WO2022161129A1 - 雾化器及电子雾化装置 - Google Patents
雾化器及电子雾化装置 Download PDFInfo
- Publication number
- WO2022161129A1 WO2022161129A1 PCT/CN2022/070412 CN2022070412W WO2022161129A1 WO 2022161129 A1 WO2022161129 A1 WO 2022161129A1 CN 2022070412 W CN2022070412 W CN 2022070412W WO 2022161129 A1 WO2022161129 A1 WO 2022161129A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- atomizing
- atomizer
- atomization
- electrode body
- central axis
- Prior art date
Links
- 238000000889 atomisation Methods 0.000 title claims abstract description 66
- 230000001154 acute effect Effects 0.000 claims abstract description 23
- 238000004891 communication Methods 0.000 claims abstract description 6
- 239000000443 aerosol Substances 0.000 claims description 30
- 238000010438 heat treatment Methods 0.000 claims description 25
- 239000003595 mist Substances 0.000 claims description 3
- 239000003570 air Substances 0.000 description 41
- 239000007788 liquid Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 230000009471 action Effects 0.000 description 5
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000009688 liquid atomisation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/48—Fluid transfer means, e.g. pumps
- A24F40/485—Valves; Apertures
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/48—Fluid transfer means, e.g. pumps
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/10—Devices using liquid inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/46—Shape or structure of electric heating means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/22—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
- H05B3/26—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/40—Heating elements having the shape of rods or tubes
- H05B3/42—Heating elements having the shape of rods or tubes non-flexible
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/021—Heaters specially adapted for heating liquids
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/022—Heaters specially adapted for heating gaseous material
Definitions
- the present application relates to the technical field of atomization, and in particular, to an atomizer and an electronic atomization device including the atomizer.
- the electronic atomization device usually includes an atomizer and a power supply.
- the power supply supplies power to the atomizer.
- the atomizer converts the electrical energy into heat energy, and the aerosol-generating substrate is converted into an aerosol that can be inhaled by the user under the action of the heat energy.
- a large amount of aerosol remaining in the atomization chamber of the atomizer will be converted into condensate, which will leak from the bottom of the atomizer to form leakage liquid, which will enter the power supply and cause leakage. It will erode the power supply and even cause the power supply to explode, thus affecting the service life and safety of the power supply.
- the actual amount of aerosol sucked by the user will also decrease.
- an atomizer and an electronic atomization device including the same are provided.
- An electronic atomization device comprising:
- a base assembly with an air intake passage for communication with the outside;
- An atomizing core, an atomizing cavity communicating with the air inlet channel is formed between the base assembly and the atomizing core, and the atomizing core has a mist for atomizing the atomizing medium and defining a part of the boundary of the atomizing cavity
- the tangent line of the air inlet channel at the connection connecting the atomizing cavity and the tangential angle of the atomizing surface is an acute angle.
- the central axis of the air intake passage is parallel to or coincident with the central axis of the atomizer, and the atomization surface is a plane and forms an acute included angle with the central axis of the atomizer.
- the acute included angle between the atomizing surface and the central axis of the atomizer ranges from 30° to 60°.
- the base assembly has a flow guide surface that is spaced from the atomization surface and defines a boundary of the atomization cavity, and the flow guide surface is arranged parallel to the atomization surface.
- the tangent of the air inlet passage at the connection connecting the atomizing chamber is parallel to the extending direction of the air inlet passage.
- the atomizing core includes a base body, a heating body, a first electrode body and a second electrode body, the atomizing surface is located on the base body, the heating body, the first electrode body and the second electrode body
- the electrode bodies are all arranged on the atomizing surface
- the atomizing cavity has an outflow port for gas to flow out
- both the first electrode body and the second electrode body are electrically connected to and close to the heating body
- the atomizing surface is disposed away from the end of the outflow port.
- the heating body includes a curved segment and two straight segments arranged in parallel, the curved segment is connected to an end of the linear segment close to the outflow port, the first electrode body and the The second electrode body is respectively connected with one end of the two straight segments away from the outflow port, and the orthographic projection of the air inlet passage on the atomizing surface is located between the curved segment and the first and second electrode bodies. between.
- the base assembly has an abutment surface, and the edge of the atomization surface abuts against the abutment surface.
- it further includes a housing, the atomizing core and the base assembly are both connected to the housing, and the housing is provided with an inhalation channel for outputting aerosol and communicating with the atomizing cavity , the flow direction of the gas in the suction channel and the flow direction of the gas in the atomization chamber form an acute included angle.
- the suction passage includes a first suction section and a second suction section that communicate with each other, and the length of the second suction section is greater than three times the length of the first suction section,
- the first suction section communicates with the outside world and its central axis coincides with the central axis of the atomizer, and the second suction section communicates with the atomizing cavity and its central axis coincides with the central axis of the atomizer Keep your distance.
- the central axis of the second suction section has a curved portion and a vertical portion connected to each other, the vertical portion is parallel to the central axis of the atomizer, and the curved portion is parallel to the central axis of the atomizer.
- the central axis of the atomizer is arranged at an included angle.
- An electronic atomization device comprising a power supply and the atomizer according to any one of the above embodiments, the atomizer being connected to the power supply.
- a technical effect of an embodiment of the present application is that since the tangent of the air inlet channel at the connection connecting the atomizing chamber and the tangential angle of the atomization surface are at an acute angle, the direction in which the gas flows from the air inlet channel into the atomizing chamber is different from that of the air inlet channel.
- the flow direction of the gas in the atomizing chamber is at an acute angle, so as to avoid the large direction deflection of the airflow entering the atomizing chamber from the intake channel, and at the same time reduce the eddy current formed by the airflow in the atomizing chamber, which can reduce the air flow.
- the loss of kinetic energy makes the airflow in the atomizing chamber have a larger flow rate, ensuring that the airflow quickly carries the aerosol out of the atomizing chamber, reducing the retention amount and residence time of the aerosol in the atomizing chamber, thereby reducing the generation in the atomizing chamber. of condensate.
- the leakage of the condensate from the air intake channel to the outside of the atomizer can be reduced, thereby reducing the occurrence of leakage.
- the aerosol discharged into the atomizing chamber can be absorbed by the user as much as possible, and the effective absorption amount of the aerosol per unit time can be improved.
