WO2022148169A1 - 电化学法降解气态有机污染物的装置及其方法 - Google Patents

电化学法降解气态有机污染物的装置及其方法 Download PDF

Info

Publication number
WO2022148169A1
WO2022148169A1 PCT/CN2021/133034 CN2021133034W WO2022148169A1 WO 2022148169 A1 WO2022148169 A1 WO 2022148169A1 CN 2021133034 W CN2021133034 W CN 2021133034W WO 2022148169 A1 WO2022148169 A1 WO 2022148169A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic pollutants
gaseous organic
anode
exchange membrane
gas
Prior art date
Application number
PCT/CN2021/133034
Other languages
English (en)
French (fr)
Inventor
张礼知
贾法龙
严义清
严方升
Original Assignee
深圳市普瑞美泰环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市普瑞美泰环保科技有限公司 filed Critical 深圳市普瑞美泰环保科技有限公司
Priority to US18/261,077 priority Critical patent/US20240058748A1/en
Publication of WO2022148169A1 publication Critical patent/WO2022148169A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • C25B11/032Gas diffusion electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/021Process control or regulation of heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2684Electrochemical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present application relates to the technical field of gaseous organic pollutant purification, and in particular, to a device and a method for degrading gaseous organic pollutants by an electrochemical method.
  • the proton exchange membrane in the electrochemical reactor used in the electrochemical oxidation method is generally a non-gas permeable structure.
  • gaseous organic pollutants need to enter from the single-sided anode inlet channel, flow into the anode, and exchange protons at the anode.
  • Degradation occurs at the interface of the membrane, and then the degraded gas diffuses from the interface back to the anode inlet channel, so that the inlet and outlet gases will mix with each other and interfere with each other, making it difficult to achieve effective degradation of pollutants at high flow rates.
  • the main purpose of the present application is to provide a device and method for electrochemically degrading gaseous organic pollutants, aiming to effectively improve the degradation efficiency under high gas flow rate.
  • the device for electrochemically degrading gaseous organic pollutants proposed in the present application includes an electrochemical reactor, the electrochemical reactor includes a power source, an anode, a cathode, and a proton exchange membrane, and the proton exchange membrane is located in the between the anode and the cathode, and the anode, the proton exchange membrane and the cathode are clamped and arranged, and the proton exchange membrane is a gas permeable proton exchange membrane.
  • the pore size of the pores in the gas permeable proton exchange membrane is in the range of 0.1 ⁇ m to 20000 ⁇ m; and/or the density of the pores in the gas permeable proton exchange membrane is in the range of 2ppi to 10000ppi.
  • the thickness of the gas permeable proton exchange membrane ranges from 5 ⁇ m to 3000 ⁇ m.
  • the anode is provided with a titanium oxide material coating.
  • the thickness of the titanium oxide material coating ranges from 0.1 ⁇ m to 500 ⁇ m.
  • the anode is a gas-permeable metal electrode
  • the gas-permeable metal electrode is selected from one of a foamed titanium electrode, a foamed titanium alloy electrode, a titanium mesh electrode and a titanium alloy mesh electrode.
  • the cathode is a gas-permeable electrode loaded with an oxygen reduction catalyst
  • the oxygen reduction catalyst is selected from at least one of platinum, rhodium, ruthenium, palladium, nickel, cobalt oxide, iron compounds and molybdenum compounds
  • the breathable electrode is selected from carbon paper electrode, carbon fiber cloth electrode, foamed nickel electrode, foamed titanium electrode and foamed titanium alloy electrode, titanium mesh electrode and titanium alloy mesh electrode; There are multiple, multiple said electrochemical reactors are arranged in series.
  • the present application also proposes a method for degrading gaseous organic pollutants by an electrochemical method, which is applied to the aforementioned device for degrading gaseous organic pollutants by an electrochemical method, comprising the following steps:
  • the gas containing gaseous organic pollutants is introduced from the anode, the gas containing gaseous organic pollutants is degraded at the anode, and after being degraded, passes through the proton exchange membrane and the cathode in sequence and then is discharged.
  • the relative humidity of the gas containing gaseous organic pollutants is 2%-100%.
  • the range of the DC voltage is 0.3V-36V; and/or, the temperature in the process of degrading the gaseous organic pollutants is controlled within the range of minus 40°C to 70°C.
  • a device for degrading gaseous organic pollutants by an electrochemical method is used to degrade gaseous organic pollutants, wherein the proton exchange membrane of the electrochemical reactor adopts a gas-permeable proton exchange membrane, so that in the process of degrading gaseous organic pollutants, the The degraded gas directly passes through the proton exchange membrane and the cathode and then is discharged from the reaction device, and will not be mixed with the subsequent gas to be degraded, which can effectively improve the degradation efficiency at high gas flow rates.
  • the overall structure of the device of the present application is more compact.
  • the device for electrochemical degradation of gaseous organic pollutants of the present application is suitable for the degradation of all gaseous organic pollutants, and is not limited by the water solubility of organic pollutants, has a wide application range, and has great application potential in the field of environmental pollution control .
  • FIG. 1 is a schematic structural diagram of an embodiment of a device for electrochemically degrading gaseous organic pollutants in the present application
  • Fig. 2 is the schematic diagram of the performance comparison of two kinds of structural electrochemical reactors for degrading benzene pollutants
  • Fig. 3 is the schematic diagram of the ratio of reaction benzene degradation to CO2 and CO;
  • Figure 4 is a schematic diagram showing the relationship between benzene degradation efficiency and current density and time under long-term continuous electrolysis.
  • label name label name 1 Breathable Metal Anode 3 Breathable cathode 2 Breathable proton exchange membrane
  • the present application proposes a device for degrading gaseous organic pollutants by an electrochemical method, which is used for degrading gaseous organic pollutants.
  • the device for degrading gaseous organic pollutants by electrochemical method includes an electrochemical reactor, and the electrochemical reactor includes a power source, an anode, a cathode, and a proton exchange membrane, and the proton exchange membrane is arranged on the anode and the cathode, and the anode, the proton exchange membrane and the cathode are clamped and arranged, and the proton exchange membrane is a gas permeable proton exchange membrane.
  • the power supply adopts DC power supply
  • the inlet channel is set to pass gas containing gaseous organic pollutants
  • the anode is installed in the inlet channel
  • the cathode is installed in the outlet channel
  • the proton exchange membrane is arranged between the cathode and the anode
  • the anode is installed in the outlet channel.
  • the proton exchange membrane and the cathode are clamped in three layers, so that the electrochemical reactor can be assembled.
  • the proton exchange membrane adopts a gas-permeable proton exchange membrane, so that the degraded gas directly passes through the proton membrane and the cathode and is discharged from the reaction device, and will not be mixed with the subsequent gas to be degraded, which can effectively improve the degradation under large gas flow rates. efficiency.
  • the overall structure of the device is more compact.
  • the cathode area of the non-gas permeable electrochemical reactor needs to be equipped with a separate air inlet system, and the entire device needs two sets of gas control systems.
