WO2022155965A1 - 承载基板、绑定组件及其绑定方法 - Google Patents

承载基板、绑定组件及其绑定方法 Download PDF

Info

Publication number
WO2022155965A1
WO2022155965A1 PCT/CN2021/073643 CN2021073643W WO2022155965A1 WO 2022155965 A1 WO2022155965 A1 WO 2022155965A1 CN 2021073643 W CN2021073643 W CN 2021073643W WO 2022155965 A1 WO2022155965 A1 WO 2022155965A1
Authority
WO
WIPO (PCT)
Prior art keywords
binding
terminals
carrier substrate
binding terminal
distance
Prior art date
Application number
PCT/CN2021/073643
Other languages
English (en)
French (fr)
Inventor
高展
张星
徐攀
刘威
韩影
王国英
林奕呈
王糖祥
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/073643 priority Critical patent/WO2022155965A1/zh
Priority to CN202180000058.4A priority patent/CN115280906A/zh
Priority to US17/630,670 priority patent/US20230158769A1/en
Publication of WO2022155965A1 publication Critical patent/WO2022155965A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • B32B3/085Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts spaced apart pieces on the surface of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a carrier substrate, a binding component and a binding method thereof.
  • the substrates to be bonded are usually bonded to terminals by thermocompression technology. At that time, when the thermal expansion coefficients of the two substrates to be bonded are different, misalignment between the bonded terminals will be caused, for example, in the display panel.
  • the display panel In one bonding technology, the display panel needs to be bound with the die-attached film. However, since the thermal expansion coefficient of the display panel is greater than that of the die-attached film, the binding terminals on the display panel are bound to the binding terminals on the die-attached film. The setting effect is poor.
  • a carrier substrate capable of being bound with an integrated substrate, wherein the thermal expansion coefficient of the carrier substrate is greater than the thermal expansion coefficient of the integrated substrate, and the integrated substrate includes equidistant distributions along the same direction a plurality of second binding terminals, the carrier substrate includes a plurality of first binding terminal groups, a plurality of the first binding terminal groups are equally spaced along the first direction, and each of the first binding terminal groups
  • the terminal group includes a plurality of first binding terminals distributed at equal intervals along the first direction, and a plurality of the first binding terminals are used for one-to-one binding with a plurality of the second binding terminals; wherein, The distance between two adjacent first binding terminal groups is smaller than the distance between two adjacent first binding terminals in the first binding terminal group, and the first binding terminal group is adjacent to each other in the first binding terminal group. The distance between two first binding terminals is equal to the distance between two adjacent second binding terminals.
  • n is 5-35.
  • the second binding terminals are elongated, and the arrangement direction of the second binding terminals is perpendicular to the extending direction of the second binding terminals;
  • the binding terminals are elongated, and the arrangement direction of the first binding terminals is perpendicular to the extending direction of the first binding terminals.
  • the first binding terminal is in the shape of an elongated bar, and a line in which the first binding terminal extends and a line in which the first direction is located forms a first acute angle, and the first The value of the acute angle is 69°-85°;
  • the second binding terminal is in the shape of a long strip, the line where the extension direction of the second binding terminal is located and the line where the distribution direction is located form a second acute angle, the second acute angle and the The value of the first acute angle is equal.
  • the carrier substrate is a flexible display panel
  • the integrated substrate is a die-attached film.
  • a carrier substrate includes a plurality of first binding terminal groups, the plurality of first binding terminal groups are equally spaced along a first direction, and each of the first binding terminal groups
  • a binding terminal group includes a plurality of first binding terminals distributed at equal intervals along the first direction; wherein the distance between two adjacent first binding terminal groups is smaller than the first binding terminal group The distance between two adjacent first binding terminals.
  • n is 5-35.
  • the first binding terminals are elongated, and the arrangement direction of the first binding terminals is perpendicular to the extending direction of the first binding terminals.
  • the carrier substrate is a flexible display panel.
  • a binding assembly includes a carrier substrate and an integrated substrate, the carrier substrate includes a plurality of first binding terminal groups, a plurality of the first binding terminal groups distributed at equal intervals along the first direction, and each of the first binding terminal groups includes a plurality of first binding terminals distributed at equal intervals along the first direction; wherein, two adjacent first binding terminals The distance between the groups is smaller than the distance between two adjacent first binding terminals in the first binding terminal group.
  • the thermal expansion coefficient of the integrated substrate is smaller than the thermal expansion coefficient of the carrier substrate, and the integrated substrate includes a plurality of second binding terminals, a plurality of the second binding terminals and a plurality of the first binding terminals one by one Corresponding to the binding, a plurality of the second binding terminals are distributed at equal intervals along the first direction.
  • each of the first binding terminal groups includes n first binding terminals, and the value of n is 5-35.
  • the second binding terminals are elongated, and the arrangement direction of the second binding terminals is perpendicular to the extending direction of the second binding terminals;
  • the binding terminals are elongated, and the arrangement direction of the first binding terminals is perpendicular to the extending direction of the first binding terminals.
  • the first binding terminal is in the shape of an elongated bar, and a line in which the first binding terminal extends and a line in which the first direction is located forms a first acute angle, and the first The value of the acute angle is 69°-85°; the second binding terminal is in the shape of a long strip, and the line where the extension direction of the second binding terminal is located forms a second acute angle with the line where the first direction is located. The value of the second acute angle and the first acute angle are equal.
  • the binding component is a display device
  • the carrier substrate is a flexible display panel
  • the integrated substrate is a die-attached film.
  • a binding component binding method is provided, and the binding method includes:
  • a carrier substrate and an integrated substrate are provided, wherein the thermal expansion coefficient of the integrated substrate is smaller than the thermal expansion coefficient of the carrier substrate;
  • the carrier substrate includes a plurality of first binding terminal groups, the plurality of first binding terminal groups are distributed at equal intervals in the same direction, and each of the first binding terminal groups includes a plurality of first binding terminal groups
  • the distribution direction of the first binding terminal is the same as the distribution direction of the first binding terminal group, and the distance between two adjacent first binding terminal groups is smaller than the first binding terminal the distance between two adjacent first binding terminals in the group;
  • the integrated substrate includes a plurality of second binding terminals, and the plurality of the second binding terminals are used for one-to-one binding with the plurality of the first binding terminals, and the plurality of the second binding terminals are along the Distributed at equal intervals in the same direction, and the distance between two adjacent first binding terminals in the first binding terminal group is equal to the distance between two adjacent second binding terminals;
  • the carrier substrate and the integrated substrate are pressed together.
  • each of the first binding terminal groups includes n first binding terminals, where n is a positive integer greater than 1; two adjacent first binding terminal groups The distance between them is S1, the distance between two adjacent first binding terminals in the first binding terminal group is S2, the thermal expansion coefficient of the carrier substrate is a, and the first binding terminals are in the first binding terminal group.
  • each of the first binding terminal groups includes n first binding terminals, and the value of n is 5-35.
  • the second binding terminals are elongated, and the arrangement direction of the second binding terminals is perpendicular to the extending direction of the second binding terminals;
  • the first binding terminals are elongated, and the arrangement direction of the first binding terminals is perpendicular to the extending direction of the first binding terminals.
  • the first binding terminal is in the shape of an elongated bar, and a line in which the first binding terminal extends and a line in which the first direction is located forms a first acute angle, and the first The value of the acute angle is 69°-85°; the second binding terminal is in the shape of a long strip, and the line where the extension direction of the second binding terminal is located forms a second acute angle with the line where the first direction is located. The value of the second acute angle and the first acute angle are equal.
  • the binding component is a display device
  • the carrier substrate is a flexible display panel
  • the integrated substrate is a die-attached film.
  • 1 is a schematic structural diagram of two substrates to be bound in the prior art before heating
  • FIG. 2 is a schematic structural diagram of two substrates to be bound in the prior art after heating
  • FIG. 3 is a schematic structural diagram of the carrier substrate and the integrated substrate before heating in an exemplary embodiment of the binding method for the binding components of the present disclosure
  • FIG. 4 is a schematic structural diagram of a carrier substrate and an integrated substrate after heating in an exemplary embodiment of a method for binding a binding component of the present disclosure
  • FIG. 5 is a schematic structural diagram of the carrier substrate and the integrated substrate before heating in another exemplary embodiment of the binding component binding method of the present disclosure
  • FIG. 6 is a schematic structural diagram of the carrier substrate and the integrated substrate after heating in another exemplary embodiment of the binding component binding method of the present disclosure
  • FIG. 7 is a schematic diagram of the alignment structure of the carrier substrate and the integrated substrate in another exemplary embodiment of the binding method for binding components disclosed in the present disclosure
  • FIG. 8 is an alignment structure diagram of the carrier substrate and the integrated substrate after relative movement in the second direction in another exemplary embodiment of the binding method for binding components disclosed.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments can be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the same reference numerals in the drawings denote the same or similar structures, and thus their detailed descriptions will be omitted.
  • the substrates to be bound are usually bonded to the binding terminals through a hot pressing technology.
  • FIG. 1 it is a schematic structural diagram of two substrates to be bound in the prior art before heating. It includes a substrate to be bound 01 and a substrate to be bound 02 .
  • the substrate 01 to be bound includes a plurality of binding terminals 011
  • the substrate to be bound 02 includes a plurality of binding terminals 021 .
  • the size of the gap between the binding terminals 011 is equal to the size of the gap between the binding terminals 021
  • the size of the binding terminals 011 in the arrangement direction is equal to the size of the binding terminals 021 in the arrangement direction. As shown in FIG.
  • FIG. 2 it is a schematic structural diagram of two substrates to be bound in the prior art after heating. Since the thermal expansion coefficient of the substrate to be bound 01 is smaller than the thermal expansion coefficient of the substrate to be bound 02, the substrate to be bound 01 and the substrate to be bound During the hot pressing process of the fixed substrate 02, at least part of the binding terminals 011 and the binding terminals 021 are shifted in position, thereby reducing the overlapping area of the binding terminals 011 and the binding terminals 021, and increasing the binding terminals 011 and the binding terminals 021. The resistance between the fixed terminals 021 reduces the transmission effect of the signal.
  • this exemplary embodiment first provides a binding component binding method, the binding component binding method includes:
  • Step S1 Provide a carrier substrate and an integrated substrate, wherein the thermal expansion coefficient of the integrated substrate is smaller than the thermal expansion coefficient of the carrier substrate.
  • FIG. 3 a schematic diagram of the structure of the carrier substrate and the integrated substrate before heating in an exemplary embodiment of the binding method for the binding components of the present disclosure
  • FIG. 3 can represent the carrier substrate 1 and the integrated substrate 2 after alignment.
  • the carrier substrate 1 may include a plurality of first binding terminal groups 11 , the plurality of first binding terminal groups 11 may be distributed at equal intervals along the first direction X, and each of the first binding terminal groups 11 It may include a plurality of first binding terminals 111 distributed at equal intervals along the first direction X, and the distance between two adjacent first binding terminals in each first binding terminal group 11 is S2.
  • a distance S1 between two adjacent first binding terminal groups 11 is smaller than a distance S2 between two adjacent first binding terminals 111 in the first binding terminal group 11 .
  • the integrated substrate 2 may include a plurality of second binding terminals 211, and the plurality of the second binding terminals 211 are used for binding with the plurality of the first binding terminals 111 in a one-to-one correspondence. After the carrier substrate 1 and the integrated substrate 2 are aligned, a plurality of the second binding terminals 211 can also be distributed at equal intervals along the first direction X, and two adjacent second binding terminals 211 in the first binding terminal group 11 are equally spaced.
  • the distance S2 between one binding terminal 111 may be equal to the distance S4 between two adjacent second binding terminals 211 .
  • two adjacent first binding terminals 111 may include adjacent first sub-binding terminals 3 and second sub-binding terminals 4 , and the first sub-binding terminals 3 include facing the second sub-binding terminal 3 .
  • the side 31 of the binding terminal 4, the second sub-binding terminal 4 includes a side 41 facing the first sub-binding terminal 3, the side 31 and the side 41 can be parallel, the first binding terminal group 11
  • the distance S2 between two adjacent first binding terminals 111 may refer to the distance in the first direction X between the side 41 and the side 31 .
  • the distance S4 between two adjacent second binding terminals 211 may refer to the distance in the first direction X between adjacent two sides of two adjacent second binding terminals 211 .
  • the distance S1 between two adjacent first binding terminal groups 11 may refer to the distance between two adjacent first binding terminals in two adjacent first binding terminal groups 11 .
  • the plurality of first binding terminals 111 may be symmetrical with respect to the axis of symmetry A, and the plurality of second binding terminals 211 may also be symmetrical with respect to the axis of symmetry A, which may be perpendicular to the first direction. Since the present exemplary embodiment compresses the distance between the adjacent first binding terminal groups 11 , the first binding terminal 111 is displaced relative to the second binding terminal 211 in a direction close to the scale axis A. As shown in FIG.
  • Step S2 aligning and heating the carrier substrate 1 and the integrated substrate 2 .
  • FIG. 4 it is a schematic structural diagram of the carrier substrate and the integrated substrate after heating in an exemplary embodiment of the binding method for binding components of the present disclosure.
  • the heating of the carrier substrate 1 and the integrated substrate 2 may include heating the area where the first binding terminals 111 are located in the carrier substrate 1 and the area where the second binding terminals 211 are located in the integrated substrate 2 .
  • the distance S2 between two adjacent first binding terminals 111 in the first binding terminal group 11 will increase, the distance S1 between the first binding terminal group 11 will increase, and the second binding terminal
  • the distance S4 between the groups will increase.
  • the increased distance S2 will be greater than the increased distance S4, and the increased distance S1 will be closer to increase.
  • the distance S4 after the increase that is, the difference between the distance S4 after the increase and the distance S1 after the increase is smaller than the difference between the distance S4 before the increase and the distance S1 before the increase. Therefore, after heating, the first binding terminal 111 will be displaced relative to the second binding terminal 211 in a direction away from the axis A, thereby achieving better alignment of the first binding terminal 111 and the second binding terminal 211 .
  • Step S3 pressing the carrier substrate 1 and the integrated substrate 2 to realize the binding of the first binding terminal 111 and the second binding terminal 211 .
  • the first binding terminals are divided into multiple groups, and the distance between the first binding terminal groups is pre-compressed, thereby improving the first binding terminal and the second binding terminal after the heating of the carrier substrate and the integrated substrate.
  • the overlapping area of the terminals is fixed, which improves the binding effect.
  • the distance between each adjacent first binding terminal may also be compressed.
  • the amount of pre-compression between adjacent first binding terminals is small, when compressing the distance between each adjacent first binding terminal, a process device with higher precision needs to be used.
  • each of the first binding terminal groups may include four first binding terminals.
  • the thermal expansion coefficient of the carrier substrate may be a, the size of the first binding terminal in the first direction is W, and S1 may be equal to S2-a*4*(S2+W).
  • S1 may be equal to S2-n*a*(S2+W).
  • this exemplary embodiment only compresses the distance between the first binding terminal groups according to the thermal expansion coefficient of the carrier substrate.
  • the present disclosure may also consider the thermal expansion coefficients of the carrier substrate and the integrated substrate at the same time. Compressing the distance between the first bonding terminal groups, when considering thermal expansion coefficients of the carrier substrate and the integrated substrate, S1 may be equal to S2-(a-b)*n*(S2+W). where b is the thermal expansion coefficient of the integrated substrate.
  • the first binding terminals are divided into multiple groups, and the pre-expansion amount of the carrier substrate located in the area where a single first binding terminal group is located can be pre-compressed between the first binding terminal groups.
  • the amount of compression required between the fixed terminal groups is obviously greater than the amount of compression required between the first binding terminals in the related art. Therefore, the binding method provided by the present exemplary embodiment can realize the load bearing capacity by using a process device with lower precision. Pre-compensation for thermal expansion of the substrate.
  • the first binding terminals before the carrier substrate and the integrated substrate are heated, the first binding terminals may have the same size in the first direction, the second binding terminals may have the same size in the first direction, and the first binding terminals may have the same size.
  • the size in the first direction may be equal to the size of the second binding terminal in the first direction.
  • the second binding terminal may be in the shape of a long strip, the arrangement direction of the second binding terminal may be perpendicular to the extending direction of the second binding terminal; the first binding terminal may be in the shape of a long strip , the arrangement direction of the first binding terminals may be perpendicular to the extending direction of the first binding terminals.
  • the first binding terminal and the second binding terminal may be rectangular.
  • Each first binding terminal group may include four first binding terminals, and the symmetry axis A may be located between two adjacent first binding terminal groups.
  • the first binding terminal and the second binding terminal may also be in other shapes, for example, the first binding terminal and the second binding terminal may be a parallelogram, a right-angled trapezoid Wait.
  • Each first binding terminal group may further include other numbers of first binding terminals, and the number of first binding terminals in each first binding terminal group may be the same or different.
  • the symmetry axis A may also be located at other positions, for example, the symmetry axis A may be located on the area where the first binding terminal group is located.
  • each of the first binding terminal groups may include n first binding terminals.
  • n may be 5-30, for example, n may be 5, 10, 15, 20, 25, and 30.
  • FIG. 5 it is a schematic structural diagram of the carrier substrate and the integrated substrate before heating in another exemplary embodiment of the binding component binding method of the present disclosure.
  • the difference between the carrier substrate and the integrated substrate shown in FIG. 5 and the carrier substrate and the integrated substrate shown in FIG. 3 is that the extending direction of the first binding terminals 111 may be the same as the first direction (ie, the distribution direction of the first binding terminals).
  • a first acute angle ⁇ 1 is formed; the line in which the extending direction of the second binding terminal 211 is located may form a second acute angle ⁇ 2 with the first direction X.
  • the value of the first acute angle ⁇ 1 may be 69°-85°, for example, the value of the first acute angle ⁇ 1 may be 69°, 75°, 85°, and the value of the first acute angle ⁇ 1 may be equal to the value of the second acute angle.
  • the first binding terminal 111 and the second binding terminal 211 may be parallelograms.
  • the distance S1 between two adjacent first binding terminal groups 11 may be equal to S2-n*a*(S2+W), where S2 is the two adjacent first binding terminal groups 11 in the first binding terminal group 11. A distance between bound terminals.
  • n is the number of the first binding terminals in the first binding terminal group 11
  • a is the thermal expansion coefficient of the carrier substrate
  • W is the size of the first binding terminals in the distribution direction.
  • the distance S2 between two adjacent first binding terminals 111 in the first binding terminal group 11 may be equal to the distance S4 between two adjacent second binding terminals 211
  • two adjacent first binding terminals 111 may include a first sub-binding terminal 3 and a second sub-binding terminal 4 , and the first sub-binding terminal 3 includes a Side 31, the second sub-binding terminal 4 includes a side 41 facing the first sub-binding terminal 3, the side 31 and the side 41 may be parallel, and the extension direction of the first binding terminal 111 may refer to the side of the side 31. extension direction.
  • the extending direction of the second binding terminal 211 may refer to the extending direction of the side of the second binding terminal in the first direction X (ie, the distribution direction of the second binding terminal).
  • the distance S2 between two adjacent first binding terminals 111 in the first binding terminal group 11 may refer to the distance in the first direction X between the side edge 41 and the side edge 31 .
  • the distance S4 between two adjacent second binding terminals 211 may refer to the distance in the first direction X between adjacent two sides of the two adjacent second binding terminals 211 .
  • the distance S1 between two adjacent first binding terminal groups 11 may refer to the distance between two adjacent first binding terminals in two adjacent first binding terminal groups 11 .
  • the first binding terminal 111 may be displaced relative to the second binding terminal 211 .
  • FIG. 6 it is a schematic structural diagram of the carrier substrate and the integrated substrate after heating in another exemplary embodiment of the binding method for binding components of the present disclosure.
  • the thermal expansion coefficient of the carrier substrate 1 is greater than that of the integrated substrate 2
  • the thermal expansion of the carrier substrate 1 is greater than that of the integrated substrate 2 after heating. Therefore, better alignment of the first binding terminal 111 and the second binding terminal 211 can be achieved.
  • the present exemplary embodiment can relatively move the carrier substrate 1 and the integrated substrate 2 in the second direction Y to achieve more Good alignment effect, wherein the second direction Y is perpendicular to the first direction X. As shown in FIG.
  • FIG. 8 it is an alignment structure diagram of the carrier substrate and the integrated substrate after relative movement in the second direction in another exemplary embodiment of the binding method for binding components of the present disclosure.
  • the first binding terminal 111 and the second binding terminal 211 have a larger overlapping area.
  • the first binding terminal 111 and the second binding terminal 211 move a larger distance in the second direction, the Only a small change occurs in the overlapping area between the first binding terminal 111 and the second binding terminal 211. Therefore, the relative movement of the carrier substrate 1 and the integrated substrate 2 in the second direction can better control the first binding Alignment accuracy between the fixed terminal 111 and the second binding terminal 211.
  • the binding component may be a display device
  • the carrier substrate may be a flexible display panel
  • the integrated substrate may be a die-attached film, wherein the die-attached film may also be bound with a film for driving The driving chip of the flexible display panel.
  • the carrier substrate, the integrated substrate, and the binding component may also be other structures, for example, the carrier substrate and the integrated substrate may be an integrated circuit board, which all belong to the protection scope of the present disclosure.
  • the present exemplary embodiment also provides a carrier substrate that can be bound to an integrated substrate, the thermal expansion coefficient of the carrier substrate is greater than the thermal expansion coefficient of the integrated substrate, and the integrated substrate includes a plurality of equidistantly distributed substrates along the same direction Second binding terminals, the carrier substrate includes a plurality of first binding terminal groups, the plurality of first binding terminal groups are equally spaced along the first direction, and each of the first binding terminal groups includes A plurality of first binding terminals are distributed at equal intervals along the first direction, and a plurality of the first binding terminals are used for one-to-one binding with a plurality of the second binding terminals; The distance between the first binding terminal groups is smaller than the distance between two adjacent first binding terminals in the first binding terminal group, and two adjacent first binding terminals in the first binding terminal group The distance between the binding terminals is equal to the distance between two adjacent second binding terminals.
  • each of the first binding terminal groups includes n first binding terminals, where n is a positive integer greater than 1;
  • the distance is S1
  • the distance between two adjacent first binding terminals in the first binding terminal group is S2
  • the thermal expansion coefficient of the carrier substrate is a
  • the first binding terminals are in the first binding terminal.
  • the value of n is 5-35, for example, the value of n may be 5, 10, 15, 20, 25, and 30.
  • the second binding terminals are elongated, and the arrangement direction of the second binding terminals is perpendicular to the extending direction of the second binding terminals; the first binding terminals In the shape of a long strip, the arrangement direction of the first binding terminals is perpendicular to the extending direction of the first binding terminals.
  • the first binding terminal is in the shape of a long strip, and a line in which the first binding terminal extends and a line in which the first direction is located forms a first acute angle, and the value of the first acute angle is is 69°-85°, for example, the value of the first acute angle can be 69°, 75°, 85°;
  • the second binding terminal is in the shape of a long strip, and the extension direction of the second binding terminal is the straight line and its distribution direction The straight line where it is located forms a second acute angle, and the value of the second acute angle and the first acute angle are equal.
  • the carrier substrate is a flexible display panel
  • the integrated substrate is a die-attached film.
  • the carrier substrate may be the carrier substrate shown in FIGS. 3 and 5 .
  • the structure and working principle of the carrier substrate have been described in detail in the above content, and will not be repeated here.
  • the present exemplary embodiment also provides a carrier substrate, the carrier substrate includes a plurality of first binding terminal groups, the plurality of first binding terminal groups are equally spaced along a first direction, and each of the first binding terminal groups
  • the binding terminal group includes a plurality of first binding terminals distributed at equal intervals along the first direction; wherein, the distance between two adjacent first binding terminal groups is smaller than that within the first binding terminal group The distance between two adjacent first binding terminals.
  • each of the first binding terminal groups includes n first binding terminals, where n is a positive integer greater than 1;
  • the distance is S1
  • the distance between two adjacent first binding terminals in the first binding terminal group is S2
  • the thermal expansion coefficient of the carrier substrate is a
  • the first binding terminals are in the first binding terminal.
  • the value of n is 5-35, for example, the value of n may be 5, 10, 15, 20, 25, and 30.
  • the first binding terminals are elongated, and the arrangement direction of the first binding terminals is perpendicular to the extending direction of the first binding terminals.
  • the first binding terminal is in the shape of a long strip, and a line in which the first binding terminal extends and a line in which the first direction is located forms a first acute angle, and the value of the first acute angle is is 69°-85°, for example, the value of the first acute angle may be 69°, 75°, and 85°.
  • the carrier substrate is a flexible display panel.
  • the carrier substrate may be the carrier substrate shown in FIGS. 3 and 5 .
  • the structure and working principle of the carrier substrate have been described in detail in the above content, and will not be repeated here.
  • This exemplary embodiment also provides a binding assembly, the binding assembly includes: a carrier substrate and an integrated substrate, the carrier substrate includes a plurality of first binding terminal groups, and the plurality of first binding terminal groups are The first direction is equally spaced, and each of the first binding terminal groups includes a plurality of first binding terminals that are equally spaced along the first direction; wherein, two adjacent first binding terminal groups The distance between them is smaller than the distance between two adjacent first binding terminals in the first binding terminal group.
  • the thermal expansion coefficient of the integrated substrate is smaller than the thermal expansion coefficient of the carrier substrate, and the integrated substrate includes a plurality of second binding terminals, a plurality of the second binding terminals and a plurality of the first binding terminals one by one Corresponding to the binding, a plurality of the second binding terminals are distributed at equal intervals along the first direction.
  • each first binding terminal group includes n first binding terminals, and the value of n is 5-35, for example, the value of n may be 5, 10, 15, 20, 25, 30.
  • the second binding terminals are elongated, and the arrangement direction of the second binding terminals is perpendicular to the extending direction of the second binding terminals; the first binding terminals In the shape of a long strip, the arrangement direction of the first binding terminals is perpendicular to the extending direction of the first binding terminals.
  • the first binding terminal is in the shape of a long strip, and a line in which the first binding terminal extends and a line in which the first direction is located forms a first acute angle, and the value of the first acute angle is is 69°-85°, for example, the value of the first acute angle can be 69°, 75°, 85°;
  • the second binding terminal is in the shape of a long strip, and the line where the extension direction of the second binding terminal is located is the same as the The straight line where the first direction is located forms a second acute angle, and the value of the second acute angle and the first acute angle are equal.
  • the binding component is a display device
  • the carrier substrate is a flexible display panel
  • the integrated substrate is a die-attached film.
  • the binding component may have a combined structure of an integrated substrate and a carrier substrate as shown in Figures 4, 6, and 8.
  • the structure and working principle of the binding component have been described in detail in the above content, and are not described here. Repeat.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Wire Bonding (AREA)

Abstract

一种承载基板(1)、绑定组件及其绑定方法,承载基板(1)能够与一集成基板(2)绑定,承载基板(1)的热膨胀系数大于集成基板(2)的热膨胀系数,集成基板(2)包括沿同一方向等间距分布的第二绑定端子(211),承载基板(1)包括多个第一绑定端子组(11),多个第一绑定端子组(11)沿第一方向等间距分布,且每个第一绑定端子组(11)包括沿第一方向等间距分布的多个第一绑定端子(111),多个第一绑定端子(111)用于与多个第二绑定端子(211)一一对应绑定;其中,相邻两第一绑定端子组(11)之间的距离小于绑定端子组内相邻两第一绑定端子(111)之间的距离,且第一绑定端子组(11)内相邻两第一绑定端子(111)之间的距离等于相邻两第二绑定端子(211)之间的距离。承载基板(1)能够提高第一绑定端子(111)和第二绑定端子(211)之间的绑定效果。

Description

承载基板、绑定组件及其绑定方法 技术领域
本公开涉及显示技术领域,尤其涉及一种承载基板、绑定组件及其绑定方法。
背景技术
现有技术中,待绑定基板通常通过热压技术实现绑定端子绑定,当时当两个待绑定基板的热膨胀系数不同时,会导致绑定端子之间错位,例如,在显示面板的一种绑定技术中,显示面板需要与附晶薄膜进行绑定,然而由于显示面板的热膨胀系数大于附晶薄膜的热膨胀系数,显示面板上的绑定端子与附晶薄膜上的绑定端子绑定效果较差。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
公开内容
根据本公开的一个方面,提供一种承载基板,能够与一集成基板绑定,其中,所述承载基板的热膨胀系数大于所述集成基板的热膨胀系数,所述集成基板包括沿同一方向等间距分布的多个第二绑定端子,所述承载基板包括多个第一绑定端子组,多个所述第一绑定端子组沿第一方向等间距分布,且每个所述第一绑定端子组包括沿所述第一方向等间距分布的多个第一绑定端子,多个所述第一绑定端子用于与多个所述第二绑定端子一一对应绑定;其中,相邻两所述第一绑定端子组之间的距离小于所述第一绑定端子组内相邻两第一绑定端子之间的距离,且所述第一绑定端子组内相邻两第一绑定端子之间的距离等于相邻两第二绑定端子之间的距离。
本公开一种示例性实施例中,每个所述第一绑定端子组包括n个所述第一绑定端子,n为大于1的正整数;相邻两所述第一绑定端子组之间的距离为S1,所述第一绑定端子组内相邻两第一绑定端子之间的距离为S2,所述承载基板的热膨胀系数为a,所述第一绑定端子在所述第一方向上的尺寸为W,则S1=S2-a*n*(S2+W)。
本公开一种示例性实施例中,n的值为5-35。
本公开一种示例性实施例中,所述第二绑定端子为长条形,所述第二绑定端子的排布方向和所述第二绑定端子的延伸方向垂直;所述第一绑定端子为长条形,所述第一绑定端子的排布方向和所述第一绑定端子的延伸方向垂直。
本公开一种示例性实施例中,所述第一绑定端子为长条形,所述第一绑定端子延伸方向所在直线与所述第一方向所在直线成第一锐角,所述第一锐角的值为69°-85°; 所述第二绑定端子为长条形,所述第二绑定端子延伸方向所在直线与其分布方向所在直线成第二锐角,所述第二锐角和所述第一锐角的值相等。
本公开一种示例性实施例中,所述承载基板为柔性显示面板,所述集成基板为附晶薄膜。
根据本公开的一个方面,提供一种承载基板,该承载基板包括多个第一绑定端子组,多个所述第一绑定端子组沿第一方向等间距分布,且每个所述第一绑定端子组包括沿所述第一方向等间距分布的多个第一绑定端子;其中,相邻两所述第一绑定端子组之间的距离小于所述第一绑定端子组内相邻两所述第一绑定端子之间的距离。
本公开一种示例性实施例中,每个所述第一绑定端子组包括n个所述第一绑定端子,n为大于1的正整数;相邻两所述第一绑定端子组之间的距离为S1,所述第一绑定端子组内相邻两第一绑定端子之间的距离为S2,所述承载基板的热膨胀系数为a,所述第一绑定端子在所述第一方向上的尺寸为W,则S1=S2-a*n*(S2+W)。
本公开一种示例性实施例中,n的值为5-35。
本公开一种示例性实施例中,所述第一绑定端子为长条形,所述第一绑定端子的排布方向和所述第一绑定端子的延伸方向垂直。
本公开一种示例性实施例中,所述承载基板为柔性显示面板。
根据本公开的一个方面,提供一种绑定组件,该绑定组件包括:承载基板、集成基板,所述承载基板包括多个第一绑定端子组,多个所述第一绑定端子组沿第一方向等间距分布,且每个所述第一绑定端子组包括沿所述第一方向等间距分布的多个第一绑定端子;其中,相邻两所述第一绑定端子组之间的距离小于所述第一绑定端子组内相邻两所述第一绑定端子之间的距离。所述集成基板的热膨胀系数小于所述承载基板的热膨胀系数,所述集成基板包括多个第二绑定端子,多个所述第二绑定端子与多个所述第一绑定端子一一对应绑定,多个所述第二绑定端子沿所述第一方向等间距分布。
本公开一种示例性实施例中,每个所述第一绑定端子组包括n个所述第一绑定端子,n的值为5-35。
本公开一种示例性实施例中,所述第二绑定端子为长条形,所述第二绑定端子的排布方向和所述第二绑定端子的延伸方向垂直;所述第一绑定端子为长条形,所述第一绑定端子的排布方向和所述第一绑定端子的延伸方向垂直。
本公开一种示例性实施例中,所述第一绑定端子为长条形,所述第一绑定端子延伸方向所在直线与所述第一方向所在直线成第一锐角,所述第一锐角的值为69°-85 °;所述第二绑定端子为长条形,所述第二绑定端子延伸方向所在直线与所述第一方向方向所在直线成第二锐角,所述第二锐角和所述第一锐角的值相等。
本公开一种示例性实施例中,所述绑定组件为显示装置,所述承载基板为柔性显示面板,所述集成基板为附晶薄膜。
根据本公开的一个方面,提供一种绑定组件绑定方法,该绑定方法包括:
提供一承载基板和集成基板,所述集成基板的热膨胀系数小于所述承载基板的热膨胀系数;
其中,所述承载基板包括多个第一绑定端子组,多个所述第一绑定端子组沿同一方向等间距分布,且每个所述第一绑定端子组包括多个第一绑定端子,所述第一绑定端子的分布方向与所述第一绑定端子组的分布方向相同,相邻两所述第一绑定端子组之间的距离小于所述第一绑定端子组内相邻两所述第一绑定端子之间的距离;
所述集成基板包括多个第二绑定端子,多个所述第二绑定端子用于与多个所述第一绑定端子一一对应绑定,多个所述第二绑定端子沿同一方向等间距分布,且所述第一绑定端子组内相邻两第一绑定端子之间的距离等于相邻两第二绑定端子之间的距离;
对所述承载基板和所述集成基板进行对位和加热;
压合所述承载基板和所述集成基板。
本公开一种示例性实施例中,每个所述第一绑定端子组包括n个所述第一绑定端子,n为大于1的正整数;相邻两所述第一绑定端子组之间的距离为S1,所述第一绑定端子组内相邻两第一绑定端子之间的距离为S2,所述承载基板的热膨胀系数为a,所述第一绑定端子在其分布方向上的尺寸为W,则S1=S2-a*n*(S2+W)。
本公开一种示例性实施例中,每个所述第一绑定端子组包括n个所述第一绑定端子,n的值为5-35。
本公开一种示例性实施例中,所述第二绑定端子为长条形,所述第二绑定端子的排布方向和所述第二绑定端子的延伸方向垂直;
所述第一绑定端子为长条形,所述第一绑定端子的排布方向和所述第一绑定端子的延伸方向垂直。
本公开一种示例性实施例中,所述第一绑定端子为长条形,所述第一绑定端子延伸方向所在直线与所述第一方向所在直线成第一锐角,所述第一锐角的值为69°-85°;所述第二绑定端子为长条形,所述第二绑定端子延伸方向所在直线与所述第一方向方向所在直线成第二锐角,所述第二锐角和所述第一锐角的值相等。
本公开一种示例性实施例中,所述绑定组件为显示装置,所述承载基板为柔性显示面板,所述集成基板为附晶薄膜。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中两个待绑定基板加热前的结构示意图;
图2为现有技术中两个待绑定基板加热后的结构示意图;
图3为本公开绑定组件绑定方法一种示例性实施例中承载基板和集成基板加热前的结构示意图;
图4为本公开绑定组件绑定方法一种示例性实施例中承载基板和集成基板加热后的结构示意图;
图5为本公开绑定组件绑定方法另一种示例性实施例中承载基板和集成基板加热前的结构示意图;
图6为本公开绑定组件绑定方法另一种示例性实施例中承载基板和集成基板加热后的结构示意图;
图7为本公开绑定组件绑定方法另一种示例性实施例中承载基板和集成基板的对位结构示意图;
图8为本公开绑定组件绑定方法另一种示例性实施例中承载基板和集成基板在第二方向上相对移动后的对位结构图。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本公开将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。其他相对性的用语,例如“高”“低”“顶”“底”“左”“右”等也作具有类似含义。 当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“所述”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。
现有技术中,待绑定基板通常通过热压技术实现绑定端子绑定,如图1所示,为现有技术中两个待绑定基板加热前的结构示意图,该两待绑定基板包括待绑定基板01和待绑定基板02。其中,待绑定基板01包括有多个绑定端子011,待绑定基板02包括有多个绑定端子021。现有技术中,绑定端子011之间间隙的尺寸等于绑定端子021之间间隙的尺寸,绑定端子011在其排列方向上的尺寸等于绑定端子021在其排列方向上的尺寸。如图2所示,为现有技术中两个待绑定基板加热后的结构示意图,由于待绑定基板01的热膨胀系数小于待绑定基板02的热膨胀系数,待绑定基板01和待绑定基板02在热压过程中,至少部分绑定端子011和绑定端子021位置发生偏移,从而降低了绑定端子011和绑定端子021的交叠面积,增加了绑定端子011和绑定端子021之间的电阻,降低了信号的传输效果。
基于此,本示例性实施例首先提供一种绑定组件绑定方法,该绑定组件绑定方法包括:
步骤S1:提供一承载基板和集成基板,所述集成基板的热膨胀系数小于所述承载基板的热膨胀系数。
其中,如图3所示,为本公开绑定组件绑定方法一种示例性实施例中承载基板和集成基板加热前的结构示意图,图3可以表示承载基板1和集成基板2对位后的结构示意。所述承载基板1可以包括多个第一绑定端子组11,多个所述第一绑定端子组11可以沿第一方向X等间距分布,且每个所述第一绑定端子组11可以包括沿所述第一方向X等间距分布的多个第一绑定端子111,每个第一绑定端子组11内相邻两第一绑定端子之间的距离均为S2。相邻两所述第一绑定端子组11之间的距离S1小于所述第一绑定端子组11内相邻两第一绑定端子111之间的距离S2。所述集成基板2可以包括多个第二绑定端子211,多个所述第二绑定端子211用于与多个所述第一绑定端子111一一对应绑定。在承载基板1和集成基板2对位后,多个所述第二绑定端子211同样可以沿所述第一方向X等间距分布,且所述第一绑定端子组11内相邻两第一绑定端子111之间的距离S2可以等于相邻两第二绑定端子211之间的距离S4。其中,如图3所示,相邻两第一绑定端子111可以包括相邻的第一子绑定端子3和第二子绑定端子4,第一子绑定端子3包括面向第二子绑定端子4的侧边31,第二子绑定端子4包括面向第一子绑定端子3的侧边41,侧边31和侧边41可以平行,所述第一绑定端子组11内相邻两第一绑定端子111之间的距离S2可以指,侧边41和侧边31在第一方向X上的距离。同理,相邻两第二绑定端子211之间的距离S4可以指,相邻两 第二绑定端子211中相邻两侧边在第一方向X上的距离。相邻两所述第一绑定端子组11之间的距离S1可以指,相邻两所述第一绑定端子组11中相邻的两第一绑定端子之间的距离。其中,如图3所示,多个第一绑定端子111可以相对对称轴A对称,同时多个第二绑定端子211也可以相对对称轴A对称,对称轴A可以与第一方向垂直。由于本示例性实施例对相邻的第一绑定端子组11之间的距离进行了压缩,第一绑定端子111会相对第二绑定端子211向靠近称轴A方向错位。
步骤S2:对所述承载基板1和所述集成基板2进行对位和加热。如图4所示,为本公开绑定组件绑定方法一种示例性实施例中承载基板和集成基板加热后的结构示意图。其中,对所述承载基板1和所述集成基板2进行加热可以包括对所述承载基板1中第一绑定端子111所在区域和所述集成基板2中第二绑定端子211所在区域进行加热。加热后,第一绑定端子组11内相邻两第一绑定端子111之间的距离S2会增大,第一绑定端子组11之间的距离S1会增大,第二绑定端子组之间的距离S4会增大,由于承载基板1的热膨胀系数大于集成基板的热膨胀系数,增大后的距离S2会大于增大后的距离S4,增大后的距离S1会更加接近增大后的距离S4,即增大后的距离S4与增大后的距离S1的差值小于增大前的距离S4与增大前的距离S1的差值。因此,加热后第一绑定端子111会相对第二绑定端子211向远离称轴A方向错位,从而实现第一绑定端子111和第二绑定端子211较好的对位。
步骤S3:压合所述承载基板1和所述集成基板2,以实现第一绑定端子111和第二绑定端子211绑定。
本示例性实施例将第一绑定端子分为多个组,通过预先压缩第一绑定端子组之间的距离,从而提高了承载基板和集成基板加热后第一绑定端子和第二绑定端子的交叠面积,提高了绑定效果。
在相关技术中,还可以对每相邻第一绑定端子之间的距离进行压缩。然而,由于相邻第一绑定端子之间的预压缩量较小,对每相邻第一绑定端子之间的距离进行压缩时,需要采用较高精度的工艺装置。
本示例性实施例中,每个所述第一绑定端子组可以包括4个所述第一绑定端子。所述承载基板的热膨胀系数可以为a,所述第一绑定端子在所述第一方向上的尺寸为W,则S1可以等于S2-a*4*(S2+W)。应该理解的是,当第一绑定端子组包括n个所述第一绑定端子时,n为大于1的正整数,则S1可以等于S2-n*a*(S2+W)。需要说明的是,本示例性实施例仅根据承载基板热膨胀系数对第一绑定端子组之间的距离进行压缩,在其他实施例中,本公开还可以同时考虑承载基板和集成基板的热膨胀系数对第一绑定端子组之间的距离进行压缩,当同时考虑承载基板和集成基板的热膨胀系数时,S1可以等于S2-(a-b)*n*(S2+W)。其中,b为集成基板的热膨胀系数。
本示例性实施例将第一绑定端子分为多个组,可以将承载基板位于单个第一绑定端子组所在区域的预膨胀量预先压缩于第一绑定端子组之间,第一绑定端子组之间所 需的压缩量显然大于相关技术中第一绑定端子之间所需的压缩量,因此本示例性实施例提供的绑定方法可以通过精度较低的工艺装置实现对承载基板热膨胀的预先补偿。
本示例性实施例中,承载基板和集成基板加热前,第一绑定端子在第一方向上的尺寸可以相等,第二绑定端子在第一方向上的尺寸可以相等,第一绑定端子在第一方向上的尺寸可以等于第二绑定端子在第一方向上的尺寸。所述第二绑定端子可以为长条形,所述第二绑定端子的排布方向可以和所述第二绑定端子的延伸方向垂直;所述第一绑定端子可以为长条形,所述第一绑定端子的排布方向可以和所述第一绑定端子的延伸方向垂直。
本示例性实施例中,如图3、4所示,第一绑定端子和第二绑定端子可以为矩形。每个第一绑定端子组中可以包括4个第一绑定端子,对称轴A可以位于相邻两第一绑定端子组之间。应该理解的是,在其他示例性实施例中,第一绑定端子和第二绑定端子还可以为其他形状,例如,第一绑定端子和第二绑定端子可以为平行四边形,直角梯形等。每一第一绑定端子组中还可以包括其他数量的第一绑定端子,每个第一绑定端子组中的第一绑定端子数量可以相同也可以不同。对称轴A还可以位于其他位置,例如,对称轴A可以位于第一绑定端子组所在的区域上。
本示例性实施例中,每个所述第一绑定端子组可以包括n个所述第一绑定端子。其中,n的值越大,该绑定方法中对承载基板的工艺精度要求越低。同时,由于第一绑定端子组内第一绑定端子之间的距离未被压缩,因此,承载基板热膨胀后,同一第一绑定端子组中至少部分第一绑定端子和与其对应的第二绑定端子之间会发生错位,n值越大,同一第一绑定端子组中第一绑定端子的最大错位值越大。本示例性实施例中,n可以为5-30,例如,n可以为5、10、15、20、25、30。
本示例性实施例中,如图5所示,为本公开绑定组件绑定方法另一种示例性实施例中承载基板和集成基板加热前的结构示意图。图5所示承载基板、集成基板与图3所示承载基板、集成基板不同的是,所述第一绑定端子111延伸方向所在直线可以与第一方向(即第一绑定端子分布方向)成第一锐角β1;所述第二绑定端子211延伸方向所在直线可以与第一方向X成第二锐角β2。所述第一锐角β1的值可以为69°-85°,例如第一锐角β1的值可以为69°、75°、85°,第一锐角β1的值可以等于第二锐角的值。其中,所述第一绑定端子111和第二绑定端子211可以为平行四边形。同样的,相邻两所述第一绑定端子组11之间的距离S1可以等于S2-n*a*(S2+W),其中,S2为第一绑定端子组11内相邻两第一绑定端子之间的距离。n为第一绑定端子组11中第一绑定端子的个数,a为承载基板的热膨胀系数,W为第一绑定端子在其分布方向上的尺寸。且所述第一绑定端子组11内相邻两第一绑定端子111之间的距离S2可以等于相邻两第二绑定端子211之间的距离S4
如图5所示,相邻两第一绑定端子111可以包括第一子绑定端子3和第二子绑定端子4,第一子绑定端子3包括面向第二子绑定端子4的侧边31,第二子绑定端子4 包括面向第一子绑定端子3的侧边41,侧边31和侧边41可以平行,第一绑定端子111的延伸方向可以指侧边31的延伸方向。同理,第二绑定端子211的延伸方向可以指第二绑定端子在第一方向X(即第二绑定端子的分布方向)一侧侧边的延伸方向。所述第一绑定端子组11内相邻两第一绑定端子111之间的距离S2可以指,侧边41和侧边31在第一方向X上的距离。相邻两第二绑定端子211之间的距离S4可以指,相邻两第二绑定端子211中相邻两侧边在第一方向X上的距离。相邻两所述第一绑定端子组11之间的距离S1可以指,相邻两所述第一绑定端子组11中相邻的两第一绑定端子之间的距离。如图5所示,由于本示例性实施例对相邻的第一绑定端子组11之间的距离进行了压缩,第一绑定端子111会相对第二绑定端子211发生错位。
如图6所示,为本公开绑定组件绑定方法另一种示例性实施例中承载基板和集成基板加热后的结构示意图。其中,由于承载基板1的热膨胀系数大于集成基板2的热膨胀系数,因此,加热后承载基板1的热膨胀量大于集成基板2的热膨胀量。从而可以实现第一绑定端子111和第二绑定端子211较好的对位。
承载基板1和集成基板2对位时存在对位误差,如图7所示,为本公开绑定组件绑定方法另一种示例性实施例中承载基板和集成基板的对位结构示意图。如图7所示,虽然承载基板1和集成基板2在第一方向仅有较小的误差,但是,第一绑定端子111和第二绑定端子211的交叠面积发生较大的变化。本示例性实施例中,由于第一绑定端子111和第二绑定端子211均倾斜设置,本示例性实施例可以通过在第二方向Y上相对移动承载基板1和集成基板2以实现更好的对位效果,其中第二方向Y与第一方向X垂直。如图8所示,为本公开绑定组件绑定方法另一种示例性实施例中承载基板和集成基板在第二方向上相对移动后的对位结构图。显然,承载基板和集成基板在第二方向上相对移动后,第一绑定端子111和第二绑定端子211具有更大的交叠面积。此外,相比较于第一绑定端子111和第二绑定端子211在第一方向上移动,第一绑定端子111和第二绑定端子211在第二方向上移动较大的距离,第一绑定端子111和第二绑定端子211之间交叠面积才发生较小的变化,因此,通过承载基板1和集成基板2在第二方向上的相对移动可以较好的控制第一绑定端子111和第二绑定端子211之间的对位精度。
本示例性实施例中,所述绑定组件可以为显示装置,所述承载基板可以为柔性显示面板,所述集成基板可以为附晶薄膜,其中,附晶薄膜上还可以绑定有用于驱动该柔性显示面板的驱动芯片。应该理解的是,承载基板、集成基板、绑定组件还可以为其他结构,例如,承载基板、集成基板可以为集成电路板,这些都属于本公开的保护范围。
本示例性实施例还提供一种承载基板,能够与一集成基板绑定,所述承载基板的热膨胀系数大于所述集成基板的热膨胀系数,所述集成基板包括沿同一方向等间距分布的多个第二绑定端子,所述承载基板包括多个第一绑定端子组,多个所述第一绑定 端子组沿第一方向等间距分布,且每个所述第一绑定端子组包括沿所述第一方向等间距分布的多个第一绑定端子,多个所述第一绑定端子用于与多个所述第二绑定端子一一对应绑定;其中,相邻两所述第一绑定端子组之间的距离小于所述第一绑定端子组内相邻两第一绑定端子之间的距离,且所述第一绑定端子组内相邻两第一绑定端子之间的距离等于相邻两第二绑定端子之间的距离。
本示例性实施例中,每个所述第一绑定端子组包括n个所述第一绑定端子,n为大于1的正整数;相邻两所述第一绑定端子组之间的距离为S1,所述第一绑定端子组内相邻两第一绑定端子之间的距离为S2,所述承载基板的热膨胀系数为a,所述第一绑定端子在所述第一方向上的尺寸为W,则S1=S2-a*n*(S2+W)。
本示例性实施例中,n的值为5-35,例如n的值可以为5、10、15、20、25、30。
本示例性实施例中,所述第二绑定端子为长条形,所述第二绑定端子的排布方向和所述第二绑定端子的延伸方向垂直;所述第一绑定端子为长条形,所述第一绑定端子的排布方向和所述第一绑定端子的延伸方向垂直。
本示例性实施例中,所述第一绑定端子为长条形,所述第一绑定端子延伸方向所在直线与所述第一方向所在直线成第一锐角,所述第一锐角的值为69°-85°,例如第一锐角的值可以为69°、75°、85°;所述第二绑定端子为长条形,所述第二绑定端子延伸方向所在直线与其分布方向所在直线成第二锐角,所述第二锐角和所述第一锐角的值相等。
本示例性实施例中,所述承载基板为柔性显示面板,所述集成基板为附晶薄膜。
该承载基板可以为图3、5中所示的承载基板,上述内容已经对该承载基板的结构和工作原理进行了详细说明,此处不再赘述。
本示例性实施例还提供一种承载基板,该承载基板包括多个第一绑定端子组,多个所述第一绑定端子组沿第一方向等间距分布,且每个所述第一绑定端子组包括沿所述第一方向等间距分布的多个第一绑定端子;其中,相邻两所述第一绑定端子组之间的距离小于所述第一绑定端子组内相邻两所述第一绑定端子之间的距离。
本示例性实施例中,每个所述第一绑定端子组包括n个所述第一绑定端子,n为大于1的正整数;相邻两所述第一绑定端子组之间的距离为S1,所述第一绑定端子组内相邻两第一绑定端子之间的距离为S2,所述承载基板的热膨胀系数为a,所述第一绑定端子在所述第一方向上的尺寸为W,则S1=S2-a*n*(S2+W)。
本示例性实施例中,n的值为5-35,例如n的值可以为5、10、15、20、25、30。
本示例性实施例中,所述第一绑定端子为长条形,所述第一绑定端子的排布方向和所述第一绑定端子的延伸方向垂直。
本示例性实施例中,所述第一绑定端子为长条形,所述第一绑定端子延伸方向所在直线与所述第一方向所在直线成第一锐角,所述第一锐角的值为69°-85°,例如第一锐角的值可以为69°、75°、85°。
本示例性实施例中,所述承载基板为柔性显示面板。
该承载基板可以为图3、5中所示的承载基板,上述内容已经对该承载基板的结构和工作原理进行了详细说明,此处不再赘述。
本示例性实施例还提供一种绑定组件,该绑定组件包括:承载基板、集成基板,所述承载基板包括多个第一绑定端子组,多个所述第一绑定端子组沿第一方向等间距分布,且每个所述第一绑定端子组包括沿所述第一方向等间距分布的多个第一绑定端子;其中,相邻两所述第一绑定端子组之间的距离小于所述第一绑定端子组内相邻两所述第一绑定端子之间的距离。所述集成基板的热膨胀系数小于所述承载基板的热膨胀系数,所述集成基板包括多个第二绑定端子,多个所述第二绑定端子与多个所述第一绑定端子一一对应绑定,多个所述第二绑定端子沿所述第一方向等间距分布。
本示例性实施例中,每个所述第一绑定端子组包括n个所述第一绑定端子,n的值为5-35,例如n的值可以为5、10、15、20、25、30。
本示例性实施例中,所述第二绑定端子为长条形,所述第二绑定端子的排布方向和所述第二绑定端子的延伸方向垂直;所述第一绑定端子为长条形,所述第一绑定端子的排布方向和所述第一绑定端子的延伸方向垂直。
本示例性实施例中,所述第一绑定端子为长条形,所述第一绑定端子延伸方向所在直线与所述第一方向所在直线成第一锐角,所述第一锐角的值为69°-85°,例如第一锐角的值可以为69°、75°、85°;所述第二绑定端子为长条形,所述第二绑定端子延伸方向所在直线与所述第一方向方向所在直线成第二锐角,所述第二锐角和所述第一锐角的值相等。
本示例性实施例中,所述绑定组件为显示装置,所述承载基板为柔性显示面板,所述集成基板为附晶薄膜。
本示例性实施例中,该绑定组件可以如图4、6、8中集成基板和承载基板的组合结构,上述内容已经对该绑定组件的结构和工作原理进行了详细说明,此处不再赘述。
本领域技术人员在考虑说明书及实践这里公开的内容后,将容易想到本公开的其他实施例。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限定。

Claims (23)

  1. 一种承载基板,能够与一集成基板绑定,其中,所述承载基板的热膨胀系数大于所述集成基板的热膨胀系数,所述集成基板包括沿同一方向等间距分布的多个第二绑定端子,所述承载基板包括:
    多个第一绑定端子组,多个所述第一绑定端子组沿第一方向等间距分布,且每个所述第一绑定端子组包括沿所述第一方向等间距分布的多个第一绑定端子,多个所述第一绑定端子用于与多个所述第二绑定端子一一对应绑定;
    其中,相邻两所述第一绑定端子组之间的距离小于所述第一绑定端子组内相邻两第一绑定端子之间的距离,且所述第一绑定端子组内相邻两第一绑定端子之间的距离等于相邻两第二绑定端子之间的距离。
  2. 根据权利要求1所述的承载基板,其中,每个所述第一绑定端子组包括n个所述第一绑定端子,n为大于1的正整数;
    相邻两所述第一绑定端子组之间的距离为S1,所述第一绑定端子组内相邻两第一绑定端子之间的距离为S2,所述承载基板的热膨胀系数为a,所述第一绑定端子在所述第一方向上的尺寸为W,则S1=S2-a*n*(S2+W)。
  3. 根据权利要求2所述的承载基板,其中,n的值为5-35。
  4. 根据权利要求1所述的承载基板,其中,
    所述第二绑定端子为长条形,所述第二绑定端子的排布方向和所述第二绑定端子的延伸方向垂直;
    所述第一绑定端子为长条形,所述第一绑定端子的排布方向和所述第一绑定端子的延伸方向垂直。
  5. 根据权利要求1所述的承载基板,其中,
    所述第一绑定端子为长条形,所述第一绑定端子延伸方向所在直线与所述第一方向所在直线成第一锐角,所述第一锐角的值为69°-85°;
    所述第二绑定端子为长条形,所述第二绑定端子延伸方向所在直线与其分布方向所在直线成第二锐角,所述第二锐角和所述第一锐角的值相等。
  6. 根据权利要求1-5任一项所述的承载基板,其中,所述承载基板为柔性显示面板,所述集成基板为附晶薄膜。
  7. 一种承载基板,其中,包括:
    多个第一绑定端子组,多个所述第一绑定端子组沿第一方向等间距分布,且每个 所述第一绑定端子组包括沿所述第一方向等间距分布的多个第一绑定端子;
    其中,相邻两所述第一绑定端子组之间的距离小于所述第一绑定端子组内相邻两所述第一绑定端子之间的距离。
  8. 根据权利要求7所述的承载基板,其中,每个所述第一绑定端子组包括n个所述第一绑定端子,n为大于1的正整数;
    相邻两所述第一绑定端子组之间的距离为S1,所述第一绑定端子组内相邻两第一绑定端子之间的距离为S2,所述承载基板的热膨胀系数为a,所述第一绑定端子在所述第一方向上的尺寸为W,则S1=S2-a*n*(S2+W)。
  9. 根据权利要求8所述的承载基板,其中,n的值为5-35。
  10. 根据权利要求7所述的承载基板,其中,所述第一绑定端子为长条形,所述第一绑定端子的排布方向和所述第一绑定端子的延伸方向垂直。
  11. 根据权利要求7所述的承载基板,其中,
    所述第一绑定端子为长条形,所述第一绑定端子延伸方向所在直线与所述第一方向所在直线成第一锐角,所述第一锐角的值为69°-85°。
  12. 根据权利要求7-11任一项所述的承载基板,其中,所述承载基板为柔性显示面板。
  13. 一种绑定组件,其中,包括:
    承载基板,所述承载基板包括:
    多个第一绑定端子组,多个所述第一绑定端子组沿第一方向等间距分布,且每个所述第一绑定端子组包括沿所述第一方向等间距分布的多个第一绑定端子;
    其中,相邻两所述第一绑定端子组之间的距离小于所述第一绑定端子组内相邻两所述第一绑定端子之间的距离;
    集成基板,所述集成基板的热膨胀系数小于所述承载基板的热膨胀系数,所述集成基板包括:
    多个第二绑定端子,多个所述第二绑定端子与多个所述第一绑定端子一一对应绑定,多个所述第二绑定端子沿所述第一方向等间距分布。
  14. 根据权利要求13所述的绑定组件,其中,每个所述第一绑定端子组包括n个所述第一绑定端子,n的值为5-35。
  15. 根据权利要求13所述的绑定组件,其中,
    所述第二绑定端子为长条形,所述第二绑定端子的排布方向和所述第二绑定端子 的延伸方向垂直;
    所述第一绑定端子为长条形,所述第一绑定端子的排布方向和所述第一绑定端子的延伸方向垂直。
  16. 根据权利要求13所述的绑定组件,其中,
    所述第一绑定端子为长条形,所述第一绑定端子延伸方向所在直线与所述第一方向所在直线成第一锐角,所述第一锐角的值为69°-85°;
    所述第二绑定端子为长条形,所述第二绑定端子延伸方向所在直线与所述第一方向方向所在直线成第二锐角,所述第二锐角和所述第一锐角的值相等。
  17. 根据权利要求13-16任一项所述的绑定组件,其中,所述绑定组件为显示装置,所述承载基板为柔性显示面板,所述集成基板为附晶薄膜。
  18. 一种绑定组件绑定方法,其中,包括:
    提供一承载基板和集成基板,所述集成基板的热膨胀系数小于所述承载基板的热膨胀系数;
    其中,所述承载基板包括多个第一绑定端子组,多个所述第一绑定端子组沿同一方向等间距分布,且每个所述第一绑定端子组包括多个第一绑定端子,所述第一绑定端子的分布方向与所述第一绑定端子组的分布方向相同,相邻两所述第一绑定端子组之间的距离小于所述第一绑定端子组内相邻两所述第一绑定端子之间的距离;
    所述集成基板包括多个第二绑定端子,多个所述第二绑定端子用于与多个所述第一绑定端子一一对应绑定,多个所述第二绑定端子沿同一方向等间距分布,且所述第一绑定端子组内相邻两第一绑定端子之间的距离等于相邻两第二绑定端子之间的距离;
    对所述承载基板和所述集成基板进行对位和加热;
    压合所述承载基板和所述集成基板。
  19. 根据权利要求18所述的绑定组件绑定方法,其中,
    每个所述第一绑定端子组包括n个所述第一绑定端子,n为大于1的正整数;
    相邻两所述第一绑定端子组之间的距离为S1,所述第一绑定端子组内相邻两第一绑定端子之间的距离为S2,所述承载基板的热膨胀系数为a,所述第一绑定端子在其分布方向上的尺寸为W,则S1=S2-a*n*(S2+W)。
  20. 根据权利要求18所述的绑定组件绑定方法,其中,每个所述第一绑定端子组包括n个所述第一绑定端子,n的值为5-35。
  21. 根据权利要求18所述的绑定组件绑定方法,其中,
    所述第二绑定端子为长条形,所述第二绑定端子的排布方向和所述第二绑定端子的延伸方向垂直;
    所述第一绑定端子为长条形,所述第一绑定端子的排布方向和所述第一绑定端子的延伸方向垂直。
  22. 根据权利要求18所述的绑定组件绑定方法,其中,
    所述第一绑定端子为长条形,所述第一绑定端子延伸方向所在直线与其分布方向所在直线成第一锐角,所述第一锐角的值为69°-85°;
    所述第二绑定端子为长条形,所述第二绑定端子延伸方向所在直线与其分布方向所在直线成第二锐角,所述第二锐角和所述第一锐角的值相等。
  23. 根据权利要求18-22任一项所述的绑定组件绑定方法,其中,所述绑定组件为显示装置,所述承载基板为柔性显示面板,所述集成基板为附晶薄膜。
PCT/CN2021/073643 2021-01-25 2021-01-25 承载基板、绑定组件及其绑定方法 WO2022155965A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/073643 WO2022155965A1 (zh) 2021-01-25 2021-01-25 承载基板、绑定组件及其绑定方法
CN202180000058.4A CN115280906A (zh) 2021-01-25 2021-01-25 承载基板、绑定组件及其绑定方法
US17/630,670 US20230158769A1 (en) 2021-01-25 2021-01-25 Bearing substrate, binding assembly and binding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/073643 WO2022155965A1 (zh) 2021-01-25 2021-01-25 承载基板、绑定组件及其绑定方法

Publications (1)

Publication Number Publication Date
WO2022155965A1 true WO2022155965A1 (zh) 2022-07-28

Family

ID=82548405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073643 WO2022155965A1 (zh) 2021-01-25 2021-01-25 承载基板、绑定组件及其绑定方法

Country Status (3)

Country Link
US (1) US20230158769A1 (zh)
CN (1) CN115280906A (zh)
WO (1) WO2022155965A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847590A (zh) * 2010-05-18 2010-09-29 深圳丹邦科技股份有限公司 多叠层多芯片封装在柔性电路基板上的方法及封装芯片组
CN206039090U (zh) * 2016-09-14 2017-03-22 Tcl显示科技(惠州)有限公司 Lcd组件及显示装置
US9893032B2 (en) * 2015-01-30 2018-02-13 Hydis Technologies Co., Ltd. Fog bonding device and method thereof
CN107809843A (zh) * 2017-11-30 2018-03-16 武汉天马微电子有限公司 一种绑定部件、显示基板及显示面板
CN108718481A (zh) * 2018-04-19 2018-10-30 武汉华星光电半导体显示技术有限公司 一种引脚结构及显示面板的绑定结构
CN108957878A (zh) * 2018-07-19 2018-12-07 武汉天马微电子有限公司 显示模组及其制备方法和显示装置
CN109445649A (zh) * 2018-10-08 2019-03-08 武汉华星光电半导体显示技术有限公司 一种触控显示面板及绑定方法
CN110708868A (zh) * 2019-11-06 2020-01-17 江苏上达电子有限公司 一种新型的fog邦定焊盘设计
CN111009501A (zh) * 2019-08-27 2020-04-14 武汉华星光电半导体显示技术有限公司 芯片绑定结构
CN111048574A (zh) * 2019-12-30 2020-04-21 厦门天马微电子有限公司 一种显示面板及显示装置
CN112014988A (zh) * 2020-09-15 2020-12-01 武汉华星光电技术有限公司 显示面板及其绑定方法、显示装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847590A (zh) * 2010-05-18 2010-09-29 深圳丹邦科技股份有限公司 多叠层多芯片封装在柔性电路基板上的方法及封装芯片组
US9893032B2 (en) * 2015-01-30 2018-02-13 Hydis Technologies Co., Ltd. Fog bonding device and method thereof
CN206039090U (zh) * 2016-09-14 2017-03-22 Tcl显示科技(惠州)有限公司 Lcd组件及显示装置
CN107809843A (zh) * 2017-11-30 2018-03-16 武汉天马微电子有限公司 一种绑定部件、显示基板及显示面板
CN108718481A (zh) * 2018-04-19 2018-10-30 武汉华星光电半导体显示技术有限公司 一种引脚结构及显示面板的绑定结构
CN108957878A (zh) * 2018-07-19 2018-12-07 武汉天马微电子有限公司 显示模组及其制备方法和显示装置
CN109445649A (zh) * 2018-10-08 2019-03-08 武汉华星光电半导体显示技术有限公司 一种触控显示面板及绑定方法
CN111009501A (zh) * 2019-08-27 2020-04-14 武汉华星光电半导体显示技术有限公司 芯片绑定结构
CN110708868A (zh) * 2019-11-06 2020-01-17 江苏上达电子有限公司 一种新型的fog邦定焊盘设计
CN111048574A (zh) * 2019-12-30 2020-04-21 厦门天马微电子有限公司 一种显示面板及显示装置
CN112014988A (zh) * 2020-09-15 2020-12-01 武汉华星光电技术有限公司 显示面板及其绑定方法、显示装置

Also Published As

Publication number Publication date
US20230158769A1 (en) 2023-05-25
CN115280906A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
TWI238686B (en) Flexible substrate, LCD module using same, and manufacturing method of same
TWI329230B (en) Electrical connection pattern in an electronic panel
CN108417151B (zh) 显示装置及其覆晶薄膜结构
WO2020211200A1 (zh) 显示面板以及显示装置
WO2020215367A1 (zh) 一种柔性显示器
CN110444110A (zh) 电子元件及显示装置
CN107479228B (zh) 显示模组及显示模组的制备方法
WO2020168762A1 (zh) 显示面板
CN112669750B (zh) 一种阵列基板、驱动芯片以及显示装置
CN110930866B (zh) 覆晶薄膜及显示装置
CN110299073A (zh) 一种显示面板、柔性连接件和显示装置
CN107809843A (zh) 一种绑定部件、显示基板及显示面板
CN107749240A (zh) 一种显示面板以及显示器
WO2022155965A1 (zh) 承载基板、绑定组件及其绑定方法
US11537179B2 (en) Display panel, fabricating method thereof and display device
WO2022047771A1 (zh) 柔性面板支撑结构、显示装置及柔性模组组装方法
CN209118667U (zh) 显示面板及显示装置
WO2020113384A1 (zh) 显示装置
WO2021093053A1 (zh) 覆晶薄膜及显示装置
JP4075323B2 (ja) 回路基板の接合方法
JPH04180030A (ja) 液晶パネル
WO2019169879A1 (zh) 驱动芯片及显示装置
JPS6235549A (ja) 整流装置
JPH10268333A (ja) 液晶表示装置
CN101685205B (zh) 芯片、芯片-玻璃接合的封装结构及液晶面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/11/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21920357

Country of ref document: EP

Kind code of ref document: A1