WO2022138958A1 - 研磨パッド、その製造方法、及び研磨加工物の製造方法、並びに、ラッピングパッド、その製造方法、及びラップ加工物の製造方法 - Google Patents

研磨パッド、その製造方法、及び研磨加工物の製造方法、並びに、ラッピングパッド、その製造方法、及びラップ加工物の製造方法 Download PDF

Info

Publication number
WO2022138958A1
WO2022138958A1 PCT/JP2021/048381 JP2021048381W WO2022138958A1 WO 2022138958 A1 WO2022138958 A1 WO 2022138958A1 JP 2021048381 W JP2021048381 W JP 2021048381W WO 2022138958 A1 WO2022138958 A1 WO 2022138958A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
resin sheet
wrapping
pore
polishing pad
Prior art date
Application number
PCT/JP2021/048381
Other languages
English (en)
French (fr)
Inventor
哲也 河野
Original Assignee
富士紡ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021205047A external-priority patent/JP2022103096A/ja
Priority claimed from JP2021205051A external-priority patent/JP2022103097A/ja
Priority claimed from JP2021205119A external-priority patent/JP2022103100A/ja
Priority claimed from JP2021205117A external-priority patent/JP2022103099A/ja
Application filed by 富士紡ホールディングス株式会社 filed Critical 富士紡ホールディングス株式会社
Priority to KR1020237017705A priority Critical patent/KR20230121042A/ko
Priority to CN202180078379.6A priority patent/CN116568734A/zh
Publication of WO2022138958A1 publication Critical patent/WO2022138958A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/22Rubbers synthetic or natural
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/02Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by the reacting monomers or modifying agents during the preparation or modification of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing pad, a method for manufacturing the same, and a method for manufacturing a polished product, and a wrapping pad, a method for manufacturing the same, and a method for manufacturing a wrapping product.
  • optical materials such as lenses, parallel flat plates, and reflective mirrors, semiconductor wafers, semiconductor devices, hard disk substrates, metals, and materials such as ceramics are polished using a polishing pad.
  • Patent Document 1 discloses a polishing pad having a pore having a first void capacity and a pore having a second void capacity.
  • optical materials such as lenses, parallel flat plates, and reflective mirrors, semiconductor wafers, semiconductor devices, hard disk substrates, metals, and materials such as ceramics are polished using a polishing pad.
  • Patent Document 2 describes a non-porous molded product of thermoplastic polyurethane, in which the maximum value of loss tangent in the range of ⁇ 70 ° C. to ⁇ 50 ° C. is 4.00 ⁇ 10 ⁇ 2 or less.
  • a polishing pad characterized by the above is disclosed.
  • Patent Document 2 discloses that the polishing process using such a polishing pad suppresses the generation of burrs at the corners of the recesses formed on the polished surface.
  • Patent Document 3 describes a polishing pad having a polishing layer made of a polyurethane resin foam having fine bubbles, wherein the polyurethane resin foam has an Asker D hardness of 20 to 60 degrees and a specific wear parameter within a predetermined range.
  • a polishing pad containing the polyurethane resin in the above further having a number of bubbles of 200 cells / mm 2 or more and an average bubble diameter of 50 ⁇ m or less.
  • Patent Document 3 discloses that such a polishing pad is less likely to cause scratches on the surface of the material to be polished, has excellent dressing properties, and has a higher polishing rate than conventional ones.
  • Patent Document 4 describes a polishing pad for chemical mechanical polishing containing a porous foam having an average pore diameter of 50 ⁇ m or less and 75% or more of the pores having a pore diameter of 20 ⁇ m or less of the average pore diameter;
  • a polishing pad is disclosed in which the body contains a thermoplastic polyurethane as a polymer resin; the thermoplastic polyurethane is a thermoplastic polyurethane having predetermined physical characteristics.
  • Patent Document 4 discloses that such a polishing pad can impart excellent flatness to the polished surface of the object to be polished.
  • Patent Document 5 describes a polishing pad using a foam of a polyurethane-based thermoplastic elastomer having a predetermined hardness, having a density of the foam of 0.2 to 1.3 g / cm 3 and an average cell diameter of 1 to 1.
  • a polishing pad having a size of 10 ⁇ m and a cell number of 1 ⁇ 10 7 cells / cm 3 or more is disclosed.
  • Patent Document 5 discloses that such a polishing pad can maintain a good foamed state and can impart excellent flatness to the polished surface of the object to be polished.
  • grinding is performed on materials such as lenses, parallel flat plates, optical materials such as reflective mirrors, semiconductor wafer materials such as SiC disks, crystals, metals, stones, wood, resin materials, and ceramics. Wrapping and polishing are performed, and a wrapping pad is used in the wrapping.
  • the density of the polymer material is about 0.7 g / cm 3 to about 3.0 g /.
  • a wrapping system comprising a polymeric material up to cm 3 and a slurry with abrasive particles is disclosed.
  • the wrapping process using such a polymer material enables processing with a high removal rate for a long period of time and has few defects due to the processing.
  • Japanese Patent No. 5248861 Japanese Patent No. 6518680 Japanese Unexamined Patent Publication No. 2014-11126 Japanese Patent No. 4624781 Japanese Patent No. 3649385 Special Table 2018-524193
  • foaming in a polishing pad obtained by a molding method generally has a great influence on polishing properties.
  • the smaller the foaming of the polishing pad the better the flatness of the object to be polished, but the polishing rate is lowered and the dressing property is also lowered due to the retention of the slurry and the smoothing of the surface.
  • the more foaming, especially the communication holes the worse the flatness of the object to be polished, but the polishing rate and the dressing property tend to improve.
  • polishing pad described in Patent Document 1 for each of a plurality of regions, for example, it has a first region having an average pore diameter of 50 ⁇ m or less and a second region having an average pore diameter of 1 ⁇ m to 20 ⁇ m. Since the void structure is different, polishing tends to be non-uniform.
  • the present invention has been made in view of the above-mentioned problems, and is a polishing pad, a method for manufacturing the polishing pad, and a method for producing the polishing pad, which can impart good flatness to the object to be polished and have excellent compatibility with the slurry.
  • the first object is to provide a method for manufacturing a polished product.
  • the conventional polishing pads such as those described in Patent Documents 2 to 5
  • the conventional polishing pads have at least insufficient affinity with the slurry or are covered. It has been found that the flatness of the polished material is insufficient.
  • a non-porous polishing pad as disclosed in Patent Document 2 has insufficient affinity with the slurry because the slurry does not easily penetrate into the polishing pad. Further, the polishing pad as disclosed in Patent Documents 3 to 5 cannot impart sufficient flatness to the object to be polished due to its low density, and has no affinity with the slurry. It is enough.
  • the present invention has been made in view of the above-mentioned problems, and is a polishing pad, a method for manufacturing the polishing pad, and a method for producing the polishing pad, which can impart good flatness to the object to be polished and have excellent compatibility with the slurry.
  • a second object is to provide a method for manufacturing a polished product.
  • the resin sheet used for the lapping process in which free abrasive grains (slurry) are interposed has the following requirements. That is, in the lapping process, a slurry containing high hardness abrasive grains (particularly, super abrasive grains) typified by diamond is often used, and in recent years, in order to reduce the finish polishing cost, excessive scratching is suppressed even in the lapping process. Is required to do. As a response to such a demand, it is conceivable to adjust the density of the resin sheet.
  • the abrasive grains are easily held in the foam of the resin sheet, and the abrasive grains tend to be in strong contact with the workpiece and can be prevented from being scratched.
  • simply lowering the density tends to cause deterioration of surface smoothing over time due to blinding during long-term use. Therefore, the resin sheet has brittleness that does not affect the physical properties and can be expected to have the appearance property (so-called dress property) by the dress and / or the self-renewability in which the surface is worn without being smoothed and a new surface appears. Is required. From this point of view, the technique described in Patent Document 6 still has room for improvement.
  • the present invention has been made in view of the above problems, and a third aspect of the present invention is to provide a wrapping pad, a method for manufacturing the same, and a method for manufacturing a wrapping product, which are excellent in dressability and whose surface is difficult to be smoothed.
  • the resin sheet used for the lapping process in which free abrasive grains (slurry) are interposed has the following requirements. That is, in the lapping process, a slurry containing expensive abrasive grains typified by diamond is often used, and a resin sheet capable of reducing the amount of such a slurry used is required. In other words, there is a need for a resin sheet that can efficiently use a small amount of slurry. As a response to such a demand, it is conceivable to adjust the density of the resin sheet, but simply increasing the density tends to reduce the utilization efficiency of the liquid component of the slurry.
  • a fourth object is to provide a wrapping pad, a method for manufacturing the same, and a method for manufacturing a wrapping product.
  • the present inventors have found that the first problem can be solved by a resin sheet having predetermined physical properties, and have completed the present invention. ..
  • a polishing pad with a resin sheet having pores In the pore distribution of the resin sheet measured by the mercury intrusion method with a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm, the integrated pore volume V in the range of pore diameter of 0.010 ⁇ m or more and 1.0 ⁇ m or less is 0. .21 cm 3 / g or more and 1.00 cm 3 / g or less, A polishing pad having a density of the resin sheet of 0.3 g / cm 3 or more and 0.9 g / cm 3 or less.
  • the ratio of the integrated pore volume V to the integrated pore volume V 0 in the range of the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less is 50% or more, [1].
  • the described polishing pad. [3] The polishing pad according to [1] or [2], wherein the average opening diameter measured for an opening of 10 ⁇ m or more in the resin sheet is 50 ⁇ m or more and 200 ⁇ m or less.
  • the peak position of the maximum peak in the pore diameter range of 0.010 ⁇ m or more and 360 ⁇ m or less is within the pore diameter range of 0.010 ⁇ m or more and 1.0 ⁇ m or less, [1] to The polishing pad according to any one of [3].
  • a method for producing a polishing pad comprising a step of obtaining a resin sheet having a microphase-separated structure by curing a mixed solution of at least one prepolymer and at least two curing agents.
  • the curing agent comprises a first curing agent having an NH 2 equivalent of 100 or more and 300 or less, and a second curing agent having an OH equivalent of 1000 or more and 2000 or less.
  • Production method. [9] A method for producing a polished product, which comprises a polishing step of polishing the object to be polished using the polishing pad according to any one of [1] to [6] in the presence of a polishing slurry.
  • the present inventors have found that the second problem can be solved by a resin sheet having predetermined physical properties, and have completed the present invention. ..
  • a polishing pad with a resin sheet having pores In the pore distribution of the resin sheet measured by the mercury intrusion method with a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm, the integrated pore volume V in the range of the pore diameter of 0.100 ⁇ m or more and 10.0 ⁇ m or less is determined. 0.020 cm 3 / g or more and 0.100 cm 3 / g or less, A polishing pad having a density of the resin sheet of 0.9 g / cm 3 or more and 1.3 g / cm 3 or less.
  • the integrated pore volume V'in the range of the pore diameter of 0.050 ⁇ m or more and less than 0.100 ⁇ m is 0.000 cm 3 / g or more and 0.120 cm 3 / g or less.
  • the ratio of the integrated pore volume V to the integrated pore volume V 0 in the range of the pore diameter of 0.100 ⁇ m or more and 360 ⁇ m or less is 50% or more [2- The polishing pad according to 1] or [2-2].
  • the ratio of the integrated pore volume V to the integrated pore volume V 0'in the range of the pore diameter of 0.050 ⁇ m or more and 360 ⁇ m or less is 50% or more [2].
  • the peak position of the maximum peak in the pore diameter range of 0.100 ⁇ m or more and 360 ⁇ m or less is within the pore diameter range of 0.100 ⁇ m or more and 10.0 ⁇ m or less [2-1. ]
  • the peak position of the maximum peak in the pore diameter range of 0.050 ⁇ m or more and 360 ⁇ m or less is within the pore diameter range of 0.050 ⁇ m or more and 10.0 ⁇ m or less [2-1. ] To [2-5].
  • the integrated pore volume V 0'in the range of the pore diameter of 0.050 ⁇ m or more and 360 ⁇ m or less is 0.040 cm 3 / g or more and 0.200 cm 3 / g or less.
  • the integrated pore volume V'' in the range of the pore diameter of 0.050 ⁇ m or more and 10.0 ⁇ m or less. However, it is 0.020 cm 3 / g or more and 0.140 cm 3 / g or less.
  • a method for producing a polishing pad comprising a step of obtaining a resin sheet having a microphase-separated structure by curing a mixed solution of at least one prepolymer and at least two curing agents.
  • the curing agent is a first curing agent having an NH 2 equivalent of 100 or more and 300 or less, a second curing agent having an OH equivalent of 200 or more and 500 or less, and a third curing agent having an OH equivalent of 1000 or more and 2000 or less.
  • the method for manufacturing a polishing pad according to [2-12] which comprises a curing agent.
  • a method for producing a polished product which comprises a polishing step of polishing the object to be polished using the polishing pad according to any one of [2-1] to [2-11] in the presence of a polishing slurry.
  • the present inventors have found that the third problem can be solved by a resin sheet having predetermined physical properties, and have completed the present invention. ..
  • a wrapping pad comprising a resin sheet having pores.
  • the integrated pore volume V in the range of pore diameters of 0.010 ⁇ m or more and 1.0 ⁇ m or less is 0. .21 cm 3 / g or more and 1.00 cm 3 / g or less
  • the ratio of the integrated pore volume V to the integrated pore volume V 0 in the range of the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less is 50% or more [3-1].
  • the wrapping pad described in. [3-3] The wrapping pad according to [3-1] or [3-2], wherein the average opening diameter measured for an opening of 10 ⁇ m or more in the resin sheet is 50 ⁇ m or more and 200 ⁇ m or less.
  • the peak position of the maximum peak in the pore diameter range of 0.010 ⁇ m or more and 360 ⁇ m or less is within the pore diameter range of 0.010 ⁇ m or more and 1.0 ⁇ m or less [3-1. ]
  • [3-6] The wrapping pad according to any one of [3-1] to [3-5], wherein the resin sheet contains polyurethane.
  • [3-7] The method for manufacturing the wrapping pad according to any one of [3-1] to [3-6].
  • a method for producing a wrapping pad which comprises a step of obtaining a resin sheet having a microphase separation structure by curing a mixed solution of at least one prepolymer and at least two curing agents.
  • the curing agent comprises a first curing agent having an NH 2 equivalent of 100 or more and 300 or less, and a second curing agent having an OH equivalent of 1000 or more and 2000 or less. How to make the pad.
  • a method for manufacturing a wrapping work piece which comprises a wrapping step of wrapping the work piece using the wrapping pad according to any one of [3-1] to [3-6] in the presence of a slurry.
  • the present inventors have found that the fourth problem can be solved by a resin sheet having predetermined physical properties, and have completed the present invention. ..
  • a wrapping pad comprising a resin sheet having pores.
  • the integrated pore volume V in the range of the pore diameter of 0.100 ⁇ m or more and 10.0 ⁇ m or less is determined.
  • 0.020 cm 3 / g or more and 0.100 cm 3 / g or less is determined.
  • the integrated pore volume V'in the range of the pore diameter of 0.050 ⁇ m or more and less than 0.100 ⁇ m is 0.000 cm 3 / g or more and 0.120 cm 3 / g or less.
  • the ratio of the integrated pore volume V to the integrated pore volume V 0 in the range of the pore diameter of 0.100 ⁇ m or more and 360 ⁇ m or less is 50% or more [4-]. 1] or the wrapping pad according to [4-2].
  • the ratio of the integrated pore volume V to the integrated pore volume V 0'in the range of the pore diameter of 0.050 ⁇ m or more and 360 ⁇ m or less is 50% or more [4.
  • the peak position of the maximum peak in the pore diameter range of 0.100 ⁇ m or more and 360 ⁇ m or less is within the pore diameter range of 0.100 ⁇ m or more and 10.0 ⁇ m or less [4-1. ]
  • the peak position of the maximum peak in the pore diameter range of 0.050 ⁇ m or more and 360 ⁇ m or less is within the pore diameter range of 0.050 ⁇ m or more and 10.0 ⁇ m or less [4-1. ] To [4-5].
  • the integrated pore volume V 0 in the range of the pore diameter of 0.100 ⁇ m or more and 360 ⁇ m or less is 0.040 cm 3 / g or more and 0.120 cm 3 / g or less [4.
  • the integrated pore volume V 0'in the range of the pore diameter of 0.050 ⁇ m or more and 360 ⁇ m or less is 0.040 cm 3 / g or more and 0.200 cm 3 / g or less.
  • the integrated pore volume V'' in the range of the pore diameter of 0.050 ⁇ m or more and 10.0 ⁇ m or less. Is 0.020 cm 3 / g or more and 0.140 cm 3 / g or less.
  • a method for producing a wrapping pad which comprises a step of obtaining a resin sheet having a microphase separation structure by curing a mixed solution of at least one prepolymer and at least two curing agents.
  • the curing agent is a first curing agent having an NH 2 equivalent of 100 or more and 300 or less, a second curing agent having an OH equivalent of 200 or more and 500 or less, and a third curing agent having an OH equivalent of 1000 or more and 2000 or less.
  • the method for producing a wrapping pad according to [4-12] which comprises a curing agent.
  • a method for manufacturing a wrapping work piece which comprises a wrapping step of wrapping the work piece using the wrapping pad according to any one of [4-1] to [4-11] in the presence of a slurry.
  • FIG. 1-1 shows the measurement results of the integrated pore volume (pore distribution) of the resin sheet of Example 1 by the mercury intrusion method.
  • FIG. 1-2 is an SEM image obtained by observing the surface of the resin sheet of Example 1 at a magnification of 500 with a scanning electron microscope.
  • FIG. 1-3 (A) is an SEM image obtained by observing the surface of the resin sheet of Example 1 with a scanning electron microscope at a magnification of 2000.
  • FIG. 1-3 (B) the portion where the microphase-separated structure (gyroid structure) is observed is surrounded by a broken line in FIG. 1-3 (A).
  • FIG. 1-4 shows the measurement results of the integrated pore volume (pore distribution) of the resin sheet of Example 2 by the mercury intrusion method.
  • FIG. 1-5 is an SEM image obtained by observing the surface of the resin sheet of Example 2 at a magnification of 500 with a scanning electron microscope.
  • FIG. 1-6 shows the measurement results of the integrated pore volume (pore distribution) of the resin sheet of Comparative Example 1 by the mercury intrusion method.
  • FIG. 1-7 is an SEM image obtained by observing the surface of the resin sheet of Comparative Example 1 with a scanning electron microscope at a magnification of 500.
  • FIG. 2-1 shows the measurement results of the integrated pore volume (pore distribution) of the resin sheet of Example 1 by the mercury intrusion method.
  • FIG. 1-5 is an SEM image obtained by observing the surface of the resin sheet of Example 2 at a magnification of 500 with a scanning electron microscope.
  • FIG. 1-6 shows the measurement results of the integrated pore volume (pore distribution) of the resin sheet of Comparative Example 1 by the mercury intr
  • FIG. 2-2 (A) is an SEM image obtained by observing the surface of the resin sheet of Example 1 with a scanning electron microscope at a magnification of 500.
  • FIG. 2-2 (B) the portion where the microphase-separated structure (gyroid structure) is observed is surrounded by a broken line in FIG. 2-2 (A).
  • FIG. 2-3 is an SEM image obtained by observing the surface of the resin sheet of Example 2 at a magnification of 500 with a scanning electron microscope.
  • FIG. 2-4 shows the measurement results of the integrated pore volume (pore distribution) of the resin sheet of Comparative Example 1 by the mercury intrusion method.
  • FIG. 2-5 is an SEM image obtained by observing the surface of the resin sheet of Comparative Example 1 with a scanning electron microscope at a magnification of 500.
  • FIG. 3-1 is a measurement result of the integrated pore volume (pore distribution) of the resin sheet of Example 1 by the mercury intrusion method.
  • FIG. 3-2 is an SEM image obtained by observing the surface of the resin sheet of Example 1 at a magnification of 500 with a scanning electron microscope.
  • FIG. 3-3 (A) is an SEM image obtained by observing the surface of the resin sheet of Example 1 with a scanning electron microscope at a magnification of 2000.
  • FIG. 3-3 (B) the portion where the microphase-separated structure (gyroid structure) is observed is surrounded by a broken line in FIG. 3-3 (A).
  • FIG. 3-4 shows the measurement results of the integrated pore volume (pore distribution) of the resin sheet of Example 2 by the mercury intrusion method.
  • FIG. 3-5 is an SEM image obtained by observing the surface of the resin sheet of Example 2 at a magnification of 500 with a scanning electron microscope.
  • FIG. 3-6 shows the measurement results of the integrated pore volume (pore distribution) of the resin sheet of Comparative Example 1 by the mercury intrusion method.
  • FIG. 3-7 is an SEM image obtained by observing the surface of the resin sheet of Comparative Example 1 with a scanning electron microscope at a magnification of 500.
  • FIG. 4-1 shows the measurement results of the integrated pore volume (pore distribution) of the resin sheet of Example 1 by the mercury intrusion method.
