WO2022161400A1 - 淤浆聚合连续生产超高分子量聚乙烯的方法 - Google Patents

淤浆聚合连续生产超高分子量聚乙烯的方法 Download PDF

Info

Publication number
WO2022161400A1
WO2022161400A1 PCT/CN2022/074012 CN2022074012W WO2022161400A1 WO 2022161400 A1 WO2022161400 A1 WO 2022161400A1 CN 2022074012 W CN2022074012 W CN 2022074012W WO 2022161400 A1 WO2022161400 A1 WO 2022161400A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
slurry
molecular weight
reactor
ultra
Prior art date
Application number
PCT/CN2022/074012
Other languages
English (en)
French (fr)
Inventor
李传峰
汪文睿
景昆
陈明华
邢跃军
夏慧敏
郭峰
游忠林
陈韶辉
翟建宏
杨柳
屠嵩涛
Original Assignee
中国石油化工股份有限公司
中国石化扬子石油化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石化扬子石油化工有限公司 filed Critical 中国石油化工股份有限公司
Priority to BR112023015386A priority Critical patent/BR112023015386A2/pt
Priority to US18/263,739 priority patent/US20240092948A1/en
Priority to EP22745273.7A priority patent/EP4286417A1/en
Priority to JP2023546408A priority patent/JP2024504508A/ja
Publication of WO2022161400A1 publication Critical patent/WO2022161400A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/04Cp or analog not bridged to a non-Cp X ancillary anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for continuous production of ultra-high molecular weight polyethylene by slurry polymerization, more particularly, to a method for continuous production of ultra-high molecular weight polyethylene by connecting a plurality of polymerization reactors in series under the condition of ethylene slurry polymerization, wherein, Using alkane or mixed alkane as a polymerization solvent, in the presence of a polyethylene catalyst system, in 2-6 series-connected polymerization reactors, the raw materials containing ethylene and optional comonomers are continuously polymerized to obtain ultra-high molecular weight polyethylene.
  • Ultra-high molecular weight polyethylene generally refers to a linear structure polyethylene with a relative molecular weight of more than 1.5 million g/mol. It has excellent wear resistance, extremely high impact strength, excellent wear resistance that ordinary polyethylene does not have.
  • the advantages of self-lubricating performance, excellent chemical resistance and low temperature resistance, excellent anti-adhesion, hygienic, non-toxic, non-polluting, recyclable and other advantages have been widely used in textile, paper, food, chemical , packaging, agriculture, construction, medical, water purification, sports, entertainment, military and other fields.
  • the production methods of ultra-high molecular weight polyethylene mainly include ethylene slurry polymerization method and ethylene gas phase polymerization method. Among them, ethylene slurry polymerization is one of the main methods for producing polyethylene.
  • the catalyst, co-catalyst and polymerization solvent are added to the reactor at one time, and ethylene is continuously added until the polymerization reaction stops.
  • Ultra-high molecular weight polyethylene with high viscosity average molecular weight but the production process is complicated and there are differences between different batches of products.
  • Chinese patent application 201510078777.4 discloses an ultra-high molecular weight polyethylene catalyst and an ethylene slurry batch preparation method of ultra-high molecular weight polyethylene, which is to add alkyl aluminum as a co-catalyst into a single stirred tank type slurry reactor;
  • the ultra-high molecular weight polyethylene catalyst is added to a single stirred tank slurry reactor; when the temperature of the single stirred tank slurry reactor rises to 50°C, the ethylene feed valve is opened and ethylene is introduced; the reaction temperature is controlled at 60°C-70°C °C, the reaction pressure is controlled at 0.5MPa-0.7MPa; ethylene is continuously fed, and polymerized for 2 hours, and the ultra-high molecular weight polyethylene is obtained by intermittent polymerization.
  • the catalyst, co-catalyst, polymerization solvent, ethylene and other raw materials and materials are continuously added to the polymerization reactor. Both feed and slurry output are continuous.
  • the continuous method has high production efficiency, simple production process operation, and relatively uniform polymer quality and performance.
  • the slurry in the discharge reflects the catalyst in the polymerization reactor and the polymer obtained by polymerization.
  • the distribution of slurry composition at different residence times is closely related to the configuration of the reactor, the stirring and mixing method, the feeding position, the discharging position, and the discharging method.
  • the main catalyst in a small amount of feed will be short-circuited away. At the same time, it will remain in the reactor for a long time, so it is difficult to obtain ultra-high molecular weight polyethylene with higher viscosity average molecular weight, and the molecular weight distribution is wider than that of the batch method.
  • Chinese patent applications 201610892424.2, 201610892732.5, 201610892836.6, 201610892837.0, etc. disclose the preparation methods of copolymerized ultra-high molecular weight polyethylene. After homogenization.
  • Chinese patent CN1781956A discloses a continuous manufacturing method of polyethylene, wherein the raw material monomers are polymerized in three reactors arranged in series to make polyethylene resin, characterized in that at least one of the reactors, In addition to the necessary raw material monomers, at least one of (a) a solid catalyst metallocene compound containing titanium, magnesium and halide components and a solid catalyst of aluminoxane, and (b) a combination of organoaluminum compounds are used It is mixed with other reactors supplied with raw material monomers for multi-stage continuous polymerization and simultaneous mixing.
  • the resin composition has an intrinsic viscosity ranging from 1.1 to 6.0 and a density ranging from 0.935g/ cm3 to 0.965g/ cm 3 polyethylene.
  • the resin composition has a broad bimodal molecular weight distribution, and is particularly suitable for producing high molecular weight polyethylene films or hollow molding materials having excellent environmental stress crack resistance, impact strength and excellent rigidity. It can be seen from the disclosure that the polyethylene resin involved is not ultra-high molecular weight polyethylene.
  • Chinese patent CN1781953A discloses a continuous manufacturing method of polyethylene, which is to polymerize and mix raw material monomers in four reactors arranged in series to make polyethylene resin.
  • Chinese patent CN1405224A discloses a manufacturing method of a three-stage polymerized polyethylene resin composition, by producing three kinds of polymers with non-ultra-high molecular weight components, thereby limiting the limiting viscosity of each component in the polymer.
  • CN103342842A discloses a high-density polyethylene resin composition for microporous membranes and a preparation method thereof. Through the continuous series-connected polymerization method of two polymerization kettles, the first kettle is hydrogenated for copolymerization, and the second kettle is only copolymerized, so as to directly form ultra-high molecular weight Homogeneous mixing of polyethylene components and low and medium molecular weight polyethylene components.
  • the existing production of ultra-high molecular weight polyethylene mainly adopts the ethylene slurry batch polymerization method, which has low production efficiency and is difficult to control the quality of different batches.
  • the ethylene slurry single-pot continuous polymerization method has problems such as slurry backmixing, and the molecular weight increases. Limited, it is difficult to produce ultra-high molecular weight polyethylene with high viscosity average molecular weight.
  • the polymerization activity of the main catalyst can be fully exerted, and the ultra-high viscosity-average molecular weight polyethylene with low metal element content and low ash content can be obtained, which can be applied to aerospace, Fields with high requirements for impurities, such as medical materials.
  • the method for continuously producing ultra-high viscosity average molecular weight polyethylene by slurry polymerization of the present invention can achieve high viscosity average molecular weight, low metal element content,
  • the continuous production of ultra-high viscosity average molecular weight polyethylene with low ash content and high tensile strength is very suitable for industrial scale production, and is suitable for the subsequent preparation of high-strength ultra-high molecular weight polyethylene fibers, artificial medical joints and other high-end materials.
  • the present invention provides a method for continuously producing ultra-high viscosity average molecular weight polyethylene (ethylene homopolymer, copolymer of ethylene and comonomer) by slurry polymerization, wherein 2-6 (preferably 3-4) , most preferably 3) the ethylene slurry polymerization reactors connected in series are used as reactors, in a hydrogen-free atmosphere, and the deviations of polymerization temperature, polymerization pressure, and gas phase composition between the kettles are controlled within a certain range.
  • 2-6 preferably 3-4
  • the ethylene slurry polymerization reactors connected in series are used as reactors, in a hydrogen-free atmosphere, and the deviations of polymerization temperature, polymerization pressure, and gas phase composition between the kettles are controlled within a certain range.
  • the raw materials of ethylene and optional comonomers are subjected to continuous slurry polymerization, wherein the main catalyst and co-catalyst, the raw materials comprising ethylene and optional comonomers are continuously introduced into the first polymerization reactor, and the raw materials of The raw materials containing ethylene and optional comonomer are supplemented in the kettle, so that the deviation of the gas phase composition in each polymerization reaction kettle and the first polymerization reaction kettle is not more than ⁇ 10%, and the polymerization pressure of each subsequent polymerization reaction kettle is the same as that of the first polymerization reaction kettle.
  • the deviation of the polymerization pressure of the polymerization reactor is not more than ⁇ 20%
  • the deviation of the polymerization temperature and the polymerization temperature of the first polymerization reactor is not more than ⁇ 8%
  • the slurry in each polymerization reactor adopts the overflow method or the extraction method of actively controlling the flow rate. After leaving the reactor, it enters the next reactor or enters the post-processing system, thereby obtaining ultra-high viscosity average molecular weight polyethylene with low metal element content, low ash content and high mechanical properties.
  • the present invention also provides an ultra-high molecular weight polyethylene (ethylene homopolymer, a copolymer of ethylene and a comonomer), whose viscosity average molecular weight is 1.5-8 million g/mol, preferably 3-7 million g/mol.
  • Element content 0-40ppm preferably 0-30ppm, bulk density 0.30-0.55g/cm 3 , preferably 0.33-0.52g/cm 3 , comonomer molar insertion rate 0-2.0%, preferably 0-1.0%, tensile yield
  • the strength is greater than 21 MPa, preferably greater than 23 MPa, the tensile breaking strength is greater than 33 MPa, preferably greater than 35 MPa, and the ash content is less than 200 ppm, preferably less than 150 ppm.
  • the amount of cocatalyst required in the production process is low, the polymerization process is stable, the production mode is flexible, and the product has a large room for adjustment. Moreover, the problem of backmixing caused by the continuous polymerization method in the prior art is solved.
  • the ultra-high molecular weight polyethylene is continuously produced by slurry polymerization, so that the polymerization activity of the main catalyst can be fully exerted, and ultra-high viscosity-average molecular weight polyethylene with low metal element content and low ash content can be obtained.
  • the polymerization activity of ethylene slurry is high, and the viscosity-average molecular weight of the ultra-high molecular weight polyethylene (ethylene homopolymer and ethylene copolymer) produced thereby is high, and the metal Low element and ash content and excellent mechanical properties.
  • the present invention adopts the ultra-high molecular weight polyethylene produced by a multi-stage (2-6 reaction kettle) continuous method, and at the same time makes the deviation of the polymerization temperature, polymerization pressure and polymerization gas phase composition of each reaction kettle after the first kettle and the first kettle within Within a certain range (preferably substantially the same between the kettles), the ultra-high molecular weight polyethylene obtained by the method of the present invention has a single narrow peak distribution, which is different from the ultra-high molecular weight polyethylene of the prior art with broad peak or multimodal distribution. Compared with molecular weight polyethylene, it has excellent mechanical properties.
  • hydrocarbon or hydrocarbon derivative groups of more than 3 carbon atoms such as propyl, propoxy, butyl , butane, butene, butenyl, hexane, etc.
  • propyl is generally understood to mean n-propyl
  • butyl is generally understood to mean n-butyl, unless otherwise specified.
  • the inventors of the present invention have conducted intensive research and found that, in the polymerization method of the present invention, an alkane solvent with a boiling point of 0-90° C. or a mixed alkane solvent with a saturated vapor pressure of 4-200 KPa at 20° C. is used as the polymerization solvent.
  • the post-processing of the obtained ultra-high molecular weight polyethylene can be conveniently and efficiently carried out, and the obtained ultra-high molecular weight polyethylene powder has a low residual solvent content, which is beneficial to shorten the polyethylene powder.
  • the drying time can be shortened, and the post-processing cost of polyethylene powder can be saved.
  • a multi-stage (2-6 reaction still) continuous method in which the deviation of the polymerization pressure and temperature of each kettle is within a certain range (preferably the same between the kettles) is used to produce the ultra-high molecular weight polymer.
  • Ethylene can obtain ultra-high molecular weight polyethylene at high polymerization temperature, so that the polymerization activity of the main catalyst can be fully exerted.
  • single-pot (1-stage) polymerization reactors or 1-2-stage loop reactors or 3-stage or more loop-pipe cascades are used, which are only suitable for homopolymerization.
  • the polymerization method of the present invention It is suitable for slurry polymerization of homopolymerization or copolymerization, and can obtain higher insertion rate of copolymerized olefins.
  • the polymerization method of the present invention After the ultra-high molecular weight polyethylene powder product is prepared, there is no need to go through complicated post-purification treatment (such as high-purity solvent washing, high-purity water washing, high-temperature cooking, filtration after polymer melting, etc. ), only need to remove the reaction solvent (through filtration, decantation, flash evaporation, evaporation to dryness, etc.) to obtain high-purity ultra-high molecular weight polyethylene with low metal element content, low ash content, and excellent mechanical properties.
  • complicated post-purification treatment such as high-purity solvent washing, high-purity water washing, high-temperature cooking, filtration after polymer melting, etc.
  • only need to remove the reaction solvent through filtration, decantation, flash evaporation, evaporation to dryness, etc.
  • the present invention using a multi-stage (2-6 reaction kettle) continuous method in which the deviation of the polymerization pressure and temperature of each kettle is within a certain range (preferably the kettles is basically the same) to produce ultra-high molecular weight polyethylene can effectively Solve the problem of backmixing in the production of polyethylene by continuous polymerization in the prior art, and make the catalyst activity release completely, so that the degree of polymerization of ethylene or ethylene and other comonomers is further improved.
  • the same reaction conditions further ensure the stable chain extension of polyethylene, and the obtained ultra-high molecular weight ethylene homopolymer and ethylene copolymer have high viscosity average molecular weight and low metal element and ash content.
  • the ultra-high molecular weight polyethylene produced by the multi-stage (2-6 reactors) continuous method of the present invention has excellent mechanical properties. Without being limited by any theory, the inventors of the present invention believe that, in the polymerization mode of the present invention, the main catalyst and the co-catalyst, the raw materials comprising ethylene and optional comonomer are continuously fed into the first polymerization reactor, and Continue to add the raw material of ethylene and optional comonomer in subsequent series-connected reaction kettles, so that the deviation of the gas phase composition in the subsequent reaction kettles from the first reaction kettle is within a certain range (preferably, the kettles are substantially the same), Therefore, under substantially the same gas phase composition, the polymerization activity of the main catalyst can be fully exerted, and the deviation of the polymerization temperature and polymerization pressure of each reactor from the first reactor can be ensured within a certain range (preferably, the reactors are basically the same) Therefore, the ultra-high molecular weight polyethylene obtained by the method of the present invention has a single narrow peak
  • the polyethylene of the present invention includes a homopolymer obtained by homopolymerization of ethylene, and a copolymer obtained by copolymerization of ethylene and a comonomer.
  • polyethylene is sometimes also referred to as an ethylene polymer.
  • a polyethylene main catalyst there is no particular limitation here, and it can be applied to catalysts commonly used in the field for catalyzing ethylene polymerization, or having ethylene A complex, compound or composition of monomer homopolymerization or ethylene and comonomer copolymerization activity. Specifically, it can be selected from one of metallocene catalysts, non-metallocene catalysts, Ziegler-Natta catalysts, and Ziegler catalysts, or a composite catalyst of multiple types, preferably supported or supported.
  • the polyethylene main catalyst it can be selected from supported non-metallocene catalysts, such as invention patents CN200310106156.X, CN200310106157.4, CN200410066068.6, CN200510119401.X, CN200610107651.6, CN200710162677.5, CN 120071016 CN200710162672.2 ⁇ CN200710162675.6 ⁇ CN200710162676.0 ⁇ CN200710162666.7 ⁇ CN200910180100.6 ⁇ CN 200910180607.1 ⁇ CN200910180601.4 ⁇ CN200910180606.7 ⁇ CN200910180602.9 ⁇ CN200910180605.2 ⁇ CN200910180603.3 ⁇ CN200910180604.8 ⁇ CN200910210988.3 ⁇ CN200910210984.5 ⁇ CN200910210989.8 ⁇ CN200910210986.4 ⁇ CN200910210985.X ⁇ CN200910210990.0 ⁇ CN200910210987.9 ⁇ CN200910210991.5 ⁇ CN201010286008.0 ⁇ CN201010286012.7 ⁇ CN201010284870.8 ⁇
  • polyethylene main catalyst it can be selected from supported metallocene catalysts, such as invention patents CN201110247347.2, CN201110080343.X, CN201010518904.5, CN201010519660.2, CN201210289014.0, CN200910078596.6, CN2013.100907058.4, CN201310907058.4 201310521768.9 ⁇ CN201410589467.4 ⁇ CN201410590067.5 ⁇ CN201610835700.1 ⁇ 201610944191.6 ⁇ CN201710959423.X ⁇ CN201110247349.1 ⁇ CN201110080294.X ⁇ CN201110080395.7 ⁇ CN201210289017.4 ⁇ CN201210289031.4 ⁇ CN201310091192.7 ⁇ CN201310540973.X ⁇ CN201510724626.
  • supported metallocene catalysts such as invention patents CN201110247347.2, CN201110080343.X, CN201010518904.5, CN201010519660.2, CN201210289014.0, CN2009
  • the polyethylene main catalyst it can be selected from Ziegler-Natta type catalysts supported on carriers, such as invention patents CN201010522112.5, CN201010240355.X, CN201010502803.9, CN201010511310.1, CN200710121105.2, CN201010502778.4, CN201010502717.8 ⁇ CN201010240379.5 ⁇ CN201110148492.5 ⁇ CN201110148493.X ⁇ CN201110148527.5 ⁇ CN201110148545.3 ⁇ CN201110306102.2 ⁇ CN201010240378.0 ⁇ CN200410086382.0 ⁇ CN98101108.X ⁇ CN200410078280.4 ⁇ CN200910088546.6 ⁇ Ziegler-Natta type catalyst, such as the existing CMU catalyst (also known as CM catalyst) of Sinopec Catalyst Co., Ltd. Beijing Aoda Branch.
  • CM catalyst also known as CM catalyst
  • supported non-metallocene catalysts are preferred.
  • supported metallocene catalysts are preferred.
  • Ziegler-Natta type catalysts are preferred.
  • an active metal is usually compounded, and the active metal can be an active metal commonly used in the art, for example, it can be selected from IVB group, such as titanium, zirconium or hafnium; VB group, such as vanadium, VIII group , such as iron, cobalt, nickel, palladium and other elements, preferably IVB group metal elements, most preferably titanium metal elements. It should be noted that, in the present invention, unless otherwise specified, the molar amount of the polyethylene procatalyst is calculated as the active metal element in the polyethylene procatalyst.
  • the polyethylene main catalyst can be a supported catalyst
  • the carrier can be selected from at least one of a porous silica gel carrier, a layered porous carrier, an organic polymer carrier, a magnesium compound carrier, and an oxide carrier.
  • the magnesium compound carrier can be selected from magnesium compounds, for example, magnesium halide, alkoxymagnesium halide, alkoxymagnesium, alkylmagnesium, alkylmagnesium halide and alkylalkoxymagnesium. These magnesium compounds may be used alone or in combination of two or more.
  • porous carrier for example, those organic or inorganic porous solids conventionally used as carriers in the production of supported olefin polymerization catalysts in the art can be exemplified.
  • examples of the organic porous solid include olefin homopolymers or copolymers, polyvinyl alcohol or copolymers thereof, cyclodextrins, (co)polyesters, (co)polyamides, and vinyl chloride homopolymers. or copolymers, acrylate homopolymers or copolymers, methacrylate homopolymers or copolymers, and styrene homopolymers or copolymers, etc., and partially crosslinked forms of these homopolymers or copolymers, wherein Partially crosslinked (eg, a degree of crosslinking of at least 2% but less than 100%) is preferred for styrene polymers.
  • Partially crosslinked eg, a degree of crosslinking of at least 2% but less than 100%
  • the organic porous solid when used as a carrier, the organic porous solid can also be subjected to thermal activation treatment before use.
  • the thermal activation treatment can be carried out in a usual manner, such as thermal treatment of the organic porous solid under reduced pressure or in an inert atmosphere.
  • the inert atmosphere mentioned here means that the gas contains only a very small amount or no component that can react with the organic porous solid.
  • nitrogen gas or a rare gas atmosphere is mentioned, for example, nitrogen atmosphere is preferable. Since the organic porous solid has poor heat resistance, the thermal activation process is premised on not destroying the structure and basic composition of the organic porous solid itself.
  • the temperature of the thermal activation is 50-400°C, preferably 100-250°C, and the thermal activation time is 1-24h, preferably 2-12h.
  • the organic porous solid needs to be stored under positive pressure in an inert atmosphere for later use.
