WO2022153793A1 - フォトマスク修正装置およびフォトマスクの修正方法 - Google Patents

フォトマスク修正装置およびフォトマスクの修正方法 Download PDF

Info

Publication number
WO2022153793A1
WO2022153793A1 PCT/JP2021/046943 JP2021046943W WO2022153793A1 WO 2022153793 A1 WO2022153793 A1 WO 2022153793A1 JP 2021046943 W JP2021046943 W JP 2021046943W WO 2022153793 A1 WO2022153793 A1 WO 2022153793A1
Authority
WO
WIPO (PCT)
Prior art keywords
photomask
light
measurement
ion beam
correction
Prior art date
Application number
PCT/JP2021/046943
Other languages
English (en)
French (fr)
Inventor
通伸 水村
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2022153793A1 publication Critical patent/WO2022153793A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/72Repair or correction of mask defects
    • G03F1/74Repair or correction of mask defects by charged particle beam [CPB], e.g. focused ion beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation

Definitions

  • the present invention relates to a photomask correction device and a photomask correction method.
  • a mask defect correction device that corrects defects in a halftone (gray level) mask using a charged particle beam has been known (see, for example, Patent Document 1).
  • the halftone mask is a photomask on which a pattern film having an intermediate amount of exposure light transmittance is formed.
  • This mask defect correction device applies a charged particle beam to a so-called white defect region where the pattern film is not attached to the region where the pattern should be formed or the film thickness is insufficient to form a deposition film. Form and modify.
  • a stage is provided in the housing, and a photomask is placed on the stage and moved.
  • This mask defect correction device includes a film forming work area in which a means for irradiating a defective area of the photomask with a charged particle beam to form a deposition film and a retracting area in which the photomask is retracted are provided. .. In the retracted area, a film thickness measuring unit for measuring the film thickness of the deposition film is installed.
  • the following multiple steps are repeated. First, a photomask is placed in the film formation work area. Then, the defective region of the photomask is irradiated with a charged particle beam to form a standard deposition film. Next, the photomask is moved to the evacuation region and the film thickness of the deposition film at the location is measured. Next, the photomask is returned to the original position (deposition work area) again, the measured value of the film thickness of the deposition film at the relevant portion is corrected, and the processing with the charged particle beam is performed again.
  • the above-mentioned mask defect correction device has a problem that many steps and time are required to correct the mask defect.
  • the film thickness of the deposition film at the relevant portion can be approximated to an appropriate value, but it is difficult to match the film thickness with an appropriate value. That is, the above-mentioned mask defect correction device has a problem that the film processing cannot be smoothly performed so that the deposition film, which is the pattern film of the photomask, has an appropriate light transmittance.
  • the present invention has been made in view of the above problems, and provides a photomask correction device and a photomask correction method capable of smoothly performing film processing for achieving an appropriate light transmittance. With the goal.
  • the aspect of the present invention is focusing on forming a mask pattern film or reducing the film thickness based on irradiation of a focused ion beam on a mask substrate in a photomask.
  • a photomask correction device including an ion beam device, in which a transparent stage on which the photomask is placed and the mask substrate are superposed on the transparent stage, and the focused ion beam device is used to form or film the mask pattern film.
  • the measurement illumination unit that irradiates the correction area for reducing the thickness with illumination light from one side of the front and back surfaces of the transparent stage, and the illumination unit that is arranged on the other side of the front and back surfaces of the transparent stage.
  • the measurement light receiving unit that receives the transmitted light transmitted through the correction region and measures the amount of received light, and the light receiving portion measured by the measurement light receiving unit, the said in the correction region by the focused ion beam device. It is characterized by including a control unit for controlling the film formation or reduction of the mask pattern film.
  • the measurement light receiving unit continuously receives the transmitted light transmitted through the correction region to measure the light receiving amount, and the control unit measures the measurement light receiving unit. It is preferable to control the focused ion beam device in synchronization.
  • the focused ion beam device and the measurement illumination unit are arranged on the front surface side of the front and back surfaces of the transparent stage, and the measurement light receiving unit is the back surface of the front and back surfaces of the transparent stage. It is preferably placed on the side.
  • the light receiving unit for measurement is an optical microscope.
  • the measurement illumination unit includes an optical fiber and emits illumination light from the tip of the optical fiber.
  • the focused ion beam device and the measurement light receiving unit are arranged on the front surface side of the front and back surfaces of the transparent stage, and the measurement illumination unit is the back surface of the front and back surfaces of the transparent stage. It is preferably placed on the side.
  • the light receiving unit for measurement is composed of a scintillator into which transmitted light is incident and a photomultiplier tube connected to the scintillator.
  • the measurement illumination unit is an optical microscope provided with an illumination light source.
  • the optical microscope includes a digital micromirror device including a plurality of micromirrors and an imaging element, and the digital micromirror device is a part of the plurality of micromirrors and the illumination.
  • the other part of the plurality of micromirrors receives the reflected light of the illumination light from the photomask and causes the illumination light to enter the image pickup element. It is preferable that it is set to.
  • Another aspect of the present invention is a photomask correction method for forming a film or reducing the film thickness of a mask pattern film based on irradiation of a focused ion beam on a mask substrate in a photomask, using the focused ion beam device.
  • the correction region for forming the film or reducing the film thickness of the mask pattern film is irradiated with illumination light from one side of the front and back surfaces of the photomask at the same time as the focused ion beam is irradiated, and the front surface of the photomask is irradiated.
  • the amount of light received is measured by receiving the transmitted light that has passed through the correction area and is incident from the other side of the back surface, and the light transmission rate of the correction area obtained based on the measured amount of light is an appropriate value. At that time, the film formation or reduction of the film thickness of the mask pattern film is stopped.
  • FIG. 1 is a schematic configuration diagram of a photomask correction device according to the first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing a main part of the photomask correction device according to the first embodiment of the present invention.
  • FIG. 3-1 is a cross-sectional view showing a correction region (black defect) of a photomask to which a photomask correction method using the photomask correction device according to the first embodiment of the present invention is applied.
  • FIG. 3-2 shows the film thickness of the mask pattern film using the focused ion beam in the photomask correction region to which the photomask correction method using the photomask correction device according to the first embodiment of the present invention is applied. It is sectional drawing which shows the process which performs the reduction.
  • FIG. 3-1 is a cross-sectional view showing a correction region (black defect) of a photomask to which a photomask correction method using the photomask correction device according to the first embodiment of the present invention is applied.
  • FIG. 3-2 shows the film
  • FIG. 3-3 shows the film thickness of the mask pattern film using the focused ion beam in the photomask correction region to which the photomask correction method using the photomask correction device according to the first embodiment of the present invention is applied. It is a cross-sectional view which shows the state which the reduction of is completed.