  • FIG. 3-5 is an SEM image obtained by observing the surface of the resin sheet of Example 2 at a magnification of 500 with a scanning electron microscope.
  • FIG. 3-6 shows the measurement results of the integrated pore volume (pore distribution) of the resin sheet of Comparative Example 1 by the mercury intr
  • FIG. 4-2 (A) is an SEM image obtained by observing the surface of the resin sheet of Example 1 with a scanning electron microscope at a magnification of 500.
  • FIG. 4-2 (B) the portion where the microphase-separated structure (gyroid structure) is observed is surrounded by a broken line in FIG. 4-2 (A).
  • FIG. 4-3 is an SEM image obtained by observing the surface of the resin sheet of Example 2 at a magnification of 500 with a scanning electron microscope.
  • FIG. 4-4 shows the measurement results of the integrated pore volume (pore distribution) of the resin sheet of Comparative Example 1 by the mercury intrusion method.
  • FIG. 4-5 is an SEM image obtained by observing the surface of the resin sheet of Comparative Example 1 with a scanning electron microscope at a magnification of 500.
  • the present embodiment will be described in the order of ⁇ first embodiment>, ⁇ second embodiment>, ⁇ third embodiment>, and ⁇ fourth embodiment>.
  • the present invention is not limited to this, and various modifications can be made without departing from the gist thereof.
  • the polishing pad of the present embodiment (hereinafter, unless otherwise specified, "the present embodiment" in the ⁇ first embodiment> means the first embodiment) is a polishing pad provided with a resin sheet having pores.
  • the integrated pores In the pore distribution of the resin sheet measured by the mercury intrusion method with a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm, the integrated pores have a pore diameter of 0.010 ⁇ m or more and 1.0 ⁇ m or less.
  • the volume V is 0.21 cm 3 / g or more and 1.00 cm 3 / g or less, and the density of the resin sheet is 0.3 g / cm 3 or more and 0.9 g / cm 3 or less. Since the polishing pad of the present embodiment is configured as described above, it is possible to impart good flatness to the object to be polished and to have an excellent affinity with the slurry.
  • the polishing pad of the present embodiment is not particularly limited as long as it includes the resin sheet of the present embodiment, and the polishing pad may have a configuration other than the resin sheet.
  • Examples of the structure of the polishing pad other than the resin sheet include conventionally known polishing layers, cushion layers, adhesive layers, and the like.
  • the polishing pad of the present embodiment preferably has the above resin sheet as a polishing layer. "Having a resin sheet as a polishing layer” means that at least one surface of the polishing pad of the present embodiment corresponds to the surface of the resin sheet of the present embodiment, and the surface of the resin sheet corresponds to the surface of the polishing of the present embodiment. At this time, it means that the surface becomes a polished surface that is pressed against the object to be polished. Therefore, the polishing pad of the present embodiment is preferably composed of at least one side of the resin sheet of the present embodiment. Further, the polishing pad of the present embodiment may be made of only the resin sheet of the present embodiment.
  • the polishing pad of the present embodiment may be grooved, embossed, and / or hole-processed (punching) on the polished surface, if necessary, and may be provided with a light transmitting portion.
  • the shape of the grooving and embossing is not particularly limited, and examples thereof include a grid type, a concentric type, and a radial type.
  • the resin sheet in the present embodiment has a density of 0.3 g / cm 3 or more and 0.9 g / cm 3 or less.
  • the density of the resin sheet in the present embodiment is 0.3 g / cm 3 or more, the polishing pad is not easily deformed by pressure, so that it is given from the polishing pad to the object to be polished in the polishing process.
  • the force becomes uniform in the direction of the polished surface.
  • the polished surface of the object to be polished can be further flattened.
  • "the polished surface of the object to be polished is flat" means that the polished surface of the object to be polished is flatter as a whole.
  • the density of the resin sheet in the present embodiment is preferably 0.4 g / cm 3 or more, more preferably 0.45 g / cm 3 or more.
  • the density of the resin sheet in the present embodiment is 0.9 g / cm 3 or less, the hardness of the resin sheet tends to be low, and in the polishing process using a polishing pad provided with such a resin sheet, scratches tend to occur. Tends to be able to suppress the occurrence of.
  • the density of the resin sheet in the present embodiment can be measured by a conventionally known method. For example, the mass and volume of the resin sheet piece may be measured by a usual method, and the density may be obtained from the obtained values.
  • the method for controlling the density of the resin sheet is not particularly limited, but for example, the polishing pad may be obtained by the method for manufacturing the polishing pad according to the present embodiment described later.
  • the density of the resin sheet tends to increase.
  • the resin sheet in the present embodiment has pores, has a contact angle of 130 °, and has a mercury surface tension of 485 dyn / cm.
  • the integrated pore volume V in the range of the pore diameter is 0.21 cm 3 / g or more and 1.00 cm 3 / g or less.
  • the "pore distribution" means the pore distribution measured by the mercury intrusion method having a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm. do.
  • the mercury intrusion method is a method capable of measuring the pore distribution on the surface of a measurement sample by filling the pores on the surface of the measurement sample with mercury while sweeping the applied pressure. Therefore, when the pore distribution of a foam material is measured by the mercury intrusion method, the pore distribution mainly reflects the pore distribution of the communicating bubbles (generally also referred to as "open cells") and is independent. The contribution of the pore distribution of bubbles is small.
  • the present inventors have an integrated pore volume V of 0.21 cm 3 in the pore diameter range of 0.010 ⁇ m or more and 1.0 ⁇ m or less in the pore distribution measured by the mercury intrusion method. It was found that when it is / g or more, the affinity with the slurry in the polishing pad becomes sufficiently good. This is because when the integrated pore volume V is 0.21 cm 3 / g or more, the continuous bubbles having a pore diameter of 0.010 ⁇ m or more and 1.0 ⁇ m or less are distributed throughout the resin sheet, and the polishing process is performed. It is presumed that this is because the slurry sometimes permeates evenly into the resin sheet through the communicating bubbles.
  • the reason why the integrated pore volume V is 0.21 cm 3 / g or more and the affinity of the polishing pad with the slurry is sufficiently good is not limited to the above.
  • the integrated pore volume V is preferably 0.30 cm 3 / g or more, more preferably 0.40 cm 3 / g or more. Is.
  • the integrated pore volume V is 1.00 cm 3 / g or less. Since the integrated pore volume V is 1.00 cm 3 / g or less, the density of the resin sheet tends to be within the above range, and in the polishing process using a polishing pad provided with such a resin sheet, the surface is covered.
  • the polished surface of the polished material can be made flatter.
  • the integrated pore volume V is preferably 0.90 cm 3 / g or less.
  • the resin sheet becomes excellent in dressing property.
  • dressing or “dressing” means using a dressing jig (for example, diamond dresser or sandpaper) to which abrasive grains and the like are fixed before polishing the object to be polished. It means a process of adjusting the surface roughness of the polished surface and adjusting the flatness.
  • excellent in dressing property means that sufficient dressing can be performed by processing under relatively easy conditions.
  • the “polished surface” means a surface on which the polishing pad comes into contact with or is expected to come into contact with the object to be polished when the object to be polished is polished by the polishing pad.
  • the pore diameter of the resin sheet is 0.010 ⁇ m or more and 360 ⁇ m or less.
  • the ratio of the integrated pore volume V in the range of the pore diameter of 0.010 ⁇ m or more and 1.0 ⁇ m or less to the integrated pore volume V 0 in the range of is preferably 50% or more.
  • the ratio (V / V 0 ) of the integrated pore volume V to the integrated pore volume V 0 is preferably 0.50 or more.
  • the ratio of the integrated pore volume V to the integrated pore volume V 0 is more preferably 60% or more, further preferably 65% or more, still more preferably 70% or more.
  • the upper limit of the ratio of the integrated pore volume V to the integrated pore volume V 0 is not particularly limited, and the ratio of the integrated pore volume V to the integrated pore volume V 0 may be 100% or less, and may be 99% or less. It may be 95% or less, 90% or less, 85% or less, or 80% or less.
  • the peak position of the maximum peak in the pore diameter range of 0.010 ⁇ m or more and 360 ⁇ m or less is preferably within the pore diameter range of 0.010 ⁇ m or more and 1.0 ⁇ m or less. ..
  • the pore distribution is measured as the integrated pore volume from the maximum pore diameter in the measurement range. Therefore, the "peak position of the maximum peak in the range of the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less" is the Log differential pore volume distribution calculated from the pore distribution obtained by the mercury intrusion method (dV / d (logD).
  • the maximum peak means the maximum point having the largest maximum value when there are a plurality of maximum points in the range of the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less.
  • the resin sheet has a pore diameter of 0.010 ⁇ m or more and 1.0 ⁇ m or less. In the range, since the distribution has more uniform pores, the affinity of the polishing pad with the slurry and the dressing property tend to be further improved.
  • the peak position of the maximum peak in the range of the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less is more preferably 0.010 ⁇ m or more and 0.5 ⁇ m or less. It is more preferably within the range of pore diameter of 0.030 ⁇ m or more and 0.5 ⁇ m or less, and even more preferably 0.050 ⁇ m or more and 0.5 ⁇ m or less. From the same viewpoint, the position of the maximum peak in the range of 1.0 ⁇ m or more and 360 ⁇ m or less is more preferably in the range of the pore diameter of 50 ⁇ m or more and 200 ⁇ m or less.
  • the number of peaks in the pore diameter range of 0.010 ⁇ m or more and 360 ⁇ m or less is preferably 2 or more and 4 or less, more preferably 2 and even more preferable. Is 1 in 0.010 ⁇ m or more and 1.0 ⁇ m or less and 1 in 1.0 ⁇ m or more and 360 ⁇ m or less. When the number of peaks is within the above range, the distribution has more uniform pores, so that the affinity of the polishing pad with the slurry and the dressing property tend to be further improved.
  • the maximum peak height in the pore diameter range of 0.010 ⁇ m or more and 1.0 ⁇ m or less is the maximum peak height in the pore diameter range of 1.0 ⁇ m or more and 360 ⁇ m or less. In comparison, it is preferably 2 times or more, more preferably 2.5 times or more, and further preferably 3 times or more.
  • the integrated pore volume V 0 in the range of the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less is preferably 0.1 cm 3 / g or more and 2.0 cm 3 / g or less. Yes, more preferably 0.4 cm 3 / g or more and 2.0 cm 3 / g or less, still more preferably 0.5 cm 3 / g or more and 1.5 cm 3 / g or less, still more preferably 0.6 cm 3 It is more than / g and 1.2 cm 3 / g or less.
  • the integrated pore volume V 0 is within the above range, the balance between the flatness imparted to the object to be polished and the affinity with the slurry tends to be further improved.
  • the integrated pore volume V and the integrated pore volume V 0 are calculated from the pore distribution measured by the mercury intrusion method with a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm.
  • the method described in Examples can be referred to.
  • the polishing pad may be obtained by the method for manufacturing the polishing pad of the present embodiment described later.
  • the resin sheet in the present embodiment preferably has a microphase-separated structure.
  • the "micro phase separation structure” means a phase separation structure formed through micro phase separation.
  • microphase separation means that a microscopic (typically, micrometer-order) structural pattern is repeated with a periodicity of at least one dimension in a macroscopically homogeneous object. It means the phase separation that occurs.
  • Microphase separation can be achieved, for example, by adopting preferable manufacturing conditions in the method for manufacturing a polishing pad according to the present embodiment, which will be described later.
  • Typical examples of the microphase-separated structure include, but are not limited to, a spherical structure (sea island structure), a cylinder structure, a lamellar structure, and a three-dimensional network structure.
  • the microphase-separated structure in the present embodiment preferably includes a cylinder structure, a lamellar structure, and a three-dimensional network structure, and more preferably a three-dimensional network structure.
  • the three-dimensional network structure means a structure in which a network-like network is formed in a three-dimensional direction.
  • the three-dimensional network structure derived from the microphase separation may include a single gyroid structure and / or a double (multiple) gyroid structure.
  • the single gyroid structure is typically a network structure in which two tridents are twisted to form a pair of thin wire structures to form a unit cell, which is periodically repeated.
  • a double (multiple) gyroid structure means a structure in which two or more single gyroid structures are nested.
  • the cross section of the resin sheet having a continuously foaming structure derived from the injection of a conventional foaming agent or an inert gas has a substantially spherical foamed cross section and a resin flat portion (that is, a sea island shape between a sea of resin and islands of voids) is observed. Tend to be.
  • the resin sheet in the present embodiment has a double (multiple) gyroid structure
  • a structure in which two or more resins are mottled and phase-separated in a micrometer order is typically observed in the cross section.
  • an amorphous void cross section and a resin skeleton / resin skeleton cross section are typically observed in the cross section.
  • the resin skeleton portion is sufficiently larger than the voids, the resin skeleton portion may not be observed and may be observed substantially in the shape of a sea of resin. , It is formed in a three-dimensional network that communicates with each other.
  • the characteristics of both the mottled pattern of two or more resins, the irregular void cross section and the resin skeleton / resin skeleton cross section are observed, that is, In some cases, the boundary between the double (multiple) gyroid structure and the single gyroid structure cannot be clearly distinguished, but in this case, it can be evaluated as including at least one of the single gyroid structure and the double (multiple) gyroid structure.
  • the resin sheet in the present embodiment has a single gyroid structure and / or a double (multiple) gyroid structure, it is typically in the range of pore diameters of 0.010 ⁇ m or more and 10.0 ⁇ m or less in the Log differential pore volume distribution. A sharp peak (maximum value) is measured inside.
  • the resin sheet in this embodiment can contain two or more phases having different compositions.
  • the "composition" of the phase includes both the resin which is the main component of the phase and the components other than the main component contained in the phase, and further considers the compounding ratio of these. Therefore, the microphase-separated structure of the resin sheet in the present embodiment can include two or more phases in which at least one of the resin which is the main component of the phase and the components other than the main component contained in the phase are different from each other. Typically, it can include two or more phases that differ in at least one of the structure, average molecular weight, and functional group of the resin that is the main component of the phase.
  • phase and the other phase have different types of resins constituting the phase; the inclusion of additives contained in one phase and the other phase.
  • the amounts are different; and when the resin sheet is made of AB block polymer, one phase is a phase containing A block as a main component, and the other phase is a phase containing B block as a main component. Can be mentioned.
  • the first phase is a phase in which a predetermined prepolymer and a predetermined curing agent are cured
  • the second phase is a second phase.
  • the first phase is a phase in which the predetermined prepolymer and the predetermined curing agent are cured.
  • the second phase is a phase in which a curing agent different from the prepolymer in the first phase and the curing agent in the first phase is cured; and the first phase is a predetermined prepolymer and a predetermined curing agent.
  • the second phase is a phase in which a prepolymer different from the prepolymer in the first phase and a curing agent different from the curing agent in the first phase are cured.
  • the second phase is a phase in which a prepolymer different from the prepolymer in the first phase and a curing agent different from the curing agent in the first phase are cured.
  • the resin sheet in this embodiment can have voids due to microphase separation.
  • Such voids may be paraphrased as voids constituting the microphase-separated structure, and specific examples thereof include, but are not limited to, voids defined by a resin skeleton that gives a gyroid structure.
  • the voids may be derived from pores or may be derived from communication holes in which a plurality of pores communicate with each other.
  • the resin sheet having the microphase-separated structure in the present embodiment can be obtained, for example, by the method for manufacturing a polishing pad of the present embodiment, which will be described later. Further, the fact that the resin sheet has a microphase-separated structure can be confirmed by observing with a scanning electron microscope (SEM) at a magnification of about 300 to 3000 times.
  • SEM scanning electron microscope
  • the fact that the resin sheet does not have a microphase-separated structure containing two or more phases having different compositions or has the above-mentioned voids is an optical method such as an optical microscope and a phase difference microscope.
  • Methods using electron microscopes such as scanning electron microscopes and transmission electron microscopes, methods using particle scattering such as light scattering, neutron beam small angle scattering, and X-ray small angle scattering, X-ray diffraction methods, It can be observed by using a method such as a fluorescence method and a pulse NMR measurement method.
  • the average opening diameter measured for an opening of 10 ⁇ m or more is not particularly limited, but is preferably 50 ⁇ m or more and 300 ⁇ m or less, and more preferably 50 ⁇ m or more and 200 ⁇ m or less.
  • the average opening diameter can be measured, for example, by the method described in Examples described later. Further, the average opening diameter can be adjusted to the above range depending on, for example, the type and / or the amount of the foaming agent or the foam regulating agent.
  • the average thickness of the resin sheet in the present embodiment is not particularly limited, but is preferably 0.5 mm or more and 10.0 mm or less, more preferably 0.6 mm or more and 8.0 mm or less, and further preferably 0.7 mm. It is 5.0 mm or less.
  • the compressibility of the resin sheet in the present embodiment is not particularly limited, but is preferably 0.1% or more and 5.0% or less, and more preferably 0.3% or more and 3.0% or less.
  • the compressibility of the resin sheet can be determined by using a shopper type thickness measuring instrument (pressurized surface: circular with a diameter of 1 cm) in accordance with Japanese Industrial Standards (JIS L 1021). Specifically, the thickness t0 after applying the initial load for 30 seconds from the unloaded state is measured, and then the thickness t1 after applying the final pressure for 30 seconds from the state of the thickness t0 is measured. Therefore, it can be calculated from the following formula.
  • the initial load is 100 g / cm 2 and the final pressure is 1120 g / cm 2 .
  • Compressibility (%) 100 ⁇ (t0-t1) / t0
  • the compressive elastic modulus of the resin sheet in the present embodiment is not particularly limited, but is preferably 70% or more and 100% or less, and more preferably 75% or more and 95% or less.
  • the compressive elastic modulus of the resin sheet can be determined by using a shopper type thickness measuring instrument (pressurized surface: circular with a diameter of 1 cm) in accordance with Japanese Industrial Standards (JIS L 1021). Specifically, the thickness t0 after applying the initial load for 30 seconds from the unloaded state is measured, and then the thickness t1 after applying the final pressure for 30 seconds from the state of the thickness t0 is measured.
  • the thickness t0' is measured from the following formula. Can be calculated.
  • the initial load is 100 g / cm 2 and the final pressure is 1120 g / cm 2 .
  • Compressibility (%) 100 ⁇ (t0'-t1) / (t0-t1)
  • the shore D hardness of the resin sheet in this embodiment is not particularly limited, but is preferably 10 or more and 70 or less, and more preferably 20 or more and 60 or less.
  • the shore D hardness of the resin sheet can be determined by using a D-type hardness tester in accordance with the Japanese Industrial Standards (JIS K 7311).
  • the material of the resin sheet in this embodiment is not particularly limited.
  • Examples of the material of the resin sheet include polyurethane resin.
  • the polyurethane resin is not particularly limited, and examples thereof include polyester-based polyurethane resins, polyether-based polyurethane resins, and polycarbonate-based polyurethane resins. These may be used individually by 1 type or in combination of 2 or more type.
  • the material of the resin sheet in the present embodiment preferably contains at least one of a polyester-based polyurethane resin and a polyether-based polyurethane resin.
  • a polyurethane resin which is a cured product of a mixed solution containing a urethane prepolymer and at least two kinds of curing agents, which will be described later in the method for producing a polishing pad of the present embodiment.
  • the resin sheet in the present embodiment may contain a component derived from an additive in addition to the resin component.
  • additives include defoaming agents, catalysts, foaming agents, foaming agents, abrasive grains, dyes, pigments, solid fine particles, and flame-retardant agents, which will be described later in the method for manufacturing a polishing pad of the present embodiment.
  • examples thereof include a hydrophilizing agent, a hydrophobizing agent, a light resistant agent, an antioxidant, and an antistatic agent.
  • the method for producing a polishing pad of the present embodiment includes a step of obtaining a resin sheet having a microphase-separated structure by curing a mixed solution of at least one prepolymer and at least two curing agents. According to such a method, the polishing pad of the present embodiment can be easily manufactured. Hereinafter, each step of the method for manufacturing a polishing pad will be described in detail.
  • the method for producing a polishing pad of the present embodiment can include a mixing step of preparing a mixed solution of at least one prepolymer and at least two curing agents.
  • a resin sheet having a microphase-separated structure can be obtained in the molding step after the mixing step.
  • the mixing step for example, at least one prepolymer heated to 30 ° C to 90 ° C and at least two curing agents are put into a temperature-adjustable jacketed mixer and stirred at 30 ° C to 130 ° C. do it.
  • the mixed solution may be received in a tank with a jacket with a stirrer and aged.
  • the stirring time is appropriately adjusted depending on the number of teeth, the number of rotations, the clearance, etc. of the mixer, and is, for example, 0.1 to 60 seconds.
  • the curing agent used in the mixing step is not particularly limited, and examples thereof include an amino group-containing compound and a hydroxyl group-containing compound.
  • the amino group-containing compound is not particularly limited, and is, for example, 4,4'-methylenebis (2-chloroaniline) (MOCA), ethylenediamine, propylenediamine, hexamethylenediamine, isophoronediamine, dicyclohexylmethane-4,4'-.