  • inorganic porous solids include refractory oxides of metals from Groups IIA, IIIA, IVA or IVB of the periodic table (such as silica (also known as silica or silica gel), alumina, magnesia, titania, zirconia or thorium oxide, etc.), or any refractory composite oxides of these metals (such as silica-alumina, magnesia-alumina, titania-silicon, titania-magnesium, and titania-alumina, etc.), as well as clays, molecular sieves (such as ZSM- 5 and MCM-41), mica, montmorillonite, bentonite and diatomaceous earth, etc.
  • refractory oxides of metals from Groups IIA, IIIA, IVA or IVB of the periodic table such as silica (also known as silica or silica gel), alumina, magnesia, titania, zirconia or thorium oxide
  • oxides generated by high-temperature hydrolysis of gaseous metal halides or gaseous silicon compounds such as silica gel obtained by high-temperature hydrolysis of silicon tetrachloride, or high-temperature hydrolysis of aluminum trichloride, can also be mentioned.
  • Alumina, etc. Silica, alumina, magnesia, silica-alumina, magnesia-alumina, titania-silicon, titania, molecular sieves, montmorillonite, and the like are preferred, and silica is particularly preferred.
  • Suitable silica can be manufactured by conventional methods, or can be any commercially available products, such as Grace 955, Grace 948, Grace SP9-351, Grace SP9-485, Grace SP9-10046, Grace 2480D, Grace 2212D, Grace 2485, Davsion Syloid 245 and Aerosil812, ES70, ES70X, ES70Y, ES70W, ES757, EP10X and EP11 from Ineos, and CS-2133 and MS-3040 from PQ.
  • the cocatalyst is one or more of alumoxane, aluminum alkyl, and halogenated aluminum alkyl, preferably one or more of aluminum alkyl.
  • alumoxane examples include linear aluminoxanes represented by the following general formula (I-1) and cyclic alumoxanes represented by the following general formula (I-2).
  • the groups R are the same or different from each other (preferably the same), each independently selected from C1 - C8 alkyl, preferably methyl, ethyl, propyl, butyl and isobutyl, most preferably methyl; n is any integer in the range of 1-50, preferably any integer in the range of 10-30.
  • aluminoxane methylaluminoxane, ethylaluminoxane, isobutylaluminoxane and n-butylaluminoxane are preferred, methylaluminoxane and isobutylaluminoxane are further preferred, and most Methylaluminoxane is preferred.
  • aluminoxanes may be used alone or in combination of two or more in arbitrary ratios.
  • alkyl aluminum for example, the compound represented by the following general formula (II) can be mentioned:
  • the groups R are the same or different from each other (preferably the same) and are each independently selected from C 1 -C 8 alkyl, preferably methyl, ethyl, propyl, butyl and isobutyl, most preferably methyl.
  • examples of the alkyl aluminum include trimethyl aluminum (Al(CH 3 ) 3 ), triethyl aluminum (Al(CH 3 CH 2 ) 3 ), tri-n-propyl aluminum (Al (C 3 H 7 ) 3 ), triisopropyl aluminum (Al(iC 3 H 7 ) 3 ), triisobutyl aluminum (Al(iC 4 H 9 ) 3 ), tri-n-butyl aluminum (Al(C 4 H 9 ) 3 ) 4 H 9 ) 3 ), triisoamyl aluminum (Al(iC 5 H 11 ) 3 ), tri-n-pentyl aluminum (Al(C 5 H 11 ) 3 ), tri-n-hexyl aluminum (Al(C 6 H 13 ) ) 3 ), triisohexylaluminum (Al(iC 6 H 13 ) 3 ), diethylmethylaluminum (Al(CH 3 )(CH 3 CH 2 ) 2 ) and
  • alkyl aluminums may be used alone or in combination of two or more in arbitrary ratios.
  • halogenated alkyl aluminum examples include compounds represented by the following general formula (III):
  • R are the same or different from each other (preferably the same), and are each independently selected from C 1 -C 8 alkyl, preferably methyl, ethyl, propyl, butyl and isobutyl, most preferably methyl;
  • X represents fluorine, chlorine, bromine, iodine;
  • n represents 1 or 2.
  • examples of the haloalkylaluminum include monochlorodimethylaluminum (Al(CH 3 ) 2 Cl), dichloromethyl aluminum (Al(CH 3 )Cl 2 )), monochlorodimethyl aluminum Ethyl aluminum (Al(CH 3 CH 2 ) 2 Cl), ethyl aluminum dichloride (Al(CH 3 CH 2 )Cl 2 ), dipropyl aluminum monochloro (Al(C 3 H 7 ) 2 Cl ), Dichloropropyl aluminum (Al(C 3 H 7 )Cl 2 )), di-n-butyl aluminum monochloro (Al(C 4 H 9 ) 2 Cl ), dichloro-n-butyl aluminum (Al(C 4 H 9 ) )Cl 2 ), diisobutylaluminum monochloro (Al(iC 4 H 9 ) 2 Cl ), isobutyl aluminum dichloride (Al(iC 4 H 9 )ClC
  • halogenated alkyl aluminums may be used alone or in combination of two or more in arbitrary ratios.
  • one of the cocatalysts may be used alone, or a plurality of the aforementioned cocatalysts may be used in combination in an arbitrary ratio as required, and there are no particular limitations.
  • the amount of the cocatalyst is represented by the content of aluminum (Al) element.
  • the polymerization solvent is selected from an alkane solvent with a boiling point of 0-90° C. or a mixed alkane solvent with a saturated vapor pressure of 4-200 KPa at 20° C.
  • the alkane solvent with the boiling point of 0-90°C preferably the alkane solvent with the boiling point of 25-82°C, such as 2,2-dimethylpropane (also known as neopentane, boiling point 9.5°C, 20°C)
  • the saturated vapor pressure is 146.63KPa at °C), 2-methylbutane (also known as isopentane, the boiling point is 27.83°C, the saturated vapor pressure is 76.7KPa at 20°C), n-pentane (boiling point 36.1°C, saturated at 20°C) Vapor pressure is 56.5KPa), cyclopentane (boiling point 49.26°C, saturated vapor pressure at 20°C is 34.6KPa), n-hexane (boiling point 68.73°C), cyclohexane (boiling point 80.7°C), 2-methylpentane ( Also known as isohexane, boiling point, boiling
  • the mixed alkane solvent with a saturated vapor pressure of 4-200KPa at 20°C preferably a mixed alkane solvent with a saturated vapor pressure of 30-160KPa at 20°C
  • it can be a mixed solvent formed by mixing different alkane solvents in proportion, such as hexane
  • the solvent of alkane and its isomers, and the mixed solvent of pentane and its isomers, can also come from the alkane mixture produced by cutting the solvent distillation unit according to the distillation range.
  • n-pentane and isopentane the combination of isopentane and neopentane, the combination of n-pentane and cyclopentane, the combination of n-pentane and neopentane, the combination of isopentane and Combination of cyclopentane, combination of neopentane and cyclopentane, combination of n-hexane and cyclopentane, combination of n-hexane and n-pentane, combination of n-hexane and 3-methylpentane, n-hexane and 2 , the combination of 2-dimethylbutane, the combination of n-hexane and 2,3-dimethylbutane, the combination of n-hexane and cyclohexane, the combination of n-hexane and isohexane, the combination of isohexane and cyclo
  • the amount of each alkane solvent can be adjusted arbitrarily, as long as the obtained mixed solvent has a saturated vapor pressure of 4-200KPa (preferably 30-160KPa) at 20°C.
  • a mixed alkane with a saturated vapor pressure of 4-200KPa (preferably 30-160KPa) at 20°C
  • it is preferably selected from n-pentane, isopentane, neopentane and cyclopentane Mixed alkanes with a saturated vapor pressure of 4-200KPa (preferably 30-160KPa) at 20°C, more preferably a combination of n-pentane and isopentane, isopentane-neopentane Combination of alkane, combination of n-pentane-cyclopentane, combination of isopentane-cyclopentane, combination of neopentane and cyclopentane, combination of n-pentane-isopentane-cyclopentane, neopentane Alkane-isopentane-n-pentane combination, etc.
  • the molar ratio can be 0.01-100:1, preferably 0.1-10:1, and when three alkane solvents are mixed, the molar ratio can be 0.01-100:0.01-100:1, preferably 0.1-10:0.1-10:1, as long as the obtained mixed solvent has a saturated vapor pressure of 4-200KPa (preferably 30-160KPa) at 20°C.
  • 4-200KPa preferably 30-160KPa
  • only an alkane solvent with a boiling point of 0-90° C. or a mixed alkane solvent with a saturated vapor pressure of 4-200 KPa at 20° C. is used as the polymerization solvent.
  • ultra-high viscosity-averaged polymers with different viscosity-average molecular weights and other properties are prepared for ethylene slurry polymerization.
  • Molecular weight polyethylene provides a viable option.
  • an alkane solvent with a lower boiling point such as n-pentane, isopentane or cyclopentane, etc.
  • a mixed alkane solvent with a higher saturated vapor pressure at 20 °C such as a combination of n-pentane and neopentane, isopentane, etc.
  • Combination with neopentane, etc. easy to remove heat from ethylene slurry polymerization reaction, can be carried out at higher polymerization pressure and lower polymerization temperature, and the polymer is easy to dry, and the solvent is easy to recover and reuse.
  • High alkane solvents such as n-hexane, cyclohexane or 3-methylpentane, etc.
  • mixed alkane solvents with lower saturated vapor pressure at 20°C such as the combination of n-hexane and cyclohexane, n-hexane and 3-methyl pentane
  • pentane, the combination of cyclohexane and 2-methylpentane, etc. can reduce the loss of solvent recovery.
  • it can be used at a lower polymerization pressure and a higher polymerization temperature. conduct.
  • the polymerization temperature of each reactor is 40-100°C, preferably 50-90°C.
  • the deviation of the polymerization temperature of each kettle after the first reactor and the polymerization temperature of the first reactor is not more than ⁇ 8%, preferably the polymerization temperature of each kettle after the first reactor and the polymerization of the first reactor
  • the temperature is basically the same.
  • "the temperature is substantially the same” means that the deviation from the reference value is not more than ⁇ 5%, preferably not more than ⁇ 2%.
  • a solvent with a higher boiling point can be selected, and conversely, a solvent with a lower boiling point can be selected when the ethylene slurry polymerization is carried out at a lower polymerization temperature.
  • the polymerization pressure of each reactor in series is 0.2-4.0 MPa, preferably 1.0-3.0 MPa, more preferably 2.0-3.0 MPa.
  • the deviation of the polymerization pressure of each still after the first reactor and the polymerization pressure of the first reactor is not more than ⁇ 20%, preferably not more than ⁇ 10%, more preferably the polymerization of each still after the first reactor
  • the pressure is substantially the same as the polymerization pressure of the first reactor.
  • "the pressure is substantially the same” means that the deviation from the reference value is not more than ⁇ 5%, preferably not more than ⁇ 2%.
  • the pressure of each reactor is the same. Among them, if the ethylene slurry polymerization is carried out at a higher polymerization temperature, a lower polymerization pressure can be selected, and conversely, when the ethylene slurry polymerization is carried out at a lower polymerization temperature, a higher polymerization pressure can be selected. It is known in the art that when ethylene polymerization (homopolymerization or copolymerization with other monomers) is carried out, the reaction pressure in the reactor can be controlled by ethylene, optional comonomer as the polymerization raw material.
  • the viscosity-average molecular weight of high-viscosity-average molecular weight polyethylene also increases first and then decreases. Therefore, according to the present invention, the viscosity-average molecular weight of ultra-high-viscosity-average molecular weight polyethylene obtained by ethylene slurry polymerization can also be adjusted and controlled by the polymerization pressure.
  • the volume concentration of the comonomer may be 0.01-5%, 0.02-5%, or 0.05-3%.
  • the molecular weight of the polymer obtained by copolymerization is lower than that obtained by homopolymerization.
  • the copolymerization performance of ultra-high molecular weight ethylene copolymers produced by them is different.
  • a main catalyst with good copolymerization performance a lower volume concentration of comonomer can be used, but the viscosity-average molecular weight of the final polymer needs to be comprehensively considered.
  • a comonomer for preparing an ultra-high molecular weight ethylene copolymer by ethylene slurry polymerization it can be at least one selected from the group consisting of ⁇ -olefin, diene, cyclic olefin and other ethylenically unsaturated compounds.
  • the ⁇ -olefin may be a C 3 -C 10 ⁇ -olefin, for example, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 4-methyl- 1-pentene, 4-methyl-1-hexene, 1-octene, 1-decene, 1-undecene, 1-dodecene and styrene, etc.
  • cyclic olefin 1-cyclopentene, ethylidene norbornene, norbornene, etc. are mentioned, for example.
  • the diene examples include 1,4-butadiene, 2,5-pentadiene, 1,6-heptadiene, vinyl norbornene, norbornadiene, and 1,7-octadiene Diene etc.
  • the comonomer is preferably a C 3 -C 10 ⁇ -olefin, more preferably at least one selected from the group consisting of 1-butene, 1-hexene, 4-methyl-1-pentene and 1-octene , further preferably at least one selected from 1-butene, 1-hexene and 1-octene.
  • the present invention adopts 2-6 ethylene slurry polymerization reactors connected in series, preferably 3-4, most preferably 3, and the main catalyst and co-catalyst are continuously added from the first polymerization reactor.
  • concentration of the main catalyst in the first polymerization reactor is 0.001-0.100 mmol/L polymerization solvent, preferably 0.005-0.050 mmol/L polymerization solvent; the molar ratio of the co-catalyst to the main catalyst is 20-200:1, preferably 30-100 : 1.
  • the slurry in the kettle leaves the reactor in an overflow mode or an extraction mode with active flow control, and then enters the next reactor or enters the post-processing system.
  • the slurry in the kettle leaves the reaction kettle in an overflow mode. After the kettle, it enters the next reaction kettle or enters the post-processing system.
  • the composition and content of the gas phase in each reactor are kept basically the same. of. That is, no matter whether the material of the previous reaction kettle is through overflow, or the extraction method of actively controlling the flow rate, the raw materials of ethylene and optional comonomer in the previous reaction kettle may enter the current reaction kettle by being sandwiched in the slurry. According to the present invention, it is necessary to independently add (supplement) the raw materials of ethylene and optional comonomers in each reactor to maintain the deviation of the polymerization pressure and gas phase composition of each reactor within a certain range.
  • the gas phase composition of the feed is the same as that of the previous reactor feed.
  • ethylene when ethylene is homopolymerized, since the gas-phase raw material participating in the reaction is only ethylene, the transfer of gas-phase components (ethylene) accompanying the transfer of the slurry will not affect the gas-phase composition of the next kettle.
  • the transfer process will still continue to react. At this time If the composition conditions of the gas phase and the liquid phase change greatly, the polymer product obtained by the polymerization reaction during the transfer process will affect the comprehensive properties of the final ultra-high molecular weight polyethylene. According to the present invention, in order to reduce or avoid the influence of the polymer produced in the transfer process on the final product, the faster the transfer of the slurry between the two polymerization tanks, the better, the preferred continuous production in series is that the slurry is transferred from the previous polymerization reaction.
  • the overflow port of the kettle overflows and directly enters the next polymerization reactor.
  • the overflow is realized by gravity by arranging a gas-phase pressure balance pipe on two cascaded reactors in series.
  • a gas-phase pressure balance pipe on two cascaded reactors in series.
  • the slurry before the slurry enters the post-processing system from the last polymerization reactor, it is buffered through a slurry tundish tank with a thermal insulation function before entering the post-processing system.
  • the slurry tundish tank can be a storage tank, a stirring tank, or A slurry intermediate tank with a small aspect ratio (such as 0.5-5, preferably 1-3), preferably a stirred tank with jacket heating, and preferably maintaining the slurry temperature substantially the same as the previous polymerization reactor.
  • the retention time in the intermediate tank is 0.1-4.0 h, preferably 0.5-2.0 h.
  • the pipeline has a heat preservation function and a relatively thick diameter (for example, when the volume of the last polymerization reactor is 1-5m3 , the diameter of the overflow pipe is 50-400mm).
  • the holding temperature of the pipeline is substantially the same as that of the previous polymerization reactor.
  • the polymerization pressure and the polymerization temperature of each of the series cascaded polymerization reactors are substantially the same.
  • the volume concentrations of comonomers in each of the series cascaded polymerization reactors are substantially the same.
  • the deviation of the composition of the reaction raw materials (polymerization gas phase components) in each of the cascaded polymerization reactors and the gas phase composition of the first reactor is not more than ⁇ 10%, preferably the composition of each reactor after the first reactor The gas phase composition was substantially the same as that of the first reactor.
  • the gas phase composition of each reactor is the same.
  • the deviation of the gas phase composition refers to the deviation of the percentage of each gas phase component relative to all the gas phase components. For example, when the volume concentration of the comonomer is 3% (reference value), the range within which the deviation from the reference value does not exceed ⁇ 10% means that the deviation is within the range of 3% ⁇ (1 ⁇ 0.1).
  • the residence time of each series-connected polymerization reactor for continuous production of ultra-high molecular weight polyethylene is 0.1-6h, preferably 0.5-4h.
  • the sum of the residence time in each series-connected polymerization reactor, that is, the total residence time is not particularly limited, as long as the ultra-high molecular weight polyethylene of the present invention can be obtained, which is related to the polymerization reaction of ethylene slurry.
  • the concentration in the reaction kettle is high, the polymerization pressure and the polymerization temperature are high, the total residence time can be correspondingly reduced, generally 1-20h, preferably 2-12h, most preferably 4-8h.
  • the residence time of each of the series-connected polymerization reactors may be the same or different.
  • the volume of each of the series-connected polymerization reactors may be different or the same. According to the present invention, it is found that, in consideration of the smoothness and matching of continuous production, the full use of catalyst activity and the effective volume production capacity of each series-connected polymerization reactor, the preferred configuration of residence time and polymerization reactor volume is: in the polymerization reactor When the effective volume is the same, the same polymerization residence time is adopted. For different polymerization reactors, the polymerization residence time is configured in proportion to the size of the effective volume, that is, if the effective volume of the polymerization reactor is doubled, the residence time is also doubled accordingly.
  • the effective volume of each polymerization reactor in the series cascade is the same, and the polymerization residence time is the same, but it is not limited thereto.
  • the residence time in each polymerization tank is also related to the catalyst activity remaining in each tank.
  • the effective volume of the polymerization reactor refers to the actual volume under overflow conditions, or the volume of the slurry that stably stays in the polymerization reactor under the condition of actively controlling the slurry to leave the polymerization reactor.
  • the polymerization residence time is the average reaction residence time in the continuous method, that is, in the continuous and stable production.
  • the total volume of the slurry in the polymerization reactor is divided by the volume of the slurry leaving the polymerization reactor in unit hour.
  • the slurry concentration in each serially cascaded ethylene slurry polymerization reactor is 50-500 g polymer/liter polymerization solvent, preferably 100-400 g polymer/liter polymerization solvent.
  • the slurry concentration in each series-connected polymerization reactor can be adjusted by adjusting the volume of the polymerization solvent continuously added to each series-connected polymerization reactor, adjusting the slurry concentration in the preceding polymerization reactor, and adjusting the polymerization residence time. Due to the different polymerization properties of the main catalyst, the activities of catalyzing the homopolymerization of ethylene or the copolymerization of ethylene and comonomers in different polymerization time periods may be different. Combined with the actual consumption rate of raw materials such as ethylene and comonomer, the concentration of the slurry in the polymerization reactor can be comprehensively adjusted by adjusting the polymerization residence time and/or supplementing the polymerization solvent.
  • the residence time of each polymerization reactor is configured according to 1:0.2-1:0.1-1, preferably 1:0.4-0.8:0.2-0.6
  • the residence time of each polymerization reactor is configured according to 1: 0.2-1: 0.1-1: 0.1-1, preferably 1: 0.4-0.8: 0.2-0.6: 0.1-0.4, And so on.
  • the main catalyst and the co-catalyst are continuously added to the first polymerization reaction kettle.
  • they can be continuously added to the first polymerization reaction kettle together with the polymerization solvent according to the proportioning ratio.
  • the main catalyst can be in the form of solid powder. It can be added continuously, or the catalyst in the form of solid powder can be added to the same solvent as the polymerization solvent, and the catalyst slurry is formed in the catalyst preparation kettle. The catalyst slurry is continuously fed into the first polymerization reactor through pumping.
  • the catalyst in the form of solid powder is added to the same solvent as the polymerization solvent to form a catalyst slurry in the catalyst preparation kettle, which is continuously fed into the first polymerization reactor through pumping, and the catalyst slurry prepared from the factory is directly used, which is continuously pumped and transported. Enter the first polymerization reactor.
  • the concentration of the main catalyst prepared at this time is not particularly limited, and it is only necessary to point out that its concentration in the first polymerization reactor is the main catalyst concentration range of 0.001-0.100 mmol/L polymerization solvent, preferably 0.005-0.050 mmol/L, as defined in the present invention. L polymerization solvent is sufficient.
  • the main catalyst in the reactor is The ratio of the catalyst and the polymerization solvent may satisfy the limitations of the present invention.
  • the polymerization solvent mentioned here includes both the freshly added polymerization solvent and the polymerization solvent recovered from the post-treatment system.
  • the co-catalyst can be added to the reactor in liquid form, which can be one or more of pure aluminoxane, alkyl aluminum, halogenated alkyl aluminum, or can use an alkane solvent (as described in the polymerization solvent) those solvents), the concentration of which is not strictly limited.
  • the same solvent as the polymerization solvent is used, generally 0.1-10 mol/L, preferably 0.5-2.0 mol/L, to prepare a co-catalyst stock solution, so that it continuously enters the first polymerization reactor, so that the main catalyst and the co-catalyst are
  • the molar ratio of cocatalyst and main catalyst is 20-200:1, preferably 30-100:1.
  • the same solvent as the polymerization solvent can be used, or other solvents can be used.
  • the solvent can be selected from C5-C10 alkane solvents, such as n-pentane, isopentane, neopentane Alkane, cyclopentane, n-hexane, isohexane, cyclohexane, n-heptane, isoheptane, n-decane, etc.
  • mixed alkane solvents of C5-C10 alkanes such as pentane, hexane, heptane Alkane, two or more mixtures in n-pentane and n-hexane, cyclopentane and n-hexane mixture, or the mixed alkane solvent cut by distillation and rectification, preferably the polymerization solvent of the present invention, specifically the polymerization solvent used in practice .
  • the main catalyst, the co-catalyst and the polymerization solvent are continuously added to the first polymerization reactor, keeping the limitations of the present invention on the concentration of the main catalyst and the amount of the co-catalyst, and then ethylene or ethylene and a comonomer are introduced to stabilize the polymerization Under the conditions of pressure, polymerization temperature, etc., the slurry polymerization (homopolymerization) of ethylene, or the slurry polymerization (copolymerization) of ethylene and comonomers is carried out, and at the same time, the concentration of the slurry slurry satisfies the definition of the present invention.
  • an inert gas eg nitrogen
  • the slurry in the front reactor continuously enters into the subsequent series-cascaded polymerization reactors by overflowing or actively controlling the flow rate, and in the subsequent series-cascading polymerization reactors
  • the feed contains ethylene and optional comonomer such that the gas phase composition of each reactor differs from the gas phase composition of the first reactor by no more than ⁇ 10%, and so that the polymerization pressure of each reactor is the same as the polymerization pressure of the first reactor The deviation of pressure shall not exceed ⁇ 20%.
  • a polymerization solvent is additionally introduced into the subsequent reaction kettles as required to adjust the slurry concentration in the subsequent polymerization kettles, so as to avoid the serial reaction causing the slurry concentration in each reactor to exceed the limit of the present invention.
  • the material is discharged from the last-stage reaction kettle to the post-processing system.
  • the discharged material from the last-stage reaction kettle is buffered by a slurry intermediate tank with a heat preservation function before entering the post-processing system.
  • the ultra-high molecular weight polyethylene of the present invention is obtained.
  • the so-called "post-treatment system” is a system known in the art for recovering polyethylene from the slurry that has completed the polymerization reaction, for example, including filtration, centrifugal separation, flash evaporation, etc. Purification devices, etc.
  • the stirring speed in each polymerization reaction kettle is not particularly limited, as long as the normal dispersion of the slurry in the reaction kettle can be ensured.
  • the volume of the kettle is related. Generally speaking, the smaller the volume of the reaction kettle, the greater the stirring speed required.
  • the stirring speed is 10-1000 rpm, preferably 20-500 rpm.
  • the ultra-high molecular weight polyethylene obtained by the method of the present invention has a viscosity-average molecular weight of 1.5-8 million g/mol, preferably 3-7 million g/mol.
  • the bulk density of the ultra-high molecular weight polyethylene of the present invention is 0.30-0.55 g/cm 3 , preferably 0.33-0.52 g/cm 3 , more preferably 0.39-0.50 g/cm 3 .
  • the comonomer molar insertion rate of the ultra-high molecular weight polyethylene of the present invention is 0.05-4.0%, preferably 0.10-2.0%.
  • the content of metal elements is 0-40 ppm, preferably 0-30 ppm.
  • the ash content of the ultra-high molecular weight polyethylene of the present invention is less than 200 ppm, preferably less than 150 ppm, more preferably less than 80 ppm.
  • the UHMWPE of the present invention has a tensile yield strength greater than 21 MPa and a tensile breaking strength greater than 33 MPa; further preferably, the tensile yield strength is greater than 23 MPa, and the tensile breaking strength is greater than 35 MPa.
  • the titanium content is 0-3ppm, preferably 0-2ppm, more preferably 0-1ppm
  • the magnesium content is 0-10ppm, preferably 0-5ppm, more preferably 0-2ppm
  • aluminum The content is 0-30 ppm, preferably 0-25 ppm, more preferably 0-20 ppm.
  • a method for continuously producing ultra-high molecular weight polyethylene by slurry polymerization of ethylene is provided, which is characterized in that a polyethylene catalyst is used as the main catalyst, and aluminoxane, alkyl aluminum, and halogenated alkyl aluminum are used in the process.
  • a polyethylene catalyst is used as the main catalyst, and aluminoxane, alkyl aluminum, and halogenated alkyl aluminum are used in the process.
  • One or more of the catalysts are used as cocatalysts, and the alkane solvent with a boiling point of 0-90 °C or a mixed alkane solvent with a saturated vapor pressure of 4-200KPa at 20 °C is used as a polymerization solvent, and the polymerization temperature is 40-100 °C.
  • the hydrogen volume concentration in the polymerization reactor is 0-2%, and the comonomer volume concentration is 0-10%, 2-6 cascade ethylene slurry polymerization reactors are used for continuous production in series.
  • the slurry in the kettle is overflowed or drawn out of the reactor and then enters the next reactor or into the post-processing system.
  • the main catalyst and co-catalyst are continuously added in the first polymerization reactor, and the concentration of the main catalyst in the reactor is 0.001-0.100 mmol/L, the molar ratio of cocatalyst to main catalyst is 20-200:1, the residence time of each polymerization reactor is 0.1-6h, and the slurry concentration is 50-500 grams of polymer/liter of polymerization solvent.
  • an alkane solvent with a boiling point of 25-82° C. or a mixed alkane solvent with a saturated vapor pressure of 30-160 KPa at 20° C. is used.
  • the polymerization solvent under the conditions that the polymerization temperature is 50-85°C, the polymerization pressure is 0.4-3.0MPa, the hydrogen volume concentration in the polymerization reactor is 0-1%, and the comonomer volume concentration is 0-5%, 3-4
  • a series of cascade ethylene slurry polymerization reactors are continuously produced in series, and the slurry in the reactor is overflowed to leave the reactor and then enter the next reactor or enter the post-processing system.
  • the concentration of the main catalyst in the reactor is 0.005-0.050mmol/L.
  • the molar ratio of catalyst to main catalyst is 30-100:1, the residence time of each polymerization reactor is 0.5-4.0h, and the slurry concentration is 100-400 grams of polymer/liter of polymerization solvent.
  • ultra-high molecular weight polyethylene with low metal element content, low ash content and high mechanical properties can be prepared through the continuous production mode of ethylene slurry polymerization.
  • polymerization pressure, polymerization temperature and polymerization solvent, polyethylene with ultra-high viscosity average molecular weight with low metal element content, low ash content and high mechanical properties can be obtained.
  • the molecular weight of the ultra-high viscosity-average molecular weight polyethylene of the present invention does not have a bimodal distribution or a multimodal distribution.
  • the ultra-high viscosity-average molecular weight polyethylene of the present invention Through the preparation method of the ultra-high viscosity-average molecular weight polyethylene of the present invention, the ultra-high viscosity-average molecular weight ethylene homopolymer, the copolymer of ethylene and comonomer ( In the present invention, it is also commonly referred to as polyethylene or ethylene polymer). These ethylene homopolymers and copolymers have mechanical properties such as high tensile strength. Therefore, the polyethylene of the present invention can be suitable for preparing high-end materials such as high-strength ultra-high molecular weight polyethylene fibers and artificial medical joints.
  • the bulk density of ultra-high molecular weight polyethylene is determined with reference to the standard GB 1636-79.
  • the ash content in ultra-high molecular weight polyethylene is determined by the direct calcination method according to the national standard GBT9345.1-2008.
  • the polymer is burned in a muffle furnace and the residue is treated at high temperature until constant weight, obtained by dividing the residue mass by the initial polymer mass.
  • the polymerization activity is the weight of the dried ultra-high molecular weight polyethylene powder obtained per unit time divided by the mass of the main catalyst fed per unit time, and the unit is kgPE/gCat, that is, the kilogram of ultra-high molecular weight polyethylene obtained per gram of the main catalyst. number.
  • the viscosity-average molecular weight of ultra-high molecular weight polyethylene is calculated according to the following method: according to the standard ASTM D4020-00, using the high-temperature dilution Ubbelohde viscometer method (the inner diameter of the capillary is 0.44mm, the constant temperature bath medium is No. 300 silicone oil, and the dilution solvent is ten Hydronaphthalene, the measurement temperature is 135° C.) to measure the intrinsic viscosity of the polymer, and then calculate the viscosity-average molecular weight Mv of the polymer according to the following formula.
  • the comonomer insertion rate of ultra-high molecular weight polyethylene was calibrated by nuclear magnetic resonance method from the known content of the copolymer, and was measured externally by 66/S Fourier transform infrared spectrometer of Bruck Company, Germany.
  • the tensile yield strength and tensile breaking strength of UHMWPE are determined in accordance with the national standard GB/T 1040.2-2006.
  • the polyethylene main catalyst adopts the supported non-metallocene catalyst described in Example 2 of Chinese Patent Application 200710162677.5, wherein the non-metallocene complex structure is
  • the carrier is a composite carrier composed of ES757 type porous silica gel and anhydrous magnesium chloride in a mass ratio of 2:1, and the titanium content is 4.25wt%, calculated as a 100g/L hexane solution of the main catalyst in terms of solid dry powder;
  • the polymerization solvent was n-hexane with a boiling point of 68°C, and the cocatalyst was triethylaluminum, which was prepared as a 0.88 mol/L hexane solution.
  • the main catalyst and the co-catalyst are only added from the first polymerization reaction kettle.
  • the main catalyst feed amount is 50g/h
  • the co-catalyst and the main catalyst are continuously fed according to the molar ratio of 45:1, and the polymerization solvent n-hexane is in
  • the first polymerization reactor feed rate was 3.47m 3 /h
  • the slurry concentration was controlled at 288 grams of polymer/liter of polymerization solvent
  • the polymerization solvent n-hexane was 1.74m 3 /h in the second polymerization reactor feed rate
  • the slurry concentration of the second polymerization reactor was controlled at 315 g polymer/liter of polymerization solvent
  • the feed rate of n-hexane of the polymerization solvent in the third polymerization reactor was 0.90 m 3 /h
  • the slurry concentration of the third polymerization reactor was controlled at 330 m 3 /h. grams of polymer/liter of polymerization solvent.
  • the residence time of each polymerization reactor is set according to 1:0.5:0.25, and the total polymerization residence time is 6h.
  • the ultra-high molecular weight polyethylene powder obtained by drying has a viscosity average molecular weight of 4.6 million g/mol, a bulk density of 0.44 g/cm 3 , a polymerization activity of 57 kgPE/gCat, a titanium element content of 0.86 ppm, and a magnesium element content of 1.94 ppm.
  • the aluminum element content is 23.7 ppm
  • the ash content is 65 ppm
  • the tensile yield strength is 24.2 MPa
  • the tensile breaking strength is 38.0 MPa.
  • the polymerization solvent was changed to n-pentane with a boiling point of 36°C, and the preparation of the main catalyst and the co-catalyst were changed to n-pentane solution.
  • the polymerization temperature of each polymerization reactor was changed to 60° C., and the polymerization pressure was changed to 2.5 MPa.
  • the ultra-high molecular weight polyethylene powder thus obtained has a viscosity average molecular weight of 5.75 million g/mol, a bulk density of 0.41 g/cm 3 , a polymerization activity of 55 kgPE/gCat, a titanium element content of 0.57 ppm, and a magnesium element content of 1.60 ppm.
  • the aluminum element content is 18.4ppm
  • the ash content is 47ppm
  • the tensile yield strength is 24.5MPa
  • the tensile breaking strength is 38.4MPa.
  • Example 2 Basically the same as Example 2, with the following changes:
  • the comonomer adopts 1-hexene, and ethylene and 1-hexene are introduced into each polymerization reactor, so that the volume concentration of the comonomer in the gas phase in each polymerization reactor is stably controlled at 0.5%, and the polymerization solvent adopts a boiling point of 0.5%.
  • Isopentane at 27.83°C.
  • the formulations of the main catalyst and co-catalyst were changed to isopentane solution.
  • the ultra-high molecular weight polyethylene powder thus obtained has a viscosity average molecular weight of 5.2 million g/mol, a bulk density of 0.44 g/cm 3 , a molar insertion rate of comonomers of 0.32%, a polymerization activity of 63 kgPE/gCat, and a titanium element content of 0.32%. It is 0.43ppm, the magnesium content is 1.25ppm, the aluminum content is 15.1ppm, the ash content is 42ppm, the tensile yield strength is 22.2MPa, and the tensile breaking strength is 38.2MPa.
  • the same ethylene slurry polymerization reactors connected in 4-stage series were used, with a volume of 10.4m 3 , and the overflowed material had an effective volume of 7.2m 3 .
  • the polymerization temperature of each polymerization reactor was changed to 70°C, and ethylene was introduced into each polymerization reactor. , so that the polymerization pressure of each polymerization reaction kettle is changed to 2.7MPa, and there is no comonomer in the kettle.
  • the polymerization solvent was changed to n-pentane, and the preparation of main catalyst and co-catalyst was changed to n-pentane solution.
  • the residence time of each polymerization reactor is set according to 1:0.6:0.4:0.2, and the total polymerization residence time is 8h.
  • the polymerization solvent n-pentane feed amount in the first polymerization reactor is 2.9m 3 /h
  • the slurry concentration is controlled at 290 grams of polymer/liter polymerization solvent
  • the n-pentane feed amount in the second polymerization reactor is 2.1 m 3 /h
  • the concentration of the slurry in the second polymerization tank was controlled at 310 g polymer/liter of polymerization solvent
  • the feed amount of n-pentane in the third polymerization tank was 1.6 m 3 /h
  • the slurry in the third polymerization tank was 1.6 m 3 /h.
  • the concentration was controlled at 330 grams of polymer/liter of polymerization solvent, the feed rate of n-pentane in the fourth polymerization reactor was 0.7 m 3 /h, and the concentration of the slurry in the fourth polymerization tank was controlled at 350 grams of polymer/liter of polymerization solvent.
  • the ultra-high molecular weight polyethylene powder thus obtained has a viscosity average molecular weight of 4.38 million g/mol, a bulk density of 0.46 g/cm 3 , a polymerization activity of 72 kgPE/gCat, a titanium content of 0.38 ppm, and a magnesium content of 1.2 ppm.
  • the aluminum element content is 14.4ppm
  • the ash content is 42ppm
  • the tensile yield strength is 24.7MPa
  • the tensile breaking strength is 40.0MPa.
  • the polyethylene main catalyst adopts CMU catalyst, its carrier is anhydrous magnesium chloride, and the titanium content is 4.20wt%;
  • the cocatalyst and the main catalyst were fed continuously in a molar ratio of 60:1.
  • the polymerization temperature of each polymerization reactor was changed to 78 °C, and the polymerization pressure was changed to 1.0 MPa.
  • the slurry was continuously discharged from the third polymerization reactor, and was centrifuged by a filter to obtain ultra-high molecular weight polyethylene powder with a viscosity average molecular weight of 3.65 million g/mol and a bulk density of 0.40 g/cm 3 .
  • the polymerization activity is 55kgPE/gCat, the titanium element content is 0.85ppm, the magnesium element content is 2.64ppm, the aluminum element content is 26.6ppm, the ash content is 79ppm, the tensile yield strength is 23.0MPa, and the tensile breaking strength is 36.3MPa.
  • the polyethylene main catalyst adopts the BCE type Ziegler-Natta type catalyst described in Example 1 of Chinese patent application ZL201010240378.0, the carrier is anhydrous magnesium chloride, and the titanium element content is 9.5wt%; the co-catalyst and the main catalyst are based on moles The ratio was 75:1 continuous feed.
  • the polymerization temperature of each polymerization reactor was changed to 72°C, and the polymerization pressure was changed to 2.2 MPa.
  • ultra-high molecular weight polyethylene powder which had a viscosity average molecular weight of 3.24 million g/mol and a bulk density of 0.45 g/cm 3 .
  • the polymerization activity was 42 kgPE/gCat, the tensile yield strength was 23.3 MPa, and the tensile breaking strength was 35.2 MPa.
  • Example 6 Basically the same as Example 6, with the following changes:
  • the polymerization temperature of each polymerization reactor was changed to 88° C., thereby obtaining ultra-high molecular weight polyethylene powder having a viscosity average molecular weight of 1.76 million g/mol and a bulk density of 0.42 g/cm 3 .
  • the polymerization activity was 39 kgPE/gCat, the tensile yield strength was 23.1 MPa, and the tensile breaking strength was 34.3 MPa.
  • Example 6 Basically the same as Example 6, with the following changes:
  • ultra-high molecular weight polyethylene powder which had a viscosity average molecular weight of 1.55 million g/mol and a bulk density of 0.39 g/cm 3 .
  • the polymerization activity was 44 kgPE/gCat, the molar insertion rate of comonomer was 0.68%, the tensile yield strength was 23.2 MPa, and the tensile breaking strength was 35.3 MPa.
  • the polyethylene main catalyst adopts the supported metallocene catalyst described in Example 1 of Chinese Patent 201010521674.8, the carrier silica gel, the active metal titanium element content is 0.62wt%, and the cocatalyst is changed to triisobutylaluminum; The molar ratio was 75:1 with continuous feed.
  • the polymerization temperature of each polymerization reactor was changed to 72°C, and the polymerization pressure was changed to 2.4 MPa.
  • ultra-high molecular weight polyethylene powder which had a viscosity average molecular weight of 3.24 million g/mol and a bulk density of 0.43 g/cm 3 .
  • the polymerization activity is 35kgPE/gCat, the titanium content is 1.65ppm, the magnesium content is 3.28ppm, the aluminum content is 24ppm, the ash content is 105ppm, the tensile yield strength is 24.4MPa, and the tensile breaking strength is 40.4MPa.
  • the polymerization solvent was changed to a mixed alkane solvent composed of n-pentane and isopentane with a saturated vapor pressure of 66.6KPa at 20°C in a molar ratio of 1:1.
  • the formulation of the main catalyst and co-catalyst was changed to the same solvent as the polymerization solvent.
  • ultra-high molecular weight polyethylene powder which had a viscosity average molecular weight of 4.85 million g/mol and a bulk density of 0.45 g/cm 3 .
  • the polymerization activity is 63kgPE/gCat, the titanium content is 0.72ppm, the magnesium content is 1.64ppm, the aluminum content is 21.5ppm, the ash content is 61ppm, the tensile yield strength is 24.5MPa, and the tensile breaking strength is 38.7MPa.
  • the polymerization solvent was changed to a mixed alkane solvent composed of n-pentane, isopentane and cyclopentane with a saturated vapor pressure of 55.93KPa at 20°C in a molar ratio of 1:1:1.
  • the formulation of the main catalyst and co-catalyst was changed to the same solvent as the polymerization solvent.
  • ultra-high molecular weight polyethylene powder which had a viscosity average molecular weight of 5.05 million g/mol and a bulk density of 0.45 g/cm 3 .
  • the polymerization activity is 66kgPE/gCat, the titanium content is 0.70ppm, the magnesium content is 1.61ppm, the aluminum content is 20.6ppm, the ash content is 52ppm, the tensile yield strength is 24.7MPa, and the tensile breaking strength is 38.5MPa.
  • the polymerization solvent was changed to a mixed alkane solvent composed of n-pentane, isopentane, cyclopentane and neopentane with a saturated vapor pressure of 80.27KPa at 20°C in a molar ratio of 6:3:1:3.
  • the formulation of the main catalyst and co-catalyst was changed to the same solvent as the polymerization solvent.
  • ultra-high molecular weight polyethylene powder which had a viscosity average molecular weight of 3.25 million g/mol and a bulk density of 0.42 g/cm 3 .
  • the polymerization activity is 64kgPE/gCat, the titanium content is 0.72ppm, the magnesium content is 1.85ppm, the aluminum content is 21.4ppm, the ash content is 61ppm, the tensile yield strength is 25.8MPa, and the tensile breaking strength is 39.2MPa.
  • the ultra-high molecular weight polyethylene powder thus obtained has a viscosity-average molecular weight of 2.4 million g/mol, a bulk density of 0.33 g/cm 3 , a polymerization activity of 42 kgPE/gCat, a titanium content of 1.37 ppm, and a magnesium content of 5.82 ppm.
  • the aluminum element content is 37.4ppm
  • the ash content is 212ppm
  • the tensile yield strength is 20MPa
  • the tensile breaking strength is 32MPa.
  • Example 2 Basically the same as Example 2, with the following changes:
  • the ultra-high molecular weight polyethylene powder thus obtained has a viscosity average molecular weight of 3.15 million g/mol, a bulk density of 0.34 g/cm 3 , a polymerization activity of 34 kgPE/gCat, a titanium content of 2.51 ppm, and a magnesium content of 7.37 ppm.
  • the aluminum element content is 41.7ppm
  • the ash content is 245ppm
  • the tensile yield strength is 20MPa
  • the tensile breaking strength is 31MPa.
  • the polymerization temperature of the first polymerization reactor was 65°C
  • the temperatures of the second polymerization reactor and the third polymerization reactor were 75°C.
  • the obtained ultra-high molecular weight polyethylene powder has a viscosity average molecular weight of 4.05 million g/mol, a bulk density of 0.39 g/cm 3 , a polymerization activity of 31 kgPE/gCat, a titanium element content of 3.65 ppm, a magnesium element content of 9.57 ppm, and an aluminum content of 3.65 ppm.
  • the element content was 42.7 ppm
  • the ash content was 283 ppm
  • the tensile yield strength was 19.5 MPa
  • the tensile breaking strength was 33 MPa.
  • Example 1 Comparative Example 1
  • Example 2 Comparative Example 2
  • Comparative Example 2 From the implementation data of Example 1, Comparative Example 1, Example 2 and Comparative Example 2, it can be known that the continuous production of ultra-high molecular weight polyethylene by using the ethylene slurry provided by the invention in series cascade polymerization, its polymerization activity, bulk density and viscosity. High average molecular weight, low titanium, magnesium, aluminum and ash content.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明涉及乙烯淤浆聚合连续生产超高分子量聚乙烯的方法,其中,在不含氢的气氛下,在乙烯淤浆聚合条件下,采用2-6个乙烯淤浆聚合反应釜串联方式,并将各釜之间的聚合温度、聚合压力、气相组成的偏差控制在一定范围,对包含乙烯和任选的共聚单体的原料进行连续淤浆聚合,可以连续生产粘均分子量为150-800万克/摩尔的超高分子量聚乙烯,该方法的聚合方式灵活,调控余地大,聚合物性能稳定。并且,所得超高分子量聚乙烯的金属含量低、灰分含量低、力学性能优异。

Description

淤浆聚合连续生产超高分子量聚乙烯的方法 技术领域
本发明涉及淤浆聚合连续生产超高分子量聚乙烯的方法,更具体而言,涉及在乙烯淤浆聚合条件下,将多个聚合反应釜串联来连续生产超高分子量聚乙烯的方法,其中,以烷烃或混合烷烃为聚合溶剂、在聚乙烯催化体系的存在下,在2-6个串联的聚合反应釜中,将包含乙烯和任选的共聚单体的原料进行连续聚合,得到超高分子量聚乙烯。
背景技术
超高分子量聚乙烯(UHMWPE)一般是指相对分子质量在150万克/摩尔以上的线型结构聚乙烯,具有普通聚乙烯所没有的优异耐磨损性能、极高的抗冲击强度、极好的自润滑性能、优良的耐化学药品性和耐低温性能、优异的抗粘附性、卫生无毒无污染、可再循环回收利用等优点,已被广泛地应用于纺织、造纸、食品、化工、包装、农业、建筑、医疗、净水、体育、娱乐、军事等领域。
超高分子量聚乙烯的生产方法主要有乙烯淤浆聚合法和乙烯气相聚合法。其中,乙烯淤浆聚合法是生产聚乙烯的主要方法之一。
乙烯淤浆间歇法生产超高分子量聚乙烯时,其催化剂、助催化剂和聚合溶剂一次性加入到反应釜中,乙烯连续加入直至聚合反应停止,间歇法能够充分发挥催化剂的聚合活性,可以得到较高粘均分子量的超高分子量聚乙烯,但生产过程操作繁杂,不同批次产物之间存在差异。
比如中国专利申请201510078777.4公开了一种超高分子量聚乙烯催化剂及超高分子量聚乙烯的乙烯淤浆间歇法制备方法,其是向单个搅拌釜式浆液反应釜内加入烷基铝为助催化剂;将所述超高分子量聚乙烯催化剂加入单个搅拌釜式浆液反应釜;在单个搅拌釜式浆液反应釜温度升至50℃时,打开乙烯进料阀,通入乙烯;反应温度控制在60℃-70℃,反应压力控制在0.5MPa-0.7MPa;连续通入乙烯,聚合2小时,间歇聚合反应得到超高分子量聚乙烯。
乙烯淤浆连续法生产超高分子量聚乙烯时,其催化剂、助催化剂、 聚合溶剂和乙烯等原料和物料连续加入到聚合反应釜中,除生产装置在开停车等特殊时期,连续正常生产时,进料和淤浆出料都是连续的。连续法生产效率高,生产过程操作简单,聚合物质量和性能较为均匀,但由于全混流的进出料方式的限制,出料中的浆液反映的是聚合反应釜内催化剂及由此聚合得到聚合物在不同停留时间的分布浆液组成,这种分布与反应釜的构型、搅拌混合方式、进料位置、出料位置,以及出料方式均有密切关系,少量进料中的主催化剂会短路离开反应釜,同时也会长时间留在反应釜中,因此难以得到较高粘均分子量的超高分子量聚乙烯,且分子量分布宽于间歇法。
比如中国专利申请201610892424.2、201610892732.5、201610892836.6、201610892837.0等公开了共聚型超高分子量聚乙烯的制备方法,所述超高分子量聚乙烯分子链具有至少两个链段,先均聚后共聚,或者先共聚后均聚。
中国专利CN1781956A公开了一种聚乙烯的连续制造方法,其中,在串联配置的三个反应釜中将原料单体进行聚合反应,以制成聚乙烯树脂,其特征在于:其中至少一个反应器,除必须的原料单体外,还使用至少含有(a)钛、镁和卤化物组份的固体催化剂茂金属化合物和铝氧烷的固体催化剂中的一种,以及(b)有机铝化合物的组合体,并与其它供应有原料单体的反应釜进行多段连续聚合同时混合的工程,最后制得具有树脂组合物的极限粘度范围从1.1到6.0,密度范围从0.935g/cm 3到0.965g/cm 3的聚乙烯。所述树脂组合物具有宽的双峰的分子量分布,特别适合用于制造具有优良耐环境应力开裂性、耐冲击强度和优异刚性的高分子量聚乙烯薄膜或中空成型材料。由公开内容可见,其涉及的聚乙烯树脂不是超高分子量聚乙烯。
与之类似,中国专利CN1781953A公开了一种聚乙烯的连续制造方法,是在串联配置的四个反应器中将原料单体进行聚合反应及混合,以制成聚乙烯树脂。
中国专利CN1405224A公开了三段聚合的聚乙烯树脂组合物的制造方法,通过使三种具有非超高分子量组分的聚合物产生的方法,进而限制聚合物中各组分的极限粘度。
CN103342842A公开了一种微孔膜用高密度聚乙烯树脂组合物及其制备方法,通过两个聚合釜连续串联聚合方式,第一釜加氢共聚, 第二釜仅共聚,进而直接形成超高分子量聚乙烯组分和中低分子量聚乙烯组分的均匀混合。
现有生产超高分子量聚乙烯主要是采用乙烯淤浆间歇聚合法,生产效率低,不同批次质量不易控制一致,而乙烯淤浆单釜连续聚合法又会存在浆液返混等问题,分子量增长受限,难以生产高粘均分子量的超高分子量聚乙烯。
发明内容
本发明人在现有技术的基础上,经过深入研究,结果发现了在不含氢的气氛下,在乙烯淤浆聚合条件下,采用2-6个乙烯淤浆聚合反应釜串联方式,并将各釜之间的聚合温度、聚合压力、气相组成的偏差控制在一定范围,对包含乙烯和任选的共聚单体的原料进行连续淤浆聚合,可以连续生产粘均分子量为150-800万克/摩尔的超高分子量聚乙烯。
并且,在本发明的串联乙烯淤浆连续聚合方式下,可以实现主催化剂聚合活性的充分发挥,进而得到低金属元素含量、低灰分含量的超高粘均分子量聚乙烯,可以适用于航空航天、医疗材料等对杂质要求高的领域。
即,通过本发明的淤浆聚合连续生产超高粘均分子量聚乙烯的方法,无须苛刻的乙烯淤浆聚合反应釜构型和聚合反应条件,就可以实现高粘均分子量、低金属元素含量、低灰分含量和高拉伸强度的超高粘均分子量聚乙烯的连续生产,非常适合于工业化规模生产,并可适用于后续制备高强度超高分子量聚乙烯纤维、人工医用关节等高端材料。
具体而言,本发明提供淤浆聚合连续生产超高粘均分子量聚乙烯(乙烯均聚物、乙烯和共聚单体的共聚物)的方法,其中,采用2-6个(优选3-4个、最优选3个)串联的乙烯淤浆聚合反应釜作为反应器,在不含氢的气氛下,并将各釜之间的聚合温度、聚合压力、气相组成的偏差控制在一定范围,对包含乙烯和任选的共聚单体的原料进行连续淤浆聚合,其中,在第一聚合反应釜中连续引入主催化剂和助催化剂、包含乙烯和任选的共聚单体的原料,在后续各聚合反应釜中补充包含乙烯和任选的共聚单体的原料,以使各聚合反应釜中的气相组成与第一聚合反应釜的偏差不超过±10%,后续各聚合反应釜的聚合压力 与第一聚合反应釜的聚合压力的偏差不超过±20%,聚合温度与第一聚合反应釜的聚合温度的偏差不超过±8%,各聚合反应釜内浆液采用溢流方式或主动控制流量的抽出方式离开反应釜后进入下一反应釜或进入后处理系统,由此可以得到低金属元素含量、低灰分含量和高力学性能的超高粘均分子量聚乙烯。
本发明还提供一种超高分子量聚乙烯(乙烯均聚物、乙烯和共聚单体的共聚物),其粘均分子量为150-800万克/摩尔,优选300-700万克/摩尔,金属元素含量0-40ppm、优选0-30ppm,堆积密度0.30-0.55g/cm 3,优选0.33-0.52g/cm 3,共聚单体摩尔插入率0-2.0%,优选0-1.0%,拉伸屈服强度大于21MPa,优选大于23MPa,拉伸断裂强度大于33MPa,优选大于35MPa,灰分含量小于200ppm、优选小于150ppm。
技术效果
本发明的淤浆聚合连续生产超高分子量聚乙烯方法中,生产过程所需的助催化剂用量低,聚合过程稳定,生产方式灵活,产品可调余地大。并且,解决了现有技术中连续聚合法引起的返混问题。
本发明中通过淤浆聚合方式连续生产超高分子量聚乙烯,由此可以使得主催化剂聚合活性的充分发挥,可以得到低金属元素含量和低灰含量的超高粘均分子量聚乙烯。
本发明的乙烯淤浆聚合连续生产超高分子量聚乙烯方法中,乙烯淤浆聚合活性高,由此生产的超高分子量聚乙烯(乙烯均聚物和乙烯共聚物)的粘均分子量高,金属元素和灰分含量低,且力学性能优异。
本发明采用多级(2-6个反应釜)连续法生产的超高分子量聚乙烯,同时使第一釜之后的各个反应釜的聚合温度、聚合压力和聚合气相组成与第一釜的偏差在一定范围之内(优选各釜之间基本上相同),由此通过本发明的方法得到的超高分子量聚乙烯为单窄峰分布,与现有技术中的宽峰或多峰分布的超高分子量聚乙烯相比,力学性能优异。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权 利要求书来确定。
在本发明的上下文中,除非另有明确定义,或者该含义超出了本领域技术人员的理解范围,3个碳原子以上的烃或烃衍生物基团(比如丙基、丙氧基、丁基、丁烷、丁烯、丁烯基、己烷等)在未冠以词头“正”时均具有与冠以词头“正”时相同的含义。比如,丙基一般理解为正丙基,而丁基一般理解为正丁基,除非另有明确。
在本说明书中,为了避免表述复杂,未针对化合物的各个取代基或基团明确其价键状况是一价、二价、三价还是四价的等,本领域技术人员可以根据这些取代基或基团(比如本说明书中记载或定义的基团G、D、B、A和F等)在相应化合物的结构式上所处的位置或所表现的取代情况具体判断,并且从本说明书中针对这些取代基或基团所给出的定义中选择于该位置或取代情况的价键状况适合的定义。
本说明书提到的所有出版物、专利申请、专利和其它参考文献全都引于此供参考。除非另有定义,本说明书所用的所有技术和科学术语都具有本领域技术人员常规理解的含义。在有冲突的情况下,以本说明书的定义为准。
当本说明书以词头“本领域技术人员公知”、“现有技术”或其类似用语来导出材料、物质、方法、步骤、装置或部件等时,该词头导出的对象涵盖本申请提出时本领域常规使用的那些,但也包括目前还不常用,却将变成本领域公认为适用于类似目的的那些。
在本说明书的上下文中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此而形成的技术方案或技术思想均视为本发明原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合是明显不合理的。
在没有明确指明的情况下,本说明书内所提到的所有百分数、份数、比率等都是以重量为基准的,除非以重量为基准时不符合本领域技术人员的常规认识。
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。
在本发明的上下文中,除非另有特别说明,物质的物性值(比如沸点)都是常温(25℃)和常压(101325Pa)下的测量值。
本发明的发明人经过深入地研究,结果发现,在本发明的聚合方法中,通过以沸点在0-90℃的烷烃溶剂或20℃下饱和蒸气压为4-200KPa的混合烷烃溶剂作为聚合溶剂(优选沸点在25-82℃的烷烃溶剂或20℃下饱和蒸气压为30-160KPa的混合烷烃溶剂),与以往的聚合溶剂相比,本发明的特定的聚合溶剂和作为反应物的乙烯及任选的共聚烯烃的沸点差异明显,可以方便高效地进行所得超高分子量聚乙烯的后处理,并且,所得的超高分子量聚乙烯粉料中,溶剂残留含量低,有利于缩短聚乙烯粉料的干燥时间、节省聚乙烯粉料的后处理成本。
另外,本发明的聚合方法中,采用各釜的聚合压力和温度的偏差在一定范围(优选各釜之间基本上相同)的多级(2-6个反应釜)连续法生产超高分子量聚乙烯,能够在高聚合温度下得到超高分子量聚乙烯,使得主催化剂聚合活性的充分发挥。并且,现有技术中采用单釜(1级)聚合反应器或1-2级环管反应器或3级以上环管级联,仅适用于均聚,与此相对地,本发明的聚合方法可适用于均聚或共聚的淤浆聚合,并且可以获得较高的共聚烯烃插入率。
通过本发明的聚合方法,在制备得到超高分子量聚乙烯粉料产品之后,无需经过复杂的后纯化处理(例如高纯度的溶剂洗涤、高纯度的水洗涤、高温蒸煮、聚合物熔融后过滤等),只需要除去反应溶剂(通过过滤、倾析、闪蒸、蒸干等),就可以获得高纯度的超高分子量聚乙烯,其金属元素含量低、灰分含量低,并且力学性能优异。
本发明中,采用各釜的聚合压力和温度的偏差在一定范围(优选各釜之间基本上相同)的多级(2-6个反应釜)连续法生产超高分子量聚乙烯,可以有效地解决现有技术中连续聚合法生产聚乙烯时的返混问题,并且使得催化剂活性释放完全,使得乙烯或者乙烯和其他共聚单体的聚合程度进一步得到提高,另外,各反应釜之间的基本上相同的反应条件进一步保证聚乙烯的稳定的链延长,由此得到的超高分子量乙烯均聚物和乙烯共聚物的粘均分子量高,金属元素和灰分含量低。
通过本发明的多级(2-6个反应釜)连续法生产的超高分子量聚乙烯的力学性能优异。不受任何理论限定地,本发明的发明人认为,在本发明的聚合方式中,在第一聚合反应釜中连续加入主催化剂和助催 化剂、包含乙烯和任选的共聚单体的原料,而在后续的串联反应釜中继续加入乙烯和任选的共聚单体的原料,使得后续各反应釜中的气相组成与第一反应釜的偏差在一定范围(优选各釜之间基本上相同),由此在基本上相同的气相组成下,主催化剂聚合活性得以充分发挥,并且确保各个反应釜的聚合温度、聚合压力与第一反应釜的偏差在一定范围(优选各釜之间基本上相同),由此通过本发明的方法得到的超高分子量聚乙烯为单窄峰分布,与现有技术中的宽峰或多峰分布的超高分子量聚乙烯相比,力学性能优异。
本发明的聚乙烯包括乙烯均聚得到的均聚物,乙烯和共聚单体共聚得到的共聚物。本发明中聚乙烯有时也称为乙烯聚合物。
根据本发明的淤浆聚合连续生产超高粘均分子量聚乙烯方法,作为聚乙烯主催化剂,在此没有特别限定,其可适用本领域中常用的用于催化乙烯聚合的催化剂,或者具有催化乙烯单体均聚或乙烯与共聚单体共聚活性的配合物、化合物或组合物。具体而言,可以选自茂金属催化剂、非茂金属催化剂、齐格勒-纳塔型催化剂、齐格勒催化剂中的一种,或多种的复合型催化剂,优选经过负载或载体化的具有催化乙烯聚合活性的负载型单中心金属催化剂、负载型多活性中心金属催化剂、齐格勒-纳塔型催化剂、负载型齐格勒-纳塔与茂金属的复合型催化剂、负载型双或多茂金属催化剂、负载型齐格勒-纳塔与非茂金属的复合型催化剂、负载型双或多非茂金属催化剂、负载型茂金属和非茂金属复合型催化剂、负载型后过渡金属催化剂,载体型齐格勒-纳塔型催化剂等。
具体而言,作为聚乙烯主催化剂,可以选自负载型非茂金属催化剂,如发明专利CN200310106156.X、CN200310106157.4、CN200410066068.6、CN200510119401.X、CN200610107651.6、CN200710162677.5、CN 200710162667.1、CN200710162672.2、CN200710162675.6、CN200710162676.0、CN200710162666.7、CN200910180100.6、CN 200910180607.1、CN200910180601.4、CN200910180606.7、CN200910180602.9、CN200910180605.2、CN200910180603.3、CN200910180604.8、CN200910210988.3、CN200910210984.5、CN200910210989.8、CN200910210986.4、CN200910210985.X、CN200910210990.0、CN200910210987.9、 CN200910210991.5、CN201010286008.0、CN201010286012.7、CN201010284870.8、CN201010285982.5、CN201010284856.8、CN201010285970.2、CN201010285956.2、CN201010285969.X、CN201010285958.1、CN201010285967.0、CN201010285994.8、CN201110259336.6、CN201110259219.X、CN201110259330.9、CN201110259327.7、CN201110259367.1、CN201110259289.5、CN201110259359.7、CN201110259282.3、CN201110259318.8、CN201110259258.X、CN201110259300.8、CN201110259254.1、CN001110259299.9、CN201110259245.2、CN201110259296.5、CN201110259338.5、CN201110259370.3、CN201110259339.X、CN201110259293.1、CN201110259356.3、CN201210063756.1、CN201210063777.3、CN201210063788.1、CN201210063818.9、CN201210063824.4、CN201210063843.7、CN201210063854.5、CN201210063876.1、CN201210063878.0、CN201210063891.6、CN201210063894.X、CN201210063907.3、CN201210063909.2、CN201210063935.5、CN201210063941.0、CN201210063945.9、CN201310189677.X、CN201310227368.7、CN201310227370.4、CN201310227830.3、CN201310227393.5、CN201310452714.1、CN201710814678.7、CN201710814595.8、CN201710814594.3、CN201710814593.9、CN201710814592.4、CN201710814591.X、CN201811144599.0、CN201811144768.0、CN201811139936.7、CN201811140811.6、CN201811139946.0、CN201811139741.2、CN201310091208.4等所涉及的负载型非茂金属催化剂。
作为聚乙烯主催化剂,可以选自负载型茂金属催化剂,如发明专利CN201110247347.2、CN201110080343.X、CN201010518904.5、CN201010519660.2、CN201210289014.0、CN200910078596.6、CN201310090758.4、CN201310090736.8、201310521768.9、CN201410589467.4、CN201410590067.5、CN201610835700.1、201610944191.6、CN201710959423.X、CN201110247349.1、CN201110080294.X、CN201110080395.7、CN201210289017.4、CN201210289031.4、CN201310091192.7、CN201310540973.X、CN201510724626.1、CN200410086283.2、CN200610137777.8、 CN201610944182.7、CN201710312720.5、CN201110080422.0、CN201110080422.0、CN201110080394.2、CN201010519406.2、CN201010519715.X、CN201010519174.0、CN201010519429.3、CN201210289004.7、CN201310090847.9、CN201310091209.9、CN201310540975.9、CN201410554709.6、CN201410513506.2、CN00130388.0、CN200710176589.0、CN201610944083.9、CN201110246705.8、CN201110247085.X、CN2011102914899、CN201010521674.8、CN201310090752.7、CN201310090848.3、CN2013100908483、CN201510624502.6、CN201710166709.2、CN20171031225.2、CN201110246710.9、CN201110080374.5、CN201010519797.8、CN201210289012.1、CN201210418645.8、CN201310090998.4、CN201410252254.2、CN201610393399.3、CN201610956141.X、CN201710958837.0等所涉及的负载型茂金属催化剂。
作为聚乙烯主催化剂,可以选自负载于载体上的齐格勒-纳塔型催化剂,如发明专利CN201010522112.5、CN201010240355.X、CN201010502803.9、CN201010511310.1、CN200710121105.2、CN201010502778.4、CN201010502717.8、CN201010240379.5、CN201110148492.5、CN201110148493.X、CN201110148527.5、CN201110148545.3、CN201110306102.2、CN201010240378.0、CN200410086382.0、CN98101108.X、CN200410078280.4、CN200910088546.6等所涉及的齐格勒-纳塔型催化剂,比如现有的中国石化催化剂有限公司北京奥达分公司的CMU催化剂(又称CM催化剂)等。
其中,优选负载型非茂金属催化剂、负载型茂金属催化剂和齐格勒-纳塔型催化剂。
所述聚乙烯主催化剂中,通常配合有活性金属,该活性金属可以为本领域常用的活性金属,例如可以选自IVB族,如钛、锆或铪元素;VB族,如钒元素,VIII族,如铁、钴、镍、钯等元素,优选IVB族金属元素,最优选钛金属元素。应予说明,本发明中,如无特别说明,聚乙烯主催化剂的摩尔量以聚乙烯主催化剂中活性金属元素计。
根据本发明,所述聚乙烯主催化剂可以是负载型的催化剂,作为载 体可以选自多孔硅胶载体,层状多孔载体、有机聚合物载体、镁化合物载体、氧化物载体中的至少一种。
其中,作为镁化合物载体,例如可以选自镁化合物,比如可以举出卤化镁、烷氧基卤化镁、烷氧基镁、烷基镁、烷基卤化镁和烷基烷氧基镁。这些镁化合物可以单独使用一种,也可以多种混合使用。
作为多孔载体,比如可以举出本领域在制造负载型烯烃聚合催化剂时作为载体而常规使用的那些有机或无机多孔固体。
具体而言,作为有机多孔固体,比如可以举出烯烃均聚物或共聚物、聚乙烯醇或其共聚物、环糊精、(共)聚酯、(共)聚酰胺、氯乙烯均聚物或共聚物、丙烯酸酯均聚物或共聚物、甲基丙烯酸酯均聚物或共聚物,以及苯乙烯均聚物或共聚物等,以及这些均聚物或共聚物的部分交联形式,其中优选部分交联(比如交联度至少为2%但小于100%)的苯乙烯聚合物。
根据本发明,使用有机多孔固体作为载体时,还可以在使用前对所述有机多孔固体进行热活化处理。该热活化处理可以按照通常的方式进行,比如在减压条件下或惰性气氛下对所述有机多孔固体进行加热处理。这里所说的惰性气氛是指气体中仅含有极其微量或者不含有可与所述有机多孔固体反应的组分。作为所述惰性气氛,比如可以举出氮气或稀有气体气氛,优选氮气气氛。由于有机多孔固体的耐热性差,因此该热活化过程以不破坏所述有机多孔固体本身的结构和基本组成为前提。一般地,该热活化的温度为50-400℃,优选100-250℃,而热活化时间为1-24h,优选2-12h。热活化处理后,所述有机多孔固体需要在惰性气氛下正压保存备用。
作为无机多孔固体,比如可以举出元素周期表IIA、IIIA、IVA或IVB族金属的难熔氧化物(比如二氧化硅(又称为氧化硅或硅胶)、氧化铝、氧化镁、氧化钛、氧化锆或氧化钍等),或者这些金属的任意难熔复合氧化物(比如氧化硅铝、氧化镁铝、氧化钛硅、氧化钛镁和氧化钛铝等),以及粘土、分子筛(比如ZSM-5和MCM-41)、云母、蒙脱土、膨润土和硅藻土等。作为所述无机多孔固体,还可以举出由气态金属卤化物或气态硅化合物通过高温水解而生成的氧化物,比如由四氯化硅高温水解得到的硅胶,或者由三氯化铝高温水解得到的氧化铝等。优选二氧化硅、氧化铝、氧化镁、氧化硅铝、氧化镁铝、 氧化钛硅、二氧化钛、分子筛和蒙脱土等,特别优选二氧化硅。适宜的二氧化硅可以通过常规方法制造,或者可以是任意的可购买的商业产品,比如可以举出Grace公司的Grace 955、Grace 948、Grace SP9-351、Grace SP9-485、Grace SP9-10046、Grace 2480D、Grace 2212D、Grace 2485、Davsion Syloid 245和Aerosil812,Ineos公司的ES70、ES70X、ES70Y、ES70W、ES757、EP10X和EP11,以及PQ公司的CS-2133和MS-3040。
根据本发明,所述助催化剂为铝氧烷、烷基铝、卤代烷基铝中的一种或多种,优选烷基铝中的一种或多种。
作为所述铝氧烷,比如可以举出下述通式(I-1)所示的线型铝氧烷,以及下述通式(I-2)所示的环状铝氧烷。
Figure PCTCN2022074012-appb-000001
在前述通式中,基团R彼此相同或不同(优选相同),各自独立地选自C 1-C 8烷基,优选甲基、乙基、丙基、丁基和异丁基,最优选甲基;n为1-50范围内的任意整数,优选10-30范围内的任意整数。
作为所述铝氧烷,优选甲基铝氧烷、乙基铝氧烷、异丁基铝氧烷和正丁基铝氧烷,进一步优选甲基铝氧烷和异丁基铝氧烷,并且最优选甲基铝氧烷。
这些铝氧烷可以单独使用一种,或者以任意的比例组合使用多种。
作为所述烷基铝,比如可以举出如下通式(II)所示的化合物:
Al(R) 3   (II)
其中,基团R彼此相同或不同(优选相同),并且各自独立地选自C 1-C 8烷基,优选甲基、乙基、丙基、丁基和异丁基,最优选甲基。
具体而言,作为所述烷基铝,比如可以举出三甲基铝(Al(CH 3) 3)、三乙基铝(Al(CH 3CH 2) 3)、三正丙基铝(Al(C 3H 7) 3)、三异丙基铝(Al(i-C 3H 7) 3)、三异丁基铝(Al(i-C 4H 9) 3)、三正丁基铝(Al(C 4H 9) 3)、三异戊基铝(Al(i-C 5H 11) 3)、三正戊基铝(Al(C 5H 11) 3)、三正己基铝(Al(C 6H 13) 3)、三异己基铝(Al(i-C 6H 13) 3)、二乙基甲基铝(Al(CH 3)(CH 3CH 2) 2)和二甲基乙基铝(Al(CH 3CH 2)(CH 3) 2)等,其中优选三甲基铝、三乙基铝、三丙基铝和三异丁基铝,最优选三乙基 铝和三异丁基铝。
这些烷基铝可以单独使用一种,或者以任意的比例组合使用多种。
作为所述卤代烷基铝,比如可以举出如下通式(III)所示的化合物:
Al(R) nX 3-n   (III)
其中,基团R彼此相同或不同(优选相同),并且各自独立地选自C 1-C 8烷基,优选甲基、乙基、丙基、丁基和异丁基,最优选甲基;X表示氟、氯、溴、碘;n表示1或2。
具体而言,作为所述卤代烷基铝,比如可以举出一氯二甲基铝(Al(CH 3) 2Cl)、二氯甲基铝(Al(CH 3)Cl 2))、一氯二乙基铝(Al(CH 3CH 2) 2Cl)、二氯乙基铝(Al(CH 3CH 2)Cl 2)、一氯二丙基铝(Al(C 3H 7) 2Cl)、二氯丙基铝(Al(C 3H 7)Cl 2))、一氯二正丁基铝(Al(C 4H 9) 2Cl)、二氯正丁基铝(Al(C 4H 9)Cl 2)、一氯二异丁基铝(Al(i-C 4H 9) 2Cl)、二氯异丁基铝(Al(i-C 4H 9)Cl 2)、一氯二正戊基铝(Al(C 5H 11) 2Cl)、二氯正戊基铝(Al(C 5H 11)Cl 2)、一氯二异戊基铝(Al(i-C 5H 11) 2Cl)、二氯异戊基铝(Al(i-C 5H 11)Cl 2)、一氯二正己基铝(Al(C 6H 13) 2Cl)、二氯正己基铝(Al(C 6H 13)Cl 2)、一氯二异己基铝(Al(i-C 6H 13) 2Cl)、二氯异己基铝(Al(i-C 6H 13)Cl 2)、一氯甲基乙基铝(Al(CH 3)(CH 3CH 2)Cl)、一氯甲基丙基铝(Al(CH 3)(C 3H 7)Cl)、一氯甲基正丁基铝(Al(CH 3)(C 4H 9)Cl)、一氯甲基异丁基铝(Al(CH 3)(i-C 4H 9)Cl)、一氯乙基丙基铝(Al(CH 2CH 3)(C 3H 7)Cl)、一氯乙基正丁基铝(AlCH 2CH 3)(C 4H 9)Cl)、一氯甲基异丁基铝(Al(CH 2CH 3)(i-C 4H 9)Cl)等,其中优选一氯二乙基铝、二氯乙基铝、一氯二正丁基铝、二氯正丁基铝、一氯二异丁基铝、二氯异丁基铝、一氯二正己基铝、二氯正己基铝,进一步优选氯二乙基铝、二氯乙基铝和一氯二正己基铝,并且最优选一氯二乙基铝。
这些卤代烷基铝可以单独使用一种,或者以任意的比例组合使用多种。
另外,根据本发明,所述助催化剂可以单独使用一种,也可以根据需要以任意的比例组合使用多种前述的助催化剂,并没有特别的限制。
本发明中,如无特别说明,所述助催化剂的量以铝(Al)元素的含量表示。
根据本发明,所述聚合溶剂选自沸点在0-90℃的烷烃溶剂或20℃ 下饱和蒸气压为4-200KPa的混合烷烃溶剂。
其中,作为所述沸点在0-90℃的烷烃溶剂,优选沸点在25-82℃的烷烃溶剂,比如可以举出2,2-二甲基丙烷(又称新戊烷,沸点9.5℃,20℃时饱和蒸气压为146.63KPa)、2-甲基丁烷(又称异戊烷,沸点27.83℃,20℃时饱和蒸气压为76.7KPa)、正戊烷(沸点36.1℃,20℃时饱和蒸气压为56.5KPa)、环戊烷(沸点49.26℃,20℃时饱和蒸气压为34.6KPa)、正己烷(沸点68.73℃)、环己烷(沸点80.7℃)、2-甲基戊烷(又称异己烷,沸点60.3℃)、3-甲基戊烷(沸点64.0℃)、2,3-二甲基丁烷(沸点58.7℃)、2,2-二甲基丁烷(沸点58.7℃),优选正戊烷、异戊烷、环戊烷、正己烷、环己烷。
作为所述20℃下饱和蒸气压为4-200KPa的混合烷烃溶剂,优选20℃下饱和蒸气压为30-160KPa的混合烷烃溶剂,其可以是不同烷烃溶剂按照比例混合形成的混合溶剂,如己烷及其异构体的溶剂、戊烷及其异构体溶剂形成的混合溶剂,也可以来自溶剂精馏装置根据馏程切割采出的烷烃混合物。具体而言,可以列举正戊烷和异戊烷的组合,异戊烷和新戊烷的组合、正戊烷与环戊烷的组合、正戊烷和新戊烷的组合、异戊烷和环戊烷的组合、新戊烷和环戊烷的组合、正己烷与环戊烷的组合、正己烷与正戊烷的组合、正己烷和3-甲基戊烷的组合、正己烷和2,2-二甲基丁烷的组合、正己烷和2,3-二甲基丁烷的组合、正己烷和环己烷的组合、正己烷和异己烷的组合、异己烷和环己烷的组合、正戊烷、异戊烷和环戊烷的组合,正己烷、异己烷环己烷的组合等,但不限于此。本发明中,使用混合烷烃作为反应溶剂的情况下,各烷烃溶剂的量可以任意调节,只要所得混合溶剂在20℃下饱和蒸气压为4-200KPa(优选30-160KPa)即可。
在本发明的一个实施方式中,作为在20℃下饱和蒸气压为4-200KPa(优选30-160KPa)的混合烷烃,优选为选自正戊烷、异戊烷、新戊烷和环戊烷中的两种以上的烷烃混合而成的20℃下饱和蒸气压为4-200KPa(优选30-160KPa)的混合烷烃,更优选为正戊烷和异戊烷的组合、异戊烷-新戊烷的组合、正戊烷-环戊烷的组合、异戊烷-环戊烷的组合、新戊烷与环戊烷的组合、正戊烷-异戊烷-环戊烷的组合、新戊烷-异戊烷-正戊烷的组合等。对于各个烷烃在混合烷烃中的比例,例如,两种烷烃溶剂混合时,其摩尔比可以为0.01-100∶1,优选为0.1-10∶1, 三种烷烃溶剂混合时,其摩尔比可以为0.01-100∶0.01-100∶1,优选为0.1-10∶0.1-10∶1,只要所得混合溶剂在20℃下饱和蒸气压为4-200KPa(优选30-160KPa)即可。在本发明的一个实施方式中,仅以沸点在0-90℃的烷烃溶剂或20℃下饱和蒸气压为4-200KPa的混合烷烃溶剂作为聚合溶剂。
以本发明提供的沸点在0-90℃的烷烃溶剂或20℃下饱和蒸气压为4-200KPa的混合烷烃溶剂作为聚合溶剂,为乙烯淤浆聚合制备不同粘均分子量等性能的超高粘均分子量聚乙烯提供了可行的选择。比如采用沸点较低烷烃溶剂(比如正戊烷、异戊烷或环戊烷等)或者20℃下饱和蒸气压较高的混合烷烃溶剂(比如正戊烷与新戊烷的组合、异戊烷与新戊烷的组合等),易于乙烯淤浆聚合反应撤热,可以在较高的聚合压力和较低的聚合温度下进行,且聚合物容易干燥,溶剂易于回收重复使用,而采用沸点较高烷烃溶剂(比如正己烷、环己烷或3-甲基戊烷等)或者20℃下饱和蒸气压较低的混合烷烃溶剂(比如正己烷与环己烷的组合、正己烷与3-甲基戊烷的组合、环己烷与2-甲基戊烷的组合等),可以减少溶剂回收损失,为了有效对聚合反应进行撤热,可以在较低的聚合压力和较高的聚合温度下进行。
根据本发明,乙烯淤浆聚合连续生产超高分子量聚乙烯时,对于各串联聚合反应釜,各个反应釜的聚合温度为40-100℃,优选50-90℃。本发明中,第一反应釜之后的各釜的聚合温度与第一反应釜的聚合温度的偏差不超过±8%,优选第一反应釜之后的各釜的聚合温度与第一反应釜的聚合温度基本上相同。本发明中,“温度基本上相同”是指与基准值的偏差不超过±5%,优选不超过±2%。其中,如在较高的聚合温度下进行乙烯淤浆聚合时,可以选用较高沸点的溶剂,反之在较低的聚合温度下进行乙烯淤浆聚合,可以选择沸点较低的溶剂。已知的是,在乙烯淤浆聚合条件下,在聚合压力、主催化剂、助催化剂和溶剂等其它条件类似可比的条件下,在本发明所述的聚合温度范围内,随着聚合温度增加,由此得到的超高粘均分子量聚乙烯粘均分子量先增后减,因此根据本发明,可以通过聚合温度对乙烯淤浆聚合得到的超高粘均分子量聚乙烯的粘均分子量进行调节和控制。
根据本发明,乙烯淤浆聚合连续生产超高分子量聚乙烯时,对于各串联聚合反应釜,各个反应釜的聚合压力为0.2-4.0MPa,优选 1.0-3.0MPa,更优选2.0-3.0MPa。本发明中,第一反应釜之后的各釜的聚合压力与第一反应釜的聚合压力的偏差不超过±20%,优选不超过±10%,更优选第一反应釜之后的各釜的聚合压力与第一反应釜的聚合压力基本上相同。本发明中,“压力基本上相同”是指与基准值的偏差不超过±5%,优选不超过±2%。在本发明的一个实施方式中,各反应釜压力相同。其中,如在较高的聚合温度下进行乙烯淤浆聚合时,可以选用较低的聚合压力,反之在较低的聚合温度下进行乙烯淤浆聚合,可以选择较高的聚合压力。本领域中,已知的是,在进行乙烯聚合(均聚或与其他单体共聚)时,可以通过作为聚合原料的乙烯、任选的共聚单体来控制反应釜中的反应压力。在乙烯淤浆聚合条件下,在聚合温度、主催化剂、助催化剂和溶剂等其它条件类似可比的条件下,在本发明所述的聚合压力范围内,随着聚合压力增加,由此得到的超高粘均分子量聚乙烯粘均分子量也是先增后减,因此根据本发明,也可以通过聚合压力对乙烯淤浆聚合得到的超高粘均分子量聚乙烯的粘均分子量进行调节和控制。
根据本发明,乙烯淤浆聚合连续生产超高分子量聚乙烯的方法中,不使用氢气,即聚合反应在不含氢的气氛下进行。
根据本发明,乙烯淤浆聚合连续生产超高分子量聚乙烯时,共聚单体不是必须需要的,其主要用于生产超高分子量乙烯共聚物时需要,因此,在本发明的淤浆聚合中,在各聚合反应釜内存在共聚单体时,共聚单体的体积浓度可以为0.01-5%,还可以为0.02-5%,或者为0.05-3%。
一般来说,在可类比的条件下,共聚比均聚所得到的聚合物分子量会有所降低,对于不同的聚乙烯主催化剂,其生产超高分子量乙烯共聚物的共聚性能有所差别,对于共聚性能良好的主催化剂,可以采用较低的共聚单体体积浓度,但需要综合考虑最终聚合物的粘均分子量。
根据本发明,作为乙烯淤浆聚合制备超高分子量乙烯共聚物的共聚单体,可以选自α-烯烃、双烯烃、环状烯烃和其他烯键式不饱和化合物中的至少一种。作为所述α-烯烃,可以为C 3-C 10的α-烯烃,比如可以举出丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、4-甲基-1-戊烯、4-甲基-1-己烯、1-辛烯、1-癸烯、1-十一烯、1-十二烯和苯乙烯等。作为所述环状烯烃,比如可以举出1-环戊烯、乙叉降冰片烯和降冰片烯等。 作为所述双烯烃,比如可以举出1,4-丁二烯、2,5-戊二烯、1,6-庚二烯、乙烯基降冰片烯、降冰片二烯和1,7-辛二烯等。作为所述其他烯键式不饱和化合物,比如可以举出醋酸乙烯酯和(甲基)丙烯酸酯等。其中,共聚单体优选为C 3-C 10的α-烯烃,更优选选自1-丁烯、1-己烯、4-甲基-1-戊烯、1-辛烯中的至少一种,进一步优选选自1-丁烯、1-己烯和1-辛烯中的至少一种。
本发明采用2-6个串联乙烯淤浆聚合反应釜,优选3-4个,最优选3个,主催化剂和助催化剂由第一聚合反应釜中连续加入。其中,主催化剂在第一聚合反应釜中浓度为0.001-0.100mmol/L聚合溶剂,优选0.005-0.050mmol/L聚合溶剂;助催化剂与主催化剂摩尔比为20-200∶1,优选30-100∶1。
根据本发明,在除第一聚合反应釜之外的其他反应釜中,不添加主催化剂和助催化剂。另外,根据需要,还可以向除第一聚合反应釜之外的其他反应釜中引入聚合溶剂以调节各反应釜中的淤浆浆液浓度。根据本发明,采用串联方式连续生产时,釜内浆液采用溢流方式或主动控制流量的抽出方式离开反应釜后进入下一反应釜或进入后处理系统,优选釜内浆液采用溢流方式离开反应釜后进入下一反应釜或进入后处理系统。
本发明的方法中,在各反应釜聚合压力和聚合温度的偏差在一定范围(优选各反应釜聚合压力和聚合温度基本上相同)时,保持各反应釜中的气相组成及含量是基本上相同的。即无论前一反应釜物料是通过溢流,还是主动控制流量的抽出方式,由此前一反应釜中乙烯和任选的共聚单体的原料可能会通过夹在浆液中进入当前反应釜。根据本发明,都需要在各个反应釜通过独立加入(补充)乙烯和任选的共聚单体的原料,以维持各反应釜的聚合压力、气相组成的偏差在一定范围。在本发明的一个实施方式中,将前一反应釜中的气相成分排空后仅将浆液通过溢流方式或主动控制流量的抽出方式转移到下一反应釜中,然后在下一反应釜中进料与前一反应釜进料组成相同的气相成分。在本发明的一个实施方式中,当进行乙烯均聚时,由于参与反应的气相原料只有乙烯,因此,伴随浆液的转移发生的气相成分(乙烯)的转移不会影响下一釜的气相组成。
浆液在两个聚合反应釜中转移时,需要考虑浆液在两釜之间的转移 时间和方式,由于聚合反应原料、主催化剂、助催化剂存在于浆液中,转移过程依然会继续发生反应,此时如果气相和液相组成条件发生较大变化时,在转移过程中聚合反应得到的聚合产物会影响最终超高分子量聚乙烯的综合性能。根据本发明,为减少或避免这种转移过程中产生的聚合物对最终产品的影响,浆液在两个聚合釜之间的转移越快越好,优选的串联方式连续生产是浆液从前一聚合反应釜溢流口溢流,直接进入下一聚合反应釜。最优选是,为了使浆液顺畅地溢流到下一聚合反应釜,通过在两串联级联釜上设置气相压力平衡管的方式,依靠重力实现溢流。在一个优选的情况下,浆液从最后一个聚合反应釜进入后处理系统之前,通过一个带有保温功能的浆液中间罐缓存后再进入后处理系统,浆液中间罐可以是储罐、搅拌釜,或者长径比比较小(比如0.5-5,优选1-3)的浆液中间罐,优选带夹套加热的搅拌釜,并且优选保持浆液温度与前一聚合反应釜基本上相同。在中间罐中的保留时间0.1-4.0h,优选0.5-2.0h。最后一个反应釜和浆液中间罐通过管路连接时,优选该管路为带有保温功能的、直径比较粗(比如最后一个聚合反应釜容积在1-5m 3时,溢流管直径50-400mm,优选100-250mm,最后一个聚合反应釜容积在5-10m 3时,溢流管直径100-500mm,优选150-250mm,以此类推)的管路。优选该管路的保温温度与前一聚合反应釜基本上相同。
根据本发明,优选的是,每个串联级联的聚合反应釜的聚合压力和聚合温度基本上相同。根据本发明,优选的是,如果有共聚单体参与反应,其每个串联级联的聚合反应釜中的共聚单体的体积浓度基本上相同。根据本发明,每个串联级联的聚合反应釜中的反应原料(聚合气相组分)的组成与第一釜的气相组成的偏差不超过±10%,优选第一反应釜之后的各釜的气相组成与第一反应釜的气相组成基本上相同。本发明中,“气相组成基本上相同”是指与基准值的偏差不超过±5%,优选不超过±2%。在本发明的一个实施方式中,各反应釜的气相组分相同。本发明中,气相组成的偏差是指各气相组分相对于所有气相组分的百分比的偏差。例如,当共聚单体的体积浓度为3%(基准值)时,相对于基准值偏差不超过±10%的范围是指偏差在3%×(1±0.1)的范围之内。
根据本发明,连续生产超高分子量聚乙烯的每个串联聚合反应釜停 留时间为0.1-6h,优选0.5-4h。在每个串联聚合反应釜中的停留时间的总和、即总停留时间没有特别限定,只要能够得到本发明所述超高分子量聚乙烯即可,其与乙烯淤浆聚合反应情况有关,催化剂在聚合反应釜内的浓度高、聚合压力和聚合温度高时,可以相应减少总停留时间,一般为1-20h,优选2-12h,最优选4-8h。其中每个串联聚合反应釜停留时间可以相同,也可以不同。所述每个串联聚合反应釜容积可以不同,也可以相同。根据本发明发现,出于连续法生产的流畅和匹配、充分发挥催化剂活性作用和每个串联聚合反应釜有效容积生产能力的考虑,优选的停留时间与聚合反应釜容积配置是:在聚合反应釜有效容积相同时采用相同的聚合停留时间,对于不同的聚合反应釜,按照有效容积大小成比例地配置聚合停留时间,即聚合反应釜有效容积增加一倍,则停留时间也相应提高一倍。最优选串联级联的每个聚合反应釜的有效容积相同,聚合停留时间相同,但是不限于此。在每个聚合反应釜中的停留时间还与各釜中残留的催化剂活性有关。本发明中,聚合反应釜的有效容积是指在溢流条件下的实际容积,或在主动控制浆液离开聚合反应釜情况下,稳定停留在聚合反应釜中浆液的容积。
不同于乙烯淤浆聚合间歇法中的聚合停留时间就是聚合反应时间,本发明中采用串联方式连续进行乙烯淤浆聚合时,聚合停留时间是连续法中的平均反应停留时间,即在连续稳定生产状态下,聚合反应釜内浆液的总体积除以单位小时内离开聚合反应釜浆液体积。根据本发明,增加或减少聚合溶剂向各个聚合反应釜中的连续量,将直接减少或增加聚合反应停留时间,同时,增加或减少主催化剂浓度、提高或降低聚合反应活性,也会减少或增加聚合反应停留时间。
根据本发明,在各串联级联的乙烯淤浆聚合反应釜中,淤浆浆液浓度为50-500克聚合物/升聚合溶剂,优选100-400克聚合物/升聚合溶剂。可以通过调节向各串联聚合反应釜中连续加入的聚合溶剂的体积、调节前级的聚合反应釜中的淤浆浓度、调节聚合停留时间等方式来调节各串联聚合反应釜中淤浆浆液浓度。由于主催化剂的聚合性能不同,在不同的聚合时间段里的催化乙烯均聚或乙烯与共聚单体共聚的活性可能不同,因此可以根据本发明提供的方法在各串联级联聚合反应釜中,结合乙烯和共聚单体等原料的实际消耗速率,通过调节聚合停留 时间和/或补加聚合溶剂来对聚合反应釜中的淤浆浆液的浓度进行综合调节。
根据本发明,在一个优选的条件下,比如选择3个串联聚合反应釜时,每个聚合反应釜停留时间按照1∶0.2-1∶0.1-1配置,优选1∶0.4-0.8∶0.2-0.6,又比如选择4个串联聚合反应釜时,每个聚合反应釜停留时间按照1∶0.2-1∶0.1-1∶0.1-1配置,优选1∶0.4-0.8∶0.2-0.6∶0.1-0.4,以此类推。
根据本发明,主催化剂和助催化剂连续向第一聚合反应釜加入,对于其加入方式,可以是按照配比,连同聚合溶剂一起连续加入到第一聚合反应釜中,主催化剂可以是以固体粉末方式连续加入,也可以是将固体粉末形态的催化剂加入与聚合溶剂相同的溶剂,在催化剂配制釜中形成催化剂浆液,经过泵输送连续进入第一聚合反应釜,还可以直接使用出厂就配制好的催化剂浆液,经过泵输送连续进入第一聚合反应釜。优选将固体粉末形态的催化剂加入与聚合溶剂相同的溶剂,在催化剂配制釜中形成催化剂浆液,经过泵输送连续进入第一聚合反应釜,以及直接使用出厂就配制好的催化剂浆液,经过泵输送连续进入第一聚合反应釜。此时配制的主催化剂浓度没有特别限定,只需指出的是其在第一聚合反应釜中的浓度为本发明限定的主催化剂浓度范围0.001-0.100mmol/L聚合溶剂、优选0.005-0.050mmol/L聚合溶剂即可。实际上,考虑到乙烯淤浆连续生产过程的灵活和易控,优选的是,采用高浓度的主催化剂浆液,同时在第一聚合反应釜的另一入口连续加入聚合溶剂,使釜内的主催化剂和聚合溶剂配比满足本发明的限定即可。这里所述的聚合溶剂,既包括新鲜加入的聚合溶剂,也包括从后处理系统回收的聚合溶剂。
根据本发明,助催化剂可以以液态形式加入反应釜,其可以是纯的铝氧烷、烷基铝、卤代烷基铝中的一种或多种,也可是用烷烃溶剂(如聚合溶剂所述的那些溶剂)配制的溶液,其浓度也没有严格限定。优选的是,采所用与聚合溶剂相同的溶剂,一般以0.1-10mol/L,优选0.5-2.0mol/L,配制助催化剂原液,使其连续进入第一聚合反应釜,使得主催化剂与助催化剂的比例满足助催化剂与主催化剂摩尔比为20-200∶1,优选30-100∶1即可。作为助催化剂原液的溶剂,可以使用与聚合溶剂相同的溶剂,也可以使用其他溶剂,具体而言,所述溶 剂可以选自C5-C10的烷烃溶剂,如正戊烷、异戊烷、新戊烷、环戊烷、正己烷、异己烷、环己烷、正庚烷、异庚烷、正癸烷等或C5-C10烷烃按照不同配比的混合烷烃溶剂,如戊烷、己烷、庚烷,正戊烷和正己烷中的两种以上的混合物、环戊烷和正己烷混合物,或者蒸馏精馏切割的混合烷烃溶剂,优选本发明所述的聚合溶剂,具体为实际使用的聚合溶剂。
基于本发明,主催化剂、助催化剂和聚合溶剂连续加入到第一聚合反应釜,保持本发明关于主催化剂浓度、助催化剂用量的限定,然后通入乙烯或者乙烯和共聚单体,在稳定的聚合压力、聚合温度等条件下,进行乙烯的淤浆聚合(均聚),或者乙烯和共聚单体的淤浆聚合(共聚),同时,使淤浆浆液浓度的满足本发明的限定。另外,本领域中公知的是,为了调控聚合压力,还可以在聚合反应釜中引入不参与反应的惰性气体(例如氮气)。
随后,在第一聚合反应釜之后,前釜的浆液通过溢流方式或主动控制流量的抽出方式连续进入到后续串联级联的聚合反应釜中,并且,在后续串联级联的聚合反应釜中进料包含乙烯和任选的共聚单体使得各反应釜的气相组成与第一反应釜的气相组成的偏差不超过±10%,并且,使得各反应釜的聚合压力与第一反应釜的聚合压力的偏差不超过±20%。另外,结合聚合反应情况,根据需要在后续反应釜中另外引入聚合溶剂,以调节后续聚合釜中的淤浆浆液浓度,避免串联反应导致各反应釜中的浆液浓度超过本发明的限定。
随后,由最后一级反应釜出料到后处理系统,优选的是,最后一级反应釜的出料通过带有保温功能的浆液中间罐缓存后再进入后处理系统。最终,得到本发明的超高分子量聚乙烯。本发明中,所谓的“后处理系统”是本领域公知的从完成聚合反应的浆料中回收聚乙烯的系统,例如包括过滤、离心分离、闪蒸等除去聚合溶剂的装置,对聚乙烯进行纯化的装置等。
在本发明的乙烯淤浆聚合连续生产超高分子量聚乙烯的方法中,每个聚合反应釜中的搅拌速率没有特别限定,只要能够确保反应釜内淤浆能够正常分散即可,搅拌转速与反应釜容积有关,一般来说,反应釜容积越小所需搅拌转速越大,搅拌转速在10-1000rpm,优选20-500rpm。
由本发明的方法得到的超高分子量聚乙烯粘均分子量为150-800万克/摩尔,优选300-700万克/摩尔。本发明的超高分子量聚乙烯的堆积密度为0.30-0.55g/cm 3,优选0.33-0.52g/cm 3,更优选0.39-0.50g/cm 3。本发明的超高分子量聚乙烯的共聚单体摩尔插入率0.05-4.0%,优选0.10-2.0%。
由本发明的方法得到的超高分子量聚乙烯中,金属元素含量为0-40ppm、优选0-30ppm。本发明的超高分子量聚乙烯的灰分含量小于200ppm、优选小于150ppm、更优选小于80ppm。本发明的超高分子量聚乙烯的拉伸屈服强度大于21MPa,拉伸断裂强度大于33MPa;进一步优选拉伸屈服强度大于23MPa,拉伸断裂强度大于35MPa。
由本发明的方法得到的超高分子量聚乙烯中,钛含量为0-3ppm、优选0-2ppm、更优选0-1ppm,镁含量为0-10ppm、优选0-5ppm、更优选0-2ppm,铝含量为0-30ppm、优选0-25ppm、更优选0-20ppm。
本发明的一个实施方式中,提供一种乙烯淤浆聚合连续生产超高分子量聚乙烯的方法,其特征在于,以聚乙烯催化剂作为主催化剂,以铝氧烷、烷基铝、卤代烷基铝中的一种或多种作为助催化剂,以沸点在0-90℃的烷烃溶剂或20℃下饱和蒸气压为4-200KPa的混合烷烃溶剂作为聚合溶剂,在聚合温度为40-100℃,聚合压力为0.2-4.0MPa,聚合反应釜内氢气体积浓度为0-2%,共聚单体体积浓度0-10%的条件下,采用2-6个串级乙烯淤浆聚合反应釜串联方式连续生产,釜内浆液采用溢流方式或抽出方式离开反应釜后进入下一反应釜或进入后处理系统,主催化剂和助催化剂在第一个聚合反应釜中连续加入,釜内主催化剂浓度为0.001-0.100mmol/L,助催化剂与主催化剂摩尔比为20-200∶1,每个聚合反应釜停留时间为0.1-6h,淤浆浆液浓度为50-500克聚合物/升聚合溶剂。
本发明的一个实施方式中,所述乙烯淤浆聚合连续生产超高分子量聚乙烯的方法中,以沸点在25-82℃的烷烃溶剂或20℃下饱和蒸气压为30-160KPa的混合烷烃溶剂作为聚合溶剂,在聚合温度为50-85℃,聚合压力0.4-3.0MPa,聚合反应釜内氢气体积浓度为0-1%,共聚单体体积浓度0-5%的条件下,采用3-4个串级乙烯淤浆聚合反应釜串联方式连续生产,釜内浆液采用溢流方式离开反应釜后进入下一反应釜或进入后处理系统,釜内主催化剂浓度为0.005-0.050mmol/L,助催化剂与 主催化剂摩尔比为30-100∶1,每个聚合反应釜停留时间为0.5-4.0h,淤浆浆液浓度为100-400克聚合物/升聚合溶剂。
根据本发明,可以通过乙烯淤浆聚合连续生产方式,制备得到低金属元素含量、低灰分含量、高力学性能的超高分子量聚乙烯。为了降低聚合物中的金属元素含量,需要充分释放和发挥催化剂的催化乙烯的聚合反应活性,通过采用本发明所述的乙烯淤浆聚合连续生产超高分子量聚乙烯的方法,在本发明的聚乙烯催化剂、聚合压力、聚合温度、聚合溶剂的条件下,可以得到低金属元素含量、低灰分含量、高力学性能的超高粘均分子量的聚乙烯。
另外,本发明的超高粘均分子量的聚乙烯的分子量不具有双峰分布或多峰分布。
通过本发明的超高粘均分子量聚乙烯的制备方法,可以得到低金属元素含量、低灰分含量、高力学性能的超高粘均分子量的乙烯均聚物、乙烯和共聚单体的共聚物(本发明中也通称为聚乙烯或乙烯聚合物),这些乙烯均聚物、共聚物具有高的拉伸强度等力学性能。因此,本发明的聚乙烯可以适用于制备高强超高分子量聚乙烯纤维、人工医用关节等高端材料。
实施例
以下采用实施例进一步详细地说明本发明,但本发明并不限于这些实施例。
超高分子量聚乙烯堆密度测定参照标准GB 1636-79进行测定。
聚乙烯催化剂中活性金属元素,以及超高粘均分子量聚乙烯中的微量元素含量,如钛、镁、钙、铝、氯等元素的含量采用ICP-AES法测定。
超高分子量聚乙烯中的灰分按照国家标准GBT9345.1-2008,采用直接煅烧法测定。在马弗炉里燃烧聚合物并在高温下处理其残留物直至恒重,用残留物质量除以初始聚合物质量而得到。
聚合活性是以单位时间得到的干燥的超高分子量聚乙烯粉末质量除以单位时间进料的主催化剂的质量,其单位为kgPE/gCat,即每克主催化剂得到的超高分子量聚乙烯的公斤数。
超高分子量聚乙烯的粘均分子量按照以下方法计算:按照标准 ASTM D4020-00,采用高温稀释型乌氏粘度计法(毛细管内径为0.44mm,恒温浴介质为300号硅油,稀释用溶剂为十氢萘,测定温度为135℃)测定所述聚合物的特性粘度,然后按照如下公式计算所述聚合物的粘均分子量Mv。
Mv=5.37×10 4×[η] 1.37
其中,η为特性粘度。
超高分子量聚乙烯中共聚单体插入率由已知含量共聚物采用核磁共振法标定,采用德国Bruck公司66/S型傅里叶变换红外光谱仪外测定。
超高分子量聚乙烯的拉伸屈服强度、拉伸断裂强度按照国家标准GB/T 1040.2-2006测定。
实施例1
聚乙烯主催化剂采用中国专利申请200710162677.5实施例2所述的负载型非茂金属催化剂,其中非茂金属配合物结构为
Figure PCTCN2022074012-appb-000002
载体为ES757型多孔硅胶和无水氯化镁按照质量比2∶1所组成的复合载体,钛含量为4.25wt%,以固体干粉计,配制为100g/L主催化剂的己烷溶液;
聚合溶剂为沸点为68℃的正己烷,助催化剂为三乙基铝,配制为0.88mol/L的己烷溶液。
采用3级串联的相同的乙烯淤浆聚合反应釜,各自容积为10.4m 3,溢流出料,各自有效容积为7.2m 3,每个聚合反应釜聚合温度为65℃,各反应釜仅引入乙烯,釜内无共聚单体,使各聚合反应釜的聚合压力达到2.2MPa。
主催化剂和助催化剂仅由第一聚合反应釜加入,以固体干粉计,主催化剂进料量为50g/h,助催化剂与主催化剂按照摩尔比为45∶1连续进料,聚合溶剂正己烷在第一聚合反应釜进料量为3.47m 3/h,淤浆浆液 浓度控制在288克聚合物/升聚合溶剂,聚合溶剂正己烷在第二聚合反应釜进料量为1.74m 3/h,第二聚合釜淤浆浆液浓度控制在315克聚合物/升聚合溶剂,聚合溶剂正己烷在第三聚合反应釜进料量为0.90m 3/h,第三聚合釜淤浆浆液浓度控制在330克聚合物/升聚合溶剂。
其中,每个聚合反应釜停留时间按照1∶0.5∶0.25设置,总聚合停留时间为6h。
淤浆浆液由第三聚合反应釜连续出料后,进入容积为10.4m 3的带加热和搅拌的浆液中间罐,停留0.5h后进入后处理系统,闪蒸脱气后经过滤机离心分离后干燥得到超高分子量聚乙烯粉末,其粘均分子量为460万克/摩尔,堆密度为0.44g/cm 3,聚合活性为57kgPE/gCat,钛元素含量为0.86ppm,镁元素含量为1.94ppm,铝元素含量为23.7ppm,灰分含量为65ppm,拉伸屈服强度24.2MPa,拉伸断裂强度38.0MPa。
实施例2
与实施例1基本相同,但有如以下改变:
聚合溶剂改变为沸点为36℃的正戊烷,主催化剂和助催化剂的配制均改变为正戊烷溶液。
每个聚合反应釜聚合温度改变为60℃,聚合压力改变为2.5MPa。
由此得到超高分子量聚乙烯粉末,其粘均分子量为575万克/摩尔,堆密度为0.41g/cm 3,聚合活性为55kgPE/gCat,钛元素含量为0.57ppm,镁元素含量为1.60ppm,铝元素含量为18.4ppm,灰分含量为47ppm,拉伸屈服强度24.5MPa,拉伸断裂强度38.4MPa。
实施例3
与实施例2基本相同,但有如以下改变:
共聚单体采用1-己烯,在每个聚合反应釜中引入乙烯和1-己烯,使得每个聚合釜内共聚单体在气相中的体积浓度稳定控制在0.5%,聚合溶剂采用沸点为27.83℃的异戊烷。主催化剂和助催化剂的配制均改变为异戊烷溶液。
由此得到超高分子量聚乙烯粉末,其粘均分子量为520万克/摩尔,堆密度为0.44g/cm 3,共聚单体摩尔插入率为0.32%,聚合活性为63kgPE/gCat,钛元素含量为0.43ppm,镁元素含量为1.25ppm,铝元素 含量为15.1ppm,灰分含量为42ppm,拉伸屈服强度22.2MPa,拉伸断裂强度38.2MPa。
实施例4
与实施例1基本相同,但有如以下改变:
采用4级串联的相同乙烯淤浆聚合反应釜,容积为10.4m 3,溢流出料,有效容积为7.2m 3,每个聚合反应釜聚合温度改变为70℃,在各聚合反应釜中引入乙烯,使各聚合反应釜的聚合压力改变为2.7MPa,釜内无共聚单体。聚合溶剂更换为正戊烷,主催化剂和助催化剂的配制改变为正戊烷溶液。
其中,每个聚合反应釜停留时间按照1∶0.6∶0.4∶0.2设置,总聚合停留时间为8h。
聚合溶剂正戊烷在第一聚合反应釜进料量为2.9m 3/h,淤浆浆液浓度控制在290克聚合物/升聚合溶剂,正戊烷在第二聚合反应釜进料量为2.1m 3/h,第二聚合釜淤浆浆液浓度控制在310克聚合物/升聚合溶剂,正戊烷在第三聚合反应釜进料量为1.6m 3/h,第三聚合釜淤浆浆液浓度控制在330克聚合物/升聚合溶剂,正戊烷在第四聚合反应釜进料量为0.7m 3/h,第四聚合釜淤浆浆液浓度控制在350克聚合物/升聚合溶剂。
由此得到超高分子量聚乙烯粉末,其粘均分子量为438万克/摩尔,堆密度为0.46g/cm 3,聚合活性为72kgPE/gCat,钛元素含量为0.38ppm,镁元素含量为1.2ppm,铝元素含量为14.4ppm,灰分含量为42ppm,拉伸屈服强度24.7MPa,拉伸断裂强度40.0MPa。
实施例5
与实施例1基本相同,但有如以下改变:
聚乙烯主催化剂采用CMU催化剂,其载体无水氯化镁,钛含量为4.20wt%;
助催化剂与主催化剂按照摩尔比为60∶1连续进料。每个聚合反应釜聚合温度改变为78℃,聚合压力改变为1.0MPa,
淤浆浆液由第三聚合反应釜连续出料,经过滤机离心分离后干燥得到超高分子量聚乙烯粉末,其粘均分子量为365万克/摩尔,堆密度为0.40g/cm 3。聚合活性为55kgPE/gCat,钛元素含量为0.85ppm,镁元素 含量为2.64ppm,铝元素含量为26.6ppm,灰分含量为79ppm,拉伸屈服强度23.0MPa,拉伸断裂强度36.3MPa。
实施例6
与实施例1基本相同,但有如以下改变:
聚乙烯主催化剂采用中国专利申请ZL201010240378.0实施例1所述的BCE型齐格勒-纳塔型催化剂,其载体为无水氯化镁,钛元素含量为9.5wt%;助催化剂与主催化剂按照摩尔比为75∶1连续进料。每个聚合反应釜聚合温度改变为72℃,聚合压力改变为2.2MPa。
由此得到超高分子量聚乙烯粉末,其粘均分子量为324万克/摩尔,堆密度为0.45g/cm 3。聚合活性为42kgPE/gCat,拉伸屈服强度23.3MPa,拉伸断裂强度35.2MPa。
实施例7
与实施例6基本相同,但有如以下改变:
每个聚合反应釜聚合温度改变为88℃,由此得到超高分子量聚乙烯粉末,其粘均分子量为176万克/摩尔,堆密度为0.42g/cm 3。聚合活性为39kgPE/gCat,拉伸屈服强度23.1MPa,拉伸断裂强度34.3MPa。
实施例8
与实施例6基本相同,但有如以下改变:
在共聚单体1-丁烯存在下聚合生产,每个聚合反应釜的1-丁烯体积浓度为2%。
由此得到超高分子量聚乙烯粉末,其粘均分子量为155万克/摩尔,堆密度为0.39g/cm 3。聚合活性为44kgPE/gCat,共聚单体摩尔插入率0.68%,拉伸屈服强度23.2MPa,拉伸断裂强度35.3MPa。
实施例9
与实施例1基本相同,但有如以下改变:
聚乙烯主催化剂采用中国专利201010521674.8实施例1所述的负载型茂金属催化剂,其载体硅胶,活性金属钛元素含量为0.62wt%,助催化剂改变为三异丁基铝;助催化剂与主催化剂按照摩尔比为75∶1 连续进料。每个聚合反应釜聚合温度改变为72℃,聚合压力改变为2.4MPa。
由此得到超高分子量聚乙烯粉末,其粘均分子量为324万克/摩尔,堆密度为0.43g/cm 3。聚合活性为35kgPE/gCat,钛含量1.65ppm,镁元素含量为3.28ppm,铝含量24ppm,灰分含量为105ppm,拉伸屈服强度24.4MPa,拉伸断裂强度40.4MPa。
实施例10
与实施例1基本相同,但有如以下改变:
聚合溶剂改为20℃下饱和蒸气压为66.6KPa的正戊烷和异戊烷按照1∶1摩尔配比所组成的混合烷烃溶剂。主催化剂和助催化剂的配制改变为与聚合溶剂相同的溶剂。
由此得到超高分子量聚乙烯粉末,其粘均分子量为485万克/摩尔,堆密度为0.45g/cm 3。聚合活性为63kgPE/gCat,钛含量0.72ppm,镁元素含量为1.64ppm,铝含量21.5ppm,灰分含量为61ppm,拉伸屈服强度24.5MPa,拉伸断裂强度38.7MPa。
实施例11
与实施例1基本相同,但有如以下改变:
聚合溶剂改为20℃下饱和蒸气压为55.93KPa的正戊烷、异戊烷和环戊烷按照1∶1∶1摩尔配比所组成的混合烷烃溶剂。主催化剂和助催化剂的配制改变为与聚合溶剂相同的溶剂。
由此得到超高分子量聚乙烯粉末,其粘均分子量为505万克/摩尔,堆密度为0.45g/cm 3。聚合活性为66kgPE/gCat,钛含量0.70ppm,镁元素含量为1.61ppm,铝含量20.6ppm,灰分含量为52ppm,拉伸屈服强度24.7MPa,拉伸断裂强度38.5MPa。
实施例12
与实施例1基本相同,但有如以下改变:
聚合溶剂改为20℃下饱和蒸气压为80.27KPa的正戊烷、异戊烷、环戊烷和新戊烷按照6∶3∶1∶3摩尔配比所组成的混合烷烃溶剂。主催化剂和助催化剂的配制改变为与聚合溶剂相同的溶剂。
由此得到超高分子量聚乙烯粉末,其粘均分子量为325万克/摩尔,堆密度为0.42g/cm 3。聚合活性为64kgPE/gCat,钛含量0.72ppm,镁元素含量为1.85ppm,铝含量21.4ppm,灰分含量为61ppm,拉伸屈服强度25.8MPa,拉伸断裂强度39.2MPa。
比较例1
与实施例1基本相同,但有如以下改变:
仅采用第一聚合反应釜连续生产超高分子量聚乙烯,淤浆浆液浓度控制在330克聚合物/升聚合溶剂,聚合平均停留时间为6h。
由此得到超高分子量聚乙烯粉末,其粘均分子量为240万克/摩尔,堆密度为0.33g/cm 3,聚合活性为42kgPE/gCat,钛元素含量为1.37ppm,镁元素含量为5.82ppm,铝元素含量为37.4ppm,灰分含量为212ppm,拉伸屈服强度20MPa,拉伸断裂强度32MPa。
比较例2
与实施例2基本相同,但有如以下改变:
仅采用第一聚合反应釜连续生产超高分子量聚乙烯,淤浆浆液浓度控制在330克聚合物/升聚合溶剂,聚合平均停留时间为6h。
由此得到超高分子量聚乙烯粉末,其粘均分子量为315万克/摩尔,堆密度为0.34g/cm 3,聚合活性为34kgPE/gCat,钛元素含量为2.51ppm,镁元素含量为7.37ppm,铝元素含量为41.7ppm,灰分含量为245ppm,拉伸屈服强度20MPa,拉伸断裂强度31MPa。
比较例3
与实施例1基本相同,但有如以下改变:
在第一聚合反应釜中引入乙烯,使其聚合压力达到2.2MPa,在第二聚合反应釜和第三聚合反应釜中,引入乙烯和氮气的混合气体,使反应釜中的气相中,乙烯体积比为50%。另外,第一聚合反应釜聚合温度为65℃,第二聚合反应釜和第三聚合反应釜的温度为75℃。
得到超高分子量聚乙烯粉末,其粘均分子量为405万克/摩尔,堆密度为0.39g/cm 3,聚合活性为31kgPE/gCat,钛元素含量为3.65ppm,镁元素含量为9.57ppm,铝元素含量为42.7ppm,灰分含量为283ppm, 拉伸屈服强度19.5MPa,拉伸断裂强度33MPa。
由实施例1和比较例1,实施例2和比较例2的实施数据可知,采用本发明提供的串联级联聚合方式乙烯淤浆连续生产超高分子量聚乙烯,其聚合活性、堆密度和粘均分子量较高,钛、镁、铝元素和灰分低。
另外,由于在比较例1、比较例2中使用单釜进行聚合反应,乙烯存在返混现象,这导致部分催化剂活性无法完全均匀释放,其聚合活性低于实施例1和实施例2中的聚合活性;所得聚乙烯的粘均分子量、堆密度均低于实施例1和实施例2中得到的聚乙烯的粘均分子量、堆密度,另外,由于反应不充分,导致金属元素残留含量高,聚乙烯的灰分高。
以上虽然已结合实施例对本发明的具体实施方式进行了详细的说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。本领域技术人员可在不脱离本发明的技术思想和主旨的范围内对这些实施方式进行适当的变更,而这些变更后的实施方式显然也包括在本发明的保护范围之内。

Claims (14)

  1. 淤浆聚合连续生产超高分子量聚乙烯的方法,其特征在于,采用2-6个、优选3-4个串联的乙烯淤浆反应釜作为反应器,在不含氢的气氛下,对包含乙烯和任选的共聚单体的原料进行连续淤浆聚合,其中,在第一聚合反应釜中连续引入主催化剂和助催化剂、包含乙烯和任选的共聚单体的原料,在后续各聚合反应釜中补充包含乙烯和任选的共聚单体的原料,以使各聚合反应釜中的气相组成与第一聚合反应釜的气相组成的偏差不超过±10%,后续各聚合反应釜的聚合压力与第一聚合反应釜的压力的偏差不超过±20%,聚合温度与第一聚合反应釜的温度的偏差不超过±8%,各聚合反应釜内浆液采用溢流方式或主动控制流量的抽出方式离开反应釜后进入下一反应釜或进入后处理系统。
  2. 按照权利要求1所述的淤浆聚合连续生产超高分子量聚乙烯的方法,其特征在于,以沸点在0-90℃的烷烃溶剂或20℃下饱和蒸气压为4-200KPa的混合烷烃溶剂作为聚合溶剂、优选沸点在25-82℃的烷烃溶剂或20℃下饱和蒸气压为30-160KPa的混合烷烃溶剂作为聚合溶剂,各反应釜中聚合温度为40-100℃、优选50-90℃,聚合压力为0.2-4.0MPa、优选1.0-3.0MPa、更优选2.0-3.0MPa,各聚合反应釜内共聚单体体积浓度为0-5%、优选0-3%,各反应釜中淤浆浆液浓度为50-500克聚合物/升聚合溶剂、优选100-400克聚合物/升聚合溶剂,每个聚合反应釜停留时间为0.1-6h、优选0.5-4.0h。
  3. 按照权利要求1或2所述的淤浆聚合连续生产超高分子量聚乙烯的方法,其特征在于,采用3个串联的反应釜作为反应器,聚合浆液从前一聚合反应釜溢流口溢流直接进入下一聚合反应釜,聚合浆液从最后一个聚合反应釜任选地经由浆液中间罐后再进入后处理系统,每个聚合反应釜停留时间之比为1∶0.2-1∶0.1-1;或者
    采用4个串联的反应釜作为反应器,聚合浆液从前一聚合反应釜溢流口溢流直接进入下一聚合反应釜,聚合浆液从最后一个聚合反应釜任选地经由浆液中间罐后再进入后处理系统,每个聚合反应釜停留时间之比为1∶0.2-1∶0.1-1∶0.1-1。
  4. 按照权利要求3所述的淤浆聚合连续生产超高分子量聚乙烯的方法,其特征在于,采用3个串联的反应釜作为反应器时,停留时间 之比为1∶0.4-0.8∶0.2-0.6,聚合浆液从最后一个聚合反应釜进入的浆液中间罐为带夹套加热的搅拌釜,保持浆液温度与前一聚合反应釜基本上相同;
    采用4个串联的反应釜作为反应器时,停留时间之比为1∶0.4-0.8∶0.2-0.6∶0.1-0.4,聚合浆液从最后一个聚合反应釜进入的浆液中间罐为带夹套加热的搅拌釜,保持浆液温度与前一聚合反应釜基本上相同。
  5. 按照权利要求1-4任一项所述的淤浆聚合连续生产超高分子量聚乙烯的方法,其特征在于,聚合溶剂为选自正戊烷、异戊烷、新戊烷、环戊烷,正己烷、环己烷或它们的至少两种的混合物,更优选选自正戊烷、异戊烷、新戊烷、环戊烷、正戊烷和异戊烷的组合、异戊烷和新戊烷的组合、正戊烷与环戊烷的组合、正戊烷和新戊烷的组合、异戊烷和环戊烷的组合、新戊烷和环戊烷的组合、正己烷和正戊烷的组合和正戊烷-异戊烷-环戊烷的组合的组合中的一种。
  6. 按照权利要求1-5任一项所述的淤浆聚合连续生产超高分子量聚乙烯的方法,其特征在于,共聚单体选自C 3-C 10的α-烯烃,优选选自丙烯、1-丁烯、1-戊烯、1-己烯、1-辛烯中的至少一种。
  7. 按照权利要求1-6任一项所述的淤浆聚合连续生产超高分子量聚乙烯的方法,其特征在于,作为主催化剂的聚乙烯催化剂选自茂金属催化剂、非茂金属催化剂、齐格勒-纳塔型催化剂中的一种或多种,优选经过负载的茂金属催化剂、非茂金属催化剂、齐格勒-纳塔型催化剂中的一种或多种,载体选自硅胶载体,层状多孔载体、有机聚合物载体、镁化合物载体、氧化物载体。
  8. 按照权利要求1-7任一项所述的淤浆聚合连续生产超高分子量聚乙烯的方法,其特征在于,作为主催化剂的聚乙烯催化剂选自负载型非茂金属催化剂和齐格勒-纳塔型催化剂中的一种,载体选自多孔硅胶载体和镁化合物载体中的至少一种。
  9. 按照权利要求1-8所述的一种淤浆聚合连续生产超高分子量聚乙烯的方法,其特征在于,所述助催化剂的铝氧烷选自甲基铝氧烷、乙基铝氧烷、异丁基铝氧烷和正丁基铝氧烷中的一种或多种,优选选自甲基铝氧烷和异丁基铝氧烷中的一种或多种,所述助催化剂的烷基铝为选自三甲基铝、三乙基铝、三丙基铝、三异丁基铝、三正丁基铝、三异戊基铝、三正戊基铝、三己基铝、三异己基铝、二乙基甲基铝和 二甲基乙基铝中的一种或多种,优选选自三甲基铝、三乙基铝、三丙基铝和三异丁基铝中的一种或多种,最优选选自三乙基铝和三异丁基铝中的一种或多种,所述助催化剂的卤代烷基铝为选自一氯二甲基铝、二氯甲基铝、一氯二乙基铝、二氯乙基铝、一氯二丙基铝、二氯丙基铝、一氯二正丁基铝、二氯正丁基铝、一氯二异丁基铝、二氯异丁基铝、一氯二正己基铝、二氯正己基铝、一氯二异己基铝、二氯异己基铝中的一种或多种,优选一氯二乙基铝、二氯乙基铝、一氯二正丁基铝、二氯正丁基铝、一氯二异丁基铝、二氯异丁基铝、一氯二正己基铝、二氯正己基铝,进一步优选一氯二乙基铝、二氯乙基铝和一氯二正己基铝中的一种或多种,并且最优选一氯二乙基铝和二氯乙基铝中的一种或多种。
  10. 按照权利要求1-9任一项所述的淤浆聚合连续生产超高分子量聚乙烯的方法,其中,第一聚合反应釜内主催化剂浓度为0.001-0.100mmol/L聚合溶剂、优选0.005-0.050mmol/L聚合溶剂,助催化剂与主催化剂摩尔比为20-200∶1、优选30-100∶1。
  11. 超高分子量聚乙烯,其特征在于,粘均分子量为150-800万克/摩尔、优选300-700万克/摩尔,金属元素含量0-40ppm、优选0-30ppm,拉伸屈服强度大于21MPa、优选大于23MPa,拉伸断裂强度大于33MPa、优选大于35MPa。
  12. 按照权利要求11所述的超高分子量聚乙烯,其特征在于,堆积密度0.30-0.55g/cm 3、优选0.33-0.52g/cm 3,共聚单体摩尔插入率0-2.0%、优选0-1.0%,灰分含量小于200ppm、优选小于150ppm。
  13. 按照权利要求11或12所述的超高分子量聚乙烯,其特征在于,钛含量为0-3ppm、优选0-2ppm、更优选0-1ppm,镁含量为0-10ppm、优选0-5ppm、更优选0-2ppm,铝含量为0-30ppm、优选0-25ppm、更优选0-20ppm。
  14. 按照权利要求11-13任一项所述的超高分子量聚乙烯,其特征在于,共聚单体选自C 3-C 10的α-烯烃,优选为选自丙烯、1-丁烯、1-戊烯、1-己烯、1-辛烯中的至少一种,更优选选自1-丁烯和1-己烯中的至少一种。
PCT/CN2022/074012 2021-02-01 2022-01-26 淤浆聚合连续生产超高分子量聚乙烯的方法 WO2022161400A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112023015386A BR112023015386A2 (pt) 2021-02-01 2022-01-26 Método para produzir continuamente polietileno de ultra-alto peso molecular usando polimerização em suspensão
US18/263,739 US20240092948A1 (en) 2021-02-01 2022-01-26 Method for continuously producing ultra-high molecular weight polyethylene by using slurry polymerization
EP22745273.7A EP4286417A1 (en) 2021-02-01 2022-01-26 Method for continuously producing ultra-high molecular weight polyethylene by using slurry polymerization
JP2023546408A JP2024504508A (ja) 2021-02-01 2022-01-26 スラリー重合を用いることによる超高分子量ポリエチレンの連続製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110135261.4 2021-02-01
CN202110135261 2021-02-01

Publications (1)

Publication Number Publication Date
WO2022161400A1 true WO2022161400A1 (zh) 2022-08-04

Family

ID=81946612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074012 WO2022161400A1 (zh) 2021-02-01 2022-01-26 淤浆聚合连续生产超高分子量聚乙烯的方法

Country Status (7)

Country Link
US (1) US20240092948A1 (zh)
EP (1) EP4286417A1 (zh)
JP (1) JP2024504508A (zh)
CN (1) CN114634587B (zh)
BR (1) BR112023015386A2 (zh)
TW (1) TW202231667A (zh)
WO (1) WO2022161400A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225109A (ja) * 1985-07-25 1987-02-03 Mitsui Petrochem Ind Ltd オレフインの連続重合法
CN1405224A (zh) 2001-08-07 2003-03-26 丸善石油化学株式会社 包含乙烯类聚合物的树脂组合物及其制造方法
CN1781953A (zh) 2004-12-01 2006-06-07 台湾塑胶工业股份有限公司 一种聚乙烯的连续制造方法
CN1781956A (zh) 2004-12-01 2006-06-07 台湾塑胶工业股份有限公司 一种聚乙烯的连续制造方法
US20090163679A1 (en) * 2007-12-19 2009-06-25 Braskem S.A. Suspension polymerization process for manufacturing ultra high molecular weight polyethylene, a multimodal ultra high molecular weight polyethylene homopolymeric or copolymeric composition, a ultra high molecular weight polyethylene, and their uses
CN103342842A (zh) 2013-07-18 2013-10-09 中国石油化工股份有限公司 一种微孔膜用高密度聚乙烯树脂组合物及其制备方法
CN105504124A (zh) * 2014-09-22 2016-04-20 中国石化扬子石油化工有限公司 一种低灰分高密度聚乙烯树脂及其制备方法
CN105658683A (zh) * 2013-10-25 2016-06-08 帝斯曼知识产权资产管理有限公司 超高分子量聚乙烯的制备
US20190225714A1 (en) * 2016-09-12 2019-07-25 Thai Polyethylene Co., Ltd. High performances multimodal ultra high molecular weight polyethylene

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2228394B1 (en) * 2009-02-24 2013-09-04 Borealis AG Multi-stage process for producing multi-modal linear low density polyethylene
WO2012175632A1 (en) * 2011-06-24 2012-12-27 Ineos Europe Ag Slurry phase polymerisation process
US9432744B2 (en) * 2012-07-31 2016-08-30 Sony Corporation Receiving device, receiving method, transmitting device, and transmitting method
EP2877501B1 (en) * 2013-01-22 2015-12-02 Total Research & Technology Feluy Olefin polymerization process with continuous discharging
CN104774394B (zh) * 2015-03-30 2017-03-29 青岛科技大学 一种聚烯烃合金的制备方法
CN106699946A (zh) * 2015-07-23 2017-05-24 中国石化扬子石油化工有限公司 一种高密度聚乙烯树脂及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225109A (ja) * 1985-07-25 1987-02-03 Mitsui Petrochem Ind Ltd オレフインの連続重合法
CN1405224A (zh) 2001-08-07 2003-03-26 丸善石油化学株式会社 包含乙烯类聚合物的树脂组合物及其制造方法
CN1781953A (zh) 2004-12-01 2006-06-07 台湾塑胶工业股份有限公司 一种聚乙烯的连续制造方法
CN1781956A (zh) 2004-12-01 2006-06-07 台湾塑胶工业股份有限公司 一种聚乙烯的连续制造方法
US20090163679A1 (en) * 2007-12-19 2009-06-25 Braskem S.A. Suspension polymerization process for manufacturing ultra high molecular weight polyethylene, a multimodal ultra high molecular weight polyethylene homopolymeric or copolymeric composition, a ultra high molecular weight polyethylene, and their uses
CN103342842A (zh) 2013-07-18 2013-10-09 中国石油化工股份有限公司 一种微孔膜用高密度聚乙烯树脂组合物及其制备方法
CN105658683A (zh) * 2013-10-25 2016-06-08 帝斯曼知识产权资产管理有限公司 超高分子量聚乙烯的制备
CN105504124A (zh) * 2014-09-22 2016-04-20 中国石化扬子石油化工有限公司 一种低灰分高密度聚乙烯树脂及其制备方法
US20190225714A1 (en) * 2016-09-12 2019-07-25 Thai Polyethylene Co., Ltd. High performances multimodal ultra high molecular weight polyethylene

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAO YU: "Study on Structure and Properties of UHMWPE Prepared by Eccentric Rotor Extruder", ELECTRONIC JOURNAL OF SOUTH CHINA UNIVERSITY OF TECHNOLOGY (MASTER'S THESES), 15 January 2020 (2020-01-15), XP055954174 *
YU ZHENGYI: "Reducing Ash Content of Unipol Polyethylene in Condensate Mode of Operation", PETROCHEMICAL TECHNOLOGY, SINOPEC - CHINA PETRO-CHEMICAL CORPORATION, CN, vol. 34, no. 3, 20 March 2005 (2005-03-20), CN , pages 269 - 272, XP055954171, ISSN: 1000-8144 *

Also Published As

Publication number Publication date
CN114634587B (zh) 2024-04-09
EP4286417A8 (en) 2024-01-17
EP4286417A1 (en) 2023-12-06
BR112023015386A2 (pt) 2023-10-10
TW202231667A (zh) 2022-08-16
JP2024504508A (ja) 2024-01-31
US20240092948A1 (en) 2024-03-21
CN114634587A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
JPH01501556A (ja) 不飽和エチレンポリマー
WO2014036678A1 (zh) 一种丙烯多相共聚体系、聚合方法及聚丙烯釜内合金
US4199476A (en) Olefin polymerization catalyst
TW201041905A (en) Polyolefin gas phase polymerization with 3-substituted C4-10 alkene
JP5237258B2 (ja) 直列に配置された複数の反応装置を用いてエチレンのポリマーを製造する方法
CN109929185B (zh) 一种生产聚丙烯组合物的方法
CA2256363A1 (en) Terpolymerization
JP6955834B2 (ja) 反応器カスケードにおけるエチレンコポリマーを製造するための懸濁プロセス
WO2022161400A1 (zh) 淤浆聚合连续生产超高分子量聚乙烯的方法
CN114507311B (zh) 乙烯聚合物及其制备方法
WO2022161399A1 (zh) 超高分子量聚乙烯及其制备方法
WO2003099884A1 (en) Propylene terpolymers and polymerization process thereof
CN114621379B (zh) 乙烯聚合物及其制备方法
CN115246894B (zh) 烯烃聚合催化剂及其聚合方法和烯烃聚合催化剂组分和应用
CN114524893B (zh) 乙烯聚合物及其制备方法
CN115246906B (zh) 烯烃聚合催化剂组分、烯烃聚合催化剂和烯烃聚合方法和应用
CN115246905B (zh) 烯烃聚合催化剂和烯烃聚合催化剂组分及其聚合方法和应用
JP3305485B2 (ja) エチレン系共重合体の製造方法
US4211671A (en) Olefin polymerization catalyst
CN114621372B (zh) 超高分子量乙烯均聚物及其制备方法
KR101956979B1 (ko) 실리카 담지형 올레핀 중합 촉매의 제조 방법 및 이를 이용한 폴리올레핀 중합체
JP2024504509A (ja) エチレンポリマーおよびその調製方法
JP2677394B2 (ja) 塩化マグネシウム担持型チタン触媒の製造方法
US20240132641A1 (en) Ultra-high molecular weight polyethylene and preparation method therefor
CN118027255A (zh) 一种烯烃聚合体系和聚合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745273

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546408

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023015386

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112023015386

Country of ref document: BR

Free format text: EFETUAR, EM ATE 60 (SESSENTA) DIAS, O PAGAMENTO DE GRU CODIGO DE SERVICO 260 PARA A REGULARIZACAO DO PEDIDO, CONFORME ART. 2O 1O DA RESOLUCAO/INPI/NO 189/2017 E NOTA DEESCLARECIMENTO PUBLICADA NA RPI 2421 DE 30/05/2017, UMA VEZ QUE A PETICAO NO 870230072249DE 15/08/2023 APRESENTA DOCUMENTOS REFERENTES A 2 SERVICOS DIVERSOS (COMPLEMENTACAO DATRADUCAO E MODIFICACAO DE PARTES DO PEDIDO JA ENVIADOS) TENDO SIDO PAGA SOMENTE 1 RETRIBUICAO.DEVERA SER PAGA MAIS 1 (UMA) GRU CODIGO DE SERVICO 260 E A GRU CODIGO DE SERVICO 207REFERENTE A RESPOSTA DESTA EXIGENCIA.

WWE Wipo information: entry into national phase

Ref document number: 2023122614

Country of ref document: RU

Ref document number: 2022745273

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022745273

Country of ref document: EP

Effective date: 20230901

ENP Entry into the national phase

Ref document number: 112023015386

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230731