WO2022161072A1 - 陶瓷基体、陶瓷发热体以及电子雾化装置 - Google Patents

陶瓷基体、陶瓷发热体以及电子雾化装置 Download PDF

Info

Publication number
WO2022161072A1
WO2022161072A1 PCT/CN2021/142003 CN2021142003W WO2022161072A1 WO 2022161072 A1 WO2022161072 A1 WO 2022161072A1 CN 2021142003 W CN2021142003 W CN 2021142003W WO 2022161072 A1 WO2022161072 A1 WO 2022161072A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
ceramic substrate
heating element
thermal conductivity
temperature
Prior art date
Application number
PCT/CN2021/142003
Other languages
English (en)
French (fr)
Inventor
陈智超
傅显钧
蒋玥
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to CA3205721A priority Critical patent/CA3205721A1/en
Publication of WO2022161072A1 publication Critical patent/WO2022161072A1/zh
Priority to US18/357,072 priority patent/US20230354897A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/80Testing
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present application relates to the technical field of electronic cigarettes, and in particular to a ceramic substrate, a ceramic heating body and an electronic atomization device.
  • a nebulizer is a device that atomizes an aerosol-generating substrate into an aerosol, which is widely used in medical equipment and electronic atomization devices.
  • atomizers generally use cotton wicks, fiber ropes or ceramic heating elements to atomize the aerosol-generating substrate, of which porous ceramic heating elements are the most widely used.
  • the working principle of the porous ceramic heating element for e-liquid is mainly to use porous ceramics to adsorb e-liquid to the heating wire, and the heating wire generates heat to evaporate the e-liquid, thereby producing nicotine and other substances.
  • the temperature of the side of the ceramic substrate away from the heating wire is relatively low, so that the oil-conducting rate of the high-viscosity aerosol-generating substrate is slow, resulting in insufficient oil supply.
  • the technical problem to be solved by the present application is to overcome the defect of the prior art that the high viscosity aerosol-generating matrix has a relatively slow oil-conducting rate, so as to provide a ceramic substrate, a ceramic heating element and an electronic atomization device.
  • a ceramic base body, the thickness of the ceramic base body is 1 to 4 mm, and the thermal conductivity is 0.8 to 2.5 W/m ⁇ k.
  • the thickness of the ceramic substrate is 1.5 to 3 mm.
  • the thermal conductivity of the ceramic matrix is 1.0 to 2.0 W/m ⁇ k.
  • the porosity of the ceramic matrix is 40% to 70%, optionally 50% to 60%.
  • the ceramic matrix includes silicon carbide, aluminum oxide and silicon dioxide; wherein, the weight percentage of the silicon carbide ranges from 10% to 70%; and the weight percentage of the alumina ranges from 6% to 70%. 65%; the weight percent of the silica ranges from 15% to 50%.
  • the weight percentage of silicon carbide ranges from 30% to 45%; the weight percentage of alumina ranges from 40% to 55%; the weight percentage of silica ranges from 15% to 20%.
  • the pore size of the ceramic matrix is 10 to 35 ⁇ m.
  • the ceramic substrate has a sheet-like structure.
  • a ceramic heating element comprising:
  • the heating element is arranged on the ceramic base.
  • the ceramic substrate includes a liquid absorbing surface, and when the heating element works, the temperature of the liquid absorbing surface is greater than or equal to 80°C.
  • An electronic atomization device comprising the above-mentioned ceramic substrate or ceramic heating element.
  • the heat generated by the heating element can be effectively conducted in the ceramic matrix, and the temperature of the side away from the heating element of the ceramic matrix is increased (it can reach 80°C or above), so that the high-viscosity gas
  • the viscosity of the sol-forming matrix is reduced to have good flow properties.
  • Fig. 1 is a graph showing the change of viscosity of different aerosol-generating substrates with temperature
  • Fig. 2 is a 2D change diagram of the average temperature of the side of the ceramic substrate away from the heating element with thermal conductivity when the atomization temperature of the ceramic substrate is 350°C;
  • Figure 3 is a 2D graph of the change in the amount of smoke with the thermal conductivity of the ceramic substrate
  • Fig. 4 is a graph showing the change of temperature with time on the side of the ceramic substrate with a thermal conductivity of 1.3 W/mk away from the heating element under different powers.
  • porous ceramics are mainly used to adsorb e-liquid to the heating element, and the heating element generates heat to evaporate the e-liquid, thereby producing nicotine and other substances.
  • the porous ceramic heating element generally includes a ceramic substrate and the surface of the heating element arranged on one side surface of the ceramic substrate.
  • the ceramic substrate has an atomizing surface and a liquid absorbing surface that are arranged oppositely.
  • the atomizing surface is used for atomizing the aerosol on the ceramic substrate to generate the substrate, and the heating element is arranged on the side of the ceramic substrate which is the atomizing surface.
  • the ceramic substrate absorbs the smoke liquid, and uses the capillary force to absorb the smoke liquid to the heating element for atomization into smoke.
  • the temperature on both sides of the existing ceramic substrate is different, the temperature on the side in contact with the heating element is higher, and the temperature on the side away from the heating element is lower, so that the oil conduction rate of the high-viscosity aerosol-generating substrate is slow, resulting in the occurrence of supply Lack of oil.
  • the high-viscosity aerosol generated matrix has poor oil conduction, and the oil conduction rate is slow, resulting in insufficient oil supply.
  • FIG. 1 is a graph showing the change of viscosity of different aerosol-generating substrates with temperature.
  • PG Propylene Glycol, propylene glycol
  • VG Veetable Glycerin, vegetable glycerin
  • high-viscosity aerosol-generating substrates have high viscosity at room temperature and poor fluidity. Therefore, in the case of a ceramic substrate with low thermal conductivity, the temperature of the ceramic substrate away from the heating element is lower, and the higher viscosity of the aerosol-generating matrix can easily lead to the conduction of the aerosol-generating matrix in the ceramic heating element.
  • the oil rate is slow, resulting in insufficient fluid supply when pumping.
  • the viscosity of the aerosol-generating matrix decreases rapidly as the temperature rises. Therefore, as long as the temperature of the side of the ceramic matrix away from the heating element can be increased and the temperature on both sides of the ceramic matrix can be maintained at a high temperature, it is possible to Reduce the viscosity of the aerosol-generating matrix, ensure the oil conduction rate, and avoid the phenomenon of insufficient liquid supply.
  • the ceramic matrix includes silicon carbide, alumina and silicon dioxide; wherein, the weight percentage of the silicon carbide is 10% to 70%; the weight percentage of the alumina is 6% to 65%; The weight percentage of the silica is 15% to 50%, and the porosity of the ceramic matrix is 50% to 60%.
  • the thickness of the ceramic substrate represented by the 11 curves from the origin of the coordinate axis to the positive direction of the y-axis are: 4mm, 3.75mm, 3.5mm, 3.25mm, 3mm, 2.75mm, 2.5mm, 2.25mm, 2mm, 1.75mm, 1.5 mm. It can be seen that when the thermal conductivity is 0.4W/m ⁇ k, the average temperature of the side of the ceramic matrix away from the heating element (ie, the liquid absorption surface) is only 10 to 60 °C. For example, when the thickness of the ceramic matrix is 2 mm, The average temperature of the side of the ceramic substrate away from the heating element is about 50°C. Therefore, only by controlling the thermal conductivity of the ceramic base to a certain extent, can the temperature of the side of the ceramic base away from the heating element reach a desired temperature.
  • the temperature of the side away from the heat generating body of the ceramic substrates with different thicknesses under the same thermal conductivity is also different.
  • the thickness of the ceramic substrate and the thermal conductivity jointly restrict the temperature of the side of the ceramic substrate away from the heating element.
  • a ceramic base body the thickness of the ceramic base body is 1 to 4 mm, and the thermal conductivity is 0.8 to 2.5 W/m ⁇ k.
  • the heat generated by the heating element can be effectively conducted in the ceramic matrix, and the temperature of the side of the ceramic matrix away from the heating element is increased (it can reach 80°C or above), thereby greatly reducing the high temperature.
  • Viscosity The viscosity of the aerosol-generating substrate provides good fluidity for the high-viscosity aerosol-generating substrate. The synergistic cooperation between thickness and thermal conductivity solves the problem that the oil-conducting rate of the high-viscosity aerosol-generating matrix is slow, and the problem of insufficient oil supply is likely to occur.
  • the thickness of the ceramic substrate refers to the vertical distance between the atomization surface of the ceramic substrate and the liquid absorbing surface.
  • the thickness of the ceramic substrate is 1 to 4 mm, such as 1.2 mm, 1.5 mm, 1.8 mm, 2.1 mm, 2.4 mm, 2.7 mm, 3.0 mm, 3.3 mm, 3.6 mm, 3.9 mm or 4.0 mm. From the viewpoint of ceramic strength and preparation process, the thickness of the ceramic substrate can be selected to be 1.5 to 3 mm.
  • the thermal conductivity of the ceramic matrix is 0.8 to 2.5W/m ⁇ k, such as 0.8W/m ⁇ k, 1.0W/m ⁇ k, 1.2W/m ⁇ k, 1.4W/m ⁇ k, 1.6W /m ⁇ k, 1.8W/m ⁇ k, 2W/m ⁇ k or 2.5W/m ⁇ k. If the thermal conductivity of the ceramic base is less than 0.8W/m ⁇ k, the temperature of the side of the ceramic base away from the heating element cannot reach the desired temperature (80°C or more). If the thermal conductivity of the ceramic base is greater than 2.5W/m ⁇ k, the smoke volume does not meet the suction requirements. From the viewpoint of maintaining a certain amount of smoke, the thermal conductivity of the ceramic substrate is 1.0 to 2.0 W/m ⁇ k.
  • test method for the thermal conductivity is: ISO22007-2.2.
  • the ceramic matrix includes silicon carbide, alumina and silicon dioxide; wherein, the weight percentage of the silicon carbide is 10% to 70%; the weight percentage of the alumina is 6% to 65%; The weight percentage of the silica is 15% to 50%, and the porosity of the ceramic matrix is 50% to 60%.
  • P38 indicates the thickness of each ceramic substrate.
  • the thickness of the ceramic substrates represented by the 11 curves from the origin of the coordinate axis to the positive y-axis is: 4mm, 3.75mm.
  • the thermal conductivity is 2.2W/m ⁇ k
  • the average amount of smoke is 3.7 to 5.8mg/puff, for example, when the thickness of the ceramic substrate is 2mm, the average amount of smoke is 4.7mg/puff. Therefore, by selecting a specific thermal conductivity, the present application also achieves a high average smoke volume, which can reach ⁇ 4.5 mg/puff, and achieves the desired smoking experience.
  • test method for smoke volume is:
  • a smoking machine was used, the suction volume was set to 60ml, each puff was puffed for 3s, and then stopped for 30s. Before the start of the experiment, the weight of the cartridge was weighed with a balance. After every 10 puffs, the weight of the cartridge was re-weighed, and the difference between the two was divided by 10 to obtain the average amount of smoke per puff.
  • the ceramic matrix has a porosity of 40% to 70%, such as 40%, 45%, 50%, 55%, 60%, 65% or 70%, if the porosity If the porosity is less than 40%, it will affect the amount of liquid transported to the heating body, and may cause problems such as dry burning and burnt smell. If the porosity is greater than 70%, it will affect the strength of the ceramic matrix, which is not conducive to improving the service life of the atomizing core. . From the viewpoint of smoke liquid transport and the strength of the ceramic matrix, the porosity of the ceramic matrix is 50% to 60%.
  • test method for the porosity is: "GB/T3810.3-2016 Ceramic Tile Test Method Part 3: Water Absorption, Apparent Relative Density of Apparent Pores and Parts: Water Absorption, Determination of Apparent Relative Density and Bulk Density of Apparent Stomata"
  • the high-viscosity aerosol-generating substrate refers to an aerosol-generating substrate with a viscosity greater than 10,000 cps at normal temperature (25° C.).
  • the viscosity measurement method is: GBT 17473.5-1998 Thick-film Microelectronics Technology Precious Metal Slurry Test Method Viscosity Measurement.
  • the ceramic matrix includes 18 wt % of silicon carbide, 43.2 wt % of alumina and 34.9 wt % of silicon dioxide.
  • the backside temperature of the ceramic substrate under different powers is shown in Figure 4, where the solid line is the highest temperature of the backside of the ceramic substrate corresponding to different times, and the dotted line is the time at different times
  • the average temperature of the backside of the corresponding ceramic substrate it can be seen from Figure 4 that during the suction process, the average temperature of the backside of the ceramic substrate can reach 80 °C or above, and 80 °C can provide a good temperature for the high-viscosity aerosol generation matrix. In the oil guiding environment, the oil guiding rate is better.
  • the ceramic matrix has the following composition: the ceramic matrix includes silicon carbide, alumina and silicon dioxide; wherein, the weight percentage of the silicon carbide ranges from 10% to 70%; The weight percentage of the alumina ranges from 6% to 65%; the weight percentage of the silica ranges from 15% to 50%. In another optional embodiment, the weight percentage of the silicon carbide ranges from 30% to 45%; the weight percentage of the alumina ranges from 40% to 55%; the weight percentage of the silicon dioxide The range is 15% to 20%. In another optional embodiment, the ceramic matrix further includes additives, and the weight percentage of the additives ranges from 0% to 10%, such as reinforcing agents and binders.
  • the preparation method of the ceramic matrix comprises:
  • the weight percentage of the silicon carbide powder may range from 30% to 45%; the weight percentage of the alumina powder may range from 40% to 55%; the weight percentage of the silica powder may range from 15% to 20%.
  • the mixed powder is pressed and shaped to obtain a ceramic green body.
  • the mixed powder can be first put into a drying box and other equipment for drying; then the dried powder can be granulated by means of spraying, stirring, etc.; then the granulated particles can be put into The granulated particles are hot-pressed and dry-pressed by a dry-pressing molding machine under a preset pressure to obtain a ceramic green body.
  • the range of the preset pressure may specifically be 10 to 40 MPa; the mold may specifically be a mold for preparing a ceramic heating substrate of an atomizing core.
  • the ceramic green body is sintered and cooled at a predetermined temperature to produce a ceramic matrix.
  • the preset temperature may be 1100 to 1700° C.
  • the holding time may range from 2 to 8 hours.
  • the ceramic substrate is a sheet-like structure
  • the sheet-like structure may be a cuboid, a circular, or an oval sheet-like structure, and the sheet-like structure may also be a plane or surface structure.
  • the pore size of the ceramic matrix is 10 to 35 ⁇ m.
  • the pore size within this range can ensure the liquid supply volume and liquid supply speed of the ceramic substrate.
  • a ceramic heating element comprising:
  • the heating element is arranged on the ceramic base.
  • the ceramic heating element is used to heat and atomize a high-viscosity aerosol-generating substrate when energized, the heating element is used to generate heat when energized, and the ceramic substrate conducts heat for the heat generated by the heating element.
  • the ceramic substrate includes a liquid absorbing surface, and when the heating element works, the temperature of the liquid absorbing surface is greater than or equal to 80°C.
  • the liquid absorbing surface is the side of the ceramic substrate away from the heating element.
  • the ceramic substrate has an atomizing surface and a liquid absorbing surface arranged oppositely, wherein the liquid absorbing surface is used for absorbing the aerosol generating substrate, the atomizing surface is used for atomizing the aerosol generating substrate on the ceramic substrate, and the heating element is arranged on the The ceramic substrate side of the atomized surface.
  • a typical but non-limiting heating element is, for example, a metal heating wire.
  • the ceramic heating element includes the above-mentioned ceramic substrate, which can achieve the same or similar technical effects, and will not be repeated here.
  • an electronic atomization device comprising the above-mentioned ceramic substrate or ceramic heating element.
  • the electronic atomization device includes the above-mentioned ceramic substrate, which can achieve the same or similar technical effects, which will not be repeated here.
  • the electronic atomization device is, for example, an electronic cigarette.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

本申请涉及一种陶瓷基体、陶瓷发热体以及电子雾化装置。所述陶瓷基体的厚度为1至4mm,热导率为0.8至2.5W/m·k。本申请通过选择特定的厚度和热导率,使得发热体产生的热量能够在陶瓷基体中有效地传导,提高陶瓷基体远离发热体一侧的温度(可以达到80℃或以上),使高粘度气溶胶生成基质具有良好的流动性。通过厚度以及热导率两者之间的协同配合解决了高粘度气溶胶生成基质的导油速率较慢,容易出现供油不足的问题,同时烟雾量也可以达到4.5mg/puff以上。

Description

陶瓷基体、陶瓷发热体以及电子雾化装置
优先权
本申请要求于2021年01月27日向中国国家知识产权局提交的申请号为PCT/CN2021/073998、发明名称为“陶瓷基体及其制备方法、陶瓷发热体及电子雾化装置”的优先权,并在此对其内容进行交叉引用。
技术领域
本申请涉及电子烟技术领域,具体涉及一种陶瓷基体、陶瓷发热体以及电子雾化装置。
背景技术
雾化器是一种将气溶胶生成基质雾化成气溶胶的装置,其被广泛应用于医疗设备和电子雾化装置。目前,雾化器一般采用棉芯、纤维绳或陶瓷发热体对气溶胶生成基质进行雾化,其中应用最广的是多孔陶瓷发热体。
烟油用多孔陶瓷发热体的工作原理主要是利用多孔陶瓷吸附烟油到发热丝,发热丝发热使烟油蒸发,从而产生尼古丁等物质。但是,现有的陶瓷发热体中,陶瓷基体远离发热丝的一面温度较低,使得高粘度气溶胶生成基质的导油速率较慢,导致出现供油不足的现象。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中高粘度气溶胶生成基质导油速率较慢的缺陷,从而提供一种陶瓷基体、陶瓷发热体和电子雾化装置。
为了解决上述技术问题,本申请采用了如下技术方案:
一种陶瓷基体,所述陶瓷基体的厚度为1至4mm,热导率为0.8至2.5W/m·k。
可选地,所述陶瓷基体的厚度为1.5至3mm。
可选地,所述陶瓷基体的热导率为1.0至2.0W/m·k。
可选地,所述陶瓷基体的孔隙率为40%至70%,可选为50%至60%。
可选地,所述陶瓷基体包括碳化硅、氧化铝及二氧化硅;其中,所述碳化硅的重量百分数的范围为10%至70%;所述氧化铝的重量百分数的范围为6%至65%;所述二氧化硅的重量百分数的范围为15%至50%。
可选地,所述碳化硅的重量百分数的范围为30%至45%;所述氧化铝的重量百分数的范围为40%至55%;所述二氧化硅的重量百分数的范围为15%至20%。
可选地,所述陶瓷基体的孔径为10至35μm。
可选地,所述陶瓷基体为片状结构。
一种陶瓷发热体,包括:
如上所述的陶瓷基体,和
发热体,设置在陶瓷基体上。
可选地,所述陶瓷基体包括吸液面,在发热体工作时,吸液面温度大于等于80℃。
一种电子雾化装置,包括如上所述的陶瓷基体或陶瓷发热体。
本申请通过选择特定的厚度和热导率,使得发热体产生的热量能够在陶瓷基体中有效地传导,提高陶瓷基体远离发热体一侧的温度(可以达到80℃或以上),使高粘度气溶胶生成基质的粘度降低,以具有良好的流动 性。通过厚度和热导率两者之间的协同配合解决了高粘度气溶胶生成基质的导油速率较慢,容易出现供油不足的问题。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是不同气溶胶生成基质粘度随温度的变化曲线图;
图2是陶瓷基体雾化温度为350℃时,陶瓷基体远离发热体的一侧的平均温度随热导率的2D变化图;
图3是烟雾量随陶瓷基体热导率的2D变化图;
图4是不同功率下热导率为1.3W/mk的陶瓷基体远离发热体的一侧的温度随时间的变化曲线图。
具体实施方式
在采用多孔陶瓷发热体的电子雾化装置如电子烟的抽吸过程中,其主要是利用多孔陶瓷吸附烟油到发热体,发热体发热使烟油蒸发,从而产生尼古丁等物质。多孔陶瓷发热体一般包括陶瓷基体和设置于陶瓷基体一侧表面的发热体的表面,陶瓷基体具有相对设置的雾化面和吸液面,其中,吸液面用于吸纳气溶胶生成基质,雾化面用于雾化陶瓷基体上的气溶胶生成基质,发热体设置在为雾化面的陶瓷基体一侧。陶瓷基体吸收烟液,利用毛细作用力将烟液吸收至发热体进行雾化成烟。然而,现有陶瓷基体两 侧温度不一样,与发热体接触的一侧温度较高,远离发热体的一侧温度较低,使得高粘度气溶胶生成基质的导油速率较慢,导致出现供油不足的现象。
发明人发现,产生上述现象的原因之一在于陶瓷基体的热导率较低,从而使发热体产生的热量无法有效地在陶瓷基体中传导,进而导致陶瓷基体远离发热体的温度较低,使得高粘度气溶胶生成基质导油不畅,出现导油速率较慢,导致出现供油不足的现象。
如图1所示,图1为不同气溶胶生成基质粘度随温度的变化曲线图。和常规烟油、纯PG(Propylene Glycol,丙二醇)以及纯VG(Vegetable Glycerin,蔬菜甘油)等气溶胶生成基质相比,高粘度气溶胶生成基质其常温下粘度高,流动性较差。因此,在热导率较低的陶瓷基体的情况下,陶瓷基体远离发热体一侧的温度较低,由于气溶胶生成基质粘度较高,极易导致气溶胶生成基质在陶瓷发热体中的导油速率较慢,进而使得抽吸时供液不足。如图1所示,气溶胶生成基质的粘度随着温度的升温快速下降,因此,只要能够提高陶瓷基体远离发热体的一侧的温度,使陶瓷基体两侧均保持较高的温度,即可以降低气溶胶生成基质的粘度,保证导油速率,避免出现供液不足的现象。
陶瓷基体雾化温度为350℃时,陶瓷基体远离发热体的一侧的平均温度随热导率的变化,如图2所示。图2中,所述陶瓷基体包括碳化硅、氧化铝及二氧化硅;其中,所述碳化硅的重量百分数为10%至70%;所述氧化铝的重量百分数为6%至65%;所述二氧化硅的重量百分数为15%至50%,所述陶瓷基体的孔隙率为50%至60%。图2中有11条曲线,分别代表11 个不同厚度陶瓷基体的热导率-吸液面平均温度曲线,P38表示各个陶瓷基体的厚度。从坐标轴原点向y轴正向的11条曲线顺序分别代表的陶瓷基体厚度是:4mm,3.75mm,3.5mm,3.25mm,3mm,2.75mm,2.5mm,2.25mm,2mm,1.75mm,1.5mm。可以看出,热导率在0.4W/m·k时,陶瓷基体远离发热体的一侧(即吸液面)的平均温度仅为10至60℃,例如,当陶瓷基体厚度为2mm时,陶瓷基体远离发热体的一侧的平均温度为50℃左右。因此,只有控制陶瓷基体的热导率达到一定程度,才可以使陶瓷基体远离发热体一侧的温度达到期望的温度。
此外,如图2所示,同一热导率下不同厚度的陶瓷基体的远离发热体的一侧的温度同样不同。陶瓷基体厚度和热导率共同制约着陶瓷基体远离发热体的一侧的温度。
基于发明人的上述研究,意外地发现,选择陶瓷基体厚度和热导率适当的组合,即可以解决上述技术问题,并由此完成了本申请。
根据本申请的一个方面,提供了一种陶瓷基体,所述陶瓷基体的厚度为1至4mm,热导率为0.8至2.5W/m·k。
本申请通过选择特定的厚度和热导率,使得发热体产生的热量能够在陶瓷基体中有效地传导,提高陶瓷基体远离发热体一侧的温度(可以达到80℃或以上),从而大幅降低高粘度气溶胶生成基质的粘度,使高粘度气溶胶生成基质具有良好的流动性。通过厚度以及热导率两者之间的协同配合解决了高粘度气溶胶生成基质的导油速率较慢,容易出现供油不足的问题。
所述陶瓷基体的厚度是指:陶瓷基体雾化面与吸液面的垂直距离。所 述陶瓷基体的厚度为1至4mm,例如1.2mm、1.5mm、1.8mm、2.1mm、2.4mm、2.7mm、3.0mm、3.3mm、3.6mm、3.9mm或4.0mm。从陶瓷强度以及制备工艺角度考虑,所述陶瓷基体的厚度可选为1.5至3mm。
所述陶瓷基体的热导率为0.8至2.5W/m·k,例如为0.8W/m·k、1.0W/m·k、1.2W/m·k、1.4W/m·k、1.6W/m·k、1.8W/m·k、2W/m·k或2.5W/m·k。如果陶瓷基体的热导率小于0.8W/m·k,则无法使陶瓷基体远离发热体一侧的温度达到期望的温度(80℃或以上),如果陶瓷基体的热导率大于2.5W/m·k,则烟雾量不满足抽吸要求。从保持一定烟雾量的角度考虑,所述陶瓷基体的热导率为1.0至2.0W/m·k。
需要说明的是,在本申请中,所述热导率的测试方法为:ISO22007-2.2。
烟雾量随陶瓷热导率的变化如图3所示。图3中,所述陶瓷基体包括碳化硅、氧化铝及二氧化硅;其中,所述碳化硅的重量百分数为10%至70%;所述氧化铝的重量百分数为6%至65%;所述二氧化硅的重量百分数为15%至50%,所述陶瓷基体的孔隙率为50%至60%。P38表示各个陶瓷基体的厚度。图3中有11条曲线,分别代表11个不同厚度陶瓷基体的热导率-烟雾量曲线,从坐标轴原点向y轴正向的11条曲线顺序分别代表的陶瓷基体厚度是:4mm,3.75mm,3.5mm,3.25mm,3mm,2.75mm,2.5mm,2.25mm,2mm,1.75mm,1.5mm。可以看出,热导率在2.2W/m·k时,平均烟雾量为3.7至5.8mg/puff,例如,当陶瓷基体厚度为2mm时,平均烟雾量为4.7mg/puff。因此,本申请通过选择特定的热导率,还同时实现了高的平均烟雾量,可以达到≥4.5mg/puff,达到了期望的抽吸体验。
需要说明书的是,在本申请中,烟雾量测试方法为:
采用抽烟机,设定抽吸容量为60ml,每一口抽吸3s,停30s。实验开始前,用天平称取烟弹重量,每抽吸10口后,重新称取烟弹重量,二者差值除以10,得到每口平均烟雾量。
在一种可选地实施方式中,所述陶瓷基体的孔隙率为40%至70%,例如为40%、45%、50%、55%、60%、65%或70%,如果孔隙率小于40%,会影响输送烟液至发热体的液体量,可能出现干烧、出现焦味等问题,如果孔隙率大于70%,会影响陶瓷基体的强度,不利于提高雾化芯的使用寿命。从烟液输送和陶瓷基体的强度角度考虑,所述陶瓷基体的孔隙率为50%至60%。
需要说明的是,在本申请中,所述孔隙率的测试方法为:《GB/T3810.3-2016陶瓷砖试验方法第3部分:吸水率、显气孔表观相对密度和部分:吸水率、显气孔表观相对密度和容重的测定》
在本申请中,所述高粘度气溶胶生成基质意指:常温(25℃)下,黏度大于10000cps的气溶胶生成基质。
需要说明的是,在本申请中,所述粘度测定方法为:GBT 17473.5-1998厚膜微电子技术用贵金属浆料测试方法粘度测定。
如图4所示,为不同功率下,热导率为1.3W/m·k、厚度为2mm以及孔隙率为57%的长方体片状结构的陶瓷基体的背面温度(即陶瓷基体远离发热体一侧的温度)随时间的变化曲线图。所述陶瓷基体包括碳化硅18wt%、氧化铝43.2wt%及二氧化硅34.9wt%。在高粘度气溶胶生成基质中,当用户抽吸时,不同功率下陶瓷基体的背面温度如图4所示,其中,实线为不同时间所对应的陶瓷基体的背面最高温度,虚线为不同时间所对应的陶瓷基 体的背面平均温度;由图4可以看出,在抽吸过程中,陶瓷基体的背面平均温度即可达80℃或以上,80℃可为高粘度气溶胶生成基质提供良好的导油环境,导油速率较佳。
在一种可选地实施方式中,陶瓷基体具有如下组成:所述陶瓷基体包括碳化硅、氧化铝及二氧化硅;其中,所述碳化硅的重量百分数的范围为10%至70%;所述氧化铝的重量百分数的范围为6%至65%;所述二氧化硅的重量百分数的范围为15%至50%。在另一可选地实施方式中,所述碳化硅的重量百分数的范围为30%至45%;所述氧化铝的重量百分数的范围为40%至55%;所述二氧化硅的重量百分数的范围为15%至20%。在另一可选地实施方式中,所述陶瓷基体还包括添加剂,所述添加剂的重量百分数的范围为0%至10%,所述添加剂例如为增强剂和粘结剂等。
在一种可选地实施方式中,所述陶瓷基体的制备方法包括:
获取重量百分数的范围为10%至70%的碳化硅粉体、重量百分数的范围为6%至65%的氧化铝粉体和重量百分数的范围为15%至50%的二氧化硅粉体并混合。具体的,分别称取重量百分数为10%至70%的碳化硅粉体、重量百分数为6%至65%的氧化铝粉体和重量百分数为15%至50%的二氧化硅粉体于同一容器中;然后在容器中加入水并进行搅拌,以将水与碳化硅、氧化铝、二氧化硅粉体混合;其中,混合搅拌时间可为15至30分钟;可选地,可为20至25分钟。可选地,碳化硅粉体的重量百分数的范围可为30%至45%;氧化铝粉体的重量百分数的范围可为40%至55%;二氧化硅粉体的重量百分数的范围可为15%至20%。
对混合后的粉体进行压制并成型,以获得陶瓷生坯。在具体实施例中, 可先将混合后的粉体放入干燥箱等设备中进行干燥;然后采用喷雾、搅拌等方式对干燥后的粉体进行造粒;之后将造粒后的颗粒放入模具中,并在预设压力下采用干压成型机对造粒后的颗粒进行热压、干压成型,以获得陶瓷生坯。其中,预设压力的范围具体可为10至40MPa;模具具体可为用于制备雾化芯的陶瓷发热基体的模具。
在预设温度下对陶瓷生坯进行烧结并冷却,以制得陶瓷基体。具体的,预设温度可为1100至1700℃,保温时间的范围为2至8小时;可选地,预设温度的范围可为1200至1500℃,保温时间的范围可为2至4小时。
在本申请一种可选地实施方式中,所述陶瓷基体为片状结构,所述片状结构可以为长方体、圆形或者椭圆形等片状结构,所述片状结构还可以为平面或者曲面结构。
在本申请一种可选地实施方式中,所述陶瓷基体的孔径为10至35μm。该范围内的孔径,可以保证陶瓷基体的供液量以及供液速度。
根据本申请的另外一个方面,提供了一种陶瓷发热体,包括:
如上所述的陶瓷基体,和
发热体,设置在陶瓷基体上。
所述陶瓷发热体用于在通电时加热并雾化高粘度的气溶胶生成基质,所述发热体用于在通电时产生热量,所述陶瓷基体对所述发热体产生的热量进行导热。
可选地,所述陶瓷基体包括吸液面,在发热体工作时,吸液面温度大于等于80℃。所述吸液面为陶瓷基体远离发热体一侧。
具体地,陶瓷基体具有相对设置的雾化面和吸液面,其中,吸液面用 于吸纳气溶胶生成基质,雾化面用于雾化陶瓷基体上的气溶胶生成基质,发热体设置在为雾化面的陶瓷基体一侧。典型但非限制性的发热体例如为金属发热丝。所述陶瓷发热体包括如上所述的陶瓷基体,其可以实现相同或相似的技术效果,在此不再赘述。
根据本申请的另外一个方面,提供一种电子雾化装置,包括如上所述的陶瓷基体或陶瓷发热体。所述电子雾化装置包括如上所述的陶瓷基体,其可以实现相同或相似的技术效果,在此不再赘述。该电子雾化装置例如为电子烟。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (11)

  1. 一种陶瓷基体,所述陶瓷基体的厚度为1至4mm,热导率为0.8至2.5W/m·k。
  2. 如权利要求1所述的陶瓷基体,其特征在于,所述陶瓷基体的厚度为1.5至3mm。
  3. 如权利要求1所述的陶瓷基体,其特征在于,所述陶瓷基体的热导率为1.0至2.0W/m·k。
  4. 如权利要求1所述的陶瓷基体,其特征在于,所述陶瓷基体的孔隙率为40%至70%,优选为50%至60%。
  5. 如权利要求1所述的陶瓷基体,其特征在于,所述陶瓷基体包括碳化硅、氧化铝及二氧化硅;其中,所述碳化硅的重量百分数的范围为10%至70%;所述氧化铝的重量百分数的范围为6%至65%;所述二氧化硅的重量百分数的范围为15%至50%。
  6. 如权利要求5所述的陶瓷基体,其特征在于,所述碳化硅的重量百分数的范围为30%至45%;所述氧化铝的重量百分数的范围为40%至55%;所述二氧化硅的重量百分数的范围为15%至20%。
  7. 如权利要求1或2所述的陶瓷基体,其特征在于,所述陶瓷基体的孔径为10至35μm。
  8. 如权利要求1或2所述的陶瓷基体,其特征在于,所述陶瓷基体为片状结构。
  9. 一种陶瓷发热体,包括:
    如权利要求1至8之一所述的陶瓷基体,和
    发热体,设置在陶瓷基体上。
  10. 如权利要求9所述的陶瓷发热体,其特征在于,所述陶瓷基体包括吸液面,在发热体工作时,吸液面温度大于等于80℃。
  11. 一种电子雾化装置,包括如权利要求1至8之一所述的陶瓷基体或权利要求9或10所述的陶瓷发热体。
PCT/CN2021/142003 2021-01-27 2021-12-28 陶瓷基体、陶瓷发热体以及电子雾化装置 WO2022161072A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3205721A CA3205721A1 (en) 2021-01-27 2021-12-28 Ceramic substrate, ceramic heating element, and electronic atomization device
US18/357,072 US20230354897A1 (en) 2021-01-27 2023-07-21 Ceramic substrate, ceramic heating body, and electronic vaporization device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/073998 WO2022160136A1 (zh) 2021-01-27 2021-01-27 陶瓷基体及其制备方法、陶瓷发热体及电子雾化装置
CNPCT/CN2021/073998 2021-01-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/357,072 Continuation US20230354897A1 (en) 2021-01-27 2023-07-21 Ceramic substrate, ceramic heating body, and electronic vaporization device

Publications (1)

Publication Number Publication Date
WO2022161072A1 true WO2022161072A1 (zh) 2022-08-04

Family

ID=82526453

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/CN2021/073998 WO2022160136A1 (zh) 2021-01-27 2021-01-27 陶瓷基体及其制备方法、陶瓷发热体及电子雾化装置
PCT/CN2021/136558 WO2022160961A1 (zh) 2021-01-27 2021-12-08 一种发热组件、雾化器及电子雾化装置
PCT/CN2021/142009 WO2022161074A1 (zh) 2021-01-27 2021-12-28 一种金属发热膜、陶瓷发热体及制备方法和电子雾化装置
PCT/CN2021/142007 WO2022161073A1 (zh) 2021-01-27 2021-12-28 陶瓷基体及其制备方法、陶瓷发热体及电子雾化装置
PCT/CN2021/142003 WO2022161072A1 (zh) 2021-01-27 2021-12-28 陶瓷基体、陶瓷发热体以及电子雾化装置

Family Applications Before (4)

Application Number Title Priority Date Filing Date
PCT/CN2021/073998 WO2022160136A1 (zh) 2021-01-27 2021-01-27 陶瓷基体及其制备方法、陶瓷发热体及电子雾化装置
PCT/CN2021/136558 WO2022160961A1 (zh) 2021-01-27 2021-12-08 一种发热组件、雾化器及电子雾化装置
PCT/CN2021/142009 WO2022161074A1 (zh) 2021-01-27 2021-12-28 一种金属发热膜、陶瓷发热体及制备方法和电子雾化装置
PCT/CN2021/142007 WO2022161073A1 (zh) 2021-01-27 2021-12-28 陶瓷基体及其制备方法、陶瓷发热体及电子雾化装置

Country Status (4)

Country Link
US (2) US20230354897A1 (zh)
CN (4) CN114794574A (zh)
CA (2) CA3205713A1 (zh)
WO (5) WO2022160136A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108078010A (zh) * 2017-12-14 2018-05-29 深圳市卓力能电子有限公司 一种具有面发热体的电子烟
CN109105958A (zh) * 2018-08-17 2019-01-01 深圳市合元科技有限公司 发热组件、雾化芯、雾化器及电子烟
CN109288140A (zh) * 2018-12-06 2019-02-01 广东国研新材料有限公司 一种电子烟用多孔陶瓷发热体及其制备方法
CN109527657A (zh) * 2018-12-21 2019-03-29 深圳市合元科技有限公司 雾化组件的制备方法及电子烟雾化器
CN110584208A (zh) * 2019-09-06 2019-12-20 深圳麦克韦尔科技有限公司 雾化芯、雾化器和电子雾化装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203662A (ja) * 2000-10-31 2002-07-19 Sumitomo Osaka Cement Co Ltd ヒータエレメント及び加熱装置並びに基板加熱装置
JP4927268B2 (ja) * 2001-07-27 2012-05-09 積水化学工業株式会社 多孔質セラミックフィルタの製造方法
JP2004296142A (ja) * 2003-03-25 2004-10-21 Kyocera Corp セラミックヒータおよびそれを用いた検出素子
US7176152B2 (en) * 2004-06-09 2007-02-13 Ferro Corporation Lead-free and cadmium-free conductive copper thick film pastes
CN101376561B (zh) * 2008-09-28 2010-12-22 陈培 玻璃料浆料用低熔点无铅玻璃粉及其制备方法与用途
US8690080B2 (en) * 2011-09-21 2014-04-08 Delavan Inc Compact high flow pressure atomizers
CN107182139B (zh) * 2016-03-11 2020-06-09 周宏明 一种金属膜多孔陶瓷发热体及其应用
CN107173849B (zh) * 2016-03-11 2019-11-22 周宏明 一种导电陶瓷膜多孔陶瓷发热体及其应用
CN106145969A (zh) * 2016-07-04 2016-11-23 济南圣泉倍进陶瓷过滤器有限公司 陶瓷粉末组合物、直孔陶瓷过滤器及其制备方法
CN106588021B (zh) * 2016-12-08 2019-07-05 北京国网富达科技发展有限责任公司 一种碳化硅陶瓷及其制备方法
CN107324809B (zh) * 2017-07-11 2020-04-03 深圳市商德先进陶瓷股份有限公司 多孔碳化硅陶瓷及其制备方法和应用
WO2020051749A1 (zh) * 2018-09-10 2020-03-19 深圳麦克韦尔股份有限公司 电子烟、雾化组件及其雾化元件
CN109527660A (zh) * 2019-01-18 2019-03-29 胡雪涛 一种电子烟薄膜发热片
CN109875123B (zh) * 2019-02-27 2023-02-14 深圳市合元科技有限公司 电子烟雾化器、电子烟、雾化组件及其制备方法
CN110037349A (zh) * 2019-04-02 2019-07-23 湖南聚能陶瓷材料有限公司 一种用于电子烟的微孔陶瓷加热器及其制备方法
CN110074463A (zh) * 2019-05-14 2019-08-02 东莞市东思电子技术有限公司 一种电子烟油雾化芯用微孔陶瓷厚膜发热元件及其制作方法
CN110301674A (zh) * 2019-05-16 2019-10-08 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化组件和雾化组件的制造方法
CN210382633U (zh) * 2019-05-22 2020-04-24 深圳麦克韦尔科技有限公司 电子雾化装置及其发热组件和发热体
CN110384258A (zh) * 2019-06-14 2019-10-29 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和发热组件
CN110467441A (zh) * 2019-08-30 2019-11-19 东莞精陶科技有限公司 用于雾化器的多孔陶瓷基板及其制作方法
CN110526735B (zh) * 2019-09-29 2022-06-24 深圳羽制科技有限公司 一种电子烟装置用多孔陶瓷及其制备方法
CN110731551A (zh) * 2019-09-30 2020-01-31 宜宾聚智科技有限公司 一种印刷在陶瓷雾化芯上的发热桨料、一种陶瓷雾化芯及其生产方法
CN110627519A (zh) * 2019-10-16 2019-12-31 湖南嘉盛电陶新材料股份有限公司 一种多孔陶瓷雾化芯的制作方法
CN110922213B (zh) * 2019-11-18 2022-11-22 深圳麦克韦尔科技有限公司 陶瓷基体的表面修饰层及其制备方法、陶瓷发热体及电子雾化装置
CN211794318U (zh) * 2019-11-20 2020-10-30 广东国研新材料有限公司 一种微孔陶瓷电子烟烟油型加热体及其电子烟
CN111153686A (zh) * 2020-01-14 2020-05-15 东莞市陶陶新材料科技有限公司 电子烟用多孔陶瓷、含该多孔陶瓷的雾化芯及其制备方法
CN111138175B (zh) * 2020-01-14 2022-03-18 东莞市陶陶新材料科技有限公司 多孔陶瓷基板及其制备方法、雾化芯
CN111205104A (zh) * 2020-01-14 2020-05-29 东莞市陶陶新材料科技有限公司 电子烟用多孔陶瓷及其制备方法
CN111109666A (zh) * 2020-01-17 2020-05-08 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化组件和雾化组件的制造方法
CN111436664A (zh) * 2020-04-10 2020-07-24 惠州市吉瑞科技有限公司深圳分公司 一种发热陶瓷体结构、雾化器以及电子烟
CN113088883B (zh) * 2021-05-12 2022-12-20 东北大学 一种高温合金复合金属陶瓷涂层及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108078010A (zh) * 2017-12-14 2018-05-29 深圳市卓力能电子有限公司 一种具有面发热体的电子烟
CN109105958A (zh) * 2018-08-17 2019-01-01 深圳市合元科技有限公司 发热组件、雾化芯、雾化器及电子烟
CN109288140A (zh) * 2018-12-06 2019-02-01 广东国研新材料有限公司 一种电子烟用多孔陶瓷发热体及其制备方法
CN109527657A (zh) * 2018-12-21 2019-03-29 深圳市合元科技有限公司 雾化组件的制备方法及电子烟雾化器
CN110584208A (zh) * 2019-09-06 2019-12-20 深圳麦克韦尔科技有限公司 雾化芯、雾化器和电子雾化装置

Also Published As

Publication number Publication date
WO2022161074A1 (zh) 2022-08-04
CN114794575A (zh) 2022-07-29
US20240018053A1 (en) 2024-01-18
CA3205713A1 (en) 2022-08-04
CN114794574A (zh) 2022-07-29
CN114804925A (zh) 2022-07-29
WO2022160961A1 (zh) 2022-08-04
WO2022160136A1 (zh) 2022-08-04
CN114804836A (zh) 2022-07-29
US20230354897A1 (en) 2023-11-09
CA3205721A1 (en) 2022-08-04
WO2022161073A1 (zh) 2022-08-04

Similar Documents

Publication Publication Date Title
CN109875123A (zh) 电子烟雾化器、电子烟、雾化组件及其制备方法
JP2024523106A (ja) マイクロ孔セラミック霧化コア及びその製造方法
WO2021073564A1 (zh) 雾化芯及电子雾化装置
CN110710731A (zh) 一种电子烟雾化加热装置及其制备方法和电子烟
CN108409353A (zh) 用作电子烟雾化器烟油载体的SiC多孔陶瓷材料的制备方法
WO2021238627A1 (zh) 吸液件及其制备方法、发热组件及其制备方法
CN216701680U (zh) 雾化芯、雾化器及气溶胶发生装置
WO2022148144A1 (zh) 湿敏多孔陶瓷、雾化芯及其制备方法
WO2022161072A1 (zh) 陶瓷基体、陶瓷发热体以及电子雾化装置
CN113429217A (zh) 多孔陶瓷基体的制备方法及雾化芯、雾化器、电子烟
US20230148668A1 (en) Atomization core, atomizer, and atomization device
WO2024021923A1 (zh) 雾化芯、雾化器及气溶胶发生装置
WO2022111135A1 (zh) 雾化芯及包括其的雾化器和电子烟
WO2024032143A1 (zh) 发热元件、雾化芯、雾化器及电子雾化装置
CN113896564A (zh) 一种球形材料、多孔陶瓷材料及雾化芯及其制备方法
WO2024037079A1 (zh) 电子雾化装置及其雾化器和雾化芯
WO2024027365A1 (zh) 雾化芯及电子雾化装置
CN114804833A (zh) 陶瓷基体及其制备方法、陶瓷发热体及电子雾化装置
CN113773065A (zh) 一种高吸液率多孔陶瓷基体及发热体
CN113912413B (zh) 一种陶瓷雾化芯及其制备方法和应用
WO2022252479A1 (zh) 电子烟雾化芯和电子烟
WO2022111139A1 (zh) 雾化芯及包括其的雾化器和电子烟
WO2022111138A1 (zh) 雾化芯及包括其的雾化器和电子烟
WO2022193663A1 (zh) 雾化芯组件、雾化组件、雾化器、电子雾化装置及电子烟
JP5014649B2 (ja) 水素発生装置及び水素発生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922661

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3205721

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922661

Country of ref document: EP

Kind code of ref document: A1