WO2022164072A1 - 폴리카보네이트 및 이의 제조방법 - Google Patents

폴리카보네이트 및 이의 제조방법 Download PDF

Info

Publication number
WO2022164072A1
WO2022164072A1 PCT/KR2022/000316 KR2022000316W WO2022164072A1 WO 2022164072 A1 WO2022164072 A1 WO 2022164072A1 KR 2022000316 W KR2022000316 W KR 2022000316W WO 2022164072 A1 WO2022164072 A1 WO 2022164072A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
formula
unsubstituted
polycarbonate
same
Prior art date
Application number
PCT/KR2022/000316
Other languages
English (en)
French (fr)
Inventor
장한빛
임서영
이호용
송철준
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2023539185A priority Critical patent/JP2024501302A/ja
Priority to US18/273,629 priority patent/US20240132662A1/en
Priority to CN202280010874.8A priority patent/CN116761835A/zh
Priority to EP22746101.9A priority patent/EP4286449A1/en
Publication of WO2022164072A1 publication Critical patent/WO2022164072A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/64Polyesters containing both carboxylic ester groups and carbonate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/065Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids the hydroxy and carboxylic ester groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/14Aromatic polycarbonates not containing aliphatic unsaturation containing a chain-terminating or -crosslinking agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/26General preparatory processes using halocarbonates
    • C08G64/266General preparatory processes using halocarbonates and alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/305General preparatory processes using carbonates and alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/38General preparatory processes using other monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • C08L69/005Polyester-carbonates

Definitions

  • the present invention relates to polycarbonate and a method for preparing the same. More specifically, the present invention relates to a polycarbonate having high hardness and/or heat resistance and a method for preparing the same.
  • Polycarbonate resin is a polymer material that is used in various fields such as exterior materials of electrical and electronic products, automobile parts, building materials, optical parts, and the like.
  • Polycarbonate is a material extracted from bisphenol A petroleum, and in order to increase hardness, additional processes and costs such as hard coating are involved, and there is a problem in that durability is reduced.
  • One embodiment of the present invention is to provide a polycarbonate having a novel structure and a method for manufacturing the same.
  • Another embodiment of the present invention is to provide a composition comprising a polycarbonate of a novel structure and a molded article prepared from the composition.
  • An exemplary embodiment of the present invention provides a polycarbonate including a unit represented by the following formula (1).
  • A is one selected from substituted or unsubstituted straight-chain or branched alkylene, substituted or unsubstituted cycloalkylene, and substituted or unsubstituted arylene, or a group connected to two or more thereof,
  • R11 to R14 are the same as or different from each other, and each is halogen, alkyl or alkoxy;
  • o, p, q and r are each an integer from 1 to 4,
  • n and m are each an integer from 0 to 50,
  • R11 are the same as or different from each other,
  • R12 is the same as or different from each other,
  • R13 are the same as or different from each other,
  • R14 is the same as or different from each other
  • the units of Formula 1 included in the polycarbonate are the same as or different from each other,
  • * means a site connected to the main chain of polycarbonate.
  • Another exemplary embodiment of the present invention provides a method for producing a polycarbonate including a unit represented by the formula (1), including the step of polymerizing a composition comprising a compound of formula (11) and a carbonate precursor.
  • Another embodiment of the present invention provides a composition comprising the polycarbonate according to the above-described embodiment.
  • Another embodiment of the present invention provides a molded article prepared from the composition comprising the polycarbonate according to the embodiment described above.
  • Polycarbonate according to some embodiments of the present invention has a high hardness.
  • Polycarbonate according to some embodiments of the present invention has excellent heat resistance.
  • polycarbonate having high hardness or excellent heat resistance it can be utilized in a wide range of fields such as lenses, glass, optical components, and vehicle components requiring excellent mechanical strength or heat resistance.
  • cycloalkylene may be monocyclic or polycyclic cycloalkylene.
  • cycloalkylene is cycloalkylene having 3 to 20 carbon atoms; monocyclic or polycyclic cycloalkylene having 6 to 18 carbon atoms; Or it may be a monocyclic or polycyclic cycloalkylene having 6 to 12 carbon atoms.
  • the cycloalkylene may be a divalent group derived from an alicyclic hydrocarbon such as cyclopentylene, cycloheptylene, or cycloheptylene as monocyclic cycloalkylene, and adamantane-diyl as polycyclic cycloalkylene.
  • the cycloalkylene may be unsubstituted or substituted one or more with an alkyl group having 1 to 10 carbon atoms, alkoxy having 1 to 10 carbon atoms, or halogen.
  • cycloalkylene is not a divalent group but a monovalent group.
  • heterocycloalkylene may be a monocyclic or polycyclic heterocycloalkylene group containing O, S, Se or N as a heteroatom.
  • heterocycloalkylene is heterocycloalkylene having 1 to 20 carbon atoms; monocyclic or polycyclic heterocycloalkylene having 2 to 18 carbon atoms; Or it may be a monocyclic or polycyclic heterocycloalkylene having 2 to 12 carbon atoms. More specifically, heterocycloalkylene includes dioxanylene, dithianylene, and the like.
  • heterocycloalkylene may be applied, except that heterocycloalkyl is not a divalent group but a monovalent group.
  • straight-chain or branched alkylene is a divalent group derived from an aliphatic hydrocarbon having 1 to 10 carbon atoms or 1 to 5 carbon atoms, and may be straight-chain or branched alkylene. In the case of branched chain alkylene, it may have 2 to 10 carbon atoms, or 2 to 5 carbon atoms.
  • alkylene examples include methylene, ethylene, propylene, n-propylene, isopropylene, butylene, n-butylene, isobutylene, tert-butylene, sec-butylene, 1-methyl-butylene, 1- Ethyl-butylene, pentylene, n-pentylene, isopentylene, neopentylene, tert-pentylene, hexylene, n-hexylene, 1-methylpentylene, 2-methylpentylene, 4-methyl- 2-pentylene, 3,3-dimethylbutylene, 2-ethylbutylene, heptylene, n-heptylene, 1-methylhexylene, octylene, n-octylene, tert-octylene, 1-methylhep tylene, 2-ethylhexylene, 2-propylpentylene, n-nonylene, 2,
  • straight-chain or branched alkylene may be applied, except that straight-chain or branched-chain alkyl is not a divalent group but a monovalent group.
  • alkyl includes straight-chain alkyl and branched-chain alkyl.
  • the arylene may be monocyclic or polycyclic arylene, and the number of carbon atoms is not particularly limited, but preferably has 6 to 30 carbon atoms, and may have 6 to 20 carbon atoms.
  • the monocyclic arylene may be phenylene, biphenylrylene, terphenylrylene, or the like, but is not limited thereto.
  • the arylene is polycyclic arylene, the number of carbon atoms is not particularly limited, but preferably has 10 to 30 carbon atoms, and may have 10 to 20 carbon atoms.
  • the polycyclic arylene may be naphthylene, anthracenylene, phenanthrenylene, triphenylenylene, pyrenylene, phenalenylene, perylenylene, chrysenylene, fluorenylene, and the like. It is not limited.
  • arylene is not a divalent group but a monovalent group.
  • heteroarylene includes atoms other than carbon and one or more heteroatoms, and specifically, the heteroatoms include one or more atoms selected from the group consisting of O, N, Se and S.
  • the number of carbon atoms of the heteroarylene is not particularly limited, but preferably has 1 to 30 carbon atoms, and may have 1 to 20 carbon atoms.
  • the heteroarylene may be monocyclic or polycyclic.
  • heteroarylene examples include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, pyridine group, bipyridine group, pyrimidine group, triazine group, triazole group, acridine group , pyridazine group, pyrazine group, quinoline group, quinazoline group, quinoxaline group, phthalazine group, pyrido pyrimidine group, pyrido pyrazine group, pyrazino pyrazine group, isoquinoline group, indole group, carbazole group, etc.
  • the present invention is not limited thereto.
  • heteroarylene may be applied, except that heteroaryl is not a divalent group but a monovalent group.
  • the divalent aliphatic hydrocarbon group refers to the aforementioned linear or branched alkylene, cycloalkylene, heterocycloalkylene, and the like.
  • alkoxy may be alkoxy having 1 to 10 carbon atoms, or 1 to 5 carbon atoms.
  • Specific examples of alkoxy include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, 1-methyl-butoxy, 1-ethyl-bu toxy, or pentoxy, and the like, but is not limited thereto.
  • halogen is a fluoro, chloro, bromo, or iodo group.
  • substitution means that a hydrogen atom bonded to a carbon atom of a compound is replaced with another substituent, and the position to be substituted is not limited as long as the position at which the hydrogen atom is substituted, that is, a position where the substituent is substitutable, is not limited, and when two or more are substituted , two or more substituents may be the same as or different from each other.
  • substituted or unsubstituted includes halogen; alkyl; cycloalkyl; heterocycloalkyl; alkoxy; aryl; And it means that it is substituted with one or more substituents selected from the group consisting of heteroaryl, is substituted with a substituent to which two or more of the above-exemplified substituents are connected, or does not have any substituents.
  • * means a binding site with another structure.
  • An exemplary embodiment of the present invention provides a polycarbonate including a unit represented by the following formula (1).
  • Chemical Formula 1 Since the structure of Chemical Formula 1 includes an ester structure and the phenyl group is substituted with a halogen group, an alkyl group, or an alkoxy group, it may have higher hardness and heat resistance than polycarbonate in which the phenyl group is not substituted.
  • a plurality of units of Formula 1 are the same as or different from each other.
  • the polycarbonate contains 3 wt% or more, 4 wt% or more, 5 wt% or more, and 20 wt% or less, 17 based on the total weight of the polycarbonate of the unit represented by Formula 1 It may be included in weight % or less, 15 weight% or less.
  • the polycarbonate includes the unit represented by Formula 1 within the above range, a suitable degree of polymerization and high hardness can be obtained.
  • the content of the structures included in the polycarbonate may be calculated according to a conventional method from the results after nuclear magnetic resonance (NMR) analysis of the polycarbonate.
  • a in Formula 1 may be a substituted or unsubstituted cycloalkylene.
  • a in Formula 1 may be a substituted or unsubstituted arylene.
  • a in Formula 1 is at least two of substituted or unsubstituted linear or branched alkylene, substituted or unsubstituted cycloalkylene, and substituted or unsubstituted arylene it can be a gimmick
  • a in Formula 1 may be a group in which a substituted or unsubstituted straight-chain or branched alkylene and one or more substituted or unsubstituted cycloalkylene are connected.
  • a in Formula 1 may be a group in which a substituted or unsubstituted straight-chain or branched alkylene and one or more substituted or unsubstituted arylene are connected.
  • a in Formula 1 may be a group in which one or more substituted or unsubstituted linear or branched alkylene and substituted or unsubstituted cycloalkylene are connected.
  • a in Formula 1 may be a group in which a substituted or unsubstituted cycloalkylene and one or more substituted or unsubstituted arylene are connected.
  • a in Formula 1 may be selected from the following structural formulas.
  • Z1 to Z6 are the same as or different from each other, and each is a single bond, straight or branched chain alkylene, or cycloalkylene;
  • R15 to R20 are the same as or different from each other and are each hydrogen, straight or branched chain alkyl, cycloalkyl, or aryl;
  • s, t and w are each an integer from 0 to 4,
  • u, v and x are each an integer from 0 to 10,
  • R15 is the same as or different from each other
  • R16 is the same as or different from each other
  • R17 is the same as or different from each other
  • R18 is the same as or different from each other
  • R19 is the same as or different from each other
  • R20 is the same as or different from each other.
  • a in Formula 1 may be selected from the following structural formulas.
  • Z1 to Z6, R15 to R20, s, t, u, v, w and x are the same as described above.
  • each of Z1 and Z2 may be a direct bond, a linear or branched alkylene having 1 to 6 carbon atoms, or a cycloalkylene having 3 to 20 carbon atoms.
  • each of Z1 and Z2 may be a direct bond, methylene, propylene, or cyclohexylene.
  • Z1 and Z2 are each a direct bond, methylene, *-C(CH 3 ) 2 -*, or can be
  • Z3 to Z6 may be the same as or different from each other, and each may be a direct bond or a linear or branched alkylene having 1 to 6 carbon atoms.
  • Z3 to Z6 may be the same as or different from each other, and may be a direct bond, methylene, ethylene, or propylene, respectively.
  • Z3 to Z6 may be the same as or different from each other, and each may be a direct bond or methylene.
  • R15 to R20 are the same as or different from each other, and each represents hydrogen or alkyl having 1 to 6 carbon atoms.
  • R15 to R20 are the same as or different from each other, and each represents hydrogen or methyl.
  • s, t, u, v, w and x are each 0, 1, or 2.
  • n and m may be 1 to 10, respectively.
  • the sum of n and m may be 2 to 20, or 2 to 15.
  • o, p, q and r in Formula 1 are 1 or 2, respectively.
  • R11 to R14 are the same as or different from each other, and are halogen, alkyl, or alkoxy, respectively.
  • R11 to R14 are the same as or different from each other, and each represents alkyl having 1 to 6 carbon atoms, or alkoxy having 1 to 6 carbon atoms.
  • R11 to R14 are the same as or different from each other, and each is methyl or methoxy.
  • Chemical Formula 1 may be represented by the following Chemical Formula 1-A or 1-B.
  • R111, R112, R141 and R142 are the same as or different from each other and are each halogen, alkyl, or alkoxy;
  • Chemical Formula 1 may be represented by the following Chemical Formula 1-A-1 or 1-B-1.
  • R111, R112, R141 and R142 are the same as or different from each other and are each halogen, alkyl or alkoxy;
  • in Formula 1 Wow may be the same.
  • in Formula 1 Wow may be the same.
  • Chemical Formula 1 may be represented by the following Chemical Formula 1-1.
  • R21 and R22 are the same as or different from each other and are each halogen, alkyl, or alkoxy;
  • p1 and r1 are each an integer of 1 to 4,
  • n1 and m1 are each an integer from 1 to 50,
  • R21 are the same as or different from each other,
  • R22 are the same as or different from each other,
  • the sum of n1 and m1 in Formula 1-1 may be 5 to 20.
  • the polycarbonate according to an exemplary embodiment of the present invention can appropriately adjust the weight average molecular weight (Mw) according to the purpose and use, and can exhibit improved weather resistance while maintaining excellent properties of the polycarbonate itself, such as transparency and impact strength.
  • Mw weight average molecular weight
  • the weight average molecular weight of the polycarbonate is 40,000 g / mol or more, or 45,000 g / mol or more, or 48,000 g / mol or more, and 60,000 g / mol or less, or 55,000 g / mol or less, or 50,000 g / mol may be below.
  • the weight average molecular weight (Mw) of the polycarbonate and the oligomer used for its preparation was determined by gel permeation chromatography (GPC) using a polystyrene standard (PS standard) using an Agilent 1200 series.
  • GPC gel permeation chromatography
  • PS standard polystyrene standard
  • Agilent 1200 series can be measured Specifically, it can be measured using an Agilent 1200 series instrument using a Polymer Laboratories PLgel MIX-B 300mm long column, and the measurement temperature is 160°C, the solvent used is 1,2,4-trichlorobenzene, and the flow rate is is 1 mL/min.
  • a sample of polycarbonate or oligomer is prepared at a concentration of 10 mg/10 mL, respectively, and supplied in an amount of 200 ⁇ L, and the Mw value is derived using a calibration curve formed using a polystyrene standard.
  • the molecular weight (g/mol) of the polystyrene standard is 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000 9 types are used.
  • the polycarbonate further includes a unit represented by the following formula (2).
  • X1 and X3 are the same as or different from each other, and each represents a substituted or unsubstituted divalent aliphatic hydrocarbon group, a substituted or unsubstituted divalent isosorbide group, a substituted or unsubstituted arylene, or a substituted or unsubstituted heteroaryl Ren,
  • X2 is a substituted or unsubstituted divalent aliphatic hydrocarbon group, a substituted or unsubstituted divalent isosorbide group, a substituted or unsubstituted arylene, a substituted or unsubstituted heteroarylene, O, S, SO, SO 2 or CO;
  • k1 is 0 or 1 with the proviso that when X2 directly bonded to X1 is O, S, SO, SO 2 or CO, k1 is 1,
  • l is an integer of 1 to 5, and when l is 2 or more, X2 are the same as or different from each other,
  • k2 is 0 or 1, with the proviso that when X2 directly bonded to X3 is O, S, SO, SO 2 or CO, k2 is 1,
  • the units of Formula 2 included in the polycarbonate are the same as or different from each other,
  • * means a site connected to the main chain of polycarbonate.
  • a plurality of units of Formula 2 are the same as or different from each other.
  • X1 and X3 in Formula 2 are the same as or different from each other, and each independently represent a substituted or unsubstituted alkylene, a substituted or unsubstituted cycloalkylene, a substituted or unsubstituted heterocyclo alkylene, or substituted or unsubstituted arylene.
  • X1 and X3 in Formula 2 are the same as or different from each other, and each independently represent a substituted or unsubstituted C 1 to C 30 alkylene, or a substituted or unsubstituted C 3 to C 30 cyclo It may be alkylene, substituted or unsubstituted heterocycloalkylene having 2 to 30 carbon atoms, or substituted or unsubstituted arylene having 6 to 30 carbon atoms.
  • X1 and X3 of Formula 2 are the same as or different from each other, and each independently represent a substituted or unsubstituted C1 to C10 alkylene, a substituted or unsubstituted C3 to C15 cyclo It may be alkylene, substituted or unsubstituted heterocycloalkylene having 2 to 15 carbon atoms, or substituted or unsubstituted arylene having 6 to 15 carbon atoms.
  • X1 and X3 in Formula 2 are the same as or different from each other, and each independently represent a substituted or unsubstituted C 1 to C 10 alkylene, or a substituted or unsubstituted C 6 to C 15 C arylene.
  • X2 of Formula 2 is substituted or unsubstituted alkylene, substituted or unsubstituted cycloalkylene, substituted or unsubstituted heterocycloalkylene, substituted or unsubstituted arylene, substituted or unsubstituted heteroarylene, O, S, SO, SO 2 or CO.
  • X2 of Formula 2 is substituted or unsubstituted alkylene having 1 to 30 carbon atoms, substituted or unsubstituted cycloalkylene having 3 to 30 carbon atoms, or substituted or unsubstituted C2 to carbon atoms.
  • X2 in Formula 2 is substituted or unsubstituted alkylene having 1 to 10 carbon atoms, substituted or unsubstituted cycloalkylene having 3 to 15 carbon atoms, or substituted or unsubstituted C2 to carbon atoms. It may be 15 heterocycloalkylene, substituted or unsubstituted arylene having 6 to 15 carbon atoms, or O.
  • X2 of Formula 2 is substituted or unsubstituted alkylene having 1 to 10 carbon atoms, substituted or unsubstituted cycloalkylene having 3 to 15 carbon atoms, divalent hexahydrofuro [3 ,2-b]furan, substituted or unsubstituted arylene having 6 to 15 carbon atoms, or O may be.
  • the polycarbonate contains the unit represented by Formula 2 in an amount of 30% by weight or more, preferably 50% by weight or more, 80% by weight or less, 70% by weight based on the total weight of the polycarbonate. It may be included in weight % or less.
  • Chemical Formula 2 may be represented by one of Chemical Formulas 3 to 6 below.
  • Y1 and Y2 are each a substituted or unsubstituted divalent aliphatic hydrocarbon group, a substituted or unsubstituted divalent isosorbide group, a substituted or unsubstituted arylene, or a substituted or unsubstituted heteroarylene,
  • Y3 and Y4 are each substituted or unsubstituted straight-chain or branched alkylene, substituted or unsubstituted cycloalkylene, O, S, SO, SO 2 or CO;
  • R1 to R4 are the same as or different from each other, and each is hydrogen, halogen, substituted or unsubstituted alkyl, or substituted or unsubstituted alkoxy;
  • a and b are each an integer from 0 to 10,
  • c, d, e and f are each an integer from 1 to 10;
  • g, h, i and j are each an integer from 0 to 4,
  • the units of Formulas 3 to 6 included in the polycarbonate are the same as or different from each other,
  • * means a site connected to the main chain of polycarbonate.
  • the polycarbonate when the polycarbonate includes two or more units of Chemical Formulas 3 to 6, respectively, a plurality of units of Chemical Formulas 3 to 6 are the same as or different from each other.
  • Y1 in Formula 3 may be a substituted or unsubstituted alkylene, a substituted or unsubstituted cycloalkylene, or a substituted or unsubstituted heterocycloalkylene.
  • Y1 in Formula 3 is substituted or unsubstituted alkylene having 1 to 30 carbon atoms, substituted or unsubstituted cycloalkylene having 3 to 30 carbon atoms, or substituted or unsubstituted carbon number 2 to 30 heterocycloalkylene.
  • Y1 in Formula 3 is substituted or unsubstituted alkylene having 1 to 10 carbon atoms, substituted or unsubstituted cycloalkylene having 3 to 15 carbon atoms, or substituted or unsubstituted C2 to 15 heterocycloalkylenes.
  • Y1 in Formula 3 is substituted or unsubstituted methylene, substituted or unsubstituted cyclohexylene, or substituted or unsubstituted divalent hexahydrofuro[3,2-b] It may be a furan.
  • Y2 in Formula 4 may be a substituted or unsubstituted cycloalkylene, or a substituted or unsubstituted heterocycloalkylene.
  • Y2 in Formula 4 may be a substituted or unsubstituted cycloalkylene having 3 to 15 carbon atoms, or a substituted or unsubstituted heterocycloalkylene having 2 to 15 carbon atoms.
  • Y2 in Formula 4 may be a substituted or unsubstituted cyclohexylene, or a substituted or unsubstituted divalent hexahydrofuro[3,2-b]furan.
