WO2022160824A1 - 一种新型固体电解质的制备方法 - Google Patents

一种新型固体电解质的制备方法 Download PDF

Info

Publication number
WO2022160824A1
WO2022160824A1 PCT/CN2021/127089 CN2021127089W WO2022160824A1 WO 2022160824 A1 WO2022160824 A1 WO 2022160824A1 CN 2021127089 W CN2021127089 W CN 2021127089W WO 2022160824 A1 WO2022160824 A1 WO 2022160824A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
solution
solid electrolyte
electrolyte
powder material
Prior art date
Application number
PCT/CN2021/127089
Other languages
English (en)
French (fr)
Inventor
陈玉伟
杨吉颖
王泉
胡振东
吴韦菲
槐凯
崔欣
魏怀笑
胡金金
张建明
Original Assignee
青岛科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛科技大学 filed Critical 青岛科技大学
Publication of WO2022160824A1 publication Critical patent/WO2022160824A1/zh
Priority to US18/150,114 priority Critical patent/US11777146B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • C08F251/02Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof on to cellulose or derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of energy materials, and relates to a method for preparing a novel solid electrolyte, in particular to a method for preparing porous powder materials by in-situ polymerization of polymers on the surface of cellulose nanocrystals and hot-pressing to form films after being activated by an electrolyte solution. method.
  • the present invention provides a preparation method of a novel solid electrolyte.
  • the purpose of the present invention is to provide a method for preparing a porous powder material by in-situ polymerization of a polymer on the surface of cellulose nanocrystals, and hot-pressing to prepare a novel solid electrolyte after being activated by an electrolyte.
  • a preparation method of a novel solid electrolyte comprises the following steps:
  • the cellulose nanocrystal aqueous solution is added to a three-necked flask under nitrogen protection, then an initiator and a polymer monomer are added to it, and magnetic stirring is performed at a constant temperature of 20°C to 80°C (preferably 35°C) until the reaction is performed. Completely (preferably stirring time 2h), the product is washed several times and dried to obtain porous powder material;
  • step (2) Move the porous powder material obtained in step (1) into a sample bottle, slowly drop an appropriate amount of electrolyte solution into it, seal the sample bottle and put it into a normal pressure incubator at 60-90°C (preferably 80°C). It is stored for 8-15h (preferably 10h) in the medium, and then transferred to a vacuum incubator at 60-90°C (preferably 80°C) to adjust the solvent content to 10wt% to 15wt%, and an appropriate amount of sample is hot-pressed to form a film to obtain the target solid electrolyte membrane;
  • step (3) storing the solid electrolyte membrane obtained in step (2) in the glove box, and cutting it into a certain specification as required to obtain the target solid electrolyte;
  • the ratio of the addition of the cellulose nanocrystal aqueous solution, the initiator and the polymer monomer is 40mL: (0.05-0.1) g: (1-2) mL, preferably 40mL: 0.08g: (1 -2) mL, the solid content of the cellulose nanocrystal aqueous solution is 0.4%-1.2%;
  • step (2) the added mass ratio of the porous powder material to the electrolyte in the electrolyte solution is 1:(1-2).
  • the solid content of the aqueous solution of cellulose nanocrystals is 0.5%, and the pH is in the range of 1 to 4, preferably, the pH is 1.8.
  • step (1) is ceric ammonium nitrate.
  • the polymer monomer in step (1) is methyl methacrylate, ethyl acrylate, acrylonitrile or vinyl alcohol.
  • the electrolyte solution in step (2) is a solution of lithium bistrifluorosulfonimide in ethylene carbonate, a solution of lithium bistrifluorosulfonimide in propylene carbonate or a solution of lithium hexafluorophosphate in ethylene carbonate.
  • step (2) the hot-pressing film-forming conditions are 10MPa/150°C.
  • Cellulose nanocrystals not only serve as the matrix for polymer growth, but also serve as one-dimensional nanorods with high strength.
  • the polymer grows in situ on its surface, which is equivalent to introducing cross-linking points into the polymer network, thereby Improve mechanical properties.
  • polymer solid electrolytes basically use solution evaporation to form films, and rarely use hot pressing to form films, because the existing system will have problems such as homogeneity if hot pressing is used.
  • the hot-pressing film-forming process avoids the problem that a large amount of toxic steam is generated by the traditional solution evaporation film-forming, and simultaneously improves the production efficiency.
  • Fig. 1 is the micro-morphology of the porous powder material CNC-g-PAN prepared in Example 1 characterized by field emission scanning electron microscope (FESEM).
  • FIG. 2 is a diagram of the mechanical properties of the solid electrolyte prepared in Example 1.
  • FIG. 2 is a diagram of the mechanical properties of the solid electrolyte prepared in Example 1.
  • FIG. 3 is a graph showing the variation of ionic conductivity ( ⁇ ) with temperature (T) of the solid electrolyte prepared in Example 1.
  • FIG. 4 is a cycle performance diagram of a button battery assembled with the solid electrolyte prepared in Example 1.
  • FIG. 4 is a cycle performance diagram of a button battery assembled with the solid electrolyte prepared in Example 1.
  • a commercially available aqueous solution of cellulose nanocrystals was purchased, and then the pH of the aqueous solution of cellulose nanocrystals was adjusted to 1.8 with nitric acid, and the solid content was adjusted to 0.5% by concentration or dilution.
  • the ionic conductivity ( ⁇ ) of the electrolyte membrane as a function of temperature (T) is shown in Figure 3.
  • Electrolyte membranes were prepared and tested using exactly the same process as in Example 1. Its Young's modulus was measured to be 6.4 MPa.
  • the current density is 0.1C
  • the voltage range is 2.5-4V.
  • the specific capacity of the battery can reach 154mAh/g, and the capacity after 100 cycles The retention rate is 65%.
  • the electrolyte membrane was prepared and tested by the same process as in Example 1, and its Young's modulus was measured to be 3.8 MPa.
  • lithium iron phosphate as the positive electrode and metal lithium sheet as the negative electrode to assemble a 2032 coin-type half-battery at 60°C
  • the current density is 0.1C
  • the voltage range is 2.5-4V.
  • the specific capacity of the battery can reach 127mAh/g, and the capacity after 100 cycles The retention rate is 43%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Conductive Materials (AREA)

Abstract

本发明属于能源材料领域,涉及一种新型固体电解质的制备方法,具体涉及一种利用聚合物在纤维素纳米晶表面的原位聚合制备多孔粉体材料并经电解液活化后热压成膜的方法。本申请的技术方案以纤维素纳米晶作为模板,利用聚合物在其表面的原位聚合生长制备具有多孔结构的粉体材料,以少量的电解液活化粉体,通过热压成膜制备固态电解质。本发明制备的固态电解质具有优异的电化学性能和机械性能,具有广阔的应用前景。同时,本发明提供的技术方案解决了传统的溶液蒸发成膜产生大量有毒溶剂的问题,更加环保高效。

Description

一种新型固体电解质的制备方法 技术领域
本发明属于能源材料领域,涉及一种新型固体电解质的制备方法,具体涉及一种利用聚合物在纤维素纳米晶表面的原位聚合制备多孔粉体材料并经电解液活化后热压成膜的方法。
技术背景
未来的储能需要更安全的储能装置,具有更高的能量密度和优良的循环稳定性,但目前商用锂离子电池的储能受到理论容量的限制,液体电解质的使用带来了巨大的安全隐患,如易燃性和高毒性。为解决这一问题,固体电解质引起了人们的广泛关注。聚合物固体电解质具有良好的灵活性和可加工性。然而,室温离子电导率低(10 -6S/cm)和独立成膜性能差是阻碍其大规模应用的瓶颈。解决这些问题的常用方法有:1)设计共聚交联网络;2)提高锂盐浓度;3)添加增塑剂;4)添加无机填料。但上述方法提高了离子电导率,但以牺牲力学性能为代价。因此,同时提高室温离子电导率和成膜性能具有重要意义。
发明内容
针对上述传统的固态电解质难以同时获得高室温离子电导率和好的成膜性能、制备工艺效率低下且产生大量有毒蒸汽等问题,本发明提供了一种新型固体电解质的制备方法。
本发明的目的是在于提供一种利用聚合物在纤维素纳米晶表面的原位聚合制备多孔粉体材料并经电解液活化后热压制备新型固体电解质的方法。
本发明可通过以下技术方案实现:
一种新型固体电解质的制备方法,该方法包括如下步骤:
(1)将纤维素纳米晶水溶液加入于氮气保护下的三口烧瓶中,然后向其中加入引发剂和聚合物单体,在20℃~80℃(优选为35℃)恒温条件下磁力搅拌至反应完全(优选搅拌时间2h),将产物水洗多次并烘干即得到多孔粉体材料;
(2)将步骤(1)得到的多孔粉体材料移入样品瓶中,并向其中缓慢滴加适量电解质溶液,将样品瓶密封放入60-90℃(优选为80℃)的常压恒温箱中保存8-15h(优选10h),再移入60-90℃(优选为80℃)真空恒温箱中调节溶剂含量至10wt%~15wt%,取适量样品热压成膜即得到目标固态电解质膜;
(3)将步骤(2)得到的固态电解质膜保存在手套箱中,根据需要裁成一定规格即得到目标固态电解质;
步骤(1)中所述纤维素纳米晶水溶液、引发剂和聚合物单体的加入量比例为40mL:(0.05-0.1)g:(1-2)mL,优选为40mL:0.08g:(1-2)mL,所述纤维素纳米晶水溶液的固含量为0.4%-1.2%;
步骤(2)中所述多孔粉体材料与电解质溶液中电解质的加入质量比为1:(1-2)。
进一步的,步骤(1)中所述纤维素纳米晶水溶液的固含量为0.5%,pH范围为1~4,优选pH为1.8。
进一步的,步骤(1)中所述引发剂为硝酸铈铵。
进一步的,步骤(1)中所述聚合物单体为甲基丙烯酸甲酯、丙烯酸乙酯、丙烯腈或乙烯醇。
进一步的,步骤(2)中所述电解质溶液为双三氟磺酰亚胺锂的碳酸乙烯酯溶液、双三氟磺酰亚胺锂的碳酸丙烯酯溶液或六氟磷酸锂的碳酸乙烯酯溶液。
进一步的,步骤(2)中所述热压成膜的条件为10MPa/150℃。
与现有技术相比,本申请的优点和有益效果如下:
1、纤维素纳米晶不仅作为聚合物生长的基体,同时其作为具有很高强度的一维纳米棒,聚合物在其表面原位生长,相当于在聚合物网络中引入了交联点,从而提高力学性能。纤维素纳米晶表面有大量的官能团,能够在离子输运时充当传导桥梁,降低了离子传导的能垒,从而提高离子电导率,从而提高了电池的能量密度和循环稳定性。
2、聚合物固态电解质现基本采用溶液蒸发成膜,较少采用热压成膜,因为现有体系如果采用热压会有类似均一性等问题。而本发明制备的材料因为具有多孔特性,采用热压成膜的工艺避免了传统的溶液蒸发成膜产生大量有毒蒸汽的问题,同时提高了生产效率。
3、采用本方案相较已有公开技术的生产成本低廉,可适于大规模商业生产。
附图说明
图1是场发射扫描电子显微镜(FESEM)表征的实施例1制备的多孔粉体材料CNC-g-PAN的微观形貌。
图2是实施例1制备的固态电解质的力学性能图。
图3是实施例1制备的固态电解质的离子电导率(σ)随温度(T)的变化关系图。
图4是以实施例1制备的固态电解质组装的纽扣电池的循环性能图。
具体实施方式
下面结合实施例,对本发明的技术方案进行详细描述。
以下实施例中预先配制的固含量0.5%、pH=1.8的纤维素纳米晶水溶液的步骤如下:
购买市面上的商用纤维素纳米晶水溶液,然后用硝酸调节纤维素纳米晶水溶液的pH至1.8,通过浓缩或稀释调节固含量至0.5%。
实施例1:
取预先配制的固含量0.5%、pH=1.8的纤维素纳米晶水溶液40mL置于氮气保护下的三口烧瓶中,然后向其中加入0.08g的硝酸铈铵作为引发剂和聚合物单体丙烯腈2mL,在恒温35℃条件下磁力搅拌2h,将产物水洗多次并烘干即得到多孔粉体材料CNC-g-PAN,其微观形貌如图1所示。
取0.1g粉体材料CNC-g-PAN于样品瓶中,并缓慢向其中滴加0.1mL双三氟磺酰亚胺锂的碳酸乙烯酯溶液(1g/mL),滴加完后,将样品瓶密封后放入80℃常压恒温箱中保存10h,再移入80℃真空恒温箱中调节其溶剂含量至约10wt%~15wt%,然后取适量样品在10MPa/150℃下热压成膜即得到目标固态电解质膜,其力学性能如图2所示,其杨氏模量9.5MPa。电解质膜的离子电导率(σ)随温度(T)的变化关系如图3所示。用裁刀裁出直径19mm圆片作为电解质,以磷酸铁锂为正极和金属锂片为负极组装2032扣式半电池并测试(设置测试参数:温度60℃,电流密度0.1C,电压范围2.5-4V),性能如图4所示,电池比容量可达163mAh/g,100次循环后容量保持达93%。
实施例2:
取预先配制的固含量0.5%、pH=1.8的纤维素纳米晶水溶液40mL置于氮气保护下的三口烧瓶中,然后向其中加入0.08g的硝酸铈铵作为引发剂和聚合物单体丙烯腈1.5mL,在恒温35℃条件下磁力搅拌2h,将产物水洗多次并烘干, 即得到多孔粉体材料CNC-g-PAN。
采用和实施例1完全相同的工艺制备电解质膜并测试。测得其杨氏模量为6.4MPa。
以磷酸铁锂为正极、金属锂片为负极组装2032扣式半电池在60℃,电流密度0.1C,电压范围2.5-4V条件下测试,电池比容量可达154mAh/g,100次循环后容量保持率65%。
实施例3:
取预先配制的固含量0.5%、pH=1.8的纤维素纳米晶水溶液40mL置于氮气保护下的三口烧瓶中,分别向其中加入0.08g的硝酸铈铵作为引发剂和聚合物单体丙烯腈1mL,在恒温35℃条件下磁力搅拌2h,将产物水洗多次并烘干即得到多孔粉体材料CNC-g-PAN。
采用和实施例1完全相同的工艺制备电解质膜并测试,测得其杨氏模量为3.8MPa。
以磷酸铁锂为正极和金属锂片为负极组装2032扣式半电池在60℃,电流密度0.1C,电压范围2.5-4V条件下测试,电池比容量可达127mAh/g,100次循环后容量保持率43%。
上述对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之类。

Claims (6)

  1. 一种新型固体电解质的制备方法,所述方法包括如下步骤:
    (1)将纤维素纳米晶水溶液加入于氮气保护下的三口烧瓶中,然后向其中加入引发剂和聚合物单体,在20℃~80℃恒温条件下磁力搅拌至反应完全,将产物水洗多次并烘干即得到多孔粉体材料;
    (2)将步骤(1)得到的多孔粉体材料移入样品瓶中,并向其中缓慢滴加适量电解质溶液,将样品瓶密封放入60-90℃的常压恒温箱中保存8-15h,再移入60-90℃真空恒温箱中调节溶剂含量至10wt%~15wt%,取适量样品热压成膜即得到目标固态电解质膜;
    (3)将步骤(2)得到的固态电解质膜保存在手套箱中,根据需要裁成一定规格即得到目标固态电解质;
    步骤(1)中所述纤维素纳米晶水溶液、引发剂和聚合物单体的加入量比例为40mL:(0.05-0.1)g:(1-2)mL,所述纤维素纳米晶水溶液的固含量为0.4%-1.2%;
    步骤(2)中所述多孔粉体材料与电解质溶液中电解质的加入质量比为1:(1-2)。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述纤维素纳米晶水溶液的固含量为0.5%,pH范围为1~4。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述引发剂为硝酸铈铵。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述聚合物单体为甲基丙烯酸甲酯、丙烯酸乙酯、丙烯腈或乙烯醇。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤(2)中所述电解质溶液为双三氟磺酰亚胺锂的碳酸乙烯酯溶液、双三氟磺酰亚胺锂的碳酸丙烯酯溶液或六氟磷酸锂的碳酸乙烯酯溶液。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤(2)中所述热压成膜的条件为10MPa/150℃。
PCT/CN2021/127089 2021-01-28 2021-10-28 一种新型固体电解质的制备方法 WO2022160824A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/150,114 US11777146B2 (en) 2021-01-28 2023-01-04 Preparation method of solid electrolyte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110119341.0 2021-01-28
CN202110119341.0A CN112786959B (zh) 2021-01-28 2021-01-28 一种固体电解质的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/150,114 Continuation US11777146B2 (en) 2021-01-28 2023-01-04 Preparation method of solid electrolyte

Publications (1)

Publication Number Publication Date
WO2022160824A1 true WO2022160824A1 (zh) 2022-08-04

Family

ID=75759473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127089 WO2022160824A1 (zh) 2021-01-28 2021-10-28 一种新型固体电解质的制备方法

Country Status (3)

Country Link
US (1) US11777146B2 (zh)
CN (1) CN112786959B (zh)
WO (1) WO2022160824A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112786959B (zh) 2021-01-28 2022-02-25 青岛科技大学 一种固体电解质的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170250442A1 (en) * 2016-02-26 2017-08-31 The Penn State Research Foundation Nanofilled Solid Polymer Electrolytes
CN109716556A (zh) * 2016-07-13 2019-05-03 格勒诺布尔理工学院 用于电化学发生器的离子型导电材料和制备方法
CN110433766A (zh) * 2019-07-17 2019-11-12 江苏大学 一种镧改性大介孔硅膜及其制备方法和用途
CN112786959A (zh) * 2021-01-28 2021-05-11 青岛科技大学 一种新型固体电解质的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130189589A1 (en) * 2012-01-23 2013-07-25 Masdar Institute Of Science And Technology Fabrication of cellulose polymer composites and their application as solid electrolytes
US20140178513A1 (en) * 2012-12-23 2014-06-26 Robert Richard Matthews Non ionic/electrolyte, liquid/gaseous, mechanically refined/nanoparticle dispersion Building Materials/High Wear-Heat Resistant Part Brushes, Windings, Battery Cells, Brake Pads, Die Cast Molding, Refrigeration, Polarized/Integrated Optical, Spectrometric Processors, Central Processor Unit Processors, Electronic Storage Media, Analogous Series/Parallel Circuit Generators/Transceivers, Particulate Matter PM Carbonaceous-Polyamide, Crystalline Silica, and Cellulosic Filament Extraction/Miners Suit
CN104681863A (zh) * 2013-11-29 2015-06-03 北京化工大学 低结晶多孔纳米纤维制备的凝胶型聚合物电解质骨架材料
CN107565159A (zh) * 2016-06-30 2018-01-09 比亚迪股份有限公司 一种固态复合电解质及其制备方法以及正极组件和负极组件与非水电解质二次电池
US20180131041A1 (en) * 2016-11-09 2018-05-10 Blue Solutions Canada Inc. Lithium salt grafted nanocrystalline cellulose for solid polymer electrolyte
CN107611340B (zh) * 2017-08-23 2020-06-12 柔电(武汉)科技有限公司 柔性全固态电池及其制备方法
WO2019232621A1 (en) * 2018-06-05 2019-12-12 Bioastra Technologies Inc. Stretchable solid-state electroactive polymer actuators
KR102468903B1 (ko) * 2020-04-14 2022-11-22 세인트-고바인 세라믹스 앤드 플라스틱스, 인크. 전해질 재료 및 형성 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170250442A1 (en) * 2016-02-26 2017-08-31 The Penn State Research Foundation Nanofilled Solid Polymer Electrolytes
CN109716556A (zh) * 2016-07-13 2019-05-03 格勒诺布尔理工学院 用于电化学发生器的离子型导电材料和制备方法
CN110433766A (zh) * 2019-07-17 2019-11-12 江苏大学 一种镧改性大介孔硅膜及其制备方法和用途
CN112786959A (zh) * 2021-01-28 2021-05-11 青岛科技大学 一种新型固体电解质的制备方法

Also Published As

Publication number Publication date
US20230155172A1 (en) 2023-05-18
CN112786959A (zh) 2021-05-11
US11777146B2 (en) 2023-10-03
CN112786959B (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
CN111193065B (zh) 一种固态电解质膜、制备方法和用途与包含它的锂电池
CN110071289B (zh) 一种锂离子电池硅基负极复合粘结剂及其制备方法和应用
WO2015146747A1 (ja) 蓄電デバイス電極用バインダー
CN113113605B (zh) 一种网络结构离子导电粘合剂及其制备方法和应用
CN104466134A (zh) 自支撑石墨烯/碳纳米管杂化物泡沫负载氨基蒽醌类聚合物的制备方法
CN109004220A (zh) 一种硼酸化合物修饰锂离子电池硅负极及其制备方法
WO2022160824A1 (zh) 一种新型固体电解质的制备方法
CN114335546B (zh) 一种电池电极用粘结剂以及电池电极
CN113851710B (zh) 一种钠离子双功能凝胶聚合物电解质、其制备方法及应用
CN109659547B (zh) 一种用于锂电池的二元固溶体硼酸盐正极材料及制备方法
CN110350173B (zh) 一种锂硫软包电池及其制备方法
CN112209366A (zh) 一种锂硫电池电极材料的制备方法
CN107572486B (zh) 一种纳米硫颗粒、制备及其锂硫电池正极的制备
CN116040611A (zh) 一种锂离子电池薄膜负极材料及制备方法和应用
CN114725313B (zh) 一种硅基负极片及其制备方法与应用
CN109994763A (zh) 一种全钒液流电池隔膜的制备方法
CN112289594B (zh) 一种用于锌离子混合超级电容器的低共熔溶剂电解液的制备方法
CN114031125A (zh) 三元纳米片@碳纳米管正极材料的制备方法及其产品和应用
CN114284492A (zh) 一种醌胺/Mxene有机电极材料的制备方法
CN110336080B (zh) 一种复合单离子固态电解质的制备及应用方法
CN109713266B (zh) 一种锂离子电池负极材料及其制备方法
CN109021231B (zh) 一种改性聚多巴胺材料及其应用
CN117317223B (zh) 活性多孔碳的制备方法及其应用
CN116014144B (zh) 一种氧化亚硅复合材料及其制备方法
CN114300687B (zh) 一种水系复合粘结剂、制备及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922415

Country of ref document: EP

Kind code of ref document: A1