WO2022148286A1 - 换热器、用于涂覆换热器的涂料及热管理系统 - Google Patents

换热器、用于涂覆换热器的涂料及热管理系统 Download PDF

Info

Publication number
WO2022148286A1
WO2022148286A1 PCT/CN2021/142617 CN2021142617W WO2022148286A1 WO 2022148286 A1 WO2022148286 A1 WO 2022148286A1 CN 2021142617 W CN2021142617 W CN 2021142617W WO 2022148286 A1 WO2022148286 A1 WO 2022148286A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
coating
parts
sol
heat exchange
Prior art date
Application number
PCT/CN2021/142617
Other languages
English (en)
French (fr)
Inventor
黄海
薛明
贺贝
唐建华
黄宁杰
Original Assignee
杭州三花研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花研究院有限公司 filed Critical 杭州三花研究院有限公司
Publication of WO2022148286A1 publication Critical patent/WO2022148286A1/zh
Priority to US17/815,190 priority Critical patent/US20220373276A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/12Powders or granules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/005Compression machines, plants or systems with non-reversible cycle of the single unit type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/20Safety or protection arrangements; Arrangements for preventing malfunction for preventing development of microorganisms

Definitions

  • the present application relates to the technical fields of materials and heat exchange, and in particular, to a heat exchanger, a coating for coating the heat exchanger, and a thermal management system.
  • Bacteria, mold, etc. are common in life, and they often attach to the micro-particles in the air and flow with the air.
  • the air-conditioning system uses air circulation to realize the function of cooling or heating. After a period of use, bacteria, molds, viruses or dust in the air may be adsorbed to the surface of the heat exchanger. , will affect the working efficiency of the heat exchanger, and also affect the health of the user.
  • the present application aims to solve at least one of the technical problems existing in the prior art. To this end, the present application proposes a heat exchanger, a coating for coating the heat exchanger, and a thermal management system.
  • a heat exchanger includes a metal base material, the metal base material has a fluid channel for circulating a heat exchange medium; the heat exchanger further includes a coating, The coating is coated on at least part of the surface of the metal substrate; the coating includes sol particles and an antibacterial material, the sol particles includes silicon dioxide, and the antibacterial material includes rare earth element oxides.
  • the coating layer includes sol particles and antibacterial materials, wherein the sol particles include silicon dioxide, and the antibacterial materials include rare earth element oxides. Therefore, by using the antibacterial material containing rare earth element oxide in combination with the silica sol, the advantages of each component can be fully utilized, on the one hand, it is beneficial to adhere to the surface of the metal substrate, and on the other hand, the heat exchanger can be The surface of the metal substrate also has the effect of inhibiting the growth of substances such as bacteria and mold.
  • a paint for coating a heat exchanger including a sol and an antibacterial material; the sol has sol particles, the sol particles including silica, and the antibacterial material Including rare earth element oxides.
  • the coating of the present application includes a sol and an antibacterial material, wherein the sol includes a silica sol, and the antibacterial material includes a rare earth element oxide. Therefore, by using the antibacterial material containing rare earth element oxide in combination with the silica sol, the advantages of each component can be fully utilized, and the surface of the coated article can be conducive to adhesion and at the same time inhibit the growth of bacteria and molds. .
  • a thermal management system includes a compressor, a first heat exchanger, a throttling device and a second heat exchanger; when the thermal management system has refrigerant flowing When the refrigerant flows into the first heat exchanger through the compressor, and flows into the throttling device after the heat exchange occurs in the first heat exchanger, the refrigerant flows into the second heat exchanger and then flows into the throttling device. It flows into the compressor again after heat exchange in the second heat exchanger. At least one of the first heat exchanger and the second heat exchanger is the aforementioned heat exchanger.
  • the thermal management system provided by the present application includes the aforementioned heat exchanger, the coating on the surface of the metal substrate of the heat exchanger includes sol particles and an antibacterial material, wherein the sol particles include silica, and the antibacterial material includes rare earth element oxide. Therefore, by using the antibacterial material containing rare earth element oxide in combination with the silica sol, the advantages of each component can be fully utilized, on the one hand, it is beneficial to adhere to the surface of the metal substrate, and on the other hand, the heat exchanger can be The surface of the metal substrate also has the effect of inhibiting the growth of substances such as bacteria and mold.
  • FIG. 1 is a schematic structural diagram of a heat exchanger provided by an exemplary embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional view of a fin portion of a heat exchanger provided by an exemplary embodiment of the present application
  • Fig. 3 is the picture after 28 days of the sample antifungal performance test of the comparative example 1 of the application;
  • FIG. 4 is a schematic structural diagram of a thermal management system in an embodiment of the present application.
  • FIG. 5 is a picture of the sample in Example 1 of the application after 28 days of antifungal performance test.
  • Item C may contain a single element or multiple elements.
  • the terms "at least part of the surface”, “at least part of the surface”, “at least part of the surface” or other similar terms are used to mean any part of the surface or the entire surface of the component.
  • at least a part of the surface of the heat exchanger refers to a certain part or parts of the surface of the heat exchanger, or the entire surface of the heat exchanger.
  • microchannel heat exchanger is a high-efficiency heat exchange equipment developed in the 1990s, which can be widely used in the fields of chemical industry, energy and environment. Because microchannel heat exchangers have many different characteristics from conventional scale equipment, such as small size, light weight, high efficiency, and high strength. Micro-channel technology has also triggered technological innovations in the fields of new energy vehicle thermal management systems, household air conditioners, commercial air conditioners and refrigeration equipment to improve efficiency and reduce emissions.
  • antibacterial agents mainly work by inhibiting and blocking the reproduction of bacteria
  • antibacterial agents mainly include three categories: inorganic antibacterial agents, organic antibacterial agents and natural antibacterial agents.
  • organic antibacterial agents such as quaternary ammonium salts, biguanides, phenols, etc.
  • organic antibacterial agents such as quaternary ammonium salts, biguanides, phenols, etc.
  • natural antibacterial agents such as chitosan and chitin have the advantages of non-toxicity, they are difficult to extract and have poor heat resistance.
  • Inorganic antibacterial agents such as nano-silver, metal ions and their oxides have the advantages of broad-spectrum antibacterial, high safety, good thermal stability, and resistance to drug resistance.
  • the present application provides a coating, a heat exchanger and a thermal management system that can achieve better antibacterial and mildew-inhibiting effects and excellent hydrophilicity.
  • Antibacterial and fungistatic properties and hydrophilicity are of great significance for the application of antibacterial and fungistatic properties in thermal management systems. See below for the description of the specific technical solution.
  • the technical solutions of the embodiments of the present application provide a heat exchanger, the heat exchanger includes a metal base material, and the metal base material has a fluid channel for circulating a heat exchange medium;
  • the heat exchanger further includes a coating, and the coating is coated on at least part of the surface of the metal substrate of the heat exchanger; the coating includes sol particles and an antibacterial material, the sol particles include silicon dioxide, and the antibacterial Materials include rare earth element oxides.
  • At least a portion of the silica is hydrophilically modified silica having a particle size in the nanometer scale.
  • the sol particles further include titanium dioxide, and the content of the silicon dioxide is greater than the content of the titanium dioxide. That is, the sol particles of the present application include a hydrophilic mixed sol of hydrophilic modified silica sol and titania sol.
  • the outer surface of the metal substrate has an uneven rough surface, and the roughness (Ra) of the rough surface satisfies 0.5 ⁇ m ⁇ Ra ⁇ 10 ⁇ m, for example, the roughness of the rough surface is 0.5 ⁇ m, 1 ⁇ m , 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, and any value in the range of any two of these point values. It can be understood that controlling the roughness of the outer surface of the metal substrate within the above range is beneficial to the adhesion of the coating.
  • the metal substrate includes at least one of a header 10, a heat exchange tube 12 and a fin 13.
  • the main structure of the heat exchanger 100 includes two One header 10 , a plurality of heat exchange tubes 12 and at least one fin 13 , the heat exchange tubes 12 are fixed to the header 10 , the inner cavity of the heat exchange tube 12 communicates with the inner cavity of the header 10 , and the fins 13 is located between two adjacent heat exchange tubes 12 .
  • the heat exchanger 100 is a microchannel heat exchanger.
  • the microchannel heat exchanger includes heat exchange tubes 12 and fins 13, and at least a part of the surfaces of the heat exchange tubes 12 and/or fins 13 has a coating 11 formed by coating and curing the above-mentioned paint.
  • the coating 11 is illustrated with reference to the shaded portion of the surface of the leftmost heat exchange tube 12 .
  • the surfaces of other heat exchange tubes 12 , fins 13 and headers 10 may be coated with coating 11 , for example, as shown in FIG. 2 , coating 11 may be coated on the surfaces of fins 13 .
  • the heat exchange tube 12 is connected between the two headers 10 .
  • the width of the heat exchange tube 12 is greater than the thickness of the heat exchange tube 12 .
  • Multiple heat exchange channels. Therefore, the heat exchange tube 12 can be a microchannel flat tube or an elliptical tube.
  • a plurality of heat exchange tubes 12 are arranged along the axial direction of the headers 10. One end of the heat exchange tubes 12 in the length direction is connected to one of the two headers 10, and the other end of the heat exchange tubes 12 in the length direction is connected to the two headers. Another connection in the flow tube 10.
  • the fins 13 are corrugated along the length direction of the heat exchange tubes 12.
  • the fins 13 include several crests and several troughs, and the crests and troughs of the fins 13 are respectively connected to two adjacent heat exchange tubes.
  • a window structure may be provided in a partial area of the fin 13 to form a louver-type fin to further enhance heat exchange.
  • the microchannel heat exchanger is an all-aluminum microchannel heat exchanger.
  • the structure of the microchannel heat exchanger and the connection relationship of various components are conventional knowledge in the art, and will not be repeated here.
  • the above-mentioned heat exchanger with coating 11 can be applied in thermal management systems such as air-conditioning systems, so that the air-conditioning system using the heat exchanger can reach the industry standard of antibacterial and mildew-inhibiting and has a remarkable effect, and also has good self-cleaning,
  • the hydrophilic effect is beneficial to the discharge of condensed water.
  • a coating for coating on the surface of a heat exchanger to form a coating, the coating comprising sol particles and an antibacterial material; wherein the sol particles comprise silica sol,
  • the antibacterial material includes rare earth element oxides.
  • the present application adopts a sol-gel method to prepare a hydrophilic material, and obtains an antibacterial agent comprising silica sol and adding a small amount of rare earth element oxide to it.
  • a coating with excellent antibacterial and mildew-inhibiting effect and hydrophilicity can be obtained, so that the coating is used for the surface treatment of heat exchangers, which not only has excellent self-cleaning,
  • the hydrophilic effect can achieve the effect of antibacterial and mildew inhibition at the same time, which can effectively reduce the cost, and is of great significance for the application of antibacterial and mildew inhibition in air conditioners.
  • the parts by mass of each component in the coating are: 98-99.5 parts of sol, and 0.5-2 parts of antibacterial material.
  • mass part refers to the basic measurement unit of the mass ratio relationship of multiple components, and 1 part can represent any unit mass, for example, 1 part can be expressed as 1 g, 1.68 g, or 5 g, etc.
  • the coating includes sol particles, and the mass fraction of the sol is 98 to 99.5 parts, and typical but non-limiting examples may be 98 parts, 98.2 parts, 98.5 parts, 98.8 parts, 99 parts, 99.2 parts, 99.4 parts parts, 99.5 parts, and any value in a range of any two of these point values.
  • the coating includes an antibacterial material
  • the mass fraction of the antibacterial material is 0.5 to 2 parts, and typical but non-limiting examples may be 0.5 part, 0.6 part, 0.8 part, 1 part, 1.2 part, 1.5 part, 1.6 parts, 1.8 parts, 2 parts, and any value in the range of any two of these point values.
  • At least a portion of the silica is hydrophilically modified silica having a particle size in the nanometer scale.
  • the sol particles further include titanium dioxide, and the content of the silicon dioxide is greater than the content of the titanium dioxide.
  • the sol particles include titanium dioxide
  • the sol of the present application is a hydrophilic mixed sol including a hydrophilic modified silica sol and a titanium dioxide sol.
  • the above coatings are mainly made of suitable and appropriate amount of hydrophilic mixed sol and antibacterial agent, wherein the hydrophilic mixed sol has excellent hydrophilicity, and the antibacterial agent has broad-spectrum antibacterial properties, high safety and good stability.
  • the above-mentioned raw materials are within the above-mentioned ranges, and are determined by comprehensively considering the contribution of each raw material to the performance indicators of the coating, such as hydrophilicity, antibacterial properties, and the synergy of the entire system.
  • the above-mentioned specific content of antibacterial agent and hydrophilic mixture The synergistic cooperation of the sol balances various properties, enables the prepared coating to have good hydrophilicity and achieve the effect of antibacterial and mildew inhibition, and can reduce the cost while achieving the performance index.
  • the parts by mass of each component in the hydrophilic mixed sol are: 90-92 parts of hydrophilic modified silica sol, and 4-6 parts of titanium dioxide sol.
  • the coating can form a structure with relatively stable physical and chemical properties, so that the coating is stable and dense, and the hydrophilicity of the coating can be further improved to achieve Good hydrophilicity and durability.
  • the mass part of the hydrophilic modified silica sol is 90-92 parts, and typical but non-limiting parts can be, for example, 90 parts, 90.5 parts, 90.8 parts, 91 parts, 91.2 parts, 91.5 parts, 92 parts and these Any value in the range formed by any two of the point values.
  • silica particles are prepared by the sol method, there will be a large number of Si-OH groups on the surface of the silica particles, which have reactive groups hydroxyl (-OH), and can obtain hydrophilic through the mutual reaction between the particles.
  • a coating with excellent properties; in addition, the hydrophilicity of the coating can be improved by making the content of silica within this range.
  • the mass part of the titanium dioxide sol is 4 to 6 parts, and typical but non-limiting examples can be 4 parts, 4.5 parts, 4.8 parts, 5 parts, 5.2 parts, 5.5 parts, 5.8 parts, 6 parts, and among these points. Any value in the range formed by any two of . Titanium dioxide particles have amphoteric particles as well as photocatalytic properties, which are photoinduced superhydrophilic. When the titanium dioxide particles are prepared by the sol method, there will be a large number of Ti-OH groups on the surface of the titanium dioxide particles, which have a reactive group hydroxyl (-OH), and through the mutual reaction between the particles, a coating with excellent hydrophilicity can be obtained.
  • Floor reactive group hydroxyl
  • hydrophilic modified silica sol and titania sol within this range, the advantages of silica and titania can be fully utilized, the synergistic effect of the two can be enhanced, and the hydrophilicity of the coating can be further improved. Waterborne.
  • a method for preparing a coating comprising the following steps: in parts by mass, mixing 98-99.5 parts of a hydrophilic mixed sol and 0.5-5 parts of an antibacterial material uniformly to obtain the The coating; wherein, the hydrophilic mixed sol includes hydrophilic modified silica sol and titania sol, and the antibacterial material includes rare earth element oxide.
  • the parts by mass of each component in the hydrophilic mixed sol are: 90-92 parts of hydrophilic modified silica sol, and 4-6 parts of titanium dioxide sol.
  • the preparation method of the coating only needs to mix a suitable content of the hydrophilic mixed sol and the antibacterial material evenly, the process is simple, easy to control, has high feasibility, less environmental pollution, and is suitable for industrial scale production.
  • the coating prepared by the preparation method uses the rare earth element oxide-containing antibacterial material in combination with the hydrophilic mixed sol, which can give full play to the advantages of each component, not only has excellent self-cleaning and hydrophilic effects, but also can achieve
  • the antibacterial and antifungal effect can be used to prepare a coating with excellent performance, which has antibacterial and antifungal effect and hydrophilicity, and can reduce the cost while achieving the performance index.
  • the coatings provided in the embodiments of the present application are suitable for application in the field of heat exchangers, and can make the surfaces of the heat exchangers have coatings with excellent hydrophilicity and antibacterial and fungistatic properties.
  • the preparation method of the coating comprises: adding 0.5-5 parts of antibacterial agent to 98-99.5 parts of the hydrophilic mixed sol in parts by mass, and mechanically mixing uniformly for 20-30 minutes to obtain the coating.
  • the time of mechanical mixing is, for example, 20 min, 22 min, 25 min, 28 min, 30 min and the like.
  • the manner of mixing the above-mentioned hydrophilic mixed sol with the antibacterial agent includes, but is not limited to, mechanical mixing.
  • various common mixing methods well known in the art can also be used, such as ultrasonic mixing or a combination of mechanical mixing and ultrasonic mixing. etc., the embodiments of the present application do not make any special restrictions on this.
  • the sources of antibacterial materials and hydrophilic mixed sols are not particularly limited, and they can be prepared by themselves or commercial products can be used.
  • the antibacterial agent can be prepared first, and then the hydrophilic mixed sol can be prepared; alternatively, the hydrophilic mixed sol can be prepared first, and then the antibacterial agent can be prepared; or the antibacterial agent and the hydrophilic mixed sol can be prepared at the same time.
  • the examples of the present application do not limit the preparation sequence of the antibacterial agent and the hydrophilic mixed sol.
  • at least one of the antimicrobial agent and the hydrophilic mixed sol is commercially available.
  • the hydrophilic mixed sol includes the following raw materials in parts by mass: 90-92 parts of hydrophilic modified silica sol, 4-6 parts of titanium dioxide sol, and 3-5 parts of pH adjusting agent.
  • the preparation method of the hydrophilic mixed sol includes:
  • hydrophilic modified silica sol in parts by mass, 90-92 parts of hydrophilic modified silica sol and 4-6 parts of titanium dioxide sol are mixed to obtain a mixed solution, and 3-5 parts of pH adjuster is used to adjust the pH of the mixed solution to 2.5 to 3.5, and then stirring and reacting at 45° C. to 55° C. for 3.5 h to 5 h to obtain the hydrophilic mixed sol.
  • hydrophilic mixed sol preparation raw materials there are no restrictions on the sources and specific types of the above-mentioned hydrophilic mixed sol preparation raw materials, and those skilled in the art can flexibly choose according to actual needs, as long as the purpose of the present application is not restricted.
  • various raw materials well-known to those skilled in the art can be used, commercial products thereof can be used, or they can be prepared by themselves.
  • the above-mentioned 90-92 parts of the hydrophilic modified silica sol a part is obtained by commercial products, and the other part is obtained by the preparation method provided in the examples of the present application, which is beneficial to further Improve hydrophilicity.
  • the above-mentioned 90-92 parts of the hydrophilic modified silica sol can be obtained by using commercially available products.
  • the above 90-92 parts of the hydrophilic modified silica sol can be obtained by using the preparation methods provided in the examples of the present application.
  • 34-36 parts of the hydrophilic modified silica sol are prepared by the preparation method provided in the examples of the present application, and the remaining part is hydrophilic As the water-modified silica sol, a commercially available product was used.
  • the examples of the present application do not limit the sources and specific types of raw materials such as the above-mentioned titanium dioxide sol, pH regulator, etc., and those skilled in the art can flexibly choose according to actual needs, as long as the purpose of the present application is not limited.
  • each raw material well-known to those skilled in the art can be used, commercial products thereof can be used, or preparation methods well-known to those skilled in the art can be used for self-preparation.
  • the above-mentioned hydrophilic mixed sol is mainly prepared from a suitable and appropriate amount of hydrophilic modified silica sol, titania sol and pH adjuster, to obtain a hydrophilic mixed sol with excellent hydrophilic properties.
  • the hydrophilic modified silica sol and titania sol are hydrophilic materials with certain reactive groups or hydrophilic groups, such as hydroxyl (-OH), which can obtain dense coatings through the mutual reaction between particles. It can exert its own basic properties such as chemical stability, weather resistance, and hydrophilicity.
  • the hydrophilic mixed sol includes the following raw materials by mass: hydrophilic modified silica sol 91 parts, 5 parts of titanium dioxide sol and 4 parts of pH adjuster. Further, in some embodiments, the hydrophilic mixed sol includes the following raw materials by mass: 35 parts of self-made hydrophilic modified silica sol, 56 parts of commercially available silica sol, 5 parts of titanium dioxide sol and 4 parts of pH adjuster.
  • the commercially available silica sol can be a hydrophilic modified silica sol, or the commercially available silica sol contains dispersed silica particles, which are formed after being mixed with a homemade hydrophilically modified silica sol. Hybrid hydrophilic modified silica sol.
  • the above-mentioned preparation method of the self-made hydrophilic modified silica sol includes the following steps: in parts by mass, 50-56 parts of solvent, 0.5-1.5 parts of surfactant, 36-40 parts of parts of silane precursor, 1-2 parts of acid, and 3-8 parts of water are mixed, and the reaction is carried out at 45° C. to 55° C. for 22 h to 24 h to obtain the hydrophilic modified silica sol.
  • the above-mentioned preparation method of the self-made hydrophilic modified silica sol includes the following steps: in parts by mass, mixing 50-56 parts of a solvent with 0.5-1.5 parts of a surfactant, Ultrasonic dispersion for 10min-20min, then add 36-40 parts of silane precursor to the system, mechanically stir for 20min-40min in a water bath at 45°C-55°C, the stirring speed is 200-300rpm, and then dropwise add 3- 8 parts of water and 1-2 parts of acid are controlled to be added dropwise in about 10 minutes, and the reaction is carried out at 45°C to 55°C for 22h to 24h to obtain the hydrophilic modified silica sol.
  • the time of above-mentioned ultrasonic dispersion can be, for example, 10min, 12min, 15min, 18min, 20min, etc.; the temperature of above-mentioned mechanical stirring can be, for example, 45 °C, 48 °C, 50 °C, 52 °C, 55 °C, etc., the time of mechanical stirring can be, for example, 20min, 25min, 30min, 35min, 40min, etc.; the stirring speed is, for example, 200rpm, 250rpm, 300rpm, and the like.
  • the temperature of the above reaction can be, for example, 45°C, 48°C, 50°C, 52°C, 55°C, etc., and the reaction time is, for example, 22h, 23h, 24h, and the like.
  • the preparation method of the above-mentioned self-made hydrophilic modified silica sol comprises the following steps:
  • the addition order or mixing method of each preparation raw material can be adjusted according to the above two methods.
  • the solvent and Mix the surfactant then add the silane precursor and mix thoroughly, then add water and acid; or in other cases, you can first mix the silane precursor and solvent, and then add part of the water and surfactant, after mixing evenly Add the remainder of the water and acid.
  • the specific preparation method of the hydrophilic modified silica sol can be flexibly selected by those skilled in the art according to actual needs.
  • the specific methods or specific conditions of the above-mentioned mixing or reaction methods such as ultrasound, mechanical stirring, etc. can also be based on adjusted according to the actual situation.
  • the mass part of the silane precursor can be, for example, 36 parts, 37 parts, 38 parts, 39 parts, 40 parts, etc.
  • the mass part of the solvent can be, for example, 50 parts parts, 51 parts, 52 parts, 53 parts, 54 parts, 55 parts, 56 parts, etc.
  • the mass parts of water can be 1 part, 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts, 4 parts, 5 parts parts, 6 parts, 8 parts, etc.
  • the mass parts of the surfactant can be, for example, 0.5 parts, 0.8 parts, 1 part, 1.2 parts, 1.5 parts, etc.
  • the mass parts of the acid are, for example, 1 part, 1.2 parts, 1.5 parts, 1.6 parts servings, 1.8 servings, 2 servings, etc.
  • the silane precursor includes 30-32 parts of ⁇ -glycidyl ether oxypropyltrimethoxysilane (KH-560 for short) and 6-8 parts of ethyl orthosilicate.
  • KH-560 can be, for example, 30 parts, 31 parts, 32 parts, etc.
  • the mass parts of ethyl orthosilicate can be, for example, 6 parts, 7 parts, 8 parts, etc.
  • the silane precursors are not limited to the ones listed above, and other types of silane precursors can also be used under the condition that the requirements such as the hydrophilic properties of the hydrophilic mixed sol are met. It is hexamethyldisilazane, chlorosilane, etc., which will not be described in detail here.
  • Using a mixture of a certain content of KH-560 and ethyl orthosilicate as a silane precursor is more helpful to obtain a hydrophilic modified silica sol with excellent hydrophilicity, and is helpful to obtain a hydrophilic and durable sol.
  • the solvent includes an alcohol-based solvent.
  • the alcohol solvent includes an alcohol solvent having 1 to 10 carbon atoms, preferably an alcohol solvent having 1 to 8 carbon atoms, and more preferably an alcohol solvent having 1 to 4 carbon atoms.
  • the solvent is any one of methanol, ethanol, and isopropanol, or a mixture of any two or more in any ratio.
  • the surfactant includes, but is not limited to, at least one of sodium dodecyl sulfate, sodium dodecyl sulfonate, sodium dodecyl benzene sulfonate, and hexadecyl benzene sulfonic acid kind. Further, in some embodiments, the surfactant is sodium lauryl sulfate. Therefore, the cost is low, the source is wide, and the use effect is good.
  • the acid includes, but is not limited to, at least one of formic acid and acetic acid. Further, in some embodiments, the acid is formic acid.
  • the preparation method of the above-mentioned self-made hydrophilic modified silica sol includes: in parts by mass, 31 parts of KH-560, 7 parts of ethyl orthosilicate and 54 parts of Anhydrous ethanol is mechanically stirred and mixed uniformly in a water bath at 45°C to 55°C to obtain a mixture; then 3 parts of water and 1 part of sodium dodecyl sulfate are mixed uniformly and added to the mixture; then 1 part of Formic acid and 3 parts of water were added dropwise to the mixture, mixed uniformly, and the reaction was kept unchanged for about 24 hours to obtain a hydrophilic modified silica sol.
  • the preparation method of the above-mentioned self-made hydrophilic modified silica sol includes: by mass, 54 parts of absolute ethanol and 1 part of sodium lauryl sulfate are mixed Mix, ultrasonically disperse for 10min, then add 31 parts of KH-560 and 7 parts of ethyl orthosilicate, mechanically stir for 30min under 50°C water bath conditions, the stirring speed is 250rpm, and then add 6 parts of water and 1 part of formic acid Add dropwise to the system, control the dropwise addition within 10 min, and react in a water bath at 50° C. for about 24 hours to obtain a hydrophilic modified silica sol.
  • R represents the long chain group -( CH2 ) 3 -O-CHOCH2 in KH560.
  • the hydrophilic modified silica sol prepared by the examples of the present application contains a large number of hydroxyl (-OH) hydrophilic groups, so that the sol exhibits hydrophilicity, and at the same time, the dehydration condensation between the hydroxyl groups and the hydroxyl groups forms a spatial network structure.
  • the dispersed nanoparticles such as silicon dioxide and titanium dioxide added in the hydrophilic mixed sol are filled into the spatial network structure, and a stable sol system, that is, a hydrophilic mixed sol, can be formed.
  • the sol can combine with -OH in the metal substrate, form a covalent bond through dehydration and condensation, and protect the metal substrate after film formation, so as to achieve the effect of hydrophilic and anti-corrosion.
  • the pH adjuster includes organic acid or inorganic acid under the condition that the requirements such as the hydrophilic properties of the hydrophilic mixed sol are met.
  • the pH adjusting agent is formic acid.
  • the preparation method of the hydrophilic mixed sol includes:
  • the self-made hydrophilic modified silica sol was prepared; in parts by mass, 35 parts of the self-made hydrophilic modified silica sol and 56 parts of the commercially available hydrophilic modified silica sol were prepared.
  • the water-modified silica sol is mixed with 5 parts of titanium dioxide sol, and the pH value of the system is adjusted to about 3.0 by using 4 parts of pH adjuster formic acid, and then the reaction is stirred for about 4h to 5h in a water bath at 45°C to 55°C to obtain Hydrophilic mixed sol.
  • the resulting hydrophilic mixed sol is a mixed sol with an enhanced hydrophilic effect.
  • the hydrophilic mixed sol prepared by the above method can give full play to the advantages of each component by mixing the above-mentioned self-made hydrophilic modified silica sol, commercially available silica sol and titania sol.
  • the mixed sol with water-based and good durability can further improve the hydrophilicity of the coating.
  • the silica particles have a large amount of Si-OH on the surface and are excellent in hydrophilicity.
  • the titanium dioxide particles in it have photoinduced super-hydrophilicity: under illumination, electrons in the valence band of TiO2 are excited to the conduction band, electrons and holes migrate to the surface of TiO2 , electron-hole pairs are generated on the surface, and electrons react with Ti4+ , the holes react with surface bridge oxygen ions to form positive trivalent titanium ions and oxygen vacancies, respectively. At this time, the water in the air is dissociated and adsorbed in the oxygen vacancies and becomes chemically adsorbed water (surface hydroxyl groups). micro area.
  • the above-mentioned self-made hydrophilic modified silica sol is prepared by the hydrolysis reaction of ethyl orthosilicate and KH560, contains nano-scale silica particles, and has good dispersibility.
  • the commercially available silica sols can be in micron and submicron scales.
  • the surface morphology of the coating after coating is improved by the combination of silica particles with different particle sizes, the surface energy is increased, and the hydrophilicity of the coating is improved.
  • the antibacterial material includes rare earth element oxides, wherein the rare earth elements can be various types of rare earth elements, such as lanthanide rare earth elements, and lanthanide rare earth elements can include lanthanum, cerium, praseodymium, neodymium , at least one of promethium, samarium and europium.
  • the rare earth elements can be various types of rare earth elements, such as lanthanide rare earth elements, and lanthanide rare earth elements can include lanthanum, cerium, praseodymium, neodymium , at least one of promethium, samarium and europium.
  • the rare earth element oxides are nano-scale particles with high activity. On the one hand, they can generate superoxide ions ⁇ O 2 - and ⁇ OH from oxygen molecules; High-valent rare earth metal ions in metal oxides have the lowest redox potential (1.7eV) when they are converted from high to low, and can easily provide oxygen free radicals to combine with water to form active H 2 O 2 .
  • rare earth ions can distort the local lattice potential field of metal oxide nanoparticles, improve the photocatalytic activity of nano metal oxides, and promote the effective range of catalysis. It can be extended to the visible light region to realize catalytic antibacterial in the visible light region.
  • the rare earth element oxides in the above-mentioned antibacterial materials containing rare earth element oxides are nanomaterials with photocatalytic activity, and the energy generated after absorbing light makes the surface of the film adsorb water molecules and oxygen molecules to form hydroxyl radicals and reactive oxygen species, which have very high performance.
  • the strong oxidizing ability can degrade the organic matter attached to the surface into carbon dioxide and water, so that the surface of the heat exchanger has a self-cleaning function and is easy to scrub. Therefore, the antibacterial material can exert not only antibacterial properties but also self-cleaning properties.
  • the embodiments of the present application also provide a method for preparing the above heat exchanger, comprising the following steps:
  • the composite material is coated on at least part of the surfaces of the heat exchange tubes and/or at least part of the surfaces of the fins, and cured to obtain the heat exchanger.
  • the surfaces of the heat exchange tubes and/or fins are pretreated first, and then the composite material is coated on the pretreated surfaces of the heat exchange tubes and/or fins, and then cured. After that, a coated heat exchanger is obtained.
  • the surface of the heat exchange tubes and/or fins of the heat exchanger is pretreated, and the preprocessing step of the heat exchanger specifically includes: preprocessing the heat exchange tubes and/or fins of the heat exchanger The surface is sandblasted with 100-200 mesh, and then the surface of the heat exchange tube and/or fin is cleaned with alcohol or acid, and then dried in the air or at 35°C to 50°C.
  • the sandblasting mesh number is 120-180 meshes, for example, the sandblasting mesh number is 150 meshes.
  • the cleaning method used may be, for example, ultrasonic cleaning with absolute ethanol, or acid etching cleaning.
  • the manner of coating the heat exchanger with the composite material includes, but is not limited to, at least one of dip coating, spray coating, brush coating, flow coating or roller coating.
  • the composite materials provided in the embodiments of the present application may be coated on the pretreated heat exchange tubes and/or fin surfaces by spraying or dipping.
  • the time of dip coating is 2 to 5 minutes, and can be further selected to be 2 to 3 minutes; the number of times of dip coating is 2 to 5 times, and can be further selected to be 2 to 3 times.
  • the composite material is coated on the pretreated heat exchange tube and/or fin surface, and then cured, and the curing temperature is 180°C to 220°C, further optionally 190°C to 210°C , further optionally 200° C.; curing time is 0.5h ⁇ 2h, further optionally 0.8h ⁇ 1.5h, and further optionally 1h.
  • Embodiments of the present application further provide a thermal management system, which includes the heat exchanger as described above.
  • FIG. 3 it is a thermal management system 1000 shown in an exemplary embodiment of the present application.
  • the thermal management system 1000 includes at least a compressor 1 , a first heat exchanger 2 , a throttling device 3 , and a first heat exchanger 2 .
  • the compressor 1 of the thermal management system 1000 may be a horizontal compressor or a vertical compressor.
  • the throttling device 3 can be an expansion valve, or the throttling device 3 is other components that have the functions of reducing the pressure and regulating the flow of the refrigerant.
  • the heat exchangers in the foregoing embodiments of the present application may be used in the thermal management system 1000 as the first heat exchanger 2 and/or the second heat exchanger 4 .
  • the compressor 1 compresses the refrigerant, the temperature of the compressed refrigerant increases, and then enters the first heat exchanger 2, and the heat is transferred to the first heat exchanger 2 through the heat exchange between the first heat exchanger 2 and the outside world.
  • the refrigerant passing through the throttling device 3 becomes a liquid or gas-liquid two-phase state, at this time the temperature of the refrigerant decreases, and then the refrigerant with a lower temperature flows to the second heat exchanger 4, and in the second heat exchanger 4 After heat exchange with the outside world, it enters the compressor 1 again to realize the refrigerant circulation.
  • the coating material of the present application can also be applied to products other than heat exchangers, such as filter devices of air conditioning systems.
  • products other than heat exchangers such as filter devices of air conditioning systems.
  • other products that require improved hydrophilic performance and/or antibacterial and fungistatic properties can apply the coatings provided by the embodiments of the present application.
  • the hydrophilic mixed sol In parts by mass, 99 parts of the hydrophilic mixed sol and 1 part of the antibacterial agent are mixed uniformly to obtain a coating; wherein, the parts by mass of each component in the hydrophilic mixed sol are: hydrophilic modified silica sol It is 91 parts, and the titanium dioxide sol is 5 parts; the antibacterial agent includes rare earth element oxides.
  • Pretreatment of the surface of the heat exchange tubes and/or fins of the heat exchanger specifically including: blasting the surfaces of the heat exchange tubes and/or fins of the heat exchanger with 150 mesh, and then cleaning the heat exchange with absolute ethanol the surface of the heat exchange tubes and/or fins of the heat exchanger, and allow to dry.
  • the coating obtained in the above step 1 was dip-coated or sprayed on the surface of the pretreated heat exchange tubes and/or fins, and after curing at 200° C. for 1 hour, a heat exchanger with a coating was obtained.
  • Coatings and heat exchangers were prepared in the same manner as in Example 1, except for the ratios of the hydrophilic mixed sol and the antibacterial agent.
  • Example 2 98 parts of the hydrophilic mixed sol and 2 parts of the antibacterial agent were mixed uniformly.
  • Example 3 99.5 parts of hydrophilic mixed sol and 0.5 part of antibacterial agent were mixed uniformly.
  • Example 4 98.5 parts of the hydrophilic mixed sol and 1.5 parts of the antibacterial agent were mixed uniformly.
  • Coatings and heat exchangers were prepared in the same manner as in Example 1, except for the preparation of the hydrophilic mixed sol.
  • the preparation of the hydrophilic mixed sol includes: (a) in parts by mass, mixing 54 parts of absolute ethanol and 1 part of sodium dodecyl sulfate, ultrasonically dispersing for 10 min, and then adding 31 parts of KH-560 and 7 parts of ethyl orthosilicate were mechanically stirred for 30 minutes in a water bath at 50°C, and the stirring speed was 250 rpm, and then 6 parts of water and 1 part of formic acid were added dropwise into the system, and the dropwise addition was controlled at 10 minutes. After completion, the reaction was carried out in a water bath at 50° C. for about 24 hours to obtain a hydrophilic modified silica sol.
  • step (b) 35 parts of hydrophilic modified silica sol obtained in step (a), 56 parts of commercially available silica sol and 5 parts of titanium dioxide sol were mixed, and 4 parts of pH regulator formic acid were used to adjust the system The pH value is about 3.0, and the reaction is stirred for about 4 hours under the condition of a water bath at about 50 °C to obtain a hydrophilic mixed sol.
  • Example 6 the difference from Example 5 is that in step (b), 33 parts of hydrophilic modified silica sol obtained in step (a) and 57 parts of commercially available silica sol were used. Mixed with 6 parts of titanium dioxide sol; the rest are the same as in Example 5.
  • Example 7 the difference from Example 5 is that in step (b), 37 parts of hydrophilic modified silica sol obtained in step (a) and 54.5 parts of commercially available silica sol were used. Mixed with 4.5 parts of titanium dioxide sol; the rest are the same as in Example 5.
  • Example 8 the difference from Example 5 is that in step (b), 91 parts of hydrophilic modified silica sol obtained in step (a) and 5 parts of titanium dioxide sol were mixed; Example 5 is the same.
  • Example 9 the difference from Example 5 is that in step (a), in parts by mass, 56 parts of dehydrated alcohol and 0.5 part of sodium lauryl sulfate were mixed, ultrasonically dispersed for 10 min, and then Add 30 parts of KH-560 and 6 parts of ethyl orthosilicate, stir mechanically for 30 minutes under the condition of 50 ° C water bath, the stirring speed is 250 rpm, and then add 6.5 parts of water and 1 part of formic acid dropwise into the system, control After 10 minutes of dropwise addition, the reaction was carried out in a water bath at 50° C. for about 24 hours to obtain a hydrophilic modified silica sol; the rest were the same as those in Example 5.
  • Example 10 the difference from Example 5 is that in step (a), in parts by mass, 31 parts of KH-560, 7 parts of ethyl orthosilicate and 54 parts of absolute ethanol were Under the condition of about 50 °C water bath, mechanically stir and mix evenly to obtain a mixed solution; then 3 parts of water and 1 part of sodium lauryl sulfate are mixed evenly and added to the mixed solution; then 1 part of formic acid and 3 parts of The water was added dropwise to the mixed solution, mixed uniformly, and the reaction conditions were kept unchanged for about 24 h to obtain a hydrophilic modified silica sol; the rest were the same as in Example 5.
  • Comparative Example 1 The difference between Comparative Example 1 and Example 1 is that the surface of the heat exchange tubes and/or fins of the heat exchanger in Comparative Example 1 has been blasted with 150 mesh, and then the heat exchange tubes of the heat exchanger are cleaned with absolute ethanol. and/or fin surface, and allow to dry. And the surface of the heat exchanger in Comparative Example 1 is not provided with the coating formed by the paint.
  • the test is carried out by coating the 3003 aluminum plate or other types of aluminum plates. That is, an aluminum plate made of the same material as the heat exchangers of the above-mentioned embodiments and comparative examples was used, and the above-mentioned paint was coated on the aluminum plate for testing. Correspondingly, the surface of the aluminum plate was also subjected to 150-mesh sandblasting treatment, washed with absolute ethanol, and then air-dried. This is useful for simulating real heat exchanger products.
  • Comparative Example 1 (the comparative example corresponds to Comparative Example 1) is an aluminum panel that has been pretreated but not coated.
  • the test method is as follows:
  • the testing instrument used is a contact angle measuring instrument, which adopts the principle of optical imaging and adopts the method of image profile analysis to measure the contact angle of the sample.
  • the contact angle refers to a droplet on a solid horizontal plane, at the solid-liquid-gas three-phase junction point on the solid surface, the gas-liquid interface and the solid-liquid interface two tangents sandwich the liquid phase. formed angle.
  • the volume is generally about 1 ⁇ L
  • the droplets form droplets on the needle
  • rotate the knob to move the worktable up, so that the surface of the sample is in contact with the droplets.
  • Contact and then move the table down, and droplets can be left on the sample.
  • the contact angle of this area is obtained by testing and data analysis by testing software.
  • the samples of each example and comparative example were tested at 5 different points and the average value was taken, which was recorded as the contact angle of the samples of this example and comparative example.
  • the above contact angle test results show that the initial contact angles of the sample surfaces of Examples 1 to 10 are all ⁇ 10°, while the initial contact angle of the sample surface of Comparative Example 1 is 39.114°. Therefore, it shows that the coating of the present application has increased hydrophilicity, excellent hydrophilic performance, and is conducive to the discharge of condensed water, so that it is not easy to form a wet water environment on the surface of the sample.
  • Test sample The test sample is directly cut from the heat exchanger or made from the same raw material and processing method as the part to be cut.
  • the size of the test sample is (50 ⁇ 2)mm ⁇ (50 ⁇ 2)mm, Or the area to be measured is not less than 1600mm2.
  • Control sample a standard sample with a size of (50 ⁇ 2) mm ⁇ (50 ⁇ 2) mm and a thickness of not more than 5 mm by injection molding of sanitary high-density polyethylene (HDPE).
  • HDPE high-density polyethylene
  • Test principle by quantitatively inoculating bacteria on the sample to be tested and the control sample, the bacteria are evenly contacted with the sample by the method of sticking a film, and after (24 ⁇ 1) h of culture, the number of viable bacteria in the two groups of samples is measured, Compare and calculate the antibacterial rate of the samples.
  • Test bacteria Staphylococcus aureus AS 1.89, equivalent to ATCC6538p; Escherichia coli AS 1.90.
  • Test strains Aspergillus niger AS 3.4463, Aspergillus terreus AS 3.3935, Paecilomyces variotii AS 3.4253, Penicillium funiformis AS3.3875, Chaetomium globulus AS 3.4254, Aureobasidium pullulans AS 3.3984.
  • Grade 1 trace growth that is, the growth is visible to the naked eye, but the growth coverage area is less than 10%;
  • Grade 2 growth covers 10%-30% of the area (light growth);
  • Level 3 growth covers 30%-60% of the area (moderate growth);
  • Grade 4 growth covers greater than 60% to full coverage (severe growth).
  • Example 1 Trace growth, i.e. growth visible to the naked eye, but growth coverage ⁇ 10% Level 1
  • FIG. 4 and FIG. 5 respectively show the pictures of the samples of Example 1 and Comparative Example 1 of the present application after 28 days of antifungal performance testing.
  • Figure 5 and the above Table 1 and Table 2 it can be seen that the coating provided by the present application has excellent antibacterial and antifungal properties.
  • references to the terms “one embodiment,” “some embodiments,” “exemplary embodiment,” “example,” “specific example,” or “some examples”, etc., are meant to incorporate the embodiments
  • a particular feature, structure, material, or characteristic described by an example or example is included in at least one embodiment or example of the present application.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Inorganic Chemistry (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

一种换热器(100)、用于涂覆换热器(100)的涂料及热管理系统(1000),所述换热器(100)包括金属基材,所述金属基材具有用于流通换热介质的流体通道;所述换热器(100)还包括涂层,所述涂层覆设于所述换热器(100)的金属基材的至少部分表面;所述涂层包括溶胶粒子以及抗菌材料,所述溶胶粒子包括二氧化硅,所述抗菌材料包括稀土元素氧化物。通过将包含稀土元素氧化物的抗菌剂与溶胶进行结合使用,能够充分发挥各组分优势,一方面利用溶胶使得抗菌材料更容易附着,且可以使换热器(100)的金属基材表面具有良好的抗菌抑霉效果,有助于降低成本。

Description

换热器、用于涂覆换热器的涂料及热管理系统
本申请要求于2021年01月08日提交中国专利局,申请号为202110025293.9,申请名称为“复合材料及其制备方法、换热器及热管理系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及材料和换热技术领域,尤其涉及一种换热器、用于涂覆换热器的涂料及热管理系统。
背景技术
生活中细菌霉菌等普遍存在,它们往往依附在空气中的微颗粒物上,随空气流动而流动。相关技术中,空调系统利用空气循环来实现制冷或制热功能,经过一段时间使用后可能会使空气中的细菌、霉菌、病毒或灰尘等吸附到换热器表面,当上述杂质积攒一定量后,会影响换热器的工作效率,也影响使用者健康。
相关技术中大部分空调不具备抗菌功能,如何有效地延缓换热器中细菌和霉菌等杂质的滋生,相应的减少对换热器工作效率或用户的健康的影响,提升用户的使用体验,成为亟待解决的技术问题。
申请内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种换热器、用于涂覆换热器的涂料及热管理系统。
根据本申请的一个方面,提供一种换热器,所述换热器包括金属基材,所述金属基材具有用于流通换热介质的流体通道;所述换热器还包括涂层,所述涂层覆设于所述金属基材的至少部分表面;所述涂层包括溶胶粒子以及抗菌材料,所述溶胶粒子包括二氧化硅,所述抗菌材料包括稀土元素氧化物。
本申请的换热器,其涂层包括溶胶粒子和抗菌材料,其中的溶胶粒子包括二氧化硅,抗菌材料包括稀土元素氧化物。由此,通过将包含稀土元素氧化物的抗菌材料与包含二氧化硅溶胶结合使用,能够充分发挥各组分优势,一方面有利于附着于金属基材的表面,另一方面可以使换热器的金属基材表面同时具有抑制细菌和霉菌等物质滋 生的作用。
根据本申请的另一个方面,提供一种用于涂覆换热器的涂料,所述涂料包括溶胶和抗菌材料;所述溶胶具有溶胶粒子,所述溶胶粒子包括二氧化硅,所述抗菌材料包括稀土元素氧化物。
本申请的涂料包括溶胶和抗菌材料,其中的溶胶包括二氧化硅溶胶,抗菌材料包括稀土元素氧化物。由此,通过将包含稀土元素氧化物的抗菌材料与包含二氧化硅溶胶结合使用,能够充分发挥各组分优势,可以使被覆物品表面在利于附着的同时具有抑制细菌和霉菌等物质滋生的作用。
根据本申请的第三个方面,提供一种热管理系统,所述热管理系统包含压缩机、第一换热器、节流装置和第二换热器;当所述热管理系统有冷媒流动时,所述冷媒经所述压缩机流入所述第一换热器,并在所述第一换热器发生热交换之后流入节流装置,而后所述冷媒流入所述第二换热器并在所述第二换热器发生热交换后再次流入所述压缩机。所述第一换热器和所述第二换热器中的至少一个为前述的换热器。
本申请提供的热管理系统包括前述的换热器,换热器金属基材表面的涂层包括溶胶粒子和抗菌材料,其中的溶胶粒子包括二氧化硅,抗菌材料包括稀土元素氧化物。由此,通过将包含稀土元素氧化物的抗菌材料与包含二氧化硅溶胶结合使用,能够充分发挥各组分优势,一方面有利于附着于金属基材的表面,另一方面可以使换热器的金属基材表面同时具有抑制细菌和霉菌等物质滋生的作用。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1为本申请示例性的一种实施方式提供的换热器的结构示意图;
图2为本申请示例性的一种实施方式提供的换热器的翅片部分剖面示意图;
图3为本申请对比例1的样品抑霉性能测试28天后的图片;
图4为本申请实施方式中一种热管理系统的结构示意图;
图5为本申请实施例1的样品抑霉性能测试28天后的图片。
附图标记:
100-换热器;10-集流管;11-涂层;12-换热管;13-翅片;
1000-热管理系统;1-压缩机;2-第一换热器;3-节流装置;4-第二换热器;5-换向装置。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例,对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请提供的技术方案及所给出的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值或单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围。
需要说明的是,本文中使用的术语“和/或”或者“/”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
在本申请的说明中,使用的术语“中的至少一者”、“中的至少一个”、“中的至少一种”或其他相似术语所连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A、B,那么短语“A、B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B、C,那么短语“A、B、C中的至少一者”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。此外,所使用的术语“至少部分表面”、“表面的至少一部分”、“至少一部分表面”或其他相似术语意味着该部件的任意部分表面或整个表面。例如,换热器表面的至少一部分是指,换热器的某一部分或某几部分表面,或者换热器的整个表面。
在一种具体实施例中,下面通过具体的实施例对本申请做进一步地详细描述。
相关技术中,微通道换热器是20世纪90年代发展起来的高效换热设备,可广泛应用于化工、能源与环境等领域。由于微通道换热器具有许多与常规尺度设备不同的特征,如体积小、重量轻、效率高、强度大等。微通道技术同时触发了新能源汽车热管理系统、家用空调、商业空调及冷冻设备等领域提高效率、降低排放的技术革新。
相关技术中,抗菌剂主要通过抑制阻断细菌繁殖而起作用,抗菌剂主要包括无机抗菌剂,有机抗菌剂和天然抗菌剂三大类。其中有机抗菌剂如季铵盐、双胍、酚类等,具有见效快的优点,但其时效短,耐热性差,有毒。天然抗菌剂如壳聚糖、甲壳素等,虽然具有无毒的优点,但其提取困难,耐热性差。而无机抗菌剂如纳米银、金属离子及其氧化物等,具有广谱抗菌,安全性高、热稳定性好、不易产生耐药性等优点,已在医疗、卫浴、厨房、电器等领域得到广泛的应用,但其成本较高,较难实现在换热器上取得良好的抗菌抑霉效果。因而开发新型能够兼顾良好亲水性能和抗菌抑霉性的材料成为相关行业亟需解决的问题。
基于此,本申请提供了一种能够实现较好抗菌抑霉效果和亲水性优良的涂料、换热器及热管理系统,本申请实施例的技术方案可以改善相关技术中涂料或涂层的抗菌抑霉性和亲水性,对于热管理系统的抗菌抑霉的应用具有重要意义。具体技术方案的描述参见下文。
本申请实施例的技术方案提供了一种换热器,该换热器包括金属基材,金属基材具有用于流通换热介质的流体通道;
换热器还包括涂层,涂层覆设于所述换热器的金属基材的至少部分表面;所述涂层包括溶胶粒子以及抗菌材料,所述溶胶粒子包括二氧化硅,所述抗菌材料包括稀土元素氧化物。
在一些实施例中,二氧化硅的至少部分为粒径在纳米级的亲水改性二氧化硅。
在一些实施例中,所述溶胶粒子还包括二氧化钛,所述二氧化硅的含量大于所述二氧化钛的含量。即本申请的溶胶粒子包括亲水改性二氧化硅溶胶和二氧化钛溶胶的亲水性混合溶胶。
在一些实施例中,金属基材的外表面具有凹凸不平的粗糙面,且粗糙面的粗糙度(Ra)满足0.5μm≤Ra≤10μm,示例性的,粗糙面的粗糙度为0.5μm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm以及这些点值中的任意两个所构成的范 围中的任意值。可以理解的,将金属基材外表面的粗糙度控制在上述范围内,有利于涂层的附着。
在一些实施例中,金属基材包括集流管10、换热管12和翅片13中的至少一种,示例性的,如图1所示,该换热器100的主要结构,包括两个集流管10、多个换热管12以及至少一个翅片13,换热管12与集流管10相固定,换热管12的内腔与集流管10的内腔连通,翅片13位于相邻的两个换热管12之间。换热器100为微通道换热器。微通道换热器包括换热管12和翅片13,换热管12和/或翅片13的表面的至少一部分上具有由上述的涂料涂覆和固化所形成的涂层11。图1中参考最左侧换热管12表面的阴影部分对涂层11进行示意。当然在其他实施方式中,其他换热管12、翅片13以及集流管10的表面均可以涂覆涂层11,例如如图2所示,在翅片13的表面涂覆涂层11。
图1中换热管12连接于该两个集流管10之间,换热管12的宽度大于换热管12的厚度,换热管12的内腔具有沿换热管12长度方向延伸的多个换热通道。从而换热管12可以为微通道扁管或者椭圆管。
多个换热管12沿集流管10的轴向方向排列,换热管12长度方向的一端与两个集流管10中的一个连接,换热管12长度方向的另一端与两个集流管10中的另一个连接。
翅片13沿换热管12的长度方向呈波形,翅片13包括若干波峰部和若干波谷部,翅片13的波峰部和波谷部分别与相邻的两个换热管相连接。在一些实施方式中,翅片13的部分区域可以设置窗口结构形成百叶窗型翅片,进一步强化换热。
在一些实施例中,该微通道换热器为全铝的微通道换热器。微通道换热器的结构和各个部件的连接关系为本领域的常规知识,在此就不再赘述。
上述带有涂层11的换热器能够应用在热管理系统如空调系统中,使得使用该换热器的空调系统,能够达到业内抗菌抑霉标准且效果比较显著,还具有良好的自清洁、亲水效果,有利于冷凝水的排放。
在本申请的一些实施例中,提供一种涂料,该涂料用于涂覆在换热器表面形成涂层,该涂料包括溶胶粒子和抗菌材料;其中,所述溶胶粒子包括二氧化硅溶胶,所述抗菌材料包括稀土元素氧化物。本申请采用溶胶凝胶法制备亲水材料,得到包括二氧化硅溶胶并在其中添加少量包含稀土元素氧化物的抗菌剂。通过将溶胶凝胶硅烷体系 与稀土纳米氧化物结合,能够得到性能优异的具有抗菌抑霉效果和亲水性的涂料,从而使用该涂料用于换热器表面处理,不仅具有优异的自清洁、亲水效果,同时能够达到抗菌抑霉的作用,可以有效降低成本,对于空调抗菌抑霉的应用具有重要意义。
在一些实施例中,按质量份计,所述涂料中各组分的质量份为:溶胶为98~99.5份,抗菌材料为0.5~2份。
本文中,除非另有说明,否则所涉及的百分数、比例或份数按照质量计。其中,“质量份”指多个组分的质量比例关系的基本计量单位,1份可表示任意的单位质量,例如1份可以表示为1g,可以表示1.68g,也可以表示为5g等。
根据本申请实施例,涂料包括溶胶粒子,溶胶的质量份数为98~99.5份,典型但非限制性的例如可以为98份、98.2份、98.5份、98.8份、99份、99.2份、99.4份、99.5份以及这些点值中的任意两个所构成的范围中的任意值。
根据本申请实施例,涂料包括抗菌材料,抗菌材料的质量份数为0.5~2份,典型但非限制性的例如可以为0.5份、0.6份、0.8份、1份、1.2份、1.5份、1.6份、1.8份、2份以及这些点值中的任意两个所构成的范围中的任意值。
在一些实施例中,二氧化硅的至少部分为粒径在纳米级的亲水改性二氧化硅。
在一些实施例中,所述溶胶粒子还包括二氧化钛,所述二氧化硅的含量大于所述二氧化钛的含量。
当溶胶粒子包括二氧化钛时,即本申请的溶胶为包括亲水改性二氧化硅溶胶和二氧化钛溶胶的亲水性混合溶胶。上述涂料主要由合适且适量的亲水性混合溶胶和抗菌剂制成,其中的亲水性混合溶胶具有优异的亲水性,抗菌剂具有广谱抗菌性、安全性较高、稳定性较好;上述各原料在上述范围内,是综合考虑各原料对涂料性能指标如亲水性、抗菌性、整个体系的协同性等的贡献而确定的,利用上述特定含量的抗菌剂和亲水性混合溶胶的协同配合,均衡了各种性能,能使制得的涂料具有良好的亲水性同时达到抗菌抑霉的作用,且在达到性能指标的同时能降低成本。在一些实施例中,按质量份计,所述亲水性混合溶胶中各组分的质量份为:亲水改性二氧化硅溶胶为90~92份,二氧化钛溶胶为4~6份。通过使亲水性混合溶胶中包含二氧化硅和二氧化钛,能使涂层形成物理性能和化学性能都比较稳定的结构,使涂层稳定、致密,可使得涂层的亲水性进一步提升,达到亲水性、耐久性良好的效果。
其中,亲水改性二氧化硅溶胶的质量份为90~92份,典型但非限制性的例如可以为90份、90.5份、90.8份、91份、91.2份、91.5份、92份以及这些点值中的任意两个所构成的范围中的任意值。在采用溶胶法制备二氧化硅颗粒时,在二氧化硅颗粒表面会带有大量的Si-OH基团,其具有反应活性基团羟基(-OH),通过颗粒间相互反应,能得到亲水性优异的涂层;此外,通过使二氧化硅的含量在此范围内有助于提升涂层的亲水性。
其中,二氧化钛溶胶的质量份为4~6份,典型但非限制性的例如可以为4份、4.5份、4.8份、5份、5.2份、5.5份、5.8份、6份以及这些点值中的任意两个所构成的范围中的任意值。二氧化钛粒子具有两性粒子以及光催化特性,其具有光致超亲水性。在采用溶胶法制备二氧化钛颗粒时,在二氧化钛颗粒表面会带有大量的Ti-OH基团,其具有反应活性基团羟基(-OH),通过颗粒间相互反应,能得到亲水性优异的涂层。此外,通过使亲水改性二氧化硅溶胶和二氧化钛溶胶的含量在此范围内,可以充分发挥二氧化硅以及二氧化钛的优势,增强二者的协同配合作用,有助于进一步提升涂层的亲水性。
在本申请的一些实施例中,提供一种涂料的制备方法,包括以下步骤:按质量份计,将98~99.5份的亲水性混合溶胶和0.5~5份的抗菌材料混合均匀,得到所述涂料;其中,所述亲水性混合溶胶包括亲水改性二氧化硅溶胶和二氧化钛溶胶,所述抗菌材料包括稀土元素氧化物。在一些实施方式中,按质量份计,所述亲水性混合溶胶中各组分的质量份为:亲水改性二氧化硅溶胶为90~92份、二氧化钛溶胶为4~6份。
该涂料的制备方法,将适宜含量的亲水性混合溶胶和抗菌材料混合均匀即可,过程简单、易于控制、可行性高,且对环境污染少,适合工业化规模生产。通过该制备方法制得的涂料,使用含稀土元素氧化物的抗菌材料与亲水性混合溶胶结合使用,能够充分发挥各组分的优势,不仅具有优异的自清洁、亲水效果,同时能够达到抗菌抑霉的作用,制备得到性能优异的具有抗菌抑霉效果和亲水性的涂料,并且在达到性能指标的同时可降低成本。
应理解,该涂料的制备方法与前述涂料是基于同一申请构思的,关于涂料的原料组成及配比等相关特征,可参照前述涂料部分的描述,在此不再赘述。
本申请实施例提供的涂料适于应用在换热器领域,能够使换热器表面具有亲水性 和抗菌抑霉性皆优异的涂层。
在一些实施例中,涂料的制备方法包括:按质量份计,向98~99.5份的亲水性混合溶胶中加入0.5~5份的抗菌剂,机械混合均匀20~30min,得到涂料。机械混合的时间例如为20min、22min、25min、28min、30min等。
上述亲水性混合溶胶与抗菌剂混合的方式包括但不限于机械混合,在其他实施方式中还可以采用本领域熟知的各种常用混合方式,如超声混合方式或机械混合与超声混合结合的方式等,本申请实施例对此不作特殊限制。
根据本申请实施例,对于抗菌材料、亲水性混合溶胶的来源不作特殊限制,其可以自行制备或者也可以采用市售商品。例如涂料在制备过程中,可以先制备抗菌剂,再制备亲水性混合溶胶;或者,也可以先制备亲水性混合溶胶,再制备抗菌剂;或者,可以同时制备抗菌剂和亲水性混合溶胶,本申请实施例对于抗菌剂和亲水性混合溶胶的制备顺序不作限定。或者,在另一些实施方式中,抗菌剂和亲水性混合溶胶中的至少一者可以通过商购获得。
下面将对亲水性混合溶胶的制备进行详细说明。
在一些实施例中,亲水性混合溶胶包括如下质量份的原料:亲水改性二氧化硅溶胶90~92份、二氧化钛溶胶4~6份和pH值调节剂3~5份。
在一些实施例中,所述亲水性混合溶胶的制备方法包括:
按质量份计,将90~92份的亲水改性二氧化硅溶胶与4~6份的二氧化钛溶胶混合,得到混合液,采用3~5份pH值调节剂调节所述混合液的pH值至2.5~3.5,再在45℃~55℃下搅拌反应3.5h~5h,得到所述亲水性混合溶胶。
根据本申请实施例,对于上述亲水性混合溶胶的制备原料的来源以及具体类型没有限制要求,本领域技术人员可以根据实际需求灵活选择,只要不对本申请的目的产生限制即可。如可以采用本领域技术人员所熟知的各原料,可以采用其市售商品,也可以自行制备。在本申请的一些实施方式中,上述90~92份的亲水改性二氧化硅溶胶中,一部分采用市售商品获得,另一部分采用本申请实施例提供的制备方法获得,这样,有利于进一步提升亲水性。当然,在本申请的另一些实施方式中,上述90~92份的亲水改性二氧化硅溶胶,可以均采用市售商品获得。或者,在本申请的另一些实施方式中,上述90~92份的亲水改性二氧化硅溶胶,可以均采用本申请实施例提供的制 备方法获得。
在一些实施例中,上述90~92份的亲水改性二氧化硅溶胶中,34~36份的亲水改性二氧化硅溶胶通过本申请实施例提供的制备方法制备得到,其余部分亲水改性二氧化硅溶胶采用市售商品。
本申请实施例对于上述二氧化钛溶胶、pH调节剂等原料的来源以及具体类型没有限制要求,本领域技术人员可以根据实际需求灵活选择,只要不对本申请的目的产生限制即可。如可以采用本领域技术人员所熟知的各原料,可以采用其市售商品,也可以采用本领域技术人员熟知的制备方法自行制备。
上述亲水性混合溶胶主要由合适且适量的亲水改性二氧化硅溶胶、二氧化钛溶胶和pH调节剂制备而成,得到亲水性能优异的亲水性混合溶胶。其中的亲水改性二氧化硅溶胶和二氧化钛溶胶为亲水性材料,具有一定的反应活性基团或亲水基团,比如羟基(-OH),通过颗粒间的相互反应能够得到致密的涂层,能够发挥其自身的化学性能稳定、耐候性、亲水性等基本性能。
为了优化亲水性混合溶胶中各组分的用量,提升组分的协同配合作用,在一些实施例中,所述亲水性混合溶胶包括如下质量份的原料:亲水改性二氧化硅溶胶91份、二氧化钛溶胶5份和pH值调节剂4份。进一步,在一些实施例中,所述亲水性混合溶胶包括如下质量份的原料:自制的亲水改性二氧化硅溶胶35份、市售的二氧化硅溶胶56份、二氧化钛溶胶5份和pH值调节剂4份。市售的二氧化硅溶胶可以为亲水改性二氧化硅溶胶,或者市售的二氧化硅溶胶包含分散状的二氧化硅颗粒,其与自制的亲水改性二氧化硅溶胶混合后形成混合性亲水改性二氧化硅溶胶。
在一些实施例中,上述自制的亲水改性二氧化硅溶胶的制备方法,包括以下步骤:按质量份计,将50~56份的溶剂、0.5~1.5份的表面活性剂、36~40份的硅烷前驱体、1~2份的酸和3~8份的水混合,在45℃~55℃下反应22h~24h,得到所述亲水改性二氧化硅溶胶。进一步,在一些实施例中,上述自制的亲水改性二氧化硅溶胶的制备方法,包括以下步骤:按质量份计,将50~56份的溶剂与0.5~1.5份的表面活性剂混合,超声分散10min~20min,再向体系中加入36~40份的硅烷前驱体,在45℃~55℃水浴下机械搅拌20min~40min,搅拌转速为200~300rpm,而后再向体系中滴加3~8份的水和1~2份的酸,控制在约10min滴加完毕,在45℃~55℃下反应22h~24h, 得到所述亲水改性二氧化硅溶胶。上述超声分散的时间例如可以为10min、12min、15min、18min、20min等;上述机械搅拌的温度例如可以为45℃、48℃、50℃、52℃、55℃等,机械搅拌的时间例如可以为20min、25min、30min、35min、40min等;搅拌转速例如为200rpm、250rpm、300rpm等。上述反应的温度例如可以为45℃、48℃、50℃、52℃、55℃等,反应时间例如为22h、23h、24h等。
在另一些实施例中,上述自制的亲水改性二氧化硅溶胶的制备方法,包括以下步骤:
按质量份计,将36~40份的硅烷前驱体和50~56份的溶剂在45℃~55℃下混合均匀,再加入2~4份的水和0.5~1.5份的表面活性剂,混合均匀,再加入1~2份的酸和2~4份的水,反应22h~24h,得到亲水改性二氧化硅溶胶。其中的温度例如为45℃、46℃、48℃、50℃、52℃、54℃、55℃等;反应时间例如为22h、22.5h、23h、23.5h、24h等。
应理解,上述自制的亲水改性二氧化硅溶胶的制备方法中,各制备原料的加入顺序或混合方式可以按照如上所述的两种方式进行调整,比如在一些情况下可以先将溶剂和表面活性剂混合,再加入硅烷前驱体充分混合后,再加入水和酸;或者在另一些情况下可以先将硅烷前驱体和溶剂混匀后,再加入部分水和表面活性剂,混合均匀后再加入其余部分水和酸。实际应用中,亲水改性二氧化硅溶胶的具体制备方式可以由本领域技术人员根据实际需求灵活选择,此外,上述混合或反应的方式比如超声、机械搅拌等的具体方式或具体条件也是可以根据实际情况进行调整的。
在上述两种亲水改性二氧化硅溶胶的制备方式中,硅烷前驱体的质量份例如可以为36份、37份、38份、39份、40份等;溶剂的质量份例如可以为50份、51份、52份、53份、54份、55份、56份等;水的质量份例如可以为1份、1.5份、2份、2.5份、3份、3.5份、4份、5份、6份、8份等;表面活性剂的质量份例如可以为0.5份、0.8份、1份、1.2份、1.5份等;酸的质量份例如为1份、1.2份、1.5份、1.6份、1.8份、2份等。
在满足亲水性混合溶胶的亲水性能等需求的情况下,上述硅烷前驱体的具体类型是可以多种多样的。具体地,在一些实施例中,硅烷前驱体包括30~32份的γ-缩水甘油醚氧丙基三甲氧基硅烷(简称KH-560)和6~8份的正硅酸乙酯。示例性的,KH-560 的质量份例如可以为30份、31份、32份等;正硅酸乙酯的质量份例如可以为6份、7份、8份等。
此外,在其他实施例中,硅烷前驱体并不限于上述列举的几种,在满足亲水性混合溶胶的亲水性能等需求的情况下,硅烷前驱体还可以采用其他的类型,例如还可以为六甲基二硅胺烷、氯硅烷等,在此不再一一详细描述。
采用一定含量的KH-560和正硅酸乙酯的混合物作为硅烷前驱体,更有助于获得亲水性优异的亲水改性二氧化硅溶胶,有助于得到亲水性、耐久性良好的溶胶。
在满足亲水性混合溶胶的亲水性能等需求的情况下,溶剂、表面活性剂、酸的具体类型是可以多种多样的。具体地,在一些实施例中,溶剂包括醇类溶剂。进一步,醇类溶剂包括碳原子数1~10的醇类溶剂,优选为碳原子数1~8的醇类溶剂,更优选为碳原子数1~4的醇类溶剂。进一步,在一些实施例中,溶剂为甲醇、乙醇、异丙醇中的任意一种或任意两种及以上的任意比例组成的混合物。由此,来源广泛,容易获得,成本较低。
在一些实施例中,表面活性剂包括,但不限于,十二烷基硫酸钠、十二烷基磺酸钠、十二烷基苯磺酸钠和十六烷基苯磺酸中的至少一种。进一步,在一些实施例中,表面活性剂为十二烷基硫酸钠。由此,成本较低,来源广泛,使用效果佳。
在一些实施例中,酸包括,但不限于甲酸和乙酸中的至少一种。进一步,在一些实施例中,酸为甲酸。
在一些具体的实施方式中,上述自制的亲水改性二氧化硅溶胶的制备方法,包括:按质量份计,将31份的KH-560、7份的正硅酸乙酯和54份的无水乙醇在45℃~55℃水浴条件下机械搅拌混合均匀,得到混合物;再将3份的水和1份的十二烷基硫酸钠混合均匀后加入到混合物中;然后再将1份的甲酸和3份的水滴加到混合物中,混合均匀,保持上述反应条件不变反应约24h,得到亲水改性二氧化硅溶胶。或者,在另一些具体的实施方式中,上述自制的亲水改性二氧化硅溶胶的制备方法,包括:按质量份计,将54份的无水乙醇和1份的十二烷基硫酸钠混合,超声分散10min,再加入31份的KH-560和7份的正硅酸乙酯,在50℃水浴条件下机械搅拌30min,搅拌转速为250rpm,再将6份的水和1份的甲酸滴加到体系中,控制在10min滴加完毕,在50℃水浴下反应约24h,得到亲水改性二氧化硅溶胶。
上述亲水改性二氧化硅溶胶的制备所涉及的方程式或反应机理可如下所示:
1)正硅酸乙酯水解缩合:Si(OCH 2CH 3) 4+2H 2O→SiO 2+4C 2H 5OH。
2)KH560水解:R-Si(OCH 3) 3+3H 2O→R-Si(OH) 3+CH 3OH
KH560缩聚:R-Si(OH) 3+R-Si(OH) 3→R-Si(OH) 2-O-Si(OH) 2-R+H 2O
R-Si(OH) 3+R-Si(OCH3) 3→R-Si(OH) 2-O-Si(OH) 2-R+CH 3OH
其中R代表KH560中的长链基团-(CH2) 3-O-CHOCH 2
3)KH560与硅羟基的缩合:R-Si(OH) 3+Si(OH) 4→R-Si(OH) 2-O-Si(OH) 3+H 2O。
通过本申请实施例制备得到的亲水改性二氧化硅溶胶含有大量的羟基(-OH)亲水基团,使溶胶表现出亲水性,同时羟基与羟基之间脱水缩合形成空间网络结构。从而使得亲水性混合溶胶中进一步中加入的分散的二氧化硅、二氧化钛等纳米颗粒填充到空间网络结构中,能够形成稳定的溶胶体系也即亲水性混合溶胶,该亲水性混合溶胶的溶胶能够与金属基底中的-OH结合,脱水缩合形成共价键,成膜后起到保护金属基底的作用,从而达到亲水、防腐的效果。
在满足亲水性混合溶胶的亲水性能等需求的情况下,pH调节剂包括有机酸或无机酸。具体地,在一些实施例中,pH调节剂为甲酸。
在一些具体的实施方式中,亲水性混合溶胶的制备方法包括:
按照上述制备方法制备得到所述自制的亲水改性二氧化硅溶胶;按照质量份计,将所制得的35份的自制的亲水改性二氧化硅溶胶、56份的市售的亲水改性二氧化硅溶胶和5份的二氧化钛溶胶混合,采用4份pH值调节剂甲酸调节体系的pH值至3.0左右,再在45℃~55℃水浴条件下搅拌反应约4h~5h,得到亲水性混合溶胶。所得到的亲水性混合溶胶为亲水效果增强的混合的溶胶。
采用上述方法制备得到的亲水性混合溶胶,通过将上述自制的亲水改性二氧化硅溶胶、市售的二氧化硅溶胶和二氧化钛溶胶混合,能够充分发挥各组分的优势,可以得到亲水性、耐久性良好的混合溶胶,可使得涂层亲水性进一步提升。其中的二氧化硅粒子表面带有大量的Si-OH,亲水性优异。其中的二氧化钛粒子具有光致超亲水性:光照下,TiO 2价带电子被激发到导带,电子和空穴向TiO 2表面迁移,在表面生成电子空穴对,电子与Ti 4+反应,空穴则与表面桥氧离子反应,分别形成正三价的钛离子和氧空位。此时空气中的水解离吸附在氧空位中,成为化学吸附水(表面羟基),化学吸 附水可进一步吸附空气中的水分,形成物理吸附层,即在三价钛缺陷周围形成高度亲水的微区。
此外,上述自制的亲水改性二氧化硅溶胶由正硅酸乙酯和KH560水解反应制得,含有纳米级二氧化硅粒子,分散性好。而市售的二氧化硅溶胶可以采用微米级和亚微米级。通过不同粒径的二氧化硅粒子组合改善了涂装后涂层表面形貌,表面能增加,涂层亲水性提高。
上述涂料中,抗菌材料包括稀土元素氧化物,其中的稀土元素可以为各种类型的稀土元素,例如可以为镧系稀土元素,镧系稀土元素可以包括镧元素、铈元素、镨元素、钕元素、钷元素、钐元素和铕元素中的至少一种。
本申请实施例对于上述抗菌材料的具体类型来源没有限制要求,本领域技术人员可以根据实际需求灵活选择,只要是含有稀土元素氧化物、不对本申请的目的产生限制即可。如可以采用市售商品,也可以自行制备。
采用包含稀土元素氧化物的抗菌材料,其中的稀土元素氧化物为纳米级颗粒,具有高活性,一方面,其可使氧分子生成超氧离子·O 2 -和·OH;另一方面,稀土金属氧化物中的高价稀土金属离子高低价转换时具有最低的氧化还原电势(1.7eV),极易提供氧自由基与水结合形成活性H 2O 2,接触微生物时,能与微生物内有机物反应,从而短时间内杀灭微生物,起到抗菌、杀菌作用;此外,稀土离子能促使金属氧化物纳米颗粒局部晶格势场发生畸变,提高纳米金属氧化物的光催化活性,促使催化有效范围能够扩展到可见光区,实现可见光区的催化抗菌。
上述包含稀土元素氧化物的抗菌材料中的稀土元素氧化物为具有光催化活性的纳米材料,吸收光后产生的能量使膜表面吸附水分子和氧分子形成羟基自由基和活性氧,它们具有非常强的氧化能力,能把表面沾附的有机物降解成二氧化碳和水,使换热器表面具有自洁的功能而很容易擦洗。因此,该抗菌材料不仅能发挥抗菌性还能发挥自洁性。
本申请实施例还提供一种制备如上所述的换热器的方法,包括以下步骤:
将复合材料涂覆于换热管的至少部分表面和/或翅片的至少部分表面,固化,得到所述换热器。
进一步,换热器在制备过程中,先对换热管和/或翅片表面进行预处理,而后再将 复合材料涂覆于经过预处理后的换热管和/或翅片表面,经过固化后,得到带有涂层的换热器。
具体地,在一些实施例中,对换热器的换热管和/或翅片表面进行预处理,换热器的预处理步骤具体包括:将换热器的换热管和/或翅片表面进行100~200目的喷砂处理,再用醇或酸进行清洗换热管和/或翅片表面,而后晾干或在35℃~50℃下烘干。
进一步,预处理过程中,一些实施例中喷砂目数为120~180目,如喷砂目数为150目。所采用的清洗方式例如可以采用无水乙醇超声清洗,或者采用酸蚀清洗。
本申请的一些实施例中,复合材料涂覆换热器的方式包括但不限于浸涂、喷涂、刷涂、淋涂或辊涂中的至少一种。考虑到实施的便捷性,可以利用喷涂或浸涂的方式,将本申请实施例提供的复合材料涂覆于预处理后的换热管和/或翅片表面。其中,浸涂的时间为2~5min,进一步可选为2~3min;浸涂的次数为2~5次,进一步可选为2~3次。
在一些实施例中,将复合材料涂覆于经过预处理后的换热管和/或翅片表面之后,进行固化,固化的温度为180℃~220℃,进一步可选为190℃~210℃,进一步可选为200℃;固化的时间为0.5h~2h,进一步可选为0.8h~1.5h,进一步可选为1h。
本申请实施例还提供一种热管理系统,其中包括如上所述的换热器。具体的,如图3所示,是本申请一示例性实施例示出的一种热管理系统1000,该热管理系统1000至少包括压缩机1、第一换热器2、节流装置3、第二换热器4以及换向装置5。该热管理系统1000的压缩机1可以是卧式压缩机或立式压缩机。节流装置3可以是膨胀阀,或节流装置3是其它对冷媒具有降压及调节流量作用的零部件,本申请文件对节流装置的种类不做具体限制,可根据实际应用环境进行选取,在此不再赘述。需要说明的是,在有些系统中,可以没有换向装置5。本申请前述实施方式中的换热器可以用于该热管理系统1000中作为第一换热器2和/或第二换热器4。在该热管理系统1000中,压缩机1对冷媒进行压缩,压缩后的冷媒温度升高,而后进入第一换热器2中,经过第一换热器2和外界的热交换将热量传递给外界,之后经过节流装置3的冷媒变成液态或气液两相的状态,此时冷媒的温度降低,而后较低温度的冷媒流向第二换热器4,并在第二换热器4与外界热交换后再次进入压缩机1中,实现冷媒循环。
在本申请提供的其他实施方式中,本申请的涂料还可以应用在非换热器的产品上, 例如空调系统的过滤装置中。当然其他产品对亲水性能和/或抗菌抑霉性提升有需求的产品都可以应用本申请实施方式所提供的涂料。
为充分说明本申请提供的涂料的相关性能,便于理解本申请,本申请进行了多组实验验证。下面结合具体实施例、对比例,对本申请作进一步说明。本领域的技术人员将理解,本申请中描述的仅是部分实例,其他任何合适的具体实例均在本申请的范围内。
实施例1
1、涂料的制备
按质量份计,将99份的亲水性混合溶胶和1份的抗菌剂混合均匀,得到涂料;其中,亲水性混合溶胶中各组分的质量份为:亲水改性二氧化硅溶胶为91份、二氧化钛溶胶为5份;抗菌剂包括稀土元素氧化物。
2、换热器的制备
对换热器的换热管和/或翅片表面进行预处理,具体包括:将换热器的换热管和/或翅片表面进行150目的喷砂处理,再用无水乙醇清洗换热器的换热管和/或翅片表面,并晾干。
将上述步骤1得到的涂料浸涂或喷涂于经预处理后的换热管和/或翅片表面,在200℃下经过固化1h后,得到具有涂层的换热器。
实施例2-4
以与实施例1相同的方式制备涂料和换热器,不同之处在于亲水性混合溶胶和抗菌剂的比例。
实施例2中,将98份的亲水性混合溶胶和2份的抗菌剂混合均匀。
实施例3中,将99.5份的亲水性混合溶胶和0.5份的抗菌剂混合均匀。
实施例4中,将98.5份的亲水性混合溶胶和1.5份的抗菌剂混合均匀。
其余均与实施例1相同。
实施例5-10
以与实施例1相同的方式制备涂料和换热器,不同之处在于亲水性混合溶胶的制备。
实施例5中,亲水性混合溶胶的制备包括:(a)按质量份计,将54份的无水乙 醇和1份的十二烷基硫酸钠混合,超声分散10min,再加入31份的KH-560和7份的正硅酸乙酯,在50℃水浴条件下机械搅拌30min,搅拌转速为250rpm,再将6份的水和1份的甲酸滴加到体系中,控制在10min滴加完毕,在50℃水浴下反应约24h,得到亲水改性二氧化硅溶胶。
(b)将步骤(a)得到的35份的亲水改性二氧化硅溶胶、市售的56份的二氧化硅溶胶和5份的二氧化钛溶胶混合,采用4份pH值调节剂甲酸调节体系的pH值至3.0左右,再在约50℃水浴条件下搅拌反应约4h,得到亲水性混合溶胶。
实施例6中,与实施例5的不同之处在于,步骤(b)中,将步骤(a)得到的33份的亲水改性二氧化硅溶胶、市售的57份的二氧化硅溶胶和6份的二氧化钛溶胶混合;其余均与实施例5相同。
实施例7中,与实施例5的不同之处在于,步骤(b)中,将步骤(a)得到的37份的亲水改性二氧化硅溶胶、市售的54.5份的二氧化硅溶胶和4.5份的二氧化钛溶胶混合;其余均与实施例5相同。
实施例8中,与实施例5的不同之处在于,步骤(b)中,将步骤(a)得到的91份的亲水改性二氧化硅溶胶和5份的二氧化钛溶胶混合;其余均与实施例5相同。
实施例9中,与实施例5的不同之处在于,步骤(a)中,按质量份计,将56份的无水乙醇和0.5份的十二烷基硫酸钠混合,超声分散10min,再加入30份的KH-560和6份的正硅酸乙酯,在50℃水浴条件下机械搅拌30min,搅拌转速为250rpm,再将6.5份的水和1份的甲酸滴加到体系中,控制在10min滴加完毕,在50℃水浴下反应约24h,得到亲水改性二氧化硅溶胶;其余均与实施例5相同。
实施例10中,与实施例5的不同之处在于,步骤(a)中,按质量份计,将31份的KH-560、7份的正硅酸乙酯和54份的无水乙醇在约50℃水浴条件下机械搅拌混合均匀,得到混合液;再将3份的水和1份的十二烷基硫酸钠混合均匀后加入到混合液中;然后再将1份的甲酸和3份的水滴加到混合液中,混合均匀,保持上述反应条件不变反应约24h,得到亲水改性二氧化硅溶胶;其余均与实施例5相同。
对比例1
对比例1与实施例1的区别在于,对比例1中的换热器的换热管和/或翅片表面已进行150目的喷砂处理,再用无水乙醇清洗换热器的换热管和/或翅片表面,并晾干。且对比例1中的换热器表面未设有涂料所形成的涂层。
性能测试
为便于进行性能测试,采用涂层涂覆3003铝板或其他型号铝板的方式进行测试。也即,采用与上述各实施例和对比例的换热器的制作材质相同的铝板,并在铝板上涂覆上述涂料进行测试。相应的,该铝板的表面也经过了150目的喷砂处理,再用无水乙醇清洗后晾干。这样有利于模拟真实的换热器产品。
具体地,将实施例1至实施例10中的涂料涂覆于经过预处理后的铝板表面,得到与实施例1至实施例10相对应的涂层铝板测试样品。对照例1(对照例与对比例1相对应)为经预处理后但未涂覆涂层的铝板。测试方法如下:
1.亲水性能测试(接触角测试)
所用测试仪器为接触角测量仪,其采用光学成像原理,采用图像轮廓分析方式测量样品接触角。接触角是指在一固体水平平面上滴一滴液滴,固体表面上的固-液-气三相交界点处,其气-液界面和固-液界面两切线把液相夹在其中时所成的角。
测试时,打开接触角测量仪和与之相连的电脑,打开测试软件。
把试样放在水平工作台上,利用微量进样器调整液滴的量,体积一般为1μL左右,液滴在针头形成液滴,旋转旋钮使工作台上移,让试样表面与液滴接触,再下移工作台,试样上即可留下液滴。
通过测试软件进行测试和数据分析,得到这一区域的接触角。每一实施例和对比例的试样取5个不同的点进行测试后取平均值,记为该实施例和对比例试样的接触角。
经过上述接触角的测试结果表明,实施例1至实施例10的样品表面初始接触角均<10°,而对比例1的样品表面初始接触角为39.114°。由此,说明本申请的涂层增加了亲水性,亲水性能优异,有利于冷凝水排放,使得样品表面不容易形成潮湿水环境。
2.抗菌率和抑霉性能测试(以实施例1和对比例1为例进行说明)
2.1抗菌率
(1)试验样品:试验样品直接由换热器中裁制或与待裁制部分相同原材料和加工方法制成试验样品,试验样品尺寸为(50±2)mm×(50±2)mm,或满足待测面积不小于1600mm2。
(2)对照样品:卫生级高密度聚乙烯(HDPE)注射成型,尺寸为(50±2)mm× (50±2)mm,厚度不大于5mm的标准样品。
(3)试验原理:通过定量接种细菌于待检测样品和对照样品上,用贴膜的方法使细菌均匀接触样品,经过(24±1)h培养后,测得两组样品中的存活细菌数,对比并计算得出样品的抗细菌率。
(4)试验用菌:金黄色葡萄球菌(Staphylococcus aureus)AS 1.89,等同ATCC6538p;大肠埃希氏菌(Escherichia coli)AS 1.90。
抗菌率的具体检测方法和依据,参照《GB21551.2-2010家用和类似用途电器的抗菌除菌净化功能抗菌材料的特殊要求》(附录A附录C)。
抗菌率的测试结果如下表1所示。
表1.实施例1抗菌率的测试结果
Figure PCTCN2021142617-appb-000001
2.2抑霉性能
(1)试验菌种:黑曲霉AS 3.4463、土曲酶AS 3.3935、宛氏拟青霉AS 3.4253、绳状青霉AS3.3875、球毛壳霉AS 3.4254、出芽短梗霉AS 3.3984。
(2)试验条件:时间28天,湿度>90%RH,温度28℃。
(3)评价标准:
长霉等级:0级无生长,即显微镜(放大50倍)下观察未见生长;
1级痕迹生长,即肉眼可见生长,但生长覆盖面积<10%;
2级生长覆盖面积10%-30%(轻度生长);
3级生长覆盖面积30%-60%(中度生长);
4级生长覆盖面积大于60%至全面覆盖(严重生长)。
抑霉性能的测试结果如下表2所示。
表2.实施例1抑霉性能的测试结果
样品编号 长霉程度 长霉等级
实施例1 痕迹生长,即肉眼可见生长,但生长覆盖面积<10% 1级
此外,图4和图5分别示出了本申请实施例1和对比例1的样品抑霉性能测试28天后的图片。结合图4、图5以及上述表1和表2可以看出,本申请提供的涂料具有优异的抗菌性、抑霉性能。
在本申请的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。本申请实施例所描述的“上”、“下”、“内”、“外”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (15)

  1. 一种换热器,其特征在于,所述换热器包括金属基材,所述金属基材具有用于流通换热介质的流体通道;
    所述换热器还包括涂层,所述涂层覆设于所述金属基材的至少部分表面;所述涂层包括溶胶粒子以及抗菌材料,所述溶胶粒子包括二氧化硅,所述抗菌材料包括稀土元素氧化物。
  2. 根据权利要求1所述的换热器,其特征在于,所述溶胶粒子还包括二氧化钛,所述二氧化硅的含量大于所述二氧化钛的含量。
  3. 根据权利要求1所述的换热器,其特征在于,所述涂层为单层涂层,所述涂层表面呈亲水性,所述涂层与水的静态接触角小于等于10°。
  4. 根据权利要求1所述的换热器,其特征在于,所述二氧化硅的至少部分为粒径在纳米级的亲水改性二氧化硅。
  5. 根据权利要求1所述的换热器,其特征在于,所述溶胶粒子的含量大于所述抗菌材料的含量,所述稀土元素氧化物对应的晶粒为纳米级。
  6. 根据权利要求1所述的换热器,其特征在于,所述金属基材包括集流管、换热管以及翅片,所述换热管与所述集流管相固定,所述换热管与所述翅片固定;所述换热管的内腔与所述集流管的内腔连通;
    所述涂层覆设于所述集流管、所述翅片和所述换热管中的至少一者的至少部分表面。
  7. 根据权利要求6所述的换热器,其特征在于,所述金属基材的外表面具有凹凸不平的粗糙面,且所述粗糙面的粗糙度(Ra)满足0.5μm≤Ra≤10μm,所述涂层覆设于至少部分所述粗糙面。
  8. 根据权利要求7所述的换热器,其特征在于,所述金属基材的材质为铝或铝合金;所述集流管、所述翅片以及所述换热管通过钎焊固定为一体;
    所述粗糙面的粗糙度(Ra)满足1μm≤Ra≤3μm;且所述金属基材的所述粗糙面通过喷砂处理后形成。
  9. 根据权利要求6所述的换热器,其特征在于,所述换热器包括两个集流管, 所述换热管长度方向的一端与两个集流管中的一个连接,所述换热管长度方向的另一端与两个集流管中的另一个连接;
    所述翅片位于相邻的两个换热管之间,所述翅片沿换热管的长度方向呈波形设置,所述翅片包括若干波峰部和若干波谷部,所述波峰部与所述相邻的两个换热管中的一个连接,所述波谷部与相邻的两个换热管中的另一个连接。
  10. 一种用于涂覆换热器的涂料,其特征在于,所述涂料包括溶胶和抗菌材料;所述溶胶具有溶胶粒子,所述溶胶粒子包括二氧化硅,所述抗菌材料包括稀土元素氧化物。
  11. 根据权利要求10所述的涂料,其特征在于,按质量份计,所述涂料中各组分的质量份为:所述溶胶为98~99.5份,所述抗菌材料为0.5~2份。
  12. 根据权利要求10所述的涂料,其特征在于,按质量份计,所述溶胶粒子还包括二氧化钛,所述溶胶中二氧化硅的含量大于所述二氧化钛的含量。
  13. 根据权利要求10所述的涂料,其特征在于,所述二氧化硅的至少部分为粒径在纳米级的亲水改性二氧化硅。
  14. 根据权利要求10所述的涂料,其特征在于,所述溶胶包括溶剂,所述溶剂包括甲醇、乙醇和异丙醇中的至少一种。
  15. 一种热管理系统,其特征在于,所述热管理系统包括压缩机、第一换热器、节流装置和第二换热器;当所述热管理系统有冷媒流动时,所述冷媒经所述压缩机流入所述第一换热器,并在所述第一换热器发生热交换之后流入节流装置,而后所述冷媒流入所述第二换热器并在所述第二换热器发生热交换后再次流入所述压缩机;
    所述第一换热器和所述第二换热器中的至少一个为权利要求1至9中任一项所述的换热器。
PCT/CN2021/142617 2021-01-08 2021-12-29 换热器、用于涂覆换热器的涂料及热管理系统 WO2022148286A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/815,190 US20220373276A1 (en) 2021-01-08 2022-07-26 Heat exchanger, coating for coating heat exchanger, and heat management system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110025293.9A CN114752234A (zh) 2021-01-08 2021-01-08 复合材料及其制备方法、换热器及热管理系统
CN202110025293.9 2021-01-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/815,190 Continuation-In-Part US20220373276A1 (en) 2021-01-08 2022-07-26 Heat exchanger, coating for coating heat exchanger, and heat management system

Publications (1)

Publication Number Publication Date
WO2022148286A1 true WO2022148286A1 (zh) 2022-07-14

Family

ID=82325385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142617 WO2022148286A1 (zh) 2021-01-08 2021-12-29 换热器、用于涂覆换热器的涂料及热管理系统

Country Status (3)

Country Link
US (1) US20220373276A1 (zh)
CN (1) CN114752234A (zh)
WO (1) WO2022148286A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115900422A (zh) * 2021-08-27 2023-04-04 杭州三花研究院有限公司 换热器的处理方法和换热器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204283A (ja) * 1999-01-12 2000-07-25 Kansai Paint Co Ltd アルミニウム製熱交換器フィン材の表面処理組成物及びその表面処理方法
JP2000329495A (ja) * 1999-05-21 2000-11-30 Nissan Motor Co Ltd 空気調和装置用熱交換器およびその表面処理方法
CN1767906A (zh) * 2003-03-31 2006-05-03 贝洱两合公司 换热器及其表面处理方法
WO2006099906A1 (de) * 2005-03-24 2006-09-28 Schott Ag Gegenstand mit antibakterieller beschichtung, verfahren zu dessen herstellung und dessen verwendung
CN103115519A (zh) * 2011-11-17 2013-05-22 大连优力特换热设备制造有限公司 纳米高效板式换热器
CN107469820A (zh) * 2017-09-27 2017-12-15 广州市澳米环保科技有限公司 一种光触媒及其制备方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164264A (en) * 1979-06-08 1980-12-20 Hitachi Ltd Aqueous coating composition and heat exchanger coated with it
EP0816466B1 (en) * 1995-03-20 2006-05-17 Toto Ltd. Use of material having ultrahydrophilic and photocatalytic surface
AU6438398A (en) * 1997-02-24 1998-09-09 Superior Micropowders Llc Aerosol method and apparatus, particulate products, and electronic devices made therefrom
US7097686B2 (en) * 1997-02-24 2006-08-29 Cabot Corporation Nickel powders, methods for producing powders and devices fabricated from same
US20040206941A1 (en) * 2000-11-22 2004-10-21 Gurin Michael H. Composition for enhancing conductivity of a carrier medium and method of use thereof
US8580211B2 (en) * 2003-05-16 2013-11-12 Velocys, Inc. Microchannel with internal fin support for catalyst or sorption medium
US7220390B2 (en) * 2003-05-16 2007-05-22 Velocys, Inc. Microchannel with internal fin support for catalyst or sorption medium
JP2005066824A (ja) * 2003-08-21 2005-03-17 Okamoto Machine Tool Works Ltd ガラス用親水性被覆材
US9101890B2 (en) * 2005-05-25 2015-08-11 Velocys, Inc. Support for use in microchannel processing
US20070203352A1 (en) * 2005-12-22 2007-08-30 Bolk Jeroen W Method Of Installing An Epoxidation Catalyst In A Reactor, A Method Of Preparing An Epoxidation Catalyst, An Epoxidation Catalyst, A Process For The Preparation Of An Olefin Oxide Or A Chemical Derivable From An Olefin Oxide, And A Reactor Suitable For Such A Process
US20070154377A1 (en) * 2005-12-22 2007-07-05 Rekers Dominicus M Process for the removal of combustible volatile contaminant materials from a process stream
CN101125970A (zh) * 2006-08-18 2008-02-20 中国科学院金属研究所 一种抗菌涂层
US20080154052A1 (en) * 2006-12-20 2008-06-26 Jeroen Willem Bolk Method of installing an epoxidation catalyst in a reactor, a method of preparing an epoxidation catalyst, an epoxidation catalyst, a process for the preparation of an olefin oxide or a chemical derivable from an olefin oxide, and a reactor suitable for such a process
US20080153963A1 (en) * 2006-12-22 2008-06-26 3M Innovative Properties Company Method for making a dispersion
WO2009027500A2 (de) * 2007-08-31 2009-03-05 Basf Se Verfahren zur herstellung von 1,2-propandiol durch hydrierung von glycerin in einer zweistufigen reaktorkaskade
US7887934B2 (en) * 2007-12-18 2011-02-15 General Electric Company Wetting resistant materials and articles made therewith
CN101579672A (zh) * 2008-05-16 2009-11-18 3M创新有限公司 用于提高亲水性/透射率的二氧化硅涂层
US20100038061A1 (en) * 2008-08-15 2010-02-18 Wessex Incorporated Tube shields having a thermal protective layer
US8552226B2 (en) * 2010-02-02 2013-10-08 Celanese International Corporation Process for heat integration for ethanol production and purification process
CN101839590B (zh) * 2010-02-22 2012-03-21 三花丹佛斯(杭州)微通道换热器有限公司 一种微通道换热器
CN102167940B (zh) * 2010-02-26 2013-01-23 Tcl集团股份有限公司 应用于空调换热器翅片上的钛金涂层材料及其制备方法
JP5421859B2 (ja) * 2010-05-24 2014-02-19 サンデン株式会社 熱交換器
US20120090816A1 (en) * 2010-10-13 2012-04-19 William Marsh Rice University Systems and methods for heat transfer utilizing heat exchangers with carbon nanotubes
CN103112210A (zh) * 2012-12-31 2013-05-22 黄山天马铝业有限公司 一种超亲水抗菌铝箔及其制作方法
CN103555114B (zh) * 2013-10-25 2017-05-10 广州慧谷化学有限公司 一种用于空调平行流热交换器亲水化处理的涂料组合物
KR20150106230A (ko) * 2014-03-11 2015-09-21 삼성전자주식회사 열교환기 및 그 제조방법 그리고 열교환기를 포함하는 공기조화기용 실외기
CN104927638B (zh) * 2015-06-10 2018-04-06 上海大学 基于双亲性溶胶的防污涂层材料及其制备方法
KR20180040330A (ko) * 2016-10-12 2018-04-20 포항공과대학교 산학협력단 마이크로 채널 열교환기의 표면 처리 방법 및 이 방법으로 제작된 극소수성 표면을 가지는 마이크로 채널 열교환기
TW201902353A (zh) * 2017-06-08 2019-01-16 陳郁文 奈米二氧化鈰-二氧化鈦複合溶膠之製法與其在抗菌效能之應用
CN110093050A (zh) * 2018-01-29 2019-08-06 新材料与产业技术北京研究院 超亲水自清洁涂料组合物、超亲水自清洁玻璃及其制备方法
CN111412768A (zh) * 2019-01-07 2020-07-14 浙江三花智能控制股份有限公司 换热器及其制造方法
CN111732892A (zh) * 2020-07-08 2020-10-02 候伟强 一种家居纳米自清洁涂料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204283A (ja) * 1999-01-12 2000-07-25 Kansai Paint Co Ltd アルミニウム製熱交換器フィン材の表面処理組成物及びその表面処理方法
JP2000329495A (ja) * 1999-05-21 2000-11-30 Nissan Motor Co Ltd 空気調和装置用熱交換器およびその表面処理方法
CN1767906A (zh) * 2003-03-31 2006-05-03 贝洱两合公司 换热器及其表面处理方法
WO2006099906A1 (de) * 2005-03-24 2006-09-28 Schott Ag Gegenstand mit antibakterieller beschichtung, verfahren zu dessen herstellung und dessen verwendung
CN103115519A (zh) * 2011-11-17 2013-05-22 大连优力特换热设备制造有限公司 纳米高效板式换热器
CN107469820A (zh) * 2017-09-27 2017-12-15 广州市澳米环保科技有限公司 一种光触媒及其制备方法

Also Published As

Publication number Publication date
CN114752234A (zh) 2022-07-15
US20220373276A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
WO2022148284A1 (zh) 换热器及其制备方法、热管理系统
EP2977417B1 (en) Hydrophilic surface treatment agent for aluminum-containing metal heat exchangers having excellent drainage
CN102241939B (zh) 一种有机-无机杂化的超亲水涂料及其制备方法与应用
US20220325108A1 (en) Superhydrophobic Coating, Method for Preparing Same and Use Thereof
CN105906375A (zh) 一种透明介孔二氧化钛疏水/超亲水功能薄膜的制备方法
WO2022148286A1 (zh) 换热器、用于涂覆换热器的涂料及热管理系统
CN105440747A (zh) 一种超疏水纳米涂料、制作方法及超疏水纳米涂料涂布
CN110372976A (zh) 一种反射型辐射制冷材料、薄膜、制备方法及应用
CN104448962B (zh) 一种自清洁纳米氧化物涂层材料的制备方法
Zhijin et al. Fabrication of super hydrophobic surfaces on copper by solution-immersion
TW201034958A (en) Chain-shaped silica-based hollow fine particles and process for producing same, coating fluid for transparent coating film formation containing the fine particles, and substrate with transparent coating film
CN104497647B (zh) 用于金属基材的自清洁防腐溶胶制备方法
CN102732071A (zh) 用于金属铝板防腐的自清洁纳米复合溶胶的制备方法
WO2022148287A1 (zh) 换热器及其制备方法、热管理系统
Tsai et al. Surface modification on a glass surface with a combination technique of sol–gel and air brushing processes
KR101028797B1 (ko) 친환경 기능성 오염방지 코팅제 조성물 및 그 제조방법
WO2022148285A1 (zh) 换热器及其制备方法、热管理系统
US8354165B2 (en) Substrates supplied with a dust and aerosol-repellent coating, method for the production thereof and materials for this purpose
CN109876741A (zh) 一种电气石与光催化半导体复合水凝胶及其制备方法和应用
JP2004244608A (ja) 加水分解重縮合物溶液およびその製造方法、ならびにそれを用いた透明皮膜形成用組成物
Gu et al. Construction of superhydrophobic surfaces by sol-gel techniques
Cai et al. Preparation and characterization of SiO2–TiO2 superhydrophilic coatings with photocatalytic activity induced by low temperature
CN116067201A (zh) 换热器的处理方法和换热器
EP2500318A1 (en) Heat-insulating agent composition
CN110711573A (zh) 一种多功能纳米复合材料防尘防污防霉剂制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917325

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.12.2023)