  • Diamine 4-Methyl-2,6-bis (methylthio) -1,3-benzenediamine, 2-methyl-4,6-bis (methylthio) -1,3-benzenediamine, 2,2-bis (3-bis) Amino-4-hydroxyphenyl) propane, 2,2-bis [3- (isopropylamino) -4-hydroxyphenyl] propane, 2,2-bis [3- (1-methylpropylamino) -4-hydroxyphenyl] Propane, 2,2-bis [3- (1-methylpentylamino) -4-hydroxyphenyl] propane, 2,2-bis (3,5-diamino-4-hydroxyphenyl) propane, 2,6-diamino- Examples thereof include 4-methylphenol, trimethylethylenebis-4-aminobenzonate, polytetramethylene oxide-di-p-aminobenzonate and the like.
  • As the amino group-containing compound 4,4'-methylenebis (2-chloroaniline) is preferable.
  • the hydroxyl group-containing compound is not particularly limited, and is, for example, ethylene glycol, propylene glycol, diethylene glycol, trimethylene glycol, tetraethylene glycol, triethylene glycol, dipropylene glycol, 1,4-butanediol, and 1,3-butanediol.
  • a bifunctional (diol) compound as the hydroxyl group-containing compound rather than a trifunctional or higher functional compound.
  • a bifunctional (diol) compound as the hydroxyl group-containing compound, polytetramethylene glycol is more preferable.
  • the above curing agent is used in combination of two or more.
  • the combination of the curing agents is not particularly limited, but a combination described later is preferable.
  • the active hydrogen equivalent of the curing agent (for example, NH 2 equivalent and OH equivalent) is not particularly limited, and may be, for example, 50 or more and 5000 or less, 100 or more and 4000 or less, and 130 or more and 3000 or less. There may be.
  • the OH equivalent of the curing agent, which is a hydroxyl group-containing compound may be 100 or more and 5000 or less, 200 or more and 4000 or less, or 300 or more and 3000 or less.
  • the NH 2 equivalent of the curing agent, which is an amino group-containing compound may be 50 or more and 2000 or less, 75 or more and 1000 or less, or 100 or more and 300 or less.
  • At least two types of curing agents are used in the mixing step.
  • a combination of curing agents it is preferable to use curing agents having low compatibility with each other and / or having different reactivity and / or having different active hydrogen equivalents. According to such an embodiment, there is a tendency that a microphase-separated structure can be obtained more reliably.
  • combinations of curing agents having different reactivity include combinations of curing agents having different active hydrogen groups, and more specifically, examples thereof include combinations of amino group-containing compounds and hydroxyl group-containing compounds.
  • two or more types of curing agents having the same active hydrogen group that is, when two or more types of hydroxyl group-containing compounds are used, or when two or more types of amino group-containing compounds are used, such two or more types of curing agents are preferable.
  • the two or more kinds of curing agents include a curing agent having an active hydrogen equivalent of 200 or more and 500 or less, and a curing agent having an active hydrogen equivalent of 1000 or more and 2000 or less.
  • the ratio of the amount of the curing agent with a small equivalent to the amount of the curing agent with a large active hydrogen equivalent is 1 for "a curing agent with a small active hydrogen equivalent: a curing agent with a large active hydrogen equivalent" in terms of the number of active hydrogen groups. It is preferably 1: 1 to 1:15, more preferably 1: 1 to 1:10.
  • the two or more types of curing agents When two or more types of curing agents having the same active hydrogen group are used, the two or more types of curing agents have an active hydrogen equivalent of 200 or more and 500 or less, and an active hydrogen equivalent of 1000 or more and 2000 or less.
  • the ratio of the amount of the curing agent having an active hydrogen equivalent of 200 or more and 500 or less to the amount of the curing agent having an active hydrogen equivalent of 1000 or more and 2000 or less is "the active hydrogen equivalent is A curing agent having an active hydrogen equivalent of 200 or more and 500 or less: a curing agent having an active hydrogen equivalent of 1000 or more and 2000 or less ”is preferably 1: 1 to 1:15 in terms of the number of active hydrogen groups, and is preferably 1: 1 to 1:10. Is more preferable.
  • At least two types of curing agents preferably contain an amino group-containing compound and a hydroxyl group-containing compound.
  • the at least two curing agents more preferably contain one amino group-containing compound and two or more hydroxyl group-containing compounds, or two or more amino group-containing compounds and one hydroxyl group-containing compound.
  • the at least two types of curing agents more preferably contain one type of amino group-containing compound and two or more types of hydroxyl group-containing compounds.
  • the difference between the NH 2 equivalent of the amino group-containing compound and the OH equivalent of the hydroxyl group-containing compound is not particularly limited, but the OH of the hydroxyl group-containing compound is not particularly limited.
  • the equivalent amount is preferably larger, and the OH equivalent of the hydroxyl group-containing compound is more preferably 100 or more and 2000 or less larger than the NH 2 equivalent of the amino group-containing compound.
  • the ratio of the amount of the curing agent used as the amino group-containing compound to the total amount of the used amount of the curing agent is 35 in terms of the number of functional groups. It is preferably% or more and 95% or less, and more preferably 40% or more and 90% or less.
  • At least two types of curing agents have an NH 2 equivalent of 100 or more and 300 or less as a first curing agent (amino group-containing compound) and an OH equivalent of 1000 or more and 2000 or less. It contains a second curing agent (hydroxyl group-containing compound).
  • the ratio of the amount of the first curing agent used and the amount of the second curing agent used is not particularly limited, but the amount of the first curing agent used is the ratio of the number of functional groups to the total amount of the curing agent used. It is preferably 35% or more and 98% or less, more preferably 35% or more and 95% or less, and further preferably 40% or more and 90% or less.
  • the amount of the second curing agent used is preferably 2% or more and 60% or less, more preferably 3% or more and 60% or less, in terms of the functional group number ratio with respect to the total amount of the curing agent used. It is more preferably 5% or more and 50% or less.
  • the amount of the first curing agent used is preferably 10% or more and 90% or less, and more preferably 15% or more and 80% or less in terms of mass ratio with respect to the total amount of the curing agent used. ..
  • the amount of the second curing agent used is preferably 10% or more and 50% or less, and more preferably 15% or more and 40% or less in terms of mass ratio with respect to the total amount of the curing agent used.
  • the total amount of the curing agent used is defined by the R value, which is the equivalent ratio of the active hydrogen groups (amino groups and hydroxyl groups) present in the curing agent when the number of functional groups of the prepolymer is 1.
  • the total amount of the curing agent used is preferably adjusted so that the R value is 0.7 or more and 1.3 or less.
  • the R value is more preferably 0.8 or more and 1.2 or less.
  • the pore distribution measured by the mercury intrusion method with a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm was 0.010 ⁇ m more reliably.
  • two or more types of curing agents having low compatibility with each other are used, two or more types of curing agents having different reactivity with each other are used, and / or curing agents having different active hydrogen equivalents are used. Can be done. Even if a resin sheet having a clear microphase-separated structure cannot be obtained by such a combination, the types of curing agents are changed so as to have high compatibility with each other, and the reactivity with each other is similar. By making adjustments such as changing the curing agent so that the amount of active hydrogen is close to each other and / or changing the curing agent so that the active hydrogen equivalents of each other are close to each other, a resin sheet having a microphase-separated structure tends to be obtained. It is in.
  • the prepolymer used in the mixing step is not particularly limited, and examples thereof include urethane prepolymer.
  • examples of the urethane prepolymer include an adduct of hexamethylene diisocyanate and hexanetriol; an adduct of 2,4-tolylene diisocyanate and Plent's catechol; 2,4-tolylene diisocyanate and poly (oxytetramethylene) glycol.
  • diethylene glycol adduct diethylene glycol adduct; tolylene diisocyanate and hexanetriol adduct; tolylene diisocyanate and trimethylol propane adduct; xylylene diisocyanate and trimethylol propane adduct; hexamethylene diisocyanate and trimethylol propane Adducts; and adducts of isocyanuric acid and hexamethylene diisocyanate.
  • an isocyanate group-containing compound prepared by reacting a polyisocyanate compound with a polyol compound or various commercially available urethane prepolymers may be used.
  • the polyisocyanate compound used for preparing the isocyanate group-containing compound is not particularly limited as long as it has two or more isocyanate groups in the molecule.
  • examples of the diisocyanate compound having two isocyanate groups in the molecule include m-phenylenedi isocyanate, p-phenylenedi isocyanate, 2,6-toluene diisocyanate (2,6-TDI), and 2,4-toluene diisocyanate (2).
  • polyisocyanate compounds may be used alone or in combination of two or more.
  • a diisocyanate compound is preferable, and 2,4-TDI, and 2,6-TDI and MDI are more preferable.
  • polyol compound used for preparing an isocyanate group-containing compound examples include diol compounds such as ethylene glycol, diethylene glycol (DEG) and butylene glycol, triol compounds and the like; polypropylene glycol (PPG) and poly (oxytetramethylene) glycol (.
  • Polyether polyol compounds such as PTMG); polyester polyol compounds such as a reaction product of ethylene glycol and adipic acid and a reaction product of butylene glycol and adipic acid; polycarbonate polyol compound, polycaprolactone polyol compound and the like can be mentioned.
  • trifunctional propylene glycol to which ethylene oxide is added can also be used.
  • the polyol compound may be used alone or in combination of two or more.
  • the NCO equivalent of the urethane prepolymer is preferably 150 or more and 700 or less, more preferably 200 or more and 600 or less, and further preferably 200 or more and 500 or less.
  • “NCO equivalent” means "(mass part of polyisocyanate compound + mass part of polyol compound) / [(number of functional groups per molecule of polyisocyanate compound x mass part of polyisocyanate compound / molecular weight of polyisocyanate compound)-( It is a numerical value indicating the molecular weight of the urethane prepolymer per NCO group, which is determined by "the number of functional groups per molecule of the polyol compound x the mass part of the polyol compound / the molecular weight of the polyol compound)]".
  • At least one prepolymer is used in the mixing step.
  • the prepolymer two or more of the above may be used in combination, but one of them is preferably used alone. According to such an embodiment, the curing reaction tends to be easily controlled, and the shape of the microphase-separated structure tends to be easily controlled.
  • the prepolymer it is preferable to use a urethane prepolymer containing tolylene diisocyanate as a main component alone.
  • the amount of the prepolymer used is not particularly limited, but is preferably 30 parts by mass or more and 80 parts by mass or less, and more preferably 40 parts by mass or more and 75 parts by mass or less with respect to the entire mixed solution.
  • components other than the prepolymer and the curing agent may be mixed as additives.
  • a solvent such as polypropylene glycol
  • a defoaming agent such as a silicone-based defoaming agent
  • a catalyst such as a catalyst
  • a foaming agent such as water or hollow fine particles
  • Agents; and fillers such as cerium oxide; dyes; pigments; solid fine particles; flame retardants; hydrophilic agents; hydrophobic agents; lightfasteners; antioxidants; antistatic agents and the like.
  • the density of the obtained resin sheet is 0.3 g / cm 3 or more and 0.9 g / cm 3 or less, it is preferable to add a foaming agent for adjusting the density, and the amount of the foaming agent added can be adjusted. More preferred.
  • the reaction rate of the curing reaction can be controlled and the formed microphase separation structure can be controlled by adjusting the type and amount of the catalyst to be added.
  • the molding step is a step of obtaining a resin sheet having a microphase-separated structure by curing the mixture obtained as described above.
  • the mixed solution obtained in the mixing step may be poured into a mold preheated to 30 ° C. to 150 ° C. and heated at about 30 ° C. to 150 ° C. for about 10 minutes to 5 hours.
  • the prepolymer reacts with the curing agent to form a resin, so that the mixed solution is cured. Further, it may be secondarily cured by heating it in an oven at about 50 ° C. to 180 ° C. for about 10 minutes to 10 hours.
  • the mixed liquid is the above-mentioned one, a resin block having a microphase-separated structure can be obtained.
  • the reaction temperature at which the mixed solution is cured in the molding step can be appropriately adjusted depending on the type and compounding ratio of the prepolymer, curing agent and additive used, and by adjusting the reaction temperature, the curing reaction can be carried out. There is a tendency to be able to control the reaction rate and control the microphase-separated structure formed.
  • a resin sheet having a microphase separation structure is obtained by cutting out a resin sheet having an appropriate thickness from the resin block obtained as described above.
  • the obtained resin sheet may be aged at 30 ° C. to 150 ° C. for about 1 hour to 24 hours.
  • the resin sheet thus obtained is, for example, subsequently attached with a double-sided tape on one side and cut into a predetermined shape, preferably in the shape of a disk, to complete the polishing pad of the present embodiment.
  • the double-sided tape is not particularly limited, and can be arbitrarily selected and used from conventionally known double-sided tapes.
  • the polishing pad of the present embodiment may have a single-layer structure consisting of only a resin sheet, or may be composed of a plurality of layers in which another layer (cushion layer or substrate layer) is bonded to one side of the resin sheet. May be good.
  • a plurality of layers may be bonded and fixed while being pressed as necessary using double-sided tape, an adhesive or the like.
  • the double-sided tape and the adhesive used are not particularly limited, and can be arbitrarily selected from conventionally known double-sided tapes and adhesives.
  • the polishing pad of the present embodiment may be grooved, embossed, and / or holed (punched) on the surface, if necessary.
  • the shape of the grooving and embossing is not particularly limited, and examples thereof include a grid type, a concentric circle type, and a radial type.
  • the polishing pad may be dressed (ground) on the front surface and / or the back surface of the resin sheet. Since the resin sheet in the method for manufacturing a polishing pad of the present embodiment has communicating pores, it has excellent dressing properties and can be dressed under easy conditions.
  • the dressing treatment is not particularly limited, and dressing can be performed by a known method such as grinding with a diamond dresser.
  • the method for producing a polished product of the present embodiment includes a polishing step of polishing the object to be polished using the above-mentioned polishing pad in the presence of a polishing slurry to obtain a polished product.
  • the polishing step may be primary polishing (rough polishing), finish polishing, or both of them.
  • the holding surface plate and the polishing surface plate are relatively rotated while the object to be polished is pressed against the polishing pad side by the holding surface plate while supplying the polishing slurry.
  • the processed surface of the object to be polished is polished by chemical mechanical polishing with a polishing pad.
  • the holding surface plate and the polishing surface plate may rotate in the same direction at different rotation speeds, or may rotate in different directions.
  • the object to be polished may be polished while moving (rotating) inside the frame portion during the polishing process.
  • the polishing slurry includes water, an oxidizing agent typified by hydrogen hydrogen, chemical components such as an acid component and an alkaline component, additives, and abrasive grains (polishing particles; for example, SiC), depending on the object to be polished and the polishing conditions. , SiO 2 , Al 2 O 3 , and CeO 2 ) and the like.
  • the object to be polished is not particularly limited, and examples thereof include optical materials such as lenses, parallel flat plates, and reflective mirrors, semiconductor wafers, semiconductor devices, hard disk substrates, metals, and materials such as ceramics. ..
  • the polishing pad of the present embodiment (hereinafter, unless otherwise specified, "the present embodiment" in the ⁇ second embodiment> means the second embodiment) is provided with a resin sheet having pores and has a contact angle.
  • the integrated pore volume V in the pore diameter range of 0.100 ⁇ m or more and 10.0 ⁇ m or less is 0.020 cm 3 It is / g or more and 0.100 cm 3 / g or less, and the density of the resin sheet is 0.9 g / cm 3 or more and 1.3 g / cm 3 or less.
  • the polishing pad of the present embodiment is configured as described above, it is possible to impart good flatness to the object to be polished and to have an excellent affinity with the slurry. Further, the polishing pad of the present embodiment can be specified as follows from the viewpoint of the integrated pore volume V'described later. That is, the polishing pad of the present embodiment is provided with a resin sheet having pores, and has a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm.
  • the integrated pore volume V'' in the pore diameter range of 10.0 ⁇ m or less is 0.020 cm 3 / g or more and 0.140 cm 3 / g or less, and the density of the resin sheet is 0.9 g / cm 3 or more. It is 3 g / cm 3 or less.
  • the polishing pad of the present embodiment specified in this way can also impart good flatness to the object to be polished and has an excellent affinity with the slurry.
  • the polishing pad of the present embodiment is not particularly limited as long as it includes the resin sheet of the present embodiment, and the polishing pad may have a configuration other than the resin sheet.
  • Examples of the structure of the polishing pad other than the resin sheet include conventionally known polishing layers, cushion layers, adhesive layers, and the like.
  • the term "resin sheet in the present embodiment” is referred to, "a resin sheet having pores, measured by a mercury intrusion method having a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm".
  • the integrated pore volume V in the range of the pore diameter of 0.100 ⁇ m or more and 10.0 ⁇ m or less is 0.020 cm 3 / g or more and 0.100 cm 3 / g or less, and the resin sheet is concerned.
  • the integrated pore volume V'' in the range of pore diameter of 0.050 ⁇ m or more and 10.0 ⁇ m or less is 0.020 cm 3 / g or more and 0.140 cm 3 / g or less, and the resin is concerned. It includes both "resin sheets having a sheet density of 0.9 g / cm 3 or more and 1.3 g / cm 3 or less".
  • the polishing pad of the present embodiment preferably has the above resin sheet as a polishing layer. "Having a resin sheet as a polishing layer” means that at least one surface of the polishing pad of the present embodiment corresponds to the surface of the resin sheet of the present embodiment, and the surface of the resin sheet corresponds to the surface of the polishing of the present embodiment. At this time, it means that the surface becomes a polished surface that is pressed against the object to be polished. Therefore, the polishing pad of the present embodiment is preferably composed of at least one side of the resin sheet of the present embodiment. Further, the polishing pad of the present embodiment may be made of only the resin sheet of the present embodiment.
  • the polishing pad of the present embodiment may be grooved, embossed, and / or hole-processed (punching) on the polished surface, if necessary, and may be provided with a light transmitting portion.
  • the shape of the grooving and embossing is not particularly limited, and examples thereof include a grid type, a concentric type, and a radial type.
  • the resin sheet in the present embodiment has a density of 0.9 g / cm 3 or more and 1.3 g / cm 3 or less.
  • the density of the resin sheet in the present embodiment is 0.9 g / cm 3 or more, that is, when the resin sheet has a high density, the polishing pad is less likely to be deformed by pressure.
  • the force applied from the pad to the object to be polished becomes uniform in the direction of the polished surface.
  • the polished surface of the object to be polished can be further flattened.
  • "the polished surface of the object to be polished is flat” means that the polished surface of the object to be polished is flatter as a whole.
  • the density of the resin sheet in the present embodiment is preferably 0.9 g / cm 3 or more, more preferably 1.0 g / cm 3 or more, and further preferably 1.1 g / cm 3 or more. Is.
  • the density of the resin sheet exceeding 0.9 g / cm 3 means that the density of the resin measured by two significant figures is 0.91 g / cm 3 or more.
  • the density of the resin sheet in the present embodiment is 1.3 g / cm 3 or less, the hardness of the resin sheet tends to be low, and scratches occur in the polishing process using a polishing pad provided with such a resin sheet. Tends to be suppressed.
  • the density of the resin sheet in the present embodiment can be measured by a conventionally known method.
  • the mass and volume of the resin sheet piece may be measured by a usual method, and the density may be obtained from the obtained values.
  • the method for controlling the density of the resin sheet is not particularly limited, but for example, the polishing pad may be obtained by the method for manufacturing the polishing pad according to the present embodiment described later.
  • the density of the resin sheet can be increased by reducing the amount of the foaming agent or by not using the foaming agent.
  • the resin sheet in the present embodiment has pores and has a pore diameter of 0.100 ⁇ m or more and 10.0 ⁇ m or less in a pore distribution measured by a mercury intrusion method having a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm.
  • the integrated pore volume V in the range is 0.020 cm 3 / g or more and 0.100 cm 3 / g or less.
  • the "pore distribution" means the pore distribution measured by the mercury intrusion method having a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm. do.
  • the mercury intrusion method is a method capable of measuring the pore distribution on the surface of a measurement sample by filling the pores on the surface of the measurement sample with mercury while sweeping the applied pressure. Therefore, when the pore distribution of a foam material is measured by the mercury intrusion method, the pore distribution mainly reflects the pore distribution of the communicating bubbles (generally also referred to as "open cells") and is independent. The contribution of the pore distribution of bubbles is small.
  • the present inventors have an integrated pore volume V of 0.020 cm 3 in a pore diameter range of 0.100 ⁇ m or more and 10.0 ⁇ m or less. It was found that when it is / g or more, the affinity with the slurry in the polishing pad becomes sufficiently good. This is because when the integrated pore volume V is 0.020 cm 3 / g or more, the continuous bubbles having a pore diameter of 0.100 ⁇ m or more and 10.0 ⁇ m or less are distributed throughout the resin sheet, and the polishing process is performed. It is presumed that this is because the slurry sometimes permeates evenly into the resin sheet through the communicating bubbles.
  • the reason why the integrated pore volume V is 0.020 cm 3 / g or more and the affinity of the polishing pad with the slurry is sufficiently good is not limited to the above.
  • the integrated pore volume V is preferably 0.030 cm 3 / g or more, more preferably 0.040 cm 3 / g or more. It is more preferably 0.050 cm 3 / g or more. Further, when the integrated pore volume V is within the above range, the resin sheet becomes excellent in dressing property while having a high density.
  • dressing or “dressing” means using a dressing jig (for example, diamond dresser or sandpaper) to which abrasive grains and the like are fixed before polishing the object to be polished. It means a process of adjusting the surface roughness of the polished surface and adjusting the flatness. Further, “excellent in dressing property” means that sufficient dressing can be performed by processing under relatively easy conditions.
  • the “polished surface” means a surface on which the polishing pad comes into contact with or is expected to come into contact with the object to be polished when the object to be polished is polished by the polishing pad.
  • the integrated pore volume V is 0.100 cm 3 / g or less.
  • the integrated pore volume V is 0.100 cm 3 / g or less, the density of the resin sheet tends to be within the above range, and in the polishing process using a polishing pad provided with such a resin sheet, the surface is covered.
  • the polished surface of the polished material can be made flatter.
  • the integrated pore volume V is preferably 0.090 cm 3 / g or less, and more preferably 0.080 cm 3 / g or less.
  • the integrated pore volume V' In the pore distribution of the resin sheet in the present embodiment, the integrated pore volume V'in the range of the pore diameter of 0.050 ⁇ m or more and less than 0.100 ⁇ m is typically 0.000 cm 3 / g or more and 0.120 cm. It is 3 / g or less, and is preferably 0.000 cm 3 / g or more and 0.100 cm 3 / g or less from the viewpoint of further improving the balance between the flatness imparted to the object to be polished and the affinity with the slurry. , More preferably 0.000 cm 3 / g or more and 0.080 cm 3 / g or less.
  • the polishing pad of the present embodiment is provided with a resin sheet having pores, and has a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm.
  • the integrated pore volume V'' in the range of pore diameter of 050 ⁇ m or more and 10.0 ⁇ m or less is 0.020 cm 3 / g or more and 0.140 cm 3 / g or less, and the density of the resin sheet is 0.9 g / cm 3 or more. It can be specified that it is 1.3 g / cm 3 or less.
  • the integrated pore volume V'' in the range of the pore diameter of 0.050 ⁇ m or more and 10.0 ⁇ m or less in the present embodiment is specified as the sum of the integrated pore volume V and the integrated pore volume V'in the present embodiment. From the viewpoint of further improving the balance between the flatness imparted to the object to be polished and the affinity with the slurry, it is 0.020 cm 3 / g or more and 0.140 cm 3 / g or less, preferably 0. It is 030 cm 3 / g or more and 0.130 cm 3 / g or less, and more preferably 0.050 cm 3 / g or more and 0.120 cm 3 / g or less.
  • the pore diameter of the resin sheet is 0.100 ⁇ m or more and 360 ⁇ m or less.
  • the ratio of the integrated pore volume V in the range of the pore diameter of 0.100 ⁇ m or more and 10.0 ⁇ m or less to the integrated pore volume V 0 in the range of is preferably 50% or more.
  • the ratio (V / V 0 ) of the integrated pore volume V to the integrated pore volume V 0 is preferably 0.50 or more.
  • the resin sheet has an increased proportion of pores having a relatively small pore diameter, so that the number of communicating bubbles in the resin sheet can be further increased while maintaining a high density.
  • the ratio of the integrated pore volume V to the integrated pore volume V 0 is more preferably 60% or more, further preferably 65% or more, still more preferably 70% or more.
  • the upper limit of the ratio of the integrated pore volume V to the integrated pore volume V 0 is not particularly limited, and the ratio of the integrated pore volume V to the integrated pore volume V 0 may be 100% or less, and may be 99% or less. It may be 95% or less, 90% or less, or 80% or less.
  • the ratio (V / V 0 ') of the integrated pore volume V to the integrated pore volume V 0'in the range of the pore diameter of 0.050 ⁇ m or more and 360 ⁇ m or less is From the same viewpoint as above, it is preferably 50% or more, more preferably 60% or more, still more preferably 65% or more, still more preferably 70% or more. Further, V / V 0'may be 100% or less, 99% or less, 95% or less, 90% or less, 80% or less. You may.
  • the peak position of the maximum peak in the pore diameter range of 0.100 ⁇ m or more and 360 ⁇ m or less is preferably within the pore diameter range of 0.100 ⁇ m or more and 10.0 ⁇ m or less. ..
  • the pore distribution is measured as the integrated pore volume from the maximum pore diameter in the measurement range. Therefore, the "peak position of the maximum peak in the range of the pore diameter of 0.100 ⁇ m or more and 360 ⁇ m or less" is the Log differential pore volume distribution calculated from the pore distribution obtained by the mercury intrusion method (dV / d (logD).
  • the maximum peak means the maximum point having the largest maximum value when there are a plurality of maximum points in the range of the pore diameter of 0.100 ⁇ m or more and 360 ⁇ m or less.
  • the resin sheet has a pore diameter of 0.100 ⁇ m or more and 10.0 ⁇ m or less. In the range, since the distribution has more uniform pores, the affinity of the polishing pad with the slurry and the dressing property tend to be further improved.
  • the peak position of the maximum peak in the range of the pore diameter of 0.100 ⁇ m or more and 360 ⁇ m or less is more preferably 0.500 ⁇ m or more and 5.00 ⁇ m or less. It is within the range of pore diameter.
  • the peak position of the maximum peak in the pore diameter range of 0.050 ⁇ m or more and 360 ⁇ m or less is within the pore diameter range of 0.050 ⁇ m or more and 10.0 ⁇ m or less. Is preferable, and more preferably, it is within the range of the pore diameter of 0.050 ⁇ m or more and 5.00 ⁇ m or less.
  • the number of peaks in the range of the pore diameter of 0.100 ⁇ m or more and 360 ⁇ m or less is preferably 1 or more and 3 or less, more preferably 1 or more and 2 or less, still more preferable. Is 1.
  • the peak height of the maximum peak is preferably twice or more the peak height of the second highest peak. It is more preferably 5 times or more, and further preferably 10 times or more.
  • the integrated pore volume V 0 in the range of the pore diameter of 0.100 ⁇ m or more and 360 ⁇ m or less is preferably 0.040 cm 3 / g or more and 0.120 cm 3 / g or less. Yes, more preferably 0.050 cm 3 / g or more and 0.110 cm 3 / g or less, and further preferably 0.060 cm 3 / g or more and 0.100 cm 3 / g or less.
  • the integrated pore volume V 0 is within the above range, the balance between the flatness imparted to the object to be polished and the affinity with the slurry tends to be further improved.
  • the integrated pore volume V 0'in the range of the pore diameter of 0.050 ⁇ m or more and 360 ⁇ m or less is the integrated pore volume V 0 and the integrated pores in the present embodiment. It can be specified as the sum of volumes V', and from the same viewpoint as above, it is preferably 0.040 cm 3 / g or more and 0.200 cm 3 / g or less, and more preferably 0.050 cm 3 / g or more 0. It is 180 cm 3 / g or less, more preferably 0.060 cm 3 / g or more and 0.160 cm 3 / g or less.
  • the integrated pore volume V, the integrated pore volume V', the integrated pore volume V'', the integrated pore volume V 0 ', the peak position of the maximum peak, the number of peaks, And the peak height value is calculated from the pore distribution measured by the mercury intrusion method with a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm.
  • the method described in can be referred to.
  • the method for controlling the value is not particularly limited, but for example, a polishing pad may be obtained by the method for manufacturing a polishing pad according to the present embodiment described later.
  • the resin sheet in the present embodiment preferably has a microphase-separated structure.
  • the "micro phase separation structure” means a phase separation structure formed through micro phase separation.
  • microphase separation means that a microscopic (typically, micrometer-order) structural pattern is repeated with a periodicity of at least one dimension in a macroscopically homogeneous object. It means the phase separation that occurs.
  • Microphase separation can be achieved, for example, by adopting preferable manufacturing conditions in the method for manufacturing a polishing pad according to the present embodiment, which will be described later.
  • Typical examples of the microphase-separated structure include, but are not limited to, a spherical structure (sea island structure), a cylinder structure, a lamellar structure, and a three-dimensional network structure.
  • the microphase-separated structure in the present embodiment preferably includes a cylinder structure, a lamellar structure, and a three-dimensional network structure, and more preferably a three-dimensional network structure.
  • the three-dimensional network structure means a structure in which a network-like network is formed in a three-dimensional direction.
  • the three-dimensional network structure derived from the microphase separation may include a single gyroid structure and / or a double (multiple) gyroid structure.
  • the single gyroid structure is typically a network structure in which two tridents are twisted to form a pair of thin wire structures to form a unit cell, which is periodically repeated.
  • a double (multiple) gyroid structure means a structure in which two or more single gyroid structures are nested.
  • the cross section of the resin sheet having a continuously foaming structure derived from the injection of a conventional foaming agent or an inert gas has a substantially spherical foamed cross section and a resin flat portion (that is, a sea island shape between a sea of resin and islands of voids) is observed. Tend to be.
  • the resin sheet in the present embodiment has a double (multiple) gyroid structure
  • a structure in which two or more resins are mottled and phase-separated in a micrometer order is typically observed in the cross section.
  • an amorphous void cross section and a resin skeleton / resin skeleton cross section are typically observed in the cross section.
  • the resin skeleton portion is sufficiently larger than the voids, the resin skeleton portion may not be observed and may be observed substantially in the shape of a sea of resin. , It is formed in a three-dimensional network that communicates with each other.
  • the characteristics of both the mottled pattern of two or more resins, the irregular void cross section and the resin skeleton / resin skeleton cross section are observed, that is, In some cases, the boundary between the double (multiple) gyroid structure and the single gyroid structure cannot be clearly distinguished, but in this case, it can be evaluated as including at least one of the single gyroid structure and the double (multiple) gyroid structure.
  • the resin sheet in the present embodiment has a single gyroid structure and / or a double (multiple) gyroid structure, it is typically in the range of pore diameters of 0.100 ⁇ m or more and 10.0 ⁇ m or less in the Log differential pore volume distribution. A sharp peak (maximum value) is measured inside.
  • the preferable structure observed in the polishing pad of the present embodiment will be described in detail, but it is premised that the structure is derived from the microphase separation.
  • the resin sheet in this embodiment can contain two or more phases having different compositions.
  • the "composition" of the phase includes both the resin which is the main component of the phase and the components other than the main component contained in the phase, and further considers the compounding ratio of these. Therefore, the microphase-separated structure of the resin sheet in the present embodiment can include two or more phases in which at least one of the resin which is the main component of the phase and the components other than the main component contained in the phase are different from each other. Typically, it can include two or more phases that differ in at least one of the structure, average molecular weight, and functional group of the resin that is the main component of the phase.
  • phase and the other phase have different types of resins constituting the phase; the inclusion of additives contained in one phase and the other phase.
  • the amounts are different; and when the resin sheet is made of AB block polymer, one phase is a phase containing A block as a main component, and the other phase is a phase containing B block as a main component. Can be mentioned.
  • the first phase is a phase in which a predetermined prepolymer and a predetermined curing agent are cured
  • the second phase is a second phase.
  • the first phase is a phase in which the predetermined prepolymer and the predetermined curing agent are cured.
  • the second phase is a phase in which a curing agent different from the prepolymer in the first phase and the curing agent in the first phase is cured; and the first phase is a predetermined prepolymer and a predetermined curing agent.
  • the second phase is a phase in which a prepolymer different from the prepolymer in the first phase and a curing agent different from the curing agent in the first phase are cured.
  • the second phase is a phase in which a prepolymer different from the prepolymer in the first phase and a curing agent different from the curing agent in the first phase are cured.
  • the resin sheet in this embodiment can have voids due to microphase separation.
  • Such voids may be paraphrased as voids constituting the microphase-separated structure, and specific examples thereof include, but are not limited to, voids defined by a resin skeleton that gives a gyroid structure.
  • the voids may be derived from pores or may be derived from communication holes in which a plurality of pores communicate with each other.
  • the resin sheet having the microphase-separated structure in the present embodiment can be obtained, for example, by the method for manufacturing a polishing pad of the present embodiment, which will be described later. Further, the fact that the resin sheet has a microphase-separated structure can be confirmed by observing with a scanning electron microscope (SEM) at a magnification of about 300 to 3000 times.
  • SEM scanning electron microscope
  • the fact that the resin sheet does not have a microphase-separated structure containing two or more phases having different compositions or has the above-mentioned voids is an optical method such as an optical microscope and a phase difference microscope.
  • Methods using electron microscopes such as scanning electron microscopes and transmission electron microscopes, methods using particle scattering such as light scattering, neutron beam small angle scattering, and X-ray small angle scattering, X-ray diffraction methods, It can be observed by using a method such as a fluorescence method and a pulse NMR measurement method.
  • the average thickness of the resin sheet in the present embodiment is not particularly limited, but is preferably 0.5 mm or more and 10.0 mm or less, more preferably 0.6 mm or more and 8.0 mm or less, and further preferably 0.7 mm. It is 5.0 mm or less.
  • the compressibility of the resin sheet in the present embodiment is not particularly limited, but is preferably 0.1% or more and 10.0% or less, and more preferably 0.5% or more and 5.0% or less.
  • the compressibility of the resin sheet can be determined by using a shopper type thickness measuring instrument (pressurized surface: circular with a diameter of 1 cm) in accordance with Japanese Industrial Standards (JIS L 1021). Specifically, the thickness t0 after applying the initial load for 30 seconds from the unloaded state is measured, and then the thickness t1 after applying the final pressure for 30 seconds from the state of the thickness t0 is measured. Therefore, it can be calculated from the following formula.
  • the initial load is 100 g / cm 2 and the final pressure is 1120 g / cm 2 .
  • Compressibility (%) 100 ⁇ (t0-t1) / t0
  • the compressive elastic modulus of the resin sheet in the present embodiment is not particularly limited, but is preferably 65% or more and 98% or less, and more preferably 70% or more and 95% or less.
  • the compressive elastic modulus of the resin sheet can be determined by using a shopper type thickness measuring instrument (pressurized surface: circular with a diameter of 1 cm) in accordance with Japanese Industrial Standards (JIS L 1021). Specifically, the thickness t0 after applying the initial load for 30 seconds from the unloaded state is measured, and then the thickness t1 after applying the final pressure for 30 seconds from the state of the thickness t0 is measured.
  • the thickness t0' is measured from the following formula. Can be calculated.
  • the initial load is 100 g / cm 2 and the final pressure is 1120 g / cm 2 .
  • Compressive modulus (%) 100 ⁇ (t0'-t1) / (t0-t1)
  • the shore D hardness of the resin sheet in this embodiment is not particularly limited, but is preferably 30 or more and 90 or less, and more preferably 40 or more and 80 or less.
  • the shore D hardness of the resin sheet can be determined by using a D-type hardness tester in accordance with the Japanese Industrial Standards (JIS K 7311).
  • the material of the resin sheet in this embodiment is not particularly limited.
  • Examples of the material of the resin sheet include polyurethane resin.
  • the polyurethane resin is not particularly limited, and examples thereof include polyester-based polyurethane resins, polyether-based polyurethane resins, and polycarbonate-based polyurethane resins. These may be used individually by 1 type or in combination of 2 or more type.
  • the material of the resin sheet in the present embodiment preferably contains at least one of a polyester-based polyurethane resin and a polyether-based polyurethane resin.
  • a polyurethane resin which is a cured product of a mixed solution containing a urethane prepolymer and at least two kinds of curing agents, which will be described later in the method for producing a polishing pad of the present embodiment.
  • the resin sheet in the present embodiment may contain a component derived from an additive in addition to the resin component.
  • additives include defoaming agents, catalysts, foaming agents, foaming agents, abrasive grains, dyes, pigments, solid fine particles, and flame-retardant agents, which will be described later in the method for manufacturing a polishing pad of the present embodiment.
  • examples thereof include a hydrophilizing agent, a hydrophobizing agent, a light resistant agent, an antioxidant, and an antistatic agent.
  • the method for producing a polishing pad of the present embodiment includes a step of obtaining a resin sheet having a microphase-separated structure by curing a mixed solution of at least one prepolymer and at least two curing agents. According to such a method, the polishing pad of the present embodiment can be easily manufactured. Hereinafter, each step of the method for manufacturing a polishing pad will be described in detail.
  • the method for producing a polishing pad of the present embodiment can include a mixing step of preparing a mixed solution of at least one prepolymer and at least two curing agents.
  • a resin sheet having a microphase-separated structure can be obtained in the molding step after the mixing step.
  • the mixing step for example, at least one prepolymer heated to 30 ° C to 90 ° C and at least two curing agents are put into a temperature-adjustable jacketed mixer and stirred at 30 ° C to 130 ° C. do it.
  • the mixed solution may be received in a tank with a jacket with a stirrer and aged.
  • the stirring time is appropriately adjusted depending on the number of teeth, the number of rotations, the clearance, etc. of the mixer, and is, for example, 0.1 to 60 seconds.
  • the curing agent used in the mixing step is not particularly limited, and examples thereof include an amino group-containing compound and a hydroxyl group-containing compound.
  • the amino group-containing compound is not particularly limited, and is, for example, 4,4'-methylenebis (2-chloroaniline) (MOCA), ethylenediamine, propylenediamine, hexamethylenediamine, isophoronediamine, dicyclohexylmethane-4,4'-.
  • Diamine 4-Methyl-2,6-bis (methylthio) -1,3-benzenediamine, 2-methyl-4,6-bis (methylthio) -1,3-benzenediamine, 2,2-bis (3-bis) Amino-4-hydroxyphenyl) propane, 2,2-bis [3- (isopropylamino) -4-hydroxyphenyl] propane, 2,2-bis [3- (1-methylpropylamino) -4-hydroxyphenyl] Propane, 2,2-bis [3- (1-methylpentylamino) -4-hydroxyphenyl] propane, 2,2-bis (3,5-diamino-4-hydroxyphenyl) propane, 2,6-diamino- Examples thereof include 4-methylphenol, trimethylethylenebis-4-aminobenzonate, polytetramethylene oxide-di-p-aminobenzonate and the like.
  • As the amino group-containing compound 4,4'-methylenebis (2-chloroaniline) is preferable.
  • the hydroxyl group-containing compound is not particularly limited, and is, for example, ethylene glycol, propylene glycol, diethylene glycol, trimethylene glycol, tetraethylene glycol, triethylene glycol, dipropylene glycol, 1,4-butanediol, and 1,3-butanediol.
  • a bifunctional (diol) compound as the hydroxyl group-containing compound rather than a trifunctional or higher functional compound.
  • a bifunctional (diol) compound as the hydroxyl group-containing compound, polytetramethylene glycol is more preferable.
  • the above curing agent is used in combination of two or more.
  • the combination of the curing agents is not particularly limited, but a combination described later is preferable.
  • the active hydrogen equivalent of the curing agent (for example, NH 2 equivalent and OH equivalent) is not particularly limited, and may be, for example, 50 or more and 5000 or less, 100 or more and 4000 or less, and 130 or more and 3000 or less. There may be.
  • the OH equivalent of the curing agent, which is a hydroxyl group-containing compound may be 100 or more and 5000 or less, 200 or more and 4000 or less, or 300 or more and 3000 or less.
  • the NH 2 equivalent of the curing agent, which is an amino group-containing compound may be 50 or more and 2000 or less, 75 or more and 1000 or less, or 100 or more and 300 or less.
  • At least two types of curing agents are used in the mixing step.
  • a combination of curing agents it is preferable to use curing agents having low compatibility with each other and / or having different reactivity and / or having different active hydrogen equivalents. According to such an embodiment, there is a tendency that a microphase-separated structure can be obtained more reliably.
  • combinations of curing agents having different reactivity include combinations of curing agents having different active hydrogen groups, and more specifically, examples thereof include combinations of amino group-containing compounds and hydroxyl group-containing compounds.
  • two or more types of curing agents having the same active hydrogen group that is, when two or more types of hydroxyl group-containing compounds are used, or when two or more types of amino group-containing compounds are used, such two or more types of curing agents are preferable.
  • the two or more kinds of curing agents include a curing agent having an active hydrogen equivalent of 200 or more and 500 or less, and a curing agent having an active hydrogen equivalent of 1000 or more and 2000 or less.
  • the ratio of the amount of the curing agent with a small equivalent to the amount of the curing agent with a large active hydrogen equivalent is 1 for "a curing agent with a small active hydrogen equivalent: a curing agent with a large active hydrogen equivalent" in terms of the number of active hydrogen groups. It is preferably 1: 1 to 15: 1, more preferably 1: 1 to 10: 1.
  • the two or more types of curing agents When two or more types of curing agents having the same active hydrogen group are used, the two or more types of curing agents have an active hydrogen equivalent of 200 or more and 500 or less, and an active hydrogen equivalent of 1000 or more and 2000 or less.
