WO2022148285A1 - 换热器及其制备方法、热管理系统 - Google Patents

换热器及其制备方法、热管理系统 Download PDF

Info

Publication number
WO2022148285A1
WO2022148285A1 PCT/CN2021/142578 CN2021142578W WO2022148285A1 WO 2022148285 A1 WO2022148285 A1 WO 2022148285A1 CN 2021142578 W CN2021142578 W CN 2021142578W WO 2022148285 A1 WO2022148285 A1 WO 2022148285A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
heat exchanger
rare earth
conversion coating
earth conversion
Prior art date
Application number
PCT/CN2021/142578
Other languages
English (en)
French (fr)
Inventor
黄海
薛明
唐建华
余书睿
黄宁杰
Original Assignee
杭州三花研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花研究院有限公司 filed Critical 杭州三花研究院有限公司
Publication of WO2022148285A1 publication Critical patent/WO2022148285A1/zh
Priority to US18/346,109 priority Critical patent/US20230358488A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic

Definitions

  • the present application relates to the technical fields of heat exchange and materials, and in particular, to a heat exchanger, a preparation method thereof, and a thermal management system.
  • the moisture in the air will condense on the surface of the heat exchanger, which makes the metal surface of the heat exchanger easy to form a humid environment, and the corresponding metal surface of the heat exchanger is also prone to electrochemical corrosion.
  • the method is to provide a chromium salt passivation coating on the surface of the heat exchanger, in order to play a certain role in delaying corrosion, but since most of the heat exchangers use brazing connection technology, due to the presence of flux in the brazing part, chromium The salt coating is difficult to react, so the coating on the brazing part is more difficult, which will affect the corrosion resistance of the heat exchanger; in addition, the chromium salt also has a certain impact on the environment.
  • the present application provides a heat exchanger with better corrosion resistance. Accordingly, the present application also provides a method for preparing a corresponding heat exchanger and a heat management system including the heat exchanger.
  • a heat exchanger includes a metal base material, the metal base material has a fluid channel for circulating a heat exchange medium; the heat exchanger further has a coating, The coating includes a rare earth conversion coating and a hydrophobic coating;
  • the rare earth conversion coating is coated on at least part of the surface of the metal substrate, and the rare earth conversion coating includes a rare earth element-containing compound; and at least part of the hydrophobic coating is further away from the rare earth conversion coating than the rare earth conversion coating.
  • Metal substrate is coated on at least part of the surface of the metal substrate, and the rare earth conversion coating includes a rare earth element-containing compound; and at least part of the hydrophobic coating is further away from the rare earth conversion coating than the rare earth conversion coating.
  • the heat exchanger provided by the present application includes a rare earth conversion coating and a hydrophobic coating, wherein the rare earth conversion coating is used as a primer layer to cover at least part of the surface of the metal substrate of the heat exchanger, and the hydrophobic coating is stronger than the rare earth conversion coating. farther away from metal substrates. Therefore, the use of the hydrophobic coating can make the surface of the heat exchanger have hydrophobic properties, and the hydrophobic coating can increase the contact angle between the water droplets contacting the surface of the heat exchanger and the wall surface, and reduce the contact area, so that the water droplets freeze slowly. It can improve the humid environment on the surface of the heat exchanger and reduce the penetration of corrosive media into the metal matrix.
  • the rare earth conversion coating can block the redox reaction of the metal substrate, so that the heat exchanger can improve the corrosion resistance of the heat exchanger through the cooperation of the rare earth conversion coating and the hydrophobic coating.
  • the preparation method of the heat exchanger comprises the following steps:
  • a metal substrate, a rare earth conversion coating and a hydrophobic coating are provided, wherein the metal substrate has at least one fluid channel for circulating a heat exchange medium;
  • the hydrophobic coating is applied on at least part of the surface of the rare earth conversion coating and cured to obtain the heat exchanger.
  • a rare earth conversion coating is applied to at least part of the surface of a metal substrate and cured, and a hydrophobic coating is applied to at least part of the surface of the rare earth conversion coating and cured, and finally a heat exchanger is obtained .
  • the rare earth conversion coating coated on at least part of the surface of the metal substrate can form a rare earth conversion coating after curing, which can block the redox reaction process of the metal substrate, and the rare earth conversion coating is coated on the rare earth conversion coating.
  • the hydrophobic coating on at least part of the surface can form a hydrophobic coating after curing, which can make the surface of the heat exchanger have hydrophobic properties. Therefore, the water droplets freeze slowly, which can improve the humid environment on the surface of the heat exchanger and reduce the penetration of the corrosive medium into the metal substrate.
  • the preparation method of the heat exchanger provided by the present application can improve the corrosion resistance of the heat exchanger.
  • a thermal management system includes a compressor, a first heat exchanger, a throttling device and a second heat exchanger, when the thermal management system has refrigerant flowing
  • the refrigerant flows into the first heat exchanger through the compressor, and flows into the throttling device after the heat exchange occurs in the first heat exchanger, the refrigerant flows into the second heat exchanger and then flows into the throttling device. It flows into the compressor again after heat exchange in the second heat exchanger.
  • the first heat exchanger and/or the second heat exchanger are the heat exchangers described above;
  • At least one of the first heat exchanger and the second heat exchanger is the aforementioned heat exchanger, so the heat exchanger has better corrosion resistance.
  • FIG. 1 is a schematic structural diagram of a heat exchanger provided by an exemplary embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional view of a coating part in a heat exchanger provided by an exemplary embodiment of the present application
  • FIG. 3 is a schematic cross-sectional view of a fin portion of a heat exchanger provided by an exemplary embodiment of the present application
  • FIG. 4 is a schematic cross-sectional view of a part of a heat exchange tube of a heat exchanger according to an exemplary embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a thermal management system provided by an exemplary embodiment of the present application.
  • Fig. 6 is the topography of the sample before the salt spray test of some embodiments of the application.
  • FIG. 7 is a topographic view of a sample after salt spray test of some embodiments of the present application.
  • Item C may contain a single element or multiple elements.
  • the terms "at least a portion”, “at least a portion of a surface”, “at least a portion of a surface” or other similar terms are used to mean any portion of the surface or the entire surface of the component.
  • at least a part of the surface of the heat exchanger refers to a certain part or parts of the surface of the heat exchanger, or the entire surface of the heat exchanger.
  • microchannel heat exchanger is a high-efficiency heat exchange equipment developed in the 1990s, which can be widely used in the fields of chemical industry, energy and environment. Because microchannel heat exchangers have many different characteristics from conventional scale equipment, such as small size, light weight, high efficiency, and high strength. Micro-channel technology has also triggered technological innovations in the fields of new energy vehicle thermal management systems, household air conditioners, commercial air conditioners and refrigeration equipment to improve efficiency and reduce emissions.
  • the main technical bottlenecks include: the corrosion resistance of aluminum/aluminum alloy materials in the all-aluminum microchannel heat exchanger is not good, and it is necessary to use the relevant corrosion-resistant coating technology to improve the corrosion resistance of the heat exchanger.
  • related fields There are more or less defects in the commonly used anti-corrosion technology of chromium salt passivation coating or anodized electrophoretic coating, and there is still a need for improvement. Therefore, how to make the heat exchanger have good corrosion resistance and prolong the service life of the heat exchanger has become an urgent problem to be solved in the industry.
  • the technical solutions of the embodiments of the present application provide a heat exchanger capable of improving corrosion resistance and effectively delaying frost formation, a preparation method for the heat exchanger, and a thermal management system, which can improve the performance of coatings or coatings in the related art. Corrosion resistance and hydrophobicity, improve heat exchanger life and improve heat exchange efficiency. See below for the description of the specific technical solution.
  • An embodiment of the present application provides a heat exchanger, the heat exchanger includes a metal substrate, the metal substrate has a fluid channel for circulating a heat exchange medium, the heat exchanger further has a coating, and the coating includes a rare earth conversion coating and hydrophobic coatings, where the rare earth conversion coating is relatively closer to the surface of the metal substrate. That is, at least a part of the outer surface of the metal base material of the heat exchanger may be provided with the rare earth conversion coating and the hydrophobic coating layer in sequence.
  • the rare earth conversion coating is connected with the metal substrate through covalent bonds
  • the hydrophobic coating is connected with the rare earth conversion coating through covalent bonds; the hydrophobic coating is exposed to the environment.
  • the outer surface of the metal substrate has an uneven rough surface, and the roughness (Ra) of the rough surface satisfies 0.5 ⁇ m ⁇ Ra ⁇ 10 ⁇ m, for example, the roughness of the rough surface is 0.5 ⁇ m, 1 ⁇ m , 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, and any value in the range of any two of these point values. It can be understood that controlling the roughness of the outer surface of the metal substrate within the above range is beneficial to the adhesion of the coating.
  • the heat exchanger can be used in thermal management systems such as air conditioning systems, so that the surface of the heat exchanger has excellent hydrophobic performance, which can improve the efficiency of the heat exchanger to delay frost formation, improve heat exchange efficiency, and also improve corrosion resistance. the service life of the heater.
  • the heat exchanger is a microchannel heat exchanger.
  • the embodiments of the present application specifically illustrate the heat exchanger and its preparation method by taking the micro-channel heat exchanger as the above-mentioned heat exchanger as an example.
  • the principles of the present invention or the arrangement of rare earth conversion coatings and hydrophobic coatings may be implemented in any suitable arrangement of heat exchangers and are not limited to microchannel heat exchangers.
  • descriptions of well-known functions and structures of heat exchangers may be omitted for clarity and conciseness.
  • the main structure of the heat exchanger 100 includes a header 10 , fins 13 and a plurality of heat exchange tubes 12 , and the heat exchange tubes 12 are fixed to the header 10 .
  • the inner cavity of the heat exchange tube 12 is communicated with the inner cavity of the header 10, the fins 13 are located between two adjacent heat exchange tubes 12, and the heat exchanger 100 further includes a rare earth conversion coating and a hydrophobic coating 11; wherein , the rare earth conversion coating is arranged on at least a part of the surface of at least one of the header 10, the heat exchange tube 12 and the fin 13, the rare earth conversion coating comprises a compound containing rare earth elements; the hydrophobic coating is located away from the rare earth conversion coating One side of the collector tube or the heat exchange tube or the fin, such as at least part of the surface of the rare earth conversion coating, is directly covered with a hydrophobic coating, and the hydrophobic coating includes hydrophobically modified silica.
  • the third coating 103 there may also be a third coating 103 between the hydrophobic coating 102 and the rare earth conversion coating 101 , and the third coating 103 can be coated on the rare earth.
  • the hydrophobic coating 102 may also be provided with a coating basis.
  • the third coating 103 can be a hydrophilic coating or other functional coating. That is, the surface of at least part of the structure of the heat exchanger is covered with the rare earth conversion coating 101 , at least part of the surface of the rare earth conversion coating 101 is covered with the third coating 103 , and at least part of the third coating 103 is covered The surface is covered with a hydrophobic coating 102 .
  • At least a part of the surface of at least one of the header 10 , the heat exchange tubes 12 and the fins 13 has the rare earth conversion coating and the hydrophobic coating 11 on it.
  • at least a part of the surface of at least one of the heat exchange tubes 12 and the fins 13 has a rare earth conversion coating
  • at least a part of the rare earth conversion coating has a hydrophobic coating on the surface.
  • the rare earth conversion coating and the hydrophobic coating 11 are illustrated with reference to the shaded portion on the surface of the leftmost heat exchange tube 12 .
  • the surfaces of other heat exchange tubes 12 , fins 13 and/or headers 10 may be coated with rare earth conversion coatings and hydrophobic coatings to form rare earth conversion coatings and hydrophobic coatings.
  • the number of headers 10 is two, and the two headers 10 are arranged in parallel; a plurality of heat exchange tubes are arranged in parallel with each other, and a plurality of heat exchange tubes 12 are connected between the two headers 10 , to connect the two headers.
  • the width of the heat exchange tube 12 is greater than the thickness of the heat exchange tube 12 , and the interior of the heat exchange tube 12 has a plurality of heat exchange channels extending along the length direction of the heat exchange tube 12 . Therefore, the heat exchange tube 12 can be a microchannel flat tube or an elliptical tube.
  • the plurality of heat exchange tubes 12 are arranged along the axial direction of the header 10 , the fins 13 are corrugated along the length direction of the heat exchange tubes 12 , and the crests and troughs of the fins 13 are respectively connected to two adjacent heat exchange tubes. connected.
  • the arrangement of the fins 13 can increase the heat exchange area of the two adjacent heat exchange tubes and improve the heat exchange efficiency of each heat exchanger.
  • a window structure may be provided in a partial area of the fin 13 to form a louver-type fin to further enhance heat exchange.
  • the structure or the number of each component shown in FIG. 1 of the embodiment of the present application does not constitute a specific limitation on the heat exchanger.
  • the heat exchanger may include more or less components than shown, or a different number or structure of headers, or a different number or structure of heat exchange tubes, or a different number or structure fins, or different component arrangements.
  • the microchannel heat exchanger is an all-aluminum microchannel heat exchanger, for example, the headers, heat exchange tubes and fins in the microchannel heat exchanger are all made of materials containing aluminum/aluminum alloy .
  • the structure of the microchannel heat exchanger and the connection relationship of various components are conventional knowledge in the art, and will not be repeated here.
  • At least a part of the surface of the fin 13 is covered with a rare earth conversion coating 101 , and at least a part of the surface of the rare earth conversion coating 101 is covered with a hydrophobic coating 102 .
  • the surface temperature and humidity of the fins are the most important factors affecting the frosting of the heat exchanger.
  • the low surface temperature of the fins and the uneven distribution will cause uneven distribution of the frost layer, which will deteriorate the heat transfer of the heat exchanger and cause the frost to be accelerated.
  • most of the microchannel heat exchangers use louver fins, and the fin spacing is very small, which is easy to "bridge” between condensed water droplets and reduce the drainage performance.
  • the condensed water is accumulated at the sharp corners of the fins and is difficult to remove.
  • frost is formed again, the condensed water freezes, causing the frosting phenomenon to be aggravated after the second frosting cycle. Therefore, in the microchannel heat exchanger, at least a part of the surface of the fin is provided with the rare earth conversion coating and the hydrophobic coating, which helps to improve the efficiency of delaying frost formation and improve the heat exchange effect.
  • At least a part of the surface of the heat exchange tube 12 is covered with a rare earth conversion coating 101 , and at least a part of the surface of the rare earth conversion coating 101 is covered with a hydrophobic coating 102 .
  • At least a part of the surface of the fin and at least a part of the surface of the heat exchange tube are covered with a rare earth conversion coating, and at least a part of the surface of the rare earth conversion coating is covered with a hydrophobic coating.
  • the rare earth conversion coating described above includes a rare earth element-containing compound; the hydrophobic coating includes hydrophobically modified silica.
  • the heat exchanger provided according to the embodiment of the present application is provided with a rare earth conversion coating and a hydrophobic coating, wherein the rare earth conversion coating comprises a compound containing rare earth elements, and the hydrophobic coating comprises hydrophobically modified silica; the rare earth conversion coating It can be used as a primer coating on at least part of the surface of the header, at least part of the surface of the heat exchange tube and/or at least part of the surface of the fin, and the hydrophobic coating can be used as a top coating on at least part of the surface of the rare earth conversion coating superior.
  • the heat exchanger is first subjected to rare earth conversion treatment to form a rare earth conversion coating, and then the sol-gel silane hydrophobic coating is used to perform hydrophobic surface treatment on the heat exchanger.
  • the hydrophobic coating can be used with the rare earth conversion coating.
  • the surface of the heat exchanger after coating conversion treatment is bonded by Si-O (silicon-oxygen) covalent bond, which has the characteristics of tight bonding and good durability, and the use of rare earth conversion coating can further improve the compactness of the coating, When local pitting corrosion occurs, it can block the cathode reduction reaction, thereby improving the corrosion resistance of the heat exchanger.
  • Si-O silicon-oxygen
  • the rare earth conversion coating has good corrosion resistance on the surface of the heat exchanger, the surface of the heat exchanger is not easy to produce more locally raised metal corrosion oxides, and the corresponding destructive effect on the hydrophobic coating is small.
  • the coating in turn helps maintain the durability of the hydrophobic coating.
  • the hydrophobic coating can use its good hydrophobic properties to effectively reduce the adhesion and enrichment of the corrosive solution, avoid the brittleness and hardness of the existing chromium salt passivation film, reduce the penetration of the corrosive medium into the metal matrix, and can further Improve the corrosion resistance of the heat exchanger and effectively prolong the frosting time on the surface of the heat exchanger.
  • the heat exchanger not only improves the corrosion resistance of the heat exchanger, is beneficial to prolong the service life of the heat exchanger, but also makes the surface of the heat exchanger have hydrophobic properties. , can play a role in delaying frost formation. Furthermore, when the heat exchanger is used in an air conditioning system and a heat pump system, it is beneficial to prolong the service life and improve the heat exchange efficiency of the heat exchanger.
  • the heat exchanger of the embodiment of the present application reduces the cost through the arrangement of the rare earth conversion coating and the hydrophobic coating, which is compared with the existing chromium salt passivation corrosion resistance treatment or anodized electrophoretic coating treatment.
  • the material process cost can be reduced by at least 50%; the present application also has the advantages of environmental protection, the coating has good flexibility, and can withstand the bending of the fins without the risk of cracking or delamination.
  • the specific types of rare earth element-containing compounds in the rare earth conversion coating can be varied in order to meet the requirements of improving the corrosion resistance of heat exchangers.
  • the rare earth elements in the rare earth element-containing compound include lanthanide rare earth elements, and the lanthanide rare earth elements include lanthanum, cerium, praseodymium, neodymium, promethium, samarium, and europium. at least one.
  • the rare earth element-containing compound may be a lanthanum-containing compound, a cerium-containing compound, a praseodymium-containing compound, a neodymium-containing compound, a promethium-containing compound, a samarium-containing compound, a europium-containing compound, or It can also be a mixture of any two or more of the above compounds in any ratio.
  • the rare-earth element-containing compound is not limited to the ones listed above, and other types of rare-earth element-containing compounds can also be used under the condition that the requirements such as improving the corrosion resistance of the heat exchanger are met. One by one detailed description.
  • the rare earth element may be a cerium element
  • the rare earth element-containing compound may be a cerium-containing compound
  • the rare earth-containing compound includes an oxide of cerium (eg, cerium oxide CeO 2 ) and a hydroxide of cerium (eg, cerium hydroxide Ce(OH) 4 ).
  • the rare earth element-containing compound is selected as a cerium-containing compound, and the cerium-containing compound is in a state in which CeO 2 and cerium hydroxide Ce(OH) 4 coexist, so that the chemical properties are stable, which is conducive to improving The effect of anti-pitting corrosion can improve the corrosion resistance of heat exchangers.
  • the weight per unit area of the rare earth conversion coating is controlled between 0.75 g/m 2 and 1.2 g/m 2 .
  • the average weight per unit area of the rare earth conversion coating may be not less than 0.75 g/m 2 , and may be greater than or equal to 0.75 g/m 2 and less than or equal to 1.2 g/m 2 .
  • the weight per unit area of the hydrophobic coating is controlled between 4g/m 2 and 10g/m 2 , and the average weight per unit area of the hydrophobic coating may not be less than 4g/m 2 , and may be greater than or equal to 4g/m m 2 and less than or equal to 10 g/m 2 .
  • Appropriate thicknesses of the rare earth conversion coating and hydrophobic coating can effectively improve the corrosion resistance of the heat exchanger and the efficiency of delaying frost formation, without negatively affecting the heat exchange efficiency of the heat exchanger.
  • the present application also provides a preparation method of a heat exchanger, wherein the heat exchanger can be the heat exchanger described in any of the above embodiments, and the preparation method includes the following steps:
  • the rare earth conversion coating and the hydrophobic coating can be obtained first, and then the rare earth conversion coating and the hydrophobic coating can be sequentially coated on at least part of the surface of the metal substrate of the heat exchanger.
  • the order of preparation of the rare earth conversion coating and the hydrophobic coating is not limited too much.
  • the rare earth conversion coating can be prepared first and then the hydrophobic coating can be prepared, or the hydrophobic coating can also be prepared first.
  • Rare earth conversion coating or can also prepare rare earth conversion coating and hydrophobic coating at the same time.
  • the preparation process of the heat exchanger is simple, easy to control, high feasibility, and the reaction is easy to carry out, the reaction conditions are mild, the environmental pollution is less, the heat exchanger has the advantages of green environmental protection, and is suitable for industrial scale production.
  • the heat exchanger obtained by the preparation method can delay the frosting cycle, shorten the defrosting cycle, improve the heat exchange efficiency, improve the corrosion resistance, and prolong the service life of the heat exchanger.
  • the rare earth conversion coating comprises the following raw materials in parts by mass:
  • the above-mentioned "optional" accelerator means that the accelerator can be selectively added or not added, that is, the raw material of the rare earth conversion coating may contain accelerator or may not contain accelerator.
  • the rare earth conversion coating includes the following raw materials in parts by mass: 1-3 parts of rare earth raw materials, 94-96 parts of water, and 1.5-4.5 parts of an oxidizing agent.
  • the rare earth conversion coating comprises the following raw materials by mass: 1-3 parts of rare earth raw materials, 94-96 parts of water, 1.5-4.5 parts of oxidant, and 0-1 part of accelerator.
  • the accelerator When the accelerator is 0, no accelerator is added.
  • the accelerator can play a role in promoting the process of redox reaction on the surface of aluminum, for example, it can make Al better into Al 3+ and electron e. Therefore, when the accelerator is added, the redox reaction on the aluminum surface can be accelerated, and the reaction efficiency can be improved; while when the accelerator is not added, the redox reaction on the aluminum surface is relatively slow.
  • the rare earth conversion coating is mainly prepared from suitable and appropriate rare earth raw materials, water, oxidant and optional accelerator.
  • redox can occur on the surface of aluminum
  • the reaction generates a rare earth element-containing compound, which can make at least part of the surface of the heat exchanger exhibit good properties or structural stability to improve corrosion resistance.
  • mass part refers to the basic measurement unit of the mass ratio relationship of multiple components, and 1 part can represent any unit mass, for example, 1 part can be expressed as 1 g, 1.68 g, or 5 g, etc.
  • the rare earth conversion coating comprises the following raw materials in parts by mass: 1-3 parts of rare earth raw materials, 95.1 parts of water, 3-3.5 parts of oxidizing agent and 0.5-1 part of optional accelerator.
  • rare earth raw materials are raw materials that can provide rare earth elements, such as raw materials that can provide cerium (Ce) elements.
  • rare earth raw materials include, but are not limited to, cerium nitrate hexahydrate, cerium nitrate anhydrous, cerium chloride and its polyhydrates, cerium sulfate and its polyhydrates, cerium acetate and its polyhydrates one or a combination of at least two.
  • cerium chloride and its polyhydrate are anhydrous cerium chloride, the polyhydrate of cerium chloride such as cerium chloride heptahydrate or octahydrate cerium chloride etc.; Water cerium sulfate, cerium sulfate polyhydrate such as cerium sulfate tetrahydrate; cerium acetate and its polyhydrate are anhydrous cerium acetate, cerium acetate polyhydrate such as cerium acetate trihydrate or cerium acetate tetrahydrate.
  • the rare earth element can be cerium element, and can also be lanthanum, praseodymium, neodymium, promethium, samarium, europium and other elements, when the rare earth element is lanthanum, praseodymium, neodymium and other elements , the rare earth raw material can be a compound that can provide the corresponding element.
  • the oxidizing agent includes, but is not limited to, at least one of hydrogen peroxide, sodium perchlorate, and t-butyl hydroperoxide.
  • the oxidizing agent can be an aqueous solution of hydrogen peroxide (the mass concentration of hydrogen peroxide is about 27.5 wt.% to 30 wt.%), or the oxidizing agent can be sodium perchlorate, or the oxidizing agent can be an aqueous solution of tert-butyl hydrogen peroxide or A solution of tert-butyl hydroperoxide in tert-butanol (the mass concentration of tert-butyl hydroperoxide is not less than 60 wt.%).
  • the content of each oxidant can be adjusted appropriately.
  • hydrogen peroxide the mass parts of hydrogen peroxide are 1.5 to 4.5 parts
  • tert-butyl hydroperoxide the mass parts of tert-butyl hydroperoxide are 1.2 to 3.6 parts
  • sodium chlorate the mass part of sodium perchlorate is 1.5-4.5 parts.
  • tert-butyl hydroperoxide has better oxidizing property and better application effect, so its addition amount can be appropriately reduced.
  • the accelerator includes, but is not limited to, sodium chloride.
  • sodium chloride On the basis of meeting the requirements of promoting the redox reaction process on the aluminum surface, other types of promoters can also be used.
  • the water can be deionized water.
  • the above-mentioned preparation method of rare earth conversion coating includes the following steps: in parts by mass, dissolving 1-3 parts of rare earth raw materials in 94-96 parts of water to obtain solution A; heating solution A At 45 DEG C to 55 DEG C, 1.5 to 4.5 parts of an oxidant is added to the solution A to obtain a rare earth conversion coating.
  • the method before obtaining the rare earth conversion coating, further includes heating the solution A after adding the oxidant to 30°C to 55°C. That is, the preparation method of the above-mentioned rare earth conversion coating includes the following steps: in parts by mass, dissolving 1 to 3 parts of rare earth raw materials in 94 to 96 parts of water to obtain solution A; heating the solution A to 45° C. At 55°C, 1.5-4.5 parts of an oxidant is added to the solution A to obtain a solution B, and the solution B is heated to 30°C to 55°C to obtain the rare earth conversion coating.
  • the film-forming effect of the rare earth conversion coating is slightly different at different temperatures.
  • the heating condition of heating the solution B to 30°C to 55°C is conducive to the better film-forming combination of the rare earth conversion coating and the surface of the heat exchanger, and is conducive to the rare earth elements in the Reaction process on the surface of metal substrates.
  • the above-mentioned preparation method of rare earth conversion coating includes the following steps: by mass parts, mixing 1-3 parts of rare earth raw material cerium nitrate hexahydrate and 0.5-1 part of accelerator sodium chloride, Add 95.1 parts of deionized water, stir mechanically until the solid is completely dissolved, and obtain a colorless and transparent solution A; heat the solution A to 45°C to 55°C in a water bath, and then add 1.5 to 4.5 parts of an oxidizing agent to the solution A.
  • Aqueous solution of hydrogen oxide (27.5wt.%) is obtained to obtain solution B, and solution B is continuously heated to 30°C to 55°C to obtain rare earth conversion coating.
  • the heat exchanger containing the rare earth conversion coating provided by the present application, at least one of the headers, the heat exchange tubes and the fins is pretreated first, and then the prepared rare earth conversion coating is coated.
  • the rare earth conversion coating comprising the rare earth element-containing compound is formed by covering at least a part of the surface of at least one of the collector tube, the heat exchange tube and the fin, and after curing.
  • the surface of the heat exchange tubes and/or fins of the heat exchanger is pretreated, and the preprocessing step of the heat exchanger specifically includes: preprocessing the heat exchange tubes and/or fins of the heat exchanger The surface is sandblasted with 100-200 mesh, and then the surface of the heat exchange tubes and/or fins is cleaned with alcohol or acid, and then dried at 35°C to 50°C.
  • the sandblasting mesh number is 120-180 meshes, for example, the sandblasting mesh number is 150 meshes.
  • the drying temperature is 35°C to 50°C, and in some embodiments, it is 38°C to 45°C, such as 40°C.
  • the cleaning method used may be, for example, ultrasonic cleaning with absolute ethanol, or acid etching cleaning.
  • the manner of coating the rare earth conversion coating on the surface of the pretreated heat exchanger includes, but is not limited to, at least one of dip coating, spray coating, brush coating, flow coating or roller coating.
  • the rare earth conversion coating provided in the embodiments of the present application can be applied to the pretreated heat exchange tube and/or fin surface by spraying or dipping.
  • the pretreated heat exchanger can be immersed in the rare earth conversion coating, and kept at 30°C ⁇ 55°C for 30min ⁇ 50min, so that the rare earth conversion coating can undergo a redox reaction on the aluminum surface to form a rare earth conversion coating, and then Take the heat exchanger with rare earth conversion coating out of cold air to dry or air dry naturally.
  • the equation involved in the oxidation reaction process of the rare earth conversion coating on the aluminum surface can be as follows:
  • the rare earth conversion coating contains a mixture of Ce(OH) 4 and CeO 2 coexisting.
  • Such stable chemical properties are conducive to improving the effect of anti-pitting corrosion, and can improve the corrosion resistance of heat exchangers.
  • hydrophobic coating may be a modified hydrophobic silica sol.
  • the hydrophobic coating includes the following raw materials in parts by mass: 10-50 parts of organosilane and/or siloxane, 45-89 parts of solvent, and 1-5 parts of hydrophilic silica.
  • the hydrophobic coating is mainly prepared from a suitable and appropriate amount of organosilane and/or siloxane, a solvent and hydrophilic silica, wherein the organosilane and/or siloxane are hydrophobic materials, which can not only exert their own High and low temperature resistance, oxidation resistance stability, weather resistance, low surface tension and other basic properties, using the excellent hydrophobicity of the organosilane and/or siloxane, in the presence of a suitable solvent, the hydrophilic dioxide can be treated Silicon is modified to make it somewhat hydrophobic.
  • the hydrophobic coatings in the examples of the present application balance various properties through the synergistic effect of the above-mentioned specific content of organosilanes and/or siloxanes, solvents and hydrophilic silica to obtain modified coatings with excellent properties.
  • the hydrophobic silica sol makes the hydrophobic silica sol have better hydrophobicity.
  • the above-mentioned hydrophobic coating When the above-mentioned hydrophobic coating is applied to the heat exchanger, its hydrophobic properties can effectively reduce the adhesion and enrichment of the corrosive solution, reduce the penetration of the corrosive medium into the metal matrix, improve the corrosion resistance of the system, and at least partially exchange
  • the heater surface exhibits hydrophobicity to retard frost formation.
  • the hydrophobic surface can increase the contact angle between the water droplets formed in the heat exchanger and the wall surface in the early stage of frost formation, and reduce the contact area, so that the water droplets freeze slowly and the formation of initial frost crystals is delayed.
  • the preparation raw materials may include organosilane, or may include siloxane, or may include both organosilane and siloxane. If the hydrophobically modified silica sol uses organosilane and siloxane at the same time, there is no restriction on the ratio of organosilane and siloxane, and the total dosage is within the dosage range defined in this application, such as 10-50 parts by mass That's it.
  • the hydrophobic coating includes the following raw materials in parts by mass: organosilane and/or silicon oxide 20-40 parts of alkane, 50-80 parts of solvent, 1-3 parts of hydrophilic silica.
  • the organosilane includes hexamethyldisilazane (also called hexamethyldisilazane, HMDS for short), namely (CH 3 ) 3 Si-NH-Si(CH 3 ) 3 , Methyltriethoxysilane (referred to as MTES), dimethyldiethoxysilane (referred to as DDS), trimethylchlorosilane (referred to as TMCS), dimethyldichlorosilane, ⁇ -glycidyl ether oxypropyl At least one of trimethoxysilane (referred to as KH-560).
  • HMDS hexamethyldisilazane
  • MTES Methyltriethoxysilane
  • DDS dimethyldiethoxysilane
  • TMCS trimethylchlorosilane
  • KH-560 trimethoxysilane
  • the organosilane can be HMDS, MTES, DDS, TMCS, dimethyldichlorosilane, KH-560, or any two or two of the above organosilanes. A mixture of more than one species in any ratio.
  • the organosilanes are not limited to the ones listed above, and other organosilanes can also be used under the condition that the hydrophobic properties of the hydrophobic coating are satisfied or the requirements such as reducing the penetration of corrosive media and slowing down frosting are met. Types, such as monomethyltrichlorosilane and other similar chlorosilanes, will not be described in detail here.
  • HMDS HMDS, MTES, DDS, TMCS and other types of organosilanes is more helpful to improve the hydrophobicity of silica, and a hydrophobic silica sol with better hydrophobicity can be prepared.
  • the specific types of solvents and hydrophilic silica can be varied.
  • the solvent includes an alcohol-based solvent.
  • the alcohol solvent includes an alcohol solvent having 1 to 10 carbon atoms, preferably an alcohol solvent having 1 to 8 carbon atoms, and more preferably an alcohol solvent having 1 to 4 carbon atoms.
  • the solvent is any one of methanol, ethanol, and isopropanol, or a mixture of any two or more in any ratio.
  • alcohol solvents such as methanol, ethanol, and isopropanol is helpful for the modification of hydrophilic silica by organosilanes and/or siloxanes, and has a wide range of sources, easy availability and low cost.
  • the hydrophilic silica includes at least one of fumed silica particles or dispersible silica sols.
  • the preparation method of the above-mentioned hydrophobic coating includes the following steps: in parts by mass, 10-50 parts of organosilane and/or siloxane, 45-89 parts of solvent and 1-5 parts of The hydrophilic silica is mixed, and the reaction is stirred at a temperature of 30 to 45°C for 15 to 45 minutes, and the stirring speed is 200 to 500 rpm to obtain a modified hydrophobic silica sol.
  • the hydrophobic coating obtained by the preparation method has both the anti-frost properties of the hydrophobic surface, has better hydrophobic performance, and can promote and improve the condensed water discharge of the coating in the confined space.
  • reaction equation involved in the preparation of the above-mentioned hydrophobic coating is as follows:
  • the preparation method of the above-mentioned hydrophobic coating comprises the following steps: in parts by mass, 10-50 parts of organosilane and/or siloxane, 45-89 parts of solvent and 1-5 parts of The hydrophilic silica is mixed, and the reaction is mechanically stirred for 25 to 35 minutes under the condition of a water bath at 35°C to 40°C, and the stirring speed is 250 to 300 rpm to obtain a modified hydrophobic silica sol.
  • the manner of applying the hydrophobic coating to the surface of the heat exchanger with the rare earth conversion coating includes, but is not limited to, at least one of dip coating, spray coating, brush coating, flow coating or roller coating.
  • the hydrophobic coating provided in the embodiments of the present application may be applied to at least part of the surface of the rare earth conversion coating by spraying or dipping.
  • a hydrophobic coating can be used to immerse the heat exchanger with the rare earth conversion coating, wherein the time of dip coating is 2 to 5 minutes, and the time of dip coating is 2 to 3 minutes. 2 to 3 times.
  • the hydrophobic coating is applied to the surface of the rare earth conversion coating
  • curing is performed, and the curing temperature is 120°C to 150°C, further optionally 135°C to 145°C, and further optionally 140°C;
  • the time is 0.5h ⁇ 2h, further optional is 0.8h ⁇ 1.5h, and further optional is 1h.
  • the heat exchanger can be prepared with anti-corrosion coating and super-hydrophobic anti-frost
  • the contact angle of the anti-frost coating is >150°, and it has good hydrophobic performance, which can delay the frosting behavior of the heat exchanger and reduce the penetration of corrosive media.
  • Embodiments of the present application also provide a thermal management system, which includes the heat exchanger as described above.
  • FIG. 5 it is a thermal management system 1000 shown in an exemplary embodiment of the present application.
  • the thermal management system 1000 at least includes a compressor 1, a first heat exchanger 2, a throttling device 3, a first Two heat exchangers 4 and commutation device 5 .
  • the compressor 1 of the thermal management system 1000 may be a horizontal compressor or a vertical compressor.
  • the throttling device 3 can be an expansion valve, or the throttling device 3 is other parts that have the functions of reducing the pressure and regulating the flow of the refrigerant.
  • the heat exchangers in the foregoing embodiments of the present application may be used in the thermal management system 1000 as the first heat exchanger 2 and/or the second heat exchanger 4 .
  • the compressor 1 compresses the refrigerant, the temperature of the compressed refrigerant increases, and then enters the first heat exchanger 2, and the heat is transferred to the first heat exchanger 2 through the heat exchange between the first heat exchanger 2 and the outside world.
  • the refrigerant passing through the throttling device 3 becomes liquid or gas-liquid two-phase state, at this time the temperature of the refrigerant decreases, and then the refrigerant with a lower temperature flows to the second heat exchanger 4, and in the second heat exchanger 4 After the heat exchange with the outside world, it enters the compressor 1 again to realize the refrigerant circulation.
  • step (d) dipping or spraying the rare earth conversion coating obtained in the above step (a) on the surface of the heat exchange tubes and/or fins in the step (c), standing at 50° C. for 40 minutes and then taking out the cold air to dry or dry Naturally air-dried to obtain a heat exchanger with rare earth conversion coating.
  • step (e) dip-coating or spraying the hydrophobic coating obtained in the above step (b) on the surface of the heat exchanger with the rare earth conversion coating in the step (d), and after curing at 140° C. for 1 h, the rare earth conversion coating and Heat exchanger with hydrophobic coating.
  • a heat exchanger was prepared in the same manner as in Example 1, except for the preparation of the rare earth conversion coating.
  • Example 2 the preparation of the rare earth conversion coating: in parts by mass, 3 parts of cerium nitrate hexahydrate and 1 part of sodium chloride were mixed, added into 96 parts of deionized water, and mechanically stirred until the solid was completely dissolved to obtain no A transparent solution; the solution was heated to 55°C in a water bath, 3.5 parts of hydrogen peroxide (27.5wt.%) aqueous solution was added to the solution, and then continued to be heated to 55°C to obtain a rare earth conversion coating.
  • Example 3 the preparation of the rare earth conversion coating: in parts by mass, 2 parts of cerium nitrate hexahydrate and 0.8 part of sodium chloride were mixed, added to 95.5 parts of deionized water, and mechanically stirred until the solid was completely dissolved to obtain no A transparent solution; the solution was heated to 45°C in a water bath, 3.0 parts of hydrogen peroxide (27.5wt.%) aqueous solution was added to the solution, and then heated to 45°C to obtain a rare earth conversion coating.
  • Example 4 preparation of rare earth conversion coating: in parts by mass, mix 1 part of cerium sulfate tetrahydrate and 0.7 part of sodium chloride, add 95.1 parts of deionized water, and mechanically stir until the solid is completely dissolved, to obtain no A transparent solution; the solution was heated to 50°C in a water bath, 2.5 parts of tert-butyl hydroperoxide (65wt.%) aqueous solution was added to the solution, and then heated to 50°C to obtain a rare earth conversion coating.
  • Example 5 the preparation of the rare earth conversion coating: in parts by mass, 1.5 parts of cerium chloride and 0.5 parts of sodium chloride were mixed, added to 95.5 parts of deionized water, and mechanically stirred until the solid was completely dissolved to obtain colorless. A transparent solution; the solution was heated to 55°C in a water bath, 2 parts of tert-butyl hydroperoxide (65 wt.%) aqueous solution was added to the solution, and then continued to be heated to 55°C to obtain a rare earth conversion coating.
  • Example 6 the preparation of the rare earth conversion coating: in parts by mass, 1.5 parts of cerium nitrate hexahydrate and 0.5 parts of sodium chloride were mixed, added to 95.1 parts of deionized water, and mechanically stirred until the solid was completely dissolved to obtain no A solution with a transparent color; the solution was heated to 50° C. in a water bath, 3.3 parts of sodium perchlorate was added to the solution, and the heating was continued to 50° C. to obtain a rare earth conversion coating.
  • a heat exchanger was prepared in the same manner as in Example 1, except for the preparation of the hydrophobic coating.
  • Example 7 the preparation of the hydrophobic coating: in parts by mass, 15 parts of hexamethyldisilazane (HMDS), 52 parts of ethanol and 1 part of hydrophilic silica were mixed, and the mixture was heated in a water bath at 35°C. The reaction was carried out under mechanical stirring for 30 min, and the stirring speed was 250 rpm to obtain a hydrophobic coating.
  • HMDS hexamethyldisilazane
  • Example 8 the preparation of the hydrophobic coating: in parts by mass, 50 parts of hexamethyldisilazane (HMDS), 89 parts of ethanol and 5 parts of hydrophilic silica were mixed, and the mixture was heated in a water bath at 35°C. The reaction was carried out under mechanical stirring for 30 min, and the stirring speed was 250 rpm to obtain a hydrophobic coating.
  • HMDS hexamethyldisilazane
  • hydrophilic silica hydrophilic silica
  • Example 9 the preparation of the hydrophobic coating: in parts by mass, 28 parts of methyltriethoxysilane (MTES), 71 parts of ethanol and 2 parts of hydrophilic silica were mixed, and the mixture was heated in a water bath at 40°C. The reaction was carried out under mechanical stirring for 25 min, and the stirring speed was 250 rpm to obtain a hydrophobic coating.
  • MTES methyltriethoxysilane
  • Example 10 the preparation of the hydrophobic coating: in parts by mass, 28 parts of trimethylchlorosilane (TMCS), 75 parts of isopropanol and 1.5 parts of hydrophilic silica were mixed, and the mixture was heated in a water bath at 35°C. The reaction was mechanically stirred for 30 min, and the stirring speed was 250 rpm to obtain a hydrophobic coating.
  • TMCS trimethylchlorosilane
  • Coatings were prepared in the same manner as in Example 1, except for the preparation of heat exchangers.
  • step (d) the rare earth conversion coating obtained in the above step (a) was dip-coated or sprayed on the surface of the heat exchange tube and/or fin in step (c), and was kept at 55° C. After 30 minutes, take out the cold air to dry or naturally dry to obtain a heat exchanger with rare earth conversion coating.
  • step (e) the hydrophobic coating obtained in the above step (b) was dip-coated or sprayed on the surface of the heat exchanger with the rare earth conversion coating in step (d), and cured at 135° C. for 1.5h After that, a heat exchanger with rare earth conversion coating and hydrophobic coating is obtained.
  • Comparative Example 1 The difference between Comparative Example 1 and Example 1 is that the rare earth conversion coating and hydrophobic coating are not provided in the heat exchanger in Comparative Example 1.
  • the test is carried out by means of coated aluminum plate. That is, an aluminum plate made of the same material as the heat exchangers of the above embodiments and comparative examples was used, and the above-mentioned rare earth conversion coating and hydrophobic coating were coated on the aluminum plate for testing. Specifically, the rare earth conversion coating in Examples 1-12 was coated on the surface of the pretreated aluminum plate, and then the hydrophobic coating was coated on the surface of the rare earth conversion coating to obtain a test example corresponding to Example 1-12 Coated aluminum panel test samples of 1-12. Comparative Example 1 is a blank aluminum plate, that is, an aluminum plate not provided with the rare earth conversion coating and the hydrophobic coating.
  • the heat exchanger can also be directly used for measurement.
  • an aluminum plate of the same material is used for the comparison test.
  • the test results are shown in Table 1 below. The test method is as follows:
  • the testing instrument used is a contact angle measuring instrument, which adopts the principle of optical imaging and adopts the method of image profile analysis to measure the contact angle of the sample.
  • the contact angle refers to a droplet on a solid horizontal plane, at the solid-liquid-gas three-phase junction point on the solid surface, the gas-liquid interface and the solid-liquid interface two tangents sandwich the liquid phase. formed angle.
  • the volume is generally about 1 ⁇ L
  • the droplets form droplets on the needle
  • rotate the knob to move the worktable up, so that the surface of the sample is in contact with the droplets.
  • Contact and then move the table down, and droplets can be left on the sample.
  • the contact angle of this area is obtained by testing and data analysis by testing software.
  • the samples of each example and comparative example were tested at 5 different points and the average value was taken, which was recorded as the contact angle of the samples of the example and comparative example.
  • the heat exchanger product samples prepared in Examples 1-12 and Comparative Example 1 were respectively subjected to salt spray tests.
  • the salt spray test refers to the test standard ASTM G85, and the acid salt spray test is carried out. Each sample is put into the salt spray box, and taken out at regular intervals to observe the surface corrosion points. After 216 hours of acid salt spray test, each sample was taken out to observe its surface corrosion.
  • the contact angles of the rare earth conversion coating and the hydrophobic coating of the heat exchanger provided by the present application are both greater than 150°, which increases the hydrophobicity and has excellent hydrophobic performance, which can promote the condensation of water in a confined space.
  • the surface morphology remains good, only slight corrosion occurs on the surface, and the corrosion resistance is excellent, which can ensure the heat exchange performance of the heat exchanger. It can also prolong the service life of the heat exchanger.
  • the heat exchanger product is used for the corrosion resistance test, the following method can be used. After the heat exchanger is covered with a rare earth conversion layer and a hydrophilic coating, nitrogen is filled into the inner cavity of the heat exchanger. To the pressure of 1MPa, then seal the inlet and outlet of the heat exchanger, leaving a connecting pipe to connect the air pressure gauge. Then put the heat exchanger in the salt spray box to carry out the salt spray test, and observe the pressure value change of the barometer. When the pressure drops, a certain part of the surface heat exchanger is corroded and perforated, which is recorded as the failure of the heat exchanger. In practice, the quality of corrosion resistance can be judged by comparing the time it takes for the heat exchanger to drop to a certain pressure.
  • FIG. 6 shows the topography of the samples of Example 1, Example 2 and Example 3 of the present application (from left to right, Example 1, Example 2 and Example 3) before the salt spray test.
  • FIG. 7 shows the topography of the samples after the salt spray test of Example 1, Example 2 and Example 3 of the present application (from left to right, Example 1, Example 2 and Example 3). It can be seen from Figure 6 and Figure 7 that the morphology of the samples of Examples 1 to 3 remains relatively intact after the acid salt spray test for 216 hours, with only slight corrosion on the surface, indicating that their corrosion resistance is good.
  • references to the terms “one embodiment,” “some embodiments,” “exemplary embodiment,” “example,” “specific example,” or “some examples”, etc., are meant to incorporate the embodiments
  • a particular feature, structure, material, or characteristic described by an example or example is included in at least one embodiment or example of the present application.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本申请提供一种换热器及其制备方法、热管理系统。本申请的换热器包括金属基材,所述金属基材具有用于流通换热介质的流体通道;所述换热器还具有涂层,所述涂层包括稀土转化涂层和疏水涂层;所述稀土转化涂层覆设于所述换热器的金属基材的至少部分表面,所述稀土转化涂层包括含稀土元素化合物;所述疏水涂层的至少部分比所述稀土转化涂层更远离所述金属基材。本申请的换热器表面具有疏水性,有助于冷凝水的排出,还能提升耐腐性能,延长换热器的使用寿命。

Description

换热器及其制备方法、热管理系统
本申请要求于2021年01月08日提交中国专利局,申请号为202110025330.6,申请名称为“换热器及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及换热和材料技术领域,尤其涉及一种换热器及其制备方法、热管理系统。
背景技术
在相关技术中,空气中的水分会在换热器的表面冷凝而使得换热器的金属表面易形成潮湿的环境,相应的换热器的金属表面也容易发生电化学腐蚀的问题,一些改善方法是在换热器的表面设有铬盐钝化涂层,以期起到一定的延缓腐蚀的作用,但是由于换热器大都采用钎焊连接技术,在钎焊部位由于钎剂的存在,铬盐涂层很难反应上去,从而在钎焊部位的涂覆较困难,会影响换热器的耐腐蚀性能;另外,铬盐对于环境也有一定的影响。
因此,相关技术中的换热器的耐腐蚀问题需要进行改进。
申请内容
鉴于存在的上述问题,本申请提供了一种耐腐蚀效果较好的换热器,相应的,本申请还提供了对应换热器的制备方法以及包含该换热器的热管理系统。
根据本申请的一个方面,提供一种换热器,所述换热器包括金属基材,所述金属基材具有用于流通换热介质的流体通道;所述换热器还具有涂层,所述涂层包括稀土转化涂层和疏水涂层;
所述稀土转化涂层覆设于所述金属基材的至少部分表面,所述稀土转化涂层包括含稀土元素化合物;所述疏水涂层的至少部分比所述稀土转化涂层更远离所述金属基材。
本申请提供的换热器包括稀土转化涂层和疏水涂层,其中的稀土转化涂层作为底涂层覆设于换热器的金属基材的至少部分表面,疏水涂层比稀土转化涂层更远离金属基材。由此,利用疏水涂层能使得换热器表面具有疏水性能,该疏水涂层能够使得接触换热器表面的水珠与壁面接触角增大,接触面积减小,从而水珠冻结的慢,可以改善换热器表面的潮湿环境,降低腐蚀介质向金属基体的渗透。并且稀土转化涂层能够对金属基材的氧化还原反应产生阻滞的作用,从而该换热器通过稀土转化涂层和疏水涂层的协同配合,可以提高换热器的耐腐蚀性能。
根据本申请的另一个方面,提供一种如上所述换热器的制备方法,所述换热器的制备方法包括以下步骤:
提供金属基材、稀土转换涂料以及疏水涂料,其中,所述金属基材具有至少一种用于流通换热介质的流体通道;
将稀土转化涂料涂覆于所述金属基材的至少部分表面上,固化,所述稀土转化涂料包括稀土元素化合物;
将疏水涂料涂覆于所述稀土转化涂层的至少部分表面,固化,得到所述换热器。
本申请提供的换热器的制备方法,将稀土转化涂料涂覆于金属基材的至少部分表面并固化,将疏水涂料涂覆于稀土转化涂层的至少部分表面并固化,最终得到换热器。由此,覆设在金属基材至少部分表面的稀土转化涂料经固化后能够形成稀土转化涂层,其能够对金属基材的氧化还原反应过程产生阻滞的作用,覆设在稀土转化涂层至少部分表面的疏水涂料在固化后能够形成疏水涂层,其能使得换热器表面具有疏水性能,该疏水涂层能够使得接触换热器表面的水珠与壁面接触角增大,接触面积减小,从而水珠冻结的慢,可以改善换热器表面的潮湿环境,降低腐蚀介质向金属基体的渗透,本申请提供的换热器的制备方法,可以提高换热器的耐腐蚀性能。
根据本申请的第三个方面,提供一种热管理系统,所述热管理系统包含压缩机、第一换热器、节流装置和第二换热器,当所述热管理系统有冷媒流动时,所述冷媒经所述压缩机流入所述第一换热器,并在所述第一换热器发生热交换之后流入节流装置,而后所述冷媒流入所述第二换热器并在所述第二换热器发生热交换后再次流入所述压缩机。所述第一换热器和/或所述第二换热器为如上所述的换热器;
本申请提供的热管理系统,第一换热器和第二换热器中的至少一个为前述所述的换热器,因此,换热器的耐腐蚀性能较好。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1为本申请示例性的一种实施方式提供的换热器的结构示意图;
图2为本申请示例性的一种实施方式提供的换热器中涂层部分剖面示意图;
图3为本申请示例性的一种实施方式提供的换热器的翅片部分剖面示意图;
图4为本申请示例性的一种实施方式提供的换热器的换热管部分剖面示意图;
图5为本申请示例性的一种实施方式提供的热管理系统的结构示意图;
图6为本申请的部分实施例的盐雾测试前样品形貌图;
图7为本申请的部分实施例的盐雾测试后样品形貌图。
附图标记:
100-换热器;10-集流管;11-稀土转化涂层和疏水涂层;101-稀土转化涂层;102-疏水涂层;103-第三种涂层;12-换热管;13-翅片;
1000-热管理系统;1-压缩机;2-第一换热器;3-节流装置;4-第二换热器;5-换向装置。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例,对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请提供的技术方案及所给出的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值或单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围。
需要说明的是,本文中使用的术语“和/或”或者“/”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
在本申请的说明中,使用的术语“中的至少一者”、“中的至少一个”、“中的至少一种”或其他相似术语所连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A、B,那么短语“A、B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B、C,那么短语“A、B、C中的至少一者”意味着仅A;或仅B;仅C;A及B(排除C); A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。此外,所使用的术语“至少部分”、“表面的至少一部分”、“至少一部分表面”或其他相似术语意味着该部件的任意部分表面或整个表面。例如,换热器表面的至少一部分是指,换热器的某一部分或某几部分表面,或者换热器的整个表面。
在一种具体实施例中,下面通过具体的实施例对本申请做进一步地详细描述。
相关技术中,微通道换热器是20世纪90年代发展起来的高效换热设备,可广泛应用于化工、能源与环境等领域。由于微通道换热器具有许多与常规尺度设备不同的特征,如体积小、重量轻、效率高、强度大等。微通道技术同时触发了新能源汽车热管理系统、家用空调、商业空调及冷冻设备等领域提高效率、降低排放的技术革新。
相关技术中,全铝微通道换热器的应用在逐步扩大的同时,推广进度相对缓慢。其中的主要技术瓶颈包括:全铝的微通道换热器中铝/铝合金材质的耐腐蚀性能不佳,需要借助相关的耐腐涂层技术以提高换热器的耐腐性能,然而相关领域常用的设置铬盐钝化涂层或阳极氧化电泳涂装的耐腐技术还存在或多或少的缺陷,仍然存在改进的需求。因此,如何使换热器具有良好的耐腐蚀性能,延长换热器使用寿命成为行业急需解决的问题。
基于此,本申请实施例的技术方案提供了一种能够提高耐腐蚀性能和有效延缓结霜的换热器以及换热器的制备方法、热管理系统,可以改善相关技术中涂料或涂层的耐腐蚀性能和疏水性能,提高换热器寿命以及提高换热效率。具体技术方案的描述参见下文。
本申请实施例提供一种换热器,换热器包括金属基材,金属基材具有用于流通换热介质的流体通道,该换热器还具有涂层,该涂层包括稀土转化涂层和疏水涂层,其中的稀土转化涂层相对更靠近金属基材的表面。也就是,在换热器金属基材外表面的至少一部分可以依次层叠设置有稀土转化涂层和疏水涂层。稀土转化涂层与所述金属基材通过共价键连接,疏水涂层与所述稀土转化涂层通过共价键连接;所述疏水涂层暴露在环境中。
在一些实施例中,金属基材的外表面具有凹凸不平的粗糙面,且粗糙面的粗糙度(Ra)满足0.5μm≤Ra≤10μm,示例性的,粗糙面的粗糙度为0.5μm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm以及这些点值中的任意两个所构成的范围中的任意值。可以理解的,将金属基材外表面的粗糙度控制在上述范围内,有利于涂层的附着。
该换热器能够应用在热管理系统如空调系统中,使得该换热器表面疏水性能优异,能够提 升换热器延缓结霜的效能,提高换热效率,还能提升耐腐性能,延长换热器的使用寿命。
在一些实施例中,换热器为微通道换热器。
为了方便描述,本申请实施例以微通道换热器为上述换热器为例对所述换热器及其制备方法做具体阐述。然而,本领域技术人员将理解,本发明的原理或稀土转化涂层和疏水涂层的设置可以在任何适当布置的换热器中实现,并不局限于微通道换热器。此外,为了清楚和简洁,可以省略对换热器公知功能和结构的描述。
请参阅图1所示,根据本申请实施例,该换热器100的主要结构包括集流管10、翅片13以及多个换热管12,换热管12与集流管10相固定,换热管12的内腔与集流管10的内腔连通,翅片13位于相邻的两个换热管12之间,换热器100还包括稀土转化涂层和疏水涂层11;其中,稀土转化涂层设置在集流管10、换热管12和翅片13中的至少一者的至少一部分表面上,稀土转化涂层包括含稀土元素化合物;疏水涂层位于稀土转化涂层背离集流管或换热管或翅片的一侧,比如稀土转化涂层的至少部分表面直接覆设有疏水涂层,疏水涂层包括疏水改性二氧化硅。
当然,在一些其他实施例中,如图2所示,疏水涂层102和稀土转化涂层101之间还可以具有第三种涂层103,该第三种涂层103既能够覆设于稀土转化涂层101之上,也可以为疏水涂层102提供涂覆的基础。如该第三种涂层103可以为亲水涂层或其他功能涂层。也就是说,换热器的至少部分结构的表面覆设有稀土转化涂层101,稀土转化涂层101的至少部分表面覆设有第三种涂层103,第三种涂层103的至少部分表面覆设有疏水涂层102。
上述换热器100中,集流管10、换热管12和翅片13中的至少一者表面的至少一部分上具有稀土转化涂层和疏水涂层11。尤其是,换热管12和翅片13中的至少一者表面的至少一部分上具有稀土转化涂层,并且稀土转化涂层的至少一部分表面上具有疏水涂层。示例性的,图1中参考最左侧换热管12表面的阴影部分对稀土转化涂层和疏水涂层11进行示意。当然在其他实施方式中,其他换热管12、翅片13和/或集流管10的表面均可以涂覆稀土转化涂料和疏水涂料形成稀土转化涂层和疏水涂层。
图1中集流管10的数量为两个,两个集流管10平行设置;多个换热管相互平行设置,且多个换热管12连接于该两个集流管10之间,以连通两个集流管。换热管12的宽度大于换热管12的厚度,换热管12的内部具有沿换热管12长度方向延伸的多个换热通道。从而换热管12可以为微通道扁管或者椭圆管。
多个换热管12沿集流管10的轴向方向排列,翅片13沿换热管12的长度方向呈波形,翅片13的波峰部和波谷部分别与相邻的两个换热管相连接。翅片13的设置可以提高相邻的两个换热管的换热面积,提高了每个换热器的换热效率。在一些实施方式中,翅片13的部分区域可以设置窗口结构形成百叶窗型翅片,进一步强化换热。
可以理解的是,本申请实施例附图1所示意的结构或各部件的数量并不构成对换热器的具体限定。在本申请另一些实施例中,换热器可以包括比图示更多或更少的部件,或者不同数量或结构的集流管,或者不同数量或结构的换热管,或者不同数量或结构的翅片,或者不同的部件布置。
在一些实施例中,该微通道换热器为全铝的微通道换热器,如微通道换热器中的集流管、换热管和翅片均由包含铝/铝合金材料制成。微通道换热器的结构和各个部件的连接关系为本领域的常规知识,在此就不再赘述。
请参阅图3所示,在一些实施例中,翅片13的至少一部分表面上覆设有稀土转化涂层101,稀土转化涂层101的至少一部分表面上覆设有疏水涂层102。
鉴于微通道换热器的结构特征,翅片表面温度和湿度是影响换热器结霜最主要的因素。通常,翅片表面温度低且分布不均匀会造成霜层的分布不均匀,恶化换热器传热,造成结霜加快。兼之微通道换热器大多采用百叶窗翅片,翅片间距非常小,容易使冷凝水珠之间“搭桥”现象,排水性能降低。冷凝水被积存在翅片尖角处难以排除,再次结霜时,冷凝水结冰,造成第二结霜周期后的结霜加重现象。因此,该微通道换热器中,翅片的表面的至少一部分上具有上述稀土转化涂层和疏水涂层,这样有助于提升延缓结霜的效能,提高换热效果。
请参阅图4所示,在一些实施例中,换热管12的至少一部分表面上覆设有稀土转化涂层101,稀土转化涂层101的至少一部分表面上覆设有疏水涂层102。
在一些实施例中,翅片的至少一部分表面上和换热管的至少一部分表面上均覆设有稀土转化涂层,稀土转化涂层的至少一部分表面上覆设有疏水涂层。
在一些实施例中,上述稀土转化涂层包括含稀土元素化合物;疏水涂层包括疏水改性二氧化硅。
根据本申请实施例提供的换热器,其设有稀土转化涂层和疏水涂层,其中的稀土转化涂层包括含稀土元素化合物,疏水涂层包括疏水改性二氧化硅;稀土转化涂层可作为底涂层覆设于集流管至少部分表面、换热管至少部分表面和/或翅片的至少部分表面,疏水涂层可作为面涂 层覆设于稀土转化涂层的至少部分表面上。由此,先对换热器进行稀土转化处理,形成一层稀土转化涂层后再利用溶胶凝胶硅烷疏水涂层对换热器进行疏水性的表面处理,利用疏水涂层可与经稀土转化涂层转化处理后的换热器表面通过Si-O(硅-氧)共价键结合,具有结合紧密、耐久性较好的特性,并利用稀土转化涂层可以进一步提升涂层的致密性,在出现局部点蚀的时候,能够对阴极还原反应产生阻滞的作用,从而可以提高换热器的耐腐蚀性能。并且由于稀土转化涂层对换热器表面的耐腐蚀性能较好,换热器表面不容易产生较多局部隆起的金属腐蚀氧化物,相应的对疏水涂层的破坏性影响较小,稀土转化涂层反过来也利于保持疏水涂层的耐久性。该疏水涂层可以利用其良好的疏水性能有效减少腐蚀溶液的附着和富集,避免了现有的铬盐钝化膜脆硬的不足,降低了腐蚀介质向金属基体的渗透,可以起到进一步提升换热器的耐腐蚀性能以及有效延长换热器表面的结霜时间的作用。从而,该换热器通过上述稀土转化涂层和疏水涂层的协同配合,不仅改善了换热器的耐腐蚀性能,有利于延长换热器的使用寿命,而且使得换热器表面具有疏水性能,能够起到延缓结霜的效能。进而,在换热器运用于空调系统、热泵系统中时有利于延长使用寿命、提高换热器的换热效率。
经试验验证表明,本申请实施例的换热器通过上述稀土转化涂层和疏水涂层的设置,降低了成本,相较于现有的铬盐钝化耐腐处理或阳极氧化电泳涂装处理,能够使材料工艺成本降低至少50%;本申请还具有绿色环保的优势,涂层的柔韧性较好,能够承受翅片弯曲而基本没有破裂或分层的风险的特点。
在满足提升换热器耐腐蚀性能等需求的情况下,稀土转化涂层中的含稀土元素化合物的具体类型是可以多种多样的。具体地,在一些实施例中,含稀土元素化合物中的稀土元素包括镧系稀土元素,镧系稀土元素包括镧元素、铈元素、镨元素、钕元素、钷元素、钐元素和铕元素中的至少一种。例如,该含稀土元素化合物可以为含镧化合物,可以为含铈化合物,可以为含镨化合物,可以为含钕化合物,可以为含钷化合物,可以为含钐化合物,可以为含铕化合物,或者也可以为上述化合物中的任意两种或两种以上的任意比例组成的混合物。
此外,在其他实施例中,含稀土元素化合物并不限于上述列举的几种,在满足提升换热器耐腐蚀性能等需求的情况下,含稀土元素化合物还可以采用其他的类型,在此不再一一详细描述。
在一些实施例中,上述稀土元素可以为铈元素,含稀土元素化合物可以为含铈化合物。具体地,在一些实施例中,含稀土元素化合物包括铈的氧化物(如氧化铈CeO 2)和铈的氢氧化 物(如氢氧化铈Ce(OH) 4)。基于来源广泛性、容易获取程度或成本方面考虑,含稀土元素化合物选用含铈化合物,且该含铈化合物为CeO 2和氢氧化铈Ce(OH) 4共存的状态,如此化学性质稳定,利于提升抗点蚀的效果,可改善换热器的耐腐蚀性能。
在一些实施方式中,稀土转化涂层的单位面积重量控制在0.75g/m 2~1.2g/m 2之间。稀土转化涂层的平均单位面积重量可以不低于0.75g/m 2,进一步可以大于等于0.75g/m 2,且小于等于1.2g/m 2。在一些实施方式中,疏水涂层的单位面积重量控制在4g/m 2~10g/m 2之间,疏水涂层的平均单位面积重量可以不低于4g/m 2,进一步可以大于等于4g/m 2,且小于等于10g/m 2。适宜的稀土转化涂层和疏水涂层的厚度在有效改善换热器的耐腐蚀性能和延缓结霜的效能的同时,不会对换热器的换热效率造成负面影响。
在一些实施例中,本申请还提供一种换热器的制备方法,其中的换热器可为如上任一实施例所述的换热器,该制备方法包括以下步骤:
(a)提供金属基材、稀土转换涂料以及疏水涂料,其中,所述金属基材具有至少一种用于流通换热介质的流体通道;
(b)将稀土转化涂料涂覆于所述金属基材的至少部分表面上,固化,所述稀土转化涂料包括稀土元素化合物;
(c)将疏水涂料涂覆于所述稀土转化涂层的至少部分表面,固化,得到所述换热器。
可以理解,在制备换热器时,可以先得到稀土转化涂料和疏水涂料,然后再依次将稀土转化涂料和疏水涂料涂覆在换热器金属基材的至少部分表面上。当然,在本申请的具体实施方式中,对于稀土转化涂料的和疏水涂料的制备先后顺序不作过多限制,例如,可以先制备稀土转化涂料再制备疏水涂料,或者也可以先制备疏水涂料再制备稀土转化涂料,或者也可以同时制备稀土转化涂料和疏水涂料。
该换热器的制备过程简单、易于控制、可行性高,且反应容易进行,反应条件温和,对环境污染少,具有绿色环保的优点,适合工业化规模生产。通过该制备方法得到的换热器,能够延缓结霜周期、缩短除霜周期,提高换热效率,还能提升耐腐性能,延长换热器的使用寿命。
应理解,该换热器的制备方法与前述换热器是基于同一发明构思的,关于换热器的具体结构或涂层的成分等相关特征,可参照前述换热器部分的描述,在此不再赘述。
在一些实施例中,稀土转化涂料包括如下质量份的原料:
稀土原料1~3份、水94~96份、氧化剂1.5~4.5份和可选的促进剂0~1份。
需要指出的是,上述“可选的”促进剂是指,促进剂是可选择性的加入或不加入的,即该稀土转化涂料的原料中可以含有促进剂,也可以不含有促进剂。如在一些实施方式中,稀土转化涂料包括如下质量份的原料:稀土原料1~3份、水94~96份和氧化剂1.5~4.5份。在另一些实施方式中,稀土转化涂料包括如下质量份的原料:稀土原料1~3份、水94~96份、氧化剂1.5~4.5份和促进剂0~1份。
促进剂为0份的时候即不添加促进剂,该促进剂可以起到的作用是促进铝表面氧化还原反应的过程,例如可使Al更好的变成Al 3+和电子e。因此,当加入促进剂的时候可以使铝表面氧化还原反应加快,提高反应效率;而当未加入促进剂时则铝表面氧化还原反应相对较慢。
该稀土转化涂料主要由合适且适量的稀土原料、水、氧化剂和可选的促进剂制备而成,将该稀土转化涂料应用于全铝的微通道换热器时,能够在铝表面发生氧化还原反应,生成含稀土元素化合物,可使得至少部分换热器表面呈现出良好的性质或结构稳定性来提升耐腐蚀性。
本文中,除非另有说明,否则所涉及的百分数、比例或份数按照质量计。其中,“质量份”指多个组分的质量比例关系的基本计量单位,1份可表示任意的单位质量,例如1份可以表示为1g,可以表示1.68g,也可以表示为5g等。
为了优化稀土转化涂料中各组分的用量,提升组分的协同配合作用,进一步提升涂料的耐腐蚀性能等性能,利于提高涂料的经济效益。在一些实施例中,稀土转化涂料包括如下质量份的原料:稀土原料1~3份、水95.1份、氧化剂3~3.5份和可选的促进剂0.5~1份。
上述稀土原料是可以提供稀土元素的原料,如能提供铈(Ce)元素的原料。在一些实施例中,稀土原料包括,但不限于,六水合硝酸铈、无水硝酸铈、氯化铈及其多水化合物、硫酸铈及其多水化合物、醋酸铈及其多水化合物中的一种或至少两种的组合。上述氯化铈及其多水化合物是无水氯化铈、氯化铈的多水化合物如七水氯化铈或八水合氯化铈等;类似的,上述硫酸铈及其多水化合物是无水硫酸铈、硫酸铈的多水化合物如四水硫酸铈;醋酸铈及其多水化合物是无水醋酸铈、醋酸铈的多水化合物如三水醋酸铈或四水醋酸铈等。
应理解,稀土元素可以为铈元素,还可以为镧元素、镨元素、钕元素、钷元素、钐元素、铕元素等其他元素,当稀土元素为镧元素、镨元素、钕元素等其他元素时,稀土原料采用能够提供对应元素的化合物即可。
在一些实施例中,氧化剂包括,但不限于,过氧化氢、高氯酸钠和叔丁基过氧化氢中的至少一种。例如,氧化剂可以为过氧化氢水溶液(过氧化氢的质量浓度约为27.5wt.%~30wt.%), 或者氧化剂可以为高氯酸钠,或者氧化剂可以为叔丁基过氧化氢水溶液或者是叔丁基过氧化氢的叔丁醇溶液(叔丁基过氧化氢的质量浓度不低于60wt.%)。
基于不同氧化剂的氧化性或相关使用性能略有差别,在实际应用中,当采用不同的氧化剂时,各氧化剂的含量可以适宜的进行调整。如,采用过氧化氢作为氧化剂时,过氧化氢的质量份为1.5~4.5份;采用叔丁基过氧化氢作为氧化剂时,叔丁基过氧化氢的质量份为1.2~3.6份;采用高氯酸钠作为氧化剂时,高氯酸钠的质量份为1.5~4.5份。其中,叔丁基过氧化氢的氧化性较好,应用效果更佳,因此可以适当减少其添加量。
在一些实施例中,促进剂包括,但不限于,氯化钠。在满足能促进铝表面氧化还原反应过程的需求的基础上,促进剂还可采用其他的类型。
在一些实施例中,水可以为去离子水。
进一步,在一些实施例中,上述稀土转化涂料的制备方法,包括以下步骤:按质量份计,将1~3份的稀土原料溶于94~96份的水中,得到溶液A;将溶液A加热至45℃~55℃,再向溶液A中加入1.5~4.5份的氧化剂,得到稀土转化涂料。
在一些实施方式中,得到稀土转化涂料之前还包括将加入氧化剂后的溶液A加热至30℃~55℃。也即上述稀土转化涂料的制备方法,包括以下步骤:按质量份计,将1~3份的稀土原料溶于94~96份的水中,得到溶液A;将所述溶液A加热至45℃~55℃,再向所述溶液A中加入1.5~4.5份的氧化剂,得到溶液B,将所述溶液B加热至30℃~55℃,得到所述稀土转化涂料。不同的温度下稀土转化涂料成膜效果略有不同,将所述溶液B加热至30℃~55℃的加热条件有利于稀土转化涂料和换热器表面更好的成膜结合,利于稀土元素在金属基体表面的反应过程。
在一些具体的实施方式中,上述稀土转化涂料的制备方法,包括以下步骤:按质量份计,将1~3份的稀土原料六水合硝酸铈和0.5~1份的促进剂氯化钠混合,加入95.1份的去离子水中,机械搅拌至固体全溶,得到无色透明的溶液A;将该溶液A用水浴加热至45℃~55℃,再向溶液A中加入1.5~4.5份的氧化剂过氧化氢(27.5wt.%)水溶液,得到溶液B,将溶液B继续加热至30℃~55℃,得到稀土转化涂料。
进一步,包含本申请提供的稀土转化涂料的换热器在制备过程中,先对集流管、换热管和翅片中的至少一者进行预处理,而后再将制备好的稀土转化涂料涂覆于集流管、换热管和翅片中的至少一者的至少一部分表面上,经过固化后,形成包括含稀土元素化合物的稀土转化涂层。
具体地,在一些实施例中,对换热器的换热管和/或翅片表面进行预处理,换热器的预处理步骤具体包括:将换热器的换热管和/或翅片表面进行100~200目的喷砂处理,再用醇或酸进行清洗换热管和/或翅片表面,而后在35℃~50℃下烘干。
进一步,预处理过程中,一些实施例中喷砂目数为120~180目,如喷砂目数为150目。烘干的温度为35℃~50℃,进一步一些实施例中为38℃~45℃,如为40℃。所采用的清洗方式例如可以采用无水乙醇超声清洗,或者采用酸蚀清洗。
本申请的一些实施例中,将稀土转化涂料涂覆于预处理后的换热器表面的方式包括但不限于浸涂、喷涂、刷涂、淋涂或辊涂中的至少一种。考虑到实施的便捷性,可以利用喷涂或浸涂的方式,将本申请实施例提供的稀土转化涂料涂覆于预处理后的换热管和/或翅片表面。如可以将预处理后的换热器浸没在稀土转化涂料中,在30℃~55℃下静置保温30min~50min,使得稀土转化涂料在铝表面发生氧化还原反应,形成稀土转化涂层,而后将具有稀土转化涂层的换热器取出冷风吹干或自然晾干。其中,稀土转化涂料在铝表面发生氧化反应过程所涉及的方程式可如下所示:
铝表面反应:阳极(氧化反应):Al→Al 3++3e
阴极(还原反应):O 2+2H 2O+4e→4OH -
H 2O 2+2e→2OH -
Ce 3++OH -+1/2H 2O 2→Ce(OH) 2 2+
Ce(OH) 2 2++2OH -→Ce(OH) 4
Ce(OH) 4→CeO 2+2H 2O
由此可知,稀土转化涂层中包含Ce(OH) 4和CeO 2共存的混合物。如此化学性质稳定,利于提升抗点蚀的效果,可改善换热器的耐腐蚀性能。
进一步,上述疏水涂料可以为经改性的疏水二氧化硅溶胶。疏水涂料包括如下质量份的原料:有机硅烷和/或硅氧烷10~50份、溶剂45~89份、亲水性二氧化硅1~5份。
该疏水涂料主要由合适且适量的有机硅烷和/或硅氧烷、溶剂和亲水性二氧化硅制备而成,其中的有机硅烷和/或硅氧烷为疏水性材料,不仅能发挥其自身的耐高低温、耐氧化稳定性、耐候性、表面张力低等基本性能,利用该有机硅烷和/或硅氧烷的优异的疏水性,在适宜的溶剂存在下,能够对亲水性二氧化硅进行改性,以使其具有一定的疏水性。因此,本申请实施例中的疏水涂料通过上述特定含量的有机硅烷和/或硅氧烷、溶剂和亲水性二氧化硅的协同配合 作用,均衡了各种性能,得到性能优异的改性的疏水性二氧化硅溶胶,使得该疏水性二氧化硅溶胶具有较佳的疏水性。
将上述疏水涂料应用于换热器中时,利用其疏水特性能有效减少腐蚀溶液的附着和富集,降低了腐蚀介质向金属基体的渗透,提高体系耐蚀性能,还能使至少部分的换热器表面呈现出疏水性来延缓结霜。该疏水性表面能够使得换热器在结霜初期形成的水珠与壁面接触角增大,接触面积减小,从而水珠冻结的慢,延缓了初始霜晶的形成。
上述疏水涂料中,其制备原料可以包括有机硅烷,或者可以包括硅氧烷,或者可以同时包括有机硅烷和硅氧烷。若该疏水性改性二氧化硅溶胶同时使用有机硅烷和硅氧烷时,对有机硅烷和硅氧烷的配比没有限制,其总用量在本申请所限定的用量范围如10~50质量份即可。
为了进一步优化疏水性改性二氧化硅溶胶中各组分的用量,提升组分的协同配合作用,在一些实施例中,所述疏水涂料包括如下质量份的原料:有机硅烷和/或硅氧烷20~40份、溶剂50~80份、亲水性二氧化硅1~3份。
在满足疏水涂料的疏水性能或满足降低腐蚀介质的渗透、减缓结霜等需求的情况下,疏水性材料有机硅烷的具体类型是可以多种多样的。具体地,在一些实施例中,有机硅烷包括六甲基二硅胺烷(也称六甲基二硅氮烷,简称HMDS)即(CH 3) 3Si-NH-Si(CH 3) 3、甲基三乙氧基硅烷(简称MTES)、二甲基二乙氧基硅烷(简称DDS)、三甲基氯硅烷(简称TMCS)、二甲基二氯硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷(简称KH-560)中的至少一种。示例性的,有机硅烷可以为HMDS,可以为MTES,可以为DDS,可以为TMCS,可以为二甲基二氯硅烷,可以为KH-560,也可以为上述有机硅烷中的任意两种或两种以上的任意比例组成的混合物。此外,在其他实施例中,有机硅烷并不限于上述列举的几种,在满足疏水涂料的疏水性能或满足降低腐蚀介质的渗透、减缓结霜等需求的情况下,有机硅烷还可以采用其他的类型,例如一甲基三氯硅烷等其他类似的氯硅烷,在此不再一一详细描述。
采用HMDS、MTES、DDS、TMCS等类型的有机硅烷,更有助于改善二氧化硅的疏水性,制备得到疏水性能较佳的疏水性二氧化硅溶胶。
在满足疏水涂料的疏水性能或满足降低腐蚀介质的渗透、减缓结霜等需求的情况下,溶剂、亲水性二氧化硅的具体类型是可以多种多样的。具体地,在一些实施例中,溶剂包括醇类溶剂。进一步,醇类溶剂包括碳原子数1~10的醇类溶剂,优选为碳原子数1~8的醇类溶剂,更优选为碳原子数1~4的醇类溶剂。进一步,在一些实施例中,溶剂为甲醇、乙醇、异丙醇 中的任意一种或任意两种及以上的任意比例组成的混合物。
采用甲醇、乙醇、异丙醇等类型的醇类溶剂,有助于有机硅烷和/或硅氧烷对亲水性二氧化硅的改性,且来源广泛,容易获得,成本较低。
具体地,在一些实施例中,亲水性二氧化硅包括气相二氧化硅颗粒或分散性二氧化硅溶胶中的至少一种。
进一步,在一些实施例中,上述疏水涂料的制备方法,包括以下步骤:按质量份计,将10~50份的有机硅烷和/或硅氧烷、45~89份的溶剂和1~5份的亲水性二氧化硅混合,在30℃~45℃温度下搅拌反应15~45min,搅拌转速为200~500rpm,得到改性的疏水二氧化硅溶胶。
通过该制备方法得到的疏水涂料,兼具了疏水表面的延缓结霜特性,具有较佳的疏水性能,可促进改善涂层在受限空间内的冷凝水排放。
示例性的,上述疏水涂料的制备中涉及的反应方程式如下所示:
Figure PCTCN2021142578-appb-000001
在一些具体的实施方式中,上述疏水涂料的制备方法,包括以下步骤:按质量份计,将10~50份的有机硅烷和/或硅氧烷、45~89份的溶剂和1~5份的亲水性二氧化硅混合,在35℃~40℃水浴条件下机械搅拌反应25~35min,搅拌转速为250~300rpm,得到改性的疏水二氧化硅溶胶。
本申请的一些实施例中,将疏水涂料涂覆于具有稀土转化涂层的换热器表面的方式包括但不限于浸涂、喷涂、刷涂、淋涂或辊涂中的至少一种。考虑到实施的便捷性,可以利用喷涂或浸涂的方式,将本申请实施例提供的疏水涂料涂覆于稀土转化涂层的至少部分表面。如可以使用疏水涂料对具有稀土转化涂层的换热器进行浸没,其中,浸涂的时间为2~5min,进一步可选为2~3min;浸涂的次数为2~5次,进一步可选为2~3次。
在一些实施例中,将疏水涂料涂覆于稀土转化涂层表面之后,进行固化,固化的温度为120℃~150℃,进一步可选为135℃~145℃,进一步可选为140℃;固化的时间为0.5h~2h,进一步可选为0.8h~1.5h,进一步可选为1h。
该换热器通过采用本申请提供的稀土转化涂层和疏水涂层,以及经过对上述换热器的制备 条件的进一步调整及优化,能够制备得到具有耐腐蚀涂层和超疏水的延缓结霜涂层的换热器,经测试,该延缓结霜涂层的接触角>150°,具有良好的疏水性能,可以延缓换热器的结霜行为,也可降低腐蚀介质的渗透。
本申请实施例还提供一种热管理系统,其中包括如上所述的换热器。具体的,如图5所示,是本申请一示例性实施例示出的一种热管理系统1000,该热管理系统1000至少包括压缩机1、第一换热器2、节流装置3、第二换热器4以及换向装置5。该热管理系统1000的压缩机1可以是卧式压缩机或立式压缩机。节流装置3可以是膨胀阀,或节流装置3是其它对冷媒具有降压及调节流量作用的零部件,本申请文件对节流装置的种类不做具体限制,可根据实际应用环境进行选取,在此不再赘述。需要说明的是,在有些系统中,可以没有换向装置5。本申请前述实施方式中的换热器可以用于该热管理系统1000中作为第一换热器2和/或第二换热器4。在该热管理系统1000中,压缩机1对冷媒进行压缩,压缩后的冷媒温度升高,而后进入第一换热器2中,经过第一换热器2和外界的热交换将热量传递给外界,之后经过节流装置3的冷媒变成液态或气液两相的状态,此时冷媒的温度降低,而后较低温度的冷媒流向第二换热器4,并在第二换热器4与外界热交换后再次进入压缩机1中,实现冷媒循环。
为充分说明本申请提供的换热器的能延缓结霜时间的性能和耐腐蚀性能,便于理解本发明,本申请进行了多组实验验证。下面结合具体实施例、对比例,对本发明作进一步说明。本领域的技术人员将理解,本申请中描述的仅是部分实例,其他任何合适的具体实例均在本申请的范围内。
实施例1
1、涂料的制备
(a)稀土转化涂料的制备:按质量份计,将1份的六水合硝酸铈和0.6份的氯化钠混合,加入95.1份的去离子水中,机械搅拌至固体全溶,得到无色透明的溶液;将该溶液用水浴加热至50℃,再向溶液中加入3.3份的过氧化氢(27.5wt.%)水溶液,而后继续加热至50℃,得到稀土转化涂料。
(b)疏水涂料的制备:按质量份计,将28份的六甲基二硅胺烷(HMDS)、71份的乙醇和1份的亲水性二氧化硅混合,在35℃水浴下机械搅拌反应30min,搅拌转速为250rpm,得到疏水涂料。
2、换热器的制备
(c)对换热器的换热管和/或翅片表面进行预处理,具体包括:将换热器的换热管和/或翅片表面进行150目的白刚玉喷砂处理,再用无水乙醇清洗换热器的换热管和/或翅片表面,而后在40℃下烘干。
(d)将上述步骤(a)得到的稀土转化涂料浸涂或喷涂于步骤(c)的换热管和/或翅片表面,在50℃下经过静置保温40min后,取出冷风吹干或自然晾干,得到具有稀土转化涂层的换热器。
(e)将上述步骤(b)得到的疏水涂料浸涂或喷涂于步骤(d)的具有稀土转化涂层的换热器表面,在140℃下经过固化1h后,得到具有稀土转化涂层和疏水涂层的换热器。
实施例2-6
以与实施例1相同的方式制备换热器,不同之处在于稀土转化涂料的制备。
实施例2中,稀土转化涂料的制备:按质量份计,将3份的六水合硝酸铈和1份的氯化钠混合,加入96份的去离子水中,机械搅拌至固体全溶,得到无色透明的溶液;将该溶液用水浴加热至55℃,再向溶液中加入3.5份的过氧化氢(27.5wt.%)水溶液,而后继续加热至55℃,得到稀土转化涂料。
实施例3中,稀土转化涂料的制备:按质量份计,将2份的六水合硝酸铈和0.8份的氯化钠混合,加入95.5份的去离子水中,机械搅拌至固体全溶,得到无色透明的溶液;将该溶液用水浴加热至45℃,再向溶液中加入3.0份的过氧化氢(27.5wt.%)水溶液,而后继续加热至45℃,得到稀土转化涂料。
实施例4中,稀土转化涂料的制备:按质量份计,将1份的四水硫酸铈和0.7份的氯化钠混合,加入95.1份的去离子水中,机械搅拌至固体全溶,得到无色透明的溶液;将该溶液用水浴加热至50℃,再向溶液中加入2.5份的叔丁基过氧化氢(65wt.%)水溶液,而后继续加热至50℃,得到稀土转化涂料。
实施例5中,稀土转化涂料的制备:按质量份计,将1.5份的氯化铈和0.5份的氯化钠混合,加入95.5份的去离子水中,机械搅拌至固体全溶,得到无色透明的溶液;将该溶液用水浴加热至55℃,再向溶液中加入2份的叔丁基过氧化氢(65wt.%)水溶液,而后继续加热至55℃,得到稀土转化涂料。
实施例6中,稀土转化涂料的制备:按质量份计,将1.5份的六水合硝酸铈和0.5份的氯化钠混合,加入95.1份的去离子水中,机械搅拌至固体全溶,得到无色透明的溶液;将该溶液用水浴加热至50℃,再向溶液中加入3.3份的高氯酸钠,而后继续加热至50℃,得到稀土 转化涂料。
其余均与实施例1相同。
实施例7-10
以与实施例1相同的方式制备换热器,不同之处在于疏水涂料的制备。
实施例7中,疏水涂料的制备:按质量份计,将15份的六甲基二硅胺烷(HMDS)、52份的乙醇和1份的亲水性二氧化硅混合,在35℃水浴下机械搅拌反应30min,搅拌转速为250rpm,得到疏水涂料。
实施例8中,疏水涂料的制备:按质量份计,将50份的六甲基二硅胺烷(HMDS)、89份的乙醇和5份的亲水性二氧化硅混合,在35℃水浴下机械搅拌反应30min,搅拌转速为250rpm,得到疏水涂料。
实施例9中,疏水涂料的制备:按质量份计,将28份的甲基三乙氧基硅烷(MTES)、71份的乙醇和2份的亲水性二氧化硅混合,在40℃水浴下机械搅拌反应25min,搅拌转速为250rpm,得到疏水涂料。
实施例10中,疏水涂料的制备:按质量份计,将28份的三甲基氯硅烷(TMCS)、75份的异丙醇和1.5份的亲水性二氧化硅混合,在35℃水浴下机械搅拌反应30min,搅拌转速为250rpm,得到疏水涂料。
其余均与实施例1相同。
实施例11-12
以与实施例1相同的方式制备涂料,不同之处在于换热器的制备。
实施例11中,步骤(d)中,将上述步骤(a)得到的稀土转化涂料浸涂或喷涂于步骤(c)的换热管和/或翅片表面,在55℃下经过静置保温30min后,取出冷风吹干或自然晾干,得到具有稀土转化涂层的换热器。
实施例12中,步骤(e)中,将上述步骤(b)得到的疏水涂料浸涂或喷涂于步骤(d)的具有稀土转化涂层的换热器表面,在135℃下经过固化1.5h后,得到具有稀土转化涂层和疏水涂层的换热器。
其余均与实施例1相同。
对比例1
对比例1与实施例1的区别在于,对比例1中的换热器中未设置稀土转化涂层和疏水涂 层。
性能测试
为便于进行性能测试,采用涂层铝板的方式进行测试。也即,采用与上述各实施例和对比例的换热器的制作材质相同的铝板,并在铝板上涂覆上述稀土转化涂料和疏水涂料进行测试。具体地,将实施例1-12中的稀土转化涂料涂覆于经过预处理后的铝板表面,再将疏水涂料涂覆于稀土转化涂层表面,得到与实施例1-12相对应的测试例1-12的涂层铝板测试样品。对照例1为空白的铝板,也即未设置稀土转化涂层和疏水涂层的铝板。
当然,在其他实施方式中,也可以直接使用换热器进行测量,本申请中为了方便对比,采用相同材质的铝板进行对比测试,测试结果如下表1所示。测试方法如下:
1.疏水性能测试(接触角测试)
所用测试仪器为接触角测量仪,其采用光学成像原理,采用图像轮廓分析方式测量样品接触角。接触角是指在一固体水平平面上滴一滴液滴,固体表面上的固-液-气三相交界点处,其气-液界面和固-液界面两切线把液相夹在其中时所成的角。
测试时,打开接触角测量仪和与之相连的电脑,打开测试软件。
把试样放在水平工作台上,利用微量进样器调整液滴的量,体积一般为1μL左右,液滴在针头形成液滴,旋转旋钮使工作台上移,让试样表面与液滴接触,再下移工作台,试样上即可留下液滴。
通过测试软件进行测试和数据分析,得到这一区域的接触角。每一实施例和对比例的试样取5个不同的点进行测试后取平均值,记为该实施例和对比例试样的接触角。
2.耐腐性能测试(盐雾测试)
将实施例1-12和对比例1制得的换热器产品试样分别进行盐雾测试。其中,盐雾测试参照测试标准ASTM G85,进行酸性盐雾测试,将各试样放进盐雾箱,每隔一定时间取出观察表面腐蚀点情况。经过酸性盐雾测试216h后,取出各样品,观察其表面腐蚀情况。
表1各测试例和对照例性能测试结果
Figure PCTCN2021142578-appb-000002
Figure PCTCN2021142578-appb-000003
由表1的数据可知,本申请提供的换热器的稀土转化涂层和疏水涂层的接触角均大于150°,增加了疏水性,疏水性能优异,能促进在受限空间内的冷凝水排放,而且,大部分实施例其经过200多小时的酸性盐雾测试后,表面形貌保持良好,仅是在表面出现轻微蚀点,耐腐蚀性能优异,能够保证换热器的换热性能,还能延长换热器的使用寿命。
需要说明的是,如果采用换热器产品去进行耐腐性能测试,可采用如下方式进行,当换热器覆设稀土转化层和亲水涂层以后,向换热器的内腔中填充氮气至压力为1MPa,然后将换热器的进出口密封,留一根接管连接气压表。然后将换热器放于盐雾箱中进行盐雾试验,观察气压表的压力值变化。当其压力下降时,表面换热器某部位即被腐蚀穿孔,此时记为换热器失效。在实际中可以通过比较换热器下降至某一压力所用的时长判断耐腐蚀性能的优劣。
此外,图6示出了本申请实施例1、实施例2和实施例3(从左至右依次为实施例1、实施例2和实施例3)的样品盐雾测试前的形貌图。图7示出了本申请实施例1、实施例2和实施例3(从左至右依次为实施例1、实施例2和实施例3)的样品盐雾测试后的形貌图。通过图6和图7可以看出,实施例1至3的样品经过216h的酸性盐雾测试后,形貌依然保持的较完整,仅是表面出现轻微蚀点,说明书其耐腐蚀性能良好。
在本申请的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的 一个或多个实施例或示例中以合适的方式结合。本申请实施例所描述的“上”、“下”、“内”、“外”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (17)

  1. 一种换热器,其特征在于,所述换热器包括金属基材,所述金属基材具有用于流通换热介质的流体通道;所述换热器还具有涂层,所述涂层包括稀土转化涂层和疏水涂层;
    所述稀土转化涂层覆设于所述金属基材的至少部分表面,所述稀土转化涂层包括含稀土元素化合物;所述疏水涂层的至少部分比所述稀土转化涂层更远离所述金属基材。
  2. 根据权利要求1所述的换热器,其特征在于,所述稀土转化涂层覆设于所述金属基材的至少部分表面,且所述稀土转化涂层与所述金属基材通过共价键连接;
    所述疏水涂层覆设于所述稀土转化涂层的至少部分表面,且所述疏水涂层与所述稀土转化涂层通过共价键连接;所述疏水涂层暴露在环境中。
  3. 根据权利要求1所述的换热器,其特征在于,所述疏水涂层包括疏水改性二氧化硅,所述涂层与水的静态接触角>150°。
  4. 根据权利要求1所述的换热器,其特征在于,所述含稀土元素化合物中的稀土元素包括镧元素、铈元素、镨元素、钕元素、钷元素、钐元素和铕元素中的至少一种。
  5. 根据权利要求1或4所述的换热器,其特征在于,所述含稀土元素化合物包括铈的氧化物和铈的氢氧化物。
  6. 根据权利要求1所述的换热器,其特征在于,所述金属基材包括集流管、翅片以及换热管,所述换热管与所述集流管相固定,所述换热管与所述翅片相固定;所述换热管的内腔与所述集流管的内腔连通;
    所述涂层覆设于所述集流管、所述翅片和所述换热管中的至少一者的至少部分表面。
  7. 根据权利要求6所述的换热器,其特征在于,所述金属基材的外表面具有凹凸不平的粗糙面,且所述粗糙面的粗糙度(Ra)满足0.5μm≤Ra≤10μm,所述涂层覆设于至少部分所述粗糙面。
  8. 根据权利要求1所述的换热器,其特征在于,所述涂层还包括至少一种功能涂层,所述功能涂层的至少部分位于所述稀土转化涂层和疏水涂层之间。
  9. 一种换热器的制备方法,其特征在于,所述制备方法包括以下步骤:
    提供金属基材、稀土转换涂料以及疏水涂料,其中,所述金属基材具有至少一种用于流通换热介质的流体通道;
    将稀土转化涂料涂覆于所述金属基材的至少部分表面上,固化,所述稀土转化涂料包括稀土元素化合物;
    将疏水涂料涂覆于所述固化后的稀土转化涂料的至少部分表面,固化,得到所述换热器。
  10. 根据权利要求9所述的换热器的制备方法,其特征在于,所述稀土转化涂料的制备包括:
    按质量份计,将1~3份的稀土原料溶于94~96份的水中,得到溶液A;将所述溶液A加热至45℃~55℃,再向所述溶液A中加入1.5~4.5份的氧化剂,得到所述稀土转化涂料。
  11. 根据权利要求10所述的换热器的制备方法,其特征在于,所述稀土转化涂料具有以下特征中的至少一个:
    a)所述稀土原料包括六水合硝酸铈、无水硝酸铈、氯化铈及其多水化合物、硫酸铈及其多水化合物、醋酸铈及其多水化合物中的至少一种;
    b)所述氧化剂包括过氧化氢,所述过氧化氢的质量份为1.5~4.5份;或者所述氧化剂包括高氯酸钠,所述高氯酸钠的质量份为1.5~4.5份;或者所述氧化剂包括叔丁基过氧化氢,所述叔丁基过氧化氢的质量份为1.2~3.6份;
    c)所述溶液A中还含有0~1质量份的促进剂。
  12. 根据权利要求9所述的换热器的制备方法,其特征在于,所述疏水涂料的制备包括:
    按质量份计,将10~50份的有机硅烷和/或硅氧烷、45~89份的溶剂和1~5份的亲水性二氧化硅混合,在30℃~45℃温度下搅拌反应15~45min,搅拌转速为200~500rpm,得到改性的疏水二氧化硅溶胶。
  13. 根据权利要求12所述的换热器的制备方法,其特征在于,所述疏水涂料具有以下特征中的至少一个:
    a)所述有机硅烷包括六甲基二硅胺烷、甲基三乙氧基硅烷、二甲基二乙氧基硅烷、三甲基氯硅烷、二甲基二氯硅烷和γ-缩水甘油醚氧丙基三甲氧基硅烷中的至少一种;
    b)所述溶剂包括醇类溶剂;
    c)所述亲水性二氧化硅包括气相二氧化硅颗粒或分散性二氧化硅溶胶中的至少一种。
  14. 根据权利要求9所述的换热器的制备方法,其特征在于,所述制备方法还包括在涂覆稀土转化涂料前对所述金属基材预处理的步骤,所述金属基材的预处理的步骤包括:
    将金属基材待涂覆位置的表面进行100~200目的喷砂处理,再用醇或酸进行清洗后烘干。
  15. 根据权利要求9所述的换热器的制备方法,其特征在于,所述将稀土转化涂料涂覆于所述金属基材的至少部分表面并固化的步骤包括:
    采用浸涂、喷涂、刷涂、淋涂或辊涂中的至少一种涂覆方式,将所述稀土转化涂料涂覆于所述金属基材的至少部分表面上,在30℃~55℃下静置保温30min~50min;
  16. 根据权利要求9所述的换热器的制备方法,其特征在于,所述将疏水涂料涂覆于所述稀土转化涂层的至少部分表面并固化的步骤包括:
    采用浸涂、喷涂、刷涂、淋涂或辊涂中的至少一种涂覆方式,将所述疏水涂料涂覆于所述稀土转化涂层的至少部分表面上,在130℃~150℃下固化0.5h~2h。
  17. 一种热管理系统,其特征在于,所述热管理系统包括压缩机、第一换热器、节流装置和第二换热器;当所述热管理系统有冷媒流动时,所述冷媒经所述压缩机流入所述第一换热器,并在所述第一换热器发生热交换之后流入节流装置,而后所述冷媒流入所述第二换热器并在所述第二换热器发生热交换后再次流入所述压缩机;
    所述第一换热器和所述第二换热器中的至少一个为权利要求1至8中任一项所述的换热器。
PCT/CN2021/142578 2021-01-08 2021-12-29 换热器及其制备方法、热管理系统 WO2022148285A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/346,109 US20230358488A1 (en) 2021-01-08 2023-06-30 Heat exchanger, manufacturing method thereof and thermal management system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110025330.6 2021-01-08
CN202110025330.6A CN114754620B (zh) 2021-01-08 2021-01-08 换热器及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/346,109 Continuation US20230358488A1 (en) 2021-01-08 2023-06-30 Heat exchanger, manufacturing method thereof and thermal management system

Publications (1)

Publication Number Publication Date
WO2022148285A1 true WO2022148285A1 (zh) 2022-07-14

Family

ID=82325776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142578 WO2022148285A1 (zh) 2021-01-08 2021-12-29 换热器及其制备方法、热管理系统

Country Status (3)

Country Link
US (1) US20230358488A1 (zh)
CN (1) CN114754620B (zh)
WO (1) WO2022148285A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115900422A (zh) * 2021-08-27 2023-04-04 杭州三花研究院有限公司 换热器的处理方法和换热器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190627B1 (en) * 1999-11-30 2001-02-20 Engelhard Corporation Method and device for cleaning the atmosphere
US20040231828A1 (en) * 2003-05-22 2004-11-25 Dunne Stephen R. Adsorber generator for use in sorption heat pump processes
US20130251942A1 (en) * 2012-03-23 2013-09-26 Gisele Azimi Hydrophobic Materials Incorporating Rare Earth Elements and Methods of Manufacture
CN105131830A (zh) * 2015-09-24 2015-12-09 苏州智见新材料技术有限公司 长效纳米疏水涂料组合物及其制备方法
KR20160017710A (ko) * 2014-08-01 2016-02-17 연세대학교 산학협력단 코팅층 형성 방법 및 방수성 코팅 부재
CN107828253A (zh) * 2017-11-10 2018-03-23 深圳市联创科技集团有限公司 一种防腐蚀涂料、制备方法及其在空调扇金属湿帘中的应用
CN108977782A (zh) * 2018-07-30 2018-12-11 杭州电子科技大学 一种长期稳固耐用的疏水涂层及其制备方法、应用
CN109297106A (zh) * 2018-08-28 2019-02-01 珠海格力电器股份有限公司 一种超疏水红外吸收涂层、换热器和空调室外机
CN109575801A (zh) * 2018-12-03 2019-04-05 河北工业大学 一种稀土/硅烷掺杂复合超疏水功能涂层的制备方法
US20200003479A1 (en) * 2018-06-29 2020-01-02 Hamilton Sundstrand Corporation Hydrophobic surfaces for heat exchangers via atomic layer deposition

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4175163A (en) * 1976-03-29 1979-11-20 Nippon Steel Corporation Stainless steel products, such as sheets and pipes, having a surface layer with an excellent corrosion resistance and production methods therefor
JP2002090084A (ja) * 2000-09-14 2002-03-27 Daikin Ind Ltd フィンとその製造方法及び該フィンを備えた熱交換器
CN100556964C (zh) * 2007-06-12 2009-11-04 武汉理工大学 疏水性二氧化硅的制备方法
CN101260521A (zh) * 2008-04-21 2008-09-10 华南理工大学 铝合金表面稀土化学转化处理方法
US9945036B2 (en) * 2011-03-22 2018-04-17 General Electric Company Hot corrosion-resistant coatings and components protected therewith
CN104169674B (zh) * 2012-03-29 2016-08-24 株式会社神户制钢所 热交换器用铝翅片材
CN103555114B (zh) * 2013-10-25 2017-05-10 广州慧谷化学有限公司 一种用于空调平行流热交换器亲水化处理的涂料组合物
CN103697751B (zh) * 2013-12-11 2017-01-25 上海交通大学 一种换热器表面涂层以及换热器表面处理方法
CN203963287U (zh) * 2014-07-02 2014-11-26 新兴铸管股份有限公司 具有防腐蚀性能的球墨铸铁管
CN105115349B (zh) * 2015-07-23 2017-11-07 洛阳三信石化设备有限公司 一种防腐防垢涂层换热器及其制作工艺
CN109929285B (zh) * 2019-03-13 2021-01-26 广东美的制冷设备有限公司 一种复合材料及其制备方法和应用
CN110542343B (zh) * 2019-10-08 2020-11-13 广东石油化工学院 一种换热器用耐高温防腐蚀涂层结构
CN111811315A (zh) * 2020-07-28 2020-10-23 上海交通大学 一种高效液氮换热器的换热管及换热器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190627B1 (en) * 1999-11-30 2001-02-20 Engelhard Corporation Method and device for cleaning the atmosphere
US20040231828A1 (en) * 2003-05-22 2004-11-25 Dunne Stephen R. Adsorber generator for use in sorption heat pump processes
US20130251942A1 (en) * 2012-03-23 2013-09-26 Gisele Azimi Hydrophobic Materials Incorporating Rare Earth Elements and Methods of Manufacture
KR20160017710A (ko) * 2014-08-01 2016-02-17 연세대학교 산학협력단 코팅층 형성 방법 및 방수성 코팅 부재
CN105131830A (zh) * 2015-09-24 2015-12-09 苏州智见新材料技术有限公司 长效纳米疏水涂料组合物及其制备方法
CN107828253A (zh) * 2017-11-10 2018-03-23 深圳市联创科技集团有限公司 一种防腐蚀涂料、制备方法及其在空调扇金属湿帘中的应用
US20200003479A1 (en) * 2018-06-29 2020-01-02 Hamilton Sundstrand Corporation Hydrophobic surfaces for heat exchangers via atomic layer deposition
CN108977782A (zh) * 2018-07-30 2018-12-11 杭州电子科技大学 一种长期稳固耐用的疏水涂层及其制备方法、应用
CN109297106A (zh) * 2018-08-28 2019-02-01 珠海格力电器股份有限公司 一种超疏水红外吸收涂层、换热器和空调室外机
CN109575801A (zh) * 2018-12-03 2019-04-05 河北工业大学 一种稀土/硅烷掺杂复合超疏水功能涂层的制备方法

Also Published As

Publication number Publication date
CN114754620A (zh) 2022-07-15
CN114754620B (zh) 2023-09-12
US20230358488A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
WO2022148284A1 (zh) 换热器及其制备方法、热管理系统
WO2022100361A1 (zh) 涂料及其制备方法、换热器及换热器的处理方法
US20230358488A1 (en) Heat exchanger, manufacturing method thereof and thermal management system
CN109929285B (zh) 一种复合材料及其制备方法和应用
CN102241939A (zh) 一种有机-无机杂化的超亲水涂料及其制备方法与应用
US20090155473A1 (en) Superprimer
CN107964294B (zh) 一种含有微纳米复合填料的pfa涂层及其制备方法
CN112175485A (zh) 超亲水涂料、换热器及换热器表面处理方法
JP4941119B2 (ja) ヒートパイプ
JP7210742B2 (ja) 鋼板表面処理用二層組成物及びこれを用いて表面処理された鋼板
US20210102075A1 (en) Corrosion resistant hydrophobic surfaces
CN115325851A (zh) 换热器及其制造方法
CN110345674A (zh) 一种散热翅片及其制备方法
US20230134273A1 (en) Processing method of heat exchanger and heat exchanger
JP3383914B2 (ja) 熱交換器用アルミニウムフィン材
US20220373276A1 (en) Heat exchanger, coating for coating heat exchanger, and heat management system
JP2008039377A (ja) 撥水部と親水部を有する物品及びその製法
JP4722422B2 (ja) 表面処理アルミニウム材および熱交換器
JP2011163646A (ja) 熱交換器用アルミニウムフィン及び熱交換器
CN110319719B (zh) 一种抗积垢管式换热器
WO2023143305A1 (zh) 换热器、用于换热器的复合材料和换热器的表面处理方法
US20230138311A1 (en) Heat exchanger and method thereof processing the same
JP4562897B2 (ja) ノンクロメート反応型下地層を有する熱交換器用フィン材およびそれを備えた熱交換器
US12092404B2 (en) Heat exchanger, processing method of heat exchanger and composite material
JP2017155973A (ja) 熱交換器用フィン材及び熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917324

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/12/2023)