  • the present application adopts a gas permeation type electrochemical reactor, which does not require a separate gas inlet system for the cathode, and only needs one set of gas control system for the entire device, which further optimizes the device structure and reduces the cost.
  • the technical solution of the present application uses a device for degrading gaseous organic pollutants by an electrochemical method to degrade gaseous organic pollutants, wherein the proton exchange membrane of the electrochemical reactor adopts a gas-permeable proton exchange membrane.
  • the degraded gas directly passes through the proton exchange membrane and the cathode and is discharged from the reaction device, and will not be mixed with the gas to be degraded that enters subsequently, which can effectively improve the degradation efficiency of pollutants at high flow rates.
  • the overall structure of the device of the present application is more compact.
  • the device for electrochemical degradation of gaseous organic pollutants of the present application is suitable for the degradation of all gaseous organic pollutants, and is not limited by the water solubility of organic pollutants, has a wide application range, and has great application potential in the field of environmental pollution control .
  • the device for electrochemically degrading gaseous organic pollutants further comprises a conveying device, a conveying pipeline and an air inlet and outlet channel, wherein the conveying pipeline is communicated with the air inlet channel and the air outlet channel, and the conveying pipeline is provided with a conveying device,
  • the conveying equipment is a fan or an air pump.
  • the pore size range of the pores in the gas permeable proton exchange membrane is 0.1 ⁇ m-20000 ⁇ m, for example, the pore size of the pores in the gas permeable proton exchange membrane is 0.1 ⁇ m, 1 ⁇ m, 3 ⁇ m, 5 ⁇ m, 7 ⁇ m, 10 ⁇ m, 12 ⁇ m, 15 ⁇ m, 17.5 ⁇ m, 20 ⁇ m, 200 ⁇ m, 1000 ⁇ m, 2000 ⁇ m, 3000 ⁇ m, 4000 ⁇ m, 5000 ⁇ m, 6000 ⁇ m, 7000 ⁇ m, 8000 ⁇ m, 9000 ⁇ m, 10000 ⁇ m, 150000 ⁇ m, 20000 ⁇ m.
  • the density of pores in the gas permeable proton exchange membrane should be reasonably controlled.
  • the density of the pores in the gas permeable proton exchange membrane is in the range of 2ppi-10000ppi, for example, the density of the pores in the gas permeable proton exchange membrane is 2ppi, 5ppi, 50ppi , 100ppi, 200ppi, 300ppi, 400ppi, 500ppi, 600ppi, 700ppi, 700ppi, 800ppi, 900ppi, 1000ppi, 500ppi, 5000ppi, 10000ppi.
  • the thickness of the gas permeable proton exchange membrane ranges from 5 ⁇ m to 3000 ⁇ m, for example, the thickness of the gas permeable proton exchange membrane is 5 ⁇ m, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 50 ⁇ m, 100 ⁇ m, 150 ⁇ m, 200 ⁇ m, 250 ⁇ m, 500 ⁇ m, 1000 ⁇ m , 2000 ⁇ m or 3000 ⁇ m.
  • the selection of the breathable exchange membrane in this thickness range can not only ensure its strength, but also realize the smooth permeation of the degraded gas.
  • the surface of the anode is provided with a titanium oxide material coating.
  • the titanium oxide material coating can be applied to the surface of the anode by coating, spraying, dipping or other methods.
  • the main active component of titania material is Ti4O7.
  • titania material has a higher oxygen evolution overpotential, which is conducive to the efficient oxidation of surface adsorbed water molecules into hydroxyl radicals. , so as to achieve efficient degradation of gaseous organic pollutants.
  • the titanium oxide material also has good electrical conductivity and chemical stability, and the service life of the electrochemical reactor is greatly improved, so that the device for electrochemical degradation of gaseous organic pollutants has excellent lasting stability and is reliable in practical applications. Sexuality has obvious advantages.
  • gas permeable proton exchange membrane combined with the anode of the titanium oxide material can further improve the efficiency of electrochemical degradation of gaseous organic pollutants.
  • the thickness of the titanium oxide material coating should be reasonably controlled to make it fully functional.
  • the thickness of the titanium oxide material coating ranges from 0.1 ⁇ m to 500 ⁇ m, for example, the thickness of the titanium oxide material coating is 0.1 ⁇ m, 1 ⁇ m, 2.5 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 30 ⁇ m , 50 ⁇ m, 100 ⁇ m, 200 ⁇ m, 400 ⁇ m or 500 ⁇ m.
  • the thickness of the titanium oxide material coating is less than 0.1 ⁇ m, the effect of the titanium oxide material is small, and the surface adsorbed water molecules cannot be oxidized to hydroxyl radicals efficiently, and the degradation rate of gaseous organic pollutants is not high; if If the thickness of the titania material coating is greater than 500 ⁇ m, some titania materials cannot fully play their role, resulting in material waste and high cost.
  • the anode is a gas-permeable metal electrode
  • the gas-permeable metal electrode is selected from one of a foamed titanium electrode, a foamed titanium alloy electrode, a titanium mesh electrode and a titanium alloy mesh electrode.
  • the anode adopts a gas-permeable metal electrode, so that when the gas containing gaseous organic pollutants is processed, the gas can pass through the anode, so that the gaseous organic pollutants can be removed more efficiently.
  • a gas-permeable metal electrode one of a foamed titanium electrode, a foamed titanium alloy electrode, a titanium mesh electrode and a titanium alloy mesh electrode can be selected.
  • the cathode is a gas-permeable electrode loaded with an oxygen reduction catalyst, and the oxygen reduction catalyst is selected from at least one of platinum, rhodium, ruthenium, palladium, nickel, cobalt oxide, iron compounds and molybdenum compounds.
  • the breathable electrode is one of carbon paper electrode, carbon fiber cloth electrode, foamed nickel electrode, foamed titanium electrode and foamed titanium alloy electrode, titanium mesh electrode and titanium alloy mesh electrode.
  • the cathode adopts a gas permeable electrode, which can allow the degraded gas to pass through, and the oxygen molecules in the gas are reduced under the action of the oxygen reduction catalyst of the cathode.
  • the hydrogen ions generated by the anodic oxidation anode migrate to the cathode interface through the proton exchange membrane. , and combined with the reduced oxygen molecules on the cathode to produce water, thus forming a stable electrolysis reaction loop, ensuring the smooth progress of the electrochemical degradation of gaseous organic pollutants.
  • the loading range of the oxygen reduction catalyst is 0.1mg/cm2-100mg/cm2, for example, the loading range of the oxygen reduction catalyst is 0.1mg/cm2, 1.0mg/cm2, 5.0mg/cm2, 10.0mg /cm2, 20.0 mg/cm2, 30.0 mg/cm2, 40.0 mg/cm2, 50.0 mg/cm2, 70.0 mg/cm2 or 100.0 mg/cm2.
  • the present application also proposes a method for degrading gaseous organic pollutants by an electrochemical method, which is applied to the aforementioned device for degrading gaseous organic pollutants by an electrochemical method, comprising the following steps:
  • the gas containing gaseous organic pollutants is introduced from the anode, the gas containing gaseous organic pollutants is degraded at the anode, and after being degraded, passes through the proton exchange membrane and the cathode in sequence and then is discharged.
  • the gas containing gaseous organic pollutants itself contains a certain amount of gaseous water molecules. After entering the anode inlet channel, the gaseous water molecules will be oxidized to form hydroxyl radical active species after being adsorbed on the surface of the titanium oxide anode, and then oxidatively degraded The volatile organic compounds in the gas decompose the volatile organic compounds into harmless small molecules such as carbon dioxide. The degraded gas enters the gas permeable cathode through the gas permeable proton exchange membrane, and the oxygen molecules in the gas are reduced at the cathode.
  • the hydrogen ions generated by anodic oxidation and degradation migrate to the cathode interface through the proton exchange membrane, and combine with the reduced oxygen molecules on the cathode to generate water, forming a stable electrolysis reaction loop and ensuring the smooth progress of electrochemical degradation of pollutants. Finally, the degraded gas is discharged from the cathode outlet channel.
  • the present application adopts a gas permeable electrochemical reactor, which does not require a separate gas inlet system for the cathode, and only needs a set of gas control system for the entire device, which further optimizes the device structure and reduces the cost.
  • the degraded gas directly passes through the proton exchange membrane and the cathode and is discharged from the reaction device, and will not be mixed with the subsequent gas to be degraded, which can effectively improve the degradation efficiency at high gas flow rates.
  • the overall structure of the device of the present application is more compact.
  • the anode of the present application is coated with a titanium oxide material, and the oxygen evolution overpotential of the titanium oxide material is higher than that of the boron-doped diamond and SnO2 electrode materials, so the surface adsorbed water molecules can be efficiently oxidized into The active species of hydroxyl radicals, and then oxidatively degrade the volatile organic compounds in the gas, decompose the volatile organic compounds into harmless small molecules such as carbon dioxide, and realize the efficient degradation of gaseous organic pollutants.
  • the titanium oxide material also has good electrical conductivity and chemical stability, and the service life of the electrochemical reactor is greatly improved, so that the device for electrochemical degradation of gaseous organic pollutants has excellent lasting stability and is reliable in practical applications. Sexuality has obvious advantages.
  • the relative humidity of the gas containing gaseous organic pollutants will affect the degradation efficiency of gaseous organic pollutants, so the relative humidity needs to be controlled.
  • the relative humidity of the gas containing gaseous organic pollutants is controlled within the range of 2%-100%
  • the relative humidity of the gas containing gaseous organic pollutants is 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 80% or 100%.
  • the range of the DC voltage is 0.3V-36V.
  • a DC voltage in the range of 0.3V-36V is applied between the cathode and the anode, so that the electrochemical method can effectively degrade the gaseous organic pollutants.
  • the temperature in the process of degrading gaseous organic pollutants should be reasonably controlled, and the degradation temperature should be controlled within the range of minus 40 °C to 70 °C, so as to help improve the gaseous organic pollutants.
  • Degradation rate optionally, its degradation temperature is controlled in the range of 5°C to 40°C.
  • the present application is a method and device for the permeable gas-solid phase electrochemical degradation of gaseous volatile organic compounds based on titanium oxide anode, as shown in FIG. 1 .
  • the device includes an electrochemical reactor, and the electrochemical reactor includes a gas permeable metal anode 1 loaded with titanium oxide, a gas permeable proton exchange membrane 2, and a gas permeable cathode 3 loaded with an oxygen reduction catalyst, and the various components are tightly attached to each other through a locking mechanism.
  • a voltage is applied between the cathode and the anode, and the gas containing volatile gaseous organic pollutants is passed through the anode, and the volatile gaseous organic pollutants are oxidized and degraded into carbon dioxide and water on the surface of the anode.
  • the gas enters the gas permeable cathode through the gas permeable proton exchange membrane and finally exits the cathode.
  • a titanium dioxide foam sheet with a filtration precision of 50 ⁇ m was set as the matrix to support titanium dioxide.
  • the spraying power is 30KW, and the spraying thickness is controlled at about 15 ⁇ m by adjusting the spraying amount.
  • the sprayed titanium foam is washed with ethanol and then dried to obtain titanium oxide-supported foamed titanium, which is used as the anode of the subsequent gas-solid electrochemical reactor.
  • Preparation of gas-permeable proton exchange membrane the following three methods can be used for preparation.
  • Method 1 Set a commercial proton exchange membrane with a thickness of 150 ⁇ m as the base material, place it on a flat surface silica gel plate, and process a steel plate with micron needle tips on the surface.
  • the diameter and height of the needle tips on the steel plate are 5 ⁇ m and 200 ⁇ m, respectively.
  • the distribution density of the steel plate is 5000 pieces/cm2, the needle tip surface of this steel plate faces the proton exchange membrane and is placed on it, and the pressure is 1MPa between the steel plate and the silica gel plate for 2 minutes.
  • the proton exchange membrane is then taken out to obtain a permeable proton exchange membrane.
  • Method 2 Set 10% perfluorosulfonic acid resin dispersion as the raw material, and gradually drop it onto the steel plate whose surface is covered with micron needle tips.
  • the diameter and height of the needle tips on the steel plate are 5 ⁇ m and 200 ⁇ m respectively.
  • the heating control surface under the steel plate is 50 degrees, and the amount and times of dripping are controlled. After the solvent is volatilized, the formed film is peeled off from the steel plate to obtain a breathable proton exchange membrane.
  • Method 3 A commercial proton exchange membrane with a thickness of 150 ⁇ m was set as the base material, and through holes were punched in the membrane by means of laser irradiation. By adjusting the laser spot size, laser power and running track, densely distributed through holes are formed on the proton membrane, the aperture size is 10 microns, and the distribution density of the holes is 5000/cm2.
  • Example 3 The gas-permeable proton exchange membrane prepared in Example 3 was placed between the anode and cathode prepared in Example 2 above, and the membrane electrode was obtained by hot pressing at 80° C. and 6 MPa for 2 minutes. Group. Then, the membrane electrode group is placed between the anode air inlet channel and the cathode air outlet channel and clamped, and at the same time, the anode and the cathode are connected to the positive electrode and the negative electrode of the DC power supply through wires, and the permeable gas-solid phase electrochemical reactor can be assembled. .
  • Degradation efficiency of volatile organic compound benzene under different flow rates adopt the gas-solid phase electrochemical reaction device assembled in Example 4, apply a DC voltage of 4V between the anode and the cathode, control the relative humidity of the intake air to be 60%, and benzene in the intake air
  • concentration was 10 ppm
  • the gas flow was increased from 20 mL/min to 100 mL/min
  • the catalytic performance was shown in Figures 2 and 3. It can be seen that when the permeation type electrochemical reactor is used, the gas flow rate is from 20 When the mL/min was increased to 100 mL/min, a higher benzene degradation rate (>80%) could still be obtained.
  • the anode is fed in and then discharged from the anode area, and other conditions are the same as the permeable electrochemical reactor, then the benzene degradation at this time
  • the rate of degradation decreased with increasing gas flow, with only 20% degradation at 100 mL/min.
  • the products of benzene degradation by the permeable electrochemical device are mainly CO2 (95%), indicating that the gas-solid phase electrochemistry based on titania anode can efficiently mineralize benzene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Automation & Control Theory (AREA)
  • Urology & Nephrology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种电化学法降解气态有机污染物的装置和方法,装置包括电化学反应器,电化学反应器包括电源、阳极、阴极、质子交换膜,质子交换膜设于阳极和阴极之间,且阳极、质子交换膜及阴极夹紧设置,质子交换膜为透气型质子交换膜;方法,应用于该装置,包括以下步骤:在阴极和阳极之间施加直流电压,将含气态有机污染物的气体自阳极进入,含有气态有机污染物的气体在阳极降解,降解后依次穿过质子交换膜和阴极后排出。

Description

电化学法降解气态有机污染物的装置及其方法
本申请要求于2021年1月11号申请的、申请号为202110039154.1的中国专利申请的优先权,其全部内容通过引用结合于此。
技术领域
本申请涉及气态有机污染物净化技术领域,特别涉及一种电化学法降解气态有机污染物的装置及其方法。
背景技术
目前,针对挥发性气相有机污染物的降解方法很多,但都存在这样那样的问题,电化学氧化法因无须投加任何化学试剂,操作简单且绿色环保而备受关注。
电化学氧化法采用的电化学反应器中质子交换膜普遍为非气体透过型结构,在降解过程中,气态有机污染物需要从单侧阳极进气通道进入,流入阳极并在阳极与质子交换膜的界面处发生降解,随后降解后的气体再从界面处扩散回到至阳极进气通道,这样进气和出气会彼此混合并产生干扰,难以实现高流速下污染物的有效降解。
技术问题
本申请的主要目的是提供一种电化学法降解气态有机污染物的装置及其方法,旨在有效提升高气体流速下的降解效率。
技术解决方案
为实现上述目的,本申请提出的电化学法降解气态有机污染物的装置包括电化学反应器,所述电化学反应器包括电源、阳极、阴极、质子交换膜,所述质子交换膜设于所述阳极和所述阴极之间,且所述阳极、所述质子交换膜及所述阴极夹紧设置,所述质子交换膜为透气型质子交换膜。
可选的实施例中,所述透气型质子交换膜中孔隙的孔径范围为0.1μm-20000μm;和/或,所述透气型质子交换膜中孔隙的密度范围为2ppi-10000ppi。
可选的实施例中,所述透气型质子交换膜的厚度范围为5μm-3000μm。
可选的实施例中,所述阳极设有亚氧化钛材料涂层。
可选的实施例中,所述亚氧化钛材料涂层的厚度范围为0.1μm-500μm。
可选的实施例中,所述阳极为透气金属电极,所述透气金属电极选用泡沫钛电极、泡沫钛合金电极、钛网电极及钛合金网电极中的一种。
可选的实施例中,所述阴极为负载有氧气还原催化剂的透气电极,所述氧气还原催化剂选用铂、铑、钌、钯、镍、氧化钴、铁化合物及钼化合物中的至少一种,所述透气电极选用碳纸电极、碳纤维布电极、泡沫镍电极、泡沫钛电极及泡沫钛合金电极、钛网电极及钛合金网电极中的一种;和/或,所述电化学反应器设有多个,多个所述电化学反应器串联设置。
本申请还提出了一种电化学法降解气态有机污染物的方法,应用于如前所述的电化学法降解气态有机污染物的装置,包括以下步骤:
在阴极和阳极之间施加直流电压;
将含气态有机污染物的气体自阳极进入,所述含有气态有机污染物的气体在阳极降解,降解后依次穿过质子交换膜和阴极后排出。
可选的实施例中,所述含气态有机污染物的气体的相对湿度为2%-100%。
可选的实施例中,所述直流电压的范围为0.3V-36V;和/或,降解气态有机污染物过程中的温度控制在负40℃至70℃范围内。
有益效果
本申请的技术方案,采用电化学法降解气态有机污染物的装置降解气态有机污染物,其中电化学反应器的质子交换膜采用透气型质子交换膜,这样在降解气态有机污染的过程中,被降解气体直接透过质子交换膜和阴极后排出反应装置,不会与后续进入的待降解气体混合,如此可以有效地提升高气体流速下的降解效率。同时,本申请装置的整体结构更加紧凑。此外,本申请电化学降解气态有机污染物装置适用于所有的气态有机污染物的降解,且不受到有机污染物水溶性的限制,应用范围较广,在环境污染治理领域有很大的应用潜力。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请电化学法降解气态有机污染物的装置实施例的结构示意图;
图2为两种结构电化学反应器降解苯污染物的性能比较的示意图;
图3为反应苯降解为CO2和CO的比例的示意图;
图4 为长时间持续电解下的苯降解效率及电流密度与时间的关系示意图。
附图标号说明:
标号 名称 标号 名称
1 透气金属阳极 3 透气阴极
2 透气型质子交换膜    
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种电化学法降解气态有机污染物的装置,用于降解气态有机污染物。
参照图1,在本申请的一实施例中,电化学法降解气态有机污染物的装置包括电化学反应器,电化学反应器包括电源、阳极、阴极、质子交换膜,质子交换膜设于阳极和阴极之间,且阳极、质子交换膜及阴极夹紧设置,质子交换膜为透气型质子交换膜。
这里电源采用直流电源,进气通道被设置为通入含有气态有机污染物的气体,阳极安装于进气通道内,阴极安装于出气通道内,质子交换膜设置于阴极和阳极之间,且阳极、质子交换膜及阴极三层夹紧设置,如此便可组装得到电化学反应器。并且,质子交换膜采用透气型质子交换膜,则被降解气体直接透过质子膜和阴极后排出反应装置,不会与后续进入的待降解气体混合,这样可以有效地提升大气体流速下的降解效率。同时,如此的设置,装置的整体结构更加紧凑。
需要说明的是,非气体透过型电化学反应器的阴极区需要配置单独的进气系统,整个装置需要两套气体控制系统。而本申请采用气体透过型电化学反应器,不需要给阴极配置单独的进气系统,整个装置只需要一套气体控制系统,进一步优化了装置结构,降低了成本。
可以理解的,本申请的技术方案,采用电化学法降解气态有机污染物的装置降解气态有机污染物,其中电化学反应器的质子交换膜采用透气型质子交换膜,这样在降解气态有机污染的过程中,被降解气体直接透过质子交换膜和阴极后排出反应装置,不会与后续进入的待降解气体混合,如此可以有效地提升高流速下污染物的降解效率。同时,本申请装置的整体结构更加紧凑。此外,本申请电化学降解气态有机污染物装置适用于所有的气态有机污染物的降解,且不受到有机污染物水溶性的限制,应用范围较广,在环境污染治理领域有很大的应用潜力。
可选的实施例中,电化学法降解气态有机污染物的装置还包括输送设备、输送管道及进出气通道,其中的输送管道与进气通道及出气通道连通,输送管道上设置有输送设备,输送设备为风机或气泵。
在设计质子交换膜时,为了有效保证被降解的气体顺利地透过质子交换膜,则需要合理控制透气型质子交换膜中孔隙的尺寸。可选的实施例中,透气型质子交换膜中孔隙的孔径范围为0.1μm-20000μm,比如,透气型质子交换膜中孔隙的孔径为0.1μm、1μm、3μm、5μm、7μm、10μm、12μm、15μm、17.5μm、20μm、200μm、1000μm、2000μm、3000μm、4000μm、5000μm、6000μm、7000μm、8000μm、9000μm、10000μm、150000μm、20000μm。
同时也要合理控制透气型质子交换膜中孔隙的密度,可选地,透气型质子交换膜中孔隙的密度范围为2ppi-10000ppi,比如透气型质子交换膜中孔隙的密度为2ppi、5ppi、50ppi、100ppi、200ppi、300ppi、400ppi、500ppi、600ppi、700ppi、700ppi、800ppi、900ppi、1000ppi、500ppi、5000ppi、10000ppi。
可选的实施例中,透气型质子交换膜的厚度范围为5μm-3000μm,比如透气型质子交换膜的厚度为5μm、10μm、20μm、30μm、50μm、100μm、150μm、200μm、250μm、500μm、1000μm、2000μm或3000μm。选用该厚度范围的透气型交换膜,既可以保证其强度,又可以实现被降解气体的顺利透过。
可选的实施例中,阳极表面设有亚氧化钛材料涂层。亚氧化钛材料涂层可采用涂覆、喷涂、浸渍或其他方式设于阳极的表面。亚氧化钛材料的主要活性组分为Ti4O7,相较于硼掺杂金刚石和SnO2电极材料,亚氧化钛材料具有较高的析氧过电位,有利于将表面吸附水分子高效氧化为羟基自由基,从而实现气态有机污染物的高效降解。同时,亚氧化钛材料还具有良好的导电性和化学稳定性,电化学反应器的使用寿命大幅度提升,从而使得电化学降解气态有机污染物装置拥有优异的持久稳定性,在实际应用的可靠性方面具有明显的优势。
可以理解的,本申请采用透气型质子交换膜与亚氧化钛材料的阳极结合,可以进一步提高电化学降解气态有机污染物的效率。
在制作阳极时,要合理控制亚氧化钛材料涂层的厚度,以使其充分作用。可选的实施例中,亚氧化钛材料涂层的厚度范围为0.1μm-500μm,比如,亚氧化钛材料涂层的厚度为0.1μm、1μm、2.5μm、5μm、10μm、15μm、20μm、30μm、50μm、100μm、200μm、400μm或500μm。可以理解,如若亚氧化钛材料涂层的厚度小于0.1μm,则亚氧化钛材料的作用较小,不能高效将表面吸附水分子氧化为羟基自由基,气态有机污染物的降解率不高;若亚氧化钛材料涂层的厚度大于500μm,则会有部分亚氧化钛材料不能充分发挥其作用,造成材料浪费,成本较高。
可选的实施例中,阳极为透气金属电极,透气金属电极选用泡沫钛电极、泡沫钛合金电极、钛网电极及钛合金网电极中的一种。
这里阳极采用透气金属电极,这样在处理含有气态有机污染物的气体时,气体可以透过阳极,这样可以更高效地去除其中的气态有机污染物。在选用透气金属电极时,可选用泡沫钛电极、泡沫钛合金电极、钛网电极及钛合金网电极中的一种。
可选的实施例中,阴极为负载有氧气还原催化剂的透气电极,所述氧气还原催化剂选用铂、铑、钌、钯、镍、氧化钴、铁化合物及钼化合物中的至少一种,所述透气电极选用碳纸电极、碳纤维布电极、泡沫镍电极、泡沫钛电极及泡沫钛合金电极、钛网电极及钛合金网电极中的一种。
这里阴极采用透气电极,可以允许被降解的气体透过,气体中的氧分子在阴极的氧气还原催化剂的作用下发生还原,同时,阳极氧化阳极产生的氢离子通过质子交换膜迁移至阴极界面处,并与阴极上还原的氧分子结合生产水,如此便构成了稳定的电解反应回路,保证了电化学法降解气体有机污染物的顺畅进行。
可选的实施例中,氧气还原催化剂的负载量范围为0.1mg/cm2-100mg/cm2,比如氧气还原催化剂的负载量范围为0.1mg/cm2、1.0mg/cm2、5.0mg/cm2、10.0mg/cm2、20.0mg/cm2、30.0mg/cm2、40.0mg/cm2、50.0mg/cm2、70.0mg/cm2或100.0mg/cm2。
可选的实施例中,电化学反应器设有多个,多个电化学反应器串联设置。如此可以有效地提升有机污染物的降解效率。
本申请还提出了一种电化学法降解气态有机污染物的方法,应用于如前所述的电化学法降解气态有机污染物的装置,包括以下步骤:
在阴极和阳极之间施加直流电压;
将含气态有机污染物的气体自阳极进入,所述含有气态有机污染物的气体在阳极降解,降解后依次穿过质子交换膜和阴极后排出。
这里含气态有机污染物的气体自身含有一定量的气态水分子,通入阳极进气通道后,气态水分子会在亚氧化钛阳极表面吸附后即被氧化生成羟基自由基活性物种,进而氧化降解气体中的挥发性有机物组分,使挥发性有机物分解为二氧化碳等无害小分子。降解后的气体通过透气型质子交换膜进入透气性阴极,气体中氧分子在阴极发生还原。同时,阳极氧化降解产生的氢离子通过质子交换膜迁移至阴极界面处,并与阴极上还原的氧分子结合生成水,构成稳定的电解反应回路,保障了电化学降解污染物的顺畅进行。最终,降解后的气体从阴极出气通道排出。
可以理解的,本申请采用气体透过型电化学反应器,不需要给阴极配置单独的进气系统,整个装置只需要一套气体控制系统,进一步优化了装置结构,降低了成本。在降解气态有机污染的过程中,被降解气体直接透过质子交换膜和阴极后排出反应装置,不会与后续进入的待降解气体混合,如此可以有效地提升高气体流速下的降解效率。同时,本申请装置的整体结构更加紧凑。进一步地,本申请阳极采用亚氧化钛材料涂层,亚氧化钛材料的析氧过电位要高于硼掺杂金刚石和SnO2电极材料的析氧过电位,因而可以高效将表面吸附水分子氧化为羟基自由基活性物种,进而氧化降解气体中的挥发性有机物组分,使挥发性有机物分解为二氧化碳等无害小分子,实现气态有机污染物的高效降解。同时,亚氧化钛材料还具有良好的导电性和化学稳定性,电化学反应器的使用寿命大幅度提升,从而使得电化学降解气态有机污染物装置拥有优异的持久稳定性,在实际应用的可靠性方面具有明显的优势。
含气态有机污染物的气体的相对湿度会影响气态有机污染物的降解效率,则需要控制其相对湿度,可选地,含气态有机污染物的气体的相对湿度控制在2%-100%范围内,比如,含气态有机污染物的气体的相对湿度为2%、5%、10%、20%、30%、40%、50%、60%、80%或100%。
可选的实施例中,直流电压的范围为0.3V-36V。在在电化学反应器工作时,在阴极和阳极之间施加0.3V-36V范围的直流电压,可以使得电化学法能够有效地降解气态有机污染物。
在采用电化学法降解气态有机污染物的过程中,要合理控制降解气态有机污染物过程中的温度,控制其降解温度在负40℃至70℃范围内,以有利于提高气态有机污染物的降解率。可选地,控制其降解温度在5℃至40℃范围内。
下面通过具体实施例对本申请电化学法降解气态有机污染物的装置及其方法进行详细说明。
实施例1
本申请基于亚氧化钛阳极的透过型气固相电化学降解气态挥发性有机物的方法和装置,如图1所示。装置包括电化学反应器,电化学反应器包括负载亚氧化钛的透气金属阳极1、透气型质子交换膜2、负载氧气还原催化剂的透气阴极3,并通过锁紧机构将各个组件紧密贴合在一起。在进行降解气体有机污染物时,在阴极和阳极间施加电压,将含有挥发性气体有机污染物的气体从阳极通入,挥发性气体有机物在阳极表面被氧化降解为二氧化碳和水,降解后的气体通过透气型质子交换膜进入透气阴极,最终从阴极排出。
实施例2
(1) 负载亚氧化钛的透气金属阳极的制备:设置过滤精度为50μm的泡沫钛片为基体负载亚氧化钛。首先把泡沫钛放入丙酮中超声除油并水洗,随后浸入10wt%草酸溶液中,80度下处理2小时以去掉钛材表面的氧化层;接着利用等离子喷涂方法将亚氧化钛喷涂到泡沫钛上,喷涂功率30KW,通过调整喷涂量从而控制喷涂厚度在15μm左右。喷涂后的泡沫钛经过乙醇清洗后烘干,即可得到亚氧化钛负载的泡沫钛,作为后续气固相电化学反应器的阳极。
(2)负载氧气还原催化剂的透气阴极的制备:设置泡沫镍为阴极载体,先进行电解除油并水洗,随后在0.1M盐酸溶液中浸泡10分钟以去除氧化层,进而浸泡在0.01M的氯铂酸溶液中3min,随后取出水洗并吹干。
实施例3
透气型质子交换膜的制备:可以采用如下三种方法制备。
方法1:设置150μm厚的商业质子交换膜为基材,放置于表面平整的硅胶板上,另外加工一个表面布满微米级针尖的钢板,钢板上的针尖直径及高度分别为5μm和200μm,针尖的分布密度为5000个/cm2,将此钢板的针尖面朝向质子交换膜并放置其上,在钢板和硅胶板之间加压1MPa,时间2分钟。随后取出质子交换膜,即可得到透过型质子交换膜。
方法2:设置10%全氟磺酸树脂分散液为原料,逐步滴加到表面布满微米级针尖的钢板上,钢板上的针尖直径及高度分别为5μm和200μm。钢板下方加温控制表面为50度,控制滴加量和次数,待溶剂挥发后将形成的膜从钢板上揭下,即可得到透气型质子交换膜。
方法3:设置150μm厚的商业质子交换膜为基材,利用激光照射的方法在膜上打出通孔。调整激光光斑尺寸、激光功率及运行轨迹,在质子膜上形成密集分布的通孔,孔径大小为10微米,孔的分布密度为5000个/cm2。
实施例4
(1)电化学反应器的组装:将上述实施例2中制备的阳极和阴极之间放入实施例3中制备的透气型质子交换膜,在80℃及6MPa下热压2分钟得到膜电极组。随后,把膜电极组放置在阳极进气通道及阴极出气通道之间夹紧,同时将阳极和阴极通过导线分别连接直流电源的正极和负极,可组装得到透过型气固相电化学反应器。
(2)采用气固相电化学反应器去除气态污染物:将含有典型挥发性有机污染物-“苯”的空气(相对湿度为60%)通入阳极进气通道,苯浓度为10ppm,在阳极和阴极间施加直流电压4V,控制进气流量,并监测阴极出气口污染物浓度,测试用阳极和阴极的尺寸为4cm(长)×4cm(宽)×1mm(厚)。
实施例5
不同流速下的挥发性有机物苯的降解效率:采用实施例4组装的气固相电化学反应装置,在阳极和阴极间施加直流电压4V,控制进气的相对湿度为60%,进气中苯的浓度为10ppm,气体流量从20mL/min增加至100mL/min,催化性能参见图2和图3。可以看到,当采用透过型电化学反应器,气体流量从20 mL/min 增加至100mL/min时,依然能获得较高的苯降解率(>80%)。但是如果采用非透过型的电化学装置,即采用不透气的质子交换膜,阳极进气后再从阳极区排出,其它条件都与透过型电化学反应器一样,则此时的苯降解率随着气体流量增加而降低,在100mL/min时仅有20%的降解率。上述结果充分说明透过型电化学装置在高气体流量下具有较优异的性能。而且该透过型电化学装置降解苯的产物主要以CO2为主(95%),说明该基于亚氧化钛阳极的气固相电化学可将苯高效矿化。
实施例6
气固相电化学降解挥发性有机物的稳定性测试:采用实施例4组装的气固相电化学反应装置,将含有典型挥发性有机污染物-“苯”的空气(相对湿度为60%)通入阳极进气通道,苯的浓度为10ppm,气体流量为100mL/min。然后在阳极和阴极间施加4V电压,并监测阴极出气口的苯污染物浓度及电流,长时间持续电解下的苯降解效率及电流密度与时间的关系图见图4。从图4中可以看出,在连续60小时的连续降解过程中,苯的降解率都维持在83%左右,同时电流密度基本稳定在1.8mA.cm-2左右,说明亚氧化钛电极在长时间阳极极化下依然能保持稳定的导电性能和电催化性能,也反映了该电极材料表面结构的优异稳定性。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种电化学法降解气态有机污染物的装置,其中,所述电化学法降解气态有机污染物的装置包括电化学反应器,所述电化学反应器包括电源、阳极、阴极、质子交换膜,所述质子交换膜设于所述阳极和所述阴极之间,且所述阳极、所述质子交换膜及所述阴极夹紧设置,所述质子交换膜为透气型质子交换膜。
  2. 如权利要求1所述的电化学法降解气态有机污染物的装置,其中,所述透气型质子交换膜中孔隙的孔径范围为0.1μm-20000μm;
    和/或,所述透气型质子交换膜中孔隙的密度范围为2ppi-10000ppi。
  3. 如权利要求1所述的电化学法降解气态有机污染物的装置,其中,所述透气型质子交换膜的厚度范围为5μm-3000μm。
  4. 如权利要求1至3中任一项所述的电化学法降解气态有机污染物的装置,其中,所述阳极设有亚氧化钛材料涂层。
  5. 如权利要求4所述的电化学法降解气态有机污染物的装置,其中,所述亚氧化钛材料涂层的厚度范围为0.1μm-500μm。
  6. 如权利要求4所述的电化学法降解气态有机污染物的装置,其中,所述阳极为透气金属电极,所述透气金属电极选用泡沫钛电极、泡沫钛合金电极、钛网电极及钛合金网电极中的一种。
  7. 如权利要求1至3中任一项所述的电化学法降解气态有机污染物的装置,其中,所述阴极为负载有氧气还原催化剂的透气电极,所述氧气还原催化剂选用铂、铑、钌、钯、镍、氧化钴、铁化合物及钼化合物中的至少一种,所述透气电极选用碳纸电极、碳纤维布电极、泡沫镍电极、泡沫钛电极及泡沫钛合金电极、钛网电极及钛合金网电极中的一种;
    和/或,所述电化学反应器设有多个,多个所述电化学反应器串联设置。
  8. 一种电化学法降解气态有机污染物的方法,应用于权利要求1至7中任一项所述的电化学法降解气态有机污染物的装置,其中,包括以下步骤:
    在阴极和阳极之间施加直流电压;
    将含气态有机污染物的气体自阳极进入,所述含有气态有机污染物的气体在阳极降解,降解后依次穿过质子交换膜和阴极后排出。
  9. 如权利要求8所述的电化学法降解气态有机污染物的方法,其中,所述含气态有机污染物的气体的相对湿度为2%-100%。
  10. 如权利要求8所述的电化学法降解气态有机污染物的方法,其中,所述直流电压的范围为0.3V-36V;
    和/或,降解气态有机污染物过程中的温度控制在负40℃至70℃范围内。
PCT/CN2021/133034 2021-01-11 2021-11-25 电化学法降解气态有机污染物的装置及其方法 WO2022148169A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/261,077 US20240058748A1 (en) 2021-01-11 2021-11-25 Device and method for electrochemical degradation of gaseous organic pollutants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110039154.1 2021-01-11
CN202110039154.1A CN113019082B (zh) 2021-01-11 2021-01-11 电化学法降解气态有机污染物的装置及其方法

Publications (1)

Publication Number Publication Date
WO2022148169A1 true WO2022148169A1 (zh) 2022-07-14

Family

ID=76459351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133034 WO2022148169A1 (zh) 2021-01-11 2021-11-25 电化学法降解气态有机污染物的装置及其方法

Country Status (3)

Country Link
US (1) US20240058748A1 (zh)
CN (1) CN113019082B (zh)
WO (1) WO2022148169A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116005155A (zh) * 2023-01-30 2023-04-25 江西省科学院应用物理研究所 一种耐腐蚀电极的制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113019082B (zh) * 2021-01-11 2022-10-04 深圳市普瑞美泰环保科技有限公司 电化学法降解气态有机污染物的装置及其方法
CN114277386A (zh) * 2021-08-06 2022-04-05 嘉庚创新实验室 一种电化学还原四氯化锡的方法及反应装置
CN113600549B (zh) * 2021-09-10 2023-08-22 何龙 一种槽外电化学降解有机污染物的方法及应用
CN114588755A (zh) * 2022-03-03 2022-06-07 西安科技大学 一种室内污染物室温净化装置及净化的电化学方法和应用
CN115159631B (zh) * 2022-06-23 2023-10-10 浙江大学 双面电催化活性陶瓷膜及其制备方法、水处理应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080217176A1 (en) * 2007-03-08 2008-09-11 Chang Gung University Portable oxygen maintenance and regulation concentrator apparatus
CN106732238A (zh) * 2016-11-09 2017-05-31 中国科学院生态环境研究中心 用于气‑固相电催化反应的反应器及其消除VOCs的方法
CN110559853A (zh) * 2019-09-30 2019-12-13 华中师范大学 阳极和阴极同步电化学法去除气态污染物的方法及其装置
CN110585916A (zh) * 2019-09-30 2019-12-20 华中师范大学 电芬顿催化氧化去除气态污染物的方法及其装置
CN111282410A (zh) * 2020-02-19 2020-06-16 华中师范大学 电化学法降解气态污染物的装置及其方法
CN113019082A (zh) * 2021-01-11 2021-06-25 东莞市普锐美泰环保科技有限公司 电化学法降解气态有机污染物的装置及其方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168705B1 (en) * 1998-09-08 2001-01-02 Proton Energy Systems Electrochemical gas purifier
US20070246374A1 (en) * 2006-04-20 2007-10-25 H2 Pump Llc Performance management for integrated hydrogen separation and compression systems
CN101380542B (zh) * 2007-09-05 2011-08-17 比亚迪股份有限公司 有机气体清除器
CN101800327A (zh) * 2010-04-08 2010-08-11 刘忠毅 微生物燃料电池及安有该电池的发电装置
CN103987442A (zh) * 2011-12-15 2014-08-13 松下电器产业株式会社 二氧化碳透过装置和输送二氧化碳的方法
CN105826582B (zh) * 2016-05-20 2019-07-09 厦门大学 一种电化学式的气体压缩装置及压缩方法
CN107473337B (zh) * 2017-09-22 2020-05-05 天津碧水源膜材料有限公司 电催化膜与三维电极耦合处理难降解废水的装置和方法
CN109925874B (zh) * 2017-12-19 2021-04-02 中国科学院大连化学物理研究所 一种电化学空气净化膜结构、净化模块、净化器以及净化方法
CN110585917B (zh) * 2019-09-30 2020-12-15 华中师范大学 用于降解气相有机污染物的电极及其制备方法、降解气相有机污染物的方法及其装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080217176A1 (en) * 2007-03-08 2008-09-11 Chang Gung University Portable oxygen maintenance and regulation concentrator apparatus
CN106732238A (zh) * 2016-11-09 2017-05-31 中国科学院生态环境研究中心 用于气‑固相电催化反应的反应器及其消除VOCs的方法
CN110559853A (zh) * 2019-09-30 2019-12-13 华中师范大学 阳极和阴极同步电化学法去除气态污染物的方法及其装置
CN110585916A (zh) * 2019-09-30 2019-12-20 华中师范大学 电芬顿催化氧化去除气态污染物的方法及其装置
CN111282410A (zh) * 2020-02-19 2020-06-16 华中师范大学 电化学法降解气态污染物的装置及其方法
CN113019082A (zh) * 2021-01-11 2021-06-25 东莞市普锐美泰环保科技有限公司 电化学法降解气态有机污染物的装置及其方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116005155A (zh) * 2023-01-30 2023-04-25 江西省科学院应用物理研究所 一种耐腐蚀电极的制备方法
CN116005155B (zh) * 2023-01-30 2023-08-25 江西省科学院应用物理研究所 一种耐腐蚀电极的制备方法

Also Published As

Publication number Publication date
CN113019082B (zh) 2022-10-04
CN113019082A (zh) 2021-06-25
US20240058748A1 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
WO2022148169A1 (zh) 电化学法降解气态有机污染物的装置及其方法
CN110585916B (zh) 电芬顿催化氧化去除气态污染物的方法及其装置
JP5270098B2 (ja) 改良された電極
JP4545403B2 (ja) 水に基づく触媒インクおよび触媒コーティングされた基板の製造のためのそれらの使用
KR101607796B1 (ko) Pem 연료 전지 막 전극 조립체 성분의 재생 방법
JP5705214B2 (ja) 有機ハイドライド製造装置
WO2022148170A1 (zh) 电化学法降解气态有机污染物的装置及其方法
JP5528630B2 (ja) 鉄酸化還元対を用いたカソード電極を含む燃料電池
US20130087451A1 (en) Membrane Electrode Assembly and Organic Hydride Manufacturing Device
WO2012043086A1 (ja) 有機ハイドライド製造装置
WO2003075379A2 (en) Electrochemical spefc hydrogen compressor
US20100104904A1 (en) System For Generating Electrical Energy Comprising An Electrochemical Reformer And A Fuel Cell
KR100717796B1 (ko) 연료 전지용 캐소드 촉매, 이를 포함하는 연료 전지용막-전극 어셈블리 및 연료 전지 시스템
CN110559853A (zh) 阳极和阴极同步电化学法去除气态污染物的方法及其装置
CN109925874B (zh) 一种电化学空气净化膜结构、净化模块、净化器以及净化方法
CN1966778A (zh) 电解式臭氧发生器膜电极组件新结构
JP2018131688A (ja) シス−アルケンの製造装置及び製造方法
CN100576616C (zh) 一种消除杂质气体co对燃料电池性能影响的方法
JP2004178814A (ja) 固体高分子型燃料電池用膜・電極接合体の製造方法
US11081714B2 (en) Aging method of fuel cell
CN108110266B (zh) 一种燃料电池用金属基负载碳纤维催化剂载体及制备方法
JP2004152593A (ja) 固体高分子型燃料電池用膜・電極接合体の製造方法
KR20070044628A (ko) 직접 산화형 연료 전지용 스택의 회복 방법
TWI682068B (zh) 氣水循環系統及其多功能水電解裝置
CN219117571U (zh) 一种电解水制氢装置的ccm结构及膜电极结构及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917210

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18261077

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917210

Country of ref document: EP

Kind code of ref document: A1