WO2022142708A1 - 复合氧化物催化剂及其制备方法和用途 - Google Patents

复合氧化物催化剂及其制备方法和用途 Download PDF

Info

Publication number
WO2022142708A1
WO2022142708A1 PCT/CN2021/128082 CN2021128082W WO2022142708A1 WO 2022142708 A1 WO2022142708 A1 WO 2022142708A1 CN 2021128082 W CN2021128082 W CN 2021128082W WO 2022142708 A1 WO2022142708 A1 WO 2022142708A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
methanol
grams
hours
mofe
Prior art date
Application number
PCT/CN2021/128082
Other languages
English (en)
French (fr)
Inventor
熊德胜
庄岩
崔曜
褚小东
Original Assignee
上海华谊新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海华谊新材料有限公司 filed Critical 上海华谊新材料有限公司
Priority to EP21913452.5A priority Critical patent/EP4272867A1/en
Priority to US18/270,130 priority patent/US20240066507A1/en
Publication of WO2022142708A1 publication Critical patent/WO2022142708A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/38Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a primary hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • Formaldehyde is an important basic organic chemical raw material. It is mainly produced by selective catalytic oxidation of methanol.
  • the mainstream catalysts are electrolytic silver catalyst and iron molybdate composite oxide catalyst.
  • the electrolytic silver catalyst is generally silver wire mesh or silver particles laid into a thin layer.
  • the process is simple, the investment is low, the methanol is excessive during the reaction, and the reaction temperature is about 600-720 ° C, but the process has low methanol conversion rate, formaldehyde selection problems such as low performance and short life of silver catalysts.
  • the iron-molybdenum method adopts the iron molybdate composite oxide catalyst.
  • methanol is mixed with excess air, and the reaction is carried out at a temperature of 260 to 400 ° C.
  • the reaction temperature is lower than that of the silver method, and the selectivity of formaldehyde is higher than that of the silver method.
  • the life of the catalyst is also relatively long, the production capacity of this process is large, and it can also produce high-concentration formaldehyde. Therefore, most of the newly built methanol oxidation-to-formaldehyde plants use the iron-molybdenum method.
  • the catalysts used in the industrial iron-molybdenum method still have some problems, such as low catalyst activity.
  • the methanol oxidation to formaldehyde process requires that the conversion rate of methanol is greater than 98.5%.
  • the catalyst usually needs to react at a higher temperature, but the higher the reaction temperature, the easier the molybdenum in the iron molybdate catalyst is to sublime and pass. , the elapse of molybdenum will further reduce the activity of the catalyst, and the reaction temperature needs to be continuously increased to ensure that the conversion rate of methanol is greater than 98.5%, so it is necessary to develop a catalyst with better activity and stability.
  • the prior art proposes many improved catalysts.
  • CN 1100667 discloses a four-component catalyst of iron, molybdenum, cobalt and chromium.
  • the calcination temperature of the catalyst is 400°C, and the reaction temperature of methanol oxidation is 340-380°C.
  • CN1546232 discloses a four-component catalyst of iron, molybdenum, vanadium and chromium, and the temperature of the catalytic reaction is 350-365°C.
  • the methanol oxidation reaction temperature of the iron-molybdenum catalyst disclosed in CN103933998 is 320-380°C.
  • CN106693981 discloses a catalyst composed of molybdenum, iron, vanadium, auxiliary metal and binder metal.
  • the auxiliary metal is one of nickel, aluminum, lanthanum, cerium, bismuth or manganese.
  • the binder metal is one of titanium or zirconium, and the catalyst has good activity at 280-300°C.
  • the above catalysts can all obtain the required methanol conversion rate, the reaction temperature of the catalyst is relatively high, the selectivity of formaldehyde is not high enough, there are many by-products, the higher reaction temperature is harmful to the stability of the catalyst, and the activity of the catalyst is not maintained enough. , resulting in shortened catalyst life.
  • CN109012682A discloses a preparation method of an iron-molybdenum catalyst for methanol oxidation to formaldehyde.
  • the metal additive is selected from one soluble salt or a mixture of more than one soluble salts among cerium, vanadium, cobalt, nickel, barium, aluminum, chromium, titanium, manganese, zirconium and lanthanum. Although it demonstrated improved reaction efficiency at a temperature of 285 °C, there is room for further improvement in its low temperature performance.
  • An object of the present invention is to provide a catalyst for catalyzing the selective oxidation of methanol to formaldehyde with low reaction temperature and stable activity.
  • Another object of the present invention is to provide a preparation method of the catalyst of the present invention.
  • one aspect of the present invention relates to a catalyst for the selective oxidation of methanol to synthesize formaldehyde, which has the following general formula:
  • Another aspect of the present invention relates to a preparation method of a catalyst for the selective oxidation of methanol to synthesize formaldehyde, the catalyst has the following general formula:
  • the method includes:
  • Another aspect of the present invention relates to the use of a catalyst in the selective oxidation of methanol to synthesize formaldehyde, wherein the catalyst has the following general formula:
  • the catalyst for the selective oxidation of methanol to synthesize formaldehyde of the present invention is as follows:
  • a 0.25-0.5, preferably 0.28-0.47, more preferably 0.31-0.44, preferably 0.34-0.41, preferably 0.36-0.38;
  • b 0.001-0.2, preferably 0.003-0.018, more preferably 0.005-0.016, preferably 0.008-0.014, preferably 0.01-0.012;
  • c 0.001-0.6, preferably 0.005-0.5, more preferably 0.01-0.4, preferably 0.015-0.3, preferably 0.02-0.2;
  • x is a number satisfying the valence state of the general formula.
  • the catalyst is selected from MoFe 0.4 Al 0.1 P 0.3 O x , MoFe 0.35 Al 0.05 P 0.15 O x , MoFe 0.32 Al 0.01 P 0.03 O x , MoFe 0.33 Al 0.14 P 0.40 O x , MoFe 0.33 Al 0.14 P 0.40 O x , 0.42 Al 0.1 P 0.1 O x , MoFe 0.31 Al 0.006 P 0.006 O x , MoFe 0.40 Al 0.05 P 0.1 O x , or a mixture of two or more thereof.
  • the preparation method of the catalyst of the present invention comprises the following steps:
  • Molybdenum salts suitable for use in the method of the present invention are not particularly limited and may be known in the art.
  • conventional soluble molybdenum salts can be used to formulate aqueous solutions.
  • the soluble molybdenum salt comprises ammonium heptamolybdate.
  • the concentration of the prepared molybdenum salt aqueous solution is 0.1-2M, preferably 0.2-1.8M, more preferably 0.4-1.6M, preferably 0.6-1.4M, preferably 0.8-1.2M.
  • the amount of molybdenum element in the molybdenum salt aqueous solution meets the requirements of the chemical composition of the final catalyst.
  • metal in the present invention, the terms "metal”, “metal ion” and “metal element” include phosphorus element. That is, in the description of the present invention, the phosphorus element is regarded as a metal element.
  • the iron salt and aluminum salt suitable for the method of the present invention are not particularly limited, as long as they can form an aqueous solution.
  • soluble iron salts and/or soluble aluminum salts are used to form the aqueous solution.
  • the soluble iron salt includes ferric nitrate
  • the soluble aluminum salt includes aluminum nitrate
  • the amounts of iron, aluminum and phosphorus elements meet the stoichiometric amounts required by the general formula of the catalyst, and the concentration of metal ions composed of iron elements, aluminum elements and phosphorus elements is 0.1-5M, preferably 0.1-5M. 0.4-4.6M, more preferably 0.8-4.2M, preferably 1.2-3.8M, preferably 1.6-3.2M.
  • the method of mixing the molybdenum solution with the solution containing iron, aluminum and phosphoric acid is not particularly limited, and the former may be added to the latter or the latter may be added to the former.
  • the solution containing iron, aluminum and phosphoric acid prepared in step (2) is slowly added to the molybdenum solution prepared in step (1) for precipitation reaction.
  • the precipitation reaction time is 30-120 minutes, preferably 40-110 minutes, more preferably 50-100 minutes, preferably 60-90 minutes, preferably 70-80 minutes.
  • the temperature of mixing the above two solutions is 40-80°C, preferably 45-75°C, more preferably 50-70°C, preferably 55-65°C, preferably 58-62°C.
  • the slurry aging method suitable for the present invention is not particularly limited, and may be a conventional aging method known in the art.
  • the slurry is aged for 1-4 hours, preferably 1.5-3.5 hours, more preferably 2-3 hours.
  • the method of the present invention includes a drying step. Suitable drying methods are not particularly limited, and may be conventional drying methods known in the art. In an embodiment of the present invention, at a temperature of 110-200°C, preferably at a temperature of 120-190°C, more preferably at a temperature of 120-180°C, preferably at a temperature of 130-170°C, preferably The slurry is dried at a temperature of 140-160°C for 8-24 hours, preferably 10-22 hours, preferably 12-20 hours, preferably 14-18 hours, preferably 15-17 hours.
  • the method of the present invention further includes the step of pulverizing the dried product (ie, the catalyst precursor), and since the purpose of pulverization is to facilitate mixing in subsequent steps, the degree of pulverization is not particularly limited, As long as it is beneficial to speed up the subsequent uniform mixing with water and solid lubricant.
  • the catalyst precursor is pulverized to less than 180 mesh, preferably less than 190 mesh, more preferably less than 200 mesh.
  • the solid lubricant suitable for the method of the present invention is not particularly limited, and can be a conventional solid lubricant known in the art.
  • the solid lubricant is selected from graphite, stearic acid or a mixture thereof.
  • the purpose of adding the solid lubricant and water is to help the catalyst precursor powder to be formed, so those skilled in the art can easily determine the appropriate amount after reading the content of the present invention.
  • the tablet forming method suitable for the method of the present invention is not particularly limited, and can be a conventional tablet forming method known in the art.
  • the shaped catalyst precursor is calcined at a temperature of 350°C-500°C, preferably 380-470°C, more preferably 400-450°C, preferably 420-440°C for 2-12 hours. Preferably 3-11 hours, more preferably 4-10 hours, preferably 6-8 hours.
  • the manufacturing steps of the catalyst of the present invention include, according to a stoichiometric amount, dissolving ammonium heptamolybdate in water to configure solution A; dissolving ferric nitrate nonahydrate in water, and then slowly adding nonahydrate After the aluminum nitrate is completely dissolved, add phosphoric acid to obtain solution B; at 40-80 °C, slowly drop B into A, dropwise for 40-90 minutes, and keep stirring; solution B is added dropwise After that, the slurry is aged at 40-90°C for 1-4 hours, and then dried at 110-180°C for 8-18 hours. The dried material is pulverized, then solid lubricant and water are added to mix well, and then the Tablet forming; roasting the formed sample, the roasting temperature is 250-500 DEG C, and the roasting time is 2-8 hours to obtain the catalyst.
  • the catalyst of the invention is suitable for the use of methanol oxidation to formaldehyde catalyst.
  • the suitable method for preparing formaldehyde by using the catalyst of the present invention to catalyze methanol oxidation is not particularly limited, and it can be a conventional method known in the art, but the catalyst of the present invention can carry out catalytic oxidation at a lower temperature to achieve the same catalytic oxidation of the prior art. Effect.
  • the catalyst reaction of the present invention comprises the following steps:
  • the methanol selective oxidation reaction is carried out on a fixed-bed reaction device, and the methanol liquid is vaporized and mixed with air and nitrogen to form a reaction gas, and the methanol molar content in the reaction gas is 5-15%, preferably 8-12% (mol),
  • the oxygen content is 8-15%
  • the reaction gas space velocity is 6000-15000h -1 , preferably 8000-12000h -1
  • the reaction temperature is 220-400°C, preferably 260-360°C.
  • the reaction pressure was normal pressure.
  • the invention improves the activity and stability of the catalyst through the optimization of the catalyst components, and the catalyst can achieve a methanol conversion rate of 98.5% at a relatively low reaction temperature, and in the long-cycle operation process , the activity of the catalyst decreased slowly, and the stability of the catalyst activity was good.
  • the methanol oxidation reaction was carried out in a fixed bed reaction device, and the catalyst was fixed in a stainless steel reaction tube with an inner diameter of 10 mm. Before the test, the calcined catalyst was crushed and sieved to obtain 40-60 mesh particles, which were then fixed in the reaction tube.
  • Methanol was metered using a dual plunger pump, and air and nitrogen were metered using a mass flow meter. After the methanol liquid is vaporized by the vaporizer, it is mixed with nitrogen and air, and then enters the catalyst bed for reaction.
  • the molar content of methanol in the reaction gas is 11%
  • the molar content of oxygen is 10%
  • the rest is nitrogen
  • the space velocity of the reaction gas is 12000 h -1 .
  • C methanol (amount of methanol in the feed-amount of methanol in the output)/amount of methanol in the feed
  • S CO Amount of CO output/(Amount of methanol fed ⁇ methanol conversion)
  • the temperature of the reactor was adjusted until the conversion rate of methanol reached 98.5%; the conversion rate of methanol reached 98.5% and the selectivity of formaldehyde was 96.0% when the catalyst in this example reacted at 235°C.
  • the reaction was continued at 235°C, and samples were periodically sampled for analysis. After 240 hours of reaction, the conversion rate of methanol was 98.0%, and the selectivity of formaldehyde was 96.2%.
  • the experimental results show that, after 240 hours of reaction activity, the methanol conversion rate is only reduced by 0.5%, and the selectivity of formaldehyde is increased by 0.2%.
  • the stability of the catalyst is good. The results are listed in Table 1 below.
  • the preparation method of the catalyst is similar to that of Example 1, except that aluminum nitrate and phosphoric acid are not added:
  • the preparation method of the catalyst is similar to that of Example 1, except that phosphoric acid is not added:
  • the preparation method of the catalyst is similar to that of Example 1, except that aluminum is not added:
  • the preparation method of the catalyst is similar to that of Example 1, except that aluminum nitrate and phosphoric acid are not added:
  • the catalyst of the present invention has the advantages of low reaction temperature and stable catalyst performance.

Abstract

公开了复合氧化物催化剂及其制备方法和用途。所述催化剂具有如下通式:MoFe aAl bP cO x;其中,a=0.25~0.5,b=0.001~0.2,c=0.001~0.6,x为满足通式价态的数。本发明催化剂具有优良的低温性能,进而具有长的使用寿命。

Description

复合氧化物催化剂及其制备方法和用途 背景技术
甲醛是一种重要的基本有机化工原料,它主要通过甲醇选择性催化氧化生产,主流的催化剂为电解银催化剂和钼酸铁复合氧化物催化剂。
电解银催化剂一般是银丝网或铺成薄层的银粒,该工艺过程简单,投资少,反应时甲醇过量,反应温度约为600~720℃,但是该工艺存在甲醇转化率低、甲醛选择性低、银催化剂寿命短等问题。
铁钼法工艺采用钼酸铁复合氧化物催化剂,反应时甲醇与过量空气混合,在260~400℃温度下反应,反应温度比银法工艺的温度低,甲醛的选择性比银法工艺高,催化剂的寿命也比较长,该工艺生产能力较大,还可以生产高浓度甲醛,所以现在新建的甲醇氧化制甲醛工厂大多数采用铁钼法工艺。
目前工业上铁钼法采用的催化剂仍然存在一些问题,例如催化剂活性较低。甲醇氧化制甲醛工艺要求甲醇的转化率大于98.5%,为了达到高转化率,通常催化剂需要在较高的温度下进行反应,但是反应温度越高,钼酸铁催化剂中的钼越容易升华、流逝,钼流逝又会造成催化剂活性进一步下降,反应的温度需要不断提高才能保证甲醇的转化率大于98.5%,所以需要开发活性和稳定性都比较好的催化剂。为此,现有技术提出了许多改进的催化剂。
CN 1100667公开了一种铁、钼、钴、铬四组分催化剂,催化剂的焙烧温度为400℃,甲醇氧化反应温度为340~380℃。CN1546232公开了一种铁、钼、钒、铬四组分催化剂,催化反应的温度为350~365℃。CN103933998公开的铁钼催化剂甲醇氧化反应温度为320~380℃。CN106693981公开了一种钼、铁、钒、助剂金属和粘结剂金属组成的催化剂,所述的助剂金属为镍、铝、镧、铈、铋或锰中的一种,所述的粘结剂金属为钛或锆中的一种,催化剂在280~300℃就具有较好的活性。
虽然上述催化剂都可以得到满足要求的甲醇转化率,但是催化剂的反应温度较高,甲醛的选择性不够高,副产物较多,较高的反应温度对催化剂的稳定性有害,催化剂的活性保持不够,造成催化剂的使用寿命缩短。
CN109012682A公开了一种甲醇氧化制甲醛铁钼催化剂的制备方法,它包括用球磨法将摩尔比为1:0.2至0.67:0.01至0.2的钼:铁:金属助剂盐混合均匀, 随后烧制,所述金属助剂选自铈、钒、钴、镍、钡、铝、铬、钛、锰、锆和镧中的一种可溶性盐或一种以上可溶性盐的混合物。尽管其证明在285℃的温度下具有改进的反应效率,但是其低温性能还有进一步改进的余地。
因此,现有技术仍需要寻找一种用于甲醇氧化制备甲醛的催化剂,这种催化剂具有改进的低温性能,进而具有改进的催化剂寿命。
发明内容
本发明的一个目的在于提供了一种反应温度低、活性稳定的催化甲醇选择性氧化合成甲醛的催化剂。
本发明的另一个目的是提供一种本发明所述催化剂的制备方法。
因此,本发明一个方面涉及一种甲醇选择性氧化合成甲醛的催化剂,它具有如下通式:
MoFe aAl bP cO x
其中,a=0.25~0.5,b=0.001~0.2,c=0.001~0.6,x为满足通式价态的数。
本发明的另一方面涉及一种甲醇选择性氧化合成甲醛催化剂的制备方法,所述催化剂具有如下通式:
MoFe aAl bP cO x
其中,a=0.25~0.5,b=0.001~0.2,c=0.001~0.6,x为满足通式价态的数;
所述方法包括:
(1)按化学计量量提供钼金属离子浓度为0.1-2M的钼盐水溶液;
(2)按化学计量量将铁盐、铝盐和磷酸配制成总金属离子浓度为0.1-5M的水溶液;
(3)在40-80℃条件下,将上述两种溶液混合,得到浆料;
(4)将所述浆料老化、干燥、与固体润滑剂和水混合后压片成型;
(5)焙烧。
本发明再一方面涉及催化剂在甲醇选择性氧化合成甲醛中的用途,所述催化剂具有如下通式:
MoFe aAl bP cO x
其中,a=0.25~0.5,b=0.001~0.2,c=0.001~0.6,x为满足通式价态的数。
具体实施方式
本发明甲醇选择性氧化合成甲醛的催化剂如下通式:
MoFe aAl bP cO x
其中,
a=0.25-0.5,较好为0.28-0.47,更好为0.31-0.44,宜为0.34-0.41,优选0.36-0.38;
b=0.001-0.2,较好为0.003-0.018,更好为0.005-0.016,宜为0.008-0.014,优选0.01-0.012;
c=0.001-0.6,较好为0.005-0.5,更好为0.01-0.4,宜为0.015-0.3,优选为0.02-0.2;
x为满足通式价态的数。
在本发明的一个实例中,所述催化剂选自MoFe 0.4Al 0.1P 0.3O x、MoFe 0.35Al 0.05P 0.15O x、MoFe 0.32Al 0.01P 0.03O x、MoFe 0.33Al 0.14P 0.40O x、MoFe 0.42Al 0.1P 0.1O x、MoFe 0.31Al 0.006P 0.006O x、MoFe 0.40Al 0.05P 0.1O x、或其两种或更多种形成的混合物。
本发明催化剂的制备方法包括如下步骤:
(1)按化学计量量提供钼金属离子浓度为0.1-2M的钼盐水溶液;
适用于本发明方法的钼盐无特别的限制,可以是本领域已知的。例如,可使用常规可溶性钼盐配制成水溶液。在本发明的一个实例中,所述可溶性钼盐包括七钼酸铵。
配制成的钼盐水溶液的浓度为0.1-2M,较好为0.2-1.8M,更好为0.4-1.6M,宜为0.6-1.4M,优选0.8-1.2M。
所述钼盐水溶液中钼元素的量满足最终形成催化剂的化学组成要求。
(2)按化学计量量将铁盐、铝盐和磷酸配制成总金属离子浓度为0.1-5M的溶液;
在本发明中,术语“金属”、“金属离子”和“金属元素”包括磷元素。即在本发明描述中,将磷元素视为一种金属元素。
适用于本发明方法的铁盐、铝盐无特别的限制,只要其能形成水溶液即可。在本发明的一个实例中,使用可溶性铁盐和/或可溶性铝盐形成水溶液。
在本发明的一个实例中,所述可溶性铁盐包括硝酸铁,所述可溶性铝盐包括硝酸铝。
本发明所述溶液中,铁、铝和磷元素的量满足催化剂通式所需的化学计量量,并且由铁元素、铝元素和磷元素构成的金属离子的浓度为0.1-5M,较好为0.4-4.6M,更好为0.8-4.2M,宜为1.2-3.8M,优选1.6-3.2M。
(3)在40-80℃条件下,将上述两种溶液混合,得到浆料;
将钼溶液与含有铁、铝和磷酸的溶液进行混合的方法无特别的限制,可以是将前者加入后者或者将后者加入前者。
在本发明的一个实例中,将步骤(2)制备的含有铁、铝和磷酸的溶液缓慢加入到步骤(1)制备的钼溶液中进行沉淀反应。
在本发明的一个实例中,沉淀反应时间为30-120分钟,较好为40-110分钟,更好为50-100分钟,宜为60-90分钟,优选70-80分钟。
上述两种溶液混合时的温度为40-80℃,较好为45-75℃,更好为50-70℃,宜为55-65℃,优选58-62℃。
(4)将所述浆料老化、干燥、与固体润滑剂和水混合后压片成型;
适用于本发明的浆料老化方法无特别的限制,可以是本领域已知的常规老化方法。在本发明的一个实例中,将浆料老化1-4小时,较好老化1.5-3.5小时,更好老化2-3小时。
在将浆料老化后,本发明方法包括干燥步骤。适用的干燥方法无特别的限制,可以是本领域已知的常规干燥方法。在本发明的一个实例中,在110-200℃的温度下,较好在120-190℃的温度下,更好在120-180℃的温度下,宜在130-170℃的温度下,优选140-160℃的温度下将浆料干燥8-24小时,较好干燥10-22小时,最好干燥12-20小时,宜干燥14-18小时,优选干燥15-17小时。
在本发明的一个实例中,本发明方法还包括对干燥后的干燥产物(即催化剂前体)进行粉碎的步骤,由于粉碎的目的是便于后续步骤的混合,因此粉碎的程度无特别的限制,只要有利于加快后续与水和固体润滑剂均匀混合即可。在本发明的一个实例中,将催化剂前体粉碎至小于180目,较好小于190目,更好小于200目。
适用于本发明方法的固体润滑剂无特别的限制,可以是本领域已知的常规固体润滑剂。在本发明的一个实例中,所述固体润滑剂选自石墨、硬脂酸或其混合物。
在本发明方法中,加入固体润滑剂和水的目的是帮助催化剂前体粉末成型,因此本领域的普通技术人员在阅读了本发明的内容后可容易地确定合适的用量。
适用于本发明方法的压片成型方法无特别的限制,可以是本领域已知的常规压片成型方法。
(5)焙烧
对压片成型的催化剂前体进行焙烧是本领域常规手段。在本发明的一个实例中,将成型的催化剂前体在350℃-500℃,较好380-470℃,更好400-450℃,优选420-440℃的温度下焙烧2-12小时,较好3-11小时,更好4-10小时,优选6-8小时。
在本发明的一个实例中,本发明催化剂的制造步骤包括,按照化学计量量,将七钼酸铵溶解在水中,配置成溶液A;将九水硝酸铁溶解在水中,然后再缓慢加入九水硝酸铝,完全溶解之后,再加入磷酸,得到溶液B;在40-80℃下,将B缓慢滴加进A中,滴加时间40-90分钟,滴加同时保持搅拌;B溶液滴加完成之后,浆料在40-90℃继续搅拌1-4小时进行老化,然后在110-180℃下干燥8-18小时,将干燥之后的物料粉碎,然后加入固体润滑剂和水混合均匀,然后进行压片成型;将成型后的样品进行焙烧,焙烧温度为250-500℃,焙烧时间为2-8小时,得到催化剂。
本发明催化剂适用于甲醇氧化制甲醛催化剂的用途。合适的使用本发明催化剂催化甲醇氧化制备甲醛的方法无特别的限制,可以是本领域已知的常规方法,只是本发明催化剂能在更低的温度下进行催化氧化,达到现有技术相同的催化效果。
在本发明的一个实例中,本发明催化剂反应包括以下步骤:
甲醇选择性氧化反应是在固定床反应装置上进行,将甲醇液体汽化后和空气、氮气混合组成反应气体,反应气体中甲醇摩尔含量为5~15%,优选为8~12%(摩尔),氧气含量为8~15%,反应气体空速为6000~15000h -1,优选为8000~12000h -1,反应温度为220~400℃,优选为260~360℃。反应压力为常压。
本发明与现有技术相比,通过催化剂组分的优化,提高了催化剂的活性和稳定性,催化剂在较低的反应温度下就能达到98.5%的甲醇转化率,在长周期的运行过程中,催化剂的活性下降速度很慢,催化剂活性稳定性较好。
下面结合实施例进一步说明本发明。
实施例1
1.制备催化剂:
将88.276克七钼酸铵溶解在500克纯水中,配置成溶液A;将80.80克九水硝酸铁溶解在400克水中,然后再缓慢加入18.76克九水硝酸铝,完全溶解之后,再加入17.71克83%磷酸,得到溶液B;在50℃下,将B缓慢滴加进A中,滴加 时间60分钟,滴加同时保持搅拌;B溶液滴加完成之后,浆料在60℃继续搅拌2小时进行老化,然后在130℃下干燥10小时,将干燥之后的物料粉碎至小于200目,然后加入2克石墨和8克纯水混合均匀,然后进行压片成型;将成型后的样品进行焙烧,焙烧温度为450℃,焙烧时间为4h,得到催化剂,催化剂的组分Mo:Fe:Al:P的摩尔比为1:0.4:0.1:0.3。
2.催化剂活性评价:
甲醇氧化反应是在固定床反应装置上进行,催化剂被固定在不锈钢反应管中,反应管内径10mm。测试之前,将焙烧得到的催化剂碾碎、筛分,得到40-60目的颗粒,然后固定在反应管中。
使用双柱塞泵计量甲醇,使用质量流量计计量空气和氮气。将甲醇液体经过汽化器汽化之后,与氮气和空气混合,然后进入催化剂床层反应。反应气体中甲醇摩尔含量为11%,氧气摩尔含量为10%,其余为氮气,反应气体空速为12000h -1。通入反应气气体2小时之后,取气体样品用气相色谱进行分析,分析甲醇、二甲醚、CO和CO 2的含量,根据气相色谱测试结果计算甲醇转化率和二甲醚、CO和CO 2的选择性。计算按照下述的方程进行:
甲醇转化率:C 甲醇=(进料甲醇的量-出料甲醇的量)/进料甲醇的量
二甲醚选择性:S 二甲醚=2×出料二甲醚的量/(进料甲醇的量×甲醇转化率)
CO选择性:S CO=出料CO的量/(进料甲醇的量×甲醇转化率)
CO 2选择性:S CO2=出料CO 2的量/(进料甲醇的量×甲醇转化率)
甲醛选择性:S 甲醛=1-S 二甲醚-S CO-S CO2
调节反应器温度,直至甲醇的转化率达到98.5%;本实施例催化剂在235℃反应时甲醇的转化率达到98.5%,甲醛选择性为96.0%。为了测试催化剂的稳定性,在235℃持续反应,并定时取样分析,经过240小时反应之后,甲醇的转化率为98.0%,甲醛的选择性为96.2%。实验结果表明,经过240小时反应活性甲醇转化率仅仅下降0.5%,甲醛的选择性提高了0.2%,该催化剂的稳定性较好。结果列于下表1。
实施例2
1.制备催化剂:
将88.276克七钼酸铵溶解在500克纯水中,配置成溶液A;将70.70克九水硝酸铁溶解在400克水中,然后再缓慢加入9.38克九水硝酸铝,完全溶解之后,再加入10.1克83%磷酸,得到溶液B;在50℃下,将B缓慢滴加进A中,滴加时间60分钟,滴加同时保持搅拌;B溶液滴加完成之后,浆料在60℃继续搅拌2小时进行老化,然后在130℃下干燥10小时,将干燥之后的物料粉碎至小于200目,然后加入2克石墨和8克纯水混合均匀,然后进行压片成型;将成型后的样品进行焙烧,焙烧温度为480℃,焙烧时间为3h,得到催化剂,催化剂的组分Mo:Fe:Al:P的摩尔比为1:0.35:0.05:0.15。
2.催化剂活性评价:
按照实施例1相同的方法测试催化剂的活性和稳定性。
催化剂在242℃反应时甲醇的转化率达到98.5%,甲醛选择性为96.3%。经过240小时反应之后,甲醇的转化率为98.2%,甲醛的选择性为96.2%。结果列于下表1。
实施例3
1.制备催化剂:
将88.276克七钼酸铵溶解在500克纯水中,配置成溶液A;将64.64克九水硝酸铁溶解在400克水中,然后再缓慢加入1.88克九水硝酸铝,完全溶解之后,再加入1.77克83%磷酸,得到溶液B;在50℃下,将B缓慢滴加进A中,滴加时间60分钟,滴加同时保持搅拌;B溶液滴加完成之后,浆料在80℃继续搅拌5小时进行老化,然后在150℃下干燥10小时,将干燥之后的物料粉碎至小于200目,然后加入2克硬脂酸和10克纯水混合均匀,然后进行压片成型;将成型后的样品进行焙烧,焙烧温度为460℃,焙烧时间为6h,得到催化剂,催化剂的组分Mo:Fe:Al:P的摩尔比为1:0.32:0.01:0.03。
2.催化剂活性评价:
按照实施例1相同的方法测试催化剂的活性和稳定性。
催化剂在255℃反应时甲醇的转化率达到98.5%,甲醛选择性为96.5%。经过240小时反应之后,甲醇的转化率为97.8%,甲醛的选择性为96.0%。结果列于下表1。
实施例4
1.制备催化剂:
将88.276克七钼酸铵溶解在500克纯水中,配置成溶液A;将66.66克九水硝酸铁溶解在400克水中,然后再缓慢加入26.26克九水硝酸铝,完全溶解之后,再加入23.61克83%磷酸,得到溶液B;在60℃下,将B缓慢滴加进A中,滴加时间30分钟,滴加同时保持搅拌;B溶液滴加完成之后,浆料在60℃继续搅拌3小时进行老化,然后在140℃下干燥24小时,将干燥之后的物料粉碎至小于200目,然后加入2克硬脂酸和20克纯水混合均匀,然后进行压片成型;将成型后的样品进行焙烧,焙烧温度为460℃,焙烧时间为6h,得到催化剂,催化剂的组分Mo:Fe:Al:P的摩尔比为1:0.33:0.14:0.40。
2.催化剂活性评价:
按照实施例1相同的方法测试催化剂的活性和稳定性。
催化剂在230℃反应时甲醇的转化率达到98.5%,甲醛选择性为95.2%。经过240小时反应之后,甲醇的转化率为98.3%,甲醛的选择性为95.0%。结果列于下表1。
实施例5
1.制备催化剂:
将88.28克七钼酸铵溶解在500克纯水中,配置成溶液A;将84.84克九水硝酸铁溶解在400克水中,然后再缓慢加入18.76克九水硝酸铝,完全溶解之后,再加入5.90克83%磷酸,得到溶液B;在60℃下,将B缓慢滴加进A中,滴加时间30分钟,滴加同时保持搅拌;B溶液滴加完成之后,浆料在80℃继续搅拌2小时进行老化,然后在150℃下干燥12小时,将干燥之后的物料粉碎至小于200目,然后加入2克石墨和10克纯水混合均匀,然后进行压片成型;将成型后的样品进行焙烧,焙烧温度为450℃,焙烧时间为4h,得到催化剂,催化剂的组分Mo:Fe:Al:P的摩尔比为1:0.42:0.10:0.10。
2.催化剂活性评价:
按照实施例1相同的方法测试催化剂的活性和稳定性。
催化剂在232℃反应时甲醇的转化率达到98.5%,甲醛选择性为96.8%。经过 240小时反应之后,甲醇的转化率为98.1%,甲醛的选择性为96.5%。结果列于下表1。
实施例6
1.制备催化剂:
将88.28克七钼酸铵溶解在500克纯水中,配置成溶液A;将62.62克九水硝酸铁溶解在400克水中,然后再缓慢加入1.13克九水硝酸铝,完全溶解之后,再加入0.35克83%磷酸,得到溶液B;在60℃下,将B缓慢滴加进A中,滴加时间30分钟,滴加同时保持搅拌;B溶液滴加完成之后,浆料在80℃继续搅拌2小时进行老化,然后在150℃下干燥12小时,将干燥之后的物料粉碎至小于200目,然后加入2克石墨和10克纯水混合均匀,然后进行压片成型;将成型后的样品进行焙烧,焙烧温度为450℃,焙烧时间为4h,得到催化剂,催化剂的组分Mo:Fe:Al:P的摩尔比为1:0.31:0.006:0.006。
2.催化剂活性评价:
按照实施例1相同的方法测试催化剂的活性和稳定性。
催化剂在261℃反应时甲醇的转化率达到98.5%,甲醛选择性为95.1%。经过240小时反应之后,甲醇的转化率为95.3%,甲醛的选择性为95.5%。结果列于下表1。
实施例7
1.制备催化剂:
将88.28克七钼酸铵溶解在500克纯水中,配置成溶液A;将80.80克九水硝酸铁溶解在400克水中,然后再缓慢加入9.38克九水硝酸铝,完全溶解之后,再加入5.90克83%磷酸,得到溶液B;在60℃下,将B缓慢滴加进A中,滴加时间30分钟,滴加同时保持搅拌;B溶液滴加完成之后,浆料在80℃继续搅拌2小时进行老化,然后在150℃下干燥12小时,将干燥之后的物料粉碎至小于200目,然后加入2克石墨和10克纯水混合均匀,然后进行压片成型;将成型后的样品进行焙烧,焙烧温度为420℃,焙烧时间为6h,得到催化剂,催化剂的组分Mo:Fe:Al:P的摩尔比为1:0.40:0.05:0.10。
2.催化剂活性评价:
按照实施例1相同的方法测试催化剂的活性和稳定性。
催化剂在261℃反应时甲醇的转化率达到98.5%,甲醛选择性为96.6%。经过240小时反应之后,甲醇的转化率为97.9%,甲醛的选择性为97.0%。结果列于下表1。
对比例1
1.制备催化剂
催化剂的制备方法与实施例1相似,区别是不添加硝酸铝和磷酸:
将88.28克七钼酸铵溶解在500克纯水中,配置成溶液A;将80.80克九水硝酸铁溶解在400克水中,得到溶液B;在60℃下,将B缓慢滴加进A中,滴加时间30分钟,滴加同时保持搅拌;B溶液滴加完成之后,浆料在80℃继续搅拌2小时进行老化,然后在150℃下干燥12小时,将干燥之后的物料粉碎至小于200目,然后加入2克石墨和10克纯水混合均匀,然后进行压片成型;将成型后的样品进行焙烧,焙烧温度为450℃,焙烧时间为6h,得到催化剂,催化剂的组分Mo:Fe的摩尔比为1:0.40。
2.催化剂活性评价:
按照实施例1相同的方法测试催化剂的活性和稳定性。
催化剂在270℃反应时甲醇的转化率达到98.5%,甲醛选择性为95.5%。经过240小时反应之后,甲醇的转化率为91.6%,甲醛的选择性为96.1%,甲醇的转化率下降较多。结果列于下表1。
对比例2
1.制备催化剂
催化剂的制备方法与实施例1相似,区别是不添加磷酸:
将88.28克七钼酸铵溶解在500克纯水中,配置成溶液A;将76.76克九水硝酸铁溶解在400克水中,然后再缓慢加入9.38克九水硝酸铝,得到溶液B;在60℃下,将B缓慢滴加进A中,滴加时间30分钟,滴加同时保持搅拌;B溶液滴加完成之后,浆料在80℃继续搅拌2小时进行老化,然后在150℃下干燥12小时,将干燥之后的物料粉碎至小于200目,然后加入2克石墨和10克纯水混合均匀,然后进行压片成型;将成型后的样品进行焙烧,焙烧温度为450℃,焙烧时间为 6h,得到催化剂,催化剂的组分Mo:Fe:Al的摩尔比为1:0.38:0.1。
2.催化剂活性评价:
按照实施例1相同的方法测试催化剂的活性和稳定性。
催化剂在255℃反应时甲醇的转化率达到98.5%,甲醛选择性为94.8%。经过240小时反应之后,甲醇的转化率为92.2%,甲醛的选择性为95.0%,甲醇的转化率下降较多。结果列于下表1。
对比例3
1.制备催化剂
催化剂的制备方法与实施例1相似,区别是不添加铝:
将88.28克七钼酸铵溶解在500克纯水中,配置成溶液A;将76.76克九水硝酸铁溶解在400克水中,然后再缓慢加入5.90克83%磷酸,得到溶液B;在60℃下,将B缓慢滴加进A中,滴加时间30分钟,滴加同时保持搅拌;B溶液滴加完成之后,浆料在80℃继续搅拌2小时进行老化,然后在150℃下干燥12小时,将干燥之后的物料粉碎至小于200目,然后加入2克石墨和10克纯水混合均匀,然后进行压片成型;将成型后的样品进行焙烧,焙烧温度为450℃,焙烧时间为6h,得到催化剂,催化剂的组分Mo:Fe:P的摩尔比为1:0.42:0.1。
2.催化剂活性评价:
按照实施例1相同的方法测试催化剂的活性和稳定性。
催化剂在268℃反应时甲醇的转化率达到98.5%,甲醛选择性为94.1%。经过240小时反应之后,甲醇的转化率为93.1%,甲醛的选择性为94.0%,甲醇的转化率下降较多。结果列于下表1。
对比例4
催化剂的制备方法与实施例1相似,区别是不添加硝酸铝和磷酸:
将88.28克七钼酸铵溶解在500克纯水中,配置成溶液A;将121.20克九水硝酸铁溶解在400克水中,得到溶液B;在60℃下,将B缓慢滴加进A中,滴加时间30分钟,滴加同时保持搅拌;B溶液滴加完成之后,浆料在80℃继续搅拌2小时进行老化,然后在150℃下干燥12小时,将干燥之后的物料粉碎至小于200目,然后加入2克石墨和10克纯水混合均匀,然后进行压片成型;将成型后的样 品进行焙烧,焙烧温度为450℃,焙烧时间为6h,得到催化剂,催化剂的组分Mo:Fe的摩尔比为1:0.6。
2.催化剂活性评价:
按照实施例1相同的方法测试催化剂的活性和稳定性。
催化剂在240℃反应时甲醇的转化率达到98.5%,甲醛选择性为91.2%。经过240小时反应之后,甲醇的转化率为88.9%,甲醛的选择性为89.0%,甲醇的转化率下降较多。结果列于下表1。
表1:
Figure PCTCN2021128082-appb-000001
从上述实验结果可以看出,本发明的催化剂具有反应温度低、催化剂性能稳定的优点。

Claims (10)

  1. 一种甲醇选择性氧化合成甲醛的催化剂,它具有如下通式:
    MoFe aAl bP cO x
    其中,a=0.25~0.5,b=0.001~0.2,c=0.001~0.6,x为满足通式价态的数。
  2. 如权利要求1所述的催化剂,其特征在于
    a=0.28-0.47,更好为0.31-0.44,宜为0.34-0.41,优选0.36-0.38;
    b=0.003-0.018,更好为0.005-0.016,宜为0.008-0.014,优选0.01-0.012;
    c=0.005-0.5,更好为0.01-0.4,宜为0.015-0.3,优选为0.02-0.2;
    x为满足通式价态的数。
  3. 如权利要求1或2所述的催化剂,其特征在于它选自MoFe 0.4Al 0.1P 0.3O x、MoFe 0.35Al 0.05P 0.15O x、MoFe 0.32Al 0.01P 0.03O x、MoFe 0.33Al 0.14P 0.40O x、MoFe 0.42Al 0.1P 0.1O x、MoFe 0.31Al 0.006P 0.006O x、MoFe 0.40Al 0.05P 0.1O x、或其两种或更多种形成的混合物。
  4. 如权利要求1-3中任一项所述的催化剂的制备方法,包括:
    按化学计量量提供钼金属离子浓度为0.1-2M的钼盐水溶液;
    按化学计量量将铁盐、铝盐和磷酸配制成总金属离子浓度为0.1-5M含有铁、铝和磷酸的水溶液;
    在40-80℃条件下,将上述两种溶液混合,得到浆料;
    将所述浆料老化、干燥、与固体润滑剂和水混合后压片成型;
    焙烧。
  5. 如权利要求4所述的方法,其特征在于它包括,在40-80℃条件下,将所述含有铁、铝和磷酸的水溶液缓慢加入到所述钼盐水溶液中进行沉淀反应。
  6. 如权利要求5所述的方法,其特征在于所述沉淀反应时间为30-120分钟,较好为40-110分钟,更好为50-100分钟,宜为60-90分钟,优选70-80分钟。
  7. 如权利要求4-6中任一项所述的方法,其特征在于还包括对干燥后的干燥产物进行粉碎的步骤。
  8. 如权利要求4-6中任一项所述的方法,其特征在于所述固体润滑剂选自石墨、硬脂酸或其混合物。
  9. 如权利要求4-6中任一项所述的方法,其特征在于将压片成型的产物在350℃-500℃,较好380-470℃,更好400-450℃,优选420-440℃的温度下焙烧2-12小时,较好3-11小时,更好4-10小时,优选6-8小时。
  10. 如权利要求1-3中任一项所述的催化剂在甲醇选择性氧化合成甲醛中的用途。
PCT/CN2021/128082 2020-12-29 2021-11-02 复合氧化物催化剂及其制备方法和用途 WO2022142708A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21913452.5A EP4272867A1 (en) 2020-12-29 2021-11-02 Composite oxide catalyst, preparation method therefor, and use thereof
US18/270,130 US20240066507A1 (en) 2020-12-29 2021-11-02 Composite Oxide Catalyst, Preparation Method Thereof, and Use Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011588637.9A CN112604701B (zh) 2020-12-29 2020-12-29 复合氧化物催化剂及其制备方法和用途
CN202011588637.9 2020-12-29

Publications (1)

Publication Number Publication Date
WO2022142708A1 true WO2022142708A1 (zh) 2022-07-07

Family

ID=75248635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128082 WO2022142708A1 (zh) 2020-12-29 2021-11-02 复合氧化物催化剂及其制备方法和用途

Country Status (4)

Country Link
US (1) US20240066507A1 (zh)
EP (1) EP4272867A1 (zh)
CN (1) CN112604701B (zh)
WO (1) WO2022142708A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116375566A (zh) * 2023-04-04 2023-07-04 济南悟通生物科技有限公司 一种2,3-丁二酮的催化合成方法及催化剂和制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112604701B (zh) * 2020-12-29 2022-06-10 上海华谊新材料有限公司 复合氧化物催化剂及其制备方法和用途

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101448A (en) * 1976-05-14 1978-07-18 The Standard Oil Company Catalyst compositions especially useful for preparation of unsaturated acids
US5245083A (en) * 1991-02-27 1993-09-14 Mitsui Toatsu Chemicals, Inc. Method for preparing methacrolein and method for preparing a catalyst for use in the preparation of methacrolein
CN1100667A (zh) 1993-09-24 1995-03-29 化学工业部北京化工研究院 用于甲醇氧化制甲醛的催化剂
CN1546232A (zh) 2003-12-09 2004-11-17 南化集团研究院 甲醇氧化制甲醛铁钼催化剂及其制备方法
CN101340975A (zh) * 2005-11-23 2009-01-07 苏德-化学股份公司 特别用于将甲醇氧化成甲醛的壳型催化剂及其制备方法
EP2213370A2 (de) * 2009-01-09 2010-08-04 Basf Se Verfahren zur Herstellung eines Katalysators fuer die Oxidation von Methanol zu Formaldehyd
CN103648641A (zh) * 2011-01-28 2014-03-19 日本化药株式会社 选择性减少饱和醛的催化剂及其制备方法
CN103933998A (zh) 2014-04-21 2014-07-23 清华大学 用于甲醇氧化制甲醛的催化剂
CN106693981A (zh) 2016-12-22 2017-05-24 中国科学院山西煤炭化学研究所 一种甲醇氧化合成甲醛的铁钼催化剂及制法和应用
CN109012682A (zh) 2018-07-27 2018-12-18 新疆大学 一种甲醇氧化制甲醛铁钼催化剂的改性方法
CN112604701A (zh) * 2020-12-29 2021-04-06 上海华谊新材料有限公司 复合氧化物催化剂及其制备方法和用途

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101448A (en) * 1976-05-14 1978-07-18 The Standard Oil Company Catalyst compositions especially useful for preparation of unsaturated acids
US5245083A (en) * 1991-02-27 1993-09-14 Mitsui Toatsu Chemicals, Inc. Method for preparing methacrolein and method for preparing a catalyst for use in the preparation of methacrolein
CN1100667A (zh) 1993-09-24 1995-03-29 化学工业部北京化工研究院 用于甲醇氧化制甲醛的催化剂
CN1546232A (zh) 2003-12-09 2004-11-17 南化集团研究院 甲醇氧化制甲醛铁钼催化剂及其制备方法
CN101340975A (zh) * 2005-11-23 2009-01-07 苏德-化学股份公司 特别用于将甲醇氧化成甲醛的壳型催化剂及其制备方法
EP2213370A2 (de) * 2009-01-09 2010-08-04 Basf Se Verfahren zur Herstellung eines Katalysators fuer die Oxidation von Methanol zu Formaldehyd
CN103648641A (zh) * 2011-01-28 2014-03-19 日本化药株式会社 选择性减少饱和醛的催化剂及其制备方法
CN103933998A (zh) 2014-04-21 2014-07-23 清华大学 用于甲醇氧化制甲醛的催化剂
CN106693981A (zh) 2016-12-22 2017-05-24 中国科学院山西煤炭化学研究所 一种甲醇氧化合成甲醛的铁钼催化剂及制法和应用
CN109012682A (zh) 2018-07-27 2018-12-18 新疆大学 一种甲醇氧化制甲醛铁钼催化剂的改性方法
CN112604701A (zh) * 2020-12-29 2021-04-06 上海华谊新材料有限公司 复合氧化物催化剂及其制备方法和用途

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116375566A (zh) * 2023-04-04 2023-07-04 济南悟通生物科技有限公司 一种2,3-丁二酮的催化合成方法及催化剂和制备方法
CN116375566B (zh) * 2023-04-04 2023-08-29 济南悟通生物科技有限公司 一种2,3-丁二酮的催化合成方法及催化剂和制备方法

Also Published As

Publication number Publication date
US20240066507A1 (en) 2024-02-29
CN112604701A (zh) 2021-04-06
EP4272867A1 (en) 2023-11-08
CN112604701B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2022142708A1 (zh) 复合氧化物催化剂及其制备方法和用途
CN106693981B (zh) 一种甲醇氧化合成甲醛的铁钼催化剂及制法和应用
CN102371158A (zh) 氧化法制丙烯酸催化剂及其制备方法
CN104399491B (zh) 一种耐高温甲烷化催化剂及其制备方法
CN110368967B (zh) 醋酸加氢催化剂及其制备方法和应用
CN109847744A (zh) 氨氧化催化剂,及其制备方法和制备间苯二甲腈的方法
WO2022142709A1 (zh) 负载型复合氧化物催化剂及其制备和应用
CN107252693A (zh) 一种V2O5包覆MnO2‑γ‑Fe2O3/凹凸棒粘土低温脱硝催化剂及其制备方法
CN106669705A (zh) 用于甲醇氨氧化反应催化剂及其制备成型方法
SU1056898A3 (ru) Способ получени акрилонитрила
WO2019141203A1 (zh) 甲基丙烯醛氧化制备甲基丙烯酸的催化剂及其制备方法
CN112844400A (zh) 一种Bi基多酸催化剂及在2-甲基丙烯氧化制备2-甲基丙烯醛中的应用
CN111068652A (zh) 丙烯酸合成用催化剂及由丙烯醛合成丙烯酸的方法
CN114054100B (zh) 一种掺杂型复合氧化物催化剂的制备及其应用
EP2185279A1 (en) Mixed metal oxide catalyst and production of nitric oxide by oxidation of ammonia
CN114345362A (zh) 一种甲醇氧化制甲醛铁钼基催化剂及制备方法
CN104437527A (zh) 丙烯酸成型催化剂及其制备方法
JP5362370B2 (ja) メタクリル酸合成用触媒の製造方法
CN113019386B (zh) 甲醇氧化制甲醛铁钼催化剂及制备和应用
CN111068649A (zh) 丙烯酸制备用催化剂及由丙烯醛合成丙烯酸的方法
JP5885019B2 (ja) メタクリル酸製造用触媒の製造方法
JP2006513033A (ja) 新規ヘテロポリ酸触媒及びその製造方法
CN114471592B (zh) 丙烯醛合成用催化剂及其制备方法和应用
CN114425447B (zh) 杂多酸改性的催化剂及其制备方法和应用以及丁烯氧化脱氢的方法
CN102811991A (zh) 用于醛生产的尖晶石结构化催化剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913452

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18270130

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021913452

Country of ref document: EP

Effective date: 20230731