  • Y3 in Formula 5 may be a substituted or unsubstituted alkylene, or a substituted or unsubstituted cycloalkylene.
  • Y3 in Formula 5 may be a substituted or unsubstituted alkylene having 1 to 30 carbon atoms, or a substituted or unsubstituted cycloalkylene having 2 to 30 carbon atoms.
  • Y3 in Formula 5 may be a substituted or unsubstituted alkylene having 1 to 10 carbon atoms, or a substituted or unsubstituted cycloalkylene having 2 to 15 carbon atoms.
  • Y3 of Formula 5 may be a substituted or unsubstituted straight-chain or branched alkylene having 1 to 5 carbon atoms, or a substituted or unsubstituted cyclohexylene.
  • Y4 in Formula 6 may be a substituted or unsubstituted alkylene.
  • Y4 in Formula 6 may be a substituted or unsubstituted alkylene having 1 to 30 carbon atoms.
  • Y4 in Formula 6 may be a substituted or unsubstituted alkylene having 1 to 10 carbon atoms.
  • Y4 in Formula 6 may be a substituted or unsubstituted straight-chain or branched alkylene having 1 to 5 carbon atoms.
  • R1 to R4 in Formulas 5 and 6 may be the same as or different from each other, and may be substituted or unsubstituted alkyl having 1 to 10 carbon atoms.
  • R1 to R4 in Formulas 5 and 6 may be the same as or different from each other, and may be substituted or unsubstituted C 1 to C 5 alkyl.
  • R1 to R4 in Formulas 5 and 6 may be the same as or different from each other, and may be substituted or unsubstituted methyl, respectively.
  • Chemical Formula 3 may be represented by any one of the following structures.
  • Chemical Formula 4 may be represented by any one of the following structures.
  • Chemical Formula 5 may be represented by any one of the following structures.
  • Chemical Formula 6 may be represented by any one of the following structures.
  • the polycarbonate may have a terminal group selected from alcohol, carbonate, and phenol.
  • Polycarbonate according to an exemplary embodiment of the present invention has high hardness and excellent heat resistance compared to conventional polycarbonate.
  • the impact strength of the polycarbonate when measured based on ASTM D256 (1/8 inch, Notched Izod) at a temperature of 23° C., the impact strength is 250 J/m or more, 270 J/ m or more, it may be 300 J/m or more.
  • the upper limit of the impact strength is not particularly limited, but may be, for example, 500 J/m or less and 450 J/m or less.
  • the Izod impact strength measurement method is a method using a pendulum of a certain weight, and the absorbed energy obtained by hitting the pendulum on the specimen and rotating when rotating is divided by the cross-sectional area of the specimen notch to obtain the impact strength.
  • the pencil hardness is B or more , HB or more.
  • the pencil hardness of the polycarbonate may be B or HB.
  • Another exemplary embodiment of the present invention provides a method for producing a polycarbonate including a unit represented by the above-described formula (1), including the step of polymerizing a composition comprising a compound of formula (11) and a carbonate precursor.
  • Chemical Formula 11 may be represented by the following Chemical Formula 11-1.
  • R21 and R22 are the same as or different from each other and are each halogen, alkyl or alkoxy;
  • p1 and r1 are each an integer of 1 to 4,
  • n1 and m1 are each an integer from 1 to 50,
  • R21 are the same as or different from each other,
  • R22 are the same as or different from each other,
  • the compound of Formula 11 may be represented by the following structure.
  • n1 and m1 are each an integer of 1 to 50.
  • the compound of Formula 11 may be prepared according to the following scheme.
  • R11 to R14, m, n, o, p, q and r are the same as defined in Formula 1 above, R 1 is halogen, alkyl or alkoxy, r1 is an integer from 0 to 4, When r1 is 2 or more, R 1 is the same as or different from each other.
  • a diol compound, a carboxylic acid compound, and pyridine were put in dichloromethane (DCM) and stirred, and then thionyl chloride (SOCl 2 ) was slowly added dropwise at a low temperature. After stirring at room temperature for at least 10 hours, the reaction was terminated to obtain a compound of Formula 11.
  • DCM dichloromethane
  • SOCl 2 thionyl chloride
  • the carbonate precursor may be represented by the following Chemical Formula 12.
  • R5 and R6 are the same as or different from each other and each represent substituted or unsubstituted straight-chain or branched alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
  • the carbonate precursor serves to connect the compound of Formula 11 and, if necessary, additional comonomers, and specific examples thereof include phosgene, diphosgene, triphosgene, bromophosgene, dimethyl carbonate, diethyl carbonate, di butyl carbonate, dicyclohexyl carbonate, diphenyl carbonate, ditoryl carbonate, bis(chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis(diphenyl) carbonate or bishaloformate. and any one or a mixture of two or more thereof may be used.
  • the carbonate precursor may be triphosgene.
  • the unit of Formula 1 may be formed by polymerizing the compound of Formula 11 and the carbonate precursor of Formula 12.
  • the compound of Formula 11 may be used in an amount of 8 parts by weight to 40 parts by weight, 12 parts by weight to 30 parts by weight, based on 100 parts by weight of the carbonate precursor of Formula 12.
  • the composition used in the polymerization step may further include a compound of Formula 21 below.
  • X1 and X3 are each a substituted or unsubstituted divalent aliphatic hydrocarbon group, a substituted or unsubstituted divalent isosorbide group, a substituted or unsubstituted arylene, or a substituted or unsubstituted heteroarylene,
  • X2 is a substituted or unsubstituted divalent aliphatic hydrocarbon group, a substituted or unsubstituted divalent isosorbide group, a substituted or unsubstituted arylene, a substituted or unsubstituted heteroarylene, O, S, SO, SO 2 or CO;
  • k1 is 0 or 1 with the proviso that when X2 directly bonded to X1 is O, S, SO, SO 2 or CO, k1 is 1,
  • l is an integer from 1 to 5, and when l is 2 or more, X2 are the same as or different from each other,
  • k2 is 0 or 1, with the proviso that k2 is 1 when X2 directly bonded to X3 is O, S, SO, SO 2 or CO.
  • the compound of Formula 21 may form the unit of Formula 2 by polymerization.
  • the compound of Formula 21 may be used in an amount of 100 mol parts to 400 mol parts, for example, 200 mol parts to 300 mol parts, based on 100 mol parts of the carbonate precursor of Formula 12.
  • the compound of Formula 21 may be used in an amount of 100 parts by weight to 350 parts by weight, for example, 150 parts by weight to 250 parts by weight, based on 100 parts by weight of the carbonate precursor of Formula 12.
  • Chemical Formula 21 may be represented by the following Chemical Formulas 31, 41, 51 or 61.
  • Y1 and Y2 are each a substituted or unsubstituted divalent aliphatic hydrocarbon group, a substituted or unsubstituted divalent isosorbide group, a substituted or unsubstituted arylene, or a substituted or unsubstituted heteroarylene,
  • Y3 and Y4 are each substituted or unsubstituted straight-chain or branched alkylene, substituted or unsubstituted cycloalkylene, O, S, SO, SO 2 or CO;
  • R1 to R4 are the same as or different from each other, and each is hydrogen, halogen, substituted or unsubstituted alkyl, or substituted or unsubstituted alkoxy;
  • a and b are each an integer from 0 to 10,
  • c, d, e and f are each an integer from 1 to 10;
  • g, h, i and j are each an integer from 0 to 4,
  • the polymerization is preferably carried out by interfacial polymerization, and the polymerization reaction can be carried out at normal pressure and low temperature during interfacial polymerization, and molecular weight control is easy.
  • the polymerization temperature is preferably 0°C to 40°C, and the reaction time is preferably 10 minutes to 5 hours.
  • the pH during the reaction is preferably maintained at 9 or more or 11 or more.
  • the solvent that can be used for the polymerization is not particularly limited as long as it is a solvent used for polymerization of polycarbonate in the art.
  • halogenated hydrocarbons such as dichloromethane (DCM) and chlorobenzene may be used.
  • the polymerization is preferably performed in the presence of an acid binder, and an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine may be used as the acid binder.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine may be used as the acid binder.
  • Alkylphenol having 1 to 20 carbon atoms may be used as the molecular weight modifier, and specific examples thereof include p-tert-butylphenol, p-cumylphenol, decylphenol, dodecylphenol, tetradecylphenol, hexadecylphenol, octadecylphenol, and eico. sylphenol, docosylphenol, or triacontylphenol is mentioned.
  • the molecular weight regulator may be added before polymerization, during polymerization, or after polymerization.
  • the molecular weight modifier may be used in an amount of 10 to 40 parts by weight based on 100 parts by weight of the compound represented by Formula 11.
  • 0.01 to 10 parts by weight preferably 0.1 to 6 parts by weight, may be used based on 100 parts by weight of the compound represented by Formula 11 and the compound represented by Formula 21, A desired molecular weight can be obtained within this range.
  • a reaction such as a tertiary amine compound such as triethylamine, tetra-n-butylammonium bromide, or tetra-n-butylphosphonium bromide, a quaternary ammonium compound, or a quaternary phosphonium compound Accelerators may additionally be used.
  • the composition used in the polymerization step may further include triethylamine as a coupling agent.
  • Another embodiment of the present invention provides a composition comprising the polycarbonate according to the above-described embodiments.
  • the polycarbonate resin composition of the embodiment may further include a heat stabilizer to prevent a decrease in molecular weight or deterioration of color of the resin molded article.
  • heat stabilizer examples include phosphorous acid, phosphoric acid, phosphonic acid, phosphonic acid, and esters thereof, and specifically, triphenylphosphite, tris(nonylphenyl)phosphite, tris(2,4-di-tert).
  • the heat stabilizer may be used in an amount of 0.0001 parts by weight to 1 parts by weight, 0.01 parts by weight to 0.1 parts by weight based on 100 parts by weight of the polycarbonate resin.
  • the composition including the polycarbonate may further include a commonly known antioxidant.
  • antioxidants include pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-laurylthiopropionate), glycerol-3-stearylthiopropionate, tri Ethylene glycol-bis[3-(3-tert-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol-bis[3-(3,5-di-tert-butyl -4-hydroxyphenyl) propionate], pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3 ,5-di-tert-butyl-4-hydroxyphenyl)propionate, 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxy
  • the antioxidant may be used in an amount of 0.0001 parts by weight to 1 parts by weight, 0.001 parts by weight to 0.5 parts by weight based on 100 parts by weight of the polycarbonate resin.
  • the composition including the polycarbonate may further include a lubricant, for example, pentaerythritol tetrastearate.
  • the lubricant may be used in an amount of 0.0001 parts by weight to 1 parts by weight, 0.005 parts by weight to 0.5 parts by weight, 0.01 parts by weight to 0.2 parts by weight based on 100 parts by weight of the polycarbonate.
  • Another embodiment of the present invention provides a molded article prepared from the composition comprising the polycarbonate according to the above-described embodiments.
  • the polycarbonate including the unit represented by Chemical Formula 1 has excellent hardness or heat resistance, and thus has a wider application field than conventionally used molded articles made of polycarbonate.
  • the polycarbonate further includes a repeating unit represented by Chemical Formula 2
  • desired physical properties can be realized by adjusting the weight ratio of the units represented by Chemical Formulas 1 and 2, so that the field of application can be further broadened. .
  • composition or molded article is selected from the group consisting of heat stabilizers, antioxidants, plasticizers, antistatic agents, nucleating agents, flame retardants, lubricants, impact modifiers, optical brighteners, ultraviolet absorbers, pigments and dyes, if necessary, in addition to the polycarbonate described above. It may further include more than one species.
  • extrusion molding with an extruder to prepare pellets, drying the pellets, and then injecting with an injection molding machine can do.
  • a 2L main reactor equipped with a nitrogen purge and condenser and capable of maintaining room temperature with a circulator, 620 g of water, 112.61 g of BPA, 11.27 g of oligomer 1 (10 wt% of BPA total weight), 102.5 g of 40 wt% NaOH aqueous solution , 200ml of DCM was added, and the mixture was stirred for several minutes.
  • the prepared polycarbonate 1 had a weight average molecular weight of 45,000 g/mol.
  • repeating unit derived from oligomer 1 was included in an amount of 10% by weight based on the weight of the total repeating unit of polycarbonate 1.
  • Example 1 oligomer 2 was prepared in the same manner as in Example 1 except that vanillic acid was used instead of 4-hydroxy-3-methylbenzoic acid, and oligomer 2 was used instead of oligomer 1 prepared polycarbonate 2 in the same manner as in Example 1. At this time, the weight average molecular weight of the prepared oligomer 2 was 1,700 g/mol, and the weight average molecular weight of the polycarbonate 2 was 41,000 g/mol.
  • repeating unit derived from oligomer 2 was included in an amount of 8 wt% based on the weight of the total repeating unit of polycarbonate 2.
  • Example 1 oligomer 3 was prepared in the same manner as in Example 1, except that 2,2-bis(4-hydroxycyclohexyl)propane was used instead of BPA.
  • Polycarbonate 3 was prepared in the same manner as in Example 1, except that oligomer 3 was used instead of oligomer 1.
  • the weight average molecular weight of the prepared oligomer 3 was 1,800 g/mol, and the weight average molecular weight of the polycarbonate 3 was 40,000 g/mol.
  • repeating unit derived from oligomer 3 was included in an amount of 10% by weight based on the weight of the total repeating unit of polycarbonate 3.
  • Example 1 oligomer 4 was prepared in the same manner as in Example 1 except that methylhydroquinone was used instead of BPA, and in the same manner as in Example 1 except that oligomer 4 was used instead of oligomer 1 Polycarbonate 4 was prepared. At this time, the weight average molecular weight of the prepared oligomer 4 was 1,600 g/mol, and the weight average molecular weight of the polycarbonate 4 was 43,000 g/mol.
  • repeating unit derived from oligomer 4 was included in an amount of 9% by weight based on the weight of the total repeating unit of polycarbonate 4.
  • Example 1 instead of BPA, 1,1-bis (4-hydroxyphenyl) cyclohexane (1,1-bis (4-hydroxyphenyl) cyclohexane), 4-hydroxy-3-methylbenzoic acid instead of 4-hydroxy- Oligomer 5 was prepared in the same manner as in Example 1 except that 3,5-dimethylbenzoic acid (4-hydroxy-3,5-dimethylbenozoic acid) was used, except that oligomer 5 was used instead of oligomer 1 Polycarbonate 5 was prepared in the same manner as in 1. At this time, the weight average molecular weight of the prepared oligomer 5 was 1,200 g/mol, and the weight average molecular weight of polycarbonate 5 was 45,000 g/mol.
  • repeating unit derived from oligomer 5 was included in an amount of 5% by weight based on the weight of the total repeating unit of polycarbonate 5.
  • Example 1 oligomer 6 was prepared in the same manner as in Example 1, except that 1,4-cyclohexanediol (1,4-cyclohexanediol) and vanillic acid instead of 4-hydroxy-3-methylbenzoic acid were used instead of BPA. was prepared, and polycarbonate 6 was prepared in the same manner as in Example 1, except that oligomer 6 was used instead of oligomer 1. At this time, the weight average molecular weight of the prepared oligomer 6 was 1,200 g/mol, and the weight average molecular weight of the polycarbonate 6 was 49,000 g/mol.
  • repeating unit derived from oligomer 6 was included in an amount of 8% by weight based on the weight of the total repeating unit of polycarbonate 6.
  • Resorcinol (2.2 equiv) and TEA (3.0 equiv) were dissolved in DCM, and then terephthaloyl chloride (1.0 equiv) was dissolved in DCM and slowly added dropwise at low temperature. After the reaction was terminated by stirring at room temperature for more than 10 hours, HCl and K 2 CO 3 aqueous solution were added to remove TEA salt and side reactants.
  • the oligomer A synthesized as described above was put into the polycarbonate manufacturing process without a separate separation operation.
  • the weight average molecular weight of the prepared polycarbonate A was 46,000 g/mol.
  • the repeating unit derived from the oligomer A was included in an amount of 10% by weight based on the weight of the total repeating unit of the polycarbonate A.
  • Example 1 the oligomer in the same manner as in Example 1, except that diethylene glycol instead of BPA and 4-hydroxybenzoic acid instead of 4-hydroxy-3-methylbenzoic acid were used.
  • B was prepared, and polycarbonate B was prepared in the same manner as in Example 1, except that oligomer B was used instead of oligomer 1.
  • the weight average molecular weight of the prepared oligomer B was 1,400 g/mol, and the weight average molecular weight of polycarbonate B was 38,000 g/mol.
  • the repeating unit derived from the oligomer B was included in an amount of 7% by weight based on the weight of the total repeating unit of the polycarbonate B.
  • Example 1 oligomer C was prepared in the same manner as in Example 1, except that resorcinol instead of BPA and 3-hydroxybenzoic acid instead of 4-hydroxy-3-methylbenzoic acid were used.
  • Polycarbonate C was prepared in the same manner as in Example 1, except that oligomer C was used instead of oligomer 1.
  • the weight average molecular weight of the prepared oligomer C was 2,300 g/mol, and the weight average molecular weight of polycarbonate C was 46,000 g/mol.
  • the repeating unit derived from the oligomer C was included in an amount of 8% by weight based on the weight of the total repeating unit of the polycarbonate C.
  • Example 1 oligomer D was prepared in the same manner as in Example 1, except that 4-hydroxybenzoic acid was used instead of 4-hydroxy-3-methylbenzoic acid, and oligomer D instead of oligomer 1 was used.
  • Polycarbonate D was prepared in the same manner as in Example 1, except that At this time, the weight average molecular weight of the prepared oligomer D was 1,800 g/mol, and the weight average molecular weight of polycarbonate D was 45,000 g/mol.
  • the repeating unit derived from the oligomer D was contained in an amount of 9% by weight based on the weight of the total repeating unit of the polycarbonate D.
  • Example 1 1,1-bis (4-hydroxyphenyl) cyclohexane instead of BPA, 4-hydroxybenzoic acid instead of 4-hydroxy-3-methylbenzoic acid
  • An oligomer E was prepared in the same manner as in Example 1 except that (4-hydroxybenzoic acid) was used, and polycarbonate E was prepared in the same manner as in Example 1, except that oligomer E was used instead of oligomer 1.
  • the weight average molecular weight of the prepared oligomer E was 2,000 g/mol
  • the weight average molecular weight of polycarbonate E was 48,000 g/mol.
  • the repeating unit derived from the oligomer E was included in an amount of 7% by weight based on the weight of the total repeating unit of the polycarbonate E.
  • Weight average molecular weight (g/mol): Using an Agilent 1200 series, calibrated with PS standard and measured.
  • MI Flowability
  • Izod room temperature impact strength J/m: It was measured at 23 °C according to ASTM D256 (1/8 inch, Notched Izod).
  • Pencil hardness Using a pencil hardness tester (Cometech) at 23° C. according to ASTM D3363, under a load of 50 g, it was measured with pencils of 2B, B, and HB strength at an angle of 45 degrees.
  • polycarbonate Suzy weight average molecular weight (g/mol) MI (g/10min) impact strength (J/m) pencil hardness
  • Example 1 polycarbonate 1 45,000 15.4 300 HB
  • Example 2 polycarbonate 2 41,000 14.0 280 HB
  • Example 3 polycarbonate 3 40,000 16.0 260 HB
  • Example 4 polycarbonate 4 43,000 13.1 250 B
  • Example 5 polycarbonate 5 45,000 16.2 310 HB
  • Comparative Example 4 polycarbonate D 45,000 19.0 250 B
  • Comparative Example 5 polycarbonate E 48,000 15.8 240 B
  • the polycarbonate of Comparative Example 5 differs only in the presence or absence of substitution of a phenyl group with the polycarbonate of Example 5, and the impact strength of the polycarbonate of Comparative Example 5 is lower than that of the polycarbonate of Example 5, and the pencil hardness is also low. Able to know.
  • the polycarbonate including the repeating unit of Chemical Formula 1 of the present invention can achieve improved impact resistance and high hardness at the same time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 출원은 화학식 1로 표시되는 단위를 포함하는 폴리카보네이트, 이를 포함하는 조성물 및 상기 조성물로 제조된 성형품에 관한 것이다.

Description

폴리카보네이트 및 이의 제조방법
본 발명은 폴리카보네이트 및 이의 제조방법에 관한 것이다. 보다 구체적으로, 본 발명은 높은 경도를 및/또는 내열성을 갖는 폴리카보네이트 및 이의 제조방법에 관한 것이다.
본 발명은 2021년 1월 27일 한국 특허청에 제출된 한국 특허 제10-2021-0011646호의 출원일의 이익을 주장하며, 그 내용 전부는 본 발명에 포함된다.
폴리카보네이트 수지는 전기전자 제품의 외장재, 자동차 부품, 건축 소재, 광학 부품 등의 분야에 다양하게 사용되고 있는 고분자 소재이다.
폴리카보네이트는 비스페놀 A 석유에서 추출된 물질로, 경도를 높이기 위해서는 하드 코팅과 같은 추가 공정 및 비용이 수반되며 내구성이 저하되는 문제가 있다.
이에, 폴리카보네이트 자체의 우수한 물성을 유지하면서도, 내구성이 개선된 폴리카보네이트의 개발이 요구된다.
본 발명의 일 실시상태는 신규한 구조의 폴리카보네이트 및 이의 제조방법을 제공하고자 한다.
본 발명의 또 하나의 실시상태는 신규한 구조의 폴리카보네이트를 포함하는 조성물 및 이 조성물로 제조된 성형품을 제공하고자 한다.
본 발명의 일 실시상태는 하기 화학식 1로 표시되는 단위를 포함하는 폴리카보네이트를 제공한다.
[화학식 1]
Figure PCTKR2022000316-appb-img-000001
상기 화학식 1에 있어서,
A는 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬렌, 치환 또는 비치환된 시클로알킬렌, 및 치환 또는 비치환된 아릴렌 중에서 선택된 하나 또는 이들 중 2 이상이 연결된 기이고,
R11 내지 R14는 서로 같거나 상이하고, 각각 할로겐, 알킬 또는 알콕시이며,
o, p, q 및 r은 각각 1 내지 4의 정수이고,
n 및 m은 각각 0 내지 50의 정수이며,
o가 2 이상인 경우 R11은 서로 동일하거나 상이하고,
p 또는 n이 2 이상인 경우 R12는 서로 동일하거나 상이하며,
q 또는 m이 2 이상인 경우 R13는 서로 동일하거나 상이하고,
r이 2 이상인 경우 R14는 서로 동일하거나 상이하며,
폴리카보네이트 내에 포함되는 화학식 1의 단위는 서로 같거나 상이하고,
*은 폴리카보네이트의 주쇄에 연결되는 부위를 의미한다.
본 발명의 또 하나의 실시상태는 하기 화학식 11의 화합물 및 카보네이트 전구체를 포함하는 조성물을 중합하는 단계를 포함하는 상기 화학식 1로 표시되는 단위를 포함하는 폴리카보네이트의 제조방법을 제공한다.
[화학식 11]
Figure PCTKR2022000316-appb-img-000002
상기 화학식 11에 있어서, 각 치환기의 정의는 화학식 1과 같다.
본 발명의 또 하나의 실시상태는 전술한 실시상태에 따른 폴리카보네이트를 포함하는 조성물을 제공한다.
본 발명의 또 하나의 실시상태는 전술한 실시상태에 따른 폴리카보네이트를 포함하는 조성물로 제조된 성형품을 제공한다.
본 발명의 몇몇 실시상태들에 따른 폴리카보네이트는 높은 경도를 갖는다.
본 발명의 몇몇 실시상태들에 따른 폴리카보네이트는 우수한 내열성을 갖는다.
따라서, 높은 경도 또는 우수한 내열성을 갖는 폴리카보네이트를 이용함으로써, 우수한 기계적 강도 또는 내열성이 필요한 렌즈, 유리, 광학용 부품, 차량용 부품 등 폭넓은 분야에서 활용될 수 있다.
이하에서 구체적인 실시상태들에 대하여 보다 상세히 설명한다.
본 명세서에서, 시클로알킬렌은 단환식 또는 다환식 시클로알킬렌일 수 있다. 구체적으로, 시클로알킬렌은 탄소수 3 내지 20의 시클로알킬렌; 탄소수 6 내지 18의 단환식 또는 다환식 시클로알킬렌; 또는 탄소수 6 내지 12의 단환식 또는 다환식 시클로알킬렌일 수 있다. 보다 구체적으로, 시클로알킬렌은 단환식 시클로알킬렌으로서 사이클로펜틸렌, 사이클로헵실렌, 또는 사이클로헵틸렌 등의 지환족 탄화수소 유래의 2가기 등일 수 있고, 다환식 시클로알킬렌으로서 아다만탄-디일, 노르보난-디일 등일 수 있다. 다만, 이에 한정되는 것은 아니다. 또한 상기 시클로알킬렌은 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알콕시, 또는 할로겐으로 1 이상 치환되거나 또는 치환되지 않을 수 있다.
본 명세서에서, 시클로알킬은 2가기가 아니고 1가기인 것을 제외하고는 시클로알킬렌의 설명이 적용될 수 있다.
본 명세서에서, 헤테로시클로알킬렌은 헤테로원자로서 O, S, Se 또는 N을 포함하는 단환식 또는 다환식 헤테로시클로알킬렌기일 수 있다. 구체적으로, 헤테로시클로알킬렌은 탄소수 1 내지 20의 헤테로시클로알킬렌; 탄소수 2 내지 18의 단환식 또는 다환식 헤테로시클로알킬렌; 또는 탄소수 2 내지 12의 단환식 또는 다환식 헤테로시클로알킬렌일 수 있다. 보다 구체적으로, 헤테로시클로알킬렌은 디옥사닐렌, 디티아닐렌 등이 있다.
본 명세서에서, 헤테로시클로알킬은 2가기가 아니고 1가기인 것을 제외하고는 헤테로시클로알킬렌의 설명이 적용될 수 있다.
본 명세서에 있어서, 직쇄 또는 분지쇄의 알킬렌은 탄소수 1 내지 10, 또는 탄소수 1 내지 5의 지방족 탄화수소 유래의 2가기로서, 직쇄 또는 분지쇄의 알킬렌일 수 있다. 분지쇄의 알킬렌인 경우, 탄소수는 2 내지 10, 또는 탄소수 2 내지 5일 수 있다. 알킬렌의 구체적인 예로는 메틸렌, 에틸렌, 프로필렌, n-프로필렌, 이소프로필렌, 부틸렌, n-부틸렌, 이소부틸렌, tert-부틸렌, sec-부틸렌, 1-메틸-부틸렌, 1-에틸-부틸렌, 펜틸렌, n-펜틸렌, 이소펜틸렌, 네오펜틸렌, tert-펜틸렌, 헥실렌, n-헥실렌, 1-메틸펜틸렌, 2-메틸펜틸렌, 4-메틸-2-펜틸렌, 3,3-디메틸부틸렌, 2-에틸부틸렌, 헵틸렌, n-헵틸렌, 1-메틸헥실렌, 옥틸렌, n-옥틸렌, tert-옥틸렌, 1-메틸헵틸렌, 2-에틸헥실렌, 2-프로필펜틸렌, n-노닐렌, 2,2-디메틸헵틸렌, 1-에틸-프로필렌, 1,1-디메틸-프로필렌, 이소헥실렌, 2-메틸펜틸렌, 4-메틸헥실렌, 5-메틸헥실렌 등이 있으나, 이들에 한정되지 않는다.
본 명세서에서, 직쇄 또는 분지쇄의 알킬은 2가기가 아니고 1가기인 것을 제외하고는 직쇄 또는 분지쇄의 알킬렌의 설명이 적용될 수 있다.
본 명세서에서, 다른 한정이 없는 한, 알킬은 직쇄 알킬 및 분지쇄 알킬을 포함한다.
본 명세서에 있어서, 아릴렌은 단환식 또는 다환식 아릴렌일 수 있으며, 탄소수는 특별히 한정되지 않으나, 탄소수 6 내지 30인 것이 바람직하며, 탄소수 6 내지 20일 수 있다. 구체적으로 단환식 아릴렌으로는 페닐렌, 바이페닐릴렌, 터페닐릴렌 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 아릴렌이 다환식 아릴렌인 경우 탄소수는 특별히 한정되지 않으나, 탄소수 10 내지 30인 것이 바람직하며, 탄소수 10 내지 20일 수 있다. 구체적으로 다환식 아릴렌으로는 나프틸렌, 안트라세닐렌, 페난트레닐렌, 트리페닐레닐렌, 파이레닐렌, 페날레닐렌, 페릴레닐렌, 크라이세닐렌, 플루오레닐렌 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에서, 아릴은 2가기가 아니고 1가기인 것을 제외하고는 아릴렌의 설명이 적용될 수 있다.
본 명세서에 있어서, 헤테로아릴렌은 탄소가 아닌 원자, 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 O, N, Se 및 S 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함한다. 상기 헤테로아릴렌의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 30인 것이 바람직하며, 탄소수 1 내지 20일 수 있다. 상기 헤테로아릴렌은 단환식 또는 다환식일 수 있다. 헤테로아릴렌의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 피리딘기, 바이피리딘기, 피리미딘기, 트리아진기, 트리아졸기, 아크리딘기, 피리다진기, 피라진기, 퀴놀린기, 퀴나졸린기, 퀴녹살린기, 프탈라진기, 피리도 피리미딘기, 피리도 피라진기, 피라지노 피라진기, 이소퀴놀린기, 인돌기, 카바졸기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에서, 헤테로아릴은 2가기가 아니고 1가기인 것을 제외하고는 헤테로아릴렌의 설명이 적용될 수 있다.
본 명세서에서, 2가의 지방족 탄화수소기는 전술한 직쇄 또는 분지쇄의 알킬렌, 시클로알킬렌, 헤테로시클로알킬렌 등을 의미한다.
본 명세서에 있어서, 알콕시는 탄소수 1 내지 10, 또는 탄소수 1 내지 5의 알콕시일 수 있다. 알콕시의 구체적인 예로는 메톡시, 에톡시, n-프로폭시, 이소프로폭시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, 1-메틸-부톡시, 1-에틸-부톡시, 또는 펜톡시 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 할로겐은 플루오로, 클로로, 브로모, 또는 아이오도기이다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 같거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 할로겐; 알킬; 시클로알킬; 헤테로시클로알킬; 알콕시; 아릴; 및 헤테로아릴로 이루어진 군으로부터 선택되는 1 이상의 치환기로 치환되었거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다.
본 명세서에서 *은 다른 구조와의 결합부위를 의미한다.
본 발명의 일 실시상태는 하기 화학식 1로 표시되는 단위를 포함하는 폴리카보네이트를 제공한다.
[화학식 1]
Figure PCTKR2022000316-appb-img-000003
상기 화학식 1에 있어서, 각 치환기의 정의는 전술한 바와 같다.
상기 화학식 1의 구조가 에스테르 구조를 포함하고, 페닐기가 할로겐기, 알킬기 또는 알콕시기로 치환되어 있음으로써, 페닐기가 치환되지 않은 폴리카보네이트에 비해 높은 경도와 내열성을 가질 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리카보네이트가 상기 화학식 1의 단위를 2 이상 포함할 경우, 복수의 화학식 1의 단위는 서로 같거나 상이하다.
본 발명의 일 실시상태에 따르면, 상기 폴리카보네이트는 상기 화학식 1로 표시되는 단위를 폴리카보네이트 총 중량에 대하여 3 중량% 이상, 4 중량% 이상, 5 중량% 이상 포함하고, 20 중량% 이하, 17 중량% 이하, 15 중량% 이하로 포함될 수 있다.
상기 폴리카보네이트가 상기 범위 내로 화학식 1로 표시되는 단위를 포함할 경우, 적당한 중합도와 높은 경도를 얻을 수 있다.
본 발명에 있어서 폴리카보네이트 내에 포함된 구조들의 함량은, 폴리카보네이트에 대한 핵자기 공명(NMR) 분석 후, 그 결과로부터 통상의 방법에 따라 계산할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1의 A는 치환 또는 비치환된 시클로알킬렌일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1의 A는 치환 또는 비치환된 아릴렌일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1의 A는 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬렌, 치환 또는 비치환된 시클로알킬렌, 및 치환 또는 비치환된 아릴렌 중에서 2 이상이 연결된 기일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1의 A는 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬렌과 1 이상의 치환 또는 비치환된 시클로알킬렌이 연결된 기일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1의 A는 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬렌과 1 이상의 치환 또는 비치환된 아릴렌이 연결된 기일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1의 A는 1 이상의 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬렌과 치환 또는 비치환된 시클로알킬렌이 연결된 기일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1의 A는 치환 또는 비치환된 시클로알킬렌과 1 이상의 치환 또는 비치환된 아릴렌이 연결된 기일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1의 A는 하기 구조식들 중에서 선택될 수 있다.
Figure PCTKR2022000316-appb-img-000004
상기 구조식에 있어서,
Z1 내지 Z6는 서로 같거나 상이하고, 각각 단일결합, 직쇄 또는 분지쇄의 알킬렌, 또는 시클로알킬렌이고,
R15 내지 R20은 서로 같거나 상이하고, 각각 수소, 직쇄 또는 분지쇄의 알킬, 시클로알킬, 또는 아릴이며,
s, t 및 w는 각각 0 내지 4의 정수이고,
u, v 및 x는 각각 0 내지 10의 정수이며,
s가 2 이상인 경우 R15는 서로 같거나 상이하고,
t가 2 이상인 경우 R16은 서로 같거나 상이하며,
u가 2 이상인 경우 R17은 서로 같거나 상이하고,
v가 2 이상인 경우 R18은 서로 같거나 상이하며,
w가 2 이상인 경우 R19는 서로 같거나 상이하고,
x가 2 이상인 경우 R20은 서로 같거나 상이하다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1의 A는 하기 구조식들 중에서 선택될 수 있다.
Figure PCTKR2022000316-appb-img-000005
상기 구조식에 있어서, Z1 내지 Z6, R15 내지 R20, s, t, u, v, w 및 x는 전술한 바와 같다.
일 예에 따르면, Z1 및 Z2는 각각 직접결합, 탄소수 1 내지 6의 직쇄 또는 분지쇄의 알킬렌, 또는 탄소수 3 내지 20의 시클로알킬렌일 수 있다.
일 예에 따르면, Z1 및 Z2는 각각 직접결합, 메틸렌, 프로필렌, 또는 시클로헥실렌일 수 있다.
일 예에 따르면, Z1 및 Z2는 각각 직접결합, 메틸렌, *-C(CH3)2-*, 또는
Figure PCTKR2022000316-appb-img-000006
일 수 있다.
일 예에 따르면, Z3 내지 Z6은 서로 같거나 상이하고, 각각 직접결합, 또는 탄소수 1 내지 6의 직쇄 또는 분지쇄의 알킬렌일 수 있다.
일 예에 따르면, Z3 내지 Z6은 서로 같거나 상이하고, 각각 직접결합, 메틸렌, 에틸렌, 또는 프로필렌일 수 있다.
일 예에 따르면, Z3 내지 Z6은 서로 같거나 상이하고, 각각 직접결합, 또는 메틸렌일 수 있다.
일 예에 따르면, R15 내지 R20은 서로 같거나 상이하고, 각각 수소, 또는 탄소수 1 내지 6의 알킬이다.
일 예에 따르면, R15 내지 R20은 서로 같거나 상이하고, 각각 수소, 또는 메틸이다.
일 예에 따르면, s, t, u, v, w 및 x는 각각 0, 1, 또는 2이다.
본 발명의 일 실시상태에 따르면, n 및 m은 각각 1 내지 10 일 수 있다.
본 발명의 일 실시상태에 따르면, n과 m의 합은 2 내지 20, 2 내지 15일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1의 o, p, q 및 r은 각각 1 또는 2이다.
본 발명의 일 실시상태에 따르면, R11 내지 R14는 서로 같거나 상이하고, 각각 할로겐, 알킬, 또는 알콕시이다.
본 발명의 일 실시상태에 따르면, R11 내지 R14는 서로 같거나 상이하고, 각각 탄소수 1 내지 6의 알킬, 또는 탄소수 1 내지 6의 알콕시이다.
본 발명의 일 실시상태에 따르면, R11 내지 R14는 서로 같거나 상이하고, 각각 메틸, 또는 메톡시이다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1은 하기 화학식 1-A 또는 1-B로 표시될 수 있다.
[화학식 1-A]
Figure PCTKR2022000316-appb-img-000007
[화학식 1-B]
Figure PCTKR2022000316-appb-img-000008
상기 화학식 1-A 및 1-B에 있어서,
R111, R112, R141 및 R142는 서로 같거나 상이하고, 각각 할로겐, 알킬, 또는 알콕시이고,
나머지 치환기는 화학식 1에서 정의한 바와 같다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1은 하기 화학식 1-A-1 또는 1-B-1로 표시될 수 있다.
[화학식 1-A-1]
Figure PCTKR2022000316-appb-img-000009
[화학식 1-B-1]
Figure PCTKR2022000316-appb-img-000010
상기 화학식 1-A-1 및 1-B-1에 있어서,
R111, R112, R141 및 R142는 서로 같거나 상이하고, 각각 할로겐, 알킬 또는 알콕시이고,
나머지 치환기는 화학식 1에서 정의한 바와 같다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1에서
Figure PCTKR2022000316-appb-img-000011
Figure PCTKR2022000316-appb-img-000012
는 동일할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1에서
Figure PCTKR2022000316-appb-img-000013
Figure PCTKR2022000316-appb-img-000014
는 동일할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1은 하기 화학식 1-1로 표시될 수 있다.
[화학식 1-1]
Figure PCTKR2022000316-appb-img-000015
상기 화학식 1-1에 있어서,
R21 및 R22는 서로 같거나 상이하고, 각각 할로겐, 알킬, 또는 알콕시이며,
p1 및 r1은 각각 1 내지 4의 정수이고,
n1 및 m1은 각각 1 내지 50의 정수이며,
p1 또는 n1이 2 이상인 경우 R21은 서로 같거나 상이하며,
q1 또는 m1이 2 이상인 경우 R22는 서로 같거나 상이하고,
나머지 치환기의 정의는 화학식 1에서 정의한 바와 같다.
본 발명의 일 실시상태에 따르면, 상기 화학식 1-1의 n1과 m1의 합은 5 내지 20일 수 있다.
또 발명의 일 실시상태에 따른 폴리카보네이트는 목적과 용도에 맞게 중량평균분자량(Mw)을 적절히 조절할 수 있으며, 투명성 및 충격강도 등 폴리카보네이트 자체의 우수한 특성을 유지하면서도 개선된 내후성을 나타낼 수 있는 점을 고려할 때 상기 폴리카보네이트의 중량평균분자량은 40,000 g/mol 이상, 또는 45,000 g/mol 이상, 또는 48,000 g/mol 이상이면서, 60,000 g/mol 이하, 또는 55,000 g/mol 이하, 또는 50,000 g/mol 이하일 수 있다.
한편, 본 발명에 있어서 폴리카보네이트 및 이의 제조에 사용되는 올리고머의 중량평균분자량(Mw)은 Agilent 1200 series를 이용하여, 폴리스티렌 표준(PS standard)을 이용한 겔 투과 크로마토그래피(gel permeation chromatograph; GPC)로 측정할 수 있다. 구체적으로는 Polymer Laboratories PLgel MIX-B 300mm 길이 칼럼을 이용하여 Agilent 1200 series기기를 이용하여 측정할 수 있으며, 이때 측정 온도는 160℃이고, 사용 용매는 1,2,4-트리클로로벤젠이며, 유속은 1mL/min이다. 폴리카보네이트 또는 올리고머의 샘플은 각각 10mg/10mL의 농도로 조제한 후, 200 μL 의 양으로 공급하고, 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여 Mw 값을 유도한다. 이때 폴리스티렌 표준품의 분자량(g/mol)은 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000의 9종을 사용한다.
본 발명의 일 실시상태에 따르면, 상기 폴리카보네이트는 하기 화학식 2의 단위를 더 포함한다.
[화학식 2]
Figure PCTKR2022000316-appb-img-000016
상기 화학식 2에 있어서,
X1 및 X3는 서로 같거나 상이하고, 각각 치환 또는 비치환된 2가의 지방족 탄화수소기, 치환 또는 비치환된 2가의 이소소르비드기, 치환 또는 비치환된 아릴렌, 또는 치환 또는 비치환된 헤테로아릴렌이고,
X2는 치환 또는 비치환된 2가의 지방족 탄화수소기, 치환 또는 비치환된 2가의 이소소르비드기, 치환 또는 비치환된 아릴렌, 치환 또는 비치환된 헤테로아릴렌, O, S, SO, SO2 또는 CO이며,
k1은 0 또는 1이고, 단 X1과 직접 결합하는 X2가 O, S, SO, SO2 또는 CO인 경우 k1은 1이며,
l은 1 내지 5의 정수이고, l이 2 이상인 경우 X2는 서로 같거나 상이하며,
k2는 0 또는 1이고, 단 X3와 직접 결합하는 X2가 O, S, SO, SO2 또는 CO인 경우 k2는 1이며,
폴리카보네이트 내에 포함되는 화학식 2의 단위는 서로 같거나 상이하고,
*은 폴리카보네이트의 주쇄에 연결되는 부위를 의미한다.
본 발명의 일 실시상태에 따르면, 상기 폴리카보네이트가 상기 화학식 2의 단위를 2 이상 포함할 경우, 복수의 화학식 2의 단위는 서로 같거나 상이하다.
본 발명의 일 실시상태에 따르면, 상기 화학식 2의 X1 및 X3는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 알킬렌, 치환 또는 비치환된 시클로알킬렌, 치환 또는 비치환된 헤테로시클로알킬렌, 또는 치환 또는 비치환된 아릴렌일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 2의 X1 및 X3는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 알킬렌, 치환 또는 비치환된 탄소수 3 내지 30의 시클로알킬렌, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로시클로알킬렌, 또는 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 2의 X1 및 X3는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌, 치환 또는 비치환된 탄소수 3 내지 15의 시클로알킬렌, 치환 또는 비치환된 탄소수 2 내지 15의 헤테로시클로알킬렌, 또는 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 2의 X1 및 X3는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌, 또는 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 2의 X2는 치환 또는 비치환된 알킬렌, 치환 또는 비치환된 시클로알킬렌, 치환 또는 비치환된 헤테로시클로알킬렌, 치환 또는 비치환된 아릴렌, 치환 또는 비치환된 헤테로아릴렌, O, S, SO, SO2 또는 CO일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 2의 X2는 치환 또는 비치환된 탄소수 1 내지 30의 알킬렌, 치환 또는 비치환된 탄소수 3 내지 30의 시클로알킬렌, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로시클로알킬렌, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴렌, O, S, SO, SO2 또는 CO일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 2의 X2는 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌, 치환 또는 비치환된 탄소수 3 내지 15의 시클로알킬렌, 치환 또는 비치환된 탄소수 2 내지 15의 헤테로시클로알킬렌, 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌, 또는 O일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 2의 X2는 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌, 치환 또는 비치환된 탄소수 3 내지 15의 시클로알킬렌, 2가의 헥사하이드로퓨로[3,2-b]퓨란, 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌, 또는 O일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리카보네이트는 상기 화학식 2로 표시되는 단위를 폴리카보네이트 총 중량에 대하여 30 중량% 이상, 바람직하게는 50 중량% 이상의 양으로 포함하고, 80 중량% 이하, 70 중량% 이하로 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 2는 하기 화학식 3 내지 6 중 하나로 표시될 수 있다.
[화학식 3]
Figure PCTKR2022000316-appb-img-000017
[화학식 4]
Figure PCTKR2022000316-appb-img-000018
[화학식 5]
Figure PCTKR2022000316-appb-img-000019
[화학식 6]
Figure PCTKR2022000316-appb-img-000020
상기 화학식 3 내지 6에 있어서,
Y1 및 Y2는 각각 치환 또는 비치환된 2가의 지방족 탄화수소기, 치환 또는 비치환된 2가의 이소소르비드기, 치환 또는 비치환된 아릴렌, 또는 치환 또는 비치환된 헤테로아릴렌이고,
Y3 및 Y4는 각각 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬렌, 치환 또는 비치환된 시클로알킬렌, O, S, SO, SO2 또는 CO이며,
R1 내지 R4는 서로 같거나 상이하고, 각각 수소, 할로겐, 치환 또는 비치환된 알킬, 또는 치환 또는 비치환된 알콕시이고,
a 및 b는 각각 0 내지 10의 정수이며,
c, d, e 및 f는 각각 1 내지 10의 정수이고,
g, h, i 및 j는 각각 0 내지 4의 정수이며,
g, h, i 및 j가 각각 2 이상인 경우, 괄호 내의 치환기는 서로 같거나 상이하고,
폴리카보네이트 내에 포함되는 화학식 3 내지 6의 단위는 각각 서로 같거나 상이하며,
*은 폴리카보네이트의 주쇄에 연결되는 부위를 의미한다.
본 발명의 일 실시상태에 따르면, 상기 폴리카보네이트가 상기 화학식 3 내지 6의 단위를 각각 2 이상 포함할 경우, 복수의 화학식 3 내지 6의 단위는 각각 서로 같거나 상이하다.
본 발명의 일 실시상태에 따르면, 상기 화학식 3의 Y1은 치환 또는 비치환된 알킬렌, 치환 또는 비치환된 시클로알킬렌, 또는 치환 또는 비치환된 헤테로시클로알킬렌일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 3의 Y1은 치환 또는 비치환된 탄소수 1 내지 30의 알킬렌, 치환 또는 비치환된 탄소수 3 내지 30의 시클로알킬렌, 또는 치환 또는 비치환된 탄소수 2 내지 30의 헤테로시클로알킬렌일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 3의 Y1은 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌, 치환 또는 비치환된 탄소수 3 내지 15의 시클로알킬렌, 또는 치환 또는 비치환된 탄소수 2 내지 15의 헤테로시클로알킬렌일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 3의 Y1은 치환 또는 비치환된 메틸렌, 치환 또는 비치환된 시클로헥실렌, 또는 치환 또는 비치환된 2가의 헥사하이드로퓨로[3,2-b]퓨란일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 4의 Y2는 치환 또는 비치환된 시클로알킬렌, 또는 치환 또는 비치환된 헤테로시클로알킬렌일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 4의 Y2는 치환 또는 비치환된 탄소수 3 내지 15의 시클로알킬렌, 또는 치환 또는 비치환된 탄소수 2 내지 15의 헤테로시클로알킬렌일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 4의 Y2는 치환 또는 비치환된 시클로헥실렌, 또는 치환 또는 비치환된 2가의 헥사하이드로퓨로[3,2-b]퓨란일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 5의 Y3은 치환 또는 비치환된 알킬렌, 또는 치환 또는 비치환된 시클로알킬렌일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 5의 Y3은 치환 또는 비치환된 탄소수 1 내지 30의 알킬렌, 또는 치환 또는 비치환된 탄소수 2 내지 30의 시클로알킬렌일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 5의 Y3은 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌, 또는 치환 또는 비치환된 탄소수 2 내지 15의 시클로알킬렌일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 5의 Y3은 치환 또는 비치환된 탄소수 1 내지 5의 직쇄 또는 분지쇄의 알킬렌, 또는 치환 또는 비치환된 시클로헥실렌일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 6의 Y4는 치환 또는 비치환된 알킬렌일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 6의 Y4는 치환 또는 비치환된 탄소수 1 내지 30의 알킬렌일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 6의 Y4는 치환 또는 비치환된 탄소수 1 내지 10의 알킬렌일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 6의 Y4는 치환 또는 비치환된 탄소수 1 내지 5의 직쇄 또는 분지쇄의 알킬렌일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 5 및 6의 R1 내지 R4는 서로 같거나 상이하고, 각각 치환 또는 비치환된 탄소수 1 내지 10의 알킬일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 5 및 6의 R1 내지 R4는 서로 같거나 상이하고, 각각 치환 또는 비치환된 탄소수 1 내지 5의 알킬일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 5 및 6의 R1 내지 R4는 서로 같거나 상이하고, 각각 치환 또는 비치환된 메틸일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 3은 하기 구조 중 어느 하나로 표시될 수 있다.
Figure PCTKR2022000316-appb-img-000021
본 발명의 일 실시상태에 따르면, 상기 화학식 4는 하기 구조 중 어느 하나로 표시될 수 있다.
Figure PCTKR2022000316-appb-img-000022
본 발명의 일 실시상태에 따르면, 상기 화학식 5는 하기 구조 중 어느 하나로 표시될 수 있다.
Figure PCTKR2022000316-appb-img-000023
본 발명의 일 실시상태에 따르면, 상기 화학식 6은 하기 구조 중 어느 하나로 표시될 수 있다.
Figure PCTKR2022000316-appb-img-000024
본 발명의 일 실시상태에 따르면, 상기 폴리카보네이트는 알코올, 카보네이트 및 페놀 중 선택되는 말단기를 가질 수 있다.
본 발명의 일 실시상태에 따른 폴리카보네이트는 종래의 폴리카보네이트에 비해 높은 경도와 우수한 내열성을 갖는다.
본 발명의 일 실시상태에 따르면, 온도 23℃에서 ASTM D256(1/8 inch, Notched Izod)에 의거하여 상기 폴리카보네이트의 충격강도를 측정하였을 때, 충격강도는 250 J/m 이상, 270 J/m 이상, 300 J/m 이상일 수 있다. 충격강도의 상한은 특별히 한정하지 않으나, 예컨대, 500 J/m 이하, 450 J/m 이하일 수 있다.
구체적으로, 아이조드(Izod) 충격강도 측정법은 일정한 무게의 진자(Pendulum)를 이용한 방법으로, 시편에 진자를 가격하여 회전시 돌아가는 높이로 얻어지는 흡수에너지를 시편 노치부의 단면적으로 나누어주어 충격강도를 얻는다.
본 발명의 일 실시상태에 따르면, 온도 23℃에서 연필경도계(Cometech)를 이용하고 ASTM D3363에 의거하여 50g의 하중으로 45도 각도에서 상기 폴리카보네이트의 연필경도를 측정하였을 때, 연필경도는 B 이상, HB 이상일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리카보네이트의 연필경도는 B 또는 HB일 수 있다.
본 발명의 또 하나의 실시상태는 하기 화학식 11의 화합물 및 카보네이트 전구체를 포함하는 조성물을 중합하는 단계를 포함하는 전술한 화학식 1로 표시되는 단위를 포함하는 폴리카보네이트의 제조방법을 제공한다.
[화학식 11]
Figure PCTKR2022000316-appb-img-000025
상기 화학식 11에 있어서, 각 치환기의 정의는 화학식 1과 같다.
상기 화학식 11의 치환기들의 바람직한 예시는 전술한 화학식 1과 관련된 설명과 동일하다.
본 발명의 일 실시상태에 따르면, 상기 화학식 11은 하기 화학식 11-1로 표시될 수 있다.
[화학식 11-1]
Figure PCTKR2022000316-appb-img-000026
상기 화학식 11-1에 있어서,
R21 및 R22는 서로 같거나 상이하고, 각각 할로겐, 알킬 또는 알콕시이며,
p1 및 r1은 각각 1 내지 4의 정수이고,
n1 및 m1은 각각 1 내지 50의 정수이며,
p1 또는 n1이 2 이상인 경우 R21은 서로 동일하거나 상이하며,
q1 또는 m1이 2 이상인 경우 R22는 서로 동일하거나 상이하고,
나머지 치환기의 정의는 화학식 1에서 정의한 바와 같다.
본 발명의 일 실시상태에 따르면, 상기 화학식 11의 화합물은 하기의 구조로 표시될 수 있다.
Figure PCTKR2022000316-appb-img-000027
상기 구조식들에서 n1 및 m1은 각각 1 내지 50의 정수이다.
상기 화학식 11의 화합물은 하기 반응식에 따라 제조될 수 있다.
[반응식]
Figure PCTKR2022000316-appb-img-000028
상기 반응식에서, A, R11 내지 R14, m, n, o, p, q 및 r은 상기 화학식 1의 정의와 동일하고, R1은 할로겐, 알킬 또는 알콕시이며, r1은 0 내지 4의 정수이고, r1이 2 이상인 경우 R1은 서로 동일하거나 상이하다.
디올 화합물, 카르복실산 화합물 및 피리딘을 디클로로메탄(Dichloromethane, DCM)에 넣고 교반한 후, 싸이오닐 클로라이드(SOCl2)를 저온에서 천천히 적가한다. 상온에서 10시간 이상 교반한 후 반응을 종결하여 화학식 11의 화합물을 수득한다.
본 발명의 일 실시상태에 따르면, 상기 카보네이트 전구체는 하기 화학식 12로 표시될 수 있다.
[화학식 12]
Figure PCTKR2022000316-appb-img-000029
상기 화학식 12에 있어서,
R5 및 R6는 서로 같거나 상이하고, 각각 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬, 치환 또는 비치환된 시클로알킬, 치환 또는 비치환된 아릴, 또는 치환 또는 비치환된 헤테로아릴이다.
상기 카보네이트 전구체는 상기 화학식 11의 화합물, 및 필요에 따라 추가의 공단량체를 연결하는 역할을 하는 것으로, 이의 구체적인 예로는 포스겐, 디포스겐, 트리포스겐, 브로모포스겐, 디메틸 카보네이트, 디에틸 카보네이트, 디부틸 카보네이트, 디시클로헥실 카보네이트, 디페닐 카보네이트, 디토릴 카보네이트, 비스(클로로페닐) 카보네이트, m-크레실 카보네이트, 디나프틸카보네이트, 비스(디페닐) 카보네이트 또는 비스할로포르메이트 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 카보네이트 전구체는 트리포스겐일 수 있다.
상기 화학식 11의 화합물과 상기 화학식 12의 카보네이트 전구체를 중합함으로써 전술한 화학식 1의 단위를 형성할 수 있다.
상기 화학식 11의 화합물은 상기 화학식 12의 카보네이트 전구체 100 중량부 대비 8 중량부 내지 40 중량부, 12 중량부 내지 30 중량부로 사용될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 중합 단계에서 사용되는 상기 조성물은 하기 화학식 21의 화합물을 더 포함할 수 있다.
[화학식 21]
Figure PCTKR2022000316-appb-img-000030
상기 화학식 21에 있어서,
X1 및 X3는 각각 치환 또는 비치환된 2가의 지방족 탄화수소기, 치환 또는 비치환된 2가의 이소소르비드기, 치환 또는 비치환된 아릴렌, 또는 치환 또는 비치환된 헤테로아릴렌이고,
X2는 치환 또는 비치환된 2가의 지방족 탄화수소기, 치환 또는 비치환된 2가의 이소소르비드기, 치환 또는 비치환된 아릴렌, 치환 또는 비치환된 헤테로아릴렌, O, S, SO, SO2 또는 CO이며,
k1은 0 또는 1이고, 단 X1과 직접 결합하는 X2가 O, S, SO, SO2 또는 CO인 경우 k1은 1이며,
l은 1 내지 5의 정수이고, l이 2 이상인 경우 X2는 서로 같거나 상이하며,
k2는 0 또는 1이고, 단 X3와 직접 결합하는 X2가 O, S, SO, SO2 또는 CO인 경우 k2는 1이다.
상기 화학식 21의 화합물은 중합에 의하여 전술한 화학식 2의 단위를 형성할 수 있다. 상기 화학식 21의 화합물은 상기 화학식 12의 카보네이트 전구체 100 몰부 대비 100 몰부 내지 400 몰부, 예컨대 200 몰부 내지 300 몰부로 사용될 수 있다.
상기 화학식 21의 화합물은 상기 화학식 12의 카보네이트 전구체 100 중량부 대비 100 중량부 내지 350 중량부, 예컨대 150 중량부 내지 250 중량부로 사용될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 21은 하기 화학식 31, 41, 51 또는 61로 표시될 수 있다.
[화학식 31]
Figure PCTKR2022000316-appb-img-000031
[화학식 41]
Figure PCTKR2022000316-appb-img-000032
[화학식 51]
Figure PCTKR2022000316-appb-img-000033
[화학식 61]
Figure PCTKR2022000316-appb-img-000034
상기 화학식 31, 41, 51 및 61에 있어서,
Y1 및 Y2는 각각 치환 또는 비치환된 2가의 지방족 탄화수소기, 치환 또는 비치환된 2가의 이소소르비드기, 치환 또는 비치환된 아릴렌, 또는 치환 또는 비치환된 헤테로아릴렌이고,
Y3 및 Y4는 각각 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬렌, 치환 또는 비치환된 시클로알킬렌, O, S, SO, SO2 또는 CO이며,
R1 내지 R4는 서로 같거나 상이하고, 각각 수소, 할로겐, 치환 또는 비치환된 알킬, 또는 치환 또는 비치환된 알콕시이고,
a 및 b는 각각 0 내지 10의 정수이며,
c, d, e 및 f는 각각 1 내지 10의 정수이고,
g, h, i 및 j는 각각 0 내지 4의 정수이며,
g, h, i 및 j가 각각 2 이상인 경우, 괄호 내의 치환기는 서로 같거나 상이하다.
상기 화학식 31, 41, 51 및 61의 치환기들의 바람직한 예시는 전술한 화학식 3 내지 6과 관련된 설명과 동일하다.
중합은 당 기술분야에 알려져 있는 방법이 이용될 수 있다.
상기 중합은 계면 중합으로 수행하는 것이 바람직하며, 계면 중합시 상압과 낮은 온도에서 중합 반응이 가능하며 분자량 조절이 용이하다.
또, 상기 중합 온도는 0℃ 내지 40℃, 반응 시간은 10분 내지 5시간이 바람직하다. 또한, 반응 중 pH는 9 이상 또는 11 이상으로 유지하는 것이 바람직하다.
또, 상기 중합에 사용할 수 있는 용매로는, 당업계에서 폴리카보네이트의 중합에 사용되는 용매이면 특별히 제한되지 않으며, 일례로 디클로로메탄(DCM), 클로로벤젠 등의 할로겐화 탄화수소를 사용할 수 있다.
또, 상기 중합은 산 결합제의 존재 하에 수행하는 것이 바람직하며, 상기 산 결합제로 수산화나트륨, 수산화칼륨 등의 알칼리금속 수산화물 또는 피리딘 등의 아민 화합물을 사용할 수 있다.
또, 상기 중합시 폴리카보네이트의 분자량 조절을 위하여, 분자량 조절제의 존재 하에 중합하는 것이 바람직하다. 상기 분자량 조절제로 탄소수 1 내지 20 알킬페놀을 사용할 수 있으며, 이의 구체적인 예로 p-tert-부틸페놀, p-쿠밀페놀, 데실페놀, 도데실페놀, 테트라데실페놀, 헥사데실페놀, 옥타데실페놀, 에이코실페놀, 도코실페놀 또는 트리아콘틸페놀을 들 수 있다. 상기 분자량 조절제는, 중합 개시 전, 중합 개시 중 또는 중합 개시 후에 투입될 수 있다. 상기 분자량 조절제는 상기 화학식 11로 표시되는 화합물 100 중량부 대비 10 중량부 내지 40 중량부의 양으로 사용될 수 있다.
상기 화학식 21로 표시되는 화합물도 함께 포함될 경우, 상기 화학식 11로 표시되는 화합물과 상기 화학식 21로 표시되는 화합물 총 100 중량부 대비 0.01 내지 10 중량부, 바람직하게는 0.1 내지 6 중량부를 사용할 수 있으며, 이 범위 내에서 원하는 분자량을 얻을 수 있다.
또, 상기 중합 반응의 촉진을 위하여, 트리에틸아민, 테트라-n-부틸암모늄브로마이드, 테트라-n-부틸포스포늄브로마이드 등의 3차 아민 화합물, 4차 암모늄 화합물, 4차 포스포늄 화합물 등과 같은 반응 촉진제를 추가로 사용할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 중합 단계에서 사용되는 상기 조성물은 커플링제로서 트리에틸아민을 더 포함할 수 있다.
본 발명의 또 하나의 실시상태는 전술한 실시상태들에 따른 폴리카보네이트를 포함하는 조성물을 제공한다.
상기 일 구현예의 폴리카보네이트 수지 조성물은 수지 성형품의 분자량의 저하나 색상의 악화를 방지하기 위해서 열안정제를 더 포함할 수 있다.
상기 열안정제의 예로는 아인산, 인산, 아포스폰산, 포스폰산 및 이들의 에스테르 등을 들 수 있고, 구체적으로 트리페닐포스파이트, 트리스(노닐페닐)포스파이트, 트리스(2,4-디-tert-부틸페닐)포스파이트, 트리데실포스파이트, 트리옥틸포스파이트, 트리옥타데실포스파이트, 디데실모노페닐포스파이트, 디옥틸모노페닐포스파이트, 디이소프로필모노페닐포스파이트, 모노부틸디페닐포스파이트, 모노데실디페닐포스파이트, 모노옥틸디페닐포스파이트, 비스(2,6-디-tert-부틸-4-메틸페닐)펜타에리트리톨디포스파이트, 2,2-메틸렌비스(4,6-디-tert-부틸페닐)옥틸포스파이트, 비스(노닐페닐)펜타에리트리톨디포스파이트, 비스(2,4-디-tert-부틸페닐)펜타에리트리톨디포스파이트, 디스테아릴펜타에리트리톨디포스파이트, 트리부틸포스페이트, 트리에틸포스페이트, 트리메틸포스페이트, 트리페닐포스페이트, 디페닐모노오르토크세닐포스페이트, 디부틸포스페이트, 디옥틸포스페이트, 디이소프로필포스페이트, 4,4'-비페닐렌디포스핀산테트라키스(2,4-디-tert-부틸페닐), 벤젠포스폰산디메틸, 벤젠포스폰산디에틸, 벤젠포스폰산디프로필 또는 이들의 2종 이상의 혼합물을 들 수 있다.
상기 열안정제는 상기 폴리카보네이트 수지 100 중량부에 대하여 0.0001 중량부 내지 1 중량부, 0.01 중량부 내지 0.1 중량부의 함량으로 사용될 수 있다. 상기 함량으로 안정제를 사용함에 따라서, 첨가제의 블리드 등을 일으키지 않고 수지의 분자량 저하나 변색을 방지할 수 있다.
또 하나의 예에 따르면, 상기 폴리카보네이트를 포함하는 조성물은 통상적으로 알려진 산화방지제를 더 포함할 수 있다.
상기 산화방지제의 구체적인 예로는 펜타에리트리톨테트라키스(3-메르캅토프로피오네이트), 펜타에리트리톨테트라키스(3-라우릴티오프로피오네이트), 글리세롤-3-스테아릴티오프로피오네이트, 트리에틸렌글리콜-비스[3-(3-tert-부틸-5-메틸-4-하이드록시페닐)프로피오네이트], 1,6-헥산디올-비스[3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트], 펜타에리트리톨-테트라키스[3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트], 옥타데실-3-(3,5-디-tert-부틸-4-하이드록시페닐)프로피오네이트, 1,3,5-트리메틸-2,4,6-트리스(3,5-디-tert-부틸-4-하이드록시벤질)벤젠, N,N-헥사메틸렌비스(3,5-디-tert-부틸-4-하이드록시-하이드로신나마이드), 3,5-디-tert-부틸-4-하이드록시-벤질포스포네이트-디에틸에스테르, 트리스(3,5-디-tert-부틸-4-하이드록시벤질)이소시아누레이트, 4,4'-비페닐렌디포스핀산테트라키스(2,4-디-tert-부틸페닐), 3,9-비스{1,1-디메틸-2-[β-(3-tert-부틸-4-하이드록시-5-메틸페닐)프로피오닐옥시]에틸}-2,4,8,10-테트라옥사스피로(5,5)운데칸 또는 이들의 2종 이상의 혼합물을 들 수 있다.
상기 산화방지제는 상기 폴리카보네이트 수지 100 중량부에 대하여 0.0001 중량부 내지 1 중량부, 0.001 중량부 내지 0.5 중량부의 함량으로 사용될 수 있다.
또 하나의 예에 따르면, 상기 폴리카보네이트를 포함하는 조성물은 활제를 더 포함할 수 있으며, 예컨대 펜타에리스리톨테트라스테아레이트를 포함할 수 있다.
상기 활제는 상기 폴리카보네이트 100 중량부에 대하여 0.0001 중량부 내지 1 중량부, 0.005 중량부 내지 0.5 중량부, 0.01 중량부 내지 0.2 중량부의 함량으로 사용될 수 있다.
본 발명의 또 하나의 실시상태는 전술한 실시상태들에 따른 폴리카보네이트를 포함하는 조성물로 제조된 성형품을 제공한다. 앞서 설명한 바와 같이, 상기 화학식 1로 표시되는 단위를 포함하는 폴리카보네이트는, 경도 또는 내열성이 우수하므로, 기존에 사용되던 폴리카보네이트로 제조되는 성형품에 비하여 응용 분야가 넓다. 또한, 상기 폴리카보네이트가 상기 화학식 2로 표시되는 반복단위를 더 포함하는 경우, 상기 화학식 1 및 2로 표시되는 단위의 중량비를 조절을 통해 원하는 물성을 구현할 수 있으므로, 응용 분야가 더욱 넓어질 수 있다.
상기 조성물 또는 성형품은 상기한 폴리카보네이트 외에, 필요에 따라 열안정제, 산화방지제, 가소제, 대전방지제, 핵제, 난연제, 활제, 충격보강제, 형광증백제, 자외선흡수제, 안료 및 염료로 이루어진 군으로부터 선택된 1종 이상을 추가로 포함할 수 있다.
상기 성형품의 제조 방법의 일례로, 상기한 폴리카보네이트와 기타 첨가제를 믹서를 이용하여 잘 혼합한 후에, 압출기로 압출 성형하여 펠릿으로 제조하고, 상기 펠릿을 건조시킨 다음 사출 성형기로 사출하는 단계를 포함할 수 있다.
실험예 1. 폴리카보네이트의 제조
실시예 1.
(1) 올리고머 1의 제조
Figure PCTKR2022000316-appb-img-000035
올리고머 1 (m+n = ~9)
비스페놀 A(Bisphenol A, BPA) (1 equiv), 4-히드록시-3-메틸벤조산(4-hydroxy-3-methylbenzoic acid) (4.0 equiv), 피리딘 (12.0 equiv)를 DCM에 녹인 후, 저온(-40℃~-20℃)에서 싸이오닐 클로라이드 (4.4 equiv)를 천천히 적가하였다. 상온(20℃~25℃)에서 10시간 이상 반응을 진행하여 종결한 후, HCl과 K2CO3 수용액을 이용해서 피리딘 염(pyridine salt) 및 부반응물을 제거하였다. 그 후, 유기층을 분리한 뒤 용매를 감압하여 제거하였고, 생성물을 테트라하이드로퓨란(Tetrahydrofurane, THF)에 완전히 녹여준 후 메탄올(Methanol, MeOH)을 이용해서 올리고머 1을 얻었다. (올리고머 1의 중량평균분자량 : 1,450 g/mol)
(2) 폴리카보네이트 1의 제조
질소 퍼지와 콘덴서가 구비되고, 서큘레이터(circulator)로 상온 유지가 가능한 2L 메인 반응기에 물 620g, BPA 112.61g, 올리고머 1 11.27g(BPA 총 중량 대비 10 wt%), 40 중량% NaOH 수용액 102.5g, DCM 200ml 를 투입하고, 수분간 교반시켰다.
질소 퍼징을 멈추고 1L 둥근 바닥 플라스크에 트리포스겐 62g (0.209 mol) 과 DCM 120g 을 넣고 트리포스겐을 용해시킨 다음 용해된 트리포스겐 용액을 천천히 BPA 및 올리고머 1 용액이 녹아있는 메인 반응기에 투입하고, 투입이 완료되면 PTBP(p-tert-부틸페놀) 2.66g (0.177 mol)을 넣고 10 여분간 교반시켰다. 교반이 완료된 후 40 중량%의 NaOH 수용액 97g을 넣은 후 커플링제로서 트리에틸아민(Triethylamine, TEA) 1.16g을 투입하였다. 이 때, 반응 pH는 11~13을 유지하였다.
충분히 반응이 이루어지도록 시간을 두고 반응을 종결하기 위해 HCl을 투입하여 pH를 3~4로 떨어뜨렸다. 그리고, 교반을 중지하여 폴리머층과 물층을 분리한 다음 물층은 제거하고 순수한 H2O를 다시 투입하여 수세하는 과정을 3~5회 반복 수행하였다.
수세가 완전히 이루어지면 폴리머층만 추출하고 메탄올, H2O 등을 이용한 비용매를 사용하여 재침법으로 폴리머 결정체를 수득하였다. 이 때, 제조된 폴리카보네이트 1은 중량평균분자량이 45,000 g/mol이었다.
NMR 분석 결과 올리고머 1로부터 유래된 반복 단위는 폴리카보네이트 1의 전체 반복 단위의 중량 대비 10 중량%로 포함되어 있는 것으로 확인하였다.
실시예 2. 올리고머 2 및 폴리카보네이트 2의 제조
Figure PCTKR2022000316-appb-img-000036
올리고머 2 (m+n = ~10)
실시예 1에서, 4-히드록시-3-메틸벤조산 대신 바닐린산(vanillic acid)를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 올리고머 2를 제조하였고, 올리고머 1 대신 올리고머 2를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리카보네이트 2를 제조하였다. 이 때, 제조된 올리고머 2의 중량평균분자량은 1,700 g/mol이고, 폴리카보네이트 2의 중량평균분자량은 41,000 g/mol이었다.
NMR 분석 결과 올리고머 2로부터 유래된 반복 단위는 폴리카보네이트 2의 전체 반복 단위의 중량 대비 8 중량%로 포함되어 있는 것으로 확인하였다.
실시예 3. 올리고머 3 및 폴리카보네이트 3의 제조
Figure PCTKR2022000316-appb-img-000037
올리고머 3 (m+n = ~12)
실시예 1에서, BPA 대신 2,2-비스(4-히드록시시클로헥실)프로판(2,2-bis(4-hydroxycyclohexyl)propane)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 올리고머 3을 제조하였고, 올리고머 1 대신 올리고머 3을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리카보네이트 3을 제조하였다. 이 때, 제조된 올리고머 3의 중량평균분자량은 1,800 g/mol이고, 폴리카보네이트 3의 중량평균분자량은 40,000 g/mol이었다.
NMR 분석 결과 올리고머 3으로부터 유래된 반복 단위는 폴리카보네이트 3의 전체 반복 단위의 중량 대비 10 중량%로 포함되어 있는 것으로 확인하였다.
실시예 4. 올리고머 4 및 폴리카보네이트 4의 제조
Figure PCTKR2022000316-appb-img-000038
올리고머 4 (m+n = ~11)
실시예 1에서, BPA 대신 메틸하이드로퀴논(methylhydroquinone)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 올리고머 4를 제조하였고, 올리고머 1 대신 올리고머 4를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리카보네이트 4를 제조하였다. 이 때, 제조된 올리고머 4의 중량평균분자량은 1,600 g/mol이고, 폴리카보네이트 4의 중량평균분자량은 43,000 g/mol이었다.
NMR 분석 결과 올리고머 4로부터 유래된 반복 단위는 폴리카보네이트 4의 전체 반복 단위의 중량 대비 9 중량%로 포함되어 있는 것으로 확인하였다.
실시예 5. 올리고머 5 및 폴리카보네이트 5의 제조
Figure PCTKR2022000316-appb-img-000039
올리고머 5 (m+n = ~6)
실시예 1에서, BPA 대신 1,1-비스(4-히드록시페닐)시클로헥산(1,1-bis(4-hydroxyphenyl)cyclohexane), 4-히드록시-3-메틸벤조산 대신 4-히드록시-3,5-디메틸벤조산(4-hydroxy-3,5-dimethylbenozoic acid)를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 올리고머 5를 제조하였고, 올리고머 1 대신 올리고머 5를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리카보네이트 5를 제조하였다. 이 때, 제조된 올리고머 5의 중량평균분자량은 1,200 g/mol이고, 폴리카보네이트 5의 중량평균분자량은 45,000 g/mol이었다.
NMR 분석 결과 올리고머 5로부터 유래된 반복 단위는 폴리카보네이트 5의 전체 반복 단위의 중량 대비 5 중량%로 포함되어 있는 것으로 확인하였다.
실시예 6. 올리고머 6 및 폴리카보네이트 6의 제조
Figure PCTKR2022000316-appb-img-000040
올리고머 6 (m+n = ~7)
실시예 1에서, BPA 대신 1,4-시클로헥산디올(1,4-cyclohexanediol), 4-히드록시-3-메틸벤조산 대신 바닐린산을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 올리고머 6을 제조하였고, 올리고머 1 대신 올리고머 6을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리카보네이트 6을 제조하였다. 이 때, 제조된 올리고머 6의 중량평균분자량은 1,200 g/mol이고, 폴리카보네이트 6의 중량평균분자량이 49,000 g/mol이었다.
NMR 분석 결과 올리고머 6으로부터 유래된 반복 단위는 폴리카보네이트 6의 전체 반복 단위의 중량 대비 8 중량%로 포함되어 있는 것으로 확인하였다.
비교예 1.
(1) 올리고머 A의 제조
Figure PCTKR2022000316-appb-img-000041
올리고머 A (n = ~9)
레조르시놀(Resorcinol) (2.2 equiv), TEA (3.0 equiv)을 DCM에 녹인 후, 테레프탈로일 클로라이드(terephthaloyl chloride) (1.0 equiv)를 DCM에 녹여 저온에서 천천히 적가하였다. 상온에서 10시간 이상 교반하여 반응을 종결한 후, HCl 과 K2CO3 수용액을 넣어 TEA salt 및 부반응물을 제거하였다. 상기와 같이 합성된 올리고머 A는 별도의 분리 작업 없이 폴리카보네이트 제조 공정에 투입되었다.
(2) 폴리카보네이트 A의 제조
질소 퍼지와 콘덴서가 구비되고, 서큘레이터(circulator)로 상온 유지가 가능한 2L 메인 반응기에 물 620g, BPA 115.077g, 올리고머 A 11.51g(BPA 총 중량 대비 10 wt%), 40 중량% NaOH 수용액 102.5g, DCM 200ml를 투입하고, 수분간 교반시켰다.
질소 퍼징을 멈추고 1L 둥근 바닥 플라스크에 트리포스겐 62g과 DCM 120g을 넣고 트리포스겐을 용해시킨 다음 용해된 트리포스겐 용액을 천천히 BPA 및 올리고머 A 용액이 녹아있는 메인 반응기에 투입하고, 투입이 완료되면 PTBP(p-tert-부틸페놀) 2.66g을 넣고 10 여분간 교반시켰다. 교반이 완료된 후 40 중량%의 NaOH 수용액 97g을 넣은 후 커플링 제로서 TEA 1.16g을 투입하였다. 이 때, 반응 pH는 11~13을 유지하였다. 충분히 반응이 이루어지도록 시간을 두고 반응을 종결하기 위해 HCl을 투입하여 pH를 3~4로 떨어뜨렸다. 그리고, 교반을 중지하여 폴리머층과 물층을 분리한 다음 물층은 제거하고 순수한 H2O를 다시 투입하여 수세하는 과정을 3~5회 반복 수행하였다.
수세가 완전히 이루어지면 폴리머층만 추출하고 메탄올, H2O 등을 이용한 비용매를 사용하여 재침법으로 폴리머 결정체를 수득하였다. 이 때, 제조된 폴리카보네이트 A의 중량평균분자량은 46,000 g/mol이었다.
NMR 분석 결과 올리고머 A로부터 유래된 반복 단위는 폴리카보네이트 A의 전체 반복 단위의 중량 대비 10중량%로 포함되어 있는 것으로 확인하였다.
비교예 2. 올리고머 B 및 폴리카보네이트 B의 제조
Figure PCTKR2022000316-appb-img-000042
올리고머 B (m+n = ~11)
실시예 1에서, BPA 대신 디에틸렌글리콜(diethylene glycol), 4-히드록시-3-메틸벤조산 대신 4-히드록시벤조산(4-hydroxybenzoic acid)를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 올리고머 B를 제조하였고, 올리고머 1 대신 올리고머 B를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리카보네이트 B를 제조하였다. 이 때, 제조된 올리고머 B의 중량평균분자량은 1,400 g/mol이고, 폴리카보네이트 B의 중량평균분자량은 38,000 g/mol이었다.
NMR 분석 결과 올리고머 B로부터 유래된 반복 단위는 폴리카보네이트 B의 전체 반복 단위의 중량 대비 7중량%로 포함되어 있는 것으로 확인하였다.
비교예 3. 올리고머 C 및 폴리카보네이트 C의 제조
Figure PCTKR2022000316-appb-img-000043
올리고머 C (m+n = ~18)
실시예 1에서, BPA 대신 레조르시놀, 4-히드록시-3-메틸벤조산 대신 3-히드록시벤조산(3-hydroxybenzoic acid)를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 올리고머 C를 제조하였고, 올리고머 1 대신 올리고머 C를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리카보네이트 C를 제조하였다. 이 때, 제조된 올리고머 C의 중량평균분자량은 2,300 g/mol이고, 폴리카보네이트 C의 중량평균분자량은 46,000 g/mol이었다.
NMR 분석 결과 올리고머 C로부터 유래된 반복 단위는 폴리카보네이트 C의 전체 반복 단위의 중량 대비 8중량%로 포함되어 있는 것으로 확인하였다.
비교예 4. 올리고머 D 및 폴리카보네이트 D의 제조
Figure PCTKR2022000316-appb-img-000044
올리고머 D (m+n = ~11)
실시예 1에서, 4-히드록시-3-메틸벤조산 대신 4-히드록시벤조산(4-hydroxybenzoic acid)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 올리고머 D를 제조하였고, 올리고머 1 대신 올리고머 D를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리카보네이트 D를 제조하였다. 이 때, 제조된 올리고머 D의 중량평균분자량은 1,800 g/mol이고, 폴리카보네이트 D의 중량평균분자량은 45,000 g/mol이었다.
NMR 분석 결과 올리고머 D로부터 유래된 반복 단위는 폴리카보네이트 D의 전체 반복 단위의 중량 대비 9중량%로 포함되어 있는 것으로 확인하였다.
비교예 5. 올리고머 E 및 폴리카보네이트 E의 제조
Figure PCTKR2022000316-appb-img-000045
올리고머 E (m+n = ~15)
실시예 1에서, BPA 대신 1,1-비스(4-히드록시페닐)시클로헥산(1,1-bis(4-hydroxyphenyl)cyclohexane), 4-히드록시-3-메틸벤조산 대신 4-히드록시벤조산(4-hydroxybenzoic acid)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 올리고머 E를 제조하였고, 올리고머 1 대신 올리고머 E를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리카보네이트 E를 제조하였다. 이 때, 제조된 올리고머 E의 중량평균분자량은 2,000 g/mol이고, 폴리카보네이트 E의 중량평균분자량은 48,000 g/mol이었다.
NMR 분석 결과 올리고머 E로부터 유래된 반복 단위는 폴리카보네이트 E의 전체 반복 단위의 중량 대비 7중량%로 포함되어 있는 것으로 확인하였다.
실험예 2. 폴리카보네이트의 물성 평가
상기 실시예 및 비교예에서 제조한 각각의 폴리카보네이트 수지 100 중량부에 대해, 트리스(2,4-디-tert-부틸페닐)포스파이트 0.050 중량부, 옥타데실-3-(3,5-디-tert-부틸-4-히드록시페닐)프로피오네이트 0.010 중량부, 펜타에리스리톨테트라스테아레이트 0.030 중량부를 첨가하여, 벤트 부착 HAAKE MiniCTW를 사용하여 펠릿화한 후, HAAKE Minijet 사출성형기를 사용하여 실린더 온도 300℃, 금형온도 120℃로 사출성형하여 시편을 제조하였다.
이러한 사출시편 또는 폴리카보네이트의 특성을 하기의 방법으로 측정하였고, 그 결과를 하기 표 1에 나타내었다.
1) 중량평균분자량(g/mol): Agilent 1200 series를 이용하여, PS standard로 검량하여 측정하였다.
2) 흐름성(MI): ASTM D1238(300℃, 1.2kg 조건)에 의거하여 측정하였다.
3) Izod 상온충격강도(J/m): ASTM D256(1/8 inch, Notched Izod)에 의거하여 23℃에서 측정하였다.
4) 연필경도: 23℃에서 연필경도계(Cometech)를 이용하여 ASTM D3363에 의거하여 50g의 하중으로 45도 각도에서 2B, B, HB 강도의 연필로 측정하였다.
폴리카보네이트
수지
중량평균분자량
(g/mol)
MI
(g/10min)
충격강도
(J/m)
연필경도
실시예 1 폴리카보네이트 1 45,000 15.4 300 HB
실시예 2 폴리카보네이트 2 41,000 14.0 280 HB
실시예 3 폴리카보네이트 3 40,000 16.0 260 HB
실시예 4 폴리카보네이트 4 43,000 13.1 250 B
실시예 5 폴리카보네이트 5 45,000 16.2 310 HB
실시예 6 폴리카보네이트 6 49,000 13.9 270 B
비교예 1 폴리카보네이트 A 46,000 10.3 240 B
비교예 2 폴리카보네이트 B 38,000 18.8 220 2B
비교예 3 폴리카보네이트 C 46,000 12.1 230 B
비교예 4 폴리카보네이트 D 45,000 19.0 250 B
비교예 5 폴리카보네이트 E 48,000 15.8 240 B
상기 표 1을 참고하면, 실시예의 폴리카보네이트는 비교예에 비해 높은 충격강도와 고경도를 나타내는 것을 확인하였다. 구체적으로, 페닐기가 할로겐기, 알킬기 또는 알콕시기로 치환되어 있는 본 발명의 폴리카보네이트는 페닐기가 치환되지 않은 폴리카보네이트에 비해 충격강도와 연필경도가 높은 것을 알 수 있다.
특히, 비교예 4의 폴리카보네이트는 실시예 1 및 2의 폴리카보네이트와 페닐기 치환 유무에만 차이가 있는 것으로, 비교예 4의 폴리카보네이트의 충격강도 및 연필경도가 실시예 1 및 2에 비해 낮은 것을 확인할 수 있다.
또한, 비교예 5의 폴리카보네이트는 실시예 5의 폴리카보네이트와 페닐기 치환 유무에만 차이가 있는 것으로, 실시예 5의 폴리카보네이트보다 비교예 5의 폴리카보네이트의 충격강도가 낮으면서, 연필경도 또한 낮은 것을 알 수 있다.
따라서, 본 발명의 화학식 1의 반복 단위를 포함하는 폴리카보네이트는 향상된 내충격성 및 고경도를 동시에 달성할 수 있는 것을 확인할 수 있었다.

Claims (13)

  1. 하기 화학식 1로 표시되는 단위를 포함하는 폴리카보네이트:
    [화학식 1]
    Figure PCTKR2022000316-appb-img-000046
    상기 화학식 1에 있어서,
    A는 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬렌, 치환 또는 비치환된 시클로알킬렌, 및 치환 또는 비치환된 아릴렌 중에서 선택된 하나 또는 이들 중 2 이상이 연결된 기이고,
    R11 내지 R14는 서로 같거나 상이하고, 각각 할로겐, 알킬 또는 알콕시이며,
    o, p, q 및 r은 각각 1 내지 4의 정수이고,
    n 및 m은 각각 0 내지 50의 정수이며,
    o가 2 이상인 경우 R11은 서로 동일하거나 상이하고,
    p 또는 n이 2 이상인 경우 R12는 서로 동일하거나 상이하며,
    q 또는 m이 2 이상인 경우 R13는 서로 동일하거나 상이하고,
    r이 2 이상인 경우 R14는 서로 동일하거나 상이하며,
    폴리카보네이트 내에 포함되는 화학식 1의 단위는 서로 같거나 상이하고,
    *은 폴리카보네이트의 주쇄에 연결되는 부위를 의미한다.
  2. 청구항 1에 있어서, 상기 폴리카보네이트는 상기 화학식 1로 표시되는 단위를 폴리카보네이트 총 중량에 대하여 3 중량% 이상의 양으로 포함하는 것인 폴리카보네이트.
  3. 청구항 1에 있어서, 상기 폴리카보네이트의 중량평균분자량은 30,000 g/mol 내지 60,000 g/mol인 폴리카보네이트.
  4. 청구항 1에 있어서, A는 하기 구조식들 중에서 선택되는 것인 폴리카보네이트:
    Figure PCTKR2022000316-appb-img-000047
    상기 구조식에 있어서,
    Z1 내지 Z6는 서로 같거나 상이하고, 각각 단일결합, 직쇄 또는 분지쇄의 알킬렌, 또는 시클로알킬렌이고,
    R15 내지 R20은 서로 같거나 상이하고, 각각 수소, 직쇄 또는 분지쇄의 알킬, 시클로알킬, 또는 아릴이며,
    s, t 및 w는 각각 0 내지 4의 정수이고,
    u, v 및 x는 각각 0 내지 10의 정수이며,
    s가 2 이상인 경우 R15는 서로 같거나 상이하고,
    t가 2 이상인 경우 R16은 서로 같거나 상이하며,
    u가 2 이상인 경우 R17은 서로 같거나 상이하고,
    v가 2 이상인 경우 R18은 서로 같거나 상이하며,
    w가 2 이상인 경우 R19는 서로 같거나 상이하고,
    x가 2 이상인 경우 R20은 서로 같거나 상이하다.
  5. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 1-A 또는 1-B로 표시되는 것인 폴리카보네이트:
    [화학식 1-A]
    Figure PCTKR2022000316-appb-img-000048
    [화학식 1-B]
    Figure PCTKR2022000316-appb-img-000049
    상기 화학식 1-A 및 1-B에 있어서,
    R111, R112, R141 및 R142는 서로 같거나 상이하고, 각각 할로겐, 알킬 또는 알콕시이고,
    나머지 치환기는 화학식 1에서 정의한 바와 같다.
  6. 청구항 1에 있어서, 상기 폴리카보네이트는 하기 화학식 2의 단위를 더 포함하는 것인 폴리카보네이트:
    [화학식 2]
    Figure PCTKR2022000316-appb-img-000050
    상기 화학식 2에 있어서,
    X1 및 X3는 서로 같거나 상이하고, 각각 치환 또는 비치환된 2가의 지방족 탄화수소기, 치환 또는 비치환된 2가의 이소소르비드기, 치환 또는 비치환된 아릴렌, 또는 치환 또는 비치환된 헤테로아릴렌이고,
    X2는 치환 또는 비치환된 2가의 지방족 탄화수소기, 치환 또는 비치환된 2가의 이소소르비드기, 치환 또는 비치환된 아릴렌, 치환 또는 비치환된 헤테로아릴렌, O, S, SO, SO2 또는 CO이며,
    k1은 0 또는 1이고, 단 X1과 직접 결합하는 X2가 O, S, SO, SO2 또는 CO인 경우 k1은 1이며,
    l은 1 내지 5의 정수이고, l이 2 이상인 경우 X2는 서로 같거나 상이하며,
    k2는 0 또는 1이고, 단 X3와 직접 결합하는 X2가 O, S, SO, SO2 또는 CO인 경우 k2는 1이며,
    폴리카보네이트 내에 포함되는 화학식 2의 단위는 서로 같거나 상이하고,
    *은 폴리카보네이트의 주쇄에 연결되는 부위를 의미한다.
  7. 청구항 6에 있어서, 상기 화학식 2는 하기 화학식 3 내지 6 중 하나로 표시되는 것인 폴리카보네이트:
    [화학식 3]
    Figure PCTKR2022000316-appb-img-000051
    [화학식 4]
    Figure PCTKR2022000316-appb-img-000052
    [화학식 5]
    Figure PCTKR2022000316-appb-img-000053
    [화학식 6]
    Figure PCTKR2022000316-appb-img-000054
    상기 화학식 3 내지 6에 있어서,
    Y1 및 Y2는 각각 치환 또는 비치환된 2가의 지방족 탄화수소기, 치환 또는 비치환된 2가의 이소소르비드기, 치환 또는 비치환된 아릴렌, 또는 치환 또는 비치환된 헤테로아릴렌이고,
    Y3 및 Y4는 각각 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬렌, 치환 또는 비치환된 시클로알킬렌, O, S, SO, SO2 또는 CO이며,
    R1 내지 R4는 서로 같거나 상이하고, 각각 수소, 할로겐, 치환 또는 비치환된 알킬, 또는 치환 또는 비치환된 알콕시이고,
    a 및 b는 각각 0 내지 10의 정수이며,
    c, d, e 및 f는 각각 1 내지 10의 정수이고,
    g, h, i 및 j는 각각 0 내지 4의 정수이며,
    g, h, i 및 j가 각각 2 이상인 경우, 괄호 내의 치환기는 서로 같거나 상이하고,
    폴리카보네이트 내에 포함되는 화학식 3 내지 6의 단위는 각각 서로 같거나 상이하며,
    *은 폴리카보네이트의 주쇄에 연결되는 부위를 의미한다.
  8. 하기 화학식 11의 화합물 및 카보네이트 전구체를 포함하는 조성물을 중합하는 단계를 포함하는 청구항 1에 따른 폴리카보네이트의 제조방법:
    [화학식 11]
    Figure PCTKR2022000316-appb-img-000055
    상기 화학식 11에 있어서, 각 치환기의 정의는 화학식 1과 같다.
  9. 청구항 8에 있어서, 상기 카보네이트 전구체는 하기 화학식 12로 표시되는 것인 폴리카보네이트의 제조방법:
    [화학식 12]
    Figure PCTKR2022000316-appb-img-000056
    상기 화학식 12에 있어서,
    R5 및 R6는 서로 같거나 상이하고, 각각 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬, 치환 또는 비치환된 시클로알킬, 치환 또는 비치환된 아릴, 또는 치환 또는 비치환된 헤테로아릴이다.
  10. 청구항 8 또는 9에 있어서, 상기 조성물은 하기 화학식 21의 화합물을 더 포함하는 것인 폴리카보네이트의 제조방법:
    [화학식 21]
    Figure PCTKR2022000316-appb-img-000057
    상기 화학식 21에 있어서,
    X1 및 X3는 서로 같거나 상이하고, 각각 치환 또는 비치환된 2가의 지방족 탄화수소기, 치환 또는 비치환된 2가의 이소소르비드기, 치환 또는 비치환된 아릴렌, 또는 치환 또는 비치환된 헤테로아릴렌이고,
    X2는 치환 또는 비치환된 2가의 지방족 탄화수소기, 치환 또는 비치환된 2가의 이소소르비드기, 치환 또는 비치환된 아릴렌, 치환 또는 비치환된 헤테로아릴렌, O, S, SO, SO2 또는 CO이며,
    k1은 0 또는 1이고, 단 X1과 직접 결합하는 X2가 O, S, SO, SO2 또는 CO인 경우 k1은 1이며,
    l은 1 내지 5의 정수이고, l이 2 이상인 경우 X2는 서로 같거나 상이하며,
    k2는 0 또는 1이고, 단 X3와 직접 결합하는 X2가 O, S, SO, SO2 또는 CO인 경우 k2는 1이다.
  11. 청구항 10에 있어서, 상기 화학식 21은 하기 화학식 31, 41, 51 또는 61로 표시되는 것인 폴리카보네이트의 제조방법:
    [화학식 31]
    Figure PCTKR2022000316-appb-img-000058
    [화학식 41]
    Figure PCTKR2022000316-appb-img-000059
    [화학식 51]
    Figure PCTKR2022000316-appb-img-000060
    [화학식 61]
    Figure PCTKR2022000316-appb-img-000061
    상기 화학식 31, 41, 51 및 61에 있어서,
    Y1 및 Y2는 각각 치환 또는 비치환된 2가의 지방족 탄화수소기, 치환 또는 비치환된 2가의 이소소르비드기, 치환 또는 비치환된 아릴렌, 또는 치환 또는 비치환된 헤테로아릴렌이고,
    Y3 및 Y4는 각각 치환 또는 비치환된 직쇄 또는 분지쇄의 알킬렌, 치환 또는 비치환된 시클로알킬렌, O, S, SO, SO2 또는 CO이며,
    R1 내지 R4는 서로 같거나 상이하고, 각각 수소, 할로겐, 치환 또는 비치환된 알킬, 또는 치환 또는 비치환된 알콕시이고,
    a 및 b는 각각 0 내지 10의 정수이며,
    c, d, e 및 f는 각각 1 내지 10의 정수이고,
    g, h, i 및 j는 각각 0 내지 4의 정수이며,
    g, h, i 및 j가 각각 2 이상인 경우, 괄호 내의 치환기는 서로 같거나 상이하다.
  12. 청구항 1 내지 7 중 한 항에 따른 폴리카보네이트를 포함하는 조성물.
  13. 청구항 1 내지 7 중 한 항에 따른 폴리카보네이트를 포함하는 조성물로 제조된 성형품.
PCT/KR2022/000316 2021-01-27 2022-01-07 폴리카보네이트 및 이의 제조방법 WO2022164072A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023539185A JP2024501302A (ja) 2021-01-27 2022-01-07 ポリカーボネートおよびその製造方法
US18/273,629 US20240132662A1 (en) 2021-01-27 2022-01-07 Polycarbonate and method for preparing same
CN202280010874.8A CN116761835A (zh) 2021-01-27 2022-01-07 聚碳酸酯及其制备方法
EP22746101.9A EP4286449A1 (en) 2021-01-27 2022-01-07 Polycarbonate and method for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210011646 2021-01-27
KR10-2021-0011646 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022164072A1 true WO2022164072A1 (ko) 2022-08-04

Family

ID=82653621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000316 WO2022164072A1 (ko) 2021-01-27 2022-01-07 폴리카보네이트 및 이의 제조방법

Country Status (7)

Country Link
US (1) US20240132662A1 (ko)
EP (1) EP4286449A1 (ko)
JP (1) JP2024501302A (ko)
KR (1) KR20220108711A (ko)
CN (1) CN116761835A (ko)
TW (1) TWI807587B (ko)
WO (1) WO2022164072A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131598A (ja) * 2002-10-10 2004-04-30 Teijin Ltd 全芳香族ポリエステルカーボネートおよびその製造方法
KR20070036091A (ko) * 2004-07-01 2007-04-02 이데미쓰 고산 가부시키가이샤 폴리카보네이트 공중합체의 제조방법 및 폴리카보네이트공중합체
EP2199076A1 (en) * 2008-12-18 2010-06-23 Sabic Innovative Plastics IP B.V. Methods for the manufacture of polycarbonate compositions, the compositions formed thereby, and articles thereof
WO2012073970A1 (ja) * 2010-11-30 2012-06-07 出光興産株式会社 ポリカーボネート樹脂塗布液及びその用途
KR20200018327A (ko) * 2018-08-10 2020-02-19 주식회사 엘지화학 폴리카보네이트 및 이의 제조방법
KR20210011646A (ko) 2019-07-23 2021-02-02 한국섬유개발연구원 유연성을 갖는 엘이디 섬유원단

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100561337B1 (ko) 2002-05-29 2006-03-16 주식회사 엘지화학 고분자량의 폴리카보네이트 수지의 제조방법
KR102308714B1 (ko) * 2018-09-14 2021-10-01 주식회사 엘지화학 디올 화합물, 폴리카보네이트 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131598A (ja) * 2002-10-10 2004-04-30 Teijin Ltd 全芳香族ポリエステルカーボネートおよびその製造方法
KR20070036091A (ko) * 2004-07-01 2007-04-02 이데미쓰 고산 가부시키가이샤 폴리카보네이트 공중합체의 제조방법 및 폴리카보네이트공중합체
EP2199076A1 (en) * 2008-12-18 2010-06-23 Sabic Innovative Plastics IP B.V. Methods for the manufacture of polycarbonate compositions, the compositions formed thereby, and articles thereof
WO2012073970A1 (ja) * 2010-11-30 2012-06-07 出光興産株式会社 ポリカーボネート樹脂塗布液及びその用途
KR20200018327A (ko) * 2018-08-10 2020-02-19 주식회사 엘지화학 폴리카보네이트 및 이의 제조방법
KR20210011646A (ko) 2019-07-23 2021-02-02 한국섬유개발연구원 유연성을 갖는 엘이디 섬유원단

Also Published As

Publication number Publication date
TWI807587B (zh) 2023-07-01
EP4286449A1 (en) 2023-12-06
KR20220108711A (ko) 2022-08-03
TW202235482A (zh) 2022-09-16
US20240132662A1 (en) 2024-04-25
JP2024501302A (ja) 2024-01-11
CN116761835A (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
WO2018038436A1 (ko) 디아민 화합물 및 이의 제조방법
WO2020159085A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2018105907A1 (ko) 내열성과 유동성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
WO2022164072A1 (ko) 폴리카보네이트 및 이의 제조방법
WO2023055099A1 (ko) 열가소성 수지 및 이로부터 제조된 성형품
WO2021054771A1 (ko) 말단이 불포화기로 캡핑된 인 함유 수지, 이의 제조방법 및 상기 말단이 불포화기로 캡핑된 인 함유 수지를 포함하는 수지 조성물
WO2020159086A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2022164074A1 (ko) 폴리카보네이트 및 이의 제조방법
WO2020130261A1 (ko) 가교제 화합물, 이를 포함하는 감광성 조성물, 및 이를 이용한 감광 재료
WO2022164084A1 (ko) 폴리카보네이트 및 이의 제조방법
WO2022080938A1 (ko) 폴리카보네이트 및 이의 제조방법
WO2020060262A1 (ko) 프탈로니트릴 올리고머를 포함하는 경화성 수지 조성물 및 이의 프리폴리머
WO2021034041A1 (ko) 유기 보레이트계 촉매, 이를 이용한 이소부텐 올리고머의 제조방법 및 이로부터 제조된 이소부텐 올리고머
WO2023277347A1 (ko) 트리사이클로데칸 디메탄올 조성물 및 이의 제조방법
WO2022245074A1 (ko) 수지 및 이의 제조방법
WO2022245079A1 (ko) 수지 및 이의 제조방법
WO2024010276A1 (ko) 수지 및 이의 제조방법
WO2020130552A1 (ko) 디아민 화합물, 이를 이용한 폴리이미드 전구체 및 폴리이미드 필름
WO2022260446A1 (ko) 폴리카보네이트 컴파운드 조성물 및 이의 제조 방법
WO2020153771A1 (ko) 디아민 화합물, 및 이를 이용한 폴리이미드 전구체 및 폴리이미드 필름
WO2024147465A1 (ko) 수지 및 이의 제조방법
WO2023182589A1 (ko) 폴리카보네이트 수지 및 이의 제조방법
WO2024043663A1 (ko) 폴리카보네이트 수지 및 이의 제조방법
WO2019194620A1 (ko) 열가소성 수지 조성물
WO2024010302A1 (ko) 수지 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22746101

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539185

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280010874.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18273629

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022746101

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022746101

Country of ref document: EP

Effective date: 20230828