  • the ratio of the amount of the curing agent having an active hydrogen equivalent of 200 or more and 500 or less to the amount of the curing agent having an active hydrogen equivalent of 1000 or more and 2000 or less is "the active hydrogen equivalent is A curing agent having an active hydrogen equivalent of 200 or more and 500 or less: a curing agent having an active hydrogen equivalent of 1000 or more and 2000 or less is preferably 1: 1 to 15: 1 in terms of the number of active hydrogen groups, and is preferably 1: 1 to 10: 1. Is more preferable.
  • At least two types of curing agents preferably contain an amino group-containing compound and a hydroxyl group-containing compound.
  • the at least two curing agents more preferably contain one amino group-containing compound and two or more hydroxyl group-containing compounds, or two or more amino group-containing compounds and one hydroxyl group-containing compound.
  • the at least two types of curing agents more preferably contain one type of amino group-containing compound and two or more types of hydroxyl group-containing compounds.
  • the difference between the NH 2 equivalent of the amino group-containing compound and the OH equivalent of the hydroxyl group-containing compound is not particularly limited, but the OH of the hydroxyl group-containing compound is not particularly limited.
  • the equivalent amount is preferably larger, and the OH equivalent of the hydroxyl group-containing compound is more preferably 100 or more and 2000 or less larger than the NH 2 equivalent of the amino group-containing compound.
  • the ratio of the amount of the curing agent used as the amino group-containing compound to the total amount of the used amount of the curing agent is 35 in terms of the number of functional groups. It is preferably% or more and 95% or less, and more preferably 40% or more and 90% or less.
  • At least two types of curing agents have an NH 2 equivalent of 100 or more and 300 or less as a first curing agent (amino group-containing compound) and an OH equivalent of 200 or more and 600 or less. It contains a second curing agent (hydroxyl group-containing compound) and a third curing agent (hydroxyl group-containing compound) having an OH equivalent of 1000 or more and 2000 or less.
  • the ratio of the amount of the first curing agent used, the amount of the second curing agent used, and the amount of the third curing agent used is not particularly limited, but the amount of the first curing agent used is the amount of the curing agent.
  • the ratio of the number of functional groups to the total amount used is preferably 30% or more and 95% or less, and more preferably 40% or more and 90% or less.
  • the amount of the second curing agent used is preferably 1% or more and 70% or less, and more preferably 5% or more and 60% or less in terms of the functional group number ratio with respect to the total amount of the curing agent used.
  • the amount of the third curing agent used is preferably 3% or more and 60% or less, and more preferably 5% or more and 50% or less, in terms of the functional group number ratio with respect to the total amount of the curing agent used.
  • the total amount of the curing agent used is defined by the R value, which is the equivalent ratio of the active hydrogen groups (amino groups and hydroxyl groups) present in the curing agent when the number of functional groups of the prepolymer is 1.
  • the total amount of the curing agent used is preferably adjusted so that the R value is 0.7 or more and 1.3 or less.
  • the R value is more preferably 0.8 or more and 1.2 or less.
  • the pore distribution measured by the mercury intrusion method with a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm was 0.100 ⁇ m.
  • a resin sheet having an integrated pore volume V of 0.020 cm 3 / g or more and 0.100 cm 3 / g or less in a pore diameter range of 10.0 ⁇ m or less, and / or a resin sheet having a microphase-separated structure. can be obtained.
  • two or more types of curing agents having low compatibility with each other are used, two or more types of curing agents having different reactivity with each other are used, and / or curing agents having different active hydrogen equivalents are used. Can be done. Even if a resin sheet having a clear microphase-separated structure cannot be obtained by such a combination, the types of curing agents are changed so as to have high compatibility with each other, and the reactivity with each other is similar. By making adjustments such as changing the curing agent so that the amount of active hydrogen is close to each other and / or changing the curing agent so that the active hydrogen equivalents of each other are close to each other, a resin sheet having a microphase-separated structure tends to be obtained. It is in.
  • the prepolymer used in the mixing step is not particularly limited, and examples thereof include urethane prepolymer.
  • examples of the urethane prepolymer include an adduct of hexamethylene diisocyanate and hexanetriol; an adduct of 2,4-tolylene diisocyanate and Plent's catechol; 2,4-tolylene diisocyanate and poly (oxytetramethylene) glycol.
  • diethylene glycol adduct diethylene glycol adduct; tolylene diisocyanate and hexanetriol adduct; tolylene diisocyanate and trimethylol propane adduct; xylylene diisocyanate and trimethylol propane adduct; hexamethylene diisocyanate and trimethylol propane Adducts; and adducts of isocyanuric acid and hexamethylene diisocyanate.
  • an isocyanate group-containing compound prepared by reacting a polyisocyanate compound with a polyol compound or various commercially available urethane prepolymers may be used.
  • the polyisocyanate compound used for preparing the isocyanate group-containing compound is not particularly limited as long as it has two or more isocyanate groups in the molecule.
  • examples of the diisocyanate compound having two isocyanate groups in the molecule include m-phenylenedi isocyanate, p-phenylenedi isocyanate, 2,6-toluene diisocyanate (2,6-TDI), and 2,4-toluene diisocyanate (2).
  • polyisocyanate compounds may be used alone or in combination of two or more.
  • a diisocyanate compound is preferable, and 2,4-TDI, and 2,6-TDI and MDI are more preferable.
  • polyol compound used for preparing an isocyanate group-containing compound examples include diol compounds such as ethylene glycol, diethylene glycol (DEG) and butylene glycol, triol compounds and the like; polypropylene glycol (PPG) and poly (oxytetramethylene) glycol (.
  • Polyether polyol compounds such as PTMG); polyester polyol compounds such as a reaction product of ethylene glycol and adipic acid and a reaction product of butylene glycol and adipic acid; polycarbonate polyol compound, polycaprolactone polyol compound and the like can be mentioned.
  • trifunctional propylene glycol to which ethylene oxide is added can also be used.
  • the polyol compound may be used alone or in combination of two or more.
  • the NCO equivalent of the urethane prepolymer is preferably 150 or more and 700 or less, more preferably 200 or more and 600 or less, and further preferably 200 or more and 500 or less.
  • “NCO equivalent” means "(mass part of polyisocyanate compound + mass part of polyol compound) / [(number of functional groups per molecule of polyisocyanate compound x mass part of polyisocyanate compound / molecular weight of polyisocyanate compound)-( It is a numerical value indicating the molecular weight of the urethane prepolymer per NCO group, which is determined by "the number of functional groups per molecule of the polyol compound x the mass part of the polyol compound / the molecular weight of the polyol compound)]".
  • At least one prepolymer is used in the mixing step.
  • the prepolymer two or more of the above may be used in combination, but one of them is preferably used alone. According to such an embodiment, the curing reaction tends to be easily controlled, and the shape of the microphase-separated structure tends to be easily controlled.
  • the prepolymer it is preferable to use a urethane prepolymer containing tolylene diisocyanate as a main component alone.
  • the amount of the prepolymer used is not particularly limited, but is preferably 30 parts by mass or more and 80 parts by mass or less, and more preferably 40 parts by mass or more and 75 parts by mass or less with respect to the entire mixed solution.
  • components other than the prepolymer and the curing agent may be mixed as additives.
  • a solvent such as polypropylene glycol
  • a defoaming agent such as a silicone-based defoaming agent
  • a catalyst such as a catalyst
  • a foaming agent such as water or hollow fine particles
  • Agents; and fillers such as cerium oxide; dyes; pigments; solid fine particles; flame retardants; hydrophilic agents; hydrophobic agents; lightfasteners; antioxidants; antistatic agents and the like.
  • the density of the obtained resin sheet is 0.9 g / cm 3 or more and 1.3 g / cm 3 or less, it is preferable not to add a foaming agent or to add a small amount, and to use a defoaming agent. Is more preferable.
  • the reaction rate of the curing reaction can be controlled and the formed microphase separation structure can be controlled by adjusting the type and amount of the catalyst to be added.
  • the molding step is a step of obtaining a resin sheet having a microphase-separated structure by curing the mixture obtained as described above.
  • the mixed solution obtained in the mixing step may be poured into a mold preheated to 30 ° C. to 150 ° C. and heated at about 30 ° C. to 150 ° C. for about 10 minutes to 5 hours.
  • the prepolymer reacts with the curing agent to form a resin, so that the mixed solution is cured. Further, it may be secondarily cured by heating it in an oven at about 50 ° C. to 180 ° C. for about 10 minutes to 12 hours.
  • the mixed liquid is the above-mentioned one, a resin block having a microphase-separated structure can be obtained.
  • the reaction temperature at which the mixed solution is cured in the molding step can be appropriately adjusted depending on the type and compounding ratio of the prepolymer, curing agent and additive used, and by adjusting the reaction temperature, the curing reaction can be carried out. There is a tendency to be able to control the reaction rate and control the microphase-separated structure formed.
  • a resin sheet having a microphase separation structure is obtained by cutting out a resin sheet having an appropriate thickness from the resin block obtained as described above.
  • the obtained resin sheet may be aged at 30 ° C. to 150 ° C. for about 1 hour to 24 hours.
  • the resin sheet thus obtained is, for example, subsequently attached with a double-sided tape on one side and cut into a predetermined shape, preferably in the shape of a disk, to complete the polishing pad of the present embodiment.
  • the double-sided tape is not particularly limited, and can be arbitrarily selected and used from conventionally known double-sided tapes.
  • the polishing pad of the present embodiment may have a single-layer structure consisting of only a resin sheet, or may be composed of a plurality of layers in which another layer (cushion layer or substrate layer) is bonded to one side of the resin sheet. May be good.
  • a plurality of layers may be bonded and fixed while being pressed as necessary using double-sided tape, an adhesive or the like.
  • the double-sided tape and the adhesive used are not particularly limited, and can be arbitrarily selected from conventionally known double-sided tapes and adhesives.
  • the polishing pad of the present embodiment may be grooved, embossed, and / or holed (punched) on the surface, if necessary.
  • the shape of the grooving and embossing is not particularly limited, and examples thereof include a grid type, a concentric circle type, and a radial type.
  • the polishing pad may be dressed (ground) on the front surface and / or the back surface of the resin sheet.
  • the resin sheet in the method for manufacturing a polishing pad of the present embodiment has a high density, it has communicating pores, so that it has excellent dressing properties and can be dressed under easy conditions.
  • the dressing treatment is not particularly limited, and dressing can be performed by a known method such as grinding with a diamond dresser.
  • the method for producing a polished product of the present embodiment includes a polishing step of polishing the object to be polished using the above-mentioned polishing pad in the presence of a polishing slurry to obtain a polished product.
  • the polishing step may be primary polishing (rough polishing), finish polishing, or both of them.
  • the holding surface plate and the polishing surface plate are relatively rotated while the object to be polished is pressed against the polishing pad side by the holding surface plate while supplying the polishing slurry.
  • the processed surface of the object to be polished is polished by chemical mechanical polishing with a polishing pad.
  • the holding surface plate and the polishing surface plate may rotate in the same direction at different rotation speeds, or may rotate in different directions.
  • the object to be polished may be polished while moving (rotating) inside the frame portion during the polishing process.
  • the polishing slurry includes water, an oxidizing agent typified by hydrogen hydrogen, chemical components such as an acid component and an alkaline component, additives, and abrasive grains (polishing particles; for example, SiC), depending on the object to be polished and the polishing conditions. , SiO 2 , Al 2 O 3 , and CeO 2 ) and the like.
  • the object to be polished is not particularly limited, and examples thereof include optical materials such as lenses, parallel flat plates, and reflective mirrors, semiconductor wafers, semiconductor devices, hard disk substrates, metals, and materials such as ceramics. ..
  • the wrapping pad of the present embodiment (hereinafter, unless otherwise specified, "the present embodiment" in the ⁇ third embodiment> means the third embodiment) is a wrapping pad provided with a resin sheet having pores.
  • the integrated pores In the pore distribution of the resin sheet measured by the mercury intrusion method with a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm, the integrated pores have a pore diameter of 0.010 ⁇ m or more and 1.0 ⁇ m or less.
  • the volume V is 0.21 cm 3 / g or more and 1.00 cm 3 / g or less, and the density of the resin sheet is 0.3 g / cm 3 or more and 0.9 g / cm 3 or less. Since the wrapping pad of the present embodiment is configured as described above, it is excellent in dressing property and the surface is not easily smoothed.
  • the wrapping pad of the present embodiment is not particularly limited as long as it includes the resin sheet of the present embodiment, and the wrapping pad may have a configuration other than the resin sheet.
  • Examples of the configuration of the wrapping pad other than the resin sheet include conventionally known wrapping layers, cushion layers, adhesive layers, and the like.
  • the wrapping pad of the present embodiment preferably has the above resin sheet as a wrapping layer. "Having a resin sheet as a wrapping layer” means that at least one surface of the wrapping pad of the present embodiment corresponds to the surface of the resin sheet of the present embodiment, and the surface of the resin sheet corresponds to the surface of the wrapping of the present embodiment. It means that it becomes a wrapping surface that is pressed against the workpiece during processing. Therefore, the wrapping pad of the present embodiment is preferably composed of at least one side of the resin sheet of the present embodiment. Further, the wrapping pad of the present embodiment may be composed of only the resin sheet of the present embodiment.
  • the wrapping pad of the present embodiment may be grooved, embossed, and / or hole-processed (punched) on the wrapping surface, if necessary, and may be provided with a light transmitting portion.
  • the shape of the grooving and embossing is not particularly limited, and examples thereof include a grid type, a concentric type, and a radial type.
  • the resin sheet in the present embodiment has a density of 0.3 g / cm 3 or more and 0.9 g / cm 3 or less.
  • the density of the resin sheet in the present embodiment is 0.3 g / cm 3 or more, the wrapping pad is less likely to be deformed by pressure. Therefore, in the wrapping process, the wrapping pad is applied to the workpiece. The force becomes uniform in the direction of the wrapping surface. As a result, the surface of the workpiece can be further flattened in the lapping process using the wrapping pad provided with such a resin sheet.
  • "the surface of the workpiece is flat” means that the surface of the workpiece to be wrapped is flatter as a whole. This can be rephrased as having good global flatness.
  • the density of the resin sheet in the present embodiment is preferably 0.4 g / cm 3 or more, more preferably 0.45 g / cm 3 or more.
  • the density of the resin sheet in the present embodiment is 0.9 g / cm 3 or less, it is possible to prevent the abrasive grains from coming into strong contact with the workpiece to cause scratches. Further, the hardness of the resin sheet tends to be low, and from such a viewpoint, the occurrence of scratches tends to be suppressed.
  • the density of the resin sheet in the present embodiment can be measured by a conventionally known method. For example, the mass and volume of the resin sheet piece may be measured by a usual method, and the density may be obtained from the obtained values.
  • the method for controlling the density of the resin sheet is not particularly limited, but for example, the wrapping pad may be obtained by the method for manufacturing the wrapping pad according to the present embodiment described later.
  • the density of the resin sheet tends to increase.
  • the resin sheet in the present embodiment has pores, has a contact angle of 130 °, and has a mercury surface tension of 485 dyn / cm.
  • the integrated pore volume V in the range of the pore diameter is 0.21 cm 3 / g or more and 1.00 cm 3 / g or less.
  • the "pore distribution" means the pore distribution measured by the mercury intrusion method having a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm. do.
  • the mercury intrusion method is a method capable of measuring the pore distribution on the surface of a measurement sample by filling the pores on the surface of the measurement sample with mercury while sweeping the applied pressure. Therefore, when the pore distribution of a foam material is measured by the mercury intrusion method, the pore distribution mainly reflects the pore distribution of the communicating bubbles (generally also referred to as "open cells") and is independent. The contribution of the pore distribution of bubbles is small.
  • the present inventors have an integrated pore volume V of 0.21 cm 3 in a pore diameter range of 0.010 ⁇ m or more and 1.0 ⁇ m or less in the pore distribution measured by the mercury intrusion method. It was found that when the content is / g or more, the affinity with the slurry in the wrapping pad becomes sufficiently good. This is because when the integrated pore volume V is 0.21 cm 3 / g or more, the communicating bubbles having a pore diameter of 0.010 ⁇ m or more and 1.0 ⁇ m or less are distributed throughout the resin sheet, and the wrapping process is performed. It is presumed that this is because the slurry sometimes permeates evenly into the resin sheet through the communicating bubbles.
  • the reason why the integrated pore volume V is 0.21 cm 3 / g or more and the affinity of the wrapping pad with the slurry is sufficiently good is not limited to the above.
  • the integrated pore volume V is preferably 0.30 cm 3 / g or more, more preferably 0.40 cm 3 / g or more. Is.
  • the integrated pore volume V is 1.00 cm 3 / g or less. Since the integrated pore volume V is 1.00 cm 3 / g or less, the density of the resin sheet tends to be within the above range, and in the wrapping process using the wrapping pad provided with such a resin sheet, the cover is covered.
  • the integrated pore volume V is preferably 0.90 cm 3 / g or less.
  • dressing or "dressing” means a wrapping pad using a dressing jig (for example, diamond dresser or sandpaper) to which abrasive grains and the like are fixed before lapping the workpiece. It means a process of adjusting the surface roughness and flatness of the wrapping surface.
  • excellent in dressing property means that sufficient dressing can be performed by processing under relatively easy conditions.
  • the “wrapping surface” means a surface on which the wrapping pad comes into contact with or is expected to come into contact with the workpiece when the workpiece is wrapped by the lapping pad.
  • the pore diameter of the resin sheet is 0.010 ⁇ m or more and 360 ⁇ m or less.
  • the ratio of the integrated pore volume V in the range of the pore diameter of 0.010 ⁇ m or more and 1.0 ⁇ m or less to the integrated pore volume V 0 in the range of is preferably 50% or more.
  • the ratio (V / V 0 ) of the integrated pore volume V to the integrated pore volume V 0 is preferably 0.50 or more.
  • the ratio of the integrated pore volume V to the integrated pore volume V 0 is more preferably 60% or more, further preferably 65% or more, still more preferably 70% or more.
  • the upper limit of the ratio of the integrated pore volume V to the integrated pore volume V 0 is not particularly limited, and the ratio of the integrated pore volume V to the integrated pore volume V 0 may be 100% or less, and may be 99% or less. It may be 95% or less, 90% or less, 85% or less, or 80% or less.
  • the peak position of the maximum peak in the pore diameter range of 0.010 ⁇ m or more and 360 ⁇ m or less is preferably within the pore diameter range of 0.010 ⁇ m or more and 1.0 ⁇ m or less. ..
  • the pore distribution is measured as the integrated pore volume from the maximum pore diameter in the measurement range. Therefore, the "peak position of the maximum peak in the range of the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less" is the Log differential pore volume distribution calculated from the pore distribution obtained by the mercury intrusion method (dV / d (logD).
  • the maximum peak means the maximum point having the largest maximum value when there are a plurality of maximum points in the range of the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less.
  • the resin sheet has a pore diameter of 0.010 ⁇ m or more and 1.0 ⁇ m or less. In the range, since the distribution has more uniform pores, the affinity of the wrapping pad with the slurry and the dressing property tend to be further improved.
  • the wrapping pad with the slurry and the dressing property is more preferably 0.010 ⁇ m or more and 0.5 ⁇ m or less, still more preferably 0.030 ⁇ m or more and 0.5 ⁇ m or less, still more preferably 0.050 ⁇ m. It is within the range of the pore diameter of 0.5 ⁇ m or less. From the same viewpoint, the position of the maximum peak in the range of 1.0 ⁇ m or more and 360 ⁇ m or less is more preferably in the range of the pore diameter of 50 ⁇ m or more and 200 ⁇ m or less.
  • the number of peaks in the pore diameter range of 0.010 ⁇ m or more and 360 ⁇ m or less is preferably 2 or more and 4 or less, more preferably 2 and even more preferable. Is 1 in 0.010 ⁇ m or more and 1.0 ⁇ m or less and 1 in 1.0 ⁇ m or more and 360 ⁇ m or less. When the number of peaks is within the above range, the distribution has more uniform pores, so that the affinity of the wrapping pad with the slurry and the dressing property tend to be further improved.
  • the maximum peak height in the pore diameter range of 0.010 ⁇ m or more and 1.0 ⁇ m or less is the maximum peak height in the pore diameter range of 1.0 ⁇ m or more and 360 ⁇ m or less. In comparison, it is preferably 2 times or more, more preferably 2.5 times or more, and further preferably 3 times or more.
  • the integrated pore volume V 0 in the range of the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less is preferably 0.1 cm 3 / g or more and 2.0 cm 3 / g or less. Yes, more preferably 0.4 cm 3 / g or more and 2.0 cm 3 / g or less, still more preferably 0.5 cm 3 / g or more and 1.5 cm 3 / g or less, still more preferably 0.6 cm 3 It is more than / g and 1.2 cm 3 / g or less.
  • the integrated pore volume V 0 is within the above range, the balance between the flatness imparted to the workpiece and the affinity with the slurry tends to be further improved.
  • the integrated pore volume V and the integrated pore volume V 0 are calculated from the pore distribution measured by the mercury intrusion method with a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm.
  • the method described in Examples can be referred to.
  • the integrated pore volume V the integrated pore volume V 0 , the ratio of the integrated pore volume V to the integrated pore volume V 0 , the peak position of the maximum peak, the number of peaks, and the value of the peak height.