  • FIG. 4 is a diagram showing the relationship between the light transmittance and the processing time in the correction method using the photomask correction device according to the first embodiment of the present invention.
  • FIG. 5-1 is a cross-sectional view showing a correction region (white defect) of a photomask to which a photomask correction method using the photomask correction device according to the first embodiment of the present invention is applied.
  • FIG. 5-3 shows a film formation of a mask pattern film using a focused ion beam in a photomask correction region to which the photomask correction method using the photomask correction device according to the first embodiment of the present invention is applied. It is a cross-sectional view which shows the state which finished.
  • FIG. 6 is an explanatory diagram showing a main part of the photomask correction device according to the second embodiment of the present invention.
  • FIG. 7 is a schematic configuration diagram of a photomask correction device according to a third embodiment of the present invention.
  • FIG. 8 is an explanatory view showing a main part of the photomask correction device according to the third embodiment of the present invention, and shows a step of detecting a black defect region.
  • FIG. 9 is an explanatory view showing a main part of the photomask correction device according to the third embodiment of the present invention, and shows a step of correcting the light transmittance of a black defect.
  • the photomask correction device is used by applying it to a gray level mask as a photomask.
  • FIG. 1 shows a schematic configuration of a photomask correction device 1 according to a first embodiment of the present invention.
  • the photomask correction device 1 includes a focused ion beam device 2, a transparent stage 3 on which the photomask 50 is placed, a first illumination unit 4 and a second illumination unit 5 as measurement illumination units, and a first light receiving unit for measurement.
  • a light receiving unit 6, a second light receiving unit 7, and a control unit 30 are provided.
  • the control unit 30 is connected to a focused ion beam device 2, an illumination light source 19, which will be described later, a first light receiving unit 6, and a second light receiving unit 7.
  • the photomask 50 is composed of a transparent mask substrate 51 and a mask pattern film 52 formed on the surface thereof.
  • the focused ion beam device 2 includes a hollow cylindrical focused ion beam column (hereinafter referred to as a FIB column) 8 and a local exhaust chamber 9 having a differential exhaust mechanism.
  • the FIB column 8 is connected to the vacuum pump 11 via a pipe 10.
  • a vacuum pump control power supply 12 is connected to the vacuum pump 11.
  • the FIB column 8 is connected so as to communicate with the upper part of the local exhaust chamber 9.
  • the FIB column 8 includes a focused ion beam optical system (not shown) and the like.
  • the ion beam Ib is emitted from the tip of the FIB column 8 toward the surface of the photomask 50. Further, the ion beam Ib is scanned by controlling the focused ion beam optical system.
  • the local exhaust chamber 9 has a function of maintaining a high degree of vacuum in the space between the local exhaust chamber 9 and the upper surface of the photomask 50 arranged on the transparent stage 3. Further, the local exhaust chamber 9 is set so as to be able to supply the depot gas required for film formation in which the mask pattern film 52 is deposited on the portion irradiated with the ion beam Ib.
  • the photomask correction device 1 includes an XY stage 13 having a mechanism (not shown) for mounting the transparent stage 3 and moving the transparent stage 3 in the XY directions. There is.
  • a stage control power supply 14 is connected to the XY stage 13.
  • the transparent stage 3 is moved in the XY directions by the XY stage 13 so that it can face an arbitrary region on the upper surface of the photomask 50. That is, in the present embodiment, the focused ion beam device 2 is fixed in position, and the photomask 50 is set to move with respect to the focused ion beam device 2.
  • a plurality of columns 15 and 16 are provided on the XY stage 13, and a support frame 17 is erected on these columns 15 and 16.
  • a focused ion beam device 2 is fixed to the central portion of the support frame 17.
  • the first illumination unit (measurement illumination unit) 4 is provided so as to penetrate from the side portion of the local exhaust chamber 9 to the inside.
  • the first illumination unit 4 is made of an optical fiber.
  • the first illumination unit 4 is connected to the illumination light source 19 via an optical fiber cable 18.
  • the illumination light source 19 is connected to the control unit 30.
  • the illumination light A1 is emitted from the tip of the first illumination unit 4.
  • the illumination light A emitted from the first illumination unit 4 is set to be incident on the surface of the photomask 50.
  • the irradiation spot of the illumination light A1 in the photomask 50 is set so as to overlap the beam spot of the ion beam Ib emitted from the FIB column 8 and incident on the photomask 50.
  • the first light receiving unit (measuring light receiving unit) 6 is composed of an optical microscope. As shown in FIG. 1, the first light receiving portion 6 is arranged in the vertically penetrating opening 13A formed in the center of the XY stage 13. The first light receiving unit 6 is provided with an objective lens 6A at the top. Therefore, the first light receiving unit 6 can receive the transmitted light B1 (see FIG. 2) passing through the photomask 50 and the transparent stage 3 with the objective lens 6A.
  • the first light receiving unit 6 is provided with a second lighting unit (measurement lighting unit) 5.
  • An illumination light source 20 is connected to the second illumination unit 5.
  • the first light receiving unit 6 can also emit light to the illumination light A2 (see FIG. 6) toward the transparent stage 3 side via the second illumination unit 5 and the objective lens 6A.
  • the first light receiving unit 6 is set to control the second illumination unit 5 and the illumination light source 20 based on the control signal from the control unit 30.
  • the second light receiving unit (measuring light receiving unit) 7 is composed of a scintillator 7A and a photomultiplier tube (photomultiplier tube) 7B whose tip is connected to the scintillator 7A.
  • the second light receiving unit 7 has a function of capturing light that has passed through a defective region of the photomask 50, which will be described later, and a secondary charged particle (secondary electron, secondary ion, etc.) generated from a position irradiated with an ion beam Ib. ), And based on the intensity information, it has a function of acquiring image data while scanning the ion beam Ib. How to use these functions will be described later.
  • the film formation or the film thickness of the mask pattern film 52 is reduced based on the irradiation of the mask substrate 51 of the photomask 50 with the ion beam Ib.
  • the focused ion beam device 2 irradiates the surface of the photomask 50 with an ion beam Ib, and the second light receiving unit 7 detects electrons as secondary charged particles generated by this irradiation to obtain image data. .. Using this image data, the positions of the black defect region Db as shown in FIG. 3-1 and the white defect region Dw as shown in FIG. 5-1 can be recognized and positioned.
  • the film formation as shown in FIG. 5-2 is performed while supplying the depot gas into the local exhaust chamber 9 together with the ion beam Ib.
  • the film thickness of the mask pattern film 52 as shown in FIG. 3-2 is reduced while spraying the ion beam Ib or the etching gas.
  • the correction area is irradiated with the illumination light A1 from the first illumination unit 4, and the mask pattern film 52, the mask substrate 51, and the transparent stage 3 are formed.
  • the light receiving amount of the transmitted light B1 that has passed is continuously measured by the first light receiving unit 6.
  • the film formation or film thickness is continuously reduced until the light transmittance obtained based on the amount of light received measured by the first light receiving unit 6 reaches an appropriate value (target value: for example, 70%), and the light transmittance becomes high.
  • target value for example, 70%
  • the control unit 30 controls the focused ion beam device 2 in synchronization with the measurement of the second light receiving unit (measurement light receiving unit) 7.
  • the correction region black defect region Db and white defect region Dw
  • the correction region has an appropriate (designed) film thickness of the photomask 50, and the correction is completed. do.
  • FIG. 4 is a reference diagram showing a processing time for obtaining a target value of light transmittance (for example, 70%) by reducing the light transmittance Th in the black defect region Db and the film thickness by the focused ion beam device 2. ..
  • a target value of light transmittance for example, 70%
  • the photomask correction device 1 it is not necessary to control the processing time, and the light transmittance can be obtained at the same time during the correction work of the mask pattern film 52, so that an appropriate light transmittance can be obtained.
  • the film processing for realizing this can be smoothly performed.
  • the photomask modification device 1 may be omitted. Further, in the present embodiment, the second light receiving unit 7 does not have to have a function of capturing the light that has passed through the defective region of the photomask 50.
  • the photomask correction method according to the second embodiment of the present invention is performed by using the photomask correction device 1 according to the first embodiment described above.
  • the illumination light A2 is irradiated toward the correction region through the objective lens 6A of the first light receiving unit 6.
  • the illumination light A2 measures the amount of received light of the transmitted light B2 that has passed through the transparent stage 3 and the photomask 50 by the second light receiving unit 7.
  • the first illumination unit 4 shown in FIG. 6 can be omitted.
  • the photomask modification method according to the present embodiment it is not necessary to control the processing time as in the first embodiment, and the light transmittance is simultaneously obtained during the modification work of the mask pattern film 52. Therefore, film processing for achieving an appropriate light transmittance can be smoothly performed. Further, in the present embodiment, it is possible to reduce the number of parts.
  • FIG. 7 to 9 show the main parts of the photomask correction device according to the third embodiment of the present invention.
  • an optical system including a digital micromirror device (hereinafter referred to as DMD) 21 is added to the first light receiving unit 6, and the above is described.
  • the first illumination unit 4 according to the first embodiment is omitted, and the other configurations are the same as those of the photomask correction device 1 according to the first embodiment.
  • the optical system including the DMD 21 in the optical microscope uses the illumination light A3 supplied from the illumination light source 20 as the upper end objective lens 6A as described later. It is set to irradiate the illumination light A3 from the objective lens 6A toward the transparent stage 3 and the photo mask 50. The amount of transmitted light B3 transmitted through the transparent stage 3 and the photomask 50 is measured by the second light receiving unit 7.
  • the optical system including the DMD 21 includes a group of mirrors 23a and 23b that guide the illumination light A3 to the DMD21, and a group of mirrors 24a and 24b that guide the reflected light R and Ra to the image sensor 22, which will be described later.
  • the illumination light A3 reflected by the mirror 23a and incident on the drive surface of the DMD 21 is reflected by the micromirrors 27, 29, 31 tilted at an angle of +12 degrees with respect to the drive surface of the DMD 21.
  • the illumination light A3 reflected by the micromirrors 27, 29, and 31 is emitted from the objective lens 6A toward the transparent stage 3 and the photomask 50.
  • FIG. 8 shows a case where a black defect region Db in which a black defect 52B is generated exists on the mask substrate 51 of the photomask 50.
  • the illumination light A3 reflected by the micromirrors 29 and 31 is the reflected light R that is almost reflected at the interface between the black defect 52B and the mask substrate 51.
  • a part of the illumination light A3 passes through the black defect 52B and becomes the transmitted light B3.
  • the illumination light A3 reflected by the micromirror 27 is incident on the mask substrate 51 in the region where the black defect 52B does not exist, and most of the illumination light passes through the mask substrate 51 and passes through the mask substrate 51 on the upper surface of the mask substrate 51. It becomes the reflected light Ra reflected at the interface between the air and the air.
  • the reflected lights R and Ra reflected on the upper surface of the mask substrate 51 of the photomask 50 among the illumination lights A3 are incident on the driving surface of the DMD 21.
  • the reflected light R, Ra incident on the drive surface of the DMD 21 is reflected by the micromirrors 26, 28, 30 tilted at an angle of -12 degrees with respect to the drive surface of the DMD 21, and is guided by the group of mirrors 24a, 24b. It is set to be incident on the image sensor 22.
  • the image sensor 22 can acquire the image data in the photomask 50, and the image information, the position information, and the like of the photomask 50 can be specified.
  • the region where the image sensor 22 has an output from the pixel that should not receive the reflected light R of a predetermined amount or more is the black defect region Db.
  • micromirrors 28, 29, 30, 31 and the like selectively corresponding to the black defect region Db are placed on the drive surface of the DMD 21.
  • the illumination light A3 is incident at an angle of -12 degrees.
  • the control unit 30 obtains the transmitted light amount (light receiving amount) of the transmitted light B3 transmitted through the black defect 52B based on the received light amount measured by the second light receiving unit 7 while being measured by the second light receiving unit 7.
  • Etching is performed by the focused ion beam device 2 until the light transmittance is brought to an appropriate value, and when the light transmittance reaches an appropriate value, the etching by the focused ion beam device 2 is stopped.
  • other micromirrors such as my micromirrors 26 and 27, which do not correspond to the black defect region Db, are tilted at an angle of +12 degrees.
  • the photomask correction device and the photomask correction method according to the present embodiment it is not necessary to control the processing time, and the light transmittance can be obtained at the same time during the correction work of the mask pattern film 52, which is appropriate. It is possible to smoothly perform film processing for achieving a high light transmittance.
  • a white defect is detected by focusing on the reflected lights R and Ra, and a mask pattern is selectively applied to the white defect region in a state where the illumination light A3 is selectively incident on the white defect region.
  • the film 52 may be formed. Also in this case, the mask pattern film 52 having an appropriate light transmittance can be smoothly formed.
  • the focused ion beam device 2 is fixed in position and the transparent stage 3 and the photomask 50 are moved.
  • the transparent stage 3 and the photomask 50 are fixed in position and focused.
  • the ion beam device 2, the second light receiving unit 6, and the second light receiving unit 7 may be moved in synchronization with each other.
  • the illumination lights A1, A2, and A3 emitted from the first illumination unit 4 and the first light receiving unit (objective lens 6A) 6 have the same wavelength as the exposure light used in the exposure process performed by using the photo mask 50. Although it is preferable, it is possible to obtain an appropriate light transmission rate by using illumination lights A1, A2, and A3 that are different from the wavelength of the exposure light.
  • the focused ion beam device 2 is provided with the local exhaust chamber 9, but the entire photomask 50 may be arranged in the vacuum chamber.
  • Photomask correction device 2 Focused ion beam device 3 Transparent stage 4 First illumination unit (lighting for measurement) Department) 5 Second lighting unit (measurement lighting unit) 6 First light receiving part (light receiving part for measurement) 6A Objective lens 7 Second light receiving part (light receiving part for measurement) 7A Scintillator 7B Photomultiplier tube 8 Focused ion beam column (FIB column) 9 Local exhaust chamber 10 Piping 11 Vacuum pump 12 Vacuum pump control power supply 13 XY stage 13A Opening 14 Stage control power supply 15, 16 Pillars 17 Support frame 18 Optical fiber cable 19 Illumination light source 20 Illumination light source 21 Digital micromirror device 22 Imaging Elements 23a, 23b Mirror 24a, 24b Mirror 25 Drive board 26-31 Micro mirror 30 Control unit 50 Photomask 51 Mask board 52 Mask pattern film 52B Black defect

Abstract

フォトマスクのパターン膜であるデポジション膜が適正な光透過率となるように膜加工を円滑に行うことができる、フォトマスク修正装置を提供することを目的とする。 フォトマスク修正装置は、透明ステージ(3)上に前記フォトマスク(50)を重ねて載せた状態で、パターン膜の成膜または膜厚の削減を行う修正領域への集束イオンビーム装置(2)による集束イオンビームの照射と同時に、前記透明ステージ(3)の表裏面のうちの一方側から照明光の照射を行う測定用照明部(4、5)と、前記透明ステージ(3)の表裏面のうちの他方側に配置され、前記照明光が前記修正領域を透過した透過光を受光して受光量を測定する測定用受光部(6、7)と、前記測定用受光部(6、7)で測定した受光量に基づいて、前記集束イオンビーム装置(2)による前記修正領域における前記マスクパターン膜の成膜又は削減を制御する制御部と(30)、を備える。

Description

フォトマスク修正装置およびフォトマスクの修正方法
 本発明は、フォトマスク修正装置およびフォトマスクの修正方法に関する。
 近年、ハーフトーン(グレーレベル)マスクの欠陥を、荷電粒子ビームを用いて修正するマスク欠陥修正装置が知られている(例えば、特許文献1参照)。ハーフトーンマスクは、露光光の光透過率が中間量であるパターン膜が形成されたフォトマスクである。このマスク欠陥修正装置は、パターンを形成すべき領域にパターン膜が付いていないか、もしくは膜厚が不足している、所謂白欠陥の領域に、荷電粒子ビームを照射することによりデポジション膜を形成して修正を行う。このマスク欠陥修正装置は、筐体内にステージが設けられ、このステージ上にフォトマスクを載せて移動させるように設けられている。このマスク欠陥修正装置は、フォトマスクの欠陥領域に荷電粒子ビームを照射してデポジション膜を形成する手段が配置された成膜作業領域と、フォトマスクが退避する退避領域と、を備えている。退避領域には、デポジション膜の膜厚測定を行う膜厚測定部が設置されている。
 上記のマスク欠陥修正装置では、以下のような複数の工程の繰り返しを行っている。まず、成膜作業領域にフォトマスクを配置する。その後、フォトマスクの欠陥領域に荷電粒子ビームを照射して標準デポジション膜を形成する。次に、フォトマスクを退避領域へ移動させて当該箇所のデポジション膜の膜厚を測定する。次に、再度フォトマスクを元の位置(成膜作業領域)に戻して当該箇所のデポジション膜の膜厚の測定値に補正を加えて再度荷電粒子ビームによる加工を行う。
特開2020-161250号公報
 このため、上記のマスク欠陥修正装置では、マスク欠陥の修正に多くの工程と時間を要するという課題がある。特に、上記のマスク欠陥修正装置では、当該箇所のデポジション膜の膜厚を適正な値に近似させることはできるが、膜厚を適正な値に一致させることが困難である。すなわち、上記のマスク欠陥修正装置では、フォトマスクのパターン膜であるデポジション膜が適正な光透過率となるように膜加工を円滑に行うことができないという課題がある。
 本発明は、上記の課題に鑑みてなされたものであって、適正な光透過率を実現するための膜加工を円滑に行うことができるフォトマスク修正装置およびフォトマスクの修正方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の態様は、フォトマスクにおけるマスク基板への集束イオンビームの照射に基づいて、マスクパターン膜の成膜または膜厚の削減を行う集束イオンビーム装置を備えるフォトマスク修正装置であって、前記フォトマスクを載せる透明ステージと、前記透明ステージに前記マスク基板を重ねた状態で、前記集束イオンビーム装置により前記マスクパターン膜の成膜または膜厚の削減を行う修正領域へ、前記透明ステージの表裏面のうちの一方側から照明光の照射を行う測定用照明部と、前記透明ステージの表裏面のうちの他方側に配置され、前記照明光が前記修正領域を透過した透過光を受光して受光量を測定する測定用受光部と、前記測定用受光部で測定した受光量に基づいて、前記集束イオンビーム装置による前記修正領域における前記マスクパターン膜の成膜または削減を制御する制御部と、を備えることを特徴とする。
 上記態様としては、前記測定用受光部は、前記照明光が前記修正領域を透過した透過光を継続的に受光して受光量を測定し、前記制御部は、前記測定用受光部の測定に同期して前記集束イオンビーム装置の制御を行うことが好ましい。
 上記態様としては、前記集束イオンビーム装置および前記測定用照明部は、前記透明ステージの表裏面のうちの表面側に配置され、前記測定用受光部は、前記透明ステージの表裏面のうちの裏面側に配置されることが好ましい。
 上記態様としては、前記測定用受光部は、光学顕微鏡であることが好ましい。
 上記態様としては、前記測定用照明部は、光ファイバを備え、前記光ファイバの先端から照明光を出射させることが好ましい。
 上記態様としては、前記集束イオンビーム装置および前記測定用受光部は、前記透明ステージの表裏面のうちの表面側に配置され、前記測定用照明部は、前記透明ステージの表裏面のうちの裏面側に配置されることが好ましい。
 上記態様としては、前記測定用受光部は、透過光が入射するシンチレータと前記シンチレータに接続された光電子増倍管で構成されることが好ましい。
 上記態様としては、前記測定用照明部は、照明光源を備える光学顕微鏡であることが好ましい。
 上記態様としては、前記光学顕微鏡は、複数のマイクロミラーを備えるデジタルマイクロミラーデバイスと、撮像素子と、を備え、前記デジタルマイクロミラーデバイスは、前記複数のマイクロミラーのうちの一部で、前記照明光源から入射した照明光を、前記修正領域へ出射させると同時に、前記複数のマイクロミラーの他の一部で、当該照明光の前記フォトマスクからの反射光を受けて前記撮像素子へ入射させるように設定されていることが好ましい。
 本発明の他の態様は、フォトマスクにおけるマスク基板へ集束イオンビームの照射に基づいて、マスクパターン膜の成膜または膜厚の削減を行うフォトマスク修正方法であって、前記集束イオンビーム装置により前記マスクパターン膜の成膜または膜厚の削減を行う修正領域へ、前記集束イオンビームの照射と同時に前記フォトマスクの表裏面のうちの一方側から照明光の照射を行い、前記フォトマスクの表裏面のうちの他方側から前記修正領域を通過して入射する透過光を受光して受光量を測定し、測定した受光量に基づいて得られる前記修正領域の光透過率が適正な値になったときに、前記マスクパターン膜の成膜または膜厚の削減を停止させることを特徴とする。
 本発明によれば、適正な光透過率を実現するための膜加工を円滑に行うことができるフォトマスク修正装置およびフォトマスクの修正方法を実現できる。
図1は、本発明の第1の実施の形態に係るフォトマスク修正装置の概略構成図である。 図2は、本発明の第1の実施の形態に係るフォトマスク修正装置の要部を示す説明図である。 図3-1は、本発明の第1の実施の形態に係るフォトマスク修正装置を用いたフォトマスク修正方法を適用するフォトマスクの修正領域(黒欠陥)を示す断面図である。 図3-2は、本発明の第1の実施の形態に係るフォトマスク修正装置を用いたフォトマスク修正方法を適用するフォトマスクの修正領域において、集束イオンビームを用いてマスクパターン膜の膜厚の削減を行う工程を示す断面図である。 図3-3は、本発明の第1の実施の形態に係るフォトマスク修正装置を用いたフォトマスク修正方法を適用するフォトマスクの修正領域において、集束イオンビームを用いてマスクパターン膜の膜厚の削減が終了した状態を示す断面図である。 図4は、本発明の第1の実施の形態に係るフォトマスク修正装置を用いた修正方法における光透過率と加工時間との関係を示す図である。 図5-1は、本発明の第1の実施の形態に係るフォトマスク修正装置を用いたフォトマスク修正方法を適用するフォトマスクの修正領域(白欠陥)を示す断面図である。 図5-2は、本発明の第1の実施の形態に係るフォトマスク修正装置を用いたフォトマスク修正方法を適用するフォトマスクの修正領域において、集束イオンビームを用いてマスクパターン膜の成膜を行う工程を示す断面図である。 図5-3は、本発明の第1の実施の形態に係るフォトマスク修正装置を用いたフォトマスク修正方法を適用するフォトマスクの修正領域において、集束イオンビームを用いてマスクパターン膜の成膜が終了した状態を示す断面図である。 図6は、本発明の第2の実施の形態に係るフォトマスク修正装置の要部を示す説明図である 図7は、本発明の第3の実施の形態に係るフォトマスク修正装置の概略構成図である。 図8は、本発明の第3の実施の形態に係るフォトマスク修正装置の要部を示す説明図であり、黒欠陥領域を検出する工程を示す。 図9は、本発明の第3の実施の形態に係るフォトマスク修正装置の要部を示す説明図であり、黒欠陥の光透過率を修正する工程を示す。
 以下、本発明の実施の形態に係るフォトマスク修正装置およびフォトマスクの修正方法の詳細を図面に基づいて説明する。なお、図面は模式的なものであり、各部材の寸法や寸法の比率や数、形状などは現実のものと異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率や形状が異なる部分が含まれている。
[第1の実施の形態](フォトマスク修正装置の概略構成)
 本実施の形態に係るフォトマスク修正装置は、フォトマスクとしてのグレーレベルマスクに適用して用いる。
 図1は、本発明の第1の実施の形態に係るフォトマスク修正装置1の概略構成を示している。フォトマスク修正装置1は、集束イオンビーム装置2と、フォトマスク50を載せる透明ステージ3と、測定用照明部としての第1照明部4および第2照明部5と、測定用受光部としての第1受光部6および第2受光部7と、制御部30と、を備える。制御部30は、集束イオンビーム装置2と、後述する照明光源19と、第1受光部6と、第2受光部7と、に接続されている。
 図2に示すように、フォトマスク50は、透明なマスク基板51と、その表面に形成されたマスクパターン膜52と、で構成されている。
 本実施の形態では、集束イオンビーム装置2は、中空の円筒形状の集束イオンビームカラム(以下、FIBカラムという)8と、差動排気機構を有する局所排気チャンバ9と、を備える。FIBカラム8は、配管10を介して真空ポンプ11に接続されている。真空ポンプ11には、真空ポンプ制御電源12が接続されている。
 図1および図2に示すように、FIBカラム8は、局所排気チャンバ9の上部に連通するように連結されている。FIBカラム8は、図示しない集束イオンビーム光学系などを備える。FIBカラム8の先端部からは、イオンビームIbをフォトマスク50の表面に向けて出射するようになっている。また、イオンビームIbは、集束イオンビーム光学系を制御することにより、スキャンされるようになっている。
 局所排気チャンバ9は、透明ステージ3上に配置されたフォトマスク50の上面との間の空間を高真空度に維持する機能を有する。また、局所排気チャンバ9は、イオンビームIbを照射する箇所にマスクパターン膜52を堆積させる成膜に必要なデポガスを供給可能に設定されている。
 図1に示すように、本実施の形態に係るフォトマスク修正装置1は、透明ステージ3を載せて透明ステージ3をX-Y方向に移動させる図示しない機構を有するX-Yステージ13を備えている。このX-Yステージ13には、ステージ制御電源14が接続されている。
 上記集束イオンビーム装置2は、透明ステージ3がX-Yステージ13によって、X-Y方向に移動されることにより、フォトマスク50の上面の任意の領域に対向し得るようになっている。すなわち、本実施の形態では、集束イオンビーム装置2が位置固定され、フォトマスク50が集束イオンビーム装置2に対して移動するように設定されている。
 図1に示すように、本実施の形態では、X-Yステージ13の上には、複数の支柱15,16が設けられ、これら支柱15,16に支持フレーム17が架設されている。支持フレーム17の中央部には、集束イオンビーム装置2が固定されている。
 図1および図2に示すように、第1照明部(測定用照明部)4は、局所排気チャンバ9の側部から内部に貫通するように設けられている。この第1照明部4は、光ファイバで構成されている。図1に示すように、この第1照明部4は、光ファイバケーブル18を介して照明光源19に接続されている。照明光源19は、制御部30に接続されている。図2に示すように、この第1照明部4の先端からは、照明光A1が照射される。
 図2に示すように、第1照明部4から照射される照明光Aは、フォトマスク50の表面に入射するように設定されている。特に、この照明光A1のフォトマスク50における照射スポットは、FIBカラム8から出射されてフォトマスク50に入射するイオンビームIbのビームスポットと重なるように設定されている。
 本実施の形態において、第1受光部(測定用受光部)6は、光学顕微鏡で構成されている。図1に示すように、この第1受光部6は、X-Yステージ13の中央に形成された上下に貫通する開口部13A内に配置されている。第1受光部6は、上部に対物レンズ6Aを備える。このため、第1受光部6は、フォトマスク50および透明ステージ3を通過する透過光B1(図2参照)を対物レンズ6Aで受光することができる。
 図1に示すように、この第1受光部6には、第2照明部(測定用照明部)5が備えられている。この第2照明部5には、照明光源20が接続されている。第1受光部6は、この第2照明部5および対物レンズ6Aを介して透明ステージ3側へ向けて照明光A2(図6参照)へ出射することも可能である。第1受光部6は、制御部30からの制御信号に基づいて第2照明部5および照明光源20を制御するように設定されている。
 図2に示すように、第2受光部(測定用受光部)7は、シンチレータ7Aと、先端部がシンチレータ7Aに接続された光電倍増管(フォトマル)7Bと、で構成されている。この第2受光部7は、後述するフォトマスク50の欠陥領域を通過した光を捕捉する機能と、イオンビームIbが照射された位置から発生する2次荷電粒子(2次電子、2次イオンなど)を捕捉して、その強度情報をもとにイオンビームIbをスキャンしながら画像データを取得する機能と、を有する。これらの機能の利用の仕方は後述する。
(フォトマスク修正装置を用いた第1の修正方法、動作および作用)
 本実施の形態では、フォトマスク50におけるマスク基板51へイオンビームIbの照射に基づいて、マスクパターン膜52の成膜または膜厚の削減を行う。
 まず、透明ステージ3の上に、フォトマスク50を重ねた状態にセットする。集束イオンビーム装置2によりフォトマスク50の表面にイオンビームIbを照射し、この照射に伴って発生する2次荷電粒子としての電子を第2受光部7で検出して画像データを得ることができる。この画像データを用いて、図3-1に示すような黒欠陥領域Dbや図5-1に示すような白欠陥領域Dwの位置を認識して位置決めを可能にする。
 次に、フォトマスク50における修正領域(黒欠陥領域Db、白欠陥領域Dw)におけるマスクパターン膜52の成膜または膜厚の削減を行う(図3-2および図5-2参照)。
 具体的には、図5-2に示すような成膜は、イオンビームIbとともに局所排気チャンバ9内にデポガスを供給しながら行う。一方、図3-2に示すようなマスクパターン膜52の膜厚の削減は、イオンビームIbあるいはエッチングガスを吹き付けながら行う。
 このとき、図2に示すように、成膜または膜厚の削減と同時に、第1照明部4から照明光A1をこの修正領域に照射し、マスクパターン膜52、マスク基板51および透明ステージ3を通過した透過光B1の受光量を第1受光部6で継続的に測定する。
 この第1受光部6で測定した受光量に基づいて得られる光透過率が適正な値(目標値:例えば70%)になるまで、成膜または膜厚の削減を継続し、光透過率が適正な値になったときに、集束イオンビーム装置2による成膜または膜厚の削減を停止させる。すなわち、本実施の形態では、制御部30は、第2受光部(測定用受光部)7の測定に同期して集束イオンビーム装置2の制御を行う。
 この結果、図3-3および図5-3に示すように、修正領域(黒欠陥領域Dbおよび白欠陥領域Dw)は、フォトマスク50の適正な(設計された)膜厚となり、修正が終了する。
 ちなみに、図4は黒欠陥領域Dbにおける光透過率Thと集束イオンビーム装置2による膜厚の削減により光透過率の目標値(例えば、70%)を得るための加工時間を示す参考図である。本実施の形態に係るフォトマスク修正装置1では、加工時間を管理する必要がなく、マスクパターン膜52の修正作業中に、その光透過率を同時に得ることができため、適正な光透過率を実現するための膜加工を円滑に行うことができる。
 なお、本実施の形態に係るフォトマスクの修正方法では、第2照明部5及び照明光源20は用いないため、これらを省略したフォトマスク修正装置1としてもよい。また、本実施の形態においては、第2受光部7は、フォトマスク50の欠陥領域を通過した光を捕捉する機能を有しなくてもよい。
[第2の実施の形態]
 本発明の第2の実施の形態に係るフォトマスクの修正方法は、上記した第1の実施の形態に係るフォトマスク修正装置1を用いて行う。
 図6に示すように、本実施の形態に係るフォトマスクの修正方法では、第1受光部6の対物レンズ6Aを介して照明光A2を修正領域へ向けて照射する。
 本実施の形態では、照明光A2は、透明ステージ3およびフォトマスク50を経た透過光B2の受光量を第2受光部7で測定する。本実施の形態では、フォトマスク50の画像データの取得も、第2受光部7で行うことができるため、図6に示す第1照明部4は、省略することも可能である。
 本実施の形態に係るフォトマスクの修正方法では、上記第1の実施の形態と同様に、加工時間を管理する必要がなく、マスクパターン膜52の修正作業中に、その光透過率を同時に得ることができため、適正な光透過率を実現するための膜加工を円滑に行うことができる。また、本実施の形態では、部品点数を削減することが可能である。
[第3の実施の形態]
 図7から図9は、本発明の第3の実施の形態に係るフォトマスク修正装置の要部を示している。本実施の形態では、上記した第1の実施の形態に係るフォトマスク修正装置1において、第1受光部6にデジタルマイクロミラーデバイス(以下、DMDという)21を備えた光学系が追加され、上記第1の実施の形態に係る第1照明部4が省略された構成であり、他の構成は第1の実施の形態に係るフォトマスク修正装置1と同様である。
 図7に示すように、本実施の形態における第1受光部6は、光学顕微鏡にDMD21を備える光学系が、後述するように、照明光源20から供給される照明光A3を上端の対物レンズ6Aに導き、対物レンズ6Aから透明ステージ3およびフォトマスク50へ向けて照明光A3を照射するように設定されている。透明ステージ3およびフォトマスク50を透過した透過光B3は、第2受光部7で受光量が測定されるようになっている。
 図7に示すように、DMD21を備える光学系は、照明光A3をDMD21へ導くミラー23a,23bの群と、後述する反射光R,Raを撮像素子22へ導くミラー24a,24bの群と、を備える。ミラー23aで反射されてDMD21の駆動面に入射する照明光A3は、図8に示すように、DMD21の駆動面に対して+12度の角度傾けたマイクロミラー27,29,31で反射される。マイクロミラー27,29,31で反射された照明光A3は、図7に示すように、対物レンズ6Aから透明ステージ3およびフォトマスク50へ向けて出射されるようになっている。
 図8は、フォトマスク50のマスク基板51に黒欠陥52Bが生じている黒欠陥領域Dbが存在する場合を示す。この場合、マイクロミラー29,31で反射された照明光A3は、黒欠陥52Bとマスク基板51との界面で殆ど反射する反射光Rとなる。なお、照明光A3の一部は黒欠陥52Bを透過して透過光B3となる。
 また、図8に示すように、例えばマイクロミラー27で反射した照明光A3は、黒欠陥52Bが存在しない領域のマスク基板51に入射して殆どがマスク基板51を通過してマスク基板51の上面と空気との界面で反射する反射光Raとなる。
 また、図7および図8に示すように、照明光A3のうちフォトマスク50のマスク基板51の上面で反射した反射光R,Raは、DMD21の駆動面に入射するようになっている。そして、DMD21の駆動面に入射する反射光R,Raは、DMD21の駆動面に対して-12度の角度傾けたマイクロミラー26,28,30で反射され、ミラー24a,24bの群で導かれて撮像素子22へ入射するように設定されている。本実施の形態では、撮像素子22でフォトマスク50における画像データを取得することができ、フォトマスク50の画像情報、位置情報などの特定を行うことが可能となる。
 具体的には、得られた画像データから、撮像素子22には所定量以上の反射光Rを受光しないはずの画素から出力がある領域が、黒欠陥領域Dbであることが検出できる。
 このようにして、検出された黒欠陥領域Dbに対しては、図9に示すように、黒欠陥領域Dbに選択的に対応するマイクロミラー28,29,30,31などをDMD21の駆動面に対して-12度の角度に傾けて照明光A3を入射させる。それと同時に、制御部30は、黒欠陥52Bを透過する透過光B3の透過光量(受光量)を第2受光部7で測定させつつ、第2受光部7で測定された受光量に基づいて得られる光透過率が適正な値になるまで集束イオンビーム装置2によりエッチングを行わせ、光透過率が適正な値になったとき集束イオンビーム装置2によるエッチングを停止させる。このとき、黒欠陥領域Dbに対応しないマイ例えばマイクロミラー26,27などの他のマイクロミラーは、+12度の角度に傾けておく。
 本実施の形態に係るフォトマスク修正装置およびフォトマスクの修正方法では、加工時間を管理する必要がなく、マスクパターン膜52の修正作業中に、その光透過率を同時に得ることができため、適正な光透過率を実現するための膜加工を円滑に行うことができる。なお、本実施の形態では、反射光R,Raに着目して白欠陥を検出し、その白欠陥領域に照明光A3を選択的に入射させた状態でこの白欠陥領域へ選択的にマスクパターン膜52を成膜してもよい。この場合も、光透過率の適正なマスクパターン膜52を円滑に形成できる。
[その他の実施の形態]
 以上、本発明の実施の形態について説明したが、この実施の形態の開示の一部をなす論述および図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。
 上記の第1~3の実施の形態において、集束イオンビーム装置2を位置固定し、透明ステージ3およびフォトマスク50を移動させる構成としたが、透明ステージ3およびフォトマスク50を位置固定し、集束イオンビーム装置2、第2受光部6、および第2受光部7を同期して移動させる構成としてもよい。
 なお、第1照明部4および第1受光部(対物レンズ6A)6から出射される照明光A1,A2,A3は、フォトマスク50を用いて行う露光工程で用いる露光光と波長が同じ光が好ましいが、露光光の波長と異なる照明光A1,A2,A3を用いても適正な光透過率を得ることが可能である。
 上記の第1~3の実施の形態においては、集束イオンビーム装置2に局所排気チャンバ9を備える構成としたが、フォトマスク50全体を真空チャンバ内に配置する構成としてもよい。
 A1,A2,A3 照明光
 B1,B2,B3 透過光
 Db 黒欠陥領域
 Dw 白欠陥領域
 R 反射光
 Ib イオンビーム
 1 フォトマスク修正装置
 2 集束イオンビーム装置
 3 透明ステージ
 4 第1照明部(測定用照明部)
 5 第2照明部(測定用照明部)
 6 第1受光部(測定用受光部)
 6A 対物レンズ
 7 第2受光部(測定用受光部)
 7A シンチレータ
 7B 光電倍増管
 8 集束イオンビームカラム(FIBカラム)
 9 局所排気チャンバ
 10 配管
 11 真空ポンプ
 12 真空ポンプ制御電源
 13 X-Yステージ
 13A 開口部
 14 ステージ制御電源
 15,16 支柱
 17 支持フレーム
 18 光ファイバケーブル
 19 照明光源
 20 照明光源
 21 デジタルマイクロミラーデバイス
 22 撮像素子
 23a,23b ミラー
 24a,24b ミラー
 25 駆動基板
 26~31 マイクロミラー
 30 制御部
 50 フォトマスク
 51 マスク基板
 52 マスクパターン膜
 52B 黒欠陥
 

Claims (10)

  1.  フォトマスクにおけるマスク基板への集束イオンビームの照射に基づいて、マスクパターン膜の成膜または膜厚の削減を行う集束イオンビーム装置を備えるフォトマスク修正装置であって、
     前記フォトマスクを載せる透明ステージと、
     前記透明ステージに前記マスク基板を重ねた状態で、前記集束イオンビーム装置により前記マスクパターン膜の成膜または膜厚の削減を行う修正領域へ、前記透明ステージの表裏面のうちの一方側から照明光の照射を行う測定用照明部と、
     前記透明ステージの表裏面のうちの他方側に配置され、前記照明光が前記修正領域を透過した透過光を受光して受光量を測定する測定用受光部と、
     前記測定用受光部で測定した受光量に基づいて、前記集束イオンビーム装置による前記修正領域における前記マスクパターン膜の成膜または削減を制御する制御部と、を備える、
     ことを特徴とするフォトマスク修正装置。
  2.  前記測定用受光部は、前記照明光が前記修正領域を透過した透過光を継続的に受光して受光量を測定し、前記制御部は、前記測定用受光部の測定に同期して前記集束イオンビーム装置の制御を行う、
     請求項1に記載のフォトマスク修正装置。
  3.  前記集束イオンビーム装置および前記測定用照明部は、前記透明ステージの表裏面のうちの表面側に配置され、
     前記測定用受光部は、前記透明ステージの表裏面のうちの裏面側に配置される、
     請求項1または請求項2に記載のフォトマスク修正装置。
  4.  前記測定用受光部は、光学顕微鏡である、
     請求項3に記載のフォトマスク修正装置。
  5.  前記測定用照明部は、光ファイバを備え、前記光ファイバの先端から前記照明光を出射させる、
     請求項3または請求項4に記載のフォトマスク修正装置。
  6.  前記集束イオンビーム装置および前記測定用受光部は、前記透明ステージの表裏面のうちの表面側に配置され、
     前記測定用照明部は、前記透明ステージの表裏面のうちの裏面側に配置される、
     請求項1または請求項2に記載のフォトマスク修正装置。
  7.  前記測定用受光部は、透過光が入射するシンチレータと前記シンチレータに接続された光電子増倍管で構成される、
     請求項6に記載のフォトマスク修正装置。
  8.  前記測定用照明部は、照明光源を備える光学顕微鏡である、
     請求項6または請求項7に記載のフォトマスク修正装置。
  9.  前記光学顕微鏡は、複数のマイクロミラーを備えるデジタルマイクロミラーデバイスと、撮像素子と、を備え、
     前記デジタルマイクロミラーデバイスは、前記複数のマイクロミラーのうちの一部で、前記照明光源から入射した照明光を、前記修正領域へ出射させると同時に、前記複数のマイクロミラーの他の一部で、当該照明光の前記フォトマスクからの反射光を受けて前記撮像素子へ入射させるように設定されている、
     請求項8に記載のフォトマスク修正装置。
  10.  フォトマスクにおけるマスク基板へ集束イオンビームの照射に基づいて、マスクパターン膜の成膜または膜厚の削減を行うフォトマスク修正方法であって、
     集束イオンビーム装置により前記マスクパターン膜の成膜または膜厚の削減を行う修正領域へ、前記集束イオンビームの照射と同時に前記フォトマスクの表裏面のうちの一方側から照明光の照射を行い、
     前記フォトマスクの表裏面のうちの他方側から前記修正領域を通過して入射する透過光を受光して受光量を測定し、
     測定した受光量に基づいて得られる前記修正領域の光透過率が適正な値になったときに、前記マスクパターン膜の成膜または膜厚の削減を停止させる、
     ことを特徴とするフォトマスク修正方法。
     
PCT/JP2021/046943 2021-01-15 2021-12-20 フォトマスク修正装置およびフォトマスクの修正方法 WO2022153793A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-004959 2021-01-15
JP2021004959A JP2022109566A (ja) 2021-01-15 2021-01-15 フォトマスク修正装置およびフォトマスクの修正方法

Publications (1)

Publication Number Publication Date
WO2022153793A1 true WO2022153793A1 (ja) 2022-07-21

Family

ID=82447233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046943 WO2022153793A1 (ja) 2021-01-15 2021-12-20 フォトマスク修正装置およびフォトマスクの修正方法

Country Status (2)

Country Link
JP (1) JP2022109566A (ja)
WO (1) WO2022153793A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202038A (ja) * 1982-05-21 1983-11-25 Hitachi Ltd イオンビ−ム加工装置
JPS61194723A (ja) * 1985-02-25 1986-08-29 Hitachi Ltd 光学装置
JPH0315068A (ja) * 1990-06-01 1991-01-23 Seiko Instr Inc パターン修正方法
JPH0316112A (ja) * 1990-06-01 1991-01-24 Seiko Instr Inc イオンビーム加工装置
JPH0511436A (ja) * 1991-06-28 1993-01-22 Hitachi Ltd マスク修正方法及びそれに用いる装置及びマスク
JPH0922110A (ja) * 1995-07-06 1997-01-21 Hitachi Ltd 荷電ビーム処理方法及びその装置並びにフォトマスクの加工方法及びその装置
JP2006243731A (ja) * 2005-03-01 2006-09-14 Carl Zeiss Jena Gmbh スポット走査式レーザ走査型顕微鏡及び同顕微鏡を調整する方法
JP2007310162A (ja) * 2006-05-18 2007-11-29 Lasertec Corp 検査装置及び検査方法とその検査方法を用いたパターン基板の製造方法
JP2008172000A (ja) * 2007-01-11 2008-07-24 V Technology Co Ltd 露光方法及び露光装置
JP2008190938A (ja) * 2007-02-02 2008-08-21 Lasertec Corp 検査装置及び検査方法、並びにパターン基板の製造方法
JP2011191412A (ja) * 2010-03-12 2011-09-29 Ntn Corp チャック装置、基板観察装置、および欠陥修正装置
JP2015034909A (ja) * 2013-08-09 2015-02-19 凸版印刷株式会社 フォトマスクの欠陥修正方法、欠陥修正装置およびフォトマスク

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202038A (ja) * 1982-05-21 1983-11-25 Hitachi Ltd イオンビ−ム加工装置
JPS61194723A (ja) * 1985-02-25 1986-08-29 Hitachi Ltd 光学装置
JPH0315068A (ja) * 1990-06-01 1991-01-23 Seiko Instr Inc パターン修正方法
JPH0316112A (ja) * 1990-06-01 1991-01-24 Seiko Instr Inc イオンビーム加工装置
JPH0511436A (ja) * 1991-06-28 1993-01-22 Hitachi Ltd マスク修正方法及びそれに用いる装置及びマスク
JPH0922110A (ja) * 1995-07-06 1997-01-21 Hitachi Ltd 荷電ビーム処理方法及びその装置並びにフォトマスクの加工方法及びその装置
JP2006243731A (ja) * 2005-03-01 2006-09-14 Carl Zeiss Jena Gmbh スポット走査式レーザ走査型顕微鏡及び同顕微鏡を調整する方法
JP2007310162A (ja) * 2006-05-18 2007-11-29 Lasertec Corp 検査装置及び検査方法とその検査方法を用いたパターン基板の製造方法
JP2008172000A (ja) * 2007-01-11 2008-07-24 V Technology Co Ltd 露光方法及び露光装置
JP2008190938A (ja) * 2007-02-02 2008-08-21 Lasertec Corp 検査装置及び検査方法、並びにパターン基板の製造方法
JP2011191412A (ja) * 2010-03-12 2011-09-29 Ntn Corp チャック装置、基板観察装置、および欠陥修正装置
JP2015034909A (ja) * 2013-08-09 2015-02-19 凸版印刷株式会社 フォトマスクの欠陥修正方法、欠陥修正装置およびフォトマスク

Also Published As

Publication number Publication date
JP2022109566A (ja) 2022-07-28

Similar Documents

Publication Publication Date Title
JP4988444B2 (ja) 検査方法および装置
JP3729154B2 (ja) パターン欠陥検査方法及びその装置
US6686591B2 (en) Apparatus for inspecting mask
US4990776A (en) Electron microscope
US20020030807A1 (en) Defect inspection method and apparatus therefor
KR910007533B1 (ko) X선 마스크의 결함 수정 방법 및 그 장치
JP2001194323A (ja) パターン欠陥検査方法及びその装置
US7417720B2 (en) Lighting optical machine and defect inspection system
JP3729156B2 (ja) パターン欠陥検出方法およびその装置
JP4472931B2 (ja) 光ビームに試料全体を走査させるためのシステムおよび方法
CN1841013A (zh) 不匀检查装置以及不匀检查方法
WO2022153793A1 (ja) フォトマスク修正装置およびフォトマスクの修正方法
JP7157708B2 (ja) 電子線検査装置の二次光学系を評価する方法
JPH05228671A (ja) エキシマレーザ加工機
JP4573308B2 (ja) 表面検査装置及び方法
JP2003077413A5 (ja)
JP2002251975A (ja) 電子線を用いた検査装置及び電子線を用いた検査方法
JPH09210850A (ja) 周期性パターン検査装置
JP3644311B2 (ja) 投写レンズ検査装置および投写レンズ検査方法
JP2001227932A (ja) マスク検査装置
JP2004040070A (ja) マスクの検査装置
JP3077920B2 (ja) 光学系評価装置及び光学系評価方法
CN112697397B (zh) 一种dmd杂散光检测装置及检测方法
JP2010049972A (ja) 環状暗視野走査像検出器に対する散乱電子ビームの入射軸調整方法及び走査透過電子顕微鏡
JP2007227116A (ja) 電子線検査方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919681

Country of ref document: EP

Kind code of ref document: A1