA를 도입하여 구축된 총 84 종의 균주들에 대하여 테스트-튜브 수준 컬쳐를 진행하였다. 그 결과 pabA가 넉다운된 BL21(DE3) 균주가 가장 많은 6-메틸살리실산을 생산하였는데 (6.1 mg/L; 도 14), 이 균주는 추후 동일 배지 조건에서 플라스크 컬쳐 (50 mL) 결과 8.0 mg/L의 6-메틸살리실산을 생산하였다 (도 13E).
[서열번호27] 5'- GCTGAGAAGCTTGCCAAATAATGGATCCTCTAGAGTCGACCTG-3'
[서열번호28] 5'- CTGGGGATGTTTTCCCAGAGGGGTATGTAGAAGTTGCAGCGGAATGCATGAATTCTGTTTCCTGTGTGAAATTG-3'
[서열번호29] 5'- ACAGTGAATATGAATTCTCCAACG-3'
[서열번호30] 5'- ATTATTTGGCAAGCTTCTCAGC-3'
[서열번호31] 5'- CTCTGGGAAAACATCCCCAGCACCAGTCGGAACCCCTGGGACTGAGT ACAGTGAATATGAATTCTCCAACG-3'
[서열번호32] 5'- TAATAAGAATTCATGAAGATTTACGGAATTTATATG-3'
[서열번호33] 5'- TTATTAGAATTCTTATAAAAGCTCTTCGTACGAG-3'
[서열번호34] 5'- CTAGAGTCGACCTGCAGGCATGCCACTCCCGTTCTGGATAATG-3'
[서열번호35] 5'- CAAAACAGCCAAGCTTGCATGC-3'
6-메틸살리실산 생산 균주를 더욱 최적화하고자, 길이가 긴 (5.3 kb) Pg6MSAS 유전자만을 플라스미드로 발현시키고 (pTac-Pg6MSAS) sfp는 BL21(DE3) 균주의 게놈 상에 삽입된 균주 BAP1 (Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla C (2001), Science 291:1790-1792)를 활용하여 발현시키고자 하였다. 플라스크 배양 결과 17.6 mg/L의 증가된 6-메틸살리실산 생산량을 보여주었는데, SDS-PAGE 분석 결과 이는 개선된 4'-포스포판타테이닐 트렌스퍼레이즈 발현과 줄어든 불활성화 6-메틸살리실산 신테이즈의 비율인 것으로 생각되었다 (도 12C). 따라서 대장균 BAP1 pTac-Pg6MSAS 균주에 pabA 넉다운 sRNA를 도입하였을 때, 약 35.8%가 증가된 23.9 mg/L의 6-메틸살리실산 생산량을 얻을 수 있었다 (도 13F). 이 균주를 이용하여 유가식 발효를 진행하였을 때, 27 시간 후 97.8 mg/L의 증가된 6-메틸살리실산 농도를 얻을 수 있었다 (도 13G). 유가식 발효는 6.6 L 발효기 (BioFlo320, Eppendofr, 독일)에서 1.9 L 개량된 R/2 배지에서 진행되었고, 초기 탄소원으로는 50 g/L 글리세롤이 첨가되었다. 콜로니가 10 mL의 LB 배지를 포함하고 있는 테스트-튜브에 접종된 후, 섭씨 37도 200 r.p.m.에서 하루 동안 배양되었다. 그 후, 각각 50 mL의 개량된 R/2 배지를 포함하고 있는 배플 플라스크 두 개에 접종되었는데, 이 때 탄소원으로는 50 g/L의 글리세롤이 활용되었다. 플라스크 배양은 OD600값이 약 2 가 될 때까지 9 시간 가량 진행되었고, 그 후 발효기에 접종되었다. 컬쳐의 pH는 28% (v/v) 암모니아수를 이용하여 6.8로 유지되었으며, 용존산소도 (DO) 값은 2 L/min의 공기, 자동으로 1,000 r.p.m.까지 조절 가능한 교반 속도, 그리고 증가하는 산소 유량을 통하여 40%로 유지되었다. 영양 공급은 pH-stat 전략으로 진행되었는데, pH 값이 6.83이 넘었을 때 자동으로 피드가 유입되도록 설정되었다. 피드 용액은 1 L 당 다음의 성분을 가지고 있다: 800 g glycerol, 6 mL trace metal solution 및 12 g MgSO7H2O. 접종 후 OD600 값이 2~3에 도달하였을 때 0.5 mM IPTG를 이용하여 외래 단백질의 발현이 유도되었다.
6-메틸살리실산의 생산량을 더욱 늘이고자 앞서 선별된 세 개의 FVSEOF 유전자 타겟 (P < 0.05; zwf, mdh, serA; 도 10)과 하기와 같은 다섯 효소들의 발현을 증가시키기로 하였다: C. glutamicum 아세틸-코에이 카복실레이즈 (acetyl-CoA carboxylase, AccBC와 AccD1), E. coli 글리세르알데하이드 3-인산 디하이드로지네이즈 (glyceraldehyde 3-phosphate dehydrogenase, GapA), E. coli 포스포글리세레이트 카이네이즈 (phosphoglycerate kinase, Pgk), E. coli 아세틸-코에이 신테타아제 (acetyl-CoA synthetase, Acs), E. coli 피루브산 디하이드로지네이즈 (pyruvate dehydrogenase, PDH: AceEF와 Lpd). 이 때 해당하는 각 유전자 조각들은 pBBR1TaC 플라스미드에 삽입되어 클로닝되었는데, pBBR1TaC 플라스미드는 pBBR1MCS로부터 구축된 tac 프로모터 기반의 발현 플라스미드이다. pBBR1TaC의 구축을 위하여, 우선 pBBR1MCS를 [서열번호147/서열번호148] 프라이머를 이용하여 인버스 PCR로 증폭하였고, 여기에 [서열번호149/서열번호150]을 이용하여 pTac15K를 템플릿으로 하여 증폭한 tac 프로모터, MCS, rrnBT1T2 터미네이터 조각을 Gibson assembly를 통하여 클로닝하였다. 그 후, 상기 실시예 2.2를 통해 구축된 pTrc99A-zwf, pTrc99A-mdh, pTrc99A-serA 플라스미드들로부터 유전자들을 pBBR1TaC으로 옮기기 위하여 하기와 같은 실험을 수행하였다. 우선 zwf, mdh, serA 유전자들은 각각 [서열번호151/서열번호152]을 통하여 증폭되었고, pBBR1TaC 플라스미드를 [서열번호75/서열번호76]을 통하여 증폭한 후 Gibson assembly를 통하여 pBBR1-zwf, pBBR1-mdh, pBBR1-serA 플라스미드 제작을 완성하였다. C. glutamicum 아세틸-코에이 카복실레이즈는 alpha subunit인 AccBC와 beta subunit인 AccD1으로 구성되어 있는데, 해당 유전자들은 우선적으로 각각 pBBR1TaC에 클로닝되어 pBBR1-accBC, pBBR1-accD1을 구축하였다. 이 때 accBC 유전자는 [서열번호153/서열번호154]를 통하여 증폭되었고, accD1 유전자는 [서열번호155/서열번호156]을 통해 증폭되었다. 이 두 유전자 조각들은 [서열번호9/서열번호10]을 통하여 증폭된 pBBR1TaC 플라스미드에 각각 Gibson assembly를 통하여 삽입되었다. 이렇게 구축된 두 플라스미드들 중 pBBR1-accD1을 템플릿으로 하여 [서열번호157/서열번호158]을 이용하여 tac 프로모터와 accD1이 포함된 유전자 조각을 증폭하였고, 이는 HindIII 제한효소를 통하여 잘린 pBBR1-accBC 플라스미드에 Gibson assembly를 통하여 삽입되어 pBBR1-accBCD1 플라스미드의 구축이 완성되었다. 대장균 피루브산 디하이드로지네이즈 (PDH)은 subunit E1 (AceE), E2 (AceF) 그리고 E3 (Lpd)로 구성되어 있는데, 우선적으로 aceEF 유전자 조각 및 lpd 유전자 조각을 pBBR1TaC 플라스미드에 클로닝하여 pBBR1-aceEF와 pBBR1-lpd 플라스미드를 구축하고자 하였다. 유전자 조각 aceEF는 [서열번호159/서열번호160]을 이용하여 증폭되었고, lpd는 [서얼번호161/서열번호162]를 통하여 증폭되었다. 이 두 유전자 조각들은 상기 pBBR1-accBC, pBBR1-accD1 구축 시 활용된 선형화된 pBBR1TaC 플라스미드에 Gibson assembly를 통하여 삽입되었다. 이렇게 구축된 두 플라스미드들 중 pBBR1-lpd를 템플릿으로 하여 [서열번호163/서열번호164]를 통하여 증폭된 tac 프로모터와 lpd를 포함하는 유전자 조각을 SalI 제한효소를 통하여 잘린 pBBR1-aceEF 플라스미드에 삽입하여 pBBR1-aceEF-lpd 플라스미드를 완성하였다. E. coli 글리세르알데하이드 3-인산 디하이드로지네이즈 (glyceraldehyde 3-phosphate dehydrogenase, GapA), E. coli 포스포글리세레이트 카이네이즈 (phosphoglycerate kinase, Pgk), E. coli 아세틸-코에이 신테타아제 (acetyl-CoA synthetase, Acs)를 각각 포함하는 플라스미드들인 pBBR1-gapA, pBBR1-pgk, pBBR1-acs의 구축을 위해 [서열번호165/서열번호166], [서열번호167/서열번호168], [서열번호169/서열번호170]을 통해 gapA, pgk, acs 유전자 조각들을 PCR 증폭한 후, 각각 상기 선형화된 pBBR1TaC 플라스미드에 Gibson assembly를 통하여 삽입되었다.
[서열번호147] 5'- GACGGATGGCCTTTTACTAGTGCCTGGGGTGCCTAATGAG-3'
[서열번호148] 5'-CGATGATTAATTGTCAACTGCTACGCCTGAATAAGTGATAATAAG-3'
[서열번호149] 5'-GTTGACAATTAATCATCGGCTC-3'
[서열번호150] 5'- ACTAGTAAAAGGCCATCCGTCAGGATG-3'
[서열번호151] 5'- GTTGACAATTAATCATCGGC-3'
[서열번호152] 5'- CGTTTCACTTCTGAGTTCGG-3'
[서열번호153] 5'- CAATTTCACACAGGAAACAGAATTCGTGTCAGTCGAGACTAGGAAG-3'
[서열번호154] 5'- CTCTAGAGGATCCCCGGGTACCATTACTTGATCTCGAGGAGAAC-3'
[서열번호155] 5'- CAATTTCACACAGGAAACAGAATTCATGACCATTTCCTCACCTTTG-3'
[서열번호156] 5'- CTCTAGAGGATCCCCGGGTACCATTACAGTGGCATGTTGCCGTG-3'
[서열번호157] 5'- GAGTCGACCTGCAGGCATGCATTGACAATTAATCATCGGCTCG-3'
[서열번호158] 5'-CTCATCCGCCAAAACAGCCAAGCTT-3'
[서열번호159] 5'- CAATTTCACACAGGAAACAGAATTCATGTCAGAACGTTTCCCAAATG-3'
[서열번호160] 5'- CTCTAGAGGATCCCCGGGTACCATTACATCACCAGACGGCGAATG-3'
[서열번호161] 5'- CAATTTCACACAGGAAACAGAATTCATGAGTACTGAAATCAAAACTC-3'
[서열번호162] 5'- CTCTAGAGGATCCCCGGGTACCATTACTTCTTCTTCGCTTTCGG-3'
[서열번호163] 5'- GTACCCGGGGATCCTCTAGAGTTGACAATTAATCATCGGCTCG-3'
[서열번호164] 5'- CAAGCTTGCATGCCTGCAGGTCGAC-3'
[서열번호165] 5'- CAATTTCACACAGGAAACAGAATTCATGACTATCAAAGTAGGTATCAAC-3'
[서열번호166] 5'- CTCTAGAGGATCCCCGGGTACCATTATTTGGAGATGTGAGCGATC-3'
[서열번호167] 5'-CAATTTCACACAGGAAACAGAATTCATGTCTGTAATTAAGATGACCGATC-3'
[서열번호168] 5'- CTCTAGAGGATCCCCGGGTACCATTACTTCTTAGCGCGCTCTTCG-3'
[서열번호169] 5'- CAATTTCACACAGGAAACAGAATTCATGAGCCAAATTCACAAACAC-3'
[서열번호170] 5'- CTCTAGAGGATCCCCGGGTACCATTACGATGGCATCGCGATAG-3'
이렇게 구축된 8종의 플라스미드들을 기존 최대 생산량을 나타내는 균주인 E. coli BAP1 pTac-Pg6MSAS pWAS-anti-pabA에 각각 형질전환한 후 플라스크 배양을 수행한 결과는 도 15A와 같다. 이 때 C. glutamicum 아세틸-코에이 카복실레이즈가 과발현되었을 시 6-메틸살리실산이 63.6 mg/L까지 증산되었다. 해당 균주를 이용하여 유가식 발효를 수행하였을 때 도 15B에 나타난 바와 같이 글리세롤로부터 440.3 mg/L ± 30.2 mg/L까지 6-메틸살리실산이 증가되었다.
3.2. 선별된 넉다운 유전자 타겟을 활용한 알로에손의 증산
두 번째 산물로써 Rheum palmatum (Abe I, Utsumi Y, Oguro S, Noguchi H (2004), FEBS Lett 562:171-176) 또는 Aloe arborescens (Mizuuchi Y, et al. (2009), FEBS J 276:2391-2401)의 타입 III 폴리케타이드 합성 효소로부터 생산되는 알로에손(aloesone)을 테스트하고자 하였다. 알로에손은 미백 효과를 보임으로써 화장품 업계에서 널리 사용되는 알로에신(aloesin)의 전구체이다. 하지만, 알로에손으로부터 알로에신이 생산되는 생합성 경로는 아직 보고되지 않았다. 알로에손은 한 분자의 아세틸-코에이와 여섯 분자의 말로닐-코에이를 통하여 생산되며 (도16), R. palmatum 알로에손 신테이즈(aloesone synthase, ALS) 또는 A. arborescens 알로에손 신테이즈(aloesone synthase, PKS3)로부터 생산됨이 보고되어 있다.
R. palmatum 유래 알로에손 신테이즈(aloesone synthase, ALS)의 서열은 아래와 같다.
R. palmatum 유래 알로에손 신테이즈(aloesone synthase, ALS)[서열번호 125]:
madvlqeirn sqkasgpatv laigtahppt cypqadypdf yfrvcksehm tklkkkmqfi cdrsgirqrf mfhteenlgk npgmctfdgp slnarqdmli mevpklgaea aekaikewgq dksrithlif ctttsndmpg adyqfatlfg lnpgvsrtmv yqqgcfaggt vlrlvkdiae nnkgarvlvv cseivafafr gphedhidsl igqllfgdga aalvvgtdid esverpifqi msatqatipn slhtmalhlt eagltfhlsk evpkvvsdnm eelmleafkp lgitdwnsif wqvhpggrai ldkieeklel tkdkmrdsry ilseygnlts acvlfvmdem rkrsfregkq ttgdgyewgv aiglgpgltv etvvlrsvpi p
또한, A. arborescens 유래 알로에손 신테이즈(aloesone synthase, PKS3)의 서열은 아래와 같다.
A. arborescens 유래 알로에손 신테이즈(aloesone synthase, PKS3)[서열번호 126]:
mgslsdstpl mkdvqgirka qkadgtatvm aigtahpphi isqdsyadfy frvtnsehkv elkkkfdric kktmigkryf nfdeeflkky pnitsfdkps lndrhdicip gvpalgaeaa vkaieewgrp kseithlvfc tsggvdmpsa dfqcakllgl rtnvnkyciy mqgcyaggtv mryakdlaen nrgarvlmvc aeltiialrg pndshidnai gnslfgdgaa alivgsdpii gvekpmfeiv cakqtvipns eevihlhlre sglmfymtkd saatisnnie aclvdvfksv gmtppedwns lfwiphpggr aildqveakl klrpekfsat rtvlwdygnm isacvlyild emrrksaaeg letygeglew gvllgfgpgm tietillhsl ppv
이 두 효소에 해당하는 유전자들은 각각 Integrated DNA Technologies Inc. (미국)로부터 합성된 후, pCDFDuet-1 (Novagen) 플라스미드에 NcoI 사이트에 Gibson assembly를 활용하여 삽입되었다. 이렇게 구축된 두 플라스미드 pCDF-RpALS와 pCDF-AaPKS3를 각각 대장균 BL21(DE3) 균주에 형질전환한 후, SDS-PAGE를 통하여 외래 효소의 발현을 확인하였고 (도 17A), 플라스크 배양을 수행한 결과 20 g/L의 포도당으로부터 20.5 mg/L와 4.7 mg/L의 알로에손이 생산되었다 (도 17B). 따라서 이후의 실험들에서는 플라스미드 pCDF-RpALS가 사용되었다. 생산된 알로에손의 진위는 LC-MS와 MS/MS 분석을 통하여 검증되었다 (도 17C). 그 후 상기 실시예에서 선별된 14 종의 sRNA를 도입하고자 하였는데, 상기 실시예 3.1에서와 같이 다양한 대장균 균주에 동시다발적으로 도입하여 결과를 보고자, BL21(DE3) 균주와 W3110(DE3) 균주에 각 sRNA를 도입하여 28 종의 균주를 제작하였다. 이렇게 제작된 균주들의 테스트-튜브 수준 컬쳐 결과는 도 17F와 같다. 이 때, pabA가 넉다운된 BL21(DE3) 균주가 가장 높은 알로에손 생산량을 보여주었는데 (18.5 mg/L), 플라스크에서의 생산량은 27.1 mg/L로써 이는 대조군 (sRNA를 포함하고 있지 않은) 균주에 비교하였을 때 32.2% 향상된 결과이다 (도 17D, 17E).
알로에손의 생산량을 더욱 늘이고자 앞서 6-메틸살리실산의 증산을 위하여 활용된 세 개의 FVSEOF 유전자 타겟 (zwf, mdh, serA; 도 10)과 하기와 같은 다섯 효소들의 발현을 증가시키기로 하였다: C. glutamicum 아세틸-코에이 카복실레이즈 (acetyl-CoA carboxylase, AccBC와 AccD1), E. coli 글리세르알데하이드 3-인산 디하이드로지네이즈 (glyceraldehyde 3-phosphate dehydrogenase, GapA), E. coli 포스포글리세레이트 카이네이즈 (phosphoglycerate kinase, Pgk), E. coli 아세틸-코에이 신테타아제 (acetyl-CoA synthetase, Acs), E. coli 피루브산 디하이드로지네이즈 (pyruvate dehydrogenase, PDH: AceEF와 Lpd). 해당 유전자들을 포함하고 있는 플라스미드 8종인 pBBR1-zwf, pBBR1-mdh, pBBR1-serA, pBBR1-accBCD1, pBBR1-gapA, pBBR1-pgk, pBBR1-acs, pBBR1-aceEF-lpd 들을 기존 최대 생산량을 나타내는 균주인 E. coli BL21(DE3) pCDF-RpALS pWAS-anti-pabA에 각각 형질전환한 후 플라스크 배양을 수행한 결과는 도 18과 같다. 이 때 C. glutamicum 아세틸-코에이 카복실레이즈가 과발현되었을 시 알로에손이 30.9 mg/L까지 증산되었다. 이 경우 탄소원으로는 20 g/L의 포도당이 사용되었다.
3.3. 선별된 넉다운 유전자 타겟을 활용한 레스베라트롤의 증산
세 번째 산물로써 식물에서 생산되는 레스베라트롤(resveratrol)을 정하였다. 레스베라트롤은 페닐프로파노이드 계 천연물 중에서도 스틸베노이드에 속하는 물질로써 항산화, 항노화, 항암 효과 등을 지니고 있는 매우 유용한 천연물이다. 레스베라트롤은 한 분자의 p-coumaroyl-CoA와 세 분자의 말로닐-코에이로부터 생산된다 (도 19). 따라서 우선적으로 p-coumaric acid를 간단한 탄소원으로부터 생산해내는 균주를 구축하기로 하였고, 이를 위하여 기존 구축된 타이로신 과생산 균주를 이용하였다 (Kim B, Binkley R, Kim HU, Lee SY (2018), Biotechnol Bioeng). 이 균주(BTY5.13)는 대장균 BL21(DE3) 기반의 tyrR, tyrP가 낙아웃된 균주(BTY5)에 pTac15K 플라스미드 기반의 Zymomonas mobilis tyrC, E. coli aroG fbr, aroL을 과발현시키는 플라스미드(pTY13)을 포함하고 있다. 타이로신을 p-coumaric acid로 전환시키기 위해서는 타이로신 암모니아-라이에이즈(tyrosine ammonia-lyase, TAL)를 발현시켜야 하므로, Saccharothrix espanaensis의 게놈 DNA에서부터 [서열번호36/서열번호37] 프라이머를 이용하여 타이로신 암모니아-라이에이즈를 코딩하는 유전자 SeTAL을 증폭한 후, pTrc99A 플라스미드를 [서열번호38/서열번호39] 프라이머를 이용한 PCR을 통해 선형화한 후, 이 두 DNA 조각들을 Gibson assembly를 이용하여 합치게 되었는데, 이로써 플라스미드 pTrc-SeTAL가 구축되었다.
본 발명에서 사용한, 타이로신 암모니아-라이에이즈의 서열은 아래와 같다.
타이로신 암모니아-라이에이즈(tyrosine ammonia-lyase, TAL) [서열번호 127]:
mtqvverqad rlssreylar vvrsagwdag ltsctdeeiv rmgasartie eylksdkpiy gltqgfgplv lfdadseleq ggslishlgt gqgaplapev srlilwlriq nmrkgysavs pvfwqkladl wnkgftpaip rhgtvsasgd lqplahaala ftgvgeawtr dadgrwstvp avdalaalga epfdwpvrea lafvngtgas lavavlnhrs alrlvracav lsarlatllg anpehydvgh gvargqvgql taaewirqgl prgmvrdgsr plqepyslrc apqvlgavld qldgagdvla revdgcqdnp ityegellhg gnfhampvgf asdqiglamh maaylaerql gllvspvtng dlppmltpra grgaglagvq isatsfvsri rqlvfpaslt tlptngwnqd hvpmalngan svfealelgw ltvgslavgv aqlaamtgha aegvwaelag icppldadrp lgaevraard llsahadqll vdeadgkdfg
이 때, 타이로신 암모니아-라이에이즈의 발현을 최적화하기 위하여 N 말단에 각각 His-tag과 thioredoxin tag (TrxA)를 부착하게 되었는데, 우선 His-tag의 부착을 위해 S. espanaensis 게놈 DNA를 템플릿으로 하여 [서열번호40/서열번호37] 프라이머를 이용하여 His-SeTAL을 PCR 증폭하였고, pTrc-SeTAL을 템플릿으로 하여 [서열번호38/서열번호41] 프라이머를 이용하여 역 PCR을 통해 선형화하였다. 이 두 DNA 조각들은 Gibson assembly를 통하여 합쳐짐으로써 pTrc-HisTAL이 구축되었다. 그 후, 대장균 W3110의 게놈 DNA를 템플릿으로 하여 [서열번호42/서열번호43] 프라이머를 이용하여 trxA 유전자를 PCR 증폭하였고, S. espanaensis 게놈 DNA를 템플릿으로 하여 [서열번호44/서열번호45] 프라이머를 이용하여 TrxA-TAL을 PCR 증폭하였는데, 이 두 DNA 조각들을 [서열번호46/서열번호37] 프라이머를 이용한 연장 PCR을 수행하여 하나의 DNA 조각으로 만들었다. 이렇게 합쳐진 DNA 조각은 상기 pTrc-HisTAL을 제작할 때 사용하였던 선형화된 pTrc-SeTAL DNA 조각과 Gibson assembly를 통해 합쳐져, pTrc-TrxTAL이 제작되었다. 이렇게 제작된 세 가지 플라스미드들인 pTrc-SeTAL, pTrc-HisTAL, pTrc-TrxTAL은 각각 BTY5.13 플라스미드에 형질전환된 후, 20 g/L 포도당이 첨가된 50 mL 개량된 MR 배지를 포함하고 있는 플라스크에 접종되었고, 섭씨 30도, 200 r.p.m.에서 배양되었다. 세포의 OD600값이 약 0.8이 되었을 때 1 mM의 IPTG가 처리되었고, 그 후 36 시간동안 배양되었다. 개량된 MR 배지는 1 L 당 다음의 성분들을 포함하고 있다: 6.67g KH2PO4, 4g (NH4)2HPO4, 0.8g citric acid, 0.8g MgSO7H2O, 5 mL trace metal solution, 2g yeast extract 및 15g (NH4)2SO4. 이 때 His-TAL을 발현시켰을 때 가장 높은 수준의 p-coumaric acid 생산량(0.41 g/L)을 얻을 수 있었으므로 (도 20A), pTrc-HisTAL을 pTY13 플라스미드와 합쳐 단일 플라스미드로 제작하기 위하여, HisTAL 부분을 [서열번호47/서열번호48] 프라이머를 이용하여 증폭한 후, pTY13 플라서미드에 NheI 사이트로 Gibson assembly를 통하여 삽입되었다. 이로써 pTY13-HisTAL 플라스미드가 제작되었다. 구축된 플라스미드는 BTY5 균주에 형질전환된 후, 상기와 같이 플라스크 컬쳐를 진행하였는데, 20 g/L의 글리세롤로부터 0.35 g/L의 p-coumaric acid가 생산되었다 (도 20A).
[서열번호36] 5'-GAATTGTGAGCGGATAACAAAGACCGAGGAAAAGGAGCATCGCAAATGACGCAGGTCGTGGAACGTC-3'
[서열번호37] 5'-TAGAGGATCCCCGGGTACTCATCCGAAATCCTTCCCGTC-3'
[서열번호38] 5'-GTACCCGGGGATCCTCTAG-3'
[서열번호39] 5'-TTGTTATCCGCTCACAATTC-3'
[서열번호40] 5'-GAGGAAAAGGAGCATCGCAAATGCACCATCATCATCATCAT ACGCAGGTCGTGGAACGTC-3'
[서열번호41] 5'-TTGCGATGCTCCTTTTCCTC-3'
[서열번호42] 5'-ATGAGCGATAAAATTATTCACCTG-3'
[서열번호43] 5'-CGCCAGGTTAGCGTCGAGG-3'
[서열번호44] 5'-CCTCGACGCTAACCTGGCGACGCAGGTCGTGGAACGTC-3'
[서열번호45] 5'- TCATCCGAAATCCTTCCCGTC-3'
[서열번호46] 5'- AGACCGAGGAAAAGGAGCATCGCAAATGAGCGATAAAATTATTCACCTG-3'
[서열번호47] 5'- GTAAGCCAGTATACACTCCGGACTGCACGGTGCACCAATG-3'
[서열번호48] 5'- CTGTTGGGCGCCATCTCCTTGTGTAGAAACGCAAAAAGGCCATC-3'
상기와 같이 p-coumaric acid 생산 균주를 성공적으로 구축한 후, 이로부터 시작되는 하단 생합성 경로부터 구축하였는데, 이는 Arabidopsis thaliana의 4-쿠마레이트:코에이 라이게이즈(4-coumarate:CoA ligase, 4CL) 1의 변이체 (At4CL1m)와 Vitis vinifera의 스틸벤 신테이즈(stilbene synthase, STS)로 구성된다. 우선 At4CL1 유전자가 A. thaliana의 cDNA로부터 [서열번호49/서열번호50] 프라이머를 이용하여 증폭된 후 pTac15K 플라스미드에 EcoRI과 KpnI 사이트를 통하여 Gibson assembly를 통하여 삽입되어 pTac-At4CL1 플라스미드가 생성되었다. 그 후, 세 단계의 반복된 점돌연변이 유발 작업을 통해 pTac-At4CL1m(At4CL1m; I250L/N404K/I461V)이 제작되었는데, 이는 p-coumaroyl-CoA로의 기질 특이성을 강화시키기 위함이었다 (Xiong D, et al. (2017), Metab Eng 40:115-123). 이 때 각 단계에서 점돌연변이 유발 작업을 위해 [서열번호51/서열번호52], [서열번호53/서열번호54], [서열번호55/서열번호56] 프라이머 쌍들이 사용되었다. 그 후, A. thaliana로부터 4-쿠마레이트:코에이 라이게이즈 3, 4-쿠마레이트:코에이 라이게이즈 4를 각각 코딩하는 At4CL3, At4CL4 유전자들이, S. coelicolor로부터 4-쿠마레이트:코에이 라이게이즈를 코딩하는 Sc4CL 유전자가 각각 [서열번호57/서열번호58], [서열번호59/서열번호60], [서열번호61/서열번호62] 프라이머 쌍들을 이용하여 PCR 증폭된 후 상기와 동일하게 클로닝되어 pTac-At4CL3, pTac-At4CL4, pTac-Sc4CL이 구축되었다. 이 때 pTac-Sc4CL에 대해서는 p-coumaroyl-CoA로의 기질특이성을 강화시키기 위하여 (Kaneko M, Ohnishi Y, Horinouchi S (2003), J Bacteriol 185:20-27), 한 차례의 점돌연변이 유발 작업이 [서열번호63/서열번호64]를 이용하여 진행되어, pTac-Sc4CLm (Sc4CLm; A294G/A318G) 플라스미드가 제작되었다. Vitis vinifera 스틸벤 신테이즈를 코딩하는 STS 유전자는 Integrated DNA Technologies Inc.로부터 합성되었고, 이를 [서열번호65/서열번호66]을 이용하여 PCR 증폭한 후 역시 동일하게 pTac15K 플라스미드에 EcoRI, KpnI 사이트로 Gibson assembly를 활용하여 삽입하여 pTac-VvSTS 플라스미드를 제작하였다.
본 발명에서 사용된 A. thaliana 4-쿠마레이트:코에이 라이게이즈 1의 서열은 아래와 같다.
A. thaliana 4-쿠마레이트:코에이 라이게이즈 1 [서열번호 128]:
mapqeqavsq vmekqsnnnn sdvifrsklp diyipnhlsl hdyifqnise fatkpcling ptghvytysd vhvisrqiaa nfhklgvnqn dvvmlllpnc pefvlsflaa sfrgatataa npfftpaeia kqakasntkl iitearyvdk ikplqnddgv vivciddnes vpipegclrf teltqsttea sevidsveis pddvvalpys sgttglpkgv mlthkglvts vaqqvdgenp nlyfhsddvi lcvlpmfhiy alnsimlcgl rvgaailimp kfeinlllel iqrckvtvap mvppivlaia kssetekydl ssirvvksga aplgkeleda vnakfpnakl gqgygmteag pvlamslgfa kepfpvksga cgtvvrnaem kivdpdtgds lsrnqpgeic irghqimkgy lnnpaataet idkdgwlhtg diglidddde lfivdrlkel ikykgfqvap aelealligh pditdvavva mkeeaagevp vafvvkskds elseddvkqf vskqvvfykr inkvfftesi pkapsgkilr kdlraklang l
본 발명에서 사용된 A. thaliana 4-쿠마레이트:코에이 라이게이즈 3의 서열은 아래와 같다.
A. thaliana 4-쿠마레이트:코에이 라이게이즈 3 [서열번호 129]:
mitaalhepq ihkptdtsvv sddvlphspp tprifrsklp didipnhlpl htycfeklss vsdkpclivg stgksytyge thlicrrvas glyklgirkg dvimillqns aefvfsfmga smigavstta npfytsqely kqlkssgakl iithsqyvdk lknlgenltl ittdeptpen clpfstlitd detnpfqetv diggddaaal pfssgttglp kgvvlthksl itsvaqqvdg dnpnlylksn dvilcvlplf hiyslnsvll nslrsgatvl lmhkfeigal ldliqrhrvt iaalvpplvi alaknptvns ydlssvrfvl sgaaplgkel qdslrrrlpq ailgqgygmt eagpvlsmsl gfakepiptk sgscgtvvrn aelkvvhlet rlslgynqpg eicirgqqim keylndpeat satideegwl htgdigyvde ddeifivdrl kevikfkgfq vppaelesll inhhsiadaa vvpqndevag evpvafvvrs ngnditeedv keyvakqvvf ykrlhkvffv asipkspsgk ilrkdlkakl c
본 발명에서 사용된 A. thaliana 4-쿠마레이트:코에이 라이게이즈 4의 서열은 아래와 같다.
A. thaliana 4-쿠마레이트:코에이 라이게이즈 4 [서열번호 130]:
mvlqqqthfl tkkidqedee eepshdfifr sklpdifipn hlpltdyvfq rfsgdgdgds sttciidgat griltyadvq tnmrriaagi hrlgirhgdv vmlllpnspe falsflavay lgavsttanp fytqpeiakq akasaakmii tkkclvdklt nlkndgvliv cldddgdngv vsssddgcvs fteltqadet ellkpkispe dtvampyssg ttglpkgvmi thkglvtsia qkvdgenpnl nftandvilc flpmfhiyal dalmlsamrt gaallivprf elnlvmeliq rykvtvvpva ppvvlafiks peterydlss vrimlsgaat lkkeledavr lkfpnaifgq gygmtesgtv akslafaknp fktksgacgt virnaemkvv dtetgislpr nksgeicvrg hqlmkgylnd peatartidk dgwlhtgdig fvddddeifi vdrlkelikf kgyqvapael eallishpsi ddaavvamkd evadevpvaf varsqgsqlt eddvksyvnk qvvhykrikm vffievipka vsgkilrkdl rakletmcsk
본 발명에서 사용된 S. coelicolor 4-쿠마레이트:코에이 라이게이즈의 서열은 아래와 같다.
S. coelicolor 4-쿠마레이트:코에이 라이게이즈 [서열번호 131]:
mfrseyadvp pvdlpihdav lggaaafgst palidgtdgt tltyeqvdrf hrrvaaalae tgvrkgdvla lhspntvafp lafyaatrag asvttvhpla taeefakqlk dsaarwivtv spllstarra aelaggvqei lvcdsapghr slvdmlasta pepsvaidpa edvaalpyss gttgtpkgvm lthrqiatnl aqlepsmpsa pgdrvlavlp ffhiygltal mnaplrlgat vvvlprfdle qflaaiqnhr itslyvappi vlalakhplv adydlsslry ivsaaaplda rlaaacsqrl glppvgqayg mtelspgthv vpldamadap pgtvgrliag temrivsltd pgtdlpages geilirgpqi mkgylgrpda taamideegw lhtgdvghvd adgwlfvvdr vkelikykgf qvapaeleah llthpgvada avvgaydddg nevphafvvr qpaapglaes eimmyvaerv apykrvrrvt fvdavpraas gkilrrqlre pr
본 발명에서 사용된 스틸벤 신테이즈의 서열은 아래와 같다.
스틸벤 신테이즈 [서열번호 132]:
masveefrna qrakgpatil aigtatpdhc vyqsdyadfy frvtksehmt alkkkfnric dksmikkryi hlteemleeh pnigaymaps lnirqeiita evpklgkeaa lkalkewgqp kskithlvfc ttsgvempga dyklanllgl epsvrrvmly hqgcyaggtv lrtakdlaen nagarvlvvc seitvvtfrg psedaldslv gqalfgdgsa avivgsdpdi sierplfqlv saaqtfipns agaiagnlre vgltfhlwpn vptlisenie kcltqafdpl gisdwnslfw iahpggpail daveaklnld kkkleatrhv lseygnmssa cvlfildemr kkslkgerat tgegldwgvl fgfgpgltie tvvlhsipmv tn
상기 각 플라스미드들은 BL21(DE3) 균주에 형질전환된 후 SDS-PAGE를 통하여 외래 효소들의 발현이 검증되었다. 그리고, 4CL 유전자들과 STS 유전자를 한 플라스미드에 합치기 위하여 다음과 같은 작업이 수행되었다. 우선 스틸벤 신테이즈 발현용 DNA 조각 (tac 프로모터 포함)을 PCR 증폭하기 위하여 [서열번호47/서열번호48] 프라이머를 활용하여 pTac-VvSTS로부터 증폭하였고, 이는 pTac-At4CL3, pTac-At4CL4l, pTac-Sc4CLm 플라스미드들에 NheI 사이트를 통하여 Gibson assembly를 통하여 삽입되어, pTac-VvSTS, At4CL3, pTac-VvSTS-At4CL4, pTac-VvSTS-Sc4CLm 플라스미드가 제작되었다. At4CL1m의 경우에는 반대로, pTac-At4CL1m으로부터 [서열번호67/서열번호68] 프라이머를 활용하여 4-쿠마레이트:코에이 라이게이즈 발현용 DNA 조각이 PCR 증폭되어 pTac-VvSTS 플라스미드의 PvuII 사이트로 삽입되어 pTac-VvSTS-At4CL1m 플라스미드가 제작되었다. 제작된 플라스미드들 pTac-VvSTS-At4CL1m, pTac-VvSTS, At4CL3, pTac-VvSTS-At4CL4, pTac-VvSTS-Sc4CLm은 각각 BL21(DE3) 균주에 형질전환되어 플라스크 배양을 진행하였고 (2 mM p-coumaric acid 배지에 첨가), 그 결과는 도 20C과 같다. 이 때 가장 높은 레스베라트롤 생산능을 보인 균주는 BL21(DE3) pTac-VvSTS-At4CL1m 균주이다 (18.0 mg/L). 이 때 p-coumaric acid는 2 mM (328.1 mg/L)의 농도로 첨가해주었음에도 이정도의 레스베라트롤이 생산되었다는 점은 말로닐-코에이가 병목이라는 간접적인 증거였다. 본 발명에서는 말로닐-코에이의 농도를 증가시켜 이 가정에 따른 문제를 해결하기 이전에, 레스베라트롤 생산을 위한 외래 유전자들의 발현을 여러 방법으로 조절하여 해결한 후 말로닐-코에이에 대하여 다루기로 하였다. 따라서 우선적으로 At4CL1m 유전자와 STS 유전자를 하나의 오페론으로 발현시키기 위하여 [서열번호69/서열번호70] 프라이머를 이용하여 STS 유전자를 PCR 증폭한 후, 이를 pTac-At4CL1m 플라스미드의 SphI 사이트에 삽입하여 pTac-At4CL1m-opr-VvSTS 플라스미드를 제작하였다. 또한, 두 효소를 하나의 융합된 효소로 발현시켜 기질의 전달을 용이하게 하기 위하여 [서열번호71/서열번호72] 프라이머 쌍을 이용하여 At4CL1m 유전자를 PCR 증폭한 후, 이를 pTac-VvSTS 플라스미드의 NdeI 사이트에 삽입하여 pTac-At4CL1m-fus-VvSTS 플라스미드를 제작하였다. 이 때 융합 단백질의 발현을 위하여 글라이신-세린 링커(Gly-Gly-Gly-Ser)을 활용하였다. 하지만 이 두 가지 전략 모두 더 높은 레스베라트롤을 생산해내지 못하였다 (도 20D). 따라서 최종 플라스미드는 pTac-VvSTS-At4CL1m 으로 정해졌는데, 이 플라스미드는 pTY13-HisTAL와 호환 가능하지 않았으므로 (두 플라스미드 모두 p15A 복제원점을 지님), 상기 언급된 pTacCDFS 플라스미드로 이동시키기로 하였다. 이 과정에서 우선 STS 발현 카세트를 [서열번호73/서열번호74] 프라이머를 이용하여 PCR 증폭시킨 후, [서열번호75/서열번호76] 프라이머를 이용하여 선형화된 pTacCDFS 플라스미드와 Gibson assembly를 통하여 합치게 되었다. 이렇게 구축된 플라스미드에 PstI 제한효소를 처리한 후, [서열번호75/서열번호76] 프라이머를 이용하여 PCR 증폭된 At4CL1m 발현 카세트를 Gibson assembly 또는 T4 ligation을 통하여 하나의 플라스미드 (pTacCDF-VvSTS-At4CL1m)로 합치게 되었다. 이렇게 구축된 플라스미드는 BL21(DE3) 균주에 형질전환된 후, 플라스크 컬쳐를 통해 21.2 mg/L의 레스베라트롤을 생산하였다 (도 20D). 하지만, 이는 2 mM p-coumaric acid를 공급한 결과이므로, 글리세롤로부터 직접 레스베라트롤을 생산하기 위하여 BTY5 pTY13-HisTAL 균주에 pTacCDF-VvSTS-At4CL1m 플라스미드를 형질전환하여 플라스크 컬쳐를 진행한 결과 20 g/L의 글리세롤로부터 12.4 mg/L의 레스베라트롤이 생산되었다. 생산된 레스베라트롤의 진위는 LC-MS를 통하여 판별되었다 (도 21).
[서열번호49] 5'-CAATTTCACACAGGAAACAGACATATGGCGCCACAAGAACAAGC-3'
[서열번호50] 5'-CTCTAGAGGATCCCCGGGTACCATTACAATCCATTTGCTAGTTTTG-3'
[서열번호51] 5'-CACAGCGATGACGTCCTACTCTGTGTTTTG-3'
[서열번호52] 5'-CAAAACACAGAGTAGGACGTCATCGCTGTG-3'
[서열번호53] 5'-CTCTTTCGAGGAAACAACCCGGTGAG-3'
[서열번호54] 5'-CTCACCGGGTTGTTTCCTCGAAAGAG-3'
[서열번호55] 5'-GATTGAAAGAACTTGTCAAGTATAAAGG-3'
[서열번호56] 5'-CCTTTATACTTGACAAGTTCTTTCAATC-3'
[서열번호57] 5'-CAATTTCACACAGGAAACAGACATATGATCACTGCAGCTCTACAC-3'
[서열번호58] 5'-CTCTAGAGGATCCCCGGGTACCATTAACAAAGCTTAGCTTTGAGG-3'
[서열번호59] 5'-CAATTTCACACAGGAAACAGACATATGGTGCTCCAACAACAAACG-3'
[서열번호60] 5'-CTCTAGAGGATCCCCGGGTACCATTATTTAGAGCACATGGTTTCC-3'
[서열번호61] 5'-CAATTTCACACAGGAAACAGACATATGTTCCGCAGCGAGTACGC-3'
[서열번호62] 5'-CTCTAGAGGATCCCCGGGTACCATTATCGCGGCTCCCTGAGCTGTC-3'
[서열번호63] 5'-GTACATCGTCAGCGGCGCCGCCCCGCTCGACG-3'
[서열번호64] 5'-CGTCGAGCGGGGCGGCGCCGCTGACGATGTAC-3'
[서열번호65] 5'-CAATTTCACACAGGAAACAGACATATGGCAAGTGTCGAGGAATTC-3'
[서열번호66] 5'-CTCTAGAGGATCCCCGGGTACCATTAATTGGTAACCATCGGAATGG-3'
[서열번호67] 5'-GTAAGCCAGTATACACTCCGGACTGCACGGTGCACCAATG-3'
[서열번호68] 5'-CTGTTGGGCGCCATCTCCTTGTGTAGAAACGCAAAAAGGCCATC-3'
[서열번호69] 5'-GAGTCGACCTGCAGGCATGCAATTTCACACAGGAAACAGA-3'
[서열번호70] 5'-CAAAACAGCCAAGCTTGCATG-3'
[서열번호71] 5'-TTTCACACAGGAAACAGACATATG-3'
[서열번호72] 5'-GAATTCCTCGACACTTGCCATACTACCACCACCCAATCCATTTGCTAGTTTTG-3'
[서열번호73] 5'-GTTGACAATTAATCATCGGC-3'
[서열번호74] 5'-CGTTTCACTTCTGAGTTCGG-3'
[서열번호75] 5'-CCGAACTCAGAAGTGAAACG-3'
[서열번호76] 5'-GCCGATGATTAATTGTCAAC-3'
이렇게 구축된 최종 레스베라트롤 생산 균주에 상시 실시예 2.1에서 선별된 14 종의 sRNA를 도입한 후, 플라스크 컬쳐를 진행한 결과는 도 20E과 같다. 그 결과, pabA를 넉다운 하였을 때 글리세롤로부터 51.8 mg/L의 레스베라트롤이 생산되었으며, 이는 대조균 균주(sRNA를 갖고 있지 않은 균주)에 비하여 4.2배 증가된 생산량이었다. 또한, pabA는 앞서 언급된 6-메틸살리실산과 알로에손 모두에서 제일 큰 생산량 증가를 나타내었던 넉다운 타겟이라는 점에서 주목할 만하다. 여기에서 2.5배 이상 증가를 가능케한 넉다운 타겟 6종을 선별하여 이들을 두 개씩 조합하여 sRNA 플라스미드를 구축한 후, 레스베라트롤 생산 균주에 형질전환한 후 플라스크 컬쳐를 진행하여 도 20과 같은 결과를 얻었다. 하지만, 여기에선 가장 높은 레스베라트롤 생산량이 yfiDpurB를 동시 넉다운 하였을 때의 50.0 mg/L였으므로, 앞선 결과에서 추가 증산은 이루어지지 않았다.
이 때, 이중 동시 넉다운을 위한 sRNA 플라스미드는 다음과 같이 구축되었다. 삽입될 합성 조절 sRNA를 코딩하는 DNA 조각은 모 플라스미드로부터 [서열번호77/서열번호78] 프라이머를 통하여 증폭된 후, [서열번호79/서열번호80] 프라이머를 통한 PCR을 통하여 선형화된 모체가 될 합성 조절 sRNA 포함 플라스미드에 Gibson assembly를 통하여 합쳐졌다.
[서열번호77] 5'- GAATTTTAACAAAATATTAACGAATTCTAACACCGTGCGTG-3'
[서열번호78] 5'- GTGCCACCTAAATTGTAAGCGGCGAATTGGGTACCTATAAAC-3'
[서열번호79] 5'- GCTTACAATTTAGGTGGCAC-3'
[서열번호80] 5'- GTTAATATTTTGTTAAAATTCGCG-3'
3.4. 선별된 넉다운 유전자 타겟을 활용한 나린제닌의 증산
네 번째 산물로써 식물에서 생산되는 나린제닌(naringenin)을 정하였다. 나린제닌은 페닐프로파노이드 계 천연물 중에서도 플라보노이드에 속하는 수많은 약리학적으로 유용한 산물들의 공통된 전구체이다. 또한, 나린제닌은 항 알츠하이머, 항암, 항산화, 그리고 항균 효능을 지니고 있다고 보고되어 있다. 나린제닌은 레스베라트롤과 마찬가지로 한 분자의 p-coumaroyl-CoA와 세 분자의 말로닐-코에이의 축합 반응으로 생산된다 (도 21). 상시 실시예 3.3으로부터 p-coumaric acid 생산 균주가 제작되었으므로, 본 발명에서는 하단 나린제닌 생합성 경로를 구축하고자 하였다. 이 때, p-coumaric acid로부터 p-coumaroyl-CoA로의 전환은 A. thaliana 4-쿠마레이트:코에이 라이게이즈 1의 변이체 (At4CL1m), p-coumaroyl-CoA와 말로닐-코에이로부터 naringenin chalcone으로의 전환은 Petunia x hybria 찰콘 신테이즈(chalcone synthase, CHS), 그리고 naringenin chalcone으로부터 나린제닌으로의 전환은 A. thaliana 찰콘 아이소머레이즈(chalcone isomerase, CHI)를 이용하였다.
본 발명에서 사용한 찰콘 신테이즈(chalcone synthase, CHS)의 서열은 아래와 같다.
찰콘 신테이즈(chalcone synthase, CHS) [서열번호 133]:
mvtveeyrka qraegpatvm aigtatptnc vdqstypdyy fritnsehkt dlkekfkrmc eksmikkrym hlteeilken psmceymaps ldarqdivvv evpklgkeaa qkaikewgqp kskithlvfc ttsgvdmpgc dyqltkllgl rpsvkrlmmy qqgcfaggtv lrlakdlaen nkgarvlvvc seitavtfrg pndthldslv gqalfgdgag aiiigsdpip gverplfelv saaqtllpds hgaidghlre vgltfhllkd vpglisknie ksleeafrpl sisdwnslfw iahpggpail dqveiklglk peklkatrnv lsnygnmssa cvlfildemr kasakeglgt tgeglewgvl fgfgpgltve tvvlhsvat
본 발명에서 사용한 찰콘 아이소머레이즈(chalcone isomerase, CHI)의 서열은 아래와 같다.
찰콘 아이소머레이즈(chalcone isomerase, CHI) [서열번호 134]:
msssnacasp spfpavtklh vdsvtfvpsv kspassnplf lggagvrgld iqgkfviftv igvylegnav pslsvkwkgk tteeltesip ffreivtgaf ekfikvtmkl pltgqqysek vtencvaiwk qlglytdcea kavekfleif keetfppgss ilfalsptgs ltvafskdds ipetgiavie nkllaeavle siigkngvsp gtrlsvaerl sqlmmknkde kevsdhsvee klaken
4-쿠마레이트:코에이 라이게이즈 1의 변이체를 코딩하는 At4CL1m 유전자는 A. thaliana cDNA를 템플릿으로 하여 [서열번호81/서열번호82] 프라이머를 활용하여 PCR 증폭되었고, 찰콘 아이소머레이즈를 코딩하는 AtCHI 유전자는 A. thaliana cDNA를 템플릿으로 하여 [서열번호83/서열번호84] 프라이머를 활용하여 PCR 증폭되었다. 그리고 이 두 DNA 조각들은 [서열번호81/서열번호84] 프라이머를 이용하여 연장 PCR을 통해 한 DNA 조각으로 합쳐졌고, pTrc99A 플라스미드의 KpnI, BamHI 사이트를 통하여 삽입되었다. 그리고 찰콘 신테이즈를 코딩하는 PhCHS 유전자는 Integrated DNA Technologies Inc.에서 합성된 DNA 조각을 템플릿으로 하여 [서열번호85/서열번호86] 프라이머를 이용하여 PCR 증폭된 후 상기 제작된 플라스미드의 BamHI, XbaI 사이트에 삽입되어 pTrc-At4CL1m-AtCHI-PsCHS 플라스미드가 제작되었다. 하지만, 상기 실시예 3.3과 동일한 이유로 p-coumaric acid 생산 균주 내의 플라스미드와 호환 가능하도록 하기 위하여 플라스미드 pTrc-At4CL1m-AtCHI-PsCHS를 NcoI, PstI 제한효소를 이용하여 자른 후, 이렇게 생성된 DNA 조각을 [서열번호87/서열번호88] 프라이머를 이용하여 역 PCR을 통해 선형화된 pTrcCDFS 플라스미드와 Gibson assembly를 이용하여 합쳐, pTrcCDF-At4CL1m-AtCHI-PhCHS 플라스미드가 제작되었다.
[서열번호81] 5'- AGACAGGGTACCATGGCGCCACAAGAACAAG-3'
[서열번호82] 5'- ATGTATATCTCCTTCTTAAAGTTAATTACAATCCATTTGCTAGTTTTGCCC-3'
[서열번호83] 5'- TTAACTTTAAGAAGGAGATATACATATGTCTTCATCCAACGCCTGC-3'
[서열번호84] 5'- AGACAGGGATCCTCAGTTCTCTTTGGCTAGTTTTTCC-3'
[서열번호85] 5'- AGAGAGGATCCATAACAATTCCCCATCTTAG-3'
[서열번호86] 5'- AGAGATCTAGATTAGGTAGCCACACTATGCAGAACC-3'
[서열번호87] 5'- GAAACTGCTTGTTCTTGTGGCGCCATGGTCTGTTTCCTGTGTG-3'
[서열번호88] 5'- CTAATCTAGAGTCGACCTGCAGGCATGCAAGCTTG-3'
상기와 같이 제작된 플라스미드 pTrcCDF-At4CL1m-AtCHI-PhCHS를 BTY5 pTY13-HisTAL 균주에 도입한 후 플라스크 컬쳐를 진행한 결과 포도당 또는 글리세롤로부터 각각 37.2 mg/L와 64.5 mg/L의 나린제닌이 생산되었다 (도 23A). 따라서 하기 나린제닌 생산 관련 실험들은 모두 글리세롤을 이용하여 진행되었다. 외래 효소들은 SDS-PAGE를 통하여 발현이 확인되었고 (도 23B), 생산된 나린제닌의 진위는 LC-MS를 통하여 판별되었다 (도 24). 이렇게 구축된 나린제닌 생산 균주에 상기 실시예 2.1에서 선별된 14 종의 sRNA를 도입한 후, 플라스크 컬쳐를 진행한 결과는 도 25A과 같다. 이 때, fadR이 넉다운된 균주가 가장 나린제닌 생산량이 좋았는데 (92.3 mg/L), 이는 대조군 (sRNA가 없는 나린제닌 생산 균주)에 비해 43%나 증산된 결과였다. 또한, 대조군 대비 15% 이상 나린제닌 생산량이 증가된 넉다운 타겟들을 조합하여 이중 동시 넉다운 실험을 수행하였는데, 그 결과는 도 25B과 같다. 이 때 fadRxapR이 동시 넉다운 된 균주에서 글리세롤로부터 103.8mg/L의 나린제닌이 생산되었는데, 이는 대조군 대비 61% 증산된 결과이다.
이 때, 이중 동시 넉다운을 위한 sRNA 플라스미드는 다음과 같이 구축되었다. 삽입될 합성 조절 sRNA를 코딩하는 DNA 조각은 모 플라스미드로부터 [서열번호89/서열번호90 프라이머를 통하여 증폭된 후, [서열번호91/서열번호92] 프라이머를 통한 PCR을 통하여 선형화된 모체가 될 합성 조절 sRNA 포함 플라스미드에 Gibson assembly를 통하여 합쳐졌다.
[서열번호89] 5'- CACTAGATCTCAAATGTGCTGGAATTCTAACACCGTGCGTG-3'
[서열번호90] 5'- CCTTATAAATCAAACATGTGCGGCGAATTGGGTACCTATAAAC-3'
[서열번호91] 5'- GCACATGTTTGATTTATAAGGG-3'
[서열번호92] 5'- CAGCACATTTGAGATCTAGTGG-3'
상기 실시예 3에서 살펴보았듯이 RppA 말로닐-코에이 바이오센서를 통하여 손쉽고 빠르게 선별된 말로닐-코에이 증산을 위한 넉다운 타겟들은 모두 말로닐-코에이 기반 유용 화합물들의 생산에 큰 도움을 주었다. 위 실시예에서 살펴본 네 가지 유용 산물 생산 균주들은 모두 기존 연구에서 보고된 바와 같은 많은 시스템 대사공학적 전략을 통하여 구축된 것이 아닌, 기본적인 생산 경로 구축 및 간단히 sRNA를 형질전환하여 빠른 시일 내에 구축된 균주들이다. 이렇게 간단히 구축된 균주들이 괄목할만한 생산능을 보이는 것은 당 업계에서는 가히 주목할만하다. 또한, RppA 바이오센서의 효용성 및 활용성은 상기 실시예에만 국한된 것이 아니라는 것은 당업계에 종사하는 자로써는 자명한 일일 것이다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
기존의 말로닐-코에이 농도 측정법의 오랜 시간이 소요되고, 노동 집약적이며, 숙련된 기술을 필요로 하고, 데이터 신뢰성이 낮고, 대용량 실험의 어렵고, 고성능 기기를 필요로 하는 등의 다양한 단점 및 한계점을 가지고 있으나, 본 발명에 따른 바이오센서를 활용하는 경우, 단일 단계의 시그널 발생, 다양한 미생물에서의 활용성, 자체 형광을 띠는 미생물에서의 활용성 및 간단한 구축 방법을 제공할 뿐 아니라, 간단한 스크리닝 방법을 제공해준다. 또한, 본 발명을 고속 스크리닝과 접목시키게 되면 증산된 말로닐-코에이 생산능을 지니는 균주들을 매우 손쉽고 빠르게(~3일) 선별할 수 있으여, 이를 바로 말로닐-코에이 기반 유용 화합물 생산 균주에 적용할 수 있는 장점이 있다.
전자파일 첨부하였음.

Claims (33)

  1. 타입 III 폴리케타이드 합성 효소를 코딩하는 유전자가 게놈에 삽입되어 있거나; 또는 타입 III 폴리케타이드 합성 효소를 코딩하는 유전자를 포함하는 재조합 벡터가 도입되어 있는, 말로닐-코에이 검출용 재조합 미생물.
  2. 제1항에 있어서, 상기 타입 III 폴리케타이드 합성 효소는 스트렙토마이세스 그리세우스(Streptomyces griseus), 스트렙토마이세스 코엘리컬러(Streptomyces coelicolor), 스트렙토마이세스 아베르미틸리스(Streptomyces avermitilis), 사카로폴리스포라 에리트레아(Saccharopolyspora erythraea), 스트렙토마이세스 퓨세티우스(Streptomyces peucetius) 및 스트렙토마이세스 아쿨레오라투스(Streptomyces aculeolatus)로 구성된 군에서 선택된 미생물 유래의 RppA;
    슈도모나스 플루오레센스(Pseudomonas fluorescens)유래의 PhlD(polyketide synthase);
    아미코라톱시스 메디테라네이(Amycolatopsis mediterranei) 유래의 DpgA(polyketide synthase);
    레움 팔마툼(Rheum palmatum) 유래의 ALS(aloesone synthase); 또는
    알로에 아르보레센스(Aloe arborescens)유래의 PCS(5,7-dihydroxy-2-methylchromone synthase), OKS(octaketide synthase), PKS3(aloesone synthase), PKS4(octaketide synthase 2) 또는 PKS5(octaketide synthase 3);인 것을 특징으로 하는 재조합 미생물.
  3. 제1항에 있어서, 상기 재조합 벡터는 tac, trc, T7, BAD, λPR 및 앤더슨 합성 프로모터로 구성된 군에서 선택된 프로모터에 상기 타입 III 폴리케타이드 합성 효소를 코딩하는 유전자가 작동 가능하도록 연결된 것을 특징으로 하는 재조합 미생물.
  4. 제1항에 있어서, 상기 재조합 미생물은 대장균, 리조비움(Rhizobium), 비피도박테리움 (Bifidobacterium), 로도코커스 (Rhodococcus), 칸디다 (Candida), 에르위니아(Erwinia), 엔테로박터 (Enterobacter), 파스테렐라(Pasteurella), 맨하이미아 (Mannheimia), 액티노바실러스 (Actinobacillus), 아그레가티박터(Aggregatibacter), 잔토모나스(Xanthomonas), 비브리오(Vibrio), 슈도모나스(Pseudomonas), 아조토박터(Azotobacter), 애시네토박터(Acinetobacter), 랄스토니아(Ralstonia), 아그로박테리움(Agrobacterium), 로도박터(Rhodobacter), 자이모모나스(Zymomonas), 바실러스(Bacillus), 스테필로코커스(Staphylococcus), 락토코커스(Lactococcus), 스트렙토코커스(Streptococcus), 락토바실러스(Lactobacillus), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 스트렙토마이세스(Streptomyces), 비피도박테리움(Bifidobacterium), 사이아노박테리움(Cyanobacterium) 및 사이클로박테리움(Cyclobacterium)으로 구성된 군에서 선택되는 것을 특징으로 하는 재조합 미생물.
  5. 하기 단계를 포함하는 말로닐-코에이 생산 유도물질의 스크리닝하는 방법:
    (a) 제1항의 재조합 미생물을 배양하는 단계;
    (b) 상기 재조합 미생물에 후보물질을 첨가하는 단계;
    (c) 상기 후보물질 첨가 후의 재조합 미생물 배양 상층액과 상기 후보물질 첨가 전의 재조합 미생물 배양 상층액의 색을 비교하는 단계; 및
    (d) 상기 후보물질 첨가 후의 재조합 미생물 배양 상층액이 상기 후보물질 첨가 전의 재조합 미생물 배양 상층액에 비해 더 붉은 색을 나타내는 경우의 후보물질을 말로닐-코에이 생산 유도물질로 선별하는 단계.
  6. 제5항에 있어서, 상기 (c) 단계의 색은 육안으로 비교하는 것을 특징으로 하는 방법.
  7. 제5항에 있어서, 상기 (c) 단계의 색은 흡광도를 측정하여 비교하고, 상기 (d) 단계는 상기 후보물질 첨가 후 흡광도가 후보물질 첨가 전 흡광도에 비해 증가하는 경우의 후보물질을 말로닐-코에이 생산 유도물질로 선별하는 것을 특징으로 하는 방법.
  8. 하기 단계를 포함하는 말로닐-코에이 생산능 증가에 관여하는 유전자의 스크리닝 방법:
    (a) 제1항의 재조합 미생물에 상기 재조합 미생물 내 유전자 발현을 변화시키는 유전자 조절 라이브러리를 도입하여 재조합 미생물 내 유전자 발현이 변화된 재조합 미생물 라이브러리를 제작하는 단계;
    (b) 상기 제작된 재조합 미생물 라이브러리를 배양하여 배양 상층액의 흡광도를 측정하고, 유전자 조절 라이브러리가 도입되기 전의 재조합 미생물을 배양하여 배양 상층액의 색을 비교하는 단계; 및(c) 상기 유전자 조절 라이브러리가 도입되기 전의 재조합 미생물의 배양 상층액의 색에 비해 붉은 색이 증가하는 경우의 재조합 미생물 라이브러리에 도입된 유전자를 선별하는 단계.
  9. 제8항에 있어서, 상기 (b) 단계의 색은 육안으로 비교하는 것을 특징으로 하는 방법.
  10. 제8항에 있어서, 상기 (b) 단계의 색은 흡광도를 측정하여 비교하고, 상기 (c) 단계에서는 상기 유전자 조절 라이브러리가 도입되기 전의 재조합 미생물의 배양 상층액의 흡광도에 비해 흡광도가 증가하는 경우의 재조합 미생물 라이브러리에 도입된 유전자를 선별하는 것을 특징으로 하는 방법.
  11. 제8항에 있어서, 상기 유전자 조절 라이브러리는 sRNA 라이브러리, 게놈 라이브러리, cDNA 라이브러리, gRNA 라이브러리, 및 넉아웃 또는 돌연변이 제작용 올리고뉴클레오티드 라이브러리로 구성된 군에서 선택되는 라이브러리인 것을 특징으로 하는 방법.
  12. 말로닐-코에이 생성능을 가지고 있는 미생물에서 제8항 내지 제11항 중 어느 한 항의 방법에 의해 선별된 유전자의 발현을 조절하는 것을 특징으로 하는 말로닐-코에이 생성능이 증가된 재조합 미생물의 제조방법.
  13. 제12항에 있어서, 상기 선별된 유전자는
    fabF (3-oxoacyl-[acyl-carrier-protein] synthase II);
    yfcY (beta-ketoacyl-CoA thiolase);
    xapR (transcriptional activator of xapAB);
    cytR (transcriptional repressor for deo operon, udp, cdd, tsx, nupC and nupG);
    fabH (3-oxoacyl-[acyl-carrier-protein] synthase III);
    mqo (malate dehydrogenase);
    yfiD (pyruvate formate lyase subunit);
    fmt (10-formyltetrahydrofolate:L-methionyl-tRNA(fMet)N-formyltransferase);
    pyrF (orotidine-5'-phosphate decarboxylase);
    araA (L-arabinose isomerase);
    fadR (negative regulator for fad regulon and positive regulator of fabA);
    pabA (aminodeoxychorismate synthase, subunit II);
    purB (adenylosuccinate lyase); 및
    hycI (protease involved in processing C-terminal end of HycE)로 구성된 군에서 선택된 하나 이상의 유전자이고,
    상기 유전자의 발현을 감소시키는 것을 특징으로 하는 방법.
  14. 제12항에 있어서, 상기 미생물은 대장균, 리조비움(Rhizobium), 비피도박테리움 (Bifidobacterium), 로도코커스 (Rhodococcus), 칸디다 (Candida), 에르위니아(Erwinia), 엔테로박터 (Enterobacter), 파스테렐라(Pasteurella), 맨하이미아 (Mannheimia), 액티노바실러스 (Actinobacillus), 아그레가티박터(Aggregatibacter), 잔토모나스(Xanthomonas), 비브리오(Vibrio), 슈도모나스(Pseudomonas), 아조토박터(Azotobacter), 애시네토박터(Acinetobacter), 랄스토니아(Ralstonia), 아그로박테리움(Agrobacterium), 로도박터(Rhodobacter), 자이모모나스(Zymomonas), 바실러스(Bacillus), 스테필로코커스(Staphylococcus), 락토코커스(Lactococcus), 스트렙토코커스(Streptococcus), 락토바실러스(Lactobacillus), 클로스트리디움(Clostridium), 코리네박테리움(Corynebacterium), 스트렙토마이세스(Streptomyces), 비피도박테리움(Bifidobacterium), 사이아노박테리움(Cyanobacterium) 및 사이클로박테리움(Cyclobacterium)으로 구성된 군에서 선택되는 미생물인 것을 특징으로 하는 방법.
  15. 말로닐-코에이 생성능을 가지고 있는 미생물에서,
    fabF (3-oxoacyl-[acyl-carrier-protein] synthase II);
    yfcY (beta-ketoacyl-CoA thiolase);
    xapR (transcriptional activator of xapAB);
    cytR (transcriptional repressor for deo operon, udp, cdd, tsx, nupC and nupG);
    fabH (3-oxoacyl-[acyl-carrier-protein] synthase III);
    mqo (malate dehydrogenase);
    yfiD (pyruvate formate lyase subunit);
    fmt (10-formyltetrahydrofolate:L-methionyl-tRNA(fMet)N-formyltransferase);
    pyrF (orotidine-5'-phosphate decarboxylase);
    araA (L-arabinose isomerase);
    fadR (negative regulator for fad regulon and positive regulator of fabA);
    pabA (aminodeoxychorismate synthase, subunit II);
    purB (adenylosuccinate lyase); 및
    hycI (protease involved in processing C-terminal end of HycE)로 구성된 군에서 선택된 하나 이상의 유전자의 발현이 야생형에 비해 감소되어 있는 말로닐-코에이 생성능이 증가된 재조합 미생물.
  16. 하기 단계를 포함하는 말로닐-코에이를 기질 또는 중간물질로 하는 유용물질의 제조방법:
    (a) 제15항의 재조합 미생물에 유용물질의 생산에 관여하는 유전자를 추가적으로 도입 또는 발현을 증가시키거나, 유용물질의 생산에 관여하는 유전자를 추가적으로 결손 또는 발현을 억제시킨 재조합 미생물을 제작하는 단계;
    (b) 상기 제작된 미생물을 배양하는 단계; 및
    (c) 상기 배양된 미생물로부터 유용물질을 회수하는 단계.
  17. 제16항에 있어서, 상기 유용물질은
    액티로노딘(actinorhodin), 독소루비신(doxorubicin), 다우노루비신(daunorubicin), 옥시테트라사이클린(oxytetracycline), 라파마이신(rapamycin), 로바스타틴(lovastatin), SEK4, SEK4b, SEK34, SEK15, SEK26, FK506, DMAC, 아클라비논(aklavinone), 아클라노닉산(aklanonic acid), 엡실론 로도마이시논(epsilon-rhodomycinone), 알로에신(aloesin), 알로에닌(aloenin), 바바로인(barbaloin), 5,7-다이하이드록시-2-메틸크로몬(5,7-dihydroxy-2-methylchromone), 에리트로마이신(erythromycin), 리파마이신(rifamycin), 아버멕틴(avermectin), 겔다나마이신(geldanamycin), 이버멕틴(ivermectin), 독시사이클린(doxycycline), 안트라마이신(anthramycin), 페니실릭산(penicillic acid), 칼리케아마이신(calicheamicin), 에포타일론(epothilone), 테트라세노마이신(tetracenomycin), 프레놀리신(frenolicin), 트라이아세트산 락톤(triacetic acid lactone), 6-메틸살리실산(6-methylsalicylic acid) 및 알로에손(aloesone)으로 구성되는 폴리케타이드계 화합물;
    피노켐브린(pinocembrin), 다이하이드로캄페롤(dihydrokaempferol), 에리오딕티올(eriodictyol), 다이하이드로쿼세틴(dihydroquercetin), 다이드제인(daidzein), 게니스타인(genistein), 아피게닌(apigenin), 루테올린(luteolin), 캄페롤(kaempferol), 쿼세틴(quercetin), 카테킨(catechin), 페라고니딘(pelargonidin), 시아니딘(cyanidin), 압젤레친(afzelechin), 미리세틴(myricetin), 피세틴(fisetin), 갈랑긴(galangin), 헤스페레틴(hesperetin), 탄제리틴(tangeritin), 델피니딘(delphinidin), 에피카테킨(epicatechin), 크리신(chrysin), 레스베라트롤(resveratrol) 및 나린제닌(naringenin)으로 구성되는 페닐프로파노이드계 화합물; 및
    펜테인(pentane), 헥세인(hexane), 헵테인(heptane), 옥테인(octane), 노네인(nonane), 데케인(decane), 운데케인(undecane), 도데케인(dodecane), 트라이데케인(tridecane), 테트라데케인(tetradecane), 펜타데케인(pentadecane), 헥사데케인(hexadecane), 헵타데케인(heptadecane), 옥타데케인(octadecane), 노나데케인(nonadecane), 이코세인(icosane), 펜탄올(pentanol), 헥산올(hexanol), 헵탄올(heptanol), 옥탄올(octanol), 노난올(nonanol), 데칸올(decanol), 운데칸올(undecanol), 도데칸올(dodecanol), 트라이데칸올(tridecanol), 테트라데칸올(tetradecanol), 펜타데칸올(pentadecanol), 헥사데칸올(hexadecanol), 헵타데칸올(heptadecanol), 옥타데칸올(octadecanol), 노나데칸올(nonadecanol), 이코산올(icosanol), 메틸카프레이트(methyl caprate), 메틸라우레이트(methyl laurate), 메틸미리스테이트(methyl myristate), 메틸팔미테이트(methyl palmitate), 메틸팔미토레이트(methyl palmitoleate), 메틸스테아레이트(methyl stearate), 메틸올레이트(methyl oleate), 메틸리놀레이트(methyl linoleate), 메틸리놀레네이트(methyl linolenate), 메틸아라키데이트(methyl arachidate), 메틸파울리네이트(methyl paullinate), 메틸에루케이트(methyl erucate), 에틸카프레이트(ethyl caprate), 에틸라우레이트(ethyl laurate), 에틸미리스테이트(ethyl myristate), 에틸팔미테이트(ethyl palmitate), 에틸팔미토레이트(ethyl palmitoleate), 에틸스테아레이트(ethyl stearate), 에틸올레이트(ethyl oleate), 에틸리놀레이트(ethyl linoleate), 에틸리놀레네이트(ethyl linolenate), 에틸아라키데이트(ethyl arachidate), 에틸파울리네이트(ethyl paullinate) 및 에틸에루케이트(methyl erucate)로 구성되는 바이오연료 군;
    세라마이드(ceramide), 팔미테이트(palmitate) 및 스핑고신(sphingosine) 으로 구성되는 지질계 화합물; 및
    3-하이드록시프로피온산(3-hydroxypropionic acid)에서 선택되는 어느 하나 이상의 유용물질인 것을 특징으로 하는 방법.
  18. 제15항의 재조합 미생물에 6-메틸살리실산 신테이즈(6-methylsalicylic acid synthase, 6MSAS) 및 4'-포스포판타테이닐 트렌스퍼레이즈(4'-phosphopantetheinyl transferase, Sfp)를 코딩하는 유전자가 추가적으로 도입되거나 그 발현이 증가되어 있는 6-메틸살리실산 생산용 재조합 미생물.
  19. 제18항에 있어서, 상기 넉다운되는 유전자는 pabA, fabF, xapRytcY로 구성된 군에서 선택된 하나 이상인 것을 특징으로 하는 6-메틸살리실산 생산용 재조합 미생물.
  20. 제18항에 있어서, 글루코오스 6-포스페이트 디하이드로게나아제(Zwf), 말레이트 디하이드로게나아제(Mdh), 포스포글리세레이트 디하이드로게나아제(SerA), 아세틸-코에이 카복실레이즈(AccBC 및 AccD1), 글리세르알데하이드 3-인산 디하이드로지네이즈(GapA), 포스포글리세레이트 카이네이즈(Pgk), 아세틸-코에이 신테타아제(Acs) 및 피루브산 디하이드로지네이즈(AceEF 및 Lpd)로 구성된 군에서 선택된 하나 이상의 효소를 코딩하는 유전자가 추가적으로 도입되거나 그 발현이 증가되어 있는 6-메틸살리실산 생산용 재조합 미생물.
  21. 하기 단계를 포함하는 6-메틸살리산산의 제조방법:
    (a) 제18항의 재조합 미생물을 배양하는 단계; 및
    (b) 상기 배양된 미생물로부터 6-메틸살리산산을 회수하는 단계.
  22. 제15항의 재조합 미생물에 알로에손 신테이즈(aloesone synthase)를 코딩하는 유전자가 추가적으로 도입되거나 그 발현이 증가되어 있는 알로에손 생산용 재조합 미생물.
  23. 제22항에 있어서, 상기 넉다운되는 유전자는 pabA인 것을 특징으로 하는 알로에손 생산용 재조합 미생물.
  24. 제22항에 있어서, 글루코오스 6-포스페이트 디하이드로게나아제(Zwf), 말레이트 디하이드로게나아제(Mdh), 포스포글리세레이트 디하이드로게나아제(SerA), 아세틸-코에이 카복실레이즈(AccBC 및 AccD1), 글리세르알데하이드 3-인산 디하이드로지네이즈(GapA), 포스포글리세레이트 카이네이즈(Pgk), 아세틸-코에이 신테타아제(Acs) 및 피루브산 디하이드로지네이즈(AceEF 및 Lpd)로 구성된 군에서 선택된 하나 이상의 효소를 코딩하는 유전자가 추가적으로 도입되거나 그 발현이 증가되어 있는 알로에손 생산용 재조합 미생물.
  25. 하기 단계를 포함하는 알로에손의 제조방법:
    (a) 제22항의 재조합 미생물을 배양하는 단계; 및
    (b) 상기 배양된 미생물로부터 알로에손을 회수하는 단계.
  26. 제15항의 재조합 미생물에 타이로신 암모니아-라이에이즈(tyrosine ammonia-lyase, TAL), 4-쿠마레이트:코에이 라이게이즈(4-coumarate:CoA ligase, 4CL) 및 스틸벤 신테이즈(stilbene synthase, STS)를 코딩하는 유전자가 추가적으로 도입되거나 그 발현이 증가되어 있는 레스베라트롤 생산용 재조합 미생물.
  27. 제26항에 있어서, 상기 4-쿠마레이트:코에이 라이게이즈는 서열번호 128로 표시되는 아미노산 서열에서 I250L/N404K/I461V으로 아미노산이 변이된 변이 효소 또는 서열번호 131로 표시되는 아미노산 서열에서 A294G/A318G로 아미노산이 변이된 변이 효소인 것을 특징으로 하는 레스베라트롤 생산용 재조합 미생물.
  28. 제26항에 있어서, 상기 넉다운되는 유전자는 pabA, yfiD, mqo, xapR, purB, fabH, fabF, yfcY, araA, fadR, cytR, fmtpyrF로 구성된 군에서 선택된 하나 이상인 것을 특징으로 하는 레스베라트롤 생산용 재조합 미생물.
  29. 하기 단계를 포함하는 레스베라트롤의 제조방법:
    (a) 제26항의 재조합 미생물을 배양하는 단계; 및
    (b) 상기 배양된 미생물로부터 레스베라트롤을 회수하는 단계.
  30. 제15항의 재조합 미생물에 타이로신 암모니아-라이에이즈(tyrosine ammonia-lyase, TAL), 4-쿠마레이트:코에이 라이게이즈(4-coumarate:CoA ligase, 4CL), 찰콘 신테이즈(chalcone synthase, CHS) 및 찰콘 아이소머레이즈(chalcone isomerase, CHI)를 코딩하는 유전자가 추가적으로 도입되거나 그 발현이 증가되어 있는 나린제닌 생산용 재조합 미생물.
  31. 제30항에 있어서, 상기 4-쿠마레이트:코에이 라이게이즈는 서열번호 (128)로 표시되는 아미노산 서열에서 I250L/N404K/I461V으로 아미노산이 변이된 변이 효소인 것을 특징으로 하는 나린제닌 생산용 재조합 미생물.
  32. 제30항에 있어서, 상기 넉다운되는 유전자는 fadR, hycIxapR로 구성된 군에서 선택된 하나 이상인 것을 특징으로 하는 나린제닌 생산용 재조합 미생물.
  33. 하기 단계를 포함하는 나린제닌의 제조방법:
    (a) 제30항의 재조합 미생물을 배양하는 단계; 및
    (b) 상기 배양된 미생물로부터 나린제닌을 회수하는 단계.
PCT/KR2018/010087 2018-06-08 2018-08-30 타입 iii 폴리케타이드 합성 효소 기반 신규 말로닐-코에이 바이오센서 및 그 용도 WO2019235688A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880015083.8A CN110896642A (zh) 2018-06-08 2018-08-30 基于III型聚酮合酶的新型丙二酰-CoA生物传感器及其用途
US16/477,897 US20210277428A1 (en) 2018-06-08 2018-08-30 Novel malonyl-coa biosensor based on type iii polyketide synthase and use thereof
JP2019541153A JP2020530757A (ja) 2018-06-08 2018-08-30 タイプIIIポリケチド合成酵素ベースの新規マロニル−CoAバイオセンサーおよびその用途
EP18899006.3A EP3608417A4 (en) 2018-06-08 2018-08-30 NEW MALONYL COA BIOSENSOR BASED ON TYPE III POLYKETIDE SYNTHASE AND USE OF IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180066323 2018-06-08
KR10-2018-0066323 2018-06-08