- FIG. 1 is a schematic three-dimensional structure diagram of an electronic atomization device provided by an embodiment
- Fig. 2 is the three-dimensional structure schematic diagram of the atomizer in the electronic atomization device shown in Fig. 1;
- Fig. 3 is the plane sectional structure schematic diagram of the atomizer shown in Fig. 2;
- Fig. 4 is a three-dimensional cross-sectional structural schematic diagram of the atomizer shown in Fig. 2;
- FIG. 5 is a schematic structural diagram of FIG. 4 under another viewing angle
- Fig. 6 is the partial three-dimensional exploded sectional view structure schematic diagram of the atomizer shown in Fig. 2;
- Fig. 7 is the longitudinal plane sectional structure schematic diagram of Fig. 6 in the assembled state.
- FIG. 8 is a schematic three-dimensional structure diagram of the atomizing core in the atomizer shown in FIG. 2 .
- an electronic atomizer device 10 provided by an embodiment of the present application includes an atomizer 20 and a power source 30 , and the atomizer 20 and the power source 30 may form a detachable connection relationship.
- the power supply 30 supplies power to the atomizer 20, the atomizer 20 converts electrical energy into heat energy, and the atomization medium is atomized into aerosols that can be inhaled by the user under the action of the heat energy.
- the atomizing medium can be an aerosol-generating matrix such as oil.
- the atomizer 20 includes a base assembly 100, an atomizing core 200, a top cover assembly 300 and a casing 400.
- the top cover assembly 300 and the atomizing core 200 are both arranged in the casing 400, and at least a part of the base assembly 100 is accommodated in the casing. within the body 400.
- a liquid storage chamber 420 is formed between the top cover assembly 300 and the housing 400, and the liquid storage chamber 420 is used to store the liquid atomization medium.
- the top cover assembly 300 is provided with a lower liquid channel 310 , the lower liquid channel 310 is communicated with the liquid storage chamber 420 , the atomizing core 200 is arranged on the top cover assembly 300 , and the atomization medium in the liquid storage chamber 420 flows into the lower liquid channel 310 to the atomizing core 200, so that the atomizing core 200 atomizes the atomizing medium to form an aerosol.
- the base assembly 100 is provided with an air intake channel 110 .
- the intake channel 110 may be a straight channel, for example, the central axis of the intake channel 110 and the central axis of the atomizer 20 are parallel or coincident with each other, in other words, the central axis of the intake channel 110 extends in the vertical direction.
- Both the top cover assembly 300 and the casing 400 are connected to the base assembly 100. Referring to FIG. 3, FIG. 6 and FIG.
- the abutting surface 130 forms a pressing relationship, so that the abutting surface 130 can carry and limit the installation of the atomizing core 200 and the top cover assembly 300 , thereby improving installation accuracy and installation efficiency.
- an inhalation channel 410 is opened on the housing 400 , and the aerosol will eventually be discharged through the inhalation channel 410 to be absorbed by the user.
- the suction passage 410 includes a first suction section 411 and a second suction section 412.
- the first suction section 411 and the second suction section 412 are connected to each other.
- the first suction section 411 is connected to the outside world.
- the end of a suction section 411 suctions the aerosol.
- the central axis of the first suction section 411 may be a straight line extending in the vertical direction, for example, the central axis of the first suction section 411 may coincide with the central axis of the atomizer 20 .
- the length of the first suction section 411 is relatively small, and the length of the second suction section 412 is relatively large. In some embodiments, the length of the second suction section 412 is greater than three times the length of the first suction section 411 .
- the central axis of the second suction section 412 is a curve, so that the central axis of the curve is kept at a distance from the central axis of the atomizer 20 .
- the curved central axis has a curved portion and a vertical portion connected to each other, the vertical portion is parallel to the central axis of the atomizer 20 , and the curved portion forms an angle with the central axis of the atomizer 20 set up.
- the atomizing core 200 includes a base body 210 , a heating body 220 , a first electrode body 231 and a second electrode body 232 .
- the base body 210 can be made of a porous ceramic material, so that the base body 210 has a large number of micropores to form a certain porosity. Through the capillary action of the micropores, the substrate 210 can absorb the atomization medium flowing from the liquid storage chamber 420 into the lower liquid channel 310 , so the substrate 210 can transmit and buffer the atomization medium.
- An atomization cavity 240 is formed between the base body 210 and the base assembly 100 , and the base body 210 has an atomization surface 211 , which defines a part of the boundary of the atomization cavity 240 and is used to atomize the atomization medium.
- the second suction section 412 of the suction passage 410 is in direct communication with the atomizing chamber 240 , and the air inlet passage 110 is also connected with the atomizing chamber 240 .
- the outside air enters into the atomizing chamber 240 through the air intake channel 110, and the outside air carries the aerosol in the atomizing chamber 240 through the second suction section 412 and the first suction section 411 in turn to be absorbed by the atomizing chamber 240.
- the user absorbs it. Obviously, the outside air enters the user's mouth through the air intake channel 110, the atomization chamber 240, the second suction section 412 and the first suction section 411 in sequence.
- the dashed arrow in Figure 3 represents the flow path of the gas during suction. .
- the heating body 220, the first electrode body 231 and the second electrode body 232 are all arranged on the atomizing surface 211, for example, the three can be directly attached to the atomizing surface 211, or the atomizing surface 211 is provided with a groove, The heating body 220 , the first electrode body 231 and the second electrode body 232 are at least partially accommodated in the groove.
- the heating body 220 can be made of metal or alloy material, the first electrode body 231 and the second electrode body 232 can also be made of metal or alloy material, and the resistivity of the heating body 220 can be greater than that of the first electrode body 231 and the second electrode body 232 The resistivity of the two-electrode body 232 .
- the heating body 220 , the first electrode body 231 and the second electrode body 232 are electrically connected to each other to form a series circuit.
- the heat generated by the heating body 220 per unit time is far greater than the unit of the first electrode body 231 and the second electrode body 232
- the heat generated in time, the heat generated by the first electrode body 231 and the second electrode body 232 is very small and can be ignored.
- the heating body 220 includes a curved section 222 and a straight section 221, the number of the curved section 222 is one, the curved section 222 can be semi-circular arc shape, the number of the straight section 221 is two, and the two straight sections 221 are spaced apart from each other and arranged in parallel, and The ends of the two straight segments 221 are aligned with each other.
- the curved section 222 is connected to one end of the two straight sections 221 at the same time, so that the entire heating body 220 has a substantially U-shaped structure.
- the first electrode body 231 and the second electrode body 232 are respectively electrically connected to the positive and negative electrodes of the power source 30 , so that the power source 30 supplies power to the heating element 220 through the first electrode body 231 and the second electrode body 232 .
- the heating body 220 When the heating body 220 generates heat, the atomizing medium soaked on the heating body 220 and the atomizing medium on the atomizing surface 211 will absorb the heat to be atomized to form an aerosol, and the aerosol will first be discharged into the atomization in cavity 240.
- the atomizing chamber 240 has an outflow port 241 for the gas to flow out of the atomizing chamber 240 , and the outflow port 241 is arranged close to the second suction section 412 .
- the gas will directly enter the second suction section 412 .
- the outflow port 241 is closer to the first suction section 411 than the intake passage 110 .
- the tangent of the air intake channel 110 at the connection connecting the atomizing chamber 240 and the tangential angle of the atomizing surface 211 are at an acute angle A, that is, the tangent line between the inner wall surface of the air intake channel 110 near the end of the atomizing chamber 240 and the The tangential included angle of the atomizing surface 211 is an acute included angle A.
- the air intake passage 110 has an end opening on the base assembly 100 that directly communicates with the atomizing cavity 240 , and the normal direction of the end opening and the tangential angle of the atomizing surface 211 are an acute angle A.
- the atomization surface 211 is a plane and forms an acute angle B with the central axis of the atomizer 20, and the acute angle B and the acute angle A can be equal.
- the horizontal plane perpendicular to the central axis of the atomizer 20 is Referring to the reference plane, the atomization surface 211 is inclined relative to the reference plane, that is, the atomization surface 211 is an inclined plane. Therefore, through the guiding action of the atomizing surface 211 , the direction in which the gas flows into the atomizing chamber 240 from the air inlet passage 110 and the flow direction of the gas in the atomizing chamber 240 can form an acute angle A.
- the value range of the acute included angle B formed between the atomizing surface 211 and the central axis of the atomizer 20 is 30° to 60°, and the specific value may be 30°, 45°, 50° or 60°.
- the air intake passage 110 is a linear structure, and the tangent of the connection between the air intake passage 110 and the atomizing chamber 240 is actually parallel to the extending direction of the air intake passage 110 .
- the air intake channel 110 can also be set to other structures, such as an elbow structure, and the air flow enters the atomization chamber along a tangential direction through the connection between the air intake channel 110 and the atomization chamber 240, and the tangential line The direction is actually the direction in which the airflow flows into the atomizing chamber 240 .
- the atomizing surface 211 is set to a plane structure, and the tangent of the air inlet channel 110 at the connection with the atomizing cavity 240 is at an angle between the tangential direction of the atomizing surface 211 , that is, the angle between the tangent and the tangent of the atomizing surface 211 at the intersection with the tangent. It can be understood that the atomizing surface 211 is a plane structure, and the tangent of the atomizing surface 211 is actually the atomizing surface itself. In other embodiments, the atomizing surface 211 can also be set to other structures, such as an arc cylindrical surface or a spherical surface. After the airflow passes through the acute angle contact with the atomizing surface 211, the air flows toward the outflow port along the atomizing surface 211. 241 flows.
- the atomizing surface 211 is arranged perpendicular to the central axis of the atomizer 20, the atomizing surface 211 will be parallel to the above-mentioned reference plane, that is, the atomizing surface 211 is a non-inclined horizontal plane.
- the gas flowing vertically upward into the atomizing chamber 240 from the air intake passage 110 will collide with the atomizing surface 211 to form a "positive collision", and under the guidance of the atomizing surface 211, the collision The gas changes the flow direction, causing the gas flow direction to be deflected by 90° from the vertical direction to the horizontal direction, that is, the direction in which the gas flows into the atomization chamber 240 from the intake passage 110 is perpendicular to the flow direction of the gas in the atomization chamber 240, so It will lead to the following adverse effects: (1) The gas entering the atomizing chamber 240 and the atomizing surface 211 have a "positive collision", and the deflection direction of the air flow is relatively large (ie, deflected by 90°), so that the kinetic energy of the air flow produces a large loss, On the one hand, the speed of the airflow is reduced, and on the other hand, the airflow forms a large turbulence in the atomizing chamber 240 to generate a strong vor
- the aerosol remaining in the atomization chamber 240 will be cooled to form condensate, and the condensate will further leak out of the atomizer 20 through the air intake passage 110 to form leakage, which may erode the power supply 30 , thereby reducing the service life of the power supply 30 and even causing the risk of guaranteeing the power supply 30 .
- the atomizing surface 211 is an inclined plane, which can effectively prevent the gas flowing into the atomizing chamber 240 vertically upward from the intake passage 110 from being mixed with the gas.
- the atomizing surface 211 generates a head-on collision to form a "positive collision", which ensures that the gas and the atomizing surface 211 form an "oblique collision".
- the direction and the flow direction of the gas in the atomizing chamber 240 are at an acute angle, so after the "oblique collision", the direction of the gas flow is deflected from the vertical direction by less than 90° and converted into an oblique upward direction, which will produce at least the following beneficial effects : (1)
- the kinetic energy loss of the airflow after the "oblique collision” is greatly reduced compared to the "positive collision", ensuring that the airflow still maintains a large flow rate, and at the same time reducing the turbulence of the airflow in the atomizing chamber 240, thereby reducing the generation of eddy currents and ensuring the flow rate
- the larger airflow carries the aerosol out of the atomizing chamber 240 quickly and enters the suction channel 410 to be absorbed by the user, greatly reducing the retention amount and residence time of the aerosol in the atomizing chamber 240, thereby reducing the formation of condensate and liquid leakage , to prevent the leakage of liquid from eroding the power
- the gas in the atomizing chamber 240 maintains a relatively large flow rate, the gas can quickly take away the heat generated by the heating element 220, prevent the heating element 220 from being damaged due to excessive temperature, and improve the service life of the heating element 220.
- the atomizing surface 211 is inclined, the entire atomizing core 200 can be inclined, thereby reducing the total volume of the atomizing chamber 240, so the total amount of retained aerosol contained in the atomizing chamber 240 can be reduced, and the same Reduce the formation of condensation and leaks.
- the aerosol remaining in the atomizing cavity 240 is reduced, which can improve the concentration and effective absorption of the aerosol, that is, the amount of aerosol obtained by the user per unit time is increased.
- the curved section 222 is connected to one end of the straight section 221 close to the outflow port 241 , and the first electrode body 231 and the second electrode body 232 are separated from the two straight sections 221 respectively.
- One end of the outflow port 241 is connected, that is, the first electrode body 231 and the second electrode body 232 are arranged close to the air inlet channel 110.
- the first electrode body 231 and the second electrode body 232 are also close to the atomizing surface 211 and away from the outflow port 241.
- the ends are arranged, that is, the first electrode body 231 and the second electrode body 232 are arranged close to the lower end of the atomizing surface 211 .
- the orthographic projection of the air intake channel 110 on the atomizing surface 211 is located between the curved section 222 and the first electrode body 231 and the second electrode body 232 . Therefore, the gas flowing into the atomization chamber 240 vertically upwards from the air intake channel 110 It will be difficult to contact with the first electrode body 231 and the second electrode body 232, avoid the airflow colliding with the first electrode body 231 and the second electrode body 232 and cause turbulence and generate eddy currents, prevent the airflow velocity from decreasing, and ensure that the gas with a relatively large flow velocity is carried The aerosol leaves the atomization chamber 240 quickly, which can also reduce the formation of condensation and leakage.
- the base has a guide surface 120 .
- the guide surface 120 defines a part of the boundary of the atomization cavity 240 and is located below the atomization surface 211 .
- the guide surface 120 and the atomization surface 211 are arranged in parallel.
- the space of the atomization chamber 240 can be further compressed, for example, the volume of the atomization chamber 240 can be compressed to less than 45 mm 3 , thereby reducing the total amount of retained aerosol contained in the atomizing chamber 240, thereby reducing the Formation of condensation and leakage.
- the airflow direction entering the atomization chamber 240 from the intake passage 110 is prevented from generating large deflection and eddy current, and the kinetic energy loss caused by the deflection is avoided, and the atomization chamber 240 is further ensured.
- the air flow inside has a larger flow rate, which also reduces the formation of condensation and leakage.
- the flow direction of the gas in the suction channel 410 and the flow direction of the gas in the atomization chamber 240 form an acute included angle.
- the airflow flowing out of the atomizing chamber 240 can be prevented from being deflected in a direction greater than or equal to 90° in the process of flowing into the suction channel 410, thereby reducing the energy loss caused by the collision between the airflow and the casing 400, and making the airflow in the suction channel 400.
- Larger flow rates are also maintained in 410, which also reduces the formation of condensate and leakage.
Landscapes
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Electrostatic Spraying Apparatus (AREA)
Abstract
一种雾化器(20),包括底座组件(100)及雾化芯(200)。底座组件(100)开设有连通外界的进气通道(110),雾化芯(200)与底座组件(100)之间形成有与进气通道(110)连通的雾化腔(240),雾化芯(200)具有用于将雾化介质雾化并界定雾化腔(240)部分边界的雾化面(211),进气通道(110)在连通雾化腔(240)连接处的切线与雾化面(211)的切向夹角呈锐角。
Description
相关申请的交叉引用
本申请要求于2021年01月26日提交中国专利局、申请号为202120219542.3、发明名称为“雾化器及电子雾化装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及雾化技术领域,特别是涉及一种雾化器以及包含该雾化器的电子雾化装置。
电子雾化装置通常包括雾化器和电源,电源对雾化器供电,雾化器将电能转化为热能,气溶胶生成基质在热能的作用下转化为可供用户抽吸的气溶胶。对于传统的雾化器,该雾化器的雾化腔内残留的大量气溶胶将转化为冷凝液,该冷凝液将从雾化器的底部泄漏而形成泄漏液,该泄漏液将进入电源而对电源构成侵蚀甚至引发电源爆炸,从而影响电源的使用寿命和安全性。此外,受残留在雾化腔内气溶胶的影响,也会导致用户所抽吸到的实际气溶胶量减少。
发明内容
根据本申请的各种示意性实施例,提供一种雾化器以及包含该雾化器的电子雾化装置。
一种电子雾化装置,包括:
底座组件,开设有连通外界的进气通道;及
雾化芯,与所述底座组件之间形成有与所述进气通道连通的雾化腔,所述雾化芯具有用于将雾化介质雾化并界定所述雾化腔部分边界的雾化面,所 述进气通道在连通所述雾化腔连接处的切线与所述雾化面的切向夹角呈锐角。
在其中一个实施例中,所述进气通道的中心轴线与所述雾化器的中心轴线平行或重合,所述雾化面为平面且与所述雾化器的中心轴线呈锐夹角。
在其中一个实施例中,所述雾化面与所述雾化器中心轴线之间的锐夹角的取值范围为30°至60°。
在其中一个实施例中,所述底座组件具有与所述雾化面间隔设置并界定所述雾化腔部分边界的导流面,所述导流面与所述雾化面平行设置。
在其中一个实施例中,所述进气通道在连通所述雾化腔连接处的所述切线与所述进气通道的延伸方向平行。
在其中一个实施例中,所述雾化芯包括基体、发热体、第一电极体和第二电极体,所述雾化面位于所述基体,所述发热体、第一电极体和第二电极体均设置在所述雾化面,所述雾化腔具有供气体流出的流出口,所述第一电极体和所述第二电极体两者均与所述发热体电性连接并靠近所述雾化面远离所述流出口的端部设置。
在其中一个实施例中,所述发热体包括弯曲段和平行设置的两个直线段,所述弯曲段与所述直线段靠近所述流出口的一端连接,所述第一电极体和所述第二电极体分别跟两个所述直线段远离所述流出口的一端连接,所述进气通道在所述雾化面上的正投影位于所述弯曲段和第一、第二电极体之间。
在其中一个实施例中,所述底座组件具有抵接面,所述雾化面的边缘与所述抵接面相抵接。
在其中一个实施例中,还包括壳体,所述雾化芯和所述底座组件均连接所述壳体,所述壳体开设有供气溶胶输出并连通所述雾化腔的吸气通道,气体在所述吸气通道中的流动方向与气体在所述雾化腔中的流动方向呈锐夹角。
在其中一个实施例中,所述吸气通道包括相互连通的第一吸气段和第二吸气段,所述第二吸气段的长度大于所述第一吸气段长度的三倍,所述第一 吸气段连通外界且其中心轴线与所述雾化器的中心轴线重合,所述第二吸气段连通所述雾化腔且其中心轴线与所述雾化器的中心轴线保持间距。
在其中一个实施例中,所述第二吸气段的中心轴线具有相互连接的弯曲部分和竖直部分,所述竖直部分与所述雾化器的中心轴线平行,所述弯曲部分与所述雾化器的中心轴线呈夹角设置。
一种电子雾化装置,包括电源和上述实施例中任一项的雾化器,所述雾化器与所述电源连接。
本申请的一个实施例的一个技术效果是:由于进气通道在连通雾化腔连接处的切线与雾化面的切向夹角呈锐角,使得气体从进气通道流入雾化腔的方向与气体在雾化腔内的流动方向呈锐夹角,从而避免从进气通道进入雾化腔内的气流产生较大的方向偏转,同时减少气流在雾化腔内形成涡流,如此可以减少气流的动能损失,使得雾化腔内的气流具有较大的流速,确保气流快速携带气溶胶离开雾化腔,减少气溶胶在雾化腔内的滞留量和滞留时间,从而减少雾化腔内所产生的冷凝液。鉴于冷凝液的减少,可以减少冷凝液从进气通道泄漏至雾化器之外而形成漏液,进而减少漏液的产生。此外,可以使得排入雾化腔内的气溶胶尽可能多的被用户吸收,提高单位时间内气溶胶的有效吸收量。
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施例提供的电子雾化装置的立体结构示意图;
图2为图1所示电子雾化装置中雾化器的立体结构示意图;
图3为图2所示雾化器的平面剖视结构示意图;
图4为图2所示雾化器的立体剖视结构示意图;
图5为图4在另一视角下的结构示意图;
图6为图2所示雾化器的局部立体分解剖视结构示意图;
图7为图6在装配状态下的纵向平面剖视结构示意图;及
图8为图2所示雾化器中雾化芯的立体结构示意图。
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
参阅图1、图2和图3,本申请一实施例提供的电子雾化装置10包括雾化器20和电源30,雾化器20可以与电源30形成可拆卸连接关系。电源30对雾化器20供电,雾化器20将电能转化为热能,雾化介质在热能的作用下雾化为可供用户抽吸的气溶胶。雾化介质可以为油液等气溶胶生成基质。雾化器20包括底座组件100、雾化芯200、顶盖组件300和壳体400,顶盖组件300和雾化芯200均设置在壳体400之内,底座组件100的至少一部分收容在壳体400之内。顶盖组件300和壳体400之间形成有储液腔420,储液腔420用于存储液体的雾化介质。顶盖组件300上开设有下液通道310,下液通道310与储液腔420连通,雾化芯200设置在顶盖组件300上,储液腔420中的雾化介质通过下液通道310流入至雾化芯200,以便雾化芯200将雾化介质雾化形成气溶胶。
在一些实施例中,底座组件100上开设有进气通道110,当用户抽吸时, 外界气体最先通过进气通道110进入雾化器20内部。进气通道110可以为直线型通道,例如进气通道110的中心轴线与雾化器20的中心轴线相互平行或重合,换言之,进气通道110的中心轴线沿竖直方向延伸。顶盖组件300和壳体400均与底座组件100连接,参阅图3、图6和图7,底座组件100上设置有抵接面130,雾化芯200和顶盖组件300两者均能够与该抵接面130形成抵压关系,使得抵接面130对雾化芯200和顶盖组件300的安装起到承载和限位作用,从而提高安装精度和安装效率。
在一些实施例中,壳体400上开设有吸气通道410,气溶胶最终将通过该吸气通道410排出而被用户吸收。吸气通道410包括第一吸气段411和第二吸气段412,第一吸气段411和第二吸气段412两者相互连通,第一吸气段411连通外界,用户可以在第一吸气段411的端部抽吸气溶胶。第一吸气段411的中心轴线可以为沿竖直方向延伸的直线,例如该第一吸气段411的中心轴线可以与雾化器20的中心轴线重合。第一吸气段411的长度较小,第二吸气段412的长度较大,在一些实施例中,第二吸气段412的长度大于第一吸气段411长度的三倍。第二吸气段412的中心轴线为曲线,使得该曲线状的中心轴线与雾化器20的中心轴线保持间距。在本实施例中,该曲线状的中心轴线存在相互连接的弯曲部分和竖直部分,该竖直部分与雾化器20中心轴线平行,而该弯曲部分与雾化器20中心轴线呈夹角设置。
参阅图3、图4和图8,在一些实施例中,雾化芯200包括基体210、发热体220、第一电极体231和第二电极体232。基体210可以采用多孔陶瓷材料制成,使得基体210内具有大量的微孔而形成一定的孔隙率。通过微孔的毛细作用,使得基体210能够吸收从储液腔420流入至下液通道310中的雾化介质,故基体210能起到对雾化介质的传输和缓存效果。基体210与底座组件100之间形成有雾化腔240,基体210具有雾化面211,该雾化面211界定雾化腔240的部分边界并用于将雾化介质进行雾化。吸气通道410的第二吸气段412与雾化腔240直接连通,进气通道110与雾化腔240同样连通。当用户抽吸时,外界气体通过进气通道110进入至雾化腔240中,该外界气 体携带雾化腔240中的气溶胶依次经第二吸气段412和第一吸气段411以被用户吸收,显然,外界气体依次经进气通道110、雾化腔240、第二吸气段412和第一吸气段411以进入用户口腔,图3中虚线箭头代表抽吸时气体的流动路径。发热体220、第一电极体231和第二电极体232三者均设置在雾化面211上,例如三者可以直接附着在雾化面211上,或者雾化面211上开设有凹槽,发热体220、第一电极体231和第二电极体232三者至少部分收容在该凹槽中。
发热体220可以采用金属或合金材料制成,第一电极体231和第二电极体232两者也可以采用金属或合金材料制成,发热体220的电阻率可以大于第一电极体231和第二电极体232的电阻率。发热体220、第一电极体231和第二电极体232三者相互电性连接而形成串联电路,发热体220单位时间内产生的热量远远大于第一电极体231和第二电极体232单位时间内产生的热量,第一电极体231和第二电极体232产生的热量极少而可以忽略不计。发热体220包括弯曲段222和直线段221,弯曲段222的数量为一个,该弯曲段222可以为半圆弧状,直线段221的数量为两个,两个直线段221相互间隔而平行设置,且两个直线段221的端部相互对齐。弯曲段222同时与两个直线段221的一端连接,使得整个发热体220大致呈U形结构,第一电极体231和第二电极体232分别与两个直线段221的另一端连接。当然,第一电极体231和第二电极体232分别与电源30的正、负极电性连接,使得电源30通过第一电极体231和第二电极体232对发热体220供电。当发热体220产生热量时,浸润在发热体220上的雾化介质和雾化面211上的雾化介质将吸收该热量以雾化形成气溶胶,该气溶胶将首先排入至该雾化腔240中。
参阅图3、图4和图5,雾化腔240具有供气体流出至雾化腔240之外的流出口241,该流出口241靠近第二吸气段412设置,显然,从流出口241流出的气体将直接进入该第二吸气段412。沿雾化器20的中心轴线所延伸的方向,该流出口241相对进气通道110更加靠近第一吸气段411,通俗而言,流出口241位于进气通道110的斜上方。当用户在第一吸气段411的端部抽 吸时,气体从进气通道110流入雾化腔240的流动方向与气体在雾化腔240内的流动方向呈锐夹角A。例如,进气通道110在连通雾化腔240连接处的切线与雾化面211的切向夹角呈锐夹角A,即进气通道110内壁面靠近雾化腔240的端部的切线与雾化面211的切向夹角呈锐夹角A。换言之,进气通道110在底座组件100上存在与雾化腔240直接连通的端部开口,该端部开口的法向与雾化面211的切向夹角呈锐夹角A。具体而言,雾化面211为平面并与雾化器20的中心轴线呈锐夹角B,锐夹角B与锐夹角A可以相等,换言之,以垂直雾化器20中心轴线的水平面为参考平面,雾化面211相对该参考平面倾斜设置,即雾化面211为倾斜平面。因此,通过雾化面211的引导作用,可以使得气体从进气通道110流入雾化腔240的方向与气体在雾化腔240内的流动方向呈锐夹角A。雾化面211与雾化器20的中心轴线之间所成锐夹角B的取值范围为30°至60°,其具体取值可以为30°、45°、50°或60°等。
可以理解,在本实施倒中,所述进气通道110是直线型结构,所述进气通道110与雾化腔240连接处的切线实际与进气通道110的延伸方向平行。在其他实施例中,所述进气通道110还可以设置为其他结构,例如弯管结构,气流通过所述进气通道110与雾化腔240连接处沿切线方向进入雾化腔,所述切线方向实际即气流流入雾化腔240的方向。进一步地,在本实施例中,所述雾化面211设置为平面结构,所述进气通道110在与所述雾化腔240连接处的切线与所述雾化面211的切向夹角,即切线与所述雾化面211在与切线相交点切面的夹角,可以理解,所述雾化面211为平面结构,所述雾化面211的切面实际为所述雾化面本身。在其他实施例中,所述雾化面211还可以设置为其他结构,例如弧柱面或球面,气流经过与近述雾化面211的锐角接触后,沿所述雾化面211向流出口241流动。
假如雾化面211垂直雾化器20的中心轴线设置时,该雾化面211将平行于上述参考平面,即雾化面211为非倾斜设置的水平面。此时,从进气通道110中竖直向上流入雾化腔240中的气体将与雾化面211产生迎面撞击而形成 “正碰”,并在雾化面211的引导作用下,使得撞击后的气体改变流动方向,导致气流方向从竖直方向偏转90°而转化为水平方向,即气体从进气通道110流入雾化腔240的方向与气体在雾化腔240内的流动方向垂直,如此会导致如下不良影响:(1)进入雾化腔240的气体与雾化面211产生“正碰”,气流的偏转方向较大(即偏转90°),使得气流的动能产生较大的损失,一方面减少气流的速度,另一方面使得气流在雾化腔240内形成较大的紊乱而产生强烈的涡流。鉴于气流的速度减少并形成涡流,使得气体难以携带气溶胶快速离开雾化腔240而进入吸气通道410以被用户吸收,从而使得大量气溶胶长时间滞留在雾化腔240内。由此会降低气溶胶的浓度,进而减少用户单位时间内实际所抽吸到的气溶胶量。此外,滞留在雾化腔240的气溶胶将冷却而形成冷凝液,该冷凝液将进一步通过进气通道110泄漏至雾化器20之外而形成漏液,该漏液可以对电源30构成侵蚀,从而减低电源30的使用寿命,甚至引发电源30保证的风险。(2)鉴于气流的速度减少并形成涡流,使得气体难以带走发热体220产生的热量,导致发热体220温度过高因影响自身的使用寿命。
而对于上述实施例中的雾化器20,由于雾化面211倾斜设置,故雾化面211为倾斜平面,可以有效避免从进气通道110中竖直向上流入雾化腔240中的气体与雾化面211产生迎面撞击而形成“正碰”,确保气体与雾化面211形成“斜碰”,同时在雾化面211的引导作用下,气体从进气通道110流入雾化腔240的方向与气体在雾化腔240内的流动方向呈锐夹角,故经“斜碰”后,气流方向从竖直方向偏转小于90°而转化为斜向上方向,由此会产生至少如下有益效果:(1)“斜碰”后气流的动能损失相对“正碰”大幅减少,确保气流依然保持较大的流速,同时减少气流在雾化腔240内的紊乱,进而减少涡流的产生,确保流速较大的气流携带气溶胶快速离开雾化腔240并进入吸气通道410以被用户吸收,大幅减少气溶胶在雾化腔240内的滞留量和滞留时间,从而减少冷凝液和漏液的形成,防止漏液对电源30构成侵蚀,提高电源30的使用寿命和安全性。(2)鉴于雾化腔240内的气体保持较大的流速, 使得气体能够快速带走发热体220产生的热量,防止发热体220因温度过高而产生损坏,提高发热体220的使用寿命。(3)由于雾化面211倾斜设置,可以使得整个雾化芯200倾斜设置,从而减少雾化腔240的总体积,故可以减少雾化腔240所容纳的滞留气溶胶的总量,同样可以减少冷凝液和漏液的形成。(4)滞留在雾化腔240内的气溶胶减少,可以提高气溶胶的浓度和有效吸收量,即提高用户在单位时间内对气溶胶的获取量。
参阅图5、图6和图8,在一些实施例中,弯曲段222与直线段221靠近流出口241的一端连接,第一电极体231和第二电极体232分别跟两个直线段221远离流出口241的一端连接,即第一电极体231和第二电极体232靠近进气通道110设置,显然,第一电极体231和第二电极体232同样靠近雾化面211远离流出口241的端部设置,即第一电极体231和第二电极体232靠近雾化面211的下端设置。进气通道110在雾化面211上的正投影位于弯曲段222和第一电极体231、第二电极体232之间,因此,从进气通道110竖直向上流入雾化腔240中的气体将难以跟第一电极体231和第二电极体232接触,避免气流跟第一电极体231和第二电极体232撞击而紊乱并产生涡流,防止气流速度降低,确保流速相对较大的气体携带气溶胶快速离开雾化腔240,同样可以减少冷凝液和漏液的形成。
参阅图3,在一些实施例中,底座具有导流面120,导流面120界定雾化腔240的部分边界并位于雾化面211的下方,导流面120与雾化面211平行设置。通过设置导流面120,可以进一步压缩雾化腔240的空间,例如可以将雾化腔240的体积压缩到45mm
3以下,从而减少雾化腔240所容纳的滞留气溶胶的总量,进而减少冷凝液和漏液的形成。此外,通过导流面120的引导作用,防止从进气通道110进入雾化腔240内的气流方向产生较大的偏转和涡流,避免因该偏转而导致的动能损失,进一步保证雾化腔240内的气流具有较大的流速,也可以减少冷凝液和漏液的形成。
参阅图3,在一些实施例中,气体在吸气通道410中的流动方向与气体在雾化腔240中的流动方向呈锐夹角。如此可以防止从雾化腔240中流出的 气流在流入吸气通道410的过程中产生大于或等于90°的方向偏转,从而减少气流与壳体400碰撞导致的能量损失,使得气流在吸气通道410中也保持较大的流速,如此也可以减少冷凝液和漏液的形成。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (12)
- 一种雾化器,包括:底座组件,开设有连通外界的进气通道;及雾化芯,与所述底座组件之间形成有与所述进气通道连通的雾化腔,所述雾化芯具有用于将雾化介质雾化并界定所述雾化腔部分边界的雾化面,所述进气通道在连通所述雾化腔连接处的切线与所述雾化面的切向夹角呈锐角。
