WO2022142658A1 - 一种提高含有羟基的纳米材料分散性的酯化方法 - Google Patents

一种提高含有羟基的纳米材料分散性的酯化方法 Download PDF

Info

Publication number
WO2022142658A1
WO2022142658A1 PCT/CN2021/127063 CN2021127063W WO2022142658A1 WO 2022142658 A1 WO2022142658 A1 WO 2022142658A1 CN 2021127063 W CN2021127063 W CN 2021127063W WO 2022142658 A1 WO2022142658 A1 WO 2022142658A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydroxyl
dispersibility
improving
modified
nanomaterial
Prior art date
Application number
PCT/CN2021/127063
Other languages
English (en)
French (fr)
Inventor
王佳斌
朱巍
张毅晨
王耀
牛佳悦
Original Assignee
江苏集萃智能液晶科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏集萃智能液晶科技有限公司 filed Critical 江苏集萃智能液晶科技有限公司
Priority to US18/259,723 priority Critical patent/US20240067799A1/en
Publication of WO2022142658A1 publication Critical patent/WO2022142658A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the invention relates to the technical field of nanomaterials, in particular to an esterification method for improving the dispersibility of nanomaterials containing hydroxyl groups.
  • nanoparticles have not only been applied in industry, but also gradually entered the civilian field. More and more new products based on nanomaterials have appeared in the market. Magnetic, biological, etc.
  • the application of nanoparticles also has a severe test, that is, the agglomeration of nanoparticles.
  • the biggest disadvantage it brings is the reduction of the performance of nanomaterials. Specifically, the agglomeration of nanoparticles increases the growth of nanoparticles, thereby affecting the efficiency and performance of nanomaterials.
  • the agglomeration problem will also affect the storage and transportation of nanomaterials, thereby greatly shortening the service life of nanomaterials, and the use conditions will be more severe.
  • the reasons for the agglomeration of nanoparticles can be summarized into the following categories: 1. A large amount of charges are accumulated on the surface of the nanoparticles, which aggregates on the surface of the particles to cause agglomeration; 2. There are hydrogen bonds between the nanoparticles, which cause the particles to attract each other and agglomerate; 3. The van der Waals force between nanoparticles is much higher than the gravity of the nanoparticles themselves, which leads to mutual attraction and agglomeration; 4. The surface energy of nanoparticles is too high, resulting in unstable energy, which is easy to agglomerate and tends to a stable state; 5.
  • the methods for solving nanoparticle agglomeration can be divided into physical methods and chemical methods in principle. Physical methods mainly include dewatering treatment, adding deflocculants, mechanical force dispersion, ultrasonic dispersion, etc. The advantages are that the composition, structure and properties of nanoparticles will not be changed, but there will be reaggregation of nanoparticles during storage, transportation and use. limitations.
  • the esterification reaction method is more widely used than the graft reaction method. And compared with the grafting modification method using the polymerized monomer as the raw material, the esterification reaction can precisely control the length of the surface-modified organic segment, because the modified segment, whether small molecule or oligomer, has a fixed length.
  • Dufresne et al. used isocyanates with different chain lengths as raw materials (Biomacromolecules, 2009, 10, 425-432), and modified nanomaterials by esterification with hydroxyl groups, so that their dispersibility in acetone was significantly improved.
  • the main strategy for improving the dispersibility of hydroxyl-containing nanomaterials on the surface is to modify the nanoparticles by post-esterification. In this process, it is usually necessary to isolate water and oxygen, and the conditions are harsh and the steps are cumbersome. In addition, suppressing the agglomeration of nanoparticles under electric field remains a challenge.
  • the invention mainly solves the defects of the method for modifying the esterification reaction of nanoparticles, and provides a method for improving the dispersibility of nanomaterials with hydroxyl groups on the surface.
  • Chemical modification not only has low cost and simple process, but also can effectively graft organic small molecules on the surface of nanoparticles, so that nanoparticles can not agglomerate under long-term electrification conditions, which greatly improves the stability and use of the nanomaterials. life.
  • the present application provides an esterification method for improving the dispersibility of a nanomaterial containing a hydroxyl group, comprising the following steps: S1, fully stirring the nanomaterial precursor containing a hydroxyl group and an organic solvent, and mixing them uniformly to obtain a mixed solution S2, heating the mixed solution in step S1 to fully pre-react; S3, adding an acid halide to the solution heated and fully pre-reacted in step S2, and further reacting to finally obtain a surface-modified hydroxyl-containing nanomaterial.
  • the acid halide is selected from any one of acid fluoride, acid chloride, acid bromide, and acid iodide.
  • the acid chloride is a single component or a mixture of two or more components.
  • the single component is any one of stearoyl chloride, n-valeryl chloride and dodecanoyl chloride.
  • the heating temperature ranges from 30°C to 120°C.
  • step S3 the volume ratio of the added acid chloride to the solution heated and fully pre-reacted in step S2 is between 1:2 and 1:40.
  • step S3 the step of adding an amine compound to the fully pre-reacted solution heated in step S2 is also included.
  • the amine compound is triethylamine.
  • the present application also provides a surface-modified hydroxyl-containing nanomaterial, wherein the surface-modified hydroxyl-containing nanomaterial is prepared by the above-mentioned esterification method for improving the dispersibility of the hydroxyl-containing nanomaterial made.
  • the present application also provides a dimming device, the dimming device includes a first transparent substrate, a first transparent conductive layer, a dimming layer, a second transparent conductive layer and a second transparent substrate arranged in sequence , the light-adjusting layer comprises a dispersion liquid and the above-mentioned surface-modified hydroxyl-containing nanomaterials dispersed in the dispersion liquid.
  • the dispersion liquid includes nitrocellulose and trioctyl trimellitate.
  • the beneficial effect of the present invention is that the present application relates to an esterification method for improving the dispersibility of hydroxyl-containing nanomaterials, comprising the following steps: S1. Fully stirring the hydroxyl-containing nanomaterial precursor and an organic solvent, and mixing them uniformly to obtain a mixed solution. solution; S2, heating the mixed solution in step S1 to fully pre-react; S3, adding an acid halide to the solution heated and fully pre-reacted in step S2, and further reacting to finally obtain a surface-modified hydroxyl-containing nanomaterial.
  • the dispersibility of the hydroxyl-containing nanomaterials is effectively improved, and the modified hydroxyl-containing nanomaterials will not be energized under the condition of applying a voltage for a long time. Agglomeration, maintaining stability, the esterification modification method will not have a great impact on the structure of the nanomaterials, and the esterification modification method does not require severe conditions of anhydrous and oxygen-free.
  • Figure 1 is a scanning electron microscope characterization picture of a core-shell composite nanomaterial with octadecyl-modified iodine-doped calcium coordination polymer material as the shell and DPA-modified hydroxyapatite nanorods as the core;
  • Figure 2 is an infrared spectrum of a core-shell composite nanomaterial with octadecyl-modified iodine-doped calcium coordination polymer material as the shell and DPA-modified hydroxyapatite nanorods as the core;
  • Example 3 is a schematic structural diagram of a dimming device in Example 10.
  • 101 the first transparent substrate; 102, the first transparent conductive layer; 103, the dimming layer; 104, the second transparent conductive layer; 105, the second transparent substrate; 1031, the dispersion; Hydroxyl-based nanomaterials; 100.
  • the invention discloses a core-shell type composite nanomaterial modified with iodine-doped calcium coordination polymer material as the shell and DPA-modified hydroxyapatite nanorod as the core.
  • the present application provides an esterification method for improving the dispersibility of nanomaterials containing hydroxyl groups, including the following steps: S1.
  • the hydroxyl-containing nanomaterial precursor and the organic solvent are fully stirred and uniformly mixed to obtain a mixed solution; S2, the mixed solution in step S1 is heated and fully pre-reacted; S3, the solution is heated and fully pre-reacted in step S2, adding The acid halide is further reacted to finally obtain a surface-modified nanomaterial containing hydroxyl groups.
  • the acid halide is selected from any one of acid fluoride, acid chloride, acid bromide, and acid iodide.
  • Compounds with Cl functional groups which can be acid chlorides with different alkyl chain lengths or organic small molecules with acid chloride functional groups.
  • the acid chloride is a single component or two or more mixed components; as a further preferred embodiment, the single component can be but not limited to stearoyl chloride, n-valeryl chloride , any one of dodecanoyl chloride.
  • step S3 it also includes the step of adding an amine compound to the fully pre-reacted solution in step S2; as a further preferred embodiment, the amine compound can be but not limited to triethyl amine.
  • the heating temperature ranges from 30°C to 120°C.
  • the volume ratio of the added acid chloride to the solution heated and fully pre-reacted in step S2 is between 1:2 and 1:40.
  • the organic solvent may be, but not limited to, at least one of isoamyl acetate, methanol, and DMF.
  • the present application also provides a surface-modified hydroxyl-containing nanomaterial, wherein the surface-modified hydroxyl-containing nanomaterial is prepared by the above-mentioned esterification method for improving the dispersibility of the hydroxyl-containing nanomaterial made.
  • the surface-modified hydroxyl-containing nanomaterial is a core-shell composite in which an iodine-doped calcium coordination polymer material is the outer shell, the surface is modified by a long alkyl chain, and hydroxyapatite is the inner core. Nano stave.
  • the present application also provides a dimming device, the dimming device includes a first transparent substrate 101, a first transparent conductive layer 102, a dimming layer 103, a second transparent conductive layer 104 and The second transparent substrate 105; the dimming layer 103 in the dimming device includes a dispersion 1031 and a nanomaterial 1032 containing hydroxyl groups modified by acid chloride; the dispersion includes nitrocellulose and trioctyl trimellitate.
  • DPA 2,5-pyrazine dicarboxylic acid
  • BTC-modified hydroxyapatite nanorods Dissolve 0.5 g of nickel chloride and 0.8 g of terephthalic acid in 40 mL of DMF, add 1 g of BTC-modified hydroxyapatite nanorods from Preliminary Example 1, add 1 mL of methanol, mix well, and place in a 100 mL three-necked bottle The reaction was carried out at a constant temperature of 80 °C for 12 hours. After cooling, the green solid was centrifuged at 9000 r/min, and washed with DMF and ultrapure water for three times, respectively, to obtain a metal-organic coordination polymer with Ni coordination as the shell, BTC-modified hydroxyapatite nanorods are core-shell composite nanomaterials IV.
  • the core-shell composite nanomaterial VI with DPA-modified hydroxyapatite nanorods as the core (which is the hydroxyl-containing nanomaterial in this embodiment).
  • the core-shell composite nanomaterial VII (which is the hydroxyl-containing nanomaterial in this example) with the polymer material as the shell and DPA-modified hydroxyapatite nanorods as the core, the morphology of which is shown in Figure 1 .
  • Comparative Example 4 is a DPA-modified hydroxyapatite nanorod with an iodine-doped calcium coordination polymer material as the shell without modification with stearoyl chloride It is a core-shell composite nanomaterial with a core, and Example 1 is a core-shell modified with stearoyl chloride, with an iodine-doped calcium coordination polymer material as the shell and DPA-modified hydroxyapatite nanorods as the core.
  • the products synthesized by Comparative Example 4 and Example 1 were respectively subjected to infrared analysis, and the infrared analysis spectrum was shown in Figure 2.
  • the surface of the synthesized product of Comparative Example 4 had no obvious Carbonyl infrared stretching vibration peaks
  • the product synthesized in Example 1 has obvious carbonyl infrared stretching vibration peaks on the surface, indicating that the modification method adopted in the present invention is suitable for surface modification of hydroxyl-containing nanomaterials.
  • Comparative Example 3 is an iodine-doped calcium coordination polymer material not modified with stearoyl chloride
  • Example 2 is an iodine-doped calcium coordination polymer material modified with stearoyl chloride; this application
  • the products synthesized in Comparative Example 3 and Example 2 were respectively subjected to infrared analysis, and the synthesized products in Example 2 showed obvious carbonyl infrared stretching vibration peaks, indicating that the modification method adopted in the present invention is suitable for hydroxyl-containing nanomaterials.
  • Comparative example 1 is the metal organic coordination polymer material of Ni coordination that does not adopt stearoyl chloride to carry out modification
  • embodiment 3 is the metal organic coordination polymer material of Ni coordination that adopts stearoyl chloride to carry out modification;
  • the products synthesized in Comparative Example 1 and Example 3 were respectively subjected to infrared analysis, and no obvious change in the carbonyl infrared stretching vibration peak was found.
  • the green solid was centrifuged at 9000 r/min, and washed three times with DMF and ultrapure water, respectively, to obtain a metal-organic coordination polymer modified with octadecyl on the surface, which is a Ni-coordinated metal-organic coordination polymer as the shell, Core-shell composite nanomaterial X with BTC-modified hydroxyapatite nanorods as the core.
  • Comparative example 2 is a core-shell composite nanomaterial with Ni-coordinated metal-organic coordination polymer as shell and BTC-modified hydroxyapatite nanorod as core without modification with stearoyl chloride
  • embodiment 4 is A core-shell composite nanomaterial with Ni-coordinated metal-organic coordination polymer as the shell and BTC-modified hydroxyapatite nanorod as the core, modified by stearoyl chloride;
  • the products synthesized in Example 4 were respectively subjected to infrared analysis, and no obvious changes in the infrared stretching vibration peaks of carbonyl groups were found, indicating that the surface of the nanomaterials in the present invention contains hydroxyl groups, which is a prerequisite for effective modification.
  • reaction product was centrifuged at 2000 r/min, the solid was discarded, and then centrifuged at 10,000 r/min, and the solid was washed three times with isoamyl acetate to obtain an iodine-doped calcium compound with octadecyl-modified surface.
  • site polymer material XI which is the hydroxyl-containing nanomaterial in this embodiment. After analysis, the amount of solvent isoamyl acetate in the present invention does not affect the surface modification.
  • the reaction product was centrifuged at 2000 r/min, the solid was discarded, and then centrifuged at 10,000 r/min, and the solid was washed three times with isoamyl acetate to obtain an iodine-doped calcium compound with octadecyl-modified surface.
  • the site polymer material XII (which is the hydroxyl-containing nanomaterial in this example). The analysis shows that the content of DPA-modified hydroxyapatite nanorods in the present invention will not affect the surface modification of stearoyl chloride.
  • the reaction product was centrifuged at 2000 r/min, the solid was discarded, and then centrifuged at 10,000 r/min, and the solid was washed three times with isoamyl acetate to obtain an iodine-doped calcium compound with n-pentyl group-modified surface.
  • Site polymer material i which is the hydroxyl-containing nanomaterial in this embodiment.
  • the modification method adopted in the present invention is suitable for the surface modification of hydroxyl-containing nanomaterials by n-valeryl chloride.
  • the reaction product was centrifuged at 2000 r/min, the solid was discarded, and then centrifuged at 10,000 r/min, and the solid was washed three times with isoamyl acetate to obtain an iodine-doped calcium compound with dodecyl-modified surface.
  • Site polymer material ii which is the hydroxyl-containing nanomaterial in this embodiment.
  • the modification method adopted in the present invention is also applicable to the surface modification of hydroxyl-containing nanomaterials by dodecanoyl chloride.
  • the present application relates to an esterification method for improving the dispersibility of nanomaterials containing hydroxyl groups, comprising the following steps: S1. Fully stirring the precursors of nanomaterials containing hydroxyl groups and an organic solvent, and mixing them uniformly to obtain a mixed solution; S2, heating the mixed solution in step S1 to fully pre-react; S3, adding acid chloride to the solution heated and fully pre-reacted in step S2, and further reacting to finally obtain a surface-modified hydroxyl-containing nanomaterial.
  • the dispersibility of the hydroxyl group-containing nanomaterial is effectively improved, and the modified hydroxyl group-containing nanomaterial will not agglomerate under the condition of applying voltage for a long time.
  • the esterification modification method will not have a great impact on the structure of the nanomaterials, and the esterification modification method does not require severe conditions of anhydrous and oxygen-free.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

本发明涉及一种提高含有羟基的纳米材料分散性的酯化方法,包括如下步骤:S1、将含有羟基的纳米材料前躯体和有机溶剂充分搅拌,混合均匀,得到混合溶液;S2、使步骤S1中的所述混合溶液加热充分预反应;S3、向步骤S2加热充分预反应后的溶液中加入酰卤,进一步反应,最终得到表面修饰的含有羟基的纳米材料。本申请通过酰卤对含有羟基的纳米材料进行表面改性后,所述含有羟基的纳米材料的分散性得到有效提升,经过改性的含有羟基的纳米材料在长时间外加电压通电条件下不会团聚,保持稳定,酯化修饰方法不会对纳米材料的结构造成大的影响,且该酯化修饰方法无需无水无氧的严苛条件。

Description

一种提高含有羟基的纳米材料分散性的酯化方法
本申请要求了申请日为2020年12月29日,申请号为CN202011586473.6,发明名称为“一种提高含有羟基的纳米材料分散性的酯化方法”的发明专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及纳米材料技术领域,尤其涉及一种提高含有羟基的纳米材料分散性的酯化方法。
背景技术
近年来,随着纳米技术的卓越发展,纳米粒子不仅在工业方面得到应用,还逐渐走入民用领域,越来越多基于纳米材料的新产品出现在市场,应用的科学范畴涉及光、电、磁、生物等。然而纳米粒子的应用同样也存在着严峻的考验,即纳米粒子的团聚问题。其带来的最大的劣势就是纳米材料性能的降低,具体来说,纳米粒子的团聚使得纳米颗粒增长增大,从而影响纳米材料的效率及性能。除此之外,团聚问题还会影响纳米材料的储存和运输,从而大大缩短纳米材料的使用寿命,并且使用条件也会更加严苛。
纳米粒子团聚的原因可以归纳总结为以下几类:1、纳米粒子表面累积了大量电荷,在粒子表面聚集从而产生团聚;2、纳米粒子之间存在有氢键作用,导致粒子相互吸引发生团聚;3、纳米粒子之间的范德华力远高于纳米粒子本身的重力,从而导致互相吸引而团聚;4、纳米粒子的表面能过高而导致能量不稳定,从而易于团聚而趋于稳定状态;5、纳米粒子间的电荷转移、量子隧道效应及界面原子的耦合,会引起粒子在界面发生相互作用而团聚。通常解决纳米粒子团聚的方法从原理上可以划分为物理方法和化学方法。物理方法主要有去水处理、添加反絮凝剂、机 械力分散、超声分散等,其优点在于不会改变纳米粒子的组成、结构和性质,但会存在纳米粒子在储运和使用过程中重新团聚的局限性。相较于物理方法,化学方法阻碍纳米粒子团聚主要是通过纳米粒子的表面修饰来改善其表面的化学性质从而提高纳米粒子在分散剂、增塑剂等介质中的分散性。主要有表面接枝反应法、酯化反应法、偶联剂法和气相沉积法等,其中尤以接枝反应法与酯化反应法居多,这两种方法主要原理均是与纳米材料表面的活性官能团(如羟基、羧基、氨基等)进行反应,从而达到表面修饰的目标。而对于表面以羟基为主的纳米材料,酯化反应法的应用比接枝反应法更多。并且相对于从聚合单体为原料的接枝修饰法,酯化反应可以精确控制表面修饰的有机链段长度,原因在于所修饰的链段,无论小分子或者低聚物都具有固定的长度。例如Polymer,2009,50,4552-4563,Dufresne等人通过在无水无氧条件对纤维素表面的羟基进行酯化反应接上不同长度的烷基链,从而提高其在有机相中的分散性,并且修饰后的纳米晶基本保持了原有形貌。Dufresne等人以不同链长的异氰酸酯为原料(Biomacromolecules,2009,10,425-432),通过与羟基的酯化反应来修饰纳米材料,使其在丙酮中的分散性有了明显的提高。
可以看到,目前表面提高含有羟基的纳米材料分散性的主要策略是通过后酯化反应法对纳米粒子进行修饰,在这个过程中通常需要隔绝水和氧气,条件苛刻,步骤繁琐。此外,抑制纳米粒子在电场作用下的团聚依然还是挑战。
发明内容
本发明主要解决了纳米粒子酯化反应修饰方法的缺陷,提供一种提高表面有羟基的纳米材料分散性的方法,该方法是通过合成多羟基纳米材料的过程中直接对纳米粒子进行表面的酯化修饰,不仅成本低廉,工序简易,而且能够有效地在纳米粒子表面嫁接有机小分子,使得纳米粒子能够在长时间通电条件下不会发生团聚,极大地提高了该纳米材料的 稳定性和使用寿命。
为实现上述目的,本申请提供了一种提高含有羟基的纳米材料分散性的酯化方法,包括如下步骤:S1、将含有羟基的纳米材料前躯体和有机溶剂充分搅拌,混合均匀,得到混合溶液;S2、使步骤S1中的所述混合溶液加热充分预反应;S3、向步骤S2加热充分预反应后的溶液中加入酰卤,进一步反应,最终得到表面修饰的含有羟基的纳米材料。
作为本申请的进一步改进,步骤S3中,所述酰卤选自酰氟、酰氯、酰溴、酰碘中的任一种。
作为本申请的进一步改进,步骤S3中,所述酰氯为单一组分或两种以上混合组分。
作为本申请的进一步改进,所述单一组分为硬脂酰氯、正戊酰氯、十二酰氯中的任意一种。
作为本申请的进一步改进,步骤S2中,加热温度范围为30℃~120℃。
作为本申请的进一步改进,步骤S3中,加入的酰氯与步骤S2加热充分预反应后的溶液的体积比为1:2~1:40之间。
作为本申请的进一步改进,步骤S3中,还包括向步骤S2加热充分预反应后的溶液中加入胺类化合物的步骤。
作为本申请的进一步改进,所述胺类化合物为三乙胺。
为实现上述目的,本申请还提供了一种表面修饰的含有羟基的纳米材料,所述的表面修饰的含有羟基的纳米材料由上述所述的提高含有羟基的纳米材料分散性的酯化方法制备而成。
为实现上述目的,本申请还提供了一种调光器件,所述调光器件包括依次设置的第一透明基板、第一透明导电层、调光层、第二透明导电层和第二透明基板,所述调光层包括分散液以及分散于所述分散液中的如上述所述的表面修饰的含有羟基的纳米材料。
作为本申请的进一步改进,所述分散液包括硝化纤维和偏苯三酸三 辛酯。
本发明的有益效果在于,本申请涉及一种提高含有羟基的纳米材料分散性的酯化方法,包括如下步骤:S1、将含有羟基的纳米材料前躯体和有机溶剂充分搅拌,混合均匀,得到混合溶液;S2、使步骤S1中的所述混合溶液加热充分预反应;S3、向步骤S2加热充分预反应后的溶液中加入酰卤,进一步反应,最终得到表面修饰的含有羟基的纳米材料。本申请通过酰卤对含有羟基的纳米材料进行表面改性后,所述含有羟基的纳米材料的分散性得到有效提升,经过改性的含有羟基的纳米材料在长时间外加电压通电条件下不会团聚,保持稳定,酯化修饰方法不会对纳米材料的结构造成大的影响,且该酯化修饰方法无需无水无氧的严苛条件。
附图说明
图1为十八烷基改性的碘掺杂钙配位聚合物材料为外壳、DPA修饰型羟基磷灰石纳米棒为内核的核壳型复合纳米材料扫描电子显微镜表征图片;
图2为十八烷基改性的碘掺杂钙配位聚合物材料为外壳、DPA修饰型羟基磷灰石纳米棒为内核的核壳型复合纳米材料的红外谱图;
图3为实例10中调光器件的结构示意图;
图中:101、第一透明基板;102、第一透明导电层;103、调光层;104、第二透明导电层;105、第二透明基板;1031、分散液;1032、改性的含羟基的纳米材料;100、以碘掺杂的钙配位聚合物材料为外壳、DPA修饰型羟基磷灰石纳米棒为内核的核壳型复合纳米材料的红外谱线;200、为十八烷基改性的以碘掺杂的钙配位聚合物材料为外壳、DPA修饰型羟基磷灰石纳米棒为内核的核壳型复合纳米材料。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请 具体实施例及附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例,不用来限制本发明的范围。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为提高表面含有羟基的纳米材料的分散性,且在持续通电条件下长时间不发生团聚,本申请提供了一种提高含有羟基的纳米材料分散性的酯化方法,包括如下步骤:S1、将含有羟基的纳米材料前躯体和有机溶剂充分搅拌,混合均匀,得到混合溶液;S2、使步骤S1中的所述混合溶液加热充分预反应;S3、向步骤S2加热充分预反应后的溶液中加入酰卤,进一步反应,最终得到表面修饰的含有羟基的纳米材料。其中,步骤S3中,所述酰卤选自酰氟、酰氯、酰溴、酰碘中的任一种,本申请具体实施例中,以选用酰氯为例,酰氯是指含有-C(O)Cl官能团的化合物,该化合物可以为不同烷基链长的酰氯或具有酰氯官能团的有机小分子。作为优选的实施方案,步骤S3中,所述酰氯为单一组分或两种以上混合组分;作为进一步优选的实施方案,所述单一组分可以为但不仅仅限于硬脂酰氯、正戊酰氯、十二酰氯中的任意一种。作为优选的实施方案,步骤S3中,还包括向步骤S2加热充分预反应后的溶液中加入胺类化合物的步骤;作为进一步优选的实施方案,所述胺类化合物可以为但不仅仅限于三乙胺。作为优选的实施方案,步骤S2中,加热温度范围为30℃~120℃。作为优选的实施方案,步骤S3中,加入的酰氯与步骤S2加热充分预反应后的溶液的体积比为1:2~1:40之间。作为优选的实施方案,步骤S1中,所述有机溶剂可以为但不仅仅限于乙酸异戊酯、甲醇、DMF中的至少一种。
为实现上述目的,本申请还提供了一种表面修饰的含有羟基的纳米材料,所述的表面修饰的含有羟基的纳米材料由上述所述的提高含有羟基的纳米材料分散性的酯化方法制备而成。作为优选的实施方案,所述 的表面修饰的含有羟基的纳米材料为碘掺杂的钙配位聚合物材料为外壳且表面由长烷基链修饰、羟基磷灰石为内核的核壳型复合纳米棒。
为实现上述目的,本申请还提供了一种调光器件,所述调光器件包括依次设置的第一透明基板101、第一透明导电层102、调光层103、第二透明导电层104和第二透明基板105;所述调光器件中的调光层103包括分散液1031和通过酰氯改性含有羟基的纳米材料1032;所述分散液包括硝化纤维和偏苯三酸三辛酯。
本申请为验证酰氯对含羟基纳米材料具有表面改性作用,从而解决了纳米材料易团聚的问题,选取了几种含羟基的纳米材料为典型案例进行了分析,具体验证方式如下:
预备例1
将0.2g Ca(NO 3) 2·4H 2O,0.3g对苯二甲酸(BTC)、1.450g Na 2HPO 4·12H 2O、0.035g NaH 2PO 4·2H 2O加入到30mL DMF/H 2O(v:v=1:1)的混合溶液中。60℃下充分搅拌2h后,将混合物转移至水热反应釜中。置于200℃鼓风干燥箱中反应24h。将反应产物在9000r/min条件下离心,并分别用DMF及超纯水洗涤各3次,得到BTC修饰型羟基磷灰石纳米棒为白色固体Ⅰ。
预备例2
将0.2g硝酸钙,0.3g 2,5-吡嗪二羧酸(DPA)、1.450g磷酸氢二钠、0.035g磷酸二氢钠加入到30mL DMF/H 2O(v:v=1:1)的混合溶液中。60℃下充分搅拌2h后,将混合物转移至水热反应釜中。置于200℃鼓风干燥箱中反应24h。将反应产物在9000r/min条件下离心,并分别用DMF及超纯水洗涤各3次,得到DPA修饰型羟基磷灰石纳米棒材料Ⅱ。
对比例1
将0.5g氯化镍、0.8g对苯二甲酸溶解在40mL的DMF中,加入1mL甲醇,充分混匀后,置于100mL三口瓶中,80℃恒温反应12小时,冷却后,绿色固体在在9000r/min条件下离心,并分别用DMF及超纯水洗 涤各3次,得到Ni配位的金属有机配位聚合物纳米材料Ⅲ。
对比例2
将0.5g氯化镍、0.8g对苯二甲酸溶解在40mL的DMF中,加入1g预备例1中BTC修饰型羟基磷灰石纳米棒,加入1mL甲醇,充分混匀后,置于100mL三口瓶中,80℃恒温反应12小时,冷却后,绿色固体在9000r/min条件下离心,并分别用DMF及超纯水洗涤各3次,得到以Ni配位的金属有机配位聚合物为外壳、BTC修饰型羟基磷灰石纳米棒为内核的核壳型复合纳米材料Ⅳ。
对比例3
将3g碘化钙、2g碘及4g硝化纤维溶解到40mL乙酸异戊酯中,随后加入依次加入3g 2,5-吡嗪二羧酸及4g甲醇,搅拌30min,充分混匀后置于40℃油浴锅中反应12h。冷却后,将反应产物在2000r/min条件下离心,舍去固体,随后在10000r/min离心,固体用乙酸异戊酯洗涤3次,得到碘掺杂的钙配位聚合物材料Ⅴ(其即为本实施例中的含有羟基的纳米材料)。
对比例4
将3g碘化钙、2g碘及4g硝化纤维溶解到40mL乙酸异戊酯中,加入1g预备例2中DPA修饰型羟基磷灰石纳米棒,随后加入依次加入3g2,5-吡嗪二羧酸及4g甲醇,搅拌30min,充分混匀后置于40℃油浴锅中反应12h。冷却后,将反应产物在2000r/min条件下离心,舍去固体,随后在10000r/min离心,固体用乙酸异戊酯洗涤3次,得到以碘掺杂的钙配位聚合物材料为外壳、DPA修饰型羟基磷灰石纳米棒为内核的核壳型复合纳米材料Ⅵ(其即为本实施例中的含有羟基的纳米材料)。
实施例1
将3g碘化钙、2g碘及4g硝化纤维溶解到40mL乙酸异戊酯中,加入1g预备例2中DPA修饰型羟基磷灰石纳米棒,随后加入3g 2,5-吡嗪二羧酸及4g甲醇,搅拌30min,充分混匀后置于40℃油浴锅中反应1h。 直接加入0.5mL三乙胺和1mL硬脂酰氯,继续反应12h。冷却后,将反应产物在2000r/min条件下离心,舍去固体,随后在10000r/min离心,固体用乙酸异戊酯洗涤3次,得到表面有十八烷基改性的碘掺杂钙配位聚合物材料为外壳、DPA修饰型羟基磷灰石纳米棒为内核的核壳型复合纳米材料Ⅶ(其即为本实施例中的含有羟基的纳米材料),其形貌如图1所示。
对比例4与实施例1产物的红外表征结果分析:对比例4为未采用硬脂酰氯进行改性的以碘掺杂的钙配位聚合物材料为外壳、DPA修饰型羟基磷灰石纳米棒为内核的核壳型复合纳米材料,实施例1为采用硬脂酰氯进行改性的以碘掺杂的钙配位聚合物材料为外壳、DPA修饰型羟基磷灰石纳米棒为内核的核壳型复合纳米材料;本申请中对对比例4及实施例1合成的产品分别进行了红外分析,红外分析谱图如图2所示,由图2可知,对比例4合成的产物表面无明显的羰基红外伸缩振动峰,实施例1合成的产物表面有明显的羰基红外伸缩振动峰,表明本发明所采用的修饰方法适用于含羟基的纳米材料的表面修饰。
实施例2
将3g碘化钙、2g碘及4g硝化纤维溶解到40mL的乙酸异戊酯中,充分溶解后,随后加入依次加入3g 2,5-吡嗪二羧酸及4g甲醇,搅拌30min,充分混匀后置于40℃油浴锅中反应1h。直接加入0.5mL三乙胺和1mL硬脂酰氯,继续反应12h。冷却后,将反应产物在2000r/min条件下离心,舍去固体,随后在10000r/min离心,固体用乙酸异戊酯洗涤3次,得到表面有十八烷基改性的碘掺杂钙配位聚合物材料Ⅷ(其即为本实施例中的含有羟基的纳米材料)。
对比例3为未采用硬脂酰氯进行改性的碘掺杂的钙配位聚合物材料,实施例2为采用硬脂酰氯进行改性的以碘掺杂的钙配位聚合物材料;本申请中对对比例3及实施例2合成的产品分别进行了红外分析,实施例2合成的产物出现明显的羰基红外伸缩振动峰,表明本发明所采用的 修饰方法适用于含羟基的有纳米材料的表面修饰。
实施例3
将0.5g氯化镍、0.8g对苯二甲酸溶解在40mL的DMF中,加入1mL甲醇,充分混匀后,置于100mL三口瓶中,80℃恒温反应1小时,直接加入0.5mL三乙胺和1mL硬脂酰氯,继续反应12h。冷却后,绿色固体在在9000r/min条件下离心,并分别用DMF及超纯水洗涤各3次,得到表面有十八烷基改性的Ni配位的金属有机配位聚合物纳米材料Ⅸ(其即为本实施例中的含有羟基的纳米材料)。
对比例1为未采用硬脂酰氯进行改性的Ni配位的金属有机配位聚合物材料,实施例3为采用硬脂酰氯进行改性的Ni配位的金属有机配位聚合物材料;本申请中对对比例1及实施例3合成的产品分别进行了红外分析,均未看到明显的羰基红外伸缩振动峰改变。
实施例4
将0.5g氯化镍、0.8g对苯二甲酸溶解在40mL的DMF中,加入1g预备例1中BTC修饰型羟基磷灰石纳米棒,加入1mL甲醇,充分混匀后,置于100mL三口瓶中,80℃恒温反应1小时,直接加入0.5mL三乙胺和1mL硬脂酰氯,继续反应12h。冷却后,绿色固体在9000r/min条件下离心,并分别用DMF及超纯水洗涤各3次,得到表面有十八烷基改性的以Ni配位的金属有机配位聚合物为外壳、BTC修饰型羟基磷灰石纳米棒为内核的核壳型复合纳米材料Ⅹ。
对比例2为未采用硬脂酰氯进行改性的以Ni配位的金属有机配位聚合物为外壳、BTC修饰型羟基磷灰石纳米棒为内核的核壳型复合纳米材料,实施例4为采用硬脂酰氯进行改性的以Ni配位的金属有机配位聚合物为外壳、BTC修饰型羟基磷灰石纳米棒为内核的核壳型复合纳米材料;本申请中对对比例2及实施例4合成的产品分别进行了红外分析,均未看到明显的羰基红外伸缩振动峰改变,表明本发明中纳米材料的表面含有羟基是实现有效修饰的前提。
实施例5
将3g碘化钙、2g碘及4g硝化纤维溶解到20mL的乙酸异戊酯中,加入10g预备例2中DPA修饰型羟基磷灰石纳米棒,随后加入依次加入3g 2,5-吡嗪二羧酸及4g甲醇,搅拌30min,充分混匀后置于40℃油浴锅中反应1h。直接加入0.5mL三乙胺和1mL硬脂酰氯,继续反应12h。冷却后,将反应产物在2000r/min条件下离心,舍去固体,随后在10000r/min离心,固体用乙酸异戊酯洗涤3次,得到表面有十八烷基改性的碘掺杂钙配位聚合物材料Ⅺ(其即为本实施例中的含有羟基的纳米材料)。经分析,本发明中溶剂乙酸异戊酯的用量不影响表面修饰。
实施例6
将3g碘化钙、2g碘及4g硝化纤维溶解到20mL的乙酸异戊酯中,充分溶解后,随后加入依次加入3g 2,5-吡嗪二羧酸及4g甲醇,搅拌30min,充分混匀后置于40℃油浴锅中反应1h。直接加入0.5mL三乙胺和1mL硬脂酰氯,继续反应12h。冷却后,将反应产物在2000r/min条件下离心,舍去固体,随后在10000r/min离心,固体用乙酸异戊酯洗涤3次,得到表面有十八烷基改性的碘掺杂钙配位聚合物材料Ⅻ(其即为本实施例中的含有羟基的纳米材料)。经分析,本发明中DPA修饰型羟基磷灰石纳米棒的含量对硬脂酰氯的表面改性作用不会产生影响。
实施例7
将3g碘化钙、2g碘及4g硝化纤维溶解到20mL的乙酸异戊酯中,充分溶解后,随后加入依次加入3g 2,5-吡嗪二羧酸及4g甲醇,搅拌30min,充分混匀后置于40℃油浴锅中反应1h。直接加入0.5mL三乙胺和10mL硬脂酰氯,继续反应12h。冷却后,将反应产物在2000r/min条件下离心,舍去固体,随后在10000r/min离心,固体用乙酸异戊酯洗涤3次,得到表面有十八烷基改性的碘掺杂钙配位聚合物材料ⅩⅢ(其即为本实施例中的含有羟基的纳米材料)。经分析,本发明中增加硬脂酰氯的含量对硬脂酰氯的表面改性作用不会产生影响。
实施例8
将3g碘化钙、2g碘及4g硝化纤维溶解到20mL的乙酸异戊酯中,充分溶解后,随后加入依次加入3g 2,5-吡嗪二羧酸及4g甲醇,搅拌30min,充分混匀后置于40℃油浴锅中反应1h。直接加入0.5mL三乙胺和10mL正戊酰氯,继续反应12h。冷却后,将反应产物在2000r/min条件下离心,舍去固体,随后在10000r/min离心,固体用乙酸异戊酯洗涤3次,得到表面有正戊烷基改性的碘掺杂钙配位聚合物材料ⅰ(其即为本实施例中的含有羟基的纳米材料)。经分析,本发明中发明所采用的修饰方法适用于正戊酰氯对含羟基的纳米材料的表面修饰。
实施例9
将3g碘化钙、2g碘及4g硝化纤维溶解到20mL的乙酸异戊酯中,充分溶解后,随后加入依次加入3g 2,5-吡嗪二羧酸及4g甲醇,搅拌30min,充分混匀后置于40℃油浴锅中反应1h。直接加入0.5mL三乙胺和10mL十二酰氯,继续反应12h。冷却后,将反应产物在2000r/min条件下离心,舍去固体,随后在10000r/min离心,固体用乙酸异戊酯洗涤3次,得到表面有十二烷基改性的碘掺杂钙配位聚合物材料ⅱ(其即为本实施例中的含有羟基的纳米材料)。经分析,本发明中发明所采用的修饰方法同样适用于十二酰氯对含羟基的纳米材料的表面修饰。
实施例10
将对比例1-4及实例1-9中的纳米材料分散在以质量分数为5%分散在偏苯三酸三辛酯中,调配成分散液,然后将该分散液灌到20um厚的液晶盒中,以50V的交流电持续通电,加速纳米粒子的团聚,如图3所示,测定材料的稳定性,最终结果如表一所示。
表一:对比例1-4及实例1-9中的纳米材料的稳定性分析
材料 修饰基团 稳定时间
- 3小时
- 3小时
- 6小时
- 6小时
十八烷基 50小时
十八烷基 50小时
十八烷基 3小时
十八烷基 3小时
十八烷基 70小时
十八烷基 70小时
ⅩⅢ 十八烷基 120小时
正戊烷基 80小时
十二烷基 100小时
综上所述,本申请涉及一种提高含有羟基的纳米材料分散性的酯化方法,包括如下步骤:S1、将含有羟基的纳米材料前躯体和有机溶剂充分搅拌,混合均匀,得到混合溶液;S2、使步骤S1中的所述混合溶液加热充分预反应;S3、向步骤S2加热充分预反应后的溶液中加入酰氯,进一步反应,最终得到表面修饰的含有羟基的纳米材料。本申请通过酰氯对含有羟基的纳米材料进行表面改性后,所述含有羟基的纳米材料的分散性得到有效提升,经过改性的含有羟基的纳米材料在长时间外加电压通电条件下不会团聚,保持稳定,酯化修饰方法不会对纳米材料的结构造成大的影响,且该酯化修饰方法无需无水无氧的严苛条件。
虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明 技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种提高含有羟基的纳米材料分散性的酯化方法,其特征在于,包括如下步骤:
    S1、将含有羟基的纳米材料前躯体和有机溶剂充分搅拌,混合均匀,得到混合溶液;
    S2、使步骤S1中的所述混合溶液加热充分预反应;
    S3、向步骤S2加热充分预反应后的溶液中加入酰卤,进一步反应,最终得到表面修饰的含有羟基的纳米材料。
  2. 如权利要求1所述的提高含有羟基的纳米材料分散性的酯化方法,其特征在于,步骤S3中,所述酰卤选自酰氟、酰氯、酰溴、酰碘中的任一种。
  3. 如权利要求2所述的提高含有羟基的纳米材料分散性的酯化方法,其特征在于,步骤S3中,所述酰氯为单一组分或两种以上混合组分。
  4. 如权利要求3所述的提高含有羟基的纳米材料分散性的酯化方法,其特征在于,所述单一组分为硬脂酰氯、正戊酰氯、十二酰氯中的任意一种。
  5. 如权利要求1所述的提高含有羟基的纳米材料分散性的酯化方法,其特征在于,步骤S2中,加热温度范围为30℃~120℃。
  6. 如权利要求1所述的提高含有羟基的纳米材料分散性的酯化方法,其特征在于,步骤S3中,加入的酰氯与步骤S2加热充分预反应后的溶液的体积比为1:2~1:40之间。
  7. 如权利要求1所述的提高含有羟基的纳米材料分散性的酯化方法,其特征在于,步骤S3中,还包括向步骤S2加热充分预反应后的溶液中加入胺类化合物的步骤。
  8. 如权利要求7所述的提高含有羟基的纳米材料分散性的酯化方法,其特征在于,所述胺类化合物为三乙胺。
  9. 一种表面修饰的含有羟基的纳米材料,其特征在于,所述的表面 修饰的含有羟基的纳米材料由权利要求1-8任一项所述的提高含有羟基的纳米材料分散性的酯化方法制备而成。
  10. 一种调光器件,其特征在于,所述调光器件包括依次设置的第一透明基板、第一透明导电层、调光层、第二透明导电层和第二透明基板,所述调光层包括分散液以及分散于所述分散液中的如权利要求8所述的表面修饰的含有羟基的纳米材料。
  11. 如权利要求10所述的调光器件,其特征在于,所述分散液包括硝化纤维和偏苯三酸三辛酯。
PCT/CN2021/127063 2020-12-29 2021-10-28 一种提高含有羟基的纳米材料分散性的酯化方法 WO2022142658A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/259,723 US20240067799A1 (en) 2020-12-29 2021-10-28 Esterification method for improving dispersibility of hydroxyl-containing nano-material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011586473.6A CN112759796B (zh) 2020-12-29 2020-12-29 一种提高含有羟基的纳米材料分散性的酯化方法
CN202011586473.6 2020-12-29

Publications (1)

Publication Number Publication Date
WO2022142658A1 true WO2022142658A1 (zh) 2022-07-07

Family

ID=75696614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127063 WO2022142658A1 (zh) 2020-12-29 2021-10-28 一种提高含有羟基的纳米材料分散性的酯化方法

Country Status (3)

Country Link
US (1) US20240067799A1 (zh)
CN (1) CN112759796B (zh)
WO (1) WO2022142658A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112759796B (zh) * 2020-12-29 2022-02-11 江苏集萃智能液晶科技有限公司 一种提高含有羟基的纳米材料分散性的酯化方法
CN115327831B (zh) * 2022-10-14 2023-02-17 江苏集萃智能液晶科技有限公司 一种多色调光器件及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080191198A1 (en) * 2003-02-26 2008-08-14 Samsung Electronics Co., Ltd. Organic thin film transistor having surface-modified carbon nanotubes
US20080213487A1 (en) * 2006-10-13 2008-09-04 Samsung Electronics Company, Ltd. Multicomponent carbon nanotube-polymer complex, composition for forming the same, and preparation method thereof
CN102585245A (zh) * 2012-01-13 2012-07-18 中科院广州化学有限公司 一种高分散性超双疏微球及其制备的自清洁环氧树脂涂料
CN103132169A (zh) * 2011-11-30 2013-06-05 中国科学院理化技术研究所 一种能稳定分散的纤维素纳米纤维的制备方法
CN107827770A (zh) * 2017-11-14 2018-03-23 西北工业大学 一种脂肪链接枝的六方氮化硼纳米复合材料及其制备方法
CN108477214A (zh) * 2018-05-08 2018-09-04 天津工业大学 亲油性核壳结构抗菌纳米粒子及其制备方法
CN110564406A (zh) * 2019-03-14 2019-12-13 浙江精一新材料科技有限公司 一种量子点修饰TiO2的杂化纳米棒的合成方法及应用该合成方法的一种光传输控制装置
CN112759796A (zh) * 2020-12-29 2021-05-07 江苏集萃智能液晶科技有限公司 一种提高含有羟基的纳米材料分散性的酯化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100795345B1 (ko) * 2006-09-15 2008-01-17 전북대학교산학협력단 하이드록시아파타이트 나노복합체의 제조방법
CN101717477B (zh) * 2009-12-08 2011-06-15 湘潭大学 一种基于纳米羟基磷灰石的生物活性材料及其制备方法
CN108913280B (zh) * 2018-08-01 2021-02-19 武汉理工大学 一种纤维素纳米晶润滑油添加剂及其制备和应用
CN111170864B (zh) * 2020-01-19 2023-06-30 合肥艾克思维新材料科技有限公司 石墨烯分散剂及其制备方法、石墨烯的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080191198A1 (en) * 2003-02-26 2008-08-14 Samsung Electronics Co., Ltd. Organic thin film transistor having surface-modified carbon nanotubes
US20080213487A1 (en) * 2006-10-13 2008-09-04 Samsung Electronics Company, Ltd. Multicomponent carbon nanotube-polymer complex, composition for forming the same, and preparation method thereof
CN103132169A (zh) * 2011-11-30 2013-06-05 中国科学院理化技术研究所 一种能稳定分散的纤维素纳米纤维的制备方法
CN102585245A (zh) * 2012-01-13 2012-07-18 中科院广州化学有限公司 一种高分散性超双疏微球及其制备的自清洁环氧树脂涂料
CN107827770A (zh) * 2017-11-14 2018-03-23 西北工业大学 一种脂肪链接枝的六方氮化硼纳米复合材料及其制备方法
CN108477214A (zh) * 2018-05-08 2018-09-04 天津工业大学 亲油性核壳结构抗菌纳米粒子及其制备方法
CN110564406A (zh) * 2019-03-14 2019-12-13 浙江精一新材料科技有限公司 一种量子点修饰TiO2的杂化纳米棒的合成方法及应用该合成方法的一种光传输控制装置
CN112759796A (zh) * 2020-12-29 2021-05-07 江苏集萃智能液晶科技有限公司 一种提高含有羟基的纳米材料分散性的酯化方法

Also Published As

Publication number Publication date
CN112759796B (zh) 2022-02-11
CN112759796A (zh) 2021-05-07
US20240067799A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
WO2022142658A1 (zh) 一种提高含有羟基的纳米材料分散性的酯化方法
Njuguna et al. Polymer nanocomposites for aerospace applications: fabrication
US20080176983A1 (en) Polymers containing functionalized carbon nanotubes
WO2007066649A1 (ja) カーボンナノチューブ含有組成物、複合体、およびそれらの製造方法
CN112538662A (zh) 一种高弹吸湿抗静电ptt/pet复合纤维及其制备方法
CN110586186A (zh) 高分散多金属氧酸盐磁性微球催化剂及其制备方法和应用
TW201730282A (zh) 經聚合物塗覆之多壁碳奈米管
CN105906895A (zh) 一种复合型填料防静电剂的制备方法及由该方法制备的防静电剂
CN112499622B (zh) 一种二氧化硅和石墨烯复合粉体材料及其制备方法和应用
CN112831364B (zh) 一种树脂基复合材料水性脱模剂及其制备方法
CN112174114B (zh) 一种混合碳纳米管薄膜及其制备方法
CN115073826A (zh) 一种高耐磨石墨烯改性天然橡胶及其制备方法
CN111303489A (zh) 一种环保型橡胶促进剂改性填料及其制备方法与应用
CN112375343A (zh) 一种耐磨抗老化塑料及其制备工艺
CN109088060B (zh) 一种基于离子键的锂离子电池负极材料制备方法
CN112250059A (zh) 一种新能源汽车锂离子电池导电剂用小直径碳纳米管合成方法及其制成的碳纳米管
CN112852021A (zh) 复合导电剂及其制备方法、导电塑料
CN113549230A (zh) 一种改性还原氧化石墨烯/纳米氧化铝复合材料改性pi耐磨薄膜的制备方法
CN112300444A (zh) 一种双相纳米填料及其制备方法和在丁苯橡胶中的应用
CN115160589B (zh) 橡胶用MOF-Zn@ZnO复合助剂及其制备方法
CN115141394B (zh) 一种利用碳纳米管介电微胶囊制备聚氨酯复合膜的方法
CN108047523A (zh) 一种系留无人机专用电缆材料
CN114751847B (zh) 稀土配合物及其制备方法和用途以及硫化橡胶组合物
CN115725118B (zh) 一种具有多层结构的无机纳米复合材料及其制备方法和应用
CN111519422B (zh) 一种自增容纤维表面改性方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913403

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18259723

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913403

Country of ref document: EP

Kind code of ref document: A1