  • the wrapping pad may be obtained by the method for manufacturing the wrapping pad of the present embodiment described later.
  • the resin sheet in the present embodiment preferably has a microphase-separated structure.
  • the "micro phase separation structure” means a phase separation structure formed through micro phase separation.
  • microphase separation means that a microscopic (typically, micrometer-order) structural pattern is repeated with a periodicity of at least one dimension in a macroscopically homogeneous object. It means the phase separation that occurs.
  • Microphase separation can be generated, for example, by adopting preferable manufacturing conditions in the method for manufacturing a wrapping pad according to the present embodiment, which will be described later.
  • Typical examples of the microphase-separated structure include, but are not limited to, a spherical structure (sea island structure), a cylinder structure, a lamellar structure, and a three-dimensional network structure.
  • the microphase-separated structure in the present embodiment preferably includes a cylinder structure, a lamellar structure, and a three-dimensional network structure, and more preferably a three-dimensional network structure.
  • the three-dimensional network structure means a structure in which a network-like network is formed in a three-dimensional direction.
  • the three-dimensional network structure derived from the microphase separation may include a single gyroid structure and / or a double (multiple) gyroid structure.
  • the single gyroid structure is typically a network structure in which two tridents are twisted to form a pair of thin wire structures to form a unit cell, which is periodically repeated.
  • a double (multiple) gyroid structure means a structure in which two or more single gyroid structures are nested.
  • the cross section of the resin sheet having a continuously foaming structure derived from the injection of a conventional foaming agent or an inert gas has a substantially spherical foamed cross section and a resin flat portion (that is, a sea island shape between a sea of resin and islands of voids) is observed. Tend to be.
  • the resin sheet in the present embodiment has a double (multiple) gyroid structure
  • a structure in which two or more resins are mottled and phase-separated in a micrometer order is typically observed in the cross section.
  • an amorphous void cross section and a resin skeleton / resin skeleton cross section are typically observed in the cross section.
  • the resin skeleton portion is sufficiently larger than the voids, the resin skeleton portion may not be observed and may be observed substantially in the shape of a sea of resin. , It is formed in a three-dimensional network that communicates with each other.
  • the characteristics of both the mottled pattern of two or more resins, the irregular void cross section and the resin skeleton / resin skeleton cross section are observed, that is, In some cases, the boundary between the double (multiple) gyroid structure and the single gyroid structure cannot be clearly distinguished, but in this case, it can be evaluated as including at least one of the single gyroid structure and the double (multiple) gyroid structure.
  • the resin sheet in the present embodiment has a single gyroid structure and / or a double (multiple) gyroid structure, it is typically in the range of pore diameters of 0.010 ⁇ m or more and 10.0 ⁇ m or less in the Log differential pore volume distribution. A sharp peak (maximum value) is measured inside.
  • the resin sheet in this embodiment can contain two or more phases having different compositions.
  • the "composition" of the phase includes both the resin which is the main component of the phase and the components other than the main component contained in the phase, and further considers the compounding ratio of these. Therefore, the microphase-separated structure of the resin sheet in the present embodiment can include two or more phases in which at least one of the resin which is the main component of the phase and the components other than the main component contained in the phase are different from each other. Typically, it can include two or more phases that differ in at least one of the structure, average molecular weight, and functional group of the resin that is the main component of the phase.
  • phase and the other phase have different types of resins constituting the phase; the inclusion of additives contained in one phase and the other phase.
  • the amounts are different; and when the resin sheet is made of AB block polymer, one phase is a phase containing A block as a main component, and the other phase is a phase containing B block as a main component. Can be mentioned.
  • the first phase is a phase in which a predetermined prepolymer and a predetermined curing agent are cured
  • the second phase is a second phase.
  • the first phase is a phase in which the predetermined prepolymer and the predetermined curing agent are cured.
  • the second phase is a phase in which a curing agent different from the prepolymer in the first phase and the curing agent in the first phase is cured; and the first phase is a predetermined prepolymer and a predetermined curing agent.
  • the second phase is a phase in which a prepolymer different from the prepolymer in the first phase and a curing agent different from the curing agent in the first phase are cured.
  • the second phase is a phase in which a prepolymer different from the prepolymer in the first phase and a curing agent different from the curing agent in the first phase are cured.
  • the resin sheet in this embodiment can have voids due to microphase separation.
  • Such voids may be paraphrased as voids constituting the microphase-separated structure, and specific examples thereof include, but are not limited to, voids defined by a resin skeleton that gives a gyroid structure.
  • the voids may be derived from pores or may be derived from communication holes in which a plurality of pores communicate with each other.
  • the resin sheet having the microphase-separated structure in the present embodiment can be obtained, for example, by the method for manufacturing the wrapping pad of the present embodiment, which will be described later. Further, the fact that the resin sheet has a microphase-separated structure can be confirmed by observing with a scanning electron microscope (SEM) at a magnification of about 300 to 3000 times.
  • SEM scanning electron microscope
  • the fact that the resin sheet does not have a microphase-separated structure containing two or more phases having different compositions or has the above-mentioned voids is an optical method such as an optical microscope and a phase difference microscope.
  • a method using an electron microscope such as a scanning electron microscope and a transmission electron microscope, a method using particle scattering such as light scattering, neutron beam small angle scattering, and X-ray small angle scattering, X-ray diffraction method It can be observed by using a method such as a fluorescence method and a pulse NMR measurement method.
  • the average opening diameter measured for an opening of 10 ⁇ m or more is not particularly limited, but is preferably 50 ⁇ m or more and 300 ⁇ m or less, and more preferably 50 ⁇ m or more and 200 ⁇ m or less.
  • the average opening diameter can be measured, for example, by the method described in Examples described later. Further, the average opening diameter can be adjusted to the above range depending on, for example, the type and / or the amount of the foaming agent or the foam regulating agent.
  • the average thickness of the resin sheet in the present embodiment is not particularly limited, but is preferably 0.5 mm or more and 10.0 mm or less, more preferably 0.6 mm or more and 8.0 mm or less, and further preferably 0.7 mm. It is 5.0 mm or less.
  • the compressibility of the resin sheet in the present embodiment is not particularly limited, but is preferably 0.1% or more and 5.0% or less, and more preferably 0.3% or more and 3.0% or less.
  • the compressibility of the resin sheet can be determined by using a shopper type thickness measuring instrument (pressurized surface: circular with a diameter of 1 cm) in accordance with Japanese Industrial Standards (JIS L 1021). Specifically, the thickness t0 after applying the initial load for 30 seconds from the unloaded state is measured, and then the thickness t1 after applying the final pressure for 30 seconds from the state of the thickness t0 is measured. Therefore, it can be calculated from the following formula.
  • the initial load is 100 g / cm 2 and the final pressure is 1120 g / cm 2 .
  • Compressibility (%) 100 ⁇ (t0-t1) / t0
  • the compressive elastic modulus of the resin sheet in the present embodiment is not particularly limited, but is preferably 70% or more and 100% or less, and more preferably 75% or more and 95% or less.
  • the compressive elastic modulus of the resin sheet can be determined by using a shopper type thickness measuring instrument (pressurized surface: circular with a diameter of 1 cm) in accordance with Japanese Industrial Standards (JIS L 1021). Specifically, the thickness t0 after applying the initial load for 30 seconds from the unloaded state is measured, and then the thickness t1 after applying the final pressure for 30 seconds from the state of the thickness t0 is measured.
  • the thickness t0' is measured from the following formula. Can be calculated.
  • the initial load is 100 g / cm 2 and the final pressure is 1120 g / cm 2 .
  • Compressibility (%) 100 ⁇ (t0'-t1) / (t0-t1)
  • the shore D hardness of the resin sheet in this embodiment is not particularly limited, but is preferably 10 or more and 70 or less, and more preferably 20 or more and 60 or less.
  • the shore D hardness of the resin sheet can be determined by using a D-type hardness tester in accordance with the Japanese Industrial Standards (JIS K 7311).
  • the material of the resin sheet in this embodiment is not particularly limited.
  • Examples of the material of the resin sheet include polyurethane resin.
  • the polyurethane resin is not particularly limited, and examples thereof include polyester-based polyurethane resins, polyether-based polyurethane resins, and polycarbonate-based polyurethane resins. These may be used individually by 1 type or in combination of 2 or more type.
  • the material of the resin sheet in the present embodiment preferably contains at least one of a polyester-based polyurethane resin and a polyether-based polyurethane resin.
  • a polyurethane resin which is a cured product of a mixed solution containing a urethane prepolymer and at least two kinds of curing agents, which will be described later in the method for producing a wrapping pad of the present embodiment.
  • the resin sheet in the present embodiment may contain a component derived from an additive in addition to the resin component.
  • additives include defoaming agents, catalysts, foaming agents, foaming agents, abrasive grains, dyes, pigments, solid fine particles, and flame-retardant agents, which will be described later in the method for manufacturing a wrapping pad of the present embodiment.
  • examples thereof include a hydrophilizing agent, a hydrophobizing agent, a light resistant agent, an antioxidant, and an antistatic agent.
  • the method for producing a wrapping pad of the present embodiment includes a step of obtaining a resin sheet having a microphase-separated structure by curing a mixed solution of at least one prepolymer and at least two curing agents. According to such a method, the wrapping pad of the present embodiment can be easily manufactured. Hereinafter, each step of the manufacturing method of the wrapping pad will be described in detail.
  • the method for producing a wrapping pad of the present embodiment can include a mixing step of preparing a mixed solution of at least one prepolymer and at least two curing agents.
  • a resin sheet having a microphase-separated structure can be obtained in the molding step after the mixing step.
  • the mixing step for example, at least one prepolymer heated to 30 ° C to 90 ° C and at least two curing agents are put into a temperature-adjustable jacketed mixer and stirred at 30 ° C to 130 ° C. do it.
  • the mixed solution may be received in a tank with a jacket with a stirrer and aged.
  • the stirring time is appropriately adjusted depending on the number of teeth, the number of rotations, the clearance, etc. of the mixer, and is, for example, 0.1 to 60 seconds.
  • the curing agent used in the mixing step is not particularly limited, and examples thereof include an amino group-containing compound and a hydroxyl group-containing compound.
  • the amino group-containing compound is not particularly limited, and is, for example, 4,4'-methylenebis (2-chloroaniline) (MOCA), ethylenediamine, propylenediamine, hexamethylenediamine, isophoronediamine, dicyclohexylmethane-4,4'-.
  • Diamine 4-Methyl-2,6-bis (methylthio) -1,3-benzenediamine, 2-methyl-4,6-bis (methylthio) -1,3-benzenediamine, 2,2-bis (3-bis) Amino-4-hydroxyphenyl) propane, 2,2-bis [3- (isopropylamino) -4-hydroxyphenyl] propane, 2,2-bis [3- (1-methylpropylamino) -4-hydroxyphenyl] Propane, 2,2-bis [3- (1-methylpentylamino) -4-hydroxyphenyl] propane, 2,2-bis (3,5-diamino-4-hydroxyphenyl) propane, 2,6-diamino- Examples thereof include 4-methylphenol, trimethylethylenebis-4-aminobenzonate, polytetramethylene oxide-di-p-aminobenzonate and the like.
  • As the amino group-containing compound 4,4'-methylenebis (2-chloroaniline) is preferable.
  • the hydroxyl group-containing compound is not particularly limited, and is, for example, ethylene glycol, propylene glycol, diethylene glycol, trimethylene glycol, tetraethylene glycol, triethylene glycol, dipropylene glycol, 1,4-butanediol, and 1,3-butanediol.
  • a bifunctional (diol) compound as the hydroxyl group-containing compound rather than a trifunctional or higher functional compound.
  • a bifunctional (diol) compound as the hydroxyl group-containing compound, polytetramethylene glycol is more preferable.
  • the above curing agent is used in combination of two or more.
  • the combination of the curing agents is not particularly limited, but a combination described later is preferable.
  • the active hydrogen equivalent of the curing agent (for example, NH 2 equivalent and OH equivalent) is not particularly limited, and may be, for example, 50 or more and 5000 or less, 100 or more and 4000 or less, and 130 or more and 3000 or less. There may be.
  • the OH equivalent of the curing agent, which is a hydroxyl group-containing compound may be 100 or more and 5000 or less, 200 or more and 4000 or less, or 300 or more and 3000 or less.
  • the NH 2 equivalent of the curing agent, which is an amino group-containing compound may be 50 or more and 2000 or less, 75 or more and 1000 or less, or 100 or more and 300 or less.
  • At least two types of curing agents are used in the mixing step.
  • a combination of curing agents it is preferable to use curing agents having low compatibility with each other and / or having different reactivity and / or having different active hydrogen equivalents. According to such an embodiment, there is a tendency that a microphase-separated structure can be obtained more reliably.
  • combinations of curing agents having different reactivity include combinations of curing agents having different active hydrogen groups, and more specifically, examples thereof include combinations of amino group-containing compounds and hydroxyl group-containing compounds.
  • two or more types of curing agents having the same active hydrogen group that is, when two or more types of hydroxyl group-containing compounds are used, or when two or more types of amino group-containing compounds are used, such two or more types of curing agents are preferable.
  • the two or more kinds of curing agents include a curing agent having an active hydrogen equivalent of 200 or more and 500 or less, and a curing agent having an active hydrogen equivalent of 1000 or more and 2000 or less.
  • the ratio of the amount of the curing agent with a small equivalent to the amount of the curing agent with a large active hydrogen equivalent is 1 for "a curing agent with a small active hydrogen equivalent: a curing agent with a large active hydrogen equivalent" in terms of the number of active hydrogen groups. It is preferably 1: 1 to 1:15, more preferably 1: 1 to 1:10.
  • the two or more types of curing agents When two or more types of curing agents having the same active hydrogen group are used, the two or more types of curing agents have an active hydrogen equivalent of 200 or more and 500 or less, and an active hydrogen equivalent of 1000 or more and 2000 or less.
  • the ratio of the amount of the curing agent having an active hydrogen equivalent of 200 or more and 500 or less to the amount of the curing agent having an active hydrogen equivalent of 1000 or more and 2000 or less is "the active hydrogen equivalent is A curing agent having an active hydrogen equivalent of 200 or more and 500 or less: a curing agent having an active hydrogen equivalent of 1000 or more and 2000 or less ”is preferably 1: 1 to 1:15 in terms of the number of active hydrogen groups, and is preferably 1: 1 to 1:10. Is more preferable.
  • At least two types of curing agents preferably contain an amino group-containing compound and a hydroxyl group-containing compound.
  • the at least two curing agents more preferably contain one amino group-containing compound and two or more hydroxyl group-containing compounds, or two or more amino group-containing compounds and one hydroxyl group-containing compound.
  • the at least two types of curing agents more preferably contain one type of amino group-containing compound and two or more types of hydroxyl group-containing compounds.
  • the difference between the NH 2 equivalent of the amino group-containing compound and the OH equivalent of the hydroxyl group-containing compound is not particularly limited, but the OH of the hydroxyl group-containing compound is not particularly limited.
  • the equivalent amount is preferably larger, and the OH equivalent of the hydroxyl group-containing compound is more preferably 100 or more and 2000 or less larger than the NH 2 equivalent of the amino group-containing compound.
  • the ratio of the amount of the curing agent used as the amino group-containing compound to the total amount of the used amount of the curing agent is 35 in terms of the number of functional groups. It is preferably% or more and 95% or less, and more preferably 40% or more and 90% or less.
  • At least two types of curing agents have an NH 2 equivalent of 100 or more and 300 or less as a first curing agent (amino group-containing compound) and an OH equivalent of 1000 or more and 2000 or less. It contains a second curing agent (hydroxyl group-containing compound).
  • the ratio of the amount of the first curing agent used and the amount of the second curing agent used is not particularly limited, but the amount of the first curing agent used is the ratio of the number of functional groups to the total amount of the curing agent used. It is preferably 35% or more and 98% or less, more preferably 35% or more and 95% or less, and further preferably 40% or more and 90% or less.
  • the amount of the second curing agent used is preferably 2% or more and 60% or less, more preferably 3% or more and 60% or less, in terms of the functional group number ratio with respect to the total amount of the curing agent used. It is more preferably 5% or more and 50% or less.
  • the amount of the first curing agent used is preferably 10% or more and 90% or less, and more preferably 15% or more and 80% or less in terms of mass ratio with respect to the total amount of the curing agent used. ..
  • the amount of the second curing agent used is preferably 10% or more and 50% or less, and more preferably 15% or more and 40% or less in terms of mass ratio with respect to the total amount of the curing agent used.
  • the total amount of the curing agent used is defined by the R value, which is the equivalent ratio of the active hydrogen groups (amino groups and hydroxyl groups) present in the curing agent when the number of functional groups of the prepolymer is 1.
  • the total amount of the curing agent used is preferably adjusted so that the R value is 0.7 or more and 1.3 or less.
  • the R value is more preferably 0.8 or more and 1.2 or less.
  • the pore distribution measured by the mercury intrusion method with a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm was 0.010 ⁇ m more reliably.
  • two or more types of curing agents having low compatibility with each other are used, two or more types of curing agents having different reactivity with each other are used, and / or curing agents having different active hydrogen equivalents are used. Can be done. Even if a resin sheet having a clear microphase-separated structure cannot be obtained by such a combination, the types of curing agents are changed so as to have high compatibility with each other, and the reactivity with each other is similar. By making adjustments such as changing the curing agent so that the amount of active hydrogen is close to each other and / or changing the curing agent so that the active hydrogen equivalents of each other are close to each other, a resin sheet having a microphase-separated structure tends to be obtained. It is in.
  • the prepolymer used in the mixing step is not particularly limited, and examples thereof include urethane prepolymer.
  • examples of the urethane prepolymer include an adduct of hexamethylene diisocyanate and hexanetriol; an adduct of 2,4-tolylene diisocyanate and Plent's catechol; 2,4-tolylene diisocyanate and poly (oxytetramethylene) glycol.
  • diethylene glycol adduct diethylene glycol adduct; tolylene diisocyanate and hexanetriol adduct; tolylene diisocyanate and trimethylol propane adduct; xylylene diisocyanate and trimethylol propane adduct; hexamethylene diisocyanate and trimethylol propane Adducts; and adducts of isocyanuric acid and hexamethylene diisocyanate.
  • an isocyanate group-containing compound prepared by reacting a polyisocyanate compound with a polyol compound or various commercially available urethane prepolymers may be used.
  • the polyisocyanate compound used for preparing the isocyanate group-containing compound is not particularly limited as long as it has two or more isocyanate groups in the molecule.
  • examples of the diisocyanate compound having two isocyanate groups in the molecule include m-phenylenedi isocyanate, p-phenylenedi isocyanate, 2,6-toluene diisocyanate (2,6-TDI), and 2,4-toluene diisocyanate (2).
  • polyisocyanate compounds may be used alone or in combination of two or more.
  • a diisocyanate compound is preferable, and 2,4-TDI, and 2,6-TDI and MDI are more preferable.
  • polyol compound used for preparing an isocyanate group-containing compound examples include diol compounds such as ethylene glycol, diethylene glycol (DEG) and butylene glycol, triol compounds and the like; polypropylene glycol (PPG) and poly (oxytetramethylene) glycol (.
  • Polyether polyol compounds such as PTMG); polyester polyol compounds such as a reaction product of ethylene glycol and adipic acid and a reaction product of butylene glycol and adipic acid; polycarbonate polyol compound, polycaprolactone polyol compound and the like can be mentioned.
  • trifunctional propylene glycol to which ethylene oxide is added can also be used.
  • the polyol compound may be used alone or in combination of two or more.
  • the NCO equivalent of the urethane prepolymer is preferably 150 or more and 700 or less, more preferably 200 or more and 600 or less, and further preferably 200 or more and 500 or less.
  • “NCO equivalent” means "(mass part of polyisocyanate compound + mass part of polyol compound) / [(number of functional groups per molecule of polyisocyanate compound x mass part of polyisocyanate compound / molecular weight of polyisocyanate compound)-( It is a numerical value indicating the molecular weight of the urethane prepolymer per NCO group, which is determined by "the number of functional groups per molecule of the polyol compound x the mass part of the polyol compound / the molecular weight of the polyol compound)]".
  • At least one prepolymer is used in the mixing step.
  • the prepolymer two or more of the above may be used in combination, but one of them is preferably used alone. According to such an embodiment, the curing reaction tends to be easily controlled, and the shape of the microphase-separated structure tends to be easily controlled.
  • the prepolymer it is preferable to use a urethane prepolymer containing tolylene diisocyanate as a main component alone.
  • the amount of the prepolymer used is not particularly limited, but is preferably 30 parts by mass or more and 80 parts by mass or less, and more preferably 40 parts by mass or more and 75 parts by mass or less with respect to the entire mixed solution.
  • components other than the prepolymer and the curing agent may be mixed as additives.
  • a solvent such as polypropylene glycol
  • a defoaming agent such as a silicone-based defoaming agent
  • a catalyst such as a catalyst
  • a foaming agent such as water or hollow fine particles
  • Agents; and fillers such as cerium oxide; dyes; pigments; solid fine particles; flame retardants; hydrophilic agents; hydrophobic agents; lightfasteners; antioxidants; antistatic agents and the like.
  • the density of the obtained resin sheet is 0.3 g / cm 3 or more and 0.9 g / cm 3 or less, it is preferable to add a foaming agent for density adjustment, and the amount of the foaming agent added can be adjusted. More preferred.
  • the reaction rate of the curing reaction can be controlled and the formed microphase separation structure can be controlled by adjusting the type and amount of the catalyst to be added.
  • the molding step is a step of obtaining a resin sheet having a microphase-separated structure by curing the mixture obtained as described above.
  • the mixed solution obtained in the mixing step may be poured into a mold preheated to 30 ° C. to 150 ° C. and heated at about 30 ° C. to 150 ° C. for about 10 minutes to 5 hours.
  • the prepolymer reacts with the curing agent to form a resin, so that the mixed solution is cured. Further, it may be secondarily cured by heating it in an oven at about 50 ° C. to 180 ° C. for about 10 minutes to 10 hours.
  • the mixed liquid is the above-mentioned one, a resin block having a microphase-separated structure can be obtained.
  • the reaction temperature at which the mixed solution is cured in the molding step can be appropriately adjusted depending on the type and compounding ratio of the prepolymer, curing agent and additive used, and by adjusting the reaction temperature, the curing reaction can be carried out. There is a tendency to be able to control the reaction rate and control the microphase-separated structure formed.
  • a resin sheet having a microphase separation structure is obtained by cutting out a resin sheet having an appropriate thickness from the resin block obtained as described above.
  • the obtained resin sheet may be aged at 30 ° C. to 150 ° C. for about 1 hour to 24 hours.
  • the resin sheet thus obtained is, for example, subsequently attached with a double-sided tape on one side and cut into a predetermined shape, preferably in the shape of a disk, to be completed as the wrapping pad of the present embodiment.
  • the double-sided tape is not particularly limited, and can be arbitrarily selected and used from conventionally known double-sided tapes.
  • the wrapping pad of the present embodiment may have a single-layer structure consisting of only a resin sheet, or may be composed of a plurality of layers in which another layer (cushion layer or substrate layer) is bonded to one side of the resin sheet. May be good.
  • a plurality of layers may be bonded and fixed while being pressed as necessary using double-sided tape, an adhesive or the like.
  • the double-sided tape and the adhesive used are not particularly limited, and can be arbitrarily selected from conventionally known double-sided tapes and adhesives.
  • the wrapping pad of the present embodiment may be grooved, embossed, and / or holed (punched) on the surface, if necessary.
  • the shape of the grooving and embossing is not particularly limited, and examples thereof include a grid type, a concentric circle type, and a radial type.
  • the wrapping pad may be dressed (ground) on the front surface and / or the back surface of the resin sheet.
  • the resin sheet in the method for manufacturing a wrapping pad of the present embodiment has a high density, it has communicating pores, so that it has excellent dressing properties and can be dressed under easy conditions.
  • the dressing treatment is not particularly limited, and dressing can be performed by a known method such as grinding with a diamond dresser.
  • the method for producing a wrapping work piece of the present embodiment includes a wrapping step of wrapping a work piece using the above-mentioned wrapping pad in the presence of a slurry to obtain a wrapping work piece.
  • the holding surface plate and the wrapping surface plate are relatively rotated while the workpiece is pressed against the wrapping pad side by the holding surface plate while supplying the slurry. Then, the machined surface of the workpiece is wrapped by the action of the wrapping pad.
  • the holding surface plate and the wrapping surface plate may rotate in the same direction at different rotation speeds, or may rotate in different directions. Further, the workpiece may be wrapped while moving (rotating) inside the frame portion during the lapping process.
  • the slurry contains liquid components such as water and oil, additives, and abrasive particles (abrasive particles; for example, diamond, SiC, B4 C, and Al 2 O 3 ) depending on the workpiece and wrapping conditions. It may be included.
  • abrasive particles for example, diamond, SiC, B4 C, and Al 2 O 3
  • the work piece is not particularly limited, but for example, an optical material such as a lens, a parallel flat plate, and a reflective mirror, a semiconductor wafer material such as a SiC disk, a crystal, a metal, a stone material, a wood, and a resin material. , And materials such as ceramics.
  • ⁇ Fourth Embodiment> a fourth aspect (also referred to as “fourth embodiment” in the present specification) according to the present embodiment will be described in detail.
  • the terms and symbols used in ⁇ 4th embodiment> are used independently of the contents of ⁇ 1st embodiment>, ⁇ 2nd embodiment> and ⁇ 3rd embodiment> described later. do.
  • the wrapping pad of the present embodiment (hereinafter, unless otherwise specified, "the present embodiment" in the ⁇ fourth embodiment> means the fourth embodiment) is provided with a resin sheet having pores and has a contact angle.
  • the integrated pore volume V in the pore diameter range of 0.100 ⁇ m or more and 10.0 ⁇ m or less is 0.020 cm 3 It is / g or more and 0.100 cm 3 / g or less, and the density of the resin sheet is 0.9 g / cm 3 or more and 1.3 g / cm 3 or less.
  • the wrapping pad of the present embodiment is configured as described above, it is excellent in both liquid holding performance and abrasive grain holding performance of the slurry while maintaining high density. Further, the wrapping pad of the present embodiment can be specified as follows from the viewpoint of the integrated pore volume V'described later. That is, the wrapping pad of the present embodiment is provided with a resin sheet having pores, and has a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm.
  • the integrated pore volume V'' in the pore diameter range of 10.0 ⁇ m or less is 0.020 cm 3 / g or more and 0.140 cm 3 / g or less, and the density of the resin sheet is 0.9 g / cm 3 or more. It is 3 g / cm 3 or less.
  • the wrapping pad of the present embodiment specified in this way can also impart good flatness to the workpiece and has an excellent affinity with the slurry.
  • the wrapping pad of the present embodiment is not particularly limited as long as it includes the resin sheet of the present embodiment, and the wrapping pad may have a configuration other than the resin sheet.
  • Examples of the structure of the wrapping pad other than the resin sheet include conventionally known wrapping layers, cushion layers, adhesive layers, and the like.
  • the term "resin sheet in the present embodiment” is referred to, "a resin sheet having pores, measured by a mercury intrusion method having a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm".
  • the integrated pore volume V in the range of the pore diameter of 0.100 ⁇ m or more and 10.0 ⁇ m or less is 0.020 cm 3 / g or more and 0.100 cm 3 / g or less, and the resin sheet is concerned.
  • the integrated pore volume V'' in the range of pore diameter of 0.050 ⁇ m or more and 10.0 ⁇ m or less is 0.020 cm 3 / g or more and 0.140 cm 3 / g or less, and the resin is concerned. It includes both "resin sheets having a sheet density of 0.9 g / cm 3 or more and 1.3 g / cm 3 or less".
  • the wrapping pad of the present embodiment preferably has the above resin sheet as a wrapping layer. "Having a resin sheet as a wrapping layer” means that at least one surface of the wrapping pad of the present embodiment corresponds to the surface of the resin sheet of the present embodiment, and the surface of the resin sheet corresponds to the surface of the wrapping of the present embodiment. It means that it becomes a wrapping surface that is pressed against the workpiece during processing. Therefore, the wrapping pad of the present embodiment is preferably composed of at least one side of the resin sheet of the present embodiment. Further, the wrapping pad of the present embodiment may be composed of only the resin sheet of the present embodiment.
  • the wrapping pad of the present embodiment may be grooved, embossed, and / or hole-processed (punched) on the wrapping surface, if necessary, and may be provided with a light transmitting portion.
  • the shape of the grooving and embossing is not particularly limited, and examples thereof include a grid type, a concentric type, and a radial type.
  • the resin sheet in the present embodiment has a density of 0.9 g / cm 3 or more and 1.3 g / cm 3 or less.
  • the density of the resin sheet in the present embodiment is 0.9 g / cm 3 or more, that is, when the resin sheet has a high density, the abrasive grains move into the resin sheet during the lapping process and do not contribute to polishing. Can be suppressed.
  • the wrapping pad is less likely to be deformed by pressure, the force applied from the wrapping pad to the workpiece becomes uniform in the wrapping surface direction in the wrapping process. As a result, the surface of the workpiece can be further flattened in the lapping process using the wrapping pad provided with such a resin sheet.
  • the surface of the workpiece is flat means that the surface of the workpiece to be wrapped is flatter as a whole. This can be rephrased as having good global flatness.
  • the density of the resin sheet in the present embodiment is preferably 0.9 g / cm 3 or more, more preferably 1.0 g / cm 3 or more, and further preferably 1.1 g / cm 3 or more. Is.
  • the density of the resin sheet exceeding 0.9 g / cm 3 means that the density of the resin measured by two significant figures is 0.91 g / cm 3 or more.
  • the density of the resin sheet in this embodiment is 1.3 g / cm 3 or less, the liquid retention performance of the slurry is improved.
  • the density of the resin sheet in the present embodiment can be measured by a conventionally known method.
  • the mass and volume of the resin sheet piece may be measured by a usual method, and the density may be obtained from the obtained values.
  • the method for controlling the density of the resin sheet is not particularly limited, but for example, the wrapping pad may be obtained by the method for manufacturing the wrapping pad according to the present embodiment described later.
  • the density of the resin sheet can be increased by reducing the amount of the foaming agent or by not using the foaming agent.
  • the resin sheet in the present embodiment has pores and has a pore diameter of 0.100 ⁇ m or more and 10.0 ⁇ m or less in a pore distribution measured by a mercury intrusion method having a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm.
  • the integrated pore volume V in the range is 0.020 cm 3 / g or more and 0.100 cm 3 / g or less.
  • the "pore distribution" means the pore distribution measured by the mercury intrusion method having a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm. do.
  • the mercury intrusion method is a method capable of measuring the pore distribution on the surface of a measurement sample by filling the pores on the surface of the measurement sample with mercury while sweeping the applied pressure. Therefore, when the pore distribution of a foam material is measured by the mercury intrusion method, the pore distribution mainly reflects the pore distribution of the communicating bubbles (generally also referred to as "open cells") and is independent. The contribution of the pore distribution of bubbles is small.
  • the present inventors have an integrated pore volume V of 0.020 cm 3 in a pore diameter range of 0.100 ⁇ m or more and 10.0 ⁇ m or less in the pore distribution measured by the mercury intrusion method. It has been found that when the value is / g or more, the abrasive grain holding performance of the wrapping pad is sufficiently good. This is because when the integrated pore volume V is 0.020 cm 3 / g or more, the communication bubbles having a pore diameter of 0.100 ⁇ m or more and 10.0 ⁇ m or less are distributed throughout the resin sheet, and the communication is made.
  • the integrated pore volume V is 0.020 cm 3 / g or more and the affinity of the wrapping pad with the slurry is sufficiently good is not limited to the above.
  • the integrated pore volume V is preferably 0.030 cm 3 / g or more, more preferably 0.040 cm 3 / g or more. Yes, more preferably 0.050 cm 3 / g or more.
  • the resin sheet becomes excellent in dressing property while having a high density.
  • dressing or “dressing” means using a dressing jig (for example, diamond dresser or sandpaper) to which abrasive grains and the like are fixed before wrapping the workpiece. It means a process of adjusting the surface roughness of the wrapping surface and adjusting the flatness. Further, “excellent in dressing property” means that sufficient dressing can be performed by processing under relatively easy conditions.
  • the “wrapping surface” means a surface on which the wrapping pad comes into contact with or is expected to come into contact with the workpiece when the workpiece is wrapped by the lapping pad.
  • the integrated pore volume V is 0.100 cm 3 / g or less. Since the integrated pore volume V is 0.100 cm 3 / g or less, the density of the resin sheet tends to be within the above range, and in the wrapping process using the wrapping pad provided with such a resin sheet, the cover is covered. The surface of the work piece can be made even flatter. From the same viewpoint, the integrated pore volume V is preferably 0.090 cm 3 / g or less, and more preferably 0.080 cm 3 / g or less.
  • the integrated pore volume V' In the pore distribution of the resin sheet in the present embodiment, the integrated pore volume V'in the range of the pore diameter of 0.050 ⁇ m or more and less than 0.100 ⁇ m is typically 0.000 cm 3 / g or more and 0.120 cm. It is 3 / g or less, and is preferably 0.000 cm 3 / g or more and 0.100 cm 3 / g or less from the viewpoint of further improving the balance between the flatness imparted to the workpiece and the affinity with the slurry. , More preferably 0.000 cm 3 / g or more and 0.080 cm 3 / g or less.
  • the wrapping pad of the present embodiment is provided with a resin sheet having pores, and has a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm.
  • the integrated pore volume V'' in the range of pore diameter of 050 ⁇ m or more and 10.0 ⁇ m or less is 0.020 cm 3 / g or more and 0.140 cm 3 / g or less, and the density of the resin sheet is 0.9 g / cm 3 or more. It can be specified that it is 1.3 g / cm 3 or less.
  • the integrated pore volume V'' in the range of the pore diameter of 0.050 ⁇ m or more and 10.0 ⁇ m or less in the present embodiment is specified as the sum of the integrated pore volume V and the integrated pore volume V'in the present embodiment. From the viewpoint of further improving the balance between the flatness imparted to the workpiece and the affinity with the slurry, it is 0.020 cm 3 / g or more and 0.140 cm 3 / g or less, preferably 0. It is 030 cm 3 / g or more and 0.130 cm 3 / g or less, and more preferably 0.050 cm 3 / g or more and 0.120 cm 3 / g or less.
  • the pore diameter of the resin sheet is 0.100 ⁇ m or more and 360 ⁇ m or less.
  • the ratio of the integrated pore volume V in the range of the pore diameter of 0.100 ⁇ m or more and 10.0 ⁇ m or less to the integrated pore volume V 0 in the range of is preferably 50% or more.
  • the ratio (V / V 0 ) of the integrated pore volume V to the integrated pore volume V 0 is preferably 0.50 or more.
  • the resin sheet has an increased proportion of pores having a relatively small pore diameter, so that the number of communicating bubbles in the resin sheet can be further increased while maintaining a high density.
  • the ratio of the integrated pore volume V to the integrated pore volume V 0 is more preferably 60% or more, further preferably 65% or more, still more preferably 70% or more.
  • the upper limit of the ratio of the integrated pore volume V to the integrated pore volume V 0 is not particularly limited, and the ratio of the integrated pore volume V to the integrated pore volume V 0 may be 100% or less, and may be 99% or less. It may be 95% or less, 90% or less, or 80% or less.
  • the ratio (V / V 0 ') of the integrated pore volume V to the integrated pore volume V 0'in the range of the pore diameter of 0.050 ⁇ m or more and 360 ⁇ m or less is From the same viewpoint as above, it is preferably 50% or more, more preferably 60% or more, still more preferably 65% or more, still more preferably 70% or more. Further, V / V 0'may be 100% or less, 99% or less, 95% or less, 90% or less, 80% or less. You may.
  • the peak position of the maximum peak in the pore diameter range of 0.100 ⁇ m or more and 360 ⁇ m or less is preferably within the pore diameter range of 0.100 ⁇ m or more and 10.0 ⁇ m or less. ..
  • the pore distribution is measured as the integrated pore volume from the maximum pore diameter in the measurement range. Therefore, the "peak position of the maximum peak in the range of the pore diameter of 0.100 ⁇ m or more and 360 ⁇ m or less" is the Log differential pore volume distribution calculated from the pore distribution obtained by the mercury intrusion method (dV / d (logD).
  • the maximum peak means the maximum point having the largest maximum value when there are a plurality of maximum points in the range of the pore diameter of 0.100 ⁇ m or more and 360 ⁇ m or less.
  • the resin sheet has a pore diameter of 0.100 ⁇ m or more and 10.0 ⁇ m or less. In the range, since the distribution has more uniform pores, the affinity of the wrapping pad with the slurry and the dressing property tend to be further improved.
  • the peak position of the maximum peak in the range of the pore diameter of 0.100 ⁇ m or more and 360 ⁇ m or less is more preferably 0.500 ⁇ m or more and 5.00 ⁇ m or less. It is within the range of pore diameter.
  • the peak position of the maximum peak in the pore diameter range of 0.050 ⁇ m or more and 360 ⁇ m or less is within the pore diameter range of 0.050 ⁇ m or more and 10.0 ⁇ m or less. Is preferable, and more preferably, it is within the range of the pore diameter of 0.050 ⁇ m or more and 5.00 ⁇ m or less.
  • the number of peaks in the range of the pore diameter of 0.100 ⁇ m or more and 360 ⁇ m or less is preferably 1 or more and 3 or less, more preferably 1 or more and 2 or less, still more preferable. Is 1.
  • the peak height of the maximum peak is preferably twice or more the peak height of the second highest peak. It is more preferably 5 times or more, and further preferably 10 times or more.
  • the integrated pore volume V 0 in the range of the pore diameter of 0.100 ⁇ m or more and 360 ⁇ m or less is preferably 0.040 cm 3 / g or more and 0.120 cm 3 / g or less. Yes, more preferably 0.050 cm 3 / g or more and 0.110 cm 3 / g or less, and further preferably 0.060 cm 3 / g or more and 0.100 cm 3 / g or less.
  • the integrated pore volume V 0 is within the above range, the balance between the flatness imparted to the workpiece and the affinity with the slurry tends to be further improved.
  • the integrated pore volume V 0'in the range of the pore diameter of 0.050 ⁇ m or more and 360 ⁇ m or less is the integrated pore volume V 0 and the integrated pores in the present embodiment. It can be specified as the sum of volumes V', and from the same viewpoint as above, it is preferably 0.040 cm 3 / g or more and 0.200 cm 3 / g or less, and more preferably 0.050 cm 3 / g or more 0. It is 180 cm 3 / g or less, more preferably 0.060 cm 3 / g or more and 0.160 cm 3 / g or less.
  • the integrated pore volume V, the integrated pore volume V', the integrated pore volume V'', the integrated pore volume V 0 ', the peak position of the maximum peak, the number of peaks, And the peak height value is calculated from the pore distribution measured by the mercury intrusion method with a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm.
  • the method described in can be referred to.
  • the method for controlling the value is not particularly limited, but for example, the wrapping pad may be obtained by the method for manufacturing the wrapping pad according to the present embodiment described later.
  • the resin sheet in the present embodiment preferably has a microphase-separated structure.
  • the "micro phase separation structure” means a phase separation structure formed through micro phase separation.
  • microphase separation means that a microscopic (typically, micrometer-order) structural pattern is repeated with a periodicity of at least one dimension in a macroscopically homogeneous object. It means the phase separation that occurs.
  • Microphase separation can be generated, for example, by adopting preferable manufacturing conditions in the method for manufacturing a wrapping pad according to the present embodiment, which will be described later.
  • Typical examples of the microphase-separated structure include, but are not limited to, a spherical structure (sea island structure), a cylinder structure, a lamellar structure, and a three-dimensional network structure.
  • the microphase-separated structure in the present embodiment preferably includes a cylinder structure, a lamellar structure, and a three-dimensional network structure, and more preferably a three-dimensional network structure.
  • the three-dimensional network structure means a structure in which a network-like network is formed in a three-dimensional direction.
  • the three-dimensional network structure derived from the microphase separation may include a single gyroid structure and / or a double (multiple) gyroid structure.
  • the single gyroid structure is typically a network structure in which two tridents are twisted to form a pair of thin wire structures to form a unit cell, which is periodically repeated.
  • a double (multiple) gyroid structure means a structure in which two or more single gyroid structures are nested.
  • the cross section of the resin sheet having a continuously foaming structure derived from the injection of a conventional foaming agent or an inert gas has a substantially spherical foamed cross section and a resin flat portion (that is, a sea island shape between a sea of resin and islands of voids) is observed. Tend to be.
  • the resin sheet in the present embodiment has a double (multiple) gyroid structure
  • a structure in which two or more resins are mottled and phase-separated in a micrometer order is typically observed in the cross section.
  • an amorphous void cross section and a resin skeleton / resin skeleton cross section are typically observed in the cross section.
  • the resin skeleton portion is sufficiently larger than the voids, the resin skeleton portion may not be observed and may be observed substantially in the shape of a sea of resin. , It is formed in a three-dimensional network that communicates with each other.
  • the characteristics of both the mottled pattern of two or more resins, the irregular void cross section and the resin skeleton / resin skeleton cross section are observed, that is, In some cases, the boundary between the double (multiple) gyroid structure and the single gyroid structure cannot be clearly distinguished, but in this case, it can be evaluated as including at least one of the single gyroid structure and the double (multiple) gyroid structure.
  • the resin sheet in the present embodiment has a single gyroid structure and / or a double (multiple) gyroid structure, it is typically in the range of pore diameters of 0.100 ⁇ m or more and 10.0 ⁇ m or less in the Log differential pore volume distribution. A sharp peak (maximum value) is measured inside.
  • the preferable structure observed in the wrapping pad of the present embodiment will be described in detail, but it is premised that the structure is derived from the microphase separation.
  • the resin sheet in this embodiment can contain two or more phases having different compositions.
  • the "composition" of the phase includes both the resin which is the main component of the phase and the components other than the main component contained in the phase, and further considers the compounding ratio of these. Therefore, the microphase-separated structure of the resin sheet in the present embodiment can include two or more phases in which at least one of the resin which is the main component of the phase and the components other than the main component contained in the phase are different from each other. Typically, it can include two or more phases that differ in at least one of the structure, average molecular weight, and functional group of the resin that is the main component of the phase.
  • phase and the other phase have different types of resins constituting the phase; the inclusion of additives contained in one phase and the other phase.
  • the amounts are different; and when the resin sheet is made of AB block polymer, one phase is a phase containing A block as a main component, and the other phase is a phase containing B block as a main component. Can be mentioned.
  • the first phase is a phase in which a predetermined prepolymer and a predetermined curing agent are cured
  • the second phase is a second phase.
  • the first phase is a phase in which the predetermined prepolymer and the predetermined curing agent are cured.
  • the second phase is a phase in which a curing agent different from the prepolymer in the first phase and the curing agent in the first phase is cured; and the first phase is a predetermined prepolymer and a predetermined curing agent.
  • the second phase is a phase in which a prepolymer different from the prepolymer in the first phase and a curing agent different from the curing agent in the first phase are cured.
  • the second phase is a phase in which a prepolymer different from the prepolymer in the first phase and a curing agent different from the curing agent in the first phase are cured.
  • the resin sheet in this embodiment can have voids due to microphase separation.
  • Such voids may be paraphrased as voids constituting the microphase-separated structure, and specific examples thereof include, but are not limited to, voids defined by a resin skeleton that gives a gyroid structure.
  • the voids may be derived from pores or may be derived from communication holes in which a plurality of pores communicate with each other.
  • the resin sheet having the microphase-separated structure in the present embodiment can be obtained, for example, by the method for manufacturing the wrapping pad of the present embodiment, which will be described later. Further, the fact that the resin sheet has a microphase-separated structure can be confirmed by observing with a scanning electron microscope (SEM) at a magnification of about 300 to 3000 times.
  • SEM scanning electron microscope
  • the fact that the resin sheet does not have a microphase-separated structure containing two or more phases having different compositions or has the above-mentioned voids is an optical method such as an optical microscope and a phase difference microscope.
  • Methods using electron microscopes such as scanning electron microscopes and transmission electron microscopes, methods using particle scattering such as light scattering, neutron beam small angle scattering, and X-ray small angle scattering, X-ray diffraction methods, It can be observed by using a method such as a fluorescence method and a pulse NMR measurement method.
  • the average thickness of the resin sheet in the present embodiment is not particularly limited, but is preferably 0.5 mm or more and 10.0 mm or less, more preferably 0.6 mm or more and 8.0 mm or less, and further preferably 0.7 mm. It is 5.0 mm or less.
  • the compressibility of the resin sheet in the present embodiment is not particularly limited, but is preferably 0.1% or more and 10.0% or less, and more preferably 0.5% or more and 5.0% or less.
  • the compressibility of the resin sheet can be determined by using a shopper type thickness measuring instrument (pressurized surface: circular with a diameter of 1 cm) in accordance with Japanese Industrial Standards (JIS L 1021). Specifically, the thickness t0 after applying the initial load for 30 seconds from the unloaded state is measured, and then the thickness t1 after applying the final pressure for 30 seconds from the state of the thickness t0 is measured. Therefore, it can be calculated from the following formula.
  • the initial load is 100 g / cm 2 and the final pressure is 1120 g / cm 2 .
  • Compressibility (%) 100 ⁇ (t0-t1) / t0
  • the compressive elastic modulus of the resin sheet in the present embodiment is not particularly limited, but is preferably 65% or more and 98% or less, and more preferably 70% or more and 95% or less.
  • the compressive elastic modulus of the resin sheet can be determined by using a shopper type thickness measuring instrument (pressurized surface: circular with a diameter of 1 cm) in accordance with Japanese Industrial Standards (JIS L 1021). Specifically, the thickness t0 after applying the initial load for 30 seconds from the unloaded state is measured, and then the thickness t1 after applying the final pressure for 30 seconds from the state of the thickness t0 is measured.
  • the thickness t0' is measured from the following formula. Can be calculated.
  • the initial load is 100 g / cm 2 and the final pressure is 1120 g / cm 2 .
  • Compressive modulus (%) 100 ⁇ (t0'-t1) / (t0-t1)
  • the shore D hardness of the resin sheet in this embodiment is not particularly limited, but is preferably 30 or more and 90 or less, and more preferably 40 or more and 80 or less.
  • the shore D hardness of the resin sheet can be determined by using a D-type hardness tester in accordance with the Japanese Industrial Standards (JIS K 7311).
  • the material of the resin sheet in this embodiment is not particularly limited.
  • Examples of the material of the resin sheet include polyurethane resin.
  • the polyurethane resin is not particularly limited, and examples thereof include polyester-based polyurethane resins, polyether-based polyurethane resins, and polycarbonate-based polyurethane resins. These may be used individually by 1 type or in combination of 2 or more type.
  • the material of the resin sheet in the present embodiment preferably contains at least one of a polyester-based polyurethane resin and a polyether-based polyurethane resin.
  • a polyurethane resin which is a cured product of a mixed solution containing a urethane prepolymer and at least two kinds of curing agents, which will be described later in the method for producing a wrapping pad of the present embodiment.
  • the resin sheet in the present embodiment may contain a component derived from an additive in addition to the resin component.
  • additives include defoaming agents, catalysts, foaming agents, foaming agents, abrasive grains, dyes, pigments, solid fine particles, and flame-retardant agents, which will be described later in the method for manufacturing a wrapping pad of the present embodiment.
  • examples thereof include a hydrophilizing agent, a hydrophobizing agent, a light resistant agent, an antioxidant, and an antistatic agent.
  • the method for producing a wrapping pad of the present embodiment includes a step of obtaining a resin sheet having a microphase-separated structure by curing a mixed solution of at least one prepolymer and at least two curing agents. According to such a method, the wrapping pad of the present embodiment can be easily manufactured. Hereinafter, each step of the method for manufacturing the wrapping pad will be described in detail.
  • the method for producing a wrapping pad of the present embodiment can include a mixing step of preparing a mixed solution of at least one prepolymer and at least two curing agents.
  • a resin sheet having a microphase-separated structure can be obtained in the molding step after the mixing step.
  • the mixing step for example, at least one prepolymer heated to 30 ° C to 90 ° C and at least two curing agents are put into a temperature-adjustable jacketed mixer and stirred at 30 ° C to 130 ° C. do it.
  • the mixed solution may be received in a tank with a jacket with a stirrer and aged.
  • the stirring time is appropriately adjusted depending on the number of teeth, the number of rotations, the clearance, etc. of the mixer, and is, for example, 0.1 to 60 seconds.
  • the curing agent used in the mixing step is not particularly limited, and examples thereof include an amino group-containing compound and a hydroxyl group-containing compound.
  • the amino group-containing compound is not particularly limited, and is, for example, 4,4'-methylenebis (2-chloroaniline) (MOCA), ethylenediamine, propylenediamine, hexamethylenediamine, isophoronediamine, dicyclohexylmethane-4,4'-.
  • Diamine 4-Methyl-2,6-bis (methylthio) -1,3-benzenediamine, 2-methyl-4,6-bis (methylthio) -1,3-benzenediamine, 2,2-bis (3-bis) Amino-4-hydroxyphenyl) propane, 2,2-bis [3- (isopropylamino) -4-hydroxyphenyl] propane, 2,2-bis [3- (1-methylpropylamino) -4-hydroxyphenyl] Propane, 2,2-bis [3- (1-methylpentylamino) -4-hydroxyphenyl] propane, 2,2-bis (3,5-diamino-4-hydroxyphenyl) propane, 2,6-diamino- Examples thereof include 4-methylphenol, trimethylethylenebis-4-aminobenzonate, polytetramethylene oxide-di-p-aminobenzonate and the like.
  • As the amino group-containing compound 4,4'-methylenebis (2-chloroaniline) is preferable.
  • the hydroxyl group-containing compound is not particularly limited, and is, for example, ethylene glycol, propylene glycol, diethylene glycol, trimethylene glycol, tetraethylene glycol, triethylene glycol, dipropylene glycol, 1,4-butanediol, and 1,3-butanediol.
  • a bifunctional (diol) compound as the hydroxyl group-containing compound rather than a trifunctional or higher functional compound.
  • a bifunctional (diol) compound as the hydroxyl group-containing compound, polytetramethylene glycol is more preferable.
  • the above curing agent is used in combination of two or more.
  • the combination of the curing agents is not particularly limited, but a combination described later is preferable.
  • the active hydrogen equivalent of the curing agent (for example, NH 2 equivalent and OH equivalent) is not particularly limited, and may be, for example, 50 or more and 5000 or less, 100 or more and 4000 or less, and 130 or more and 3000 or less. There may be.
  • the OH equivalent of the curing agent, which is a hydroxyl group-containing compound may be 100 or more and 5000 or less, 200 or more and 4000 or less, or 300 or more and 3000 or less.
  • the NH 2 equivalent of the curing agent, which is an amino group-containing compound may be 50 or more and 2000 or less, 75 or more and 1000 or less, or 100 or more and 300 or less.
  • At least two types of curing agents are used in the mixing step.
  • a combination of curing agents it is preferable to use curing agents having low compatibility with each other and / or having different reactivity and / or having different active hydrogen equivalents. According to such an embodiment, there is a tendency that a microphase-separated structure can be obtained more reliably.
  • combinations of curing agents having different reactivity include combinations of curing agents having different active hydrogen groups, and more specifically, examples thereof include combinations of amino group-containing compounds and hydroxyl group-containing compounds.
  • two or more types of curing agents having the same active hydrogen group that is, when two or more types of hydroxyl group-containing compounds are used, or when two or more types of amino group-containing compounds are used, such two or more types of curing agents are preferable.
  • the two or more kinds of curing agents include a curing agent having an active hydrogen equivalent of 200 or more and 500 or less, and a curing agent having an active hydrogen equivalent of 1000 or more and 2000 or less.
  • the ratio of the amount of the curing agent with a small equivalent to the amount of the curing agent with a large active hydrogen equivalent is 1 for "a curing agent with a small active hydrogen equivalent: a curing agent with a large active hydrogen equivalent" in terms of the number of active hydrogen groups. It is preferably 1: 1 to 15: 1, more preferably 1: 1 to 10: 1.
  • the two or more types of curing agents When two or more types of curing agents having the same active hydrogen group are used, the two or more types of curing agents have an active hydrogen equivalent of 200 or more and 500 or less, and an active hydrogen equivalent of 1000 or more and 2000 or less.
  • the ratio of the amount of the curing agent having an active hydrogen equivalent of 200 or more and 500 or less to the amount of the curing agent having an active hydrogen equivalent of 1000 or more and 2000 or less is "the active hydrogen equivalent is A curing agent having an active hydrogen equivalent of 200 or more and 500 or less: a curing agent having an active hydrogen equivalent of 1000 or more and 2000 or less is preferably 1: 1 to 15: 1 in terms of the number of active hydrogen groups, and is preferably 1: 1 to 10: 1. Is more preferable.
  • At least two types of curing agents preferably contain an amino group-containing compound and a hydroxyl group-containing compound.
  • the at least two curing agents more preferably contain one amino group-containing compound and two or more hydroxyl group-containing compounds, or two or more amino group-containing compounds and one hydroxyl group-containing compound.
  • the at least two types of curing agents more preferably contain one type of amino group-containing compound and two or more types of hydroxyl group-containing compounds.
  • the difference between the NH 2 equivalent of the amino group-containing compound and the OH equivalent of the hydroxyl group-containing compound is not particularly limited, but the OH of the hydroxyl group-containing compound is not particularly limited.
  • the equivalent amount is preferably larger, and the OH equivalent of the hydroxyl group-containing compound is more preferably 100 or more and 2000 or less larger than the NH 2 equivalent of the amino group-containing compound.
  • the ratio of the amount of the curing agent used as the amino group-containing compound to the total amount of the used amount of the curing agent is 35 in terms of the number of functional groups. It is preferably% or more and 95% or less, and more preferably 40% or more and 90% or less.
  • At least two types of curing agents have an NH 2 equivalent of 100 or more and 300 or less as a first curing agent (amino group-containing compound) and an OH equivalent of 200 or more and 600 or less. It contains a second curing agent (hydroxyl group-containing compound) and a third curing agent (hydroxyl group-containing compound) having an OH equivalent of 1000 or more and 2000 or less.
  • the ratio of the amount of the first curing agent used, the amount of the second curing agent used, and the amount of the third curing agent used is not particularly limited, but the amount of the first curing agent used is the amount of the curing agent.
  • the ratio of the number of functional groups to the total amount used is preferably 30% or more and 95% or less, and more preferably 40% or more and 90% or less.
  • the amount of the second curing agent used is preferably 1% or more and 70% or less, and more preferably 5% or more and 60% or less in terms of the functional group number ratio with respect to the total amount of the curing agent used.
  • the amount of the third curing agent used is preferably 3% or more and 60% or less, and more preferably 5% or more and 50% or less, in terms of the functional group number ratio with respect to the total amount of the curing agent used.
  • the total amount of the curing agent used is defined by the R value, which is the equivalent ratio of the active hydrogen groups (amino groups and hydroxyl groups) present in the curing agent when the number of functional groups of the prepolymer is 1.
  • the total amount of the curing agent used is preferably adjusted so that the R value is 0.7 or more and 1.3 or less.
  • the R value is more preferably 0.8 or more and 1.2 or less.
  • the pore distribution measured by the mercury intrusion method with a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm was 0.100 ⁇ m.
  • a resin sheet having an integrated pore volume V of 0.020 cm 3 / g or more and 0.100 cm 3 / g or less in a pore diameter range of 10.0 ⁇ m or less, and / or a resin sheet having a microphase-separated structure. can be obtained.
  • two or more types of curing agents having low compatibility with each other are used, two or more types of curing agents having different reactivity with each other are used, and / or curing agents having different active hydrogen equivalents are used. Can be done. Even if a resin sheet having a clear microphase-separated structure cannot be obtained by such a combination, the types of curing agents are changed so as to have high compatibility with each other, and the reactivity with each other is similar. By making adjustments such as changing the curing agent so that the amount of active hydrogen is close to each other and / or changing the curing agent so that the active hydrogen equivalents approach each other, a resin sheet having a microphase-separated structure tends to be obtained. It is in.
  • the prepolymer used in the mixing step is not particularly limited, and examples thereof include urethane prepolymer.
  • examples of the urethane prepolymer include an adduct of hexamethylene diisocyanate and hexanetriol; an adduct of 2,4-tolylene diisocyanate and Plent's catechol; 2,4-tolylene diisocyanate and poly (oxytetramethylene) glycol.
  • diethylene glycol adduct diethylene glycol adduct; tolylene diisocyanate and hexanetriol adduct; tolylene diisocyanate and trimethylol propane adduct; xylylene diisocyanate and trimethylol propane adduct; hexamethylene diisocyanate and trimethylol propane Adducts; and adducts of isocyanuric acid and hexamethylene diisocyanate.
  • an isocyanate group-containing compound prepared by reacting a polyisocyanate compound with a polyol compound or various commercially available urethane prepolymers may be used.
  • the polyisocyanate compound used for preparing the isocyanate group-containing compound is not particularly limited as long as it has two or more isocyanate groups in the molecule.
  • examples of the diisocyanate compound having two isocyanate groups in the molecule include m-phenylenedi isocyanate, p-phenylenedi isocyanate, 2,6-toluene diisocyanate (2,6-TDI), and 2,4-toluene diisocyanate (2).
  • polyisocyanate compounds may be used alone or in combination of two or more.
  • a diisocyanate compound is preferable, and 2,4-TDI, and 2,6-TDI and MDI are more preferable.
  • polyol compound used for preparing an isocyanate group-containing compound examples include diol compounds such as ethylene glycol, diethylene glycol (DEG) and butylene glycol, triol compounds and the like; polypropylene glycol (PPG) and poly (oxytetramethylene) glycol (.
  • Polyether polyol compounds such as PTMG); polyester polyol compounds such as a reaction product of ethylene glycol and adipic acid and a reaction product of butylene glycol and adipic acid; polycarbonate polyol compound, polycaprolactone polyol compound and the like can be mentioned.
  • trifunctional propylene glycol to which ethylene oxide is added can also be used.
  • the polyol compound may be used alone or in combination of two or more.
  • the NCO equivalent of the urethane prepolymer is preferably 150 or more and 700 or less, more preferably 200 or more and 600 or less, and further preferably 200 or more and 500 or less.
  • “NCO equivalent” means "(mass part of polyisocyanate compound + mass part of polyol compound) / [(number of functional groups per molecule of polyisocyanate compound x mass part of polyisocyanate compound / molecular weight of polyisocyanate compound)-( It is a numerical value indicating the molecular weight of the urethane prepolymer per NCO group, which is determined by "the number of functional groups per molecule of the polyol compound x the mass part of the polyol compound / the molecular weight of the polyol compound)]".
  • At least one prepolymer is used in the mixing step.
  • the prepolymer two or more of the above may be used in combination, but one of them is preferably used alone. According to such an embodiment, the curing reaction tends to be easily controlled, and the shape of the microphase-separated structure tends to be easily controlled.
  • the prepolymer it is preferable to use a urethane prepolymer containing tolylene diisocyanate as a main component alone.
  • the amount of the prepolymer used is not particularly limited, but is preferably 30 parts by mass or more and 80 parts by mass or less, and more preferably 40 parts by mass or more and 75 parts by mass or less with respect to the entire mixed solution.
  • components other than the prepolymer and the curing agent may be mixed as additives.
  • a solvent such as polypropylene glycol
  • a defoaming agent such as a silicone-based defoaming agent
  • a catalyst such as a catalyst
  • a foaming agent such as water or hollow fine particles
  • Agents; and fillers such as cerium oxide; dyes; pigments; solid fine particles; flame retardants; hydrophilic agents; hydrophobic agents; lightfasteners; antioxidants; antistatic agents and the like.
  • the density of the obtained resin sheet is 0.9 g / cm 3 or more and 1.3 g / cm 3 or less, it is preferable not to add a foaming agent or to add a small amount, and to use a defoaming agent. Is more preferable.
  • the reaction rate of the curing reaction can be controlled and the formed microphase separation structure can be controlled by adjusting the type and amount of the catalyst to be added.
  • the molding step is a step of obtaining a resin sheet having a microphase-separated structure by curing the mixture obtained as described above.
  • the mixed solution obtained in the mixing step may be poured into a mold preheated to 30 ° C. to 150 ° C. and heated at about 30 ° C. to 150 ° C. for about 10 minutes to 5 hours.
  • the prepolymer reacts with the curing agent to form a resin, so that the mixed solution is cured. Further, it may be secondarily cured by heating it in an oven at about 50 ° C. to 180 ° C. for about 10 minutes to 12 hours.
  • the mixed liquid is the above-mentioned one, a resin block having a microphase-separated structure can be obtained.
  • the reaction temperature at which the mixed solution is cured in the molding step can be appropriately adjusted depending on the type and compounding ratio of the prepolymer, curing agent and additive used, and by adjusting the reaction temperature, the curing reaction can be carried out. There is a tendency to be able to control the reaction rate and control the microphase-separated structure formed.
  • a resin sheet having a microphase separation structure is obtained by cutting out a resin sheet having an appropriate thickness from the resin block obtained as described above.
  • the obtained resin sheet may be aged at 30 ° C. to 150 ° C. for about 1 hour to 24 hours.
  • the resin sheet thus obtained is, for example, subsequently attached with a double-sided tape on one side and cut into a predetermined shape, preferably in the shape of a disk, to be completed as the wrapping pad of the present embodiment.
  • the double-sided tape is not particularly limited, and can be arbitrarily selected and used from conventionally known double-sided tapes.
  • the wrapping pad of the present embodiment may have a single-layer structure consisting of only a resin sheet, or may be composed of a plurality of layers in which another layer (cushion layer or substrate layer) is bonded to one side of the resin sheet. May be good.
  • a plurality of layers may be bonded and fixed while being pressed as necessary using double-sided tape, an adhesive or the like.
  • the double-sided tape and the adhesive used are not particularly limited, and can be arbitrarily selected from conventionally known double-sided tapes and adhesives.
  • the wrapping pad of the present embodiment may be grooved, embossed, and / or holed (punched) on the surface, if necessary.
  • the shape of the grooving and embossing is not particularly limited, and examples thereof include a grid type, a concentric circle type, and a radial type.
  • the wrapping pad may be dressed (ground) on the front surface and / or the back surface of the resin sheet.
  • the resin sheet in the method for manufacturing a wrapping pad of the present embodiment has a high density, it has communicating pores, so that it has excellent dressing properties and can be dressed under easy conditions.
  • the dressing treatment is not particularly limited, and dressing can be performed by a known method such as grinding with a diamond dresser.
  • the method for producing a wrapping work piece of the present embodiment includes a wrapping step of wrapping a work piece using the above-mