WO2022153448A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2022153448A1
WO2022153448A1 PCT/JP2021/001079 JP2021001079W WO2022153448A1 WO 2022153448 A1 WO2022153448 A1 WO 2022153448A1 JP 2021001079 W JP2021001079 W JP 2021001079W WO 2022153448 A1 WO2022153448 A1 WO 2022153448A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage
beat
motor
power conversion
Prior art date
Application number
PCT/JP2021/001079
Other languages
English (en)
French (fr)
Inventor
朱音 本行
雄紀 谷山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180086950.9A priority Critical patent/CN116802982A/zh
Priority to JP2022574959A priority patent/JPWO2022153448A1/ja
Priority to US18/255,269 priority patent/US20240007010A1/en
Priority to EP21919342.2A priority patent/EP4280445A4/en
Priority to PCT/JP2021/001079 priority patent/WO2022153448A1/ja
Publication of WO2022153448A1 publication Critical patent/WO2022153448A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics

Definitions

  • This disclosure relates to a power conversion device.
  • a power conversion device including a rectifying circuit that converts an AC voltage into a DC voltage and an inverter circuit that converts a DC voltage into an AC voltage
  • the DC voltage output from the rectifying circuit is the AC voltage input to the rectifying circuit.
  • a pulsation with a frequency of 6 times the frequency occurs.
  • Such pulsation is reduced by increasing the capacitance of the capacitor provided in the DC link portion between the rectifier circuit and the inverter circuit.
  • a large capacity electrolytic capacitor reduces pulsation.
  • a beat component corresponding to the pulsation frequency can be superimposed on the current output from the inverter circuit.
  • the beat component causes vibration or noise in the motor.
  • Patent Document 1 describes a d-axis voltage vector and a q-axis voltage vector of an electric motor according to a pulsating component of a DC voltage in order to suppress a beat component generated in an electrolytic capacitorless inverter.
  • a control method for pulsating the phase of the combined voltage vector seen from the q-axis of is disclosed.
  • the present disclosure has been made to solve the above problems, and an object of the present invention is to provide a power conversion device capable of suppressing a beat component superimposed on a current flowing through a motor without increasing the cost. Is.
  • the power converter of a certain aspect of the present disclosure includes a rectifier circuit that rectifies an AC voltage into a DC voltage, an inverter circuit, a DC link capacitor, and a generator.
  • the inverter circuit converts the DC voltage rectified by the rectifier circuit into an AC voltage, and outputs the converted AC voltage to the motor.
  • the DC link capacitor is connected between the rectifier circuit and the inverter circuit.
  • the generator generates a signal that controls the inverter circuit so that the AC voltage corresponding to the specified phase is output from the inverter circuit.
  • the power conversion device includes an estimator and a beat suppression controller.
  • the estimator estimates the first phase of the rotor of the motor based on the current flowing through the motor.
  • the beat suppression controller outputs the second phase obtained by adjusting the first phase to the generator as the above-specified phase so that the beat component superimposed on the current flowing through the motor is suppressed.
  • the first phase of the rotor of the motor is estimated based on the current flowing through the motor. Therefore, unlike the technique described in Patent Document 1, a position sensor that detects the position of the rotor of the motor becomes unnecessary. Further, the second phase is generated by adjusting the first phase so that the beat component superimposed on the current flowing through the motor is suppressed. Then, the inverter circuit is controlled so that the AC voltage corresponding to the second phase is output from the inverter circuit. As a result, the beat component is suppressed. From the above, it is possible to suppress the beat component superimposed on the current flowing through the motor without increasing the cost.
  • FIG. It is a figure which shows an example of the whole structure of the power conversion apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows an example of the internal structure of a switching signal generator and a beat suppression controller. It is a figure which shows the waveform of the DC voltage, the current flowing through a motor, and the pulsating phase added to the estimated phase in the power conversion apparatus which does not include a beat suppression controller. It is a figure which shows the waveform of the DC voltage, the current flowing through a motor, and the pulsating phase added to the estimated phase in the power conversion apparatus including a beat suppression controller. It is a figure which shows a part of the structure of the power conversion apparatus which concerns on Embodiment 2.
  • FIG. It is a flowchart which shows the flow of the beat suppression control processing in the power conversion apparatus which concerns on Embodiment 2. It is a schematic diagram which shows the air conditioner which concerns on Embodiment 3.
  • FIG. 1 is a diagram showing an example of the overall configuration of the power conversion device 100 according to the first embodiment.
  • the power conversion device 100 is connected to the AC power supply 1 and the electric motor 2 which is a load.
  • the AC power supply 1 is, for example, a three-phase commercial power supply.
  • the electric motor 2 is, for example, a permanent magnet synchronous motor.
  • the power conversion device 100 includes a rectifier circuit 3, a DC link capacitor 4, an inverter circuit 5, a current detector 6, and a switching signal generator 7.
  • the rectifier circuit 3 rectifies the AC voltage input from the AC power supply 1 and converts it into a DC voltage.
  • the DC voltage rectified by the rectifier circuit 3 includes a low-order harmonic component (hereinafter, referred to as “pulsating component”) that pulsates at a frequency six times the voltage frequency of the AC power supply 1.
  • the rectifier circuit 3 is, for example, a full bridge circuit including six rectifier diodes.
  • the rectifier circuit 3 may use a switching element such as a transistor instead of the rectifier diode.
  • the inverter circuit 5 converts the DC voltage rectified by the rectifier circuit 3 into an AC voltage, and outputs the converted AC voltage to the motor 2.
  • the inverter circuit 5 is, for example, a full bridge circuit including six IGBTs (Insulated Gate Bipolar Transistors). Reflux diodes are connected to each IGBT in antiparallel. Each IGBT is independently controlled to either an on state or an off state according to the switching signal output from the switching signal generator 7. By this control, the inverter circuit 5 converts the DC voltage into an AC voltage.
  • the inverter circuit 5 may use a switching element such as a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) instead of the IGBT.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the DC link capacitor 4 is connected between the rectifier circuit 3 and the inverter circuit 5.
  • the capacitance of the DC link capacitor 4 is so small that it does not smooth the pulsating component of the DC voltage output from the rectifier circuit 3.
  • the capacitance of the DC link capacitor 4 is large enough to smooth high-order harmonic components due to the switching operation of the inverter circuit 5.
  • the DC link capacitor 4 is, for example, a film capacitor or a ceramic capacitor.
  • the current detector 6 detects the current flowing through the motor 2 and outputs current information indicating the detected current.
  • the current detector 6 is, for example, a current sensor using an instrument transformer called CT (Current Transformer).
  • CT Current Transformer
  • the current detector 6 may detect the current flowing through the motor 2 by using a 1-shunt current detection method or a 3-shunt current detection method.
  • the 1-shunt current detection method is a method using a shunt resistor provided on the negative DC bus of the power converter 100.
  • the three-shunt current detection method is a method using a shunt resistor provided in series with the switching element on the lower side of the inverter circuit 5.
  • the switching signal generator 7 generates a switching signal for controlling the inverter circuit 5 based on an operation command such as a speed command or a torque command input from the outside.
  • the switching signal generator 7 generates a switching signal so that the AC voltage corresponding to the designated phase is output from the inverter circuit 5.
  • the generated switching signal is output to the inverter circuit 5.
  • vector control that feedback-controls the current flowing through the motor 2 using the dq coordinate system can be adopted.
  • the current flowing through the motor 2 is indicated by the current information output from the current detector 6.
  • the switching signal generator 7 calculates the voltage command of the dq coordinate system by vector control using the current information output from the current detector 6. Then, the switching signal generator 7 converts the voltage command calculated in the dq coordinate system into the three-phase coordinate system using the specified phase. As a result, the AC voltage corresponding to the designated phase is output from the inverter circuit 5.
  • the switching signal generator 7 generates a switching signal by using V / f constant control that outputs a voltage proportional to the operating frequency of the motor 2 or direct torque control that controls the magnetic flux and torque of the motor 2. You may.
  • the DC voltage rectified by the rectifier circuit 3 includes a pulsating component that pulsates at a frequency six times the voltage frequency of the AC power supply 1.
  • This pulsating component is not smoothed by the DC link capacitor 4. Therefore, the beat component caused by the pulsating component may be superimposed on the current flowing through the motor 2.
  • pulsating frequency the frequency of the pulsating component
  • operating frequency of the motor 2 the frequency of the AC voltage output from the inverter circuit 5
  • the power conversion device 100 further includes a speed estimator 8, a pulsation detector 9, and a beat suppression controller 10 as a configuration for suppressing a beat component.
  • the speed estimator 8 estimates the rotation speed and the magnetic pole position of the rotor of the motor 2 by using the current information output from the current detector 6 and the voltage command calculated by the switching signal generator 7.
  • the speed estimator 8 estimates the rotation speed and the magnetic pole position of the rotor of the motor 2 by using a known estimation method.
  • a method of calculating from the speed electromotive force of the motor 2 is common.
  • a method such as the arctangent method or the adaptive magnetic flux observer method can be adopted.
  • the velocity estimator 8 outputs the estimated magnetic pole position, that is, the estimated phase to the beat suppression controller 10.
  • the pulsation detector 9 detects the pulsation frequency from the DC voltage applied to both ends of the DC link capacitor 4, and outputs the detection result to the beat suppression controller 10. As described above, since the DC link capacitor 4 has a small capacity, the DC voltage applied to both ends of the DC link capacitor 4 pulsates at a pulsating frequency about 6 times the voltage frequency of the AC power supply 1. The pulsation detector 9 detects this pulsation frequency. For example, the pulsation detector 9 detects the pulsation frequency by passing a DC voltage value through a bandpass filter. Alternatively, the pulsation detector 9 may detect the pulsation frequency by subtracting the result obtained by passing the DC voltage value through the notch filter from the original DC voltage value.
  • the beat suppression controller 10 switches the adjustment phase obtained by adjusting the estimated phase output from the speed estimator 8 so that the beat component superimposed on the current flowing through the motor 2 is suppressed. Output to.
  • the switching signal generator 7 uses the adjustment phase as the designated phase.
  • FIG. 2 is a diagram showing an example of the internal configuration of the switching signal generator 7 and the beat suppression controller 10.
  • the switching signal generator 7 includes a converter 11.
  • the converter 11 converts the voltage commands Vd * and Vq * in the dq coordinate system into the voltage commands Vu *, Vv * and Vw * in the three-phase coordinate system using the designated phase ⁇ according to the following conversion formula. ..
  • the switching signal generator 7 generates a switching signal for controlling the inverter circuit 5 by using the voltage commands Vu *, Vv *, and Vw *.
  • the beat suppression controller 10 includes an amplifier 12, an integrator 13, and an adder 14.
  • the amplifier 12 multiplies the pulsation frequency output from the pulsation detector 9 by the gain K.
  • the gain K is determined according to the voltage frequency of the AC power supply 1 and the magnitude of the DC voltage between both ends of the DC link capacitor 4.
  • the gain K may be a predetermined fixed value. Alternatively, the gain K may be a variable value determined according to the states of the AC power supply 1 and the electric motor 2.
  • the integrator 13 outputs the integrated value of the output of the amplifier 12.
  • the integrated value indicates the phase of the pulsating component included in the DC voltage (hereinafter, referred to as "pulsating phase").
  • the adder 14 outputs the phase obtained by adding the estimated phase output from the speed estimator 8 and the pulsating phase output from the integrator 13 as the adjustment phase. In this way, the beat suppression controller 10 adjusts the estimated phase using the pulsation phase, which is the integrated value of the pulsation frequency.
  • FIG. 3 is a diagram showing waveforms of a DC voltage, a current flowing through a motor, and a pulsating phase added to an estimated phase in a power conversion device that does not include the beat suppression controller 10.
  • FIG. 4 is a diagram showing waveforms of a DC voltage, a current flowing through a motor, and a pulsating phase added to an estimated phase in a power conversion device 100 including a beat suppression controller 10.
  • the vertical axis of the upper graph shows the DC voltage
  • the vertical axis of the middle graph shows the current flowing through the motor 2
  • the vertical axis of the lower graph shows the pulsating phase.
  • the horizontal axis of each graph shows the elapsed time.
  • the pulsation phase added to the estimated phase is zero.
  • the switching signal generator 7 converts the voltage command of the dq coordinate system into the voltage command of the three-phase coordinate system by using the estimated phase. Therefore, the current flowing through the motor 2 is affected by the pulsating component included in the DC voltage, and includes the beat component as shown in the middle stage of FIG. In particular, when the pulsation frequency and the operating frequency of the motor 2 are close to each other, a large beat component appears.
  • the switching signal generator 7 uses the adjustment phase obtained by adding the pulsation phase shown in the lower stage to the estimated phase. , Converts the voltage command of the dq coordinate system to the voltage command of the three-phase coordinate system. As a result, the influence of the pulsating component contained in the DC voltage is canceled from the AC voltage output from the inverter circuit 5. Therefore, as shown in the middle stage, the beat component does not appear in the current flowing through the motor 2.
  • the estimated phase of the rotor of the motor 2 is estimated based on the current flowing through the motor 2. Therefore, unlike the technique described in Patent Document 1, a position sensor that detects the position of the rotor of the motor 2 becomes unnecessary. Further, the adjustment phase is generated by adjusting the estimated phase so that the beat component superimposed on the current flowing through the motor 2 is suppressed. Then, the inverter circuit 5 is controlled so that the AC voltage corresponding to the adjustment phase is output from the inverter circuit 5. As a result, the beat component is suppressed. From the above, it is possible to suppress the beat component superimposed on the current flowing through the electric motor 2 without increasing the cost.
  • phase information of voltage in the dq coordinate system is required.
  • the phase information is calculated from, for example, the d-axis voltage Vd and the q-axis voltage Vq by using an inverse tangent function (Arctan).
  • inverse tangent function Arctan
  • the calculation of the inverse tangent function has a large computational load, requires a high-performance microcomputer, and leads to an increase in cost.
  • the power conversion device 100 according to the first embodiment the calculation load is reduced and the increase in cost required for the microcomputer is suppressed.
  • FIG. 5 is a diagram showing a part of the configuration of the power conversion device according to the second embodiment.
  • the power conversion device 100A according to the second embodiment includes a beat suppression controller 10A instead of the beat suppression controller 10 as compared with the power conversion device 100 according to the first embodiment. It differs in that.
  • the beat suppression controller 10A is different from the beat suppression controller 10 in that the integrator 13A is included instead of the integrator 13 and the switch 15 is included. Similar to the integrator 13, the integrator 13A outputs an integrated value (that is, a pulsating phase) by integrating the output of the amplifier 12. The integrator 13A resets the integrated value to zero in response to the input of the reset signal.
  • the switch 15 switches between a first mode in which the adjustment phase is output to the switching signal generator 7 and a second mode in which the estimated phase is output to the switching signal generator 7.
  • the switch 15 switches from the second mode to the first mode according to the condition of the predetermined operation condition, and switches from the first mode to the second mode when the operation condition is not satisfied.
  • the operating condition is, for example, that the motor 2 is not accelerating or decelerating.
  • the operating condition may be a condition that the magnitude (amplitude) of the pulsation included in the DC voltage between both ends of the DC link capacitor 4 is equal to or larger than the reference value.
  • the operating conditions may include a plurality of conditions. When the operating condition includes a plurality of conditions, it may be determined that the operating condition is satisfied when all of the plurality of conditions are satisfied, or when at least one of the plurality of conditions is satisfied, the operating condition is satisfied. May be determined to be satisfied.
  • the beat suppression controller 10A inputs a reset signal for resetting the pulsating phase to zero to the integrator 13A before the switch 15 switches from the second mode to the first mode. Specifically, the beat suppression controller 10A inputs a reset signal to the integrator 13A while the switch 15 selects the second mode.
  • FIG. 6 is a flowchart showing the flow of beat suppression control processing in the power conversion device 100A according to the second embodiment. Steps S1 to S6 shown in FIG. 6 are repeatedly executed.
  • step S1 the beat suppression controller 10A calculates the pulsation phase by integrating the value obtained by multiplying the pulsation frequency by the gain K.
  • step S2 the beat suppression controller 10A generates the adjustment phase by adding the pulsation phase to the estimated phase.
  • step S3 the switch 15 determines whether or not the operation condition is satisfied.
  • the switch 15 selects the first mode and outputs the adjustment phase to the switching signal generator 7 (step S4).
  • step S4 the power conversion device 100A ends the beat suppression control process.
  • step S3 If the operating conditions are not satisfied (YES in step S3), the beat suppression controller 10A inputs a reset signal to the integrator 13A (step S5). The switch 15 outputs the estimated phase to the switching signal generator 7 (step S6). After step S6, the power conversion device 100A ends the beat suppression control process.
  • the output value of the speed estimator 8 is not stable. Therefore, when the switching signal generator 7 performs conversion using the adjustment phase, the effect of suppressing the beat component may not be sufficiently exerted, or the control may diverge. By including the condition that the motor 2 is not accelerating or decelerating in the operating condition, the estimated phase is output to the switching signal generator 7 when the motor 2 is accelerating or decelerating. As a result, divergence of control can be prevented.
  • the adjustment phase can be adjusted when the pulsating component contained in the DC voltage is small. The beat component used is not suppressed.
  • step-out is a phenomenon in which the motor 2 cannot follow the pulse signal and does not rotate.
  • the pulsating phase output from the integrator 13A is reset to zero in the second mode. That is, the pulsation phase is reset to zero before switching from the second mode to the first mode. Therefore, when switching from the second mode to the first mode, the amount of change in the phase value input to the switching signal generator 7 is suppressed. As a result, when switching from the second mode to the first mode, the occurrence of step-out in the motor 2 is suppressed, and the beat suppression effect is gradually exhibited.
  • FIG. 7 is a schematic view showing the air conditioner 400 according to the third embodiment.
  • the air conditioner 400 includes a refrigeration cycle device 300 and a blower 401.
  • the refrigeration cycle device 300 includes a refrigerant compressor 200, a condenser 301, an expansion valve 302, and an evaporator 303.
  • the refrigerant compressor 200 includes a compressor 201 and the power conversion device 100 described above.
  • the compressor 201 and the condenser 301 are connected by a pipe.
  • the condenser 301 and the expansion valve 302 are connected by a pipe
  • the expansion valve 302 and the evaporator 303 are connected by a pipe
  • the evaporator 303 and the compressor 201 are connected by a pipe.
  • the refrigerant circulates in the compressor 201, the condenser 301, the expansion valve 302, and the evaporator 303.
  • the electric motor 2 shown in FIG. 7 is provided in the compressor 201 of the air conditioner 400, and is controlled at a variable speed by the power converter 100 in order to compress the refrigerant gas into a high-pressure gas.
  • the steps of evaporation, compression, condensation, and expansion of the refrigerant are repeatedly performed.
  • the refrigerant changes from liquid to gas, and further changes from gas to liquid, so that heat exchange is performed between the refrigerant and the outside air. Therefore, the air conditioner 400 is configured by combining the refrigeration cycle device 300 and the blower 401 that circulates the outside air.
  • the air conditioner 400 includes a power conversion device 100 including a small-capacity DC link capacitor 4 and a beat suppression controller 10. This provides an inexpensive, comfortable and highly efficient air conditioner 400.
  • the air conditioner 400 may include a power conversion device 100A instead of the power conversion device 100. Even in this case, an inexpensive, comfortable, and highly efficient air conditioner 400 is provided.
  • the air conditioner 400 has been described as an application example of the power converters 100 and 100A, but it goes without saying that the air conditioner 400 can also be used for other machines.
  • the power conversion devices 100 and 100A may be applied to mechanical devices such as fans and pumps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

電力変換装置(100)は、指定された位相に応じた交流電圧がインバータ回路(5)から出力されるようにスイッチング信号を生成するスイッチング信号生成器(7)と、電動機(2)に流れる電流に基づいて、電動機(2)の回転子の推定位相を推定する速度推定器(8)と、電動機(2)に流れる電流に重畳されるビート成分が抑止されるように、推定位相を調整することにより得られる調整位相をスイッチング信号生成器(7)に出力するビート抑止制御器(10)と、を備える。

Description

電力変換装置
 本開示は、電力変換装置に関する。
 交流電圧を直流電圧に変換する整流回路と、直流電圧を交流電圧に変換するインバータ回路とを備える電力変換装置において、整流回路から出力される直流電圧には、整流回路に入力される交流電圧の周波数の6倍の周波数の脈動が生じる。このような脈動は、整流回路とインバータ回路との間の直流リンク部に設けられるコンデンサの容量を大きくすることにより低減される。たとえば、大容量の電解コンデンサにより脈動が低減される。しかしながら、コンデンサの容量を大きくすると、コンデンサのコストおよび体積が増大する。そのため、脈動を許容する小容量のフィルムコンデンサまたはセラミックコンデンサを直流リンク部に設ける電力変換装置(以下、「電解コンデンサレスインバータ」とも称する。)が知られている。
 直流電圧に脈動が発生すると、インバータ回路から出力される電流に、脈動周波数に応じたビート成分が重畳され得る。電力変換装置に接続される負荷が電動機である場合、ビート成分によって電動機に振動または騒音が発生する。
 特開2013-85455号公報(特許文献1)には、電解コンデンサレスインバータにおいて発生するビート成分を抑止するために、直流電圧の脈動成分に応じて、電動機のd軸電圧ベクトルおよびq軸電圧ベクトルの合成電圧ベクトルのq軸から見た位相を脈動させる制御方法が開示されている。
特開2013-85455号公報
 特許文献1に記載の技術では、たとえばパルスエンコーダやレゾルバ等の位置センサを用いて、電動機のd軸電圧ベクトルおよびq軸電圧ベクトルを取得する必要がある。そのため、位置センサの分だけコストが増大する。さらに、電動機が空気調和機の圧縮機に含まれる場合、圧縮機が高温高圧状態となるため、位置センサを取り付けることが困難である。
 本開示は、上記課題を解決するためになされたものであって、その目的は、コストを増大させることなく、電動機に流れる電流に重畳されるビート成分を抑止可能な電力変換装置を提供することである。
 本開示のある局面の電力変換装置は、交流電圧を直流電圧に整流する整流回路と、インバータ回路と、直流リンクコンデンサと、生成器と、を備える。インバータ回路は、整流回路によって整流された直流電圧を交流電圧に変換し、変換された交流電圧を電動機に出力する。直流リンクコンデンサは、整流回路とインバータ回路との間に接続される。生成器は、指定された位相に応じた交流電圧がインバータ回路から出力されるように、インバータ回路を制御する信号を生成する。さらに、電力変換装置は、推定器と、ビート抑止制御器と、を備える。推定器は、電動機に流れる電流に基づいて、電動機の回転子の第1位相を推定する。ビート抑止制御器は、電動機に流れる電流に重畳されるビート成分が抑止されるように、第1位相を調整することにより得られる第2位相を上記の指定された位相として生成器に出力する。
 本開示によれば、電動機に流れる電流に基づいて、電動機の回転子の第1位相が推定される。そのため、特許文献1に記載の技術のように、電動機の回転子の位置を検出する位置センサが不要となる。さらに、電動機に流れる電流に重畳されるビート成分が抑止されるように、第1位相を調整することにより第2位相が生成される。そして、第2位相に応じた交流電圧がインバータ回路から出力されるように、インバータ回路が制御される。これにより、ビート成分が抑止される。以上から、コストを増大させることなく、電動機に流れる電流に重畳されるビート成分を抑制できる。
実施の形態1に係る電力変換装置の全体構成の一例を示す図である。 スイッチング信号生成器およびビート抑止制御器の内部構成の一例を示す図である。 ビート抑止制御器を含まない電力変換装置における、直流電圧、電動機に流れる電流、および推定位相に加算される脈動位相の波形を示す図である。 ビート抑止制御器を含む電力変換装置における、直流電圧、電動機に流れる電流、および推定位相に加算される脈動位相の波形を示す図である。 実施の形態2に係る電力変換装置の構成の一部を示す図である。 実施の形態2に係る電力変換装置におけるビート抑止制御処理の流れを示すフローチャートである。 実施の形態3に係る空気調和機を示す概略図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。以下の図は各構成部材の大きさの関係が実際のものとは異なる場合がある。
 実施の形態1.
 (電力変換装置の全体構成)
 図1は、実施の形態1に係る電力変換装置100の全体構成の一例を示す図である。図1に示されるように、電力変換装置100には、交流電源1と負荷である電動機2とが接続されている。交流電源1は、たとえば三相の商用電源である。電動機2は、たとえば永久磁石同期モータである。
 電力変換装置100は、整流回路3と、直流リンクコンデンサ4と、インバータ回路5と、電流検出器6と、スイッチング信号生成器7と、を備える。
 整流回路3は、交流電源1から入力された交流電圧を整流して直流電圧に変換する。整流回路3によって整流された直流電圧は、交流電源1の電圧周波数の6倍の周波数で脈動する低次高調波成分(以下、「脈動成分」と称する。)を含む。整流回路3は、たとえば、6つの整流用ダイオードを備えたフルブリッジ回路である。なお、整流回路3は、整流用ダイオードの代わりに、トランジスタなどのスイッチング素子を用いてもよい。
 インバータ回路5は、整流回路3によって整流された直流電圧を交流電圧に変換し、変換された交流電圧を電動機2に出力する。インバータ回路5は、たとえば、6つのIGBT(Insulated Gate Bipolar Transistor)を備えたフルブリッジ回路である。各IBGTには、還流用ダイオードが逆並列で接続される。各IGBTは、スイッチング信号生成器7から出力されるスイッチング信号に従って、独立にオン状態およびオフ状態のいずれかに制御される。当該制御により、インバータ回路5は、直流電圧を交流電圧に変換する。なお、インバータ回路5は、IGBTの代わりに、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などのスイッチング素子を用いてもよい。
 直流リンクコンデンサ4は、整流回路3とインバータ回路5との間に接続される。直流リンクコンデンサ4の容量は、整流回路3から出力された直流電圧の脈動成分を平滑しない程度に小さい。ただし、直流リンクコンデンサ4の容量は、インバータ回路5のスイッチング動作による高次高調波成分を平滑する程度に大きい。直流リンクコンデンサ4は、たとえば、フィルムコンデンサまたはセラミックコンデンサである。
 電流検出器6は、電動機2に流れる電流を検出し、検出された電流を示す電流情報を出力する。電流検出器6は、たとえば、CT(Current Transformer)と呼ばれる計器用変流器を用いた電流センサである。なお、電流検出器6は、1シャント電流検出方式または3シャント電流検出方式を用いて、電動機2に流れる電流を検出してもよい。1シャント電流検出方式は、電力変換装置100の負側直流母線に設けられるシャント抵抗を用いる方式である。3シャント電流検出方式は、インバータ回路5の下側のスイッチング素子と直列に設けられるシャント抵抗を用いる方式である。
 スイッチング信号生成器7は、外部から入力される速度指令やトルク指令などの運転指令に基づいて、インバータ回路5を制御するスイッチング信号を生成する。スイッチング信号生成器7は、指定された位相に応じた交流電圧がインバータ回路5から出力されるように、スイッチング信号を生成する。生成されたスイッチング信号は、インバータ回路5に出力される。
 速度やトルクの制御方法として、たとえば、dq座標系を用いて電動機2に流れる電流をフィードバック制御するベクトル制御が採用され得る。電動機2に流れる電流は、電流検出器6から出力される電流情報によって示される。スイッチング信号生成器7は、電流検出器6から出力される電流情報を用いたベクトル制御により、dq座標系の電圧指令を計算する。それから、スイッチング信号生成器7は、指定された位相を用いて、dq座標系で計算された電圧指令を三相座標系に変換する。これにより、指定された位相に応じた交流電圧がインバータ回路5から出力される。
 なお、スイッチング信号生成器7は、電動機2の運転周波数に比例した電圧を出力するV/f一定制御、または、電動機2の磁束及びトルクを制御する直接トルク制御を用いて、スイッチング信号を生成してもよい。
 上述したように、整流回路3によって整流された直流電圧には、交流電源1の電圧周波数の6倍の周波数で脈動する脈動成分が含まれる。この脈動成分は、直流リンクコンデンサ4によって平滑化されない。そのため、電動機2に流れる電流に、脈動成分に起因するビート成分が重畳され得る。脈動成分の周波数(以下、「脈動周波数」と称する。)とインバータ回路5から出力される交流電圧の周波数(以下、「電動機2の運転周波数」と称する。)との差が小さい場合に、大きなビート成分が発生しやすい。本実施の形態に係る電力変換装置100は、ビート成分を抑止するための構成として、速度推定器8と、脈動検出器9と、ビート抑止制御器10と、をさらに備える。
 速度推定器8は、電流検出器6から出力される電流情報と、スイッチング信号生成器7によって計算された電圧指令とを用いて、電動機2の回転子の回転速度と磁極位置とを推定する。速度推定器8は、公知の推定方法を用いて、電動機2の回転子の回転速度と磁極位置とを推定する。推定方法としては、電動機2の速度起電力から算出する方法が一般的である。たとえば、アークタンジェント法または適応磁束オブザーバ方式などの方法が採用され得る。速度推定器8は、推定した磁極位置、すなわち、推定位相をビート抑止制御器10へ出力する。
 脈動検出器9は、直流リンクコンデンサ4の両端にかかる直流電圧から脈動周波数を検出し、検出結果をビート抑止制御器10へ出力する。上述したように、直流リンクコンデンサ4が小容量であるため、直流リンクコンデンサ4の両端にかかる直流電圧は、交流電源1の電圧周波数の約6倍の脈動周波数で脈動している。脈動検出器9は、この脈動周波数を検出する。たとえば、脈動検出器9は、直流電圧の値をバンドパスフィルタに通すことにより、脈動周波数を検出する。あるいは、脈動検出器9は、直流電圧の値をノッチフィルタに通すことにより得られる結果を、元の直流電圧の値から減算することにより、脈動周波数を検出してもよい。
 ビート抑止制御器10は、電動機2に流れる電流に重畳されるビート成分が抑止されるように、速度推定器8から出力された推定位相を調整することにより得られる調整位相をスイッチング信号生成器7に出力する。スイッチング信号生成器7は、調整位相を指定された位相として用いる。
 (スイッチング信号生成器およびビート抑止制御器の内部構成)
 図2は、スイッチング信号生成器7およびビート抑止制御器10の内部構成の一例を示す図である。図2に示されるように、スイッチング信号生成器7は、変換器11を含む。変換器11は、指定された位相θを用いて、以下の変換式に従って、dq座標系の電圧指令Vd*,Vq*を三相座標系の電圧指令Vu*,Vv*,Vw*に変換する。スイッチング信号生成器7は、電圧指令Vu*,Vv*,Vw*を用いて、インバータ回路5を制御するスイッチング信号を生成する。
Figure JPOXMLDOC01-appb-M000001
 ビート抑止制御器10は、アンプ12と、積分器13と、加算器14と、を含む。アンプ12は、脈動検出器9から出力される脈動周波数にゲインKを乗算する。ゲインKは、交流電源1の電圧周波数および直流リンクコンデンサ4の両端間の直流電圧の大きさに応じて決定される。ゲインKは、予め決定された固定値であってもよい。あるいは、ゲインKは、交流電源1および電動機2の状態に応じて決定される可変の値であってもよい。
 積分器13は、アンプ12の出力の積分値を出力する。積分値は、直流電圧に含まれる脈動成分の位相(以下、「脈動位相」と称する。)を示す。
 加算器14は、速度推定器8から出力される推定位相と積分器13から出力される脈動位相とを加算することにより得られる位相を調整位相として出力する。このように、ビート抑止制御器10は、脈動周波数の積分値である脈動位相を用いて、推定位相を調整する。
 (ビート成分の抑止)
 図3は、ビート抑止制御器10を含まない電力変換装置における、直流電圧、電動機に流れる電流、および推定位相に加算される脈動位相の波形を示す図である。図4は、ビート抑止制御器10を含む電力変換装置100における、直流電圧、電動機に流れる電流、および推定位相に加算される脈動位相の波形を示す図である。図3および図4において、上段のグラフの縦軸は直流電圧、中段のグラフの縦軸は電動機2に流れる電流、下段のグラフの縦軸は脈動位相を示す。各グラフの横軸は経過時間を示す。
 図3に示されるように、ビート抑止制御器10を含まない電力変換装置の場合、推定位相に加算される脈動位相は零である。この場合、スイッチング信号生成器7は、推定位相を用いて、dq座標系の電圧指令を三相座標系の電圧指令に変換する。そのため、電動機2に流れる電流は、直流電圧に含まれる脈動成分の影響を受け、図3の中段に示されるようにビート成分を含む。特に、脈動周波数と電動機2の運転周波数とが近くときに、大きなビート成分が現われる。
 図4に示されるように、ビート抑止制御器10を含む電力変換装置100の場合、スイッチング信号生成器7は、推定位相に下段に示される脈動位相を加算することにより得られる調整位相を用いて、dq座標系の電圧指令を三相座標系の電圧指令に変換する。これにより、インバータ回路5から出力される交流電圧から、直流電圧に含まれる脈動成分の影響が打ち消される。そのため、中段に示されるように、電動機2に流れる電流にビート成分が現われない。
 このように、実施の形態1に係る電力変換装置100によれば、電動機2に流れる電流に基づいて、電動機2の回転子の推定位相が推定される。そのため、特許文献1に記載の技術のように、電動機2の回転子の位置を検出する位置センサが不要となる。さらに、電動機2に流れる電流に重畳されるビート成分が抑止されるように、推定位相を調整することにより調整位相が生成される。そして、調整位相に応じた交流電圧がインバータ回路5から出力されるように、インバータ回路5が制御される。これにより、ビート成分が抑止される。以上から、コストを増大させることなく、電動機2に流れる電流に重畳されるビート成分を抑制できる。
 さらに、特許文献1に開示の技術では、dq座標系における電圧の位相情報が必要である。位相情報は、たとえば、d軸電圧Vdとq軸電圧Vqから、逆正接関数(Arctan)を利用して算出される。しかしながら、逆正接関数の計算は演算負荷が大きく、高性能なマイコンを必要とし、コスト増大につながる。しかしながら、実施の形態1に係る電力変換装置100では、演算負荷が軽減され、マイコンに要するコストの増大が抑制される。
 実施の形態2.
 図5は、実施の形態2に係る電力変換装置の構成の一部を示す図である。図5に示されるように、実施の形態2に係る電力変換装置100Aは、実施の形態1に係る電力変換装置100と比較して、ビート抑止制御器10の代わりにビート抑止制御器10Aを備える点で相違する。
 ビート抑止制御器10Aは、ビート抑止制御器10と比較して、積分器13の代わりに積分器13Aを含むとともに、切替器15を含む点で相違する。積分器13Aは、積分器13と同様に、アンプ12の出力を積分することにより積分値(つまり脈動位相)を出力する。積分器13Aは、リセット信号の入力に応じて、積分値を零にリセットする。
 切替器15は、調整位相をスイッチング信号生成器7に出力する第1モードと、推定位相をスイッチング信号生成器7に出力する第2モードと、を切り替える。切替器15は、予め定められた操作条件を満たすことに応じて、第2モードから第1モードに切り替え、操作条件を満たさないことに応じて、第1モードから第2モードに切り替える。
 操作条件は、たとえば、電動機2が加減速中ではないという条件である。あるいは、操作条件は、直流リンクコンデンサ4の両端間の直流電圧に含まれる脈動の大きさ(振幅)が基準値以上であるという条件であってもよい。あるいは、操作条件は、複数の条件を含んでもよい。操作条件が複数の条件を含む場合、当該複数の条件の全てが満たされるときに操作条件が満たされたと判断されてもよいし、当該複数の条件のうちの少なくとも1つが満たされるときに操作条件が満たされたと判断されてもよい。
 ビート抑止制御器10Aは、切替器15によって第2モードから第1モードに切り替えられる前に、脈動位相を零にリセットするためのリセット信号を積分器13Aに入力する。具体的には、ビート抑止制御器10Aは、切替器15が第2モードを選択している間、積分器13Aにリセット信号を入力する。
 図6は、実施の形態2に係る電力変換装置100Aにおけるビート抑止制御処理の流れを示すフローチャートである。図6に示されるステップS1~S6は、繰り返し実行される。
 ステップS1において、ビート抑止制御器10Aは、脈動周波数にゲインKが乗算された値を積分することにより、脈動位相を計算する。次にステップS2において、ビート抑止制御器10Aは、推定位相に脈動位相を加算することにより、調整位相を生成する。
 次にステップS3において、切替器15は、操作条件を満たすか否かを判断する。操作条件が満たされる場合(ステップS3でYES)、切替器15は、第1モードを選択し、調整位相をスイッチング信号生成器7に出力する(ステップS4)。ステップS4の後、電力変換装置100Aは、ビート抑止制御処理を終了する。
 操作条件が満たされない場合(ステップS3でYES)、ビート抑止制御器10Aは、リセット信号を積分器13Aに入力する(ステップS5)。切替器15は、推定位相をスイッチング信号生成器7に出力する(ステップS6)。ステップS6の後、電力変換装置100Aは、ビート抑止制御処理を終了する。
 電動機2が加減速中である場合、速度推定器8の出力値が安定しない。そのため、スイッチング信号生成器7が調整位相を用いた変換を行なうと、ビート成分の抑止効果が十分に発揮されなかったり、制御が発散したりし得る。操作条件に電動機2が加減速中ではないという条件を含めることにより、電動機2が加減速中である場合に推定位相がスイッチング信号生成器7に出力される。その結果、制御の発散を防止できる。
 直流電圧に含まれる脈動成分が小さい場合、電動機2に流れる電流にビート成分が重畳されにくいため、調整位相を用いたビート成分の抑止が必要ではない。そのため、操作条件に直流リンクコンデンサ4の両端間の直流電圧に含まれる脈動の大きさが基準値以上であるという条件を含めることにより、直流電圧に含まれる脈動成分が小さい場合に、調整位相を用いたビート成分の抑止が実施されない。
 第2モードから第1モードに切り替わるときにスイッチング信号生成器7に入力される位相の値が大きく変化すると、電動機2において脱調が発生し得る。脱調とは、電動機2がパルス信号に追従できなくなり回転しなくなる現象である。
 上記のように、ステップS5においてリセット信号が積分器13Aに入力されることにより、第2モード中において、積分器13Aから出力される脈動位相が零にリセットされる。すなわち、第2モードから第1モードに切り替わる前に、脈動位相が零にリセットされる。そのため、第2モードから第1モードに切り替わるときに、スイッチング信号生成器7に入力される位相の値の変化量が抑制される。これにより、第2モードから第1モードに切り替わるときに、電動機2における脱調の発生が抑制され、徐々にビート抑止効果が発揮される。
 実施の形態3.
 図7は、実施の形態3に係る空気調和機400を示す概略図である。空気調和機400は、冷凍サイクル装置300と送風機401とを備えている。冷凍サイクル装置300は、冷媒圧縮装置200、凝縮器301、膨張弁302及び蒸発器303を含む。冷媒圧縮装置200は、圧縮機201と上記の電力変換装置100とを有する。
 図7に示されるように、圧縮機201と凝縮器301とは配管で接続される。同様に、凝縮器301と膨張弁302とが配管で接続され、膨張弁302と蒸発器303とが配管で接続され、蒸発器303と圧縮機201とが配管で接続される。これにより、圧縮機201、凝縮器301、膨張弁302および蒸発器303には冷媒が循環する。
 図7に示す電動機2は、空気調和機400の圧縮機201内に設けられ、冷媒ガスを圧縮して高圧のガスにするために、電力変換装置100によって可変速制御される。冷凍サイクル装置300では、冷媒の蒸発、圧縮、凝縮、膨張という工程が繰り返し行われる。冷媒は、液体から気体へ変化し、さらに気体から液体へ変化することにより、冷媒と機外空気との間で熱交換が行われる。したがって、冷凍サイクル装置300と機外空気を循環させる送風機401とを組み合わせることで、空気調和機400が構成される。
 近年の空気調和機において、快適性が求められることはもちろん、省エネルギー規制の強化により高効率化が要求されている。また、新興国での空気調和機の需要も高まっている。したがって、電力変換装置を用いて電動機を可変速制御する空気調和機を安価に提供することには意義がある。電力変換装置100は、安価な小容量の直流リンクコンデンサ4を備えるため、これらの要求に応えることができる。
 電動機2の運転周波数と直流電圧の脈動周波数とが近いときに、電動機2に流れる電流にビート成分が現れると、圧縮機201または圧縮機201に接続されている配管から振動および騒音が発生し得る。その結果、ユーザーの快適性が損なわれる。さらに、電動機2の行なう仕事量に脈動が重畳されるため、冷媒ガスの圧縮効率も低下する。また、ビート成分の発生する運転周波数を避けて運転をした場合、冷凍サイクル装置の最適な運転ができず、サイクル効率の低下を招く。しかしながら、ビート抑止制御器10を備える電力変換装置100を用いることにより、ビート成分の発生が抑制される。その結果、これらの問題が解決される。
 以上のように、空気調和機400は、小容量の直流リンクコンデンサ4およびビート抑止制御器10を備える電力変換装置100を備える。これにより、安価かつ快適かつ高効率の空気調和機400が提供される。なお、空気調和機400は、電力変換装置100の代わりに電力変換装置100Aを備えてもよい。この場合でも、安価かつ快適かつ高効率の空気調和機400が提供される。
 上記の説明では、電力変換装置100,100Aの応用例として空気調和機400を説明したが、その他の機械にも利用できることは、言うまでもない。例えば、ファンやポンプといった機械装置に電力変換装置100,100Aを適用してもよい。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1 交流電源、2 電動機、3 整流回路、4 直流リンクコンデンサ、5 インバータ回路、6 電流検出器、7 スイッチング信号生成器、8 速度推定器、9 脈動検出器、10,10A ビート抑止制御器、11 変換器、12 アンプ、13,13A 積分器、14 加算器、15 切替器、100,100A 電力変換装置、200 冷媒圧縮装置、201 圧縮機、300 冷凍サイクル装置、301 凝縮器、302 膨張弁、303 蒸発器、400 空気調和機、401 送風機。

Claims (5)

  1.  電力変換装置であって、
     交流電圧を直流電圧に整流する整流回路と、
     前記整流回路によって整流された直流電圧を交流電圧に変換し、変換された交流電圧を電動機に出力するインバータ回路と、
     前記整流回路と前記インバータ回路との間に接続される直流リンクコンデンサと、
     指定された位相に応じた交流電圧が前記インバータ回路から出力されるように、前記インバータ回路を制御する信号を生成する生成器と、
     前記電動機に流れる電流に基づいて、前記電動機の回転子の第1位相を推定する推定器と、
     前記電動機に流れる電流に重畳されるビート成分が抑止されるように、前記第1位相を調整することにより得られる第2位相を前記指定された位相として前記生成器に出力するビート抑止制御器と、を備える、電力変換装置。
  2.  前記整流された直流電圧の脈動周波数を検出する検出器をさらに備え、
     前記ビート抑止制御器は、前記脈動周波数の積分値を用いて、前記第1位相を調整する、請求項1に記載の電力変換装置。
  3.  前記ビート抑止制御器は、前記第2位相を前記指定された位相として前記生成器に出力する第1モードと、前記第1位相を前記指定された位相として前記生成器に出力する第2モードと、を切り替える切替器を含む、請求項1または2に記載の電力変換装置。
  4.  前記ビート抑止制御器は、前記第2位相を前記指定された位相として前記生成器に出力する第1モードと、前記第1位相を前記指定された位相として前記生成器に出力する第2モードと、を切り替える切替器を含み、
     前記ビート抑止制御器は、前記切替器によって前記第2モードから前記第1モードに切り替えられる前に前記積分値を零にリセットする、請求項2に記載の電力変換装置。
  5.  前記電力変換装置は、空気調和機に適用される、請求項1から4のいずれか1項に記載の電力変換装置。
PCT/JP2021/001079 2021-01-14 2021-01-14 電力変換装置 WO2022153448A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180086950.9A CN116802982A (zh) 2021-01-14 2021-01-14 电力转换装置
JP2022574959A JPWO2022153448A1 (ja) 2021-01-14 2021-01-14
US18/255,269 US20240007010A1 (en) 2021-01-14 2021-01-14 Power conversion device
EP21919342.2A EP4280445A4 (en) 2021-01-14 2021-01-14 POWER CONVERTER
PCT/JP2021/001079 WO2022153448A1 (ja) 2021-01-14 2021-01-14 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001079 WO2022153448A1 (ja) 2021-01-14 2021-01-14 電力変換装置

Publications (1)

Publication Number Publication Date
WO2022153448A1 true WO2022153448A1 (ja) 2022-07-21

Family

ID=82448095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001079 WO2022153448A1 (ja) 2021-01-14 2021-01-14 電力変換装置

Country Status (5)

Country Link
US (1) US20240007010A1 (ja)
EP (1) EP4280445A4 (ja)
JP (1) JPWO2022153448A1 (ja)
CN (1) CN116802982A (ja)
WO (1) WO2022153448A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115395851A (zh) * 2022-09-21 2022-11-25 哈尔滨工业大学 无电解电容永磁同步电机驱动系统线性调制区扩展方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005143291A (ja) * 1997-10-31 2005-06-02 Hitachi Ltd 電気車の駆動装置及び電気車駆動用インバータの制御方法
WO2008149724A1 (ja) * 2007-05-31 2008-12-11 Mitsubishi Electric Corporation 電力変換装置
JP2013085455A (ja) 2011-09-30 2013-05-09 Daikin Ind Ltd 電力変換装置
JP2017017817A (ja) * 2015-06-30 2017-01-19 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 電力変換装置およびモータ駆動装置、冷凍装置
JP2017046430A (ja) * 2015-08-26 2017-03-02 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド モータ制御装置、流体機械、空気調和機およびプログラム
WO2018061342A1 (ja) * 2016-09-30 2018-04-05 ダイキン工業株式会社 インバータ装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6369517B2 (ja) * 2016-09-30 2018-08-08 ダイキン工業株式会社 電力変換器の制御装置
WO2020217764A1 (ja) * 2019-04-23 2020-10-29 日立オートモティブシステムズ株式会社 電力変換装置およびそれを備えた電動車両システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005143291A (ja) * 1997-10-31 2005-06-02 Hitachi Ltd 電気車の駆動装置及び電気車駆動用インバータの制御方法
WO2008149724A1 (ja) * 2007-05-31 2008-12-11 Mitsubishi Electric Corporation 電力変換装置
JP2013085455A (ja) 2011-09-30 2013-05-09 Daikin Ind Ltd 電力変換装置
JP2017017817A (ja) * 2015-06-30 2017-01-19 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 電力変換装置およびモータ駆動装置、冷凍装置
JP2017046430A (ja) * 2015-08-26 2017-03-02 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド モータ制御装置、流体機械、空気調和機およびプログラム
WO2018061342A1 (ja) * 2016-09-30 2018-04-05 ダイキン工業株式会社 インバータ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4280445A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115395851A (zh) * 2022-09-21 2022-11-25 哈尔滨工业大学 无电解电容永磁同步电机驱动系统线性调制区扩展方法

Also Published As

Publication number Publication date
EP4280445A1 (en) 2023-11-22
US20240007010A1 (en) 2024-01-04
CN116802982A (zh) 2023-09-22
EP4280445A4 (en) 2024-03-06
JPWO2022153448A1 (ja) 2022-07-21

Similar Documents

Publication Publication Date Title
JP6180635B2 (ja) 電力変換装置、除湿機、空調装置および冷凍装置
KR20060022233A (ko) 모터 제어 장치, 압축기, 공기 조화기, 및 냉장고
KR101561922B1 (ko) 공기조화기의 전동기 제어방법
GB2596979A (en) Motor driving device, compressor driving device, and refrigeration cycle device
US11601076B2 (en) Motor driving apparatus and refrigeration cycle equipment
WO2022153448A1 (ja) 電力変換装置
JP6608031B2 (ja) 電力変換装置および空調装置
US10270380B2 (en) Power converting apparatus and heat pump device
WO2020095377A1 (ja) 負荷駆動装置、冷凍サイクル装置及び空気調和機
WO2023127034A1 (ja) 電力変換装置および空気調和機
JP2020120533A (ja) 圧縮機制御装置
JP5350107B2 (ja) 冷凍サイクル装置
JP7361948B2 (ja) 電動機駆動装置、冷凍サイクル装置、及び空気調和機
JP7515739B2 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2023157045A1 (ja) 電力変換装置および空気調和機
WO2023073870A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
JP7308949B2 (ja) 電動機駆動装置及び冷凍サイクル適用機器
WO2023067723A1 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2023047486A1 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
JP7515740B2 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2023162106A1 (ja) モータ駆動装置及び冷凍サイクル装置
WO2023095311A1 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
JP7330401B2 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2023067724A1 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
US20240014759A1 (en) Control device, power conversion apparatus, motor drive unit, and applied refrigeration cycle apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919342

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18255269

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022574959

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180086950.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021919342

Country of ref document: EP

Effective date: 20230814