WO2022149430A1 - 高圧ガスに触れる成形品用材料 - Google Patents

高圧ガスに触れる成形品用材料 Download PDF

Info

Publication number
WO2022149430A1
WO2022149430A1 PCT/JP2021/046502 JP2021046502W WO2022149430A1 WO 2022149430 A1 WO2022149430 A1 WO 2022149430A1 JP 2021046502 W JP2021046502 W JP 2021046502W WO 2022149430 A1 WO2022149430 A1 WO 2022149430A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure gas
contact
acid
comes
polyamide
Prior art date
Application number
PCT/JP2021/046502
Other languages
English (en)
French (fr)
Inventor
英之 蔵田
勇馬 堀池
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to KR1020237026507A priority Critical patent/KR20230130673A/ko
Priority to JP2022573973A priority patent/JPWO2022149430A1/ja
Priority to CN202180089692.XA priority patent/CN116670210A/zh
Publication of WO2022149430A1 publication Critical patent/WO2022149430A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/14Gas barrier composition

Definitions

  • the present invention relates to a material for a molded product that comes into contact with a high-pressure gas containing an aliphatic copolymerized polyamide resin.
  • a hydrogen tank used in a hydrogen vehicle As a molded product that comes into contact with high-pressure gas, for example, a hydrogen tank used in a hydrogen vehicle is known.
  • a hydrogen tank used in a hydrogen vehicle is a high-pressure hydrogen storage container having a barrel-like outer shape, and is a long inner layer (long liner) made of metal or resin that comes into direct contact with hydrogen gas and its outer peripheral surface. It is composed of a fiber-reinforced resin layer laminated on the surface.
  • the hydrogen in the hydrogen tank has a high pressure and an extremely low temperature of ⁇ 40 ° C. or lower. Therefore, a long liner that comes into direct contact with hydrogen gas is required to have gas barrier properties, flexibility that can withstand high pressure, and flexibility that can be maintained even at extremely low temperatures.
  • polyamide resin has excellent mechanical properties, heat resistance, and chemical resistance, so it has been developed as engineering plastics for various purposes and is used by various molding methods.
  • a molded product made of a polyamide resin composition obtained by adding a modified polyolefin resin and / or an unmodified polyolefin resin to a polyamide resin to improve impact resistance has been used.
  • Patent Document 1 describes that a polyamide resin composition containing a polyamide resin, a modified polyolefin resin, and a polypropylene resin is excellent in heat resistance and impact resistance.
  • Patent Document 2 describes that a polyamide resin composition containing a polyamide resin and an ethylene copolymer is excellent in fluidity and impact resistance at the time of melting.
  • compositions utilizing the gas barrier property of the polyamide resin have been reported, all of them are compositions to which a modified polyolefin resin and / or an unmodified polyolefin resin is added.
  • Patent Document 3 describes that a polyamide resin composition containing a polyamide resin and a modified polyolefin resin is excellent in moldability, impact resistance, and gas barrier property.
  • Patent Document 4 describes that a polyamide resin composition containing a polyamide 6, a copolymerized polyamide, and an impact-resistant material which is an olefin-based copolymer is excellent in impact resistance and gas barrier properties.
  • Patent Document 5 describes that a polyamide resin containing a copolymerized polyamide, an olefin ionomer, and a polyamide resin composition containing a heat resistant agent are excellent in moldability, impact resistance, heat resistance, and blister resistance due to high-pressure hydrogen gas. ing.
  • a modified polyolefin resin and / or an unmodified polyolefin resin is added to the polyamide resin, a polyamide resin phase and a modified polyolefin resin and / or an unmodified polyolefin resin phase are formed in the polyamide resin composition, and the modified polyolefin is produced.
  • the gas barrier property of the based resin and / or the unmodified polyolefin resin phase tended to decrease.
  • An object of the present invention is to provide a polyamide resin-based material which is excellent in gas barrier properties and which can withstand high pressure without containing a polyolefin-based resin and is maintained at room temperature and at extremely low temperatures.
  • the present invention is, for example, the following [1] to [8].
  • a material for a molded product that comes into contact with a high-pressure gas and contains 90.0% by mass or more of the aliphatic copolymerized polyamide resin (A) in 100% by mass of the material and substantially does not contain a polyolefin resin.
  • the aliphatic copolymerized polyamide resin (A) contains 50 mol% or more of the structural unit derived from ⁇ -caprolactam and / or the structural unit derived from 6-aminocaproic acid in 100 mol% of all the constituent units [1] to [3].
  • the tensile yield stress is 128 MPa or less and the tensile yield strain is 9.0% or more at -60 ° C. of the ISO Type-A test piece measured according to ISO527-2 / 1A / 50 [1] to [ A material for molded products that comes into contact with any of the high-pressure gases in 6].
  • the material for molded products that comes into contact with high-pressure gas of the present invention has excellent gas barrier properties, and the flexibility to withstand high pressure is maintained at room temperature and at extremely low temperatures.
  • the aliphatic copolymerized polyamide resin (A) is contained in an amount of 90.0% by mass or more in 100% by mass of a material for a molded product that comes into contact with a high-pressure gas, and is substantially free of a polyolefin-based resin.
  • materials for molded products are contained in an amount of 90.0% by mass or more in 100% by mass of a material for a molded product that comes into contact with a high-pressure gas, and is substantially free of a polyolefin-based resin.
  • substantially free means that it is not included to the extent that it impairs the functions and properties of the molded article material that comes into contact with the high-pressure gas of the present invention and the molded product thereof, or is not included to the extent that it causes a change. It is a meaning and does not exclude that it is included to the extent that its function and characteristics are not impaired.
  • the material for molded products that comes into contact with high-pressure gas contains an aliphatic copolymerized polyamide resin (A).
  • the aliphatic copolymerized polyamide resin (A) is a polyamide resin composed of two or more kinds of constituent units derived from an aliphatic monomer.
  • the aliphatic copolymerized polyamide resin (A) is a copolymer of two or more monomers selected from the group consisting of a combination of diamine and dicarboxylic acid, lactam and aminocarboxylic acid.
  • the combination of diamine and dicarboxylic acid is regarded as one kind of monomer by the combination of one kind of diamine and one kind of dicarboxylic acid.
  • Aliphatic compounds also include alicyclic compounds.
  • lactam examples include ⁇ -caprolactam, enantractum, undecane lactam, dodecane lactam, ⁇ -pyrrolidone, ⁇ -piperidone and the like. Among these, one selected from the group consisting of ⁇ -caprolactam, undecane lactam and dodecane lactam is preferable from the viewpoint of polymerization productivity.
  • aminocarboxylic acid examples include 6-aminocaproic acid, 7-aminoheptanoic acid, 9-aminononanoic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid.
  • diamines examples include ethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, peptidemethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, tridecanediamine, and tetradecanediamine.
  • Pentadecanediamine Hexamethylenediamine, Hexamethylenediamine, Octadecandiamine, Nonadecandiamine, Eikosandiamine, 2-Methyl-1,8-octanediamine, 2,2,4 / 2,4,4-trimethylhexamethylenediamine, etc.
  • dicarboxylic acids examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecandionic acid, dodecandionic acid, tridecandionic acid, tetradecandionic acid, and pentadecane.
  • Aliphatic dicarboxylic acids such as dionic acid, hexadecandionic acid, octadecandionic acid, and eicosandionic acid; 1,3- / 1,4-cyclohexanedicarboxylic acid, dicyclohexanemethane-4,4'-dicarboxylic acid, norbornandicarboxylic acid Examples thereof include alicyclic dicarboxylic acids and the like.
  • aliphatic copolymerized polyamide resin examples include caprolactam / hexamethylenediaminoadipic acid copolymer (polyamide 6/66), caprolactam / hexamethylenediaminoazelineic acid copolymer (polyamide 6/69), and caprolactam.
  • caprolactam / hexamethylene diaminoadipic acid copolymer (polyamide 6/66), caprolactam / lauryllactam copolymer (polyamide 6/12), caprolactam / hexamethylenediamino
  • polyamide 6/66/12 At least one selected from the group consisting of the adipic acid / lauryl lactam copolymer (polyamide 6/66/12) is preferable.
  • the aliphatic copolymer amide resin (A) preferably contains 50 mol% or more of the structural unit derived from ⁇ -caprolactam and / or the structural unit derived from 6-aminocaproic acid in 100 mol% of all the constituent units. , 60 mol% or more is more preferable, and 70 mol% or more is further preferable.
  • the aliphatic copolymerized polyamide resin (A) conforms to JIS K-6920, and 1 g of the polyamide resin is dissolved in 100 ml of 96% concentrated sulfuric acid, and the relative viscosity measured at 25 ° C. is a material for molded products that comes into contact with high-pressure gas. From the viewpoint of the fluidity of the above, it is preferably 2.00 to 5.00, more preferably 2.20 to 4.50, and even more preferably 2.40 to 4.20.
  • the relative viscosity of the aliphatic copolymerized polyamide resin (A) is preferably measured as described above. If the relative viscosity of the polyamide resin and its mixing ratio are known, the average value calculated by multiplying the relative viscosity of each polyamide resin by the mixing ratio is the average value calculated by multiplying the relative viscosity of each polyamide resin. It may be the relative viscosity of A). When the relative viscosity is in the above range, it is possible to maintain high fluidity of the material for molded products that comes into contact with the high-pressure gas.
  • the terminal amino group concentration of the aliphatic copolymerized polyamide resin (A) is preferably 30 ⁇ mol / g or more, preferably 30 ⁇ mol / g or more, as the terminal amino group concentration obtained by neutralization titration by dissolving in a mixed solvent of phenol and methanol.
  • the range of 110 ⁇ mol / g or less is more preferable, and the range of 30 ⁇ mol / g or more and 70 ⁇ mol / g or less is further preferable.
  • the terminal amino group concentration is in the above range, the molding processability of the molded product using the material for the molded product that comes into contact with the high-pressure gas is good.
  • the terminal amino group concentration in the polyamide resin is preferably measured by the above neutralization pruning.
  • the average value calculated by multiplying the terminal amino group concentration of each polyamide resin by the mixing ratio is used as the polyamide resin. It may be the terminal amino group concentration of.
  • the content of the aliphatic copolymerized polyamide resin (A) is 90.0% by mass or more, preferably 90.0 to 100% by mass, and more preferably 90 in 100% by mass of the material for molded products that comes into contact with high-pressure gas. It is 0.0% by mass or more and less than 100% by mass, more preferably 93.0 to 99.8% by mass, and particularly preferably 95.0 to 99.0% by mass. Within this range, the high fluidity of the molded material that comes into contact with the high-pressure gas can be maintained high. In addition, it is possible to impart high strength and high gas barrier properties to a molded product manufactured from a molded product material that comes into contact with high-pressure gas.
  • Examples of the equipment for producing the aliphatic copolymerized polyamide resin (A) include a batch type reaction kettle, a single-tank or multi-tank continuous reaction device, a tubular continuous reaction device, a uniaxial kneading extruder, a twin-screw kneading extruder, and the like. Examples thereof include known polyamide resin manufacturing apparatus such as a kneading reaction extruder of the above.
  • a polymerization method a known method such as melt polymerization, solution polymerization or solid phase polymerization can be used, and polymerization can be carried out by repeating normal pressure, reduced pressure and pressurization operations. These polymerization methods can be used alone or in combination as appropriate.
  • the material for the molded product that comes into contact with the high-pressure gas preferably contains at least one additive (B) selected from the group consisting of a heat resistant agent, a nucleating agent, a plasticizer, an inorganic filler and a mold release agent.
  • a heat resistant agent is preferable because the hydrogen tank is exposed to a high temperature in the manufacturing process.
  • additives that also function as a nucleating agent and also as a mold release agent there are additives that also function as a nucleating agent and also as a mold release agent, and additives that also function as a nucleating agent and also function as an inorganic filler. Those additives are included as examples of both, even if they are listed on one side.
  • the content of the additive (B) is preferably more than 0% by mass and 5.0% by mass or less, more preferably 0.1 to 5.0% by mass, and further, in 100% by mass of the material for molded products that comes into contact with high-pressure gas. It is preferably 0.5 to 2.0% by mass. Within this range, the effects of various additives can be exhibited without impairing the functions and characteristics of the molded article material that comes into contact with the high-pressure gas.
  • Heat-resistant agents those that can improve the heat resistance of materials for molded products that come into contact with high-pressure gas can be used, and organic-based and inorganic-based heat-resistant agents can be used according to the purpose.
  • the species may be used alone or in combination of two or more.
  • Organic heat resistant agent examples include phenolic compounds, phosphorus compounds, sulfur compounds, nitrogen compounds and the like. These may be used alone or in combination of two or more.
  • a hindered phenolic compound As the phenolic compound, a hindered phenolic compound is preferably mentioned.
  • the hindered phenol refers to a compound having a substituent at the ortho position (hereinafter, also referred to as “o position”) of the hydroxyl group of the phenol.
  • the substituent at the o-position is not particularly limited, and examples thereof include an alkyl group, an alkoxy group, an amino group, and a halogen.
  • alkyl groups such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec-butyl group, i-butyl group and t-butyl group are preferable, and bulky i-.
  • Propyl group, sec-butyl group, i-butyl group and t-butyl group are more preferable, and t-butyl group is most preferable.
  • the o-position it is preferable that both of the two o-positions with respect to the hydroxyl group of phenol have a substituent.
  • hindered phenol having a t-butyl group at the o-position examples include N, N'-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide) and pentaerythritol.
  • a subphosphate ester compound of hinderedphenol and a hypophobic acid ester compound of hinderedphenol are preferable, and a subphosphate ester compound of hinderedphenol having a t-butyl group at the o-position and an o-position are preferable.
  • a hypophobic acid ester compound of hindered phenol having a t-butyl group is more preferable, and a subphosphate ester compound of hindered phenol having a t-butyl group at the o-position is further preferable.
  • subphosphate ester compound of hindered phenol having a t-butyl group at the o-position examples include tris (2,4-di-t-butylphenyl) phosphite and bis (2,6-di-t). -Butyl-4-methylphenyl) pentaelthritol diphosphite, can be mentioned.
  • the hypophosphite ester compound of hindered phenol having a t-butyl group at the o-position is specifically p, p, p', p'-tetrakis (2,4-di-tert-butylphenoxy)-.
  • Examples thereof include reaction products of biphenyl containing 4,4-biphenyldiphosphine as a main component, phosphorus trichloride and 2,4-di-tert-butylphenol.
  • Examples of commercially available products of these heat resistant agents include "Irgafos 168" (BASF) and "hostanoxP-EPQ” (Clariant Chemicals). These may be used alone or in combination of two or more.
  • sulfur compound examples include distearyl-3,3-thiodipropionate, pentaerythrityltetrakis (3-laurylthiopropionate), and zidodecyl (3,3'-thiodipropionate). .. These may be used alone or in combination of two or more.
  • nitrogen-based compound examples include melamine, melamine cyanurate, benganamine, dimethylolurea, and cyanuric acid. These may be used alone or in combination of two or more.
  • organic heat-resistant agent phenol-based compounds and phosphorus-based compounds are preferable, and hindered phenol-based compounds are more preferable, from the viewpoint of coloring the material.
  • Examples of the type of the inorganic heat-resistant agent for the heat-resistant agent include copper compounds and potassium halide, and examples of the copper compounds include cupric iodide, cupric bromide, cupric bromide, and copper acetate. .. Copper iodide is preferable from the viewpoint of heat resistance and suppression of metal corrosion.
  • Examples of potassium halide include potassium iodide, potassium bromide, potassium chloride and the like. Potassium iodide and / or potassium bromide is preferred from the viewpoint of heat resistance and long-term stability of the inorganic heat resistant agent.
  • a combination of a copper compound and potassium halide is also preferable. These may be used alone or in combination of two or more. Further, it is more effective to use a nitrogen-containing compound such as melamine, melamine cyanurate, benganamin, dimethylolurea or cyanuric acid in combination.
  • nucleating agent promotes the crystallization of the aliphatic copolymerized polyamide resin, and examples thereof include an inorganic nucleating agent and an organic nucleating agent. It may be used in combination.
  • Inorganic nucleating agents include talc, mica, synthetic mica, glass flakes, non-swellable mica, fullerene, carbon nanotubes, carbon black, graphite, metal foil, ceramic beads, clay, sericite, zeolite, bentonite, aluminum hydroxide, Dolomite, kaolin, silica, fine powder silicic acid, long stone powder, potassium titanate, silas balloon, calcium carbonate, magnesium carbonate, barium sulfate, calcium oxide, aluminum oxide, titanium oxide, magnesium oxide, aluminum silicate, silicon oxide, hydroxide
  • Organic nucleating agent examples include carboxylic acid amides, aliphatic carboxylates, fatty alcohols, and carboxylic acid esters.
  • Carboxylic acid amide examples include aliphatic monocarboxylic acid amides such as lauric acid amide, palmitic acid amide, oleic acid amide, stearic acid amide, erucic acid amide, behenic acid amide, ricinoleic acid amide, and 12-hydroxystearic acid amide. , N-lauryllauric acid amide, N-palmityl palmitate amide, N-oleyl palmitate amide, N-oleyl oleate amide, N-oleyl steayl amide, N-stearyl steayl amide, N-stearyl oleate amide.
  • aliphatic monocarboxylic acid amides such as lauric acid amide, palmitic acid amide, oleic acid amide, stearic acid amide, erucic acid amide, behenic acid amide, ricinoleic acid amide, and 12-hydroxystearic acid
  • N-stearyl erucate amide N-stearyl-12-hydroxystearic acid amide, N-oleyl-12-hydroxystearic acid amide, methylol stearate amide, methylolbechenic acid amide, 12-hydroxystearic acid monoethanolamide, etc.
  • N-substituted aliphatic monocarboxylic acid amides methylene bisstearic acid amides, methylene bislauric acid amides, methylene bis-12-hydroxystearic acid amides, ethylene biscapric acid amides, ethylene bislauric acid amides, ethylene bisoleic acid amides, ethylene Bistearic acid amide, ethylene biserukaic acid amide, ethylene bisbechenic acid amide, ethylene bisisostearic acid amide, ethylene bis-12-hydroxystearic acid amide, butylene bisstearic acid amide, hexamethylene bisoleic acid amide, hexamethylene bis Stearate amide, hexamethylene bisbechenic acid amide, hexamethylene bis-12-hydroxystearic acid amide, N, N'-diorail sebacic acid amide, N, N'-diorail adipic acid amide, N, N' -Adilide carb
  • aliphatic carboxylate examples include sodium laurate, potassium laurate, potassium hydrogen laurate, magnesium laurate, calcium laurate, zinc laurate, silver laurate and other laurate; lithium myristate, sodium myristin, myristin.
  • Myristates such as potassium hydrogen acid, magnesium myristate, calcium myristate, zinc myristate, silver myristate; lithium palmitate, potassium palmitate, magnesium palmitate, calcium palmitate, zinc palmitate, copper palmitate, palmitin Palmitates such as lead acid, tarium palmitate, cobalt palmitate; sodium oleate, potassium oleate, magnesium oleate, calcium oleate, zinc oleate, lead oleate, tallium oleate, copper oleate, oleic acid Oleate salts such as nickel; stearate such as sodium stearate, lithium stearate, magnesium stearate, calcium stearate, barium stearate, aluminum stearate, tarium stearate, lead stearate, nickel stearate, berylium stearate, etc.
  • Isostearates such as sodium isostearate, potassium isostearate, magnesium isostearate, calcium isostearate, barium isostearate, aluminum isostearate, zinc isostearate, nickel isostearate; sodium behenate, potassium behenate, magnesium behenate, Behenate salts such as calcium behenate, barium behenate, aluminum behenate, zinc behenate, nickel behenate; sodium montanate, potassium montanate, magnesium montanate, calcium montanate, barium montanate, aluminum montanate, montan Examples thereof include montanic acid such as zinc acid and nickel montanate. These may be used alone or in combination of two or more.
  • aliphatic alcohols include aliphatic monoalcohols such as pentadecyl alcohol, cetyl alcohol, heptadecyl alcohol, stearyl alcohol, nonadecil alcohol, eicosyl alcohol, ceryl alcohol and mericyl alcohol; 1,6 hexanediol, 1, Aliper polyhydric alcohols such as 7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol; cyclopentane-1,2-diol, cyclohexane-1,2- Cyclic alcohols such as diols and cyclohexane-1,4-diols can be mentioned. These may be used alone or in combination of two or more.
  • Carboxylate ester Monocarboxylic acid esters such as butyl propionate, ethyl butyrate, butyl oleate, butyl isostearate, phthalates (monoesters or diesters) such as di-2-ethylhexyl phthalate, diisononyl phthalate, isobutyl adipates, adipic acid Examples thereof include an adipic acid ester (monoester or diester) such as acid di-2-ethylhexyl, and a similar ester (monoester or diester) using sebacic acid or azelaic acid instead of adipic acid.
  • aromatic carboxylic acid esters such as methyl benzoate, ethyl benzoate, methyl toluate, ethyl tolurate, methyl anisate, and ethyl anisate can also be mentioned. These may be used alone or in combination of two or more.
  • Plasticizer a plasticizer that can improve the plasticity of the material for molded products that comes into contact with high-pressure gas can be used.
  • the plasticizer include benzenesulfonic acid alkylamides, toluenesulfonic acid alkylamides, hydroxybenzoic acid alkyl esters and the like.
  • the benzenesulfonic acid alkylamides include benzenesulfonic acid propylamide, benzenesulfonic acid butylamide, benzenesulfonic acid 2-ethylhexylamide and the like.
  • toluenesulfonic acid alkylamides examples include N-ethyl-o-toluenesulfonic acid butylamide, N-ethyl-p-toluenesulfonic acid butylamide, N-ethyl-o-toluenesulfonic acid 2-ethylhexylamide, and N-ethyl-p.
  • -Toluenesulfonic acid 2-ethylhexylamide and the like can be mentioned.
  • hydroxybenzoic acid alkyl esters examples include o-hydroxybenzoic acid ethylhexyl, p-hydroxybenzoic acid ethylhexyl, o-hydroxybenzoic acid hexyldecyl, p-hydroxybenzoic acid hexyldecyl, o-hydroxybenzoic acid ethyldecyl, and p-hydroxybenzoic acid.
  • Ethyldecyl acid acid octyloctylo-hydroxybenzoate, octyloctylp-hydroxybenzoate, decyldodecylo-hydroxybenzoate, decyldodecyl p-hydroxybenzoate, methyl o-hydroxybenzoate, methyl p-hydroxybenzoate, o -Butyl hydroxybenzoate, butyl p-hydroxybenzoate, hexyl o-hydroxybenzoate, hexyl p-hydroxybenzoate, n-octyl o-hydroxybenzoate, n-octyl p-hydroxybenzoate, o-hydroxybenzoic acid Examples thereof include decyl, decyl p-hydroxybenzoate, dodecyl o-hydroxybenzoate, and dodecyl p-hydroxybenzoate. These may be used alone or in combination of two or more.
  • Inorganic filler a material that imparts strength, resistance and new functions to a material for molded products that comes into contact with high-pressure gas, and a material that increases the volume of the material for molded products that comes into contact with high-pressure gas can be used.
  • Inorganic fillers include glass fiber, glass milled fiber, wallastnite, potassium titanate, zinc oxide whisker, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, stone shaving fiber, metal fiber, etc., sericite, kaolin.
  • Mica clay, bentonite, asbestos, talc, alumina silicate and other silicates, montmorillonite, swellable layered silicates such as synthetic mica, alumina, silicon oxide, magnesium oxide, zirconium oxide, titanium oxide, iron oxide and other metals.
  • Examples include compounds, carbonates such as calcium carbonate, magnesium carbonate and dolomite, sulfates such as calcium sulfate and barium sulfate, glass flakes, glass beads, ceramic beads, boron nitride, silicon carbide, calcium phosphate and silica. These may be used alone or in combination of two or more.
  • Mold release agent a mold release agent that makes it easy to remove from the mold when a material for a molded product that comes into contact with a high-pressure gas is poured into a mold and molded can be used.
  • the release agent include terminal modified products of polyalkylene glycol, phosphate esters or subphosphate esters, higher fatty acid monoesters, higher fatty acids or metal salts thereof, carboxylic acid amides, ethylene bisamide compounds, and low molecular weight polyethylenes.
  • examples include compounds such as magnesium silicate and substituted benzilidens sorbitols. These may be used alone or in combination of two or more.
  • terminal-modified products of polyalkylene glycol examples include terminal-modified products of polyethylene glycol and terminal-modified products of polypropylene glycol.
  • More specific examples of phosphate and phosphite esters include aliphatic phosphates and fats such as di (2-ethylhexyl) phosphate, tridecylphosphite, tris (tridecyl) phosphite, and tristearyl phosphite.
  • aromatic subphosphates such as group subphosphates, triphenylphosphite, and diphenylmonodecylphosphite.
  • Examples of the higher fatty acid monoester include myristyl myristate, stearyl stearate, behenyl behenate, oleyl oleate, and hexyldecyl myristate.
  • Examples of the higher fatty acid include myristic acid, palmitic acid, behenic acid, oleic acid, aragidic acid and the like.
  • Examples of the metal salt of the higher fatty acid include zinc stearate, lithium stearate, calcium stearate, aluminum palmitate and the like.
  • Examples of the carboxylic acid amide include those similar to those exemplified as the organic nucleating agent.
  • Examples of the ethylene bisamide compound include ethylene bisstearyl amide and ethylene bispalmityl amide.
  • Examples of the low molecular weight polyethylene include polyethylene having a molecular weight in the range of 500 to 5000, and preferably polyethylene having a molecular weight in the range of 1000 to 3000.
  • Examples of magnesium silicate include those having an average particle size of 1 to 10 ⁇ m.
  • substituted benzylene sorbitol examples include substituted benzylene sorbitol synthesized by dehydration condensation of sorbitol and substituted benzaldehyde under an acid catalyst. These may be used alone or in combination of two or more.
  • Materials for molded products that come into contact with high-pressure gas include dyes, pigments, antioxidants, foaming agents, weathering agents, antistatic agents, flame-retardant agents, and flame-retardant aids other than the above-mentioned components, as long as the object of the present invention is not impaired.
  • a functional agent such as a colorant may be appropriately contained.
  • the content of the arbitrary component is preferably 0.01 to 1% by mass, more preferably 0.05 to 0.5% by mass, based on 100% by mass of the material for molded products that comes into contact with the high-pressure gas.
  • the molded article material that comes into contact with the high-pressure gas is substantially free of polyolefin-based resins.
  • the gas barrier property can be further improved and the linear expansion coefficient can be reduced, which is preferable.
  • substantially free means that it is not included to the extent that it impairs the functions and properties of the molded article material that comes into contact with the high-pressure gas of the present invention and the molded product thereof, or is not included to the extent that it causes a change. It is a meaning and does not exclude that it is included to the extent that its function and characteristics are not impaired.
  • polyolefin-based resin examples include a modified polyolefin-based resin and an unmodified polyolefin-based resin, and more specifically, a carboxy group, an acid anhydride group, a carboxylic acid ester group, a carboxylic acid metal salt, and a carboxylic acid imide group.
  • Polyethylene resins such as polyethylene and polypropylene having or not having functional groups such as carboxylic acid amide groups and epoxy groups; (ethylene and / or propylene) / ⁇ -olefin copolymers, (ethylene).
  • the material for the molded product that comes into contact with the high-pressure gas does not substantially contain a polyamide resin other than the aliphatic copolymerized polyamide resin. It is preferable that the polyamide resin other than the aliphatic copolymerized polyamide resin is not substantially contained, because it is easy to achieve both the flexibility of the molded product material that comes into contact with the high-pressure gas and the gas barrier property.
  • the polyamide resin other than the aliphatic copolymerized polyamide resin include an aliphatic homopolyamide resin, an aromatic homopolyamide resin and an aromatic copolymerized polyamide resin.
  • the aliphatic homopolyamide resin refers to a polyamide resin composed of a structural unit derived from one kind of aliphatic monomer.
  • the aromatic homopolyamide resin refers to an aromatic polyamide resin containing one kind of structural unit derived from an aromatic monomer component, for example, an aliphatic dicarboxylic acid and an aromatic diamine, an aromatic dicarboxylic acid and an aliphatic diamine, or an aromatic. It is a polyamide resin obtained by using group dicarboxylic acids and aromatic diamines as raw materials and polycondensing them.
  • the aromatic copolymerized polyamide resin is an aromatic polyamide resin containing at least one aromatic monomer component, and is a polyamide resin composed of two or more kinds of constituent units.
  • the combination of diamine and dicarboxylic acid is regarded as one kind of monomer by the combination of one kind of diamine and one kind of dicarboxylic acid.
  • polyamide resins examples include polycaprolactam (polyamide 6), polyenantractum (polyamide 7), polyundecanelactam (polyamide 11), polylauryllactam (polyamide 12), polyhexamethylene adipamide (polyamide 66), and the like.
  • Polytetramethylene dodecamide (polyamide 412), polypentamethylene azelamide (polyamide 59), polypentamethylene sebacamide (polyamide 510), polypentamethylene dodecamide (polyamide 512), polyhexamethylene azelamide (polyamide 69) , Polyhexamethylene sebacamide (polyamide 610), polyhexamethylene dodecamide (polyamide 612), polynonamethylene adipamide (polyamide 96), polynonamethylene azelamide (polyamide 99), polynonamethylene sebacamide (polyamide 99).
  • Polynonan methylene terephthalamide (polyamide 9T), polyhexamethylene terephthalamide (polyamide 6T), polyhexamethylene isophthalamide (polyamide 6I), polyhexamethylene adipamide / polyhexamethylene terephthalamide copolymer (polycarbonate 66 / 6T), Polyhexamethylene terephthalamide / polycaproamide copolymer (polyamide 6T / 6), polyhexamethylene adipamide / polyhexamethylene isophthalamide copolymer (polyamide 66 / 6I), polyhexamethylene isophthalamide / polycaproamide copolymer (polyoxide 6I) / 6), Polydodecamide / Polyhexamethylene terephthalamide copolymer (Polyamide 12 / 6T), Polyhexamethylene adipamide / Polyhexamethylene terephthalamide / Polyhexamethylene isophthalamide copolymer (
  • the method for producing a material for a molded product that comes into contact with a high-pressure gas is not particularly limited, and for example, the following method can be applied.
  • a commonly known melt kneader such as a single-screw or twin-screw extruder, a Banbury mixer, a kneader, and a mixing roll is used for mixing the raw materials of each component.
  • a method of blending all raw materials and then melt-kneading a method of blending some raw materials, then melt-kneading, and then blending the remaining raw materials and melt-kneading, or one. Any method may be used, such as a method of mixing the remaining raw materials using a side feeder after blending the raw materials of the portion, but a method of blending all the raw materials and then melt-kneading is preferable.
  • the material for molded products that comes into contact with high-pressure gas has a hydrogen gas permeation coefficient at 55 ° C. and 1 atm measured by a differential pressure method using a circular test piece with a thickness of 2.0 mm and ⁇ 60 mm according to JIS K 7126-1. It is preferably less than 5.0 ⁇ 10 ⁇ 10 cm 3 ⁇ cm / (cm 2 ⁇ s ⁇ cmHg), and less than 3.0 ⁇ 10 ⁇ 10 cm 3 ⁇ cm / (cm 2 ⁇ s ⁇ cmHg).
  • the hydrogen gas permeability coefficient is within the above range, it has excellent gas barrier properties and can be suitably used for molded products that come into contact with high-pressure gas.
  • the tensile yield stress of the ISO Type-A test piece at -60 ° C. measured according to ISO527-2 / 1A / 50 is preferably 128 MPa or less, preferably 125 MPa or less. More preferably, 100 MPa or more is preferable. Further, the tensile yield strain of the ISO Type-A test piece at -60 ° C. measured according to ISO527-2 / 1A / 50 is preferably 9.0% or more, more preferably 10.0% or more.
  • the high-pressure gas has a low temperature of -40 ° C or lower, and if the tensile yield stress at such a low temperature is within the above range, the material will yield during filling with the high-pressure gas, and the molded product will not be damaged. Also, it is not too soft to maintain its shape when the high-pressure gas is released. Further, when the tensile yield strain at a low temperature is within the above range, cracks are suppressed in the molded product even if the molded product is repeatedly filled with and released from high pressure gas. Since both the tensile yield stress and the tensile yield strain are in the above range, the flexibility is excellent, the shape can be maintained even after repeated filling and release of high-pressure gas, and a molded product without damage can be obtained.
  • the tensile yield stress of the ISO Type-A test piece at 23 ° C. measured according to ISO527-2 / 1A / 50 is preferably 78 MPa or less, more preferably 76 MPa or less. It is preferably 50 MPa or more. Further, the tensile yield strain of the ISO Type-A test piece at 23 ° C. measured according to ISO527-2 / 1A / 50 is preferably 4.5% or more, more preferably 5.0% or more.
  • the molded product When the tensile yield stress at room temperature is within the above range, the molded product will not be damaged due to the material yielding when filled with high-pressure gas, and the shape cannot be maintained because it is too soft when the high-pressure gas is discharged. Nor. Further, when the tensile yield strain at room temperature is within the above range, cracks are suppressed in the molded product even if the molded product is repeatedly filled with and released from high pressure gas. Since both the tensile yield stress and the tensile yield strain are in the above range, the flexibility is excellent, the shape can be maintained even after repeated filling and release of high-pressure gas, and a molded product without damage can be obtained.
  • the material for the molded product that comes into contact with the high-pressure gas is used for manufacturing the molded product that comes into contact with the high-pressure gas.
  • a material for a molded product that comes into contact with a high-pressure gas has a high gas barrier property and does not lose its flexibility even when it comes into contact with a high-pressure gas at a low temperature, so that it is suitably used for a molded product that comes into contact with a high-pressure gas.
  • a molded product that comes into contact with high-pressure gas is a molded product that comes into contact with gas at a pressure higher than normal pressure. Since it has the effect of suppressing the generation of defective points when filling and releasing high-pressure gas repeatedly, it is preferably used for molded products that come into contact with gas with a pressure of 20 MPa or more, and depending on the use of molded products that come into contact with gas of 30 MPa or more. It is preferably used. On the other hand, it is preferably used for molded products that come into contact with a gas having a pressure of 200 MPa or less, preferably used for molded products that come into contact with a gas of 150 MPa or less, and more preferably used for molded products that come into contact with a gas of 100 MPa or less.
  • Molded products that come into contact with high-pressure gas include, for example, on-off valves for high-pressure gas, check valves for high-pressure gas, pressure reducing valves for high-pressure gas, pressure control valves for high-pressure gas, seals for high-pressure gas, hoses for high-pressure gas, and high-pressure gas.
  • Tank tank liner for high pressure gas, pipe for high pressure gas, packing for high pressure gas, pressure sensor for high pressure gas, pump for high pressure gas, tube for high pressure gas, regulator for high pressure gas, film for high pressure gas, sheet for high pressure gas, high pressure Examples include gas fibers and high-pressure gas joints.
  • gas examples include hydrogen, nitrogen, oxygen, helium, methane, butane, propane, ethylene, acetylene, ethylene oxide, propylene oxide, and natural gas.
  • Blow molding, extrusion molding, injection molding and rotary molding are preferably mentioned as a method for manufacturing a molded product that comes into contact with high-pressure gas.
  • the method for producing a blow molded product by blow molding from a material for molded products that comes into contact with high-pressure gas is not particularly limited, and a known method can be used.
  • blow molding may be performed after forming a parison using a normal blow molding machine.
  • the preferable resin temperature at the time of forming the parison is preferably in the temperature range of 10 ° C. to 70 ° C. higher than the melting point of the material for molded products that comes into contact with the high-pressure gas.
  • the method for producing an extruded product by extrusion molding from a material for a molded product that comes into contact with high-pressure gas is not particularly limited, and a known method can be used. It is also possible to obtain a multilayer structure by co-extruding with a polyolefin such as polyethylene or another thermoplastic resin and then performing blow molding. In that case, it is also possible to provide an adhesive layer between the material layer for molded products that comes into contact with high-pressure gas and another thermoplastic resin layer such as polyolefin. In the case of a multi-layer structure, the material for molded articles that comes into contact with the high-pressure gas of the present invention can be used for both the outer layer and the inner layer.
  • the method for producing an injection-molded product by injection molding from a material for a molded product that comes into contact with high-pressure gas is not particularly limited, and a known method can be used. For example, a method compliant with ISO294-1 is taken into consideration.
  • the method for producing a rotary molded product by rotary molding from a material for a molded product that comes into contact with high-pressure gas is not particularly limited, and a known method can be used.
  • a known method can be used.
  • the method described in International Publication No. 2019/054109 is referred to.
  • the tensile yield stress and the tensile yield strain of the ISO Type-A test piece were measured at -60 ° C. and a test speed of 50 mm / min.
  • a tensile testing machine model 5567 manufactured by Instron was used.
  • the tensile yield stress and the tensile yield strain of the ISO Type-A test piece were measured at 23 ° C., a relative humidity of 50% RH, and a test speed of 50 mm / min.
  • the testing machine used was an automatic extensometer AGX-AT / SIE-560SA manufactured by Shimadzu Corporation.
  • the flexibility of the molded product was evaluated according to the following criteria. 1) Evaluation of flexibility at -60 ° C ⁇ : Tension yield stress is 128 MPa or less and 100 MPa or more, and tensile yield strain is 9.0% or more ⁇ : Tension yield stress is less than 100 MPa and tensile yield strain is 9.0% or more. X: The tensile yield stress is more than 128 MPa and / or the tensile yield strain is less than 9.0%.
  • ⁇ Hydrogen gas permeability coefficient> According to JIS K7126-1, a hydrogen gas permeation test was conducted at 55 ° C. and 1 atm using a circular test piece having a thickness of 2.0 mm and a thickness of ⁇ 60 mm and adopting a differential pressure method.
  • a differential pressure type gas / vapor permeability measuring device (GTR-30XAD, serial number G2700TF (manufactured by GTR Tech)) was used.
  • Hydrogen gas permeability coefficient is less than 5 ⁇ 10-10 cm3 ⁇ cm / ( cm2 ⁇ s ⁇ cmHg)
  • Hydrogen gas permeability coefficient is 5 ⁇ 10-10 cm3 ⁇ cm / ( cm2 ⁇ s ⁇ cmHg) )that's all
  • Examples 1 to 8, Comparative Examples 1 to 3 Each component shown in Table 1 is melt-kneaded with a twin-screw kneader ZSK32mc twin-screw extruder (manufactured by Coperion), a cylinder diameter of 32 mm, L / D48, a cylinder temperature of 230 ° C., a screw rotation of 200 rpm, and a discharge rate of 50 kg / hrs. Then, material pellets for molded products that came into contact with the target high-pressure gas were prepared. A test piece was prepared using an injection molding machine SE100D-C160S manufactured by Sumitomo Heavy Industries, Ltd. The unit of the composition in the table is mass%, and the entire material for molded products that comes into contact with the high-pressure gas is 100% by mass.
  • Example 1 the tensile yield stress and the tensile yield strain at -60 ° C and 23 ° C are well-balanced, the strength can withstand high pressure, the flexibility can be maintained even at extremely low temperatures, and the hydrogen gas permeability coefficient is low. , High gas barrier property.
  • Comparative Example 1 and Comparative Example 2 using the polyamide 6 the balance between the tensile yield stress and the tensile yield strain at ⁇ 60 ° C. and 23 ° C. is poor, and the flexibility at extremely low temperature is insufficient.
  • Comparative Example 3 using the polyamide 12 has a poor balance between the tensile yield stress and the tensile yield strain at ⁇ 60 ° C. and 23 ° C., cannot withstand high pressure, has a high hydrogen gas permeability coefficient, and has a low gas barrier property.
  • PA6 / 66 (1): Polyamide 6/66, Relative viscosity 3.04, Polyamide 6 85 mol%, Polyamide 66 15 mol% (manufactured by Ube Corporation)
  • PA6 / 12 Polyamide 6/12, Relative viscosity 2.63, Polyamide 6 80 mol%, Polyamide 12 20 mol% (manufactured by Ube Corporation)
  • PA6 / 66/12 Polyamide 6/66/12, Relative viscosity 4.01, Polyamide 6 80 mol%, Polyamide 66 10 mol%, Polyamide 12 10 mol% (manufactured by Ube Corporation)
  • PA12 Polyamide 12, Relative viscosity 1.89 (manufactured by Ube Kosan Co., Ltd.)
  • Organic heat-resistant agent Pentaerythritol-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

ガスバリア性に優れるとともに、ポリオレフィン系樹脂を含むことなく、高圧に耐えうる柔軟性が、室温でも極低温下でも維持されるポリアミド樹脂系の材料を提供する。 本発明の高圧ガスに触れる成形品用材料は、材料100質量%中に、脂肪族共重合ポリアミド樹脂(A)を90.0質量%以上含み、実質的にポリオレフィン系樹脂を含まない。

Description

高圧ガスに触れる成形品用材料
 本発明は、脂肪族共重合ポリアミド樹脂を含む高圧ガスに触れる成形品用材料に関する。
 高圧ガスに触れる成形品としては、例えば水素自動車で使用される水素タンクが知られている。従来、水素自動車で使用される水素タンクは、樽のような外形をした高圧水素貯蔵容器であり、水素ガスに直接接触する金属製又は樹脂製の長尺内層(長尺ライナー)とその外周面に積層された繊維強化樹脂層とから成り立っている。
 水素タンク中の水素は、高圧で-40℃以下の極低温となっている。そのため、水素ガスに直接接触する長尺ライナーには、ガスバリア性に加え、高圧に耐えうる柔軟性と、極低温下でも柔軟性が維持できることが求められている。
 一方、ポリアミド樹脂は、優れた機械的特性、耐熱性、耐薬品性を有することから、エンジニアリングプラスチックスとして様々な用途で展開され、様々な成形方法によって使用されている。従来は、ポリアミド樹脂に、変性ポリオレフィン系樹脂及び/又は未変性ポリオレフィン系樹脂を添加して耐衝撃性を向上させたポリアミド樹脂組成物からなる成形品が使用されていた。
 たとえば、特許文献1には、ポリアミド樹脂、変性ポリオレフィン系樹脂及びポリプロピレン樹脂を含むポリアミド樹脂組成物が、耐熱性及び耐衝撃性に優れることが記載されている。特許文献2には、ポリアミド樹脂及びエチレン共重合体を含むポリアミド樹脂組成物が、溶融時の流動性及び耐衝撃性に優れることが記載されている。
 また、ポリアミド樹脂のガスバリア性を利用した組成物も報告されているが、いずれも変性ポリオレフィン系樹脂及び/又は未変性ポリオレフィン系樹脂を添加した組成物だった。
 たとえば、特許文献3には、ポリアミド樹脂及び変性ポリオレフィン系樹脂を含むポリアミド樹脂組成物が、成形性、耐衝撃性及びガスバリア性に優れることが記載されている。特許文献4には、ポリアミド6、共重合ポリアミド及びオレフィン系共重合体である耐衝撃材を含むポリアミド樹脂組成物が、耐衝撃性及びガスバリア性に優れることが記載されている。特許文献5には、共重合ポリアミドを含むポリアミド樹脂、オレフィンアイオノマー及び耐熱剤を含むポリアミド樹脂組成物が、成形性、耐衝撃性、耐熱性及び高圧水素ガスによる耐ブリスター性に優れることが記載されている。
特開平4-239559号公報 特公昭54-4743号公報 特開2017-88661号公報 特開2009-191871号公報 特開2020-41132号公報
 しかしながら、ポリアミド樹脂に変性ポリオレフィン系樹脂及び/又は未変性ポリオレフィン系樹脂を添加すると、ポリアミド樹脂組成物中で、ポリアミド樹脂相と変性ポリオレフィン系樹脂及び/又は未変性ポリオレフィン系樹脂相が生じ、変性ポリオレフィン系樹脂及び/又は未変性ポリオレフィン系樹脂相はガスバリア性が低下する傾向があった。
 本発明は、ガスバリア性に優れるとともに、ポリオレフィン系樹脂を含むことなく、高圧に耐えうる柔軟性が、室温でも極低温下でも維持されるポリアミド樹脂系の材料を提供することを課題とする。
 本発明は、例えば以下の[1]~[8]である。
[1]材料100質量%中に、脂肪族共重合ポリアミド樹脂(A)を90.0質量%以上含み、実質的にポリオレフィン系樹脂を含まない、高圧ガスに触れる成形品用材料。
[2]材料100質量%中に、脂肪族共重合ポリアミド樹脂を90.0質量%以上100質量%未満(A)並びに耐熱剤、核剤、可塑剤、無機充填材及び離型剤からなる群より選ばれる少なくとも1種の添加剤(B)を0質量%超5.0質量%以下含む[1]の高圧ガスに触れる成形品用材料。
[3]脂肪族共重合ポリアミド樹脂以外のポリアミド樹脂を実質的に含まない[1]又は[2]の高圧ガスに触れる成形品用材料。
[4]脂肪族共重合ポリアミド樹脂(A)が、全構成単位100mol%中、ε-カプロラクタム由来の構成単位及び/又は6-アミノカプロン酸由来の構成単位を50mol%以上含む[1]~[3]のいずれかの高圧ガスに触れる成形品用材料。
[5]脂肪族共重合ポリアミド樹脂(A)が、ポリアミド6/66、ポリアミド6/12及びポリアミド6/66/12からなる群より選ばれる少なくとも1種である[1]~[4]のいずれかの高圧ガスに触れる成形品用材料。
[6]JIS K 7126-1に従い、厚み2.0mm、Φ60mmの円形試験片を用いて、差圧法を採用して測定した55℃、1atmにおける水素ガス透過係数が、5.0×10―10cm・cm/(cm・s・cmHg)未満である[1]~[5]のいずれかの高圧ガスに触れる成形品用材料。
[7]ISO527-2/1A/50に準じて測定したISO Type-A試験片の-60℃における、引張降伏応力が128MPa以下かつ引張降伏ひずみが9.0%以上である[1]~[6]のいずれかの高圧ガスに触れる成形品用材料。
[8][1]~[7]のいずれかの高圧ガスに触れる成形品用材料からなる高圧ガスに触れる成形品。
 本発明の高圧ガスに触れる成形品用材料は、ガスバリア性に優れるとともに、高圧に耐えうる柔軟性が、室温でも極低温下でも維持される。
 本発明は、高圧ガスに触れる成形品用材料100質量%中に、脂肪族共重合ポリアミド樹脂(A)を90.0質量%以上含み、実質的にポリオレフィン系樹脂を含まない、高圧ガスに触れる成形品用材料に関する。
 ここで、「実質的に含まない」とは、本発明の高圧ガスに触れる成形品用材料及びその成形物の機能や特性を損なうような程度で含まない、または変化を及ぼす程度に含まないという意味であり、機能や特性を損なわない程度に含まれることを排除するものではない。
<脂肪族共重合ポリアミド樹脂(A)>
 高圧ガスに触れる成形品用材料は、脂肪族共重合ポリアミド樹脂(A)を含む。
 脂肪族共重合ポリアミド樹脂(A)は、脂肪族モノマー由来の2種以上の構成単位からなるポリアミド樹脂である。脂肪族共重合ポリアミド樹脂(A)は、ジアミンとジカルボン酸の組合せ、ラクタム及びアミノカルボン酸からなる群から選択されるモノマー2種以上の共重合体である。ここで、ジアミンとジカルボン酸の組み合わせは、1種類のジアミンと1種類のジカルボン酸の組合せで1種類のモノマーとみなす。脂肪族には、脂環式も含む。
(ラクタム)
 ラクタムとしては、ε-カプロラクタム、エナントラクタム、ウンデカンラクタム、ドデカンラクタム、α-ピロリドン、α-ピペリドン等が挙げられる。これらの中でも重合生産性の観点から、ε-カプロラクタム、ウンデカンラクタム及びドデカンラクタムからなる群から選択される1種が好ましい。
(アミノカルボン酸)
 また、アミノカルボン酸としては6-アミノカプロン酸、7-アミノヘプタン酸、9-アミノノナン酸、11-アミノウンデカン酸、12-アミノドデカン酸が挙げられる。
(ジアミン)
 ジアミンとしては、エチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ペプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、トリデカンジアミン、テトラデカンジアミン、ペンタデカンジアミン、ヘキサデカンジアミン、ヘプタデカンジアミン、オクタデカンジアミン、ノナデカンジアミン、エイコサンジアミン、2-メチル-1,8-オクタンジアミン、2,2,4/2,4,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン;1,3-/1,4-シクロヘキシルジアミン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)プロパン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、(3-メチル-4-アミノシクロヘキシル)プロパン、1,3-/1,4-ビスアミノメチルシクロヘキサン、5-アミノ-2,2,4-トリメチル-1-シクロペンタンメチルアミン、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン、ビス(アミノプロピル)ピペラジン、ビス(アミノエチル)ピペラジン、ノルボルナンジメチレンジアミン等の脂環式ジアミン等が挙げられる。
(ジカルボン酸)
 ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジオン酸、ドデカンジオン酸、トリデカンジオン酸、テトラデカンジオン酸、ペンタデカンジオン酸、ヘキサデカンジオン酸、オクタデカンジオン酸、エイコサンジオン酸等の脂肪族ジカルボン酸;1,3-/1,4-シクロヘキサンジカルボン酸、ジシクロヘキサンメタン-4,4’-ジカルボン酸、ノルボルナンジカルボン酸等の脂環式ジカルボン酸等が挙げられる。
(脂肪族共重合ポリアミド樹脂)
 脂肪族共重合ポリアミド樹脂(A)として具体的には、カプロラクタム/ヘキサメチレンジアミノアジピン酸共重合体(ポリアミド6/66)、カプロラクタム/ヘキサメチレンジアミノアゼライン酸共重合体(ポリアミド6/69)、カプロラクタム/ヘキサメチレンジアミノセバシン酸共重合体(ポリアミド6/610)、カプロラクタム/ヘキサメチレンジアミノウンデカンジカルボン酸共重合体(ポリアミド6/611)、カプロラクタム/ヘキサメチレンジアミノドデカンジカルボン酸共重合体(ポリアミド6/612)、カプロラクタム/アミノウンデカン酸共重合体(ポリアミド6/11)、カプロラクタム/ラウリルラクタム共重合体(ポリアミド6/12)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ラウリルラクタム共重合体(ポリアミド6/66/12)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ヘキサメチレンジアミノセバシン酸共重合体(ポリアミド6/66/610)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ヘキサメチレンジアミノドデカンジカルボン酸共重合体(ポリアミド6/66/612)等の脂肪族共重合ポリアミドが挙げられる。これらの脂肪族共重合ポリアミド樹脂(A)は、各々単独で又は2種以上の混合物として用いることができる。
 これらの脂肪族共重合ポリアミド樹脂(A)の中でも、カプロラクタム/ヘキサメチレンジアミノアジピン酸共重合体(ポリアミド6/66)、カプロラクタム/ラウリルラクタム共重合体(ポリアミド6/12)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ラウリルラクタム共重合体(ポリアミド6/66/12)からなる群より選ばれる少なくとも1種が好ましい。
 脂肪族共重合アミド樹脂(A)は、ガスバリア性の観点から、全構成単位100mol%中、ε-カプロラクタム由来の構成単位及び/又は6-アミノカプロン酸由来の構成単位を50mol%以上含むことが好ましく、60mol%以上含むことがより好ましく、70mol%以上含むことがさらに好ましい。
(相対粘度)
 脂肪族共重合ポリアミド樹脂(A)は、JIS K-6920に準拠し、ポリアミド樹脂1gを96%濃硫酸100mlに溶解させ、25℃で測定される相対粘度が、 高圧ガスに触れる成形品用材料の流動性の観点から、2.00~5.00あることが好ましく、2.20~4.50であることがより好ましく、2.40~4.20であることがさらに好ましい。
 脂肪族共重合ポリアミド樹脂(A)が、相対粘度が異なる2種以上のポリアミド樹脂含む場合、脂肪族共重合ポリアミド樹脂(A)における相対粘度は、上記内容で測定されるのが好ましいが、それぞれのポリアミド樹脂の相対粘度とその混合比が判明している場合、それぞれのポリアミド樹脂の相対粘度にその混合比を乗じた値を合計して算出される平均値を、脂肪族共重合ポリアミド樹脂(A)の相対粘度としてもよい。相対粘度が前記範囲であると、高圧ガスに触れる成形品用材料の高い流動性を高く保つことが可能である。
(末端アミノ基濃度)
 脂肪族共重合ポリアミド樹脂(A)の末端アミノ基濃度は、フェノールとメタノールの混合溶媒に溶解させ中和滴定で求められる末端アミノ基濃度として、30μmol/g以上であることが好ましく、30μmol/g以上110μmol/g以下の範囲がより好ましく、30μmol/g以上70μmol/g以下の範囲がさらに好ましい。末端アミノ基濃度が前記範囲であると、高圧ガスに触れる成形品用材料を用いた成形物の成形加工性が良好である。
 脂肪族共重合ポリアミド樹脂(A)が、末端アミノ基濃度の異なる2種以上のポリアミド樹脂を含む場合、ポリアミド樹脂における末端アミノ基濃度は、上記中和摘定で測定されるのが好ましいが、それぞれのポリアミド樹脂の末端アミノ基濃度とその混合比が判明している場合、それぞれのポリアミド樹脂の末端アミノ基濃度にその混合比を乗じた値を合計して算出される平均値を、ポリアミド樹脂の末端アミノ基濃度としてもよい。
 高圧ガスに触れる成形品用材料100質量%中、脂肪族共重合ポリアミド樹脂(A)の含有量は、90.0質量%以上であり、好ましくは90.0~100質量%、より好ましくは90.0質量%以上100質量%未満、さらに好ましくは93.0~99.8質量%、特に好ましくは95.0~99.0質量%である。この範囲にあることで、高圧ガスに触れる成形品用材料の高い流動性を高く保つことができる。また、高圧ガスに触れる成形品用材料から製造される成形品に対して、高い強度、高いガスバリア性を与えることができる。
(ポリアミド樹脂の製造)
 脂肪族共重合ポリアミド樹脂(A)の製造装置としては、バッチ式反応釜、一槽式ないし多槽式の連続反応装置、管状連続反応装置、一軸型混練押出機、二軸型混練押出機等の混練反応押出機等、公知のポリアミド樹脂製造装置が挙げられる。重合方法としては溶融重合、溶液重合や固相重合等の公知の方法を用い、常圧、減圧、加圧操作を繰り返して重合することができる。これらの重合方法は単独で、あるいは適宜、組合せて用いることができる。
<添加剤(B)>
 高圧ガスに触れる成形品用材料は、耐熱剤、核剤、可塑剤、無機充填材及び離型剤からなる群より選ばれる少なくとも1種の添加剤(B)を含むことが好ましい。添加剤(B)の中でも、水素タンクは製造工程において高温に曝されることから、耐熱剤が好ましい。
 以下に例示するものの中では、例えば核剤としても機能し、かつ離型剤としても機能する添加剤、核剤としても機能し、かつ無機充填材としても機能する添加剤等が存在するが、それらの添加剤は、片方に記載されている場合であっても、両方の例として含まれる。
 高圧ガスに触れる成形品用材料100質量%中、添加剤(B)の含有量は、好ましくは0質量%超5.0質量%以下 、より好ましくは0.1~5.0質量%、さらに好ましくは0.5~2.0質量%である。この範囲にあることで、高圧ガスに触れる成形品用材料の機能・特性を損なうことなく、各種添加剤の効果を発現することができる。
(1)耐熱剤
 耐熱剤としては、高圧ガスに触れる成形品用材料の耐熱性を向上できるものが使用でき、有機系、無機系の耐熱剤をその目的に応じて使用でき、これらは、1種単独で用いても、2種以上組み合わせて用いてもよい。
<有機系耐熱剤>
 有機系耐熱剤としては、フェノール系化合物、リン系化合物、イオウ系化合物、窒素系化合物等を挙げることができる。これらは、1種単独で用いても、2種以上組み合わせて用いてもよい。
(フェノール系化合物)
 フェノール系化合物としてはヒンダードフェノール系化合物が好ましく挙げられる。本明細書において、ヒンダードフェノールとは、フェノールの水酸基のオルト位(以下、「o位」ともいう)に置換基を有する化合物をいう。o位の置換基としては、特に限定されないが、アルキル基、アルコキシ基、アミノ基、ハロゲン等が挙げられる。これらの中でも、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、i-ブチル基、t-ブチル基等のアルキル基が好ましく、嵩高いi-プロピル基、sec-ブチル基、i-ブチル基、t-ブチル基がより好ましく、t-ブチル基が最も好ましい。また、o位は、フェノールの水酸基に対する2つのo位がいずれも置換基を有することが好ましい。
 o位にt-ブチル基を有するヒンダードフェノールは、具体的には、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナムアミド)、ペンタエリスリトール-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、3,9-ビス[2-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、を挙げることができる。これらは1種単独で用いても2種以上組み合わせて用いてもよい。これらの耐熱剤の市販品としては、「Irganox1010」(BASF社)、「Sumilizer GA-80」(住友化学社)が挙げられる。これらは1種単独で用いても、2種以上組み合わせて用いてもよい。
(リン系化合物)
 リン系化合物としてはヒンダードフェノールの亜リン酸エステル化合物、ヒンダードフェノールの次亜リン酸エステル化合物が好ましく、o位にt-ブチル基を有するヒンダードフェノールの亜リン酸エステル化合物、o位にt-ブチル基を有するヒンダードフェノールの次亜リン酸エステル化合物がより好ましく、o位にt-ブチル基を有するヒンダードフェノールの亜リン酸エステル化合物がさらに好ましい。o位にt-ブチル基を有するヒンダードフェノールの亜リン酸エステル化合物は、具体的には、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエルスリトールジフォスファイト、を挙げることができる。o位にt-ブチル基を有するヒンダードフェノールの次亜リン酸エステル化合物は、具体的には、p,p,p’,p’-テトラキス(2,4-ジ-tert-ブチルフェノキシ)-4,4-ビフェニルジホスフィンを主成分とするビフェニル、三塩化リン及び2,4-ジ-tert-ブチルフェノールの反応生成物、を挙げることができる。これらの耐熱剤の市販品としては、「Irgafos168」(BASF社)、「hostanoxP-EPQ」(クラリアントケミカルズ社)が挙げられる。これらは1種単独で用いても、2種以上組み合わせて用いてもよい。
(イオウ系化合物)
 イオウ系化合物としては、ジステアリル-3,3-チオジプロピオネート、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)、ジドデシル(3,3’-チオジプロピオネート)、を挙げることができる。これらは、1種単独で用いても、2種以上組み合わせて用いてもよい。
(窒素系化合物)
 窒素系化合物としては、メラミン、メラミンシアヌレート、ベングアナミン、ジメチロール尿素、シアヌール酸を挙げることができる。これらは、1種単独で用いても、2種以上組み合わせて用いてもよい。
 有機系耐熱剤としては、材料の着色の観点から、フェノール系化合物及びリン系化合物が好ましく、ヒンダードフェノール系化合物がより好ましい。
<無機系耐熱剤>
 耐熱剤の無機系耐熱剤の種類としては、銅化合物やハロゲン化カリウムであり、銅化合物としては、ヨウ化第一銅、臭化第一銅、臭化第二銅、酢酸銅等が挙げられる。耐熱性と金属腐食の抑制の観点からヨウ化第一銅が好ましい。ハロゲン化カリウムは、ヨウ化カリウム、臭化カリウム、塩化カリウム等が挙げられる。耐熱性と無機耐熱剤の長期安定性の観点からヨウ化カリウム及び/又は臭化カリウムが好ましい。また、銅化合物とハロゲン化カリウムとの組み合わせも好ましい。これらは、1種単独で用いても、2種以上組み合わせて用いてもよい。
 更に、メラミン、メラミンシアヌレート、ベングアナミン、ジメチロール尿素又はシアヌール酸などの含窒素化合物を併用するとより効果的である。
(2)核剤
 核剤は、脂肪族共重合ポリアミド樹脂の結晶化を促進するものであり、無機核剤や有機核剤が挙げられ、これらは、1種単独で用いても、2種以上組み合わせて用いてもよい。
<無機核剤>
 無機核剤としては、タルク、マイカ、合成マイカ、ガラスフレーク、非膨潤性雲母、フラーレン、カーボンナノチューブ、カーボンブラック、グラファイト、金属箔、セラミックビーズ、クレー、セリサイト、ゼオライト、ベントナイト、水酸化アルミニウム、ドロマイト、カオリン、シリカ、微粉ケイ酸、長石粉、チタン酸カリウム、シラスバルーン、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化カルシウム、酸化アルミニウム、酸化チタン、酸化マグネシウム、ケイ酸アルミニウム、酸化ケイ素、水酸化マグネシウム、石膏、ノバキュライト、ドーソナイト、白土、ガラス繊維、炭素繊維、グラファイト繊維、金属繊維、チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカー、マグネシウム系ウイスカー、珪素系ウイスカー、ワラステナイト、セピオライト、スラグ繊維、ゾノライト、エレスタダイト、石膏繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化硅素繊維及び硼素繊維等が挙げられる。これらは、1種単独で用いても、2種以上組み合わせて用いてもよい。
<有機核剤>
 有機核剤としては、カルボン酸アミド、脂肪族カルボン酸塩、脂肪族アルコール、カルボン酸エステルなどが挙げられる。
(カルボン酸アミド)
 カルボン酸アミドとしては、例えば、ラウリン酸アミド、パルミチン酸アミド、オレイン酸アミド、ステアリン酸アミド、エルカ酸アミド、ベヘン酸アミド、リシノール酸アミド、12-ヒドロキシステアリン酸アミドなどの脂肪族モノカルボン酸アミド、N-ラウリルラウリン酸アミド、N-パルミチルパルミチン酸アミド、N-オレイルパルミチン酸アミド、N-オレイルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-ステアリルエルカ酸アミド、N-ステアリル-12-ヒドロキシステアリン酸アミド、N-オレイル-12-ヒドロキシステアリン酸アミド、メチロールステアリン酸アミド、メチロールベヘン酸アミド、12-ヒドロキシステアリン酸モノエタノールアミドなどのN-置換脂肪族モノカルボン酸アミド、メチレンビスステアリン酸アミド、メチレンビスラウリン酸アミド、メチレンビス-12-ヒドロキシステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスステアリン酸アミド、エチレンビスエルカ酸アミド、エチレンビスベヘン酸アミド、エチレンビスイソステアリン酸アミド、エチレンビス-12-ヒドロキシステアリン酸アミド、ブチレンビスステアリン酸アミド、ヘキサメチレンビスオレイン酸アミド、へキサメチレンビスステアリン酸アミド、へキサメチレンビスベヘン酸アミド、へキサメチレンビス-12-ヒドロキシステアリン酸アミド、N,N’-ジオレイルセバシン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどの脂肪族カルボン酸ビスアミドや、N,N’-ジシクロヘキサンカルボニル-1,4-ジアミノシクロヘキサン、1,4-シクロヘキサンジカルボアミド、1,4-シクロヘキサンジカルボン酸ジアミノシクロヘキサン、1,2,3,4-ブタンテトラカルボン酸テトラシクロヘキシルアミド、N,N’-ビス(3-ヒドロキシプロピル)-1,4-クバンジカルボアミド、N,N’-(1,4-シクロヘキサンジイル)ビス(アセトアミド)、トリス(メチルシクロヘキシル)プロパントリカルボキサミドなどの脂環式カルボン酸アミドや、1,4-シクロヘキサンジカルボン酸ジアニリド、1,4-シクロヘキサンジカルボン酸ジベンジルアミド、トリメシン酸トリス(t-ブチルアミド)、トリメシン酸トリシクロヘキシルアミド、トリメシン酸トリ(2-メチルシクロヘキシルアミド)、トリメシン酸トリ(4-シクロヘキシルアミド)、2,6-ナフタレン酸ジカルボン酸ジシクロヘキシルアミド、N,N’-ジベンジルシクロヘキサン-1,4-ジカルボアミド、N,N’-ジステアリルイソフタル酸アミド、N,N’-ジステアリルテレフタル酸アミド、m-キシリレンビスステアリン酸アミド、m-キシリレンビス-12-ヒドロキシステアリン酸アミドなどの芳香族カルボン酸アミドが挙げられる。これらは、1種単独で用いても、2種以上組み合わせて用いてもよい。
(脂肪族カルボン酸塩)
 脂肪族カルボン酸塩としては、ラウリン酸ナトリウム、ラウリン酸カリウム、ラウリン酸水素カリウム、ラウリン酸マグネシウム、ラウリン酸カルシウム、ラウリン酸亜鉛、ラウリン酸銀等のラウリン酸塩;ミリスチン酸リチウム、ミリスチン酸ナトリウム、ミリスチン酸水素カリウム、ミリスチン酸マグネシウム、ミリスチン酸カルシウム、ミリスチン酸亜鉛、ミリスチン酸銀等のミリスチン酸塩;パルミチン酸リチウム、パルミチン酸カリウム、パルミチン酸マグネシウム、パルミチン酸カルシウム、パルミチン酸亜鉛、パルミチン酸銅、パルミチン酸鉛、パルミチン酸タリウム、パルミチン酸コバルト等のパルミチン酸塩;オレイン酸ナトリウム、オレイン酸カリウム、オレイン酸マグネシウム、オレイン酸カルシウム、オレイン酸亜鉛、オレイン酸鉛、オレイン酸タリウム、オレイン酸銅、オレイン酸ニッケル等のオレイン酸塩;ステアリン酸ナトリウム、ステアリン酸リチウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸アルミニウム、ステアリン酸タリウム、ステアリン酸鉛、ステアリン酸ニッケル、ステアリン酸ベリリウム等のステアリン酸塩;イソステアリン酸ナトリウム、イソステアリン酸カリウム、イソステアリン酸マグネシウム、イソステアリン酸カルシウム、イソステアリン酸バリウム、イソステアリン酸アルミニウム、イソステアリン酸亜鉛、イソステアリン酸ニッケル等のイソステアリン酸塩;ベヘニン酸ナトリウム、ベヘニン酸カリウム、ベヘニン酸マグネシウム、ベヘニン酸カルシウム、ベヘニン酸バリウム、ベヘニン酸アルミニウム、ベヘニン酸亜鉛、ベヘニン酸ニッケル等のベヘニン酸塩;モンタン酸ナトリウム、モンタン酸カリウム、モンタン酸マグネシウム、モンタン酸カルシウム、モンタン酸バリウム、モンタン酸アルミニウム、モンタン酸亜鉛、モンタン酸ニッケル等のモンタン酸が挙げられる。これらは、1種単独で用いても、2種以上組み合わせて用いてもよい。
(脂肪族アルコール)
 脂肪族アルコールとしては、ペンタデシルアルコール、セチルアルコール、ヘプタデシルアルコール、ステアリルアルコール、ノナデシルアルコール、エイコシルアルコール、セリルアルコール、メリシルアルコール等の脂肪族モノアルコール類;1,6ヘキサンジオール、1,7-へプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール等の脂肪族多価アルコール類;シクロペンタン-1,2-ジオール、シクロヘキサン-1,2-ジオール、シクロヘキサン-1,4-ジオール等の環状アルコール類が挙げられる。これらは、1種単独で用いても、2種以上組み合わせて用いてもよい。
(カルボン酸エステル)
 プロピオン酸ブチル、酪酸エチル、オレイン酸ブチル、イソステアリン酸ブチルなどのモノカルボン酸エステルや、フタル酸ジ-2-エチルヘキシル、フタル酸ジイソノニルなどのフタル酸エステル(モノエステルまたはジエステル)、アジピン酸イソブチル、アジピン酸ジ-2-エチルヘキシルなどのアジピン酸エステル(モノエステルまたはジエステル)、アジピン酸の代わりにセバシン酸やアゼライン酸を用いた同様のエステル(モノエステルまたはジエステル)などを挙げることができる。また、例えば、安息香酸メチル、安息香酸エチル、トルイル酸メチル、トルイル酸エチル、アニス酸メチル、アニス酸エチルなどの芳香族カルボン酸エステルも挙げられる。これらは、1種単独で用いても、2種以上組み合わせて用いてもよい。
(3)可塑剤
 可塑剤としては、高圧ガスに触れる成形品用材料の可塑性を向上できるものが使用できる。
 可塑剤としては、ベンゼンスルホン酸アルキルアミド類、トルエンスルホン酸アルキルアミド類、ヒドロキシ安息香酸アルキルエステル類等が挙げられる。 
 ベンゼンスルホン酸アルキルアミド類としては、ベンゼンスルホン酸プロピルアミド、ベンゼンスルホン酸ブチルアミド、ベンゼンスルホン酸2-エチルヘキシルアミド等が挙げられる。
 トルエンスルホン酸アルキルアミド類としては、N-エチル-o-トルエンスルホン酸ブチルアミド、N-エチル-p-トルエンスルホン酸ブチルアミド、N-エチル-o-トルエンスルホン酸2-エチルヘキシルアミド、N-エチル-p-トルエンスルホン酸2-エチルヘキシルアミド等が挙げられる。
 ヒドロキシ安息香酸アルキルエステル類としては、o-ヒドロキシ安息香酸エチルヘキシル、p-ヒドロキシ安息香酸エチルヘキシル、o-ヒドロキシ安息香酸ヘキシルデシル、p-ヒドロキシ安息香酸ヘキシルデシル、o-ヒドロキシ安息香酸エチルデシル、p-ヒドロキシ安息香酸エチルデシル、o-ヒドロキシ安息香酸オクチルオクチル、p-ヒドロキシ安息香酸オクチルオクチル、o-ヒドロキシ安息香酸デシルドデシル、p-ヒドロキシ安息香酸デシルドデシル、o-ヒドロキシ安息香酸メチル、p-ヒドロキシ安息香酸メチル、o-ヒドロキシ安息香酸ブチル、p-ヒドロキシ安息香酸ブチル、o-ヒドロキシ安息香酸ヘキシル、p-ヒドロキシ安息香酸ヘキシル、o-ヒドロキシ安息香酸n-オクチル、p-ヒドロキシ安息香酸n-オクチル、o-ヒドロキシ安息香酸デシル、p-ヒドロキシ安息香酸デシル、o-ヒドロキシ安息香酸ドデシル、p-ヒドロキシ安息香酸ドデシル等が挙げられる。
 これらは、1種単独で用いても、2種以上組み合わせて用いてもよい。
(4)無機充填材
 無機充填材としては、高圧ガスに触れる成形品用材料に強度、耐性及び新しい機能を付与するもの、高圧ガスに触れる成形品用材料の体積を増量するものが使用できる。
  無機充填材としては、ガラス繊維、ガラスミルドファイバー、ワラストナイト、チタン酸カリウィスカ、酸化亜鉛ウィスカ、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維など、セリサイト、カオリン、マイカ、クレー、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、モンモリロナイト、合成雲母などの膨潤性の層状珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、ガラスフレーク、ガラス・ビーズ、セラミックビ-ズ、窒化ホウ素、炭化珪素、リン酸カルシウムおよびシリカが挙げられる。これらは、1種単独で用いても、2種以上組み合わせて用いてもよい。
(5)離型剤
 離型剤としては、高圧ガスに触れる成形品用材料を型に流し込み成形する際に、型から取り出しやすくするものを使用できる。
 離型剤としては、ポリアルキレングリコールの末端変性物、リン酸エステル類又は亜リン酸エステル類、高級脂肪酸モノエステル類、高級脂肪酸又はその金属塩、カルボン酸アミド、エチレンビスアミド化合物、低分子量ポリエチレン、珪酸マグネシウム及び置換ベンジリデンソルビトール類などの化合物が挙げられる。これらは、1種単独で用いても、2種以上組み合わせて用いてもよい。
 ポリアルキレングリコールの末端変性物の例としては、ポリエチレングリコールの末端変性物、ポリプロピレングリコールの末端変性物などが挙げられる。
 リン酸エステル及び亜リン酸エステルのより具体的な例としては、ジ(2-エチルヘキシル)ホスフェート、トリデシルホスファイト、トリス(トリデシル)ホスファイト、トリステアリルホスファイトなどの脂肪族リン酸エステル及び脂肪族亜リン酸エステル、トリフェニルホスファイト、ジフェニルモノデシルホスファイトなどの芳香族亜リン酸エステルなどが挙げられる。 
 高級脂肪酸モノエステルとしては、ミリスチン酸ミリスチル、ステアリン酸ステアリル、ベヘニン酸ベヘニル、オレイン酸オレイル、ミリスチン酸ヘキシルデシルなどが挙げられる。
 高級脂肪酸としては、ミリスチン酸、パルミチン酸、ベヘニン酸、オレイン酸、アラギジン酸などが挙げられる。
 高級脂肪酸の金属塩としては、ステアリン酸亜鉛、ステアリン酸リチウム、ステアリン酸カルシウム、パルミチン酸アルミニウムなどが挙げられる。
 カルボン酸アミドとしては、有機核剤として例示したものと同様のものが挙げられる。
 エチレンビスアミド化合物としては、エチレンビスステアリルアミド、エチレンビスパルミチルアミドなどが挙げられる。 
 低分子量ポリエチレンとしては、分子量が500~5000の範囲内であるポリエチレンが挙げられ、分子量が1000~3000の範囲のポリエチレンが好ましく挙げられる。
 珪酸マグネシウムとしては、平均粒径1~10μmのものが挙げられる。
 置換ベンジリデンソルビトール類としては、ソルビトールと置換ベンズアルデヒドとの酸触媒下での脱水縮合により合成される置換ベンジリデンソルビトールが挙げられる。
 これらは、1種単独で用いても、2種以上組み合わせて用いてもよい。
(その他の成分)
 高圧ガスに触れる成形品用材料は、本発明の目的を損なわない範囲で、前記成分以外の、染料、顔料、酸化防止剤、発泡剤、耐候剤、帯電防止剤、難燃剤、難燃助剤、着色剤等の機能性付与剤等を適宜含有していてもよい。
 任意の成分の含有量は、 高圧ガスに触れる成形品用材料100質量%中、好ましくは0.01~1質量%、より好ましくは0.05~0.5質量%である。
 高圧ガスに触れる成形品用材料は、実質的にポリオレフィン系樹脂を含まない。実質的にポリオレフィン系樹脂を含まないことで、ガスバリア性をより向上でき、線膨張係数も小さくできるので好ましい。ここで、「実質的に含まない」とは、本発明の高圧ガスに触れる成形品用材料及びその成形物の機能や特性を損なうような程度で含まない、または変化を及ぼす程度に含まないという意味であり、機能や特性を損なわない程度に含まれることを排除するものではない。
 そのようなポリオレフィン系樹脂としては、変性ポリオレフィン系樹脂及び未変性ポリオレフィン系樹脂が挙げられ、より具体的にはカルボキシ基、酸無水物基、カルボン酸エステル基、カルボン酸金属塩、カルボン酸イミド基、カルボン酸アミド基、エポキシ基等などの官能基を有する又はこれらの官能基を有さないポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;(エチレン及び/又はプロピレン)/α-オレフィン系共重合体、(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又はα,β-不飽和カルボン酸エステル)系共重合体などの共重合ポリオレフィン系樹脂;(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又はα,β-不飽和カルボン酸エステル)系共重合体の金属塩などのオレフィン系アイオノマー等が挙げられる。
 高圧ガスに触れる成形品用材料は、脂肪族共重合ポリアミド樹脂以外のポリアミド樹脂を実質的に含まないことが好ましい。脂肪族共重合ポリアミド樹脂以外のポリアミド樹脂を実質的に含まないと、高圧ガスに触れる成形品用材料の柔軟性とガスバリア性の両立を図ることが容易となり好ましい。
 脂肪族共重合ポリアミド樹脂以外のポリアミド樹脂としては、脂肪族ホモポリアミド樹脂、芳香族ホモポリアミド樹脂及び芳香族共重合ポリアミド樹脂が挙げられる。ここで、脂肪族ホモポリアミド樹脂とは、1種類の脂肪族モノマー由来の構成単位からなるポリアミド樹脂をいう。芳香族ホモポリアミド樹脂とは、芳香族系モノマー成分由来の構成単位を1種類含む芳香族ポリアミド樹脂をいい、例えば、脂肪族ジカルボン酸と芳香族ジアミン、芳香族ジカルボン酸と脂肪族ジアミン、または芳香族ジカルボン酸と芳香族ジアミンを原料とし、これらの重縮合によって得られるポリアミド樹脂である。芳香族共重合ポリアミド樹脂とは、芳香族系モノマー成分を少なくとも1成分含む芳香族ポリアミド樹脂であって、2種以上の構成単位からなるポリアミド樹脂である。ここで、ジアミンとジカルボン酸の組み合わせは、1種類のジアミンと1種類のジカルボン酸の組合せで1種類のモノマーとみなす。
 そのようなポリアミド樹脂としては、ポリカプロラクタム(ポリアミド6)、ポリエナントラクタム(ポリアミド7)、ポリウンデカンラクタム(ポリアミド11)、ポリラウリルラクタム(ポリアミド12)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリテトラメチレンドデカミド(ポリアミド412)、ポリペンタメチレンアゼラミド(ポリアミド59)、ポリペンタメチレンセバカミド(ポリアミド510)、ポリペンタメチレンドデカミド(ポリアミド512)、ポリヘキサメチレンアゼラミド(ポリアミド69)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリノナメチレンアジパミド(ポリアミド96)、ポリノナメチレンアゼラミド(ポリアミド99)、ポリノナメチレンセバカミド(ポリアミド910)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンアジパミド(ポリアミド106)、ポリデカメチレンアゼラミド(ポリアミド109)、ポリデカメチレンデカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、ポリドデカメチレンアジパミド(ポリアミド126)、ポリドデカメチレンアゼラミド(ポリアミド129)、ポリドデカメチレンセバカミド(ポリアミド1210)、ポリドデカメチレンドデカミド(ポリアミド1212)、ポリアミド122等の脂肪族ホモポリアミド樹脂;
 ポリノナンメチレンテレフタルアミド(ポリアミド9T) 、ポリヘキサメチレンテレフタルアミド(ポリアミド6T)、ポリヘキサメチレンイソフタルアミド(ポリアミド6I)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ポリアミド66/6T)、ポリヘキサメチレンテレフタルアミド/ポリカプロアミドコポリマー(ポリアミド6T/6)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6I)、ポリヘキサメチレンイソフタルアミド/ポリカプロアミドコポリマー(ポリアミド6I/6)、ポリドデカミド/ポリヘキサメチレンテレフタラミドコポリマー(ポリアミド12/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6T/6I)、ポリヘキサメチレンアジパミド/ポリカプロアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6/6I)、ポリヘキサメチレンテレフタルアミド/ ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリ(2-メチルペンタメチレンテレフタルアミド)コポリマー(ポリアミド6T/M5T)、ポリキシリレンアジパミド(ポリアミドMXD6)などの芳香族ホモポリアミド樹脂または芳香族共重合ポリアミド樹脂が挙げられる。
[高圧ガスに触れる成形品用材料の製造方法]
 高圧ガスに触れる成形品用材料の製造方法は特に制限されるものではなく、例えば次の方法を適用することができる。
 各成分の原材料の混合には、単軸、二軸押出機、バンバリーミキサー、ニーダー、及びミキシングロールなど通常公知の溶融混練機が用いられる。
 例えば、二軸押出機を使用する場合は、全ての原材料を配合後、溶融混練する方法、一部の原材料を配合後、溶融混練し、更に残りの原材料を配合し溶融混練する方法、あるいは一部の原材料を配合後、溶融混練中にサイドフィーダーを用いて残りの原材料を混合する方法など、いずれの方法を用いてもよいが、全ての原材料を配合後、溶融混練する方法が好ましい。
(高圧ガスに触れる成形品用材料の水素ガス透過係数)
 高圧ガスに触れる成形品用材料は、JIS K 7126-1に従い、厚み2.0mm、Φ60mmの円形試験片を用いて、差圧法を採用して測定した55℃、1atmにおける水素ガス透過係数が、5.0×10-10cm・cm/(cm・s・cmHg)未満であることが好ましく、3.0×10-10cm・cm/(cm・s・cmHg)以下であることがより好ましく、2.0×10-10cm・cm/(cm・s・cmHg)以下であることがさらに好ましい。水素ガス透過係数が前記範囲にあると、ガスバリア性に優れ、高圧ガスに触れる成形品に好適に使用することができる。
(高圧ガスに触れる成形品用材料の低温柔軟性)
 高圧ガスに触れる成形品用材料は、ISO527-2/1A/50に準じて測定した、ISO Type-A試験片の-60℃における引張降伏応力が、128MPa以下であることが好ましく、125MPa以下がより好ましく、100MPa以上が好ましい。
 また、ISO527-2/1A/50に準じて測定した、ISO Type-A試験片の-60℃における引張降伏ひずみが、9.0%以上が好ましく、10.0%以上がより好ましい。
 高圧ガスは-40℃以下の低温であり、このような低温での引張降伏応力が、前記範囲にあると、高圧ガス充填時に、材料が降伏してしまうことにより成形品が破損することがなく、また、高圧ガス放圧時に柔らかすぎて形状を維持できないこともない。
 また、低温での引張降伏ひずみが、前記範囲にあると、成形品に高圧ガスの充填及び放圧を繰り返しても、成形品に亀裂が生じることが抑制される。
 引張降伏応力及び引張降伏ひずみがともに前記範囲にあることにより柔軟性に優れ、高圧ガスの充填及び放圧を繰り返しても形状を維持でき、破損のない成形品を得られる。
(高圧ガスに触れる成形品用材料の室温柔軟性)
 高圧ガスに触れる成形品用材料は、ISO527-2/1A/50に準じて測定した、ISO Type-A試験片の23℃における引張降伏応力が、78MPa以下であることが好ましく、76MPa以下がより好ましく、50MPa以上が好ましい。
 また、ISO527-2/1A/50に準じて測定した、ISO Type-A試験片の23℃における引張降伏ひずみが、4.5%以上が好ましく、5.0%以上がより好ましい。
 室温での引張降伏応力が前記範囲にあると、高圧ガス充填時に、材料が降伏してしまうことにより成形品が破損することがなく、また、高圧ガス放圧時に柔らかすぎて形状を維持できないこともない。
 また、室温での引張降伏ひずみが、前記範囲にあると、成形品に高圧ガスの充填及び放圧を繰り返しても、成形品に亀裂が生じることが抑制される。
 引張降伏応力及び引張降伏ひずみがともに前記範囲にあることにより柔軟性に優れ、高圧ガスの充填及び放圧を繰り返しても形状を維持でき、破損のない成形品を得られる。
(高圧ガスに触れる成形品用材料の用途)
 高圧ガスに触れる成形品用材料は、高圧ガスに触れる成形品の製造に用いられる。
 高圧ガスに触れる成形品用材料は、ガスバリア性が高く、低温になる高圧ガスに接触しても柔軟性を損なわないため、高圧ガスに触れる成形品に好適に用いられる。
 高圧ガスに触れる成形品とは、常圧以上の圧力のガスに触れる成形品である。高圧ガスの充填および放圧を繰り返したときの欠陥点の発生を抑制する効果を奏することから、圧力20MPa以上のガスに触れる成形品用途に好ましく用いられ、30MPa以上のガスに触れる成形品用途により好ましく用いられる。一方、圧力200MPa以下のガスに触れる成形品用途に好ましく用いられ、150MPa以下のガスに触れる成形品用途により好ましく用いられ、100MPa以下のガスに触れる成形品用途にさらに好ましく用いられる。
 高圧ガスに触れる成形品としては、例えば、高圧ガス用開閉バルブ、高圧ガス用逆止弁、高圧ガス用減圧弁、高圧ガス用圧力調整弁、高圧ガス用シール、高圧ガス用ホース、高圧ガス用タンク、高圧ガス用タンクライナー、高圧ガス用パイプ、高圧ガス用パッキン、高圧ガス用圧力センサ、高圧ガス用ポンプ、高圧ガス用チューブ、高圧ガス用レギュレーター、高圧ガス用フィルム、高圧ガス用シート、高圧ガス用繊維、高圧ガス用継ぎ手等が挙げられる。
(ガス)
 前記高圧ガスのガスとしては、水素、窒素、酸素、ヘリウム、メタン、ブタン、プロパン、エチレン、アセチレン、酸化エチレン、酸化プロピレン、天然ガスなどが挙げられる。
 高圧ガスに触れる成形品の製造方法としては、ブロー成形、押出成形、射出成形及び回転成形が好適に挙げられる。
 高圧ガスに触れる成形品用材料からブロー成形によりブロー成形品を製造する方法については特に制限されず、公知の方法を利用することができる。一般的には、通常のブロー成形機を用いパリソンを形成した後、ブロー成形を実施すればよい。パリソン形成時の好ましい樹脂温度は、 高圧ガスに触れる成形品用材料の融点より10℃から70℃高い温度範囲で行うことが好ましい。
 高圧ガスに触れる成形品用材料から押出成形により押出成形品を製造する方法については特に制限されず、公知の方法を利用することができる。
 また、ポリエチレンなどのポリオレフィンや他の熱可塑性樹脂と共押出した後、ブロー成形を行い、多層構造体を得ることも可能である。その場合 高圧ガスに触れる成形品用材料層とポリオレフィンなどの他の熱可塑性樹脂層の間に接着層を設けることも可能である。多層構造体の場合、本発明の高圧ガスに触れる成形品用材料は外層、内層のいずれにも使用し得る。
 高圧ガスに触れる成形品用材料から射出成形による射出成形品を製造する方法については特に制限されず、公知の方法を利用することができる。例えばISO294-1に準拠した方法が参酌される。
 高圧ガスに触れる成形品用材料から回転成形による回転成形品を製造する方法については特に制限されず、公知の方法を利用することができる。例えば国際公開公報2019/054109に記載の方法が参酌される。
 以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例により限定されるものではない。
 実施例及び比較例の各物性の測定は、以下の方法で測定した。
<相対粘度>
JIS K6920-2に準拠し、ポリアミド樹脂1gを96%濃硫酸100mlに溶解させ、25℃で測定した値である。
<引張降伏応力及び引張降伏ひずみ>
  1)ISO527-2/1A/50に従い、ISO Type-A試験片の引張降伏応力及び引張降伏ひずみを、-60℃、試験速度50mm/分で測定した。
 試験機はインストロン製引張試験機型式5567を用いた。
 2)ISO527-2/1A/50に従い、ISO Type-A試験片の引張降伏応力及び引張降伏ひずみを、23℃、相対湿度50%RH、試験速度50mm/分で測定した。
 試験機は島津製作所製自動伸び計AGX-AT/SIE-560SAを用いた。
 測定結果から成形品の柔軟性を以下の基準で評価した。
 1)-60℃における柔軟性の評価
 ○:引張降伏応力が128MPa以下100MPa以上、かつ引張降伏ひずみが9.0%以上
 △:引張降伏応力が100MPa未満、かつ引張降伏ひずみが9.0%以上
 ×:引張降伏応力が128MPa超、及び/又は引張降伏ひずみが9.0%未満
 2)23℃における柔軟性の評価
 ○:引張降伏応力が78MPa以下50MPa以上、かつ引張降伏ひずみが4.5%以上
 △:引張降伏応力が50MPa未満、かつ引張降伏ひずみが4.5%以上
 ×:引張降伏応力が78MPa超、及び/又は引張降伏ひずみが4.5%未満
<水素ガス透過係数>
 JIS K7126-1に従い、厚み2.0mm、Φ60mmの円形試験片を用い、差圧法を採用し、55℃、1atmにおいて、水素ガス透過試験を行った。測定装置は、差圧式ガス・蒸気透過率測定装置(GTR-30XAD,シリアル番号G2700T・F(GTRテック社製))を用いた。
 測定結果からガスバリア性を以下の基準で評価した。
○:水素ガス透過係数が5×10-10cm・cm/(cm・s・cmHg)未満
×:水素ガス透過係数が5×10-10cm・cm/(cm・s・cmHg)以上
[実施例1~8、比較例1~3]
 表1に記載した各成分を二軸混練機ZSK32mc二軸押出機(Coperion社製)、シリンダー径32mm、 L/D48で、シリンダー温度230℃、スクリュー回転200rpm、吐出量50kg/hrsにて溶融混練し、目的とする高圧ガスに触れる成形品用材料ペレットを作製した。住友重機械工業株式会社の射出成形機SE100D-C160Sを用いて試験片を作成した。
 なお、表中の組成の単位は質量%であり、高圧ガスに触れる成形品用材料全体を100質量%とする。
Figure JPOXMLDOC01-appb-T000001
 実施例1~8は、-60℃及び23℃における引張降伏応力及び引張降伏ひずみのバランスがよく、高圧に耐えうる強度と、極低温下でも柔軟性を保持できるとともに、水素ガス透過係数が低く、ガスバリア性が高い。
 ポリアミド6を用いた比較例1及び比較例2は、-60℃及び23℃における引張降伏応力及び引張降伏ひずみのバランスが悪く、極低温下における柔軟性が足りない。
 ポリアミド12を用いた比較例3は、-60℃及び23℃における引張降伏応力及び引張降伏ひずみのバランスが悪く、高圧に耐えることができないとともに、水素ガス透過係数が高く、ガスバリア性が低い。
 表1に記載した成分は、以下の通りである。
PA6/66 (1):ポリアミド6/66、相対粘度3.04、ポリアミド6 85mol%、ポリアミド66 15mol% (宇部興産株式会社製)
PA6/66 (2):ポリアミド6/66、相対粘度4.02、ポリアミド6 85mol%、ポリアミド66 15mol% (宇部興産株式会社製)
PA6/66 (3):ポリアミド6/66、相対粘度4.02、ポリアミド6 70mol%、ポリアミド66 30mol% (宇部興産株式会社製)
PA6/12:ポリアミド6/12、相対粘度2.63、ポリアミド6 80mol%、ポリアミド12 20mol% (宇部興産株式会社製)
PA6/66/12:ポリアミド6/66/12、相対粘度4.01、ポリアミド6 80mol%、ポリアミド66 10mol%,ポリアミド12 10mol% (宇部興産株式会社製)
PA6(1):ポリアミド6、相対粘度2.99 (宇部興産株式会社製)
PA6(2):ポリアミド6、相対粘度4.09 (宇部興産株式会社製)
PA12:ポリアミド12、相対粘度1.89 (宇部興産株式会社製)
有機系耐熱剤:ペンタエリスリトール-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート]、製品名「Irganox(登録商標) 1010」BASF社製
無機系耐熱剤:CuI/KI ヨウ化第一銅とヨウ化カリウムの混合物 質量比 CuI:KI=1:6

Claims (8)

  1.  材料100質量%中に、脂肪族共重合ポリアミド樹脂(A)を90.0質量%以上含み、実質的にポリオレフィン系樹脂を含まない、高圧ガスに触れる成形品用材料。
  2.  材料100質量%中に、脂肪族共重合ポリアミド樹脂を90.0質量%以上100質量%未満(A)並びに耐熱剤、核剤、可塑剤、無機充填材及び離型剤からなる群より選ばれる少なくとも1種の添加剤(B)を0質量%超5.0質量%以下含む請求項1に記載の高圧ガスに触れる成形品用材料。
  3.  脂肪族共重合ポリアミド樹脂以外のポリアミド樹脂を実質的に含まない請求項1又は2に記載の高圧ガスに触れる成形品用材料。
  4.  脂肪族共重合ポリアミド樹脂(A)が、全構成単位100mol%中、ε-カプロラクタム由来の構成単位及び/又は6-アミノカプロン酸由来の構成単位を50mol%以上含む請求項1~3のいずれか1項に記載の高圧ガスに触れる成形品用材料。
  5.  脂肪族共重合ポリアミド樹脂(A)が、ポリアミド6/66、ポリアミド6/12及びポリアミド6/66/12からなる群より選ばれる少なくとも1種である請求項1~4のいずれか1項に記載の高圧ガスに触れる成形品用材料。
  6.  JIS K 7126-1に従い、厚み2.0mm、Φ60mmの円形試験片を用いて、差圧法を採用して測定した55℃、1atmにおける水素ガス透過係数が、5.0×10―10cm・cm/(cm・s・cmHg)未満である請求項1~5のいずれか1項に記載の高圧ガスに触れる成形品用材料。
  7.  ISO527-2/1A/50に準じて測定したISO Type-A試験片の-60℃における、引張降伏応力が128MPa以下かつ引張降伏ひずみが9.0%以上である請求項1~6のいずれか1項に記載の高圧ガスに触れる成形品用材料。
  8.  請求項1~7のいずれか1項に記載の高圧ガスに触れる成形品用材料からなる高圧ガスに触れる成形品。
PCT/JP2021/046502 2021-01-08 2021-12-16 高圧ガスに触れる成形品用材料 WO2022149430A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237026507A KR20230130673A (ko) 2021-01-08 2021-12-16 고압 가스에 접촉하는 성형품용 재료
JP2022573973A JPWO2022149430A1 (ja) 2021-01-08 2021-12-16
CN202180089692.XA CN116670210A (zh) 2021-01-08 2021-12-16 与高压气体接触的成形品用材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-002280 2021-01-08
JP2021002280 2021-01-08

Publications (1)

Publication Number Publication Date
WO2022149430A1 true WO2022149430A1 (ja) 2022-07-14

Family

ID=82357271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046502 WO2022149430A1 (ja) 2021-01-08 2021-12-16 高圧ガスに触れる成形品用材料

Country Status (4)

Country Link
JP (1) JPWO2022149430A1 (ja)
KR (1) KR20230130673A (ja)
CN (1) CN116670210A (ja)
WO (1) WO2022149430A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050031311A (ko) * 2003-09-29 2005-04-06 주식회사 화승알앤에이 고압가스용 고무계 호스
JP2010265932A (ja) * 2009-05-12 2010-11-25 Toyota Motor Corp タンク及びその製造方法
JP2014518779A (ja) * 2011-04-11 2014-08-07 ローディア オペレーションズ 流体に対して高バリア性を有するタンクの製造方法
JP2015212342A (ja) * 2014-05-07 2015-11-26 東レ株式会社 高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品
US20150344689A1 (en) * 2012-12-19 2015-12-03 Invista North America S.A.R.L. Thermoplastic polyamide components, and compositions and methods for their production and installation
JP2016104846A (ja) * 2014-05-07 2016-06-09 東レ株式会社 高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品
JP2016222903A (ja) * 2015-05-28 2016-12-28 日本合成化学工業株式会社 ブロー成形用樹脂組成物及び多層構造体
WO2021085472A1 (ja) * 2019-10-30 2021-05-06 宇部興産株式会社 ポリアミド樹脂組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544743A (en) 1977-06-09 1979-01-13 Iseki Agricult Mach Thresher
JPH04239559A (ja) 1991-01-22 1992-08-27 Showa Denko Kk ポリアミド樹脂組成物
JP4588078B2 (ja) 2008-02-12 2010-11-24 宇部興産株式会社 水素タンクライナー用材料及び水素タンクライナー
JP2017088661A (ja) 2015-11-04 2017-05-25 ユニチカ株式会社 ポリアミド樹脂組成物およびそれからなるブロー成形品
WO2020049907A1 (ja) 2018-09-07 2020-03-12 宇部興産株式会社 ポリアミド樹脂組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050031311A (ko) * 2003-09-29 2005-04-06 주식회사 화승알앤에이 고압가스용 고무계 호스
JP2010265932A (ja) * 2009-05-12 2010-11-25 Toyota Motor Corp タンク及びその製造方法
JP2014518779A (ja) * 2011-04-11 2014-08-07 ローディア オペレーションズ 流体に対して高バリア性を有するタンクの製造方法
US20150344689A1 (en) * 2012-12-19 2015-12-03 Invista North America S.A.R.L. Thermoplastic polyamide components, and compositions and methods for their production and installation
JP2015212342A (ja) * 2014-05-07 2015-11-26 東レ株式会社 高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品
JP2016104846A (ja) * 2014-05-07 2016-06-09 東レ株式会社 高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品
JP2016222903A (ja) * 2015-05-28 2016-12-28 日本合成化学工業株式会社 ブロー成形用樹脂組成物及び多層構造体
WO2021085472A1 (ja) * 2019-10-30 2021-05-06 宇部興産株式会社 ポリアミド樹脂組成物

Also Published As

Publication number Publication date
CN116670210A (zh) 2023-08-29
JPWO2022149430A1 (ja) 2022-07-14
KR20230130673A (ko) 2023-09-12

Similar Documents

Publication Publication Date Title
AU2007268544B2 (en) Polyamide resin composition
WO2017131018A1 (ja) 成形品及びその製造方法
JP5708487B2 (ja) ポリアミド樹脂組成物及び成形品
BRPI0804185B1 (pt) composição de moldagem de poliamida, mistura de poliamidas, material peletizado, pó, moldagem e processo para a preparação de uma composição de moldagem de poliamida
CN111448257B (zh) 聚酰胺树脂组合物
JP2015220493A (ja) スピーカー振動板
WO2012121295A1 (ja) ポリエチレン系構造体
JP5194573B2 (ja) ポリアミド樹脂組成物
JP2017014388A (ja) ポリアミド樹脂組成物及び成形体
JP2010202724A (ja) 自動車用配管
US7875353B2 (en) Multilayered pellet and molded resin
WO2022149430A1 (ja) 高圧ガスに触れる成形品用材料
JP7310942B2 (ja) ポリアミド樹脂組成物
JP6596893B2 (ja) 高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品
WO2023037937A1 (ja) ポリアミド樹脂組成物
JP5801893B2 (ja) 耐塩性ポリアミド組成物
WO2023249051A1 (ja) 高圧水素ガスに触れる成形品用のポリアミド樹脂組成物
EP3130642B1 (en) Molded body and manufacturing method thereof
JP7468189B2 (ja) ポリアミド樹脂組成物
AU2012216788B2 (en) Polyamide resin composition
JP2005105167A (ja) ポリアミド樹脂組成物
JP2009203409A (ja) ポリアミド樹脂組成物
JP6711083B2 (ja) アルキレングリコールアルキルエーテルを含む液体を収容する容器、アルキレングリコールアルキルエーテルを含む液体の保存方法、及びアルキレングリコールアルキルエーテル含有液体入り容器
WO2021157605A1 (ja) ポリアミド樹脂組成物
WO2024024846A1 (ja) 再生ポリアミド樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573973

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180089692.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237026507

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237026507

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917651

Country of ref document: EP

Kind code of ref document: A1