Publications (1)

Publication Number Publication Date
WO2019235688A1 true WO2019235688A1 (ko) 2019-12-12

Family

ID=68769437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010087 WO2019235688A1 (ko) 2018-06-08 2018-08-30 타입 iii 폴리케타이드 합성 효소 기반 신규 말로닐-코에이 바이오센서 및 그 용도

Country Status (6)

Country Link
US (1) US20210277428A1 (ko)
EP (1) EP3608417A4 (ko)
JP (1) JP2020530757A (ko)
KR (1) KR102187682B1 (ko)
CN (1) CN110896642A (ko)
WO (1) WO2019235688A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115433685A (zh) * 2022-06-08 2022-12-06 安徽大学 一种通过改造糖多孢红霉菌sace_5812基因途径提高红霉素产量的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343639B (zh) * 2019-07-23 2021-04-27 中国医药集团总公司四川抗菌素工业研究所 一株产15(s)-o-乙基雷帕霉素的链霉菌
CN111979209A (zh) * 2020-08-24 2020-11-24 中国科学院大学 一种聚八酮合酶及其编码基因与应用
CN112592940B (zh) * 2020-12-16 2023-05-02 江西邦泰绿色生物合成生态产业园发展有限公司 一种n-(9-笏基甲氧羰基)-癸基氨基乙醛的生物酶合成方法
US20240102068A1 (en) 2021-01-27 2024-03-28 Korea Advanced Institute Of Science And Technology C-glycosyltransferase variants and use thereof
CN113430215B (zh) * 2021-06-03 2023-04-18 昆明理工大学 乙酰CoA合成酶基因RKACS1及其应用
CN113527245B (zh) * 2021-06-28 2023-06-20 海南医学院 一种芦荟松的合成方法及其用途
CN114574458B (zh) * 2022-02-28 2023-07-18 江南大学 可以提高柚皮素产量的查尔酮合成酶突变体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110269183A1 (en) 2007-12-18 2011-11-03 Korea Advanced Institute Of Science And Technology Recombinant microorganism having an ability of using sucrose as a carbon source
KR20110130614A (ko) * 2010-05-28 2011-12-06 건국대학교 산학협력단 신규 타입 ⅲ 폴리케타이드 합성효소 및 그 응용
KR20140012072A (ko) * 2011-01-28 2014-01-29 아미리스 인코퍼레이티드 겔-캡슐화된 마이크로콜로니의 스크리닝
KR101575587B1 (ko) 2012-01-11 2015-12-09 한국과학기술원 신규한 합성 조절 sRNA 및 그 제법
KR101690780B1 (ko) 2014-06-11 2016-12-29 한국과학기술원 합성 조절 sRNA를 이용한 클로스트리듐 속 미생물 유전자의 발현 조절 방법
KR101750855B1 (ko) 2014-06-11 2017-06-27 한국과학기술원 합성 조절 sRNA를 이용한 유전자 발현 미세조절 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101084311A (zh) * 2004-10-12 2007-12-05 密歇根州州立大学托管理事会 间苯三酚的生物合成和由其制备1,3-二羟基苯
GB0503657D0 (en) * 2005-02-22 2005-03-30 Fluxome Sciences As Metabolically engineered cells for the production of resveratrol or an oligomeric or glycosidically-bound derivative thereof
EP2689020B1 (en) * 2011-03-22 2018-05-16 OPX Biotechnologies Inc. Microbial production of chemical products and related compositions, methods and systems
EP3155106A2 (en) * 2014-06-16 2017-04-19 Invista Technologies S.à.r.l. Methods, reagents and cells for biosynthesizing compound
EP3307900A1 (en) * 2015-06-10 2018-04-18 Danmarks Tekniske Universitet Use of heterologous expressed polyketide synthase and small molecule foldases to make aromatic and cyclic compounds

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110269183A1 (en) 2007-12-18 2011-11-03 Korea Advanced Institute Of Science And Technology Recombinant microorganism having an ability of using sucrose as a carbon source
KR20110130614A (ko) * 2010-05-28 2011-12-06 건국대학교 산학협력단 신규 타입 ⅲ 폴리케타이드 합성효소 및 그 응용
KR20140012072A (ko) * 2011-01-28 2014-01-29 아미리스 인코퍼레이티드 겔-캡슐화된 마이크로콜로니의 스크리닝
KR101575587B1 (ko) 2012-01-11 2015-12-09 한국과학기술원 신규한 합성 조절 sRNA 및 그 제법
US9388417B2 (en) 2012-01-11 2016-07-12 Korea Advanced Institute Of Science And Technology Synthesis-regulating sRNA and method for preparing same
KR101690780B1 (ko) 2014-06-11 2016-12-29 한국과학기술원 합성 조절 sRNA를 이용한 클로스트리듐 속 미생물 유전자의 발현 조절 방법
KR101750855B1 (ko) 2014-06-11 2017-06-27 한국과학기술원 합성 조절 sRNA를 이용한 유전자 발현 미세조절 방법

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
ABE IUTSUMI YOGURO SNOGUCHI H, FEBS LETT, vol. 562, 2004, pages 171 - 176
AUSTIN MB ET AL., J BIOL CHEM, vol. 279, 2004, pages 45162 - 45174
CORTES, J. ET AL.: "Identification and cloning of a type III polyketide synthase required for diffusible pigment biosynthesis in Saccharopolyspora erythraea", MOLECULAR MICROBIOLOGY, vol. 44, no. 5, 2002, pages 1213 - 1224, XP055637119 *
DIMROTH PRINGELMANN ELYNEN F, EUR J BIOCHEM, vol. 68, 1976, pages 591 - 596
FUNA, N. ET AL.: "Properties and substrate specificity of RppA, a chalcone synthase-related polyketide synthase in Streptomyces griseus", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 277, no. 7, 2002, pages 4628 - 4635, XP055637291 *
G. ROBERTS ET AL., FEMS MICROBIOL. LETT., vol. 222, 2003, pages 131 - 136
GIBSON DG ET AL., NATURE METHODS, vol. 6, 2009, pages 343 - 345
KANEKO MOHNISHI YHORINOUCHI S, J BACTERIOL, vol. 185, 2003, pages 20 - 27
KIM BBINKLEY RKIM HULEE SY, BIOTECHNOL BIOENG, 2018
KOVACH ME ET AL., GENE, vol. 166, 1995, pages 175 - 176
LI SSI TWANG MZHAO H, ACS SYNTH BIOL, vol. 4, 2015, pages 1308 - 1315
LI, S. ET AL.: "Development of a Synthetic Malonyl-CoA Sensor in Saccharomyces cerevisiae for Intracellular Metabolite Monitoring and Genetic Screening", ACS SYNTHETIC BIOLOGY, vol. 4, no. 12, 2015, pages 1308 - 1315, XP055637122 *
MIZUUCHI Y ET AL., FEBS J, vol. 276, 2009, pages 2391 - 2401
NA D ET AL., NAT BIOTECHNOL, vol. 31, 2013, pages 170 - 174
NEUMANN ET AL., EMBO J., vol. 1, 1982, pages 841
OMURA S, BACTERIOL REV, vol. 40, 1976, pages 681 - 697
ORTH JD ET AL., MOL SYST BIOL, vol. 7, 2011, pages 535
PARK JM ET AL., BMC SYST BIOL, vol. 6, 2012, pages 106
PFEIFER BAADMIRAAL SJGRAMAJO HCANE DEKHOSLA C, SCIENCE, vol. 291, 2001, pages 1790 - 1792
See also references of EP3608417A4
XU PLI LZHANG FSTEPHANOPOULOS GKOFFAS M, PROC NATL ACAD SCI U S A, vol. 111, 2014, pages 11299 - 11304
YIM SSAN SJKANG MLEE JJEONG KJ, BIOTECHNOL BIOENG, vol. 110, 2013, pages 2959 - 2969
YOO SMNA DLEE SY, NAT PROTOC, vol. 8, 2013, pages 1694 - 1707

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115433685A (zh) * 2022-06-08 2022-12-06 安徽大学 一种通过改造糖多孢红霉菌sace_5812基因途径提高红霉素产量的方法
CN115433685B (zh) * 2022-06-08 2023-03-03 安徽大学 一种通过改造糖多孢红霉菌sace_5812基因途径提高红霉素产量的方法

Also Published As

Publication number Publication date
EP3608417A4 (en) 2020-12-09
KR20190139727A (ko) 2019-12-18
US20210277428A1 (en) 2021-09-09
JP2020530757A (ja) 2020-10-29
KR102187682B1 (ko) 2020-12-07
EP3608417A1 (en) 2020-02-12
CN110896642A (zh) 2020-03-20

Similar Documents

Publication Publication Date Title
WO2019235688A1 (ko) 타입 iii 폴리케타이드 합성 효소 기반 신규 말로닐-코에이 바이오센서 및 그 용도
WO2013105807A2 (ko) 신규한 합성 조절 srna 및 그 제법
Zhao et al. Metabolic coupling of two small-molecule thiols programs the biosynthesis of lincomycin A
WO2011158975A1 (en) Production process for amino acids of the aspartate family using microorganisms
WO2009125924A2 (ko) 퓨트레신 고생성능을 가지는 변이 미생물 및 이를 이용한 퓨트레신의 제조방법
EP3497215A2 (en) Cell-permeable (cp)-cas9 recombinant protein and uses thereof
WO2020027362A1 (ko) 신규 아데닐로석시네이트 신세타아제 및 이를 이용한 퓨린 뉴클레오티드 생산방법
Jordan et al. Biosynthetic pathway connects cryptic ribosomally synthesized posttranslationally modified peptide genes with pyrroloquinoline alkaloids
WO2020204427A1 (ko) 신규 l-트립토판 배출 단백질 변이체 및 이를 이용한 l-트립토판을 생산하는 방법
WO2015199387A2 (ko) 가용성 단백질 발현량 및 활성이 증대된 헬리코박터 파일로리 유래 α-1,3 푸코실 전달효소의 유전자와 단백질 및 α-1,3 푸코실올리고당 생산에의 응용
WO2012053794A2 (en) Microorganism producing o-phosphoserine and method of producing l-cysteine or derivatives thereof from o-phosphoserine using the same
WO2021125896A1 (ko) 내막 단백질의 변이체 및 이를 이용한 목적 산물 생산 방법
WO2010030091A2 (ko) 생물학적 헴철 생산 방법 및 그에 의해 생산된 헴철 추출물을 포함하는 철분보충 조성물
WO2017014532A1 (ko) 퓨트레신 또는 오르니틴 생산 미생물 및 이를 이용한 퓨트레신 또는 오르니틴 생산방법
WO2015199396A1 (ko) O-아세틸 호모세린을 생산하는 미생물 및 상기 미생물을 이용하여 o-아세틸 호모세린을 생산하는 방법
EP2352836A1 (en) Method of preparing piceatannol using bacterial cytochrome p450 and composition therefor
WO2022163951A1 (ko) 신규한 단백질 변이체 및 이를 이용한 l-라이신 생산 방법
Johnson et al. 4‐Nitrotryptophan is a substrate for the non‐ribosomal peptide synthetase TxtB in the thaxtomin A biosynthetic pathway
WO2013085361A2 (ko) 4-하이드록시부티릭산 고생성능을 가지는 변이 미생물 및 이를 이용한 4-하이드록시부티릭산의 제조방법
WO2023068472A1 (ko) 신규한 당전이효소 및 이의 용도
WO2018131898A2 (ko) 메틸로모나스 속 dh-1 균주의 신규한 용도
WO2015199386A1 (ko) 가용성 단백질 발현량이 증대된 헬리코박터 파일로리 유래 α-1,2 푸코실 전달효소의 유전자와 단백질 및 α-1,2 푸코실올리고당 생산에의 응용
WO2016122058A1 (ko) 세포성점균을 이용한 인간 페닐알라닌 수산화효소의 활성분석 방법
WO2016013844A1 (ko) 페닐아세틸 호모세린 락톤 유도체의 생산 방법
WO2022164226A1 (ko) C-글리코실전이효소 변이체 및 이의 용도

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019541153

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018899006

Country of ref document: EP

Effective date: 20190715

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019014920

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112019014920

Country of ref document: BR

Free format text: FAVOR EFETUAR, EM ATE 60 (SESSENTA) DIAS, O PAGAMENTO DE GRU SOB O CODIGO 260 PARA A REGULARIZACAO DO PEDIDO, CONFORME ART 2O 1O DA RESOLUCAO 189/2017 E NOTA DE ESCLARECIMENTO PUBLICADA NA RPI 2421 DE 30/05/2017, UMA VEZ QUE A PETICAO NO 870190092587 DE 16/09/2019 APRESENTA DOCUMENTOS REFERENTES A QUATRO SERVICOS DIVERSOS (COMPLEMENTACAO DO PEDIDO, PROCURACAO, APRESENTACAO DE DOCUMENTO DE PRIORIDADE E OUTROS DOCUMENTOS) TENDO SIDO PAGA SOMENTE UMA RETRIBUICAO. DEVERA SER PAGA MAIS 3 (TRES) GRU SOB O CODIGO 260 E A GRU 207 REFERENTE A RESPOSTA DESTA EXIGENCIA.

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: 112019014920

Country of ref document: BR

Free format text: PEDIDO RETIRADO POR NAO CUMPRIMENTO DA EXIGENCIA PUBLICADA NA RPI 2609 DE 05/01/2021.