- 根据权利要求1所述的雾化器,其中,所述进气通道的中心轴线与所述雾化器的中心轴线平行或重合,所述雾化面为平面且与所述雾化器的中心轴线呈锐夹角。
- 根据权利要求2所述的雾化器,其中,所述雾化面与所述雾化器中心轴线之间的锐夹角的取值范围为30°至60°。
- 根据权利要求2所述的雾化器,其中,所述底座组件具有与所述雾化面间隔设置并界定所述雾化腔部分边界的导流面,所述导流面与所述雾化面平行设置。
- 根据权利要求1所述的雾化器,其中,所述进气通道在连通所述雾化腔连接处的所述切线与所述进气通道的延伸方向平行。
- 根据权利要求2所述的雾化器,其中,所述雾化芯包括基体、发热体、第一电极体和第二电极体,所述雾化面位于所述基体,所述发热体、第一电极体和第二电极体均设置在所述雾化面,所述雾化腔具有供气体流出的流出口,所述第一电极体和所述第二电极体两者均与所述发热体电性连接并靠近所述雾化面远离所述流出口的端部设置。
- 根据权利要求6所述的雾化器,其中,所述发热体包括弯曲段和平行设置的两个直线段,所述弯曲段与所述直线段靠近所述流出口的一端连接,所述第一电极体和所述第二电极体分别跟两个所述直线段远离所述流出口的一端连接,所述进气通道在所述雾化面上的正投影位于所述弯曲段和第一、第二电极体之间。
- 根据权利要求2所述的雾化器,其中,所述底座组件具有抵接面,所述雾化面的边缘与所述抵接面相抵接。
- 根据权利要求1所述的雾化器,其中,还包括壳体,所述雾化芯和所述底座组件均连接所述壳体,所述壳体开设有供气溶胶输出并连通所述雾化腔的吸气通道,气体在所述吸气通道中的流动方向与气体在所述雾化腔中的流动方向呈锐夹角。
- 根据权利要求9所述的雾化器,其中,所述吸气通道包括相互连通的第一吸气段和第二吸气段,所述第二吸气段的长度大于所述第一吸气段长度的三倍,所述第一吸气段连通外界且所述第一吸气段的中心轴线与所述雾化器的中心轴线重合,所述第二吸气段连通所述雾化腔且所述第二吸气段的中心轴线与所述雾化器的中心轴线保持间距。
- 根据权利要求10所述的雾化器,其中,所述第二吸气段的中心轴线具有相互连接的弯曲部分和竖直部分,所述竖直部分与所述雾化器的中心轴线平行,所述弯曲部分与所述雾化器的中心轴线呈夹角设置。
- 一种电子雾化装置,包括电源和权利要求1至11中任一项所述的雾化器,所述雾化器与所述电源连接。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22745007.9A EP4275523A1 (en) | 2021-01-26 | 2022-01-06 | Atomizer and electronic atomization device |
US18/350,689 US20230346035A1 (en) | 2021-01-26 | 2023-07-11 | Vaporizer and electronic vaporization apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202120219542.3U CN215075497U (zh) | 2021-01-26 | 2021-01-26 | 雾化器及电子雾化装置 |
CN202120219542.3 | 2021-01-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/350,689 Continuation US20230346035A1 (en) | 2021-01-26 | 2023-07-11 | Vaporizer and electronic vaporization apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022161129A1 true WO2022161129A1 (zh) | 2022-08-04 |
Family
ID=79325498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/070412 WO2022161129A1 (zh) | 2021-01-26 | 2022-01-06 | 雾化器及电子雾化装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230346035A1 (zh) |
EP (1) | EP4275523A1 (zh) |
CN (1) | CN215075497U (zh) |
WO (1) | WO2022161129A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024032412A1 (zh) * | 2022-08-12 | 2024-02-15 | 常州市派腾电子技术服务有限公司 | 雾化装置及气溶胶发生装置 |
EP4353099A1 (en) * | 2022-09-29 | 2024-04-17 | Shenzhen Smoore Technology Limited | Electronic atomization device |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN215075497U (zh) * | 2021-01-26 | 2021-12-10 | 深圳麦克韦尔科技有限公司 | 雾化器及电子雾化装置 |
CN113892696A (zh) * | 2021-09-14 | 2022-01-07 | 深圳麦克韦尔科技有限公司 | 雾化器及电子雾化装置 |
CN216568378U (zh) * | 2021-10-29 | 2022-05-24 | 深圳市卓力能技术有限公司 | 一种雾化器 |
CN216875045U (zh) * | 2021-12-18 | 2022-07-05 | 深圳麦克韦尔科技有限公司 | 雾化组件及电子雾化器 |
IL313378A (en) * | 2021-12-22 | 2024-08-01 | Nicoventures Trading Ltd | Aerosol delivery system |
CN116406837A (zh) * | 2021-12-30 | 2023-07-11 | 深圳麦克韦尔科技有限公司 | 一种电子雾化装置及其雾化器 |
WO2023123165A1 (zh) * | 2021-12-30 | 2023-07-06 | 深圳麦克韦尔科技有限公司 | 电子雾化装置及其雾化器 |
WO2023123248A1 (zh) * | 2021-12-30 | 2023-07-06 | 深圳麦克韦尔科技有限公司 | 电子雾化装置及其雾化器 |
CN217986687U (zh) * | 2022-03-29 | 2022-12-09 | 比亚迪精密制造有限公司 | 电子烟雾化组件及电子烟 |
WO2024032420A1 (zh) * | 2022-08-12 | 2024-02-15 | 常州市派腾电子技术服务有限公司 | 雾化组件、雾化装置及气溶胶发生装置 |
WO2024032475A1 (zh) * | 2022-08-12 | 2024-02-15 | 常州市派腾电子技术服务有限公司 | 雾化组件、雾化装置及气溶胶发生装置 |
CN118141161A (zh) * | 2022-12-05 | 2024-06-07 | 思摩尔国际控股有限公司 | 电子雾化装置及其雾化器 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140261489A1 (en) * | 2013-03-15 | 2014-09-18 | Altria Client Services Inc. | Electronic smoking article |
CN206443207U (zh) * | 2016-12-30 | 2017-08-29 | 湖南中烟工业有限责任公司 | 一种雾化室及超声波电子烟 |
CN206949535U (zh) * | 2017-05-16 | 2018-02-02 | 湖南中烟工业有限责任公司 | 一种超声波电子烟雾化器及该电子烟 |
CN207444273U (zh) * | 2017-06-30 | 2018-06-05 | 珠海优德科技有限公司 | 一种单发侧面进气滴油的电子烟雾化器 |
CN210611013U (zh) * | 2019-06-28 | 2020-05-26 | 深圳市合元科技有限公司 | 电子烟雾化器及电子烟 |
CN211211432U (zh) * | 2019-10-30 | 2020-08-11 | 深圳市合元科技有限公司 | 雾化组件及电子烟 |
CN111920104A (zh) * | 2020-07-28 | 2020-11-13 | 深圳麦克韦尔科技有限公司 | 雾化芯、雾化器及电子雾化装置 |
CN211910515U (zh) * | 2019-12-17 | 2020-11-13 | 深圳市合元科技有限公司 | 雾化器及电子烟 |
CN215075497U (zh) * | 2021-01-26 | 2021-12-10 | 深圳麦克韦尔科技有限公司 | 雾化器及电子雾化装置 |
-
2021
- 2021-01-26 CN CN202120219542.3U patent/CN215075497U/zh active Active
-
2022
- 2022-01-06 WO PCT/CN2022/070412 patent/WO2022161129A1/zh unknown
- 2022-01-06 EP EP22745007.9A patent/EP4275523A1/en active Pending
-
2023
- 2023-07-11 US US18/350,689 patent/US20230346035A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140261489A1 (en) * | 2013-03-15 | 2014-09-18 | Altria Client Services Inc. | Electronic smoking article |
CN206443207U (zh) * | 2016-12-30 | 2017-08-29 | 湖南中烟工业有限责任公司 | 一种雾化室及超声波电子烟 |
CN206949535U (zh) * | 2017-05-16 | 2018-02-02 | 湖南中烟工业有限责任公司 | 一种超声波电子烟雾化器及该电子烟 |
CN207444273U (zh) * | 2017-06-30 | 2018-06-05 | 珠海优德科技有限公司 | 一种单发侧面进气滴油的电子烟雾化器 |
CN210611013U (zh) * | 2019-06-28 | 2020-05-26 | 深圳市合元科技有限公司 | 电子烟雾化器及电子烟 |
CN211211432U (zh) * | 2019-10-30 | 2020-08-11 | 深圳市合元科技有限公司 | 雾化组件及电子烟 |
CN211910515U (zh) * | 2019-12-17 | 2020-11-13 | 深圳市合元科技有限公司 | 雾化器及电子烟 |
CN111920104A (zh) * | 2020-07-28 | 2020-11-13 | 深圳麦克韦尔科技有限公司 | 雾化芯、雾化器及电子雾化装置 |
CN215075497U (zh) * | 2021-01-26 | 2021-12-10 | 深圳麦克韦尔科技有限公司 | 雾化器及电子雾化装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024032412A1 (zh) * | 2022-08-12 | 2024-02-15 | 常州市派腾电子技术服务有限公司 | 雾化装置及气溶胶发生装置 |
EP4353099A1 (en) * | 2022-09-29 | 2024-04-17 | Shenzhen Smoore Technology Limited | Electronic atomization device |
Also Published As
Publication number | Publication date |
---|---|
CN215075497U (zh) | 2021-12-10 |
EP4275523A1 (en) | 2023-11-15 |
US20230346035A1 (en) | 2023-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022161129A1 (zh) | 雾化器及电子雾化装置 | |
CN113892696A (zh) | 雾化器及电子雾化装置 | |
WO2023000786A1 (zh) | 雾化器和电子烟 | |
CN216701634U (zh) | 雾化芯及雾化器 | |
CN217161079U (zh) | 雾化顶座、雾化器及电子雾化装置 | |
CN216493517U (zh) | 电子烟雾化组件及电子烟 | |
WO2024174543A1 (zh) | 雾化器和电子雾化装置 | |
CN219069464U (zh) | 雾化器及气溶胶生成装置 | |
CN216293055U (zh) | 电子烟雾化组件及电子烟 | |
CN216088897U (zh) | 一种电子雾化装置及其雾化器 | |
CN219373808U (zh) | 电子雾化装置及其雾化器 | |
US20220202093A1 (en) | Atomizer and electronic atomizing device having the same | |
CN115363255A (zh) | 加热雾化组件、雾化装置及其电子雾化器 | |
CN218551318U (zh) | 雾化组件、雾化器及电子雾化装置 | |
WO2024119875A1 (zh) | 电子雾化装置及其雾化器 | |
CN218682024U (zh) | 一种气溶胶生成装置 | |
CN220936779U (zh) | 雾化器及电子雾化装置 | |
CN218682023U (zh) | 一种具有可导液可换气的金属发热件的气溶胶生成装置 | |
CN218483776U (zh) | 雾化单元组件及雾化装置 | |
JP7482973B2 (ja) | 霧化部品及び電子霧化装置 | |
CN221044284U (zh) | 一种雾化器和雾化装置 | |
CN221330232U (zh) | 电子雾化装置和电子雾化系统 | |
CN219593714U (zh) | 电子雾化装置及其雾化器 | |
CN219613033U (zh) | 雾化器及电子雾化装置 | |
CN221355782U (zh) | 雾化组件及雾化装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22745007 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022745007 Country of ref document: EP Effective date: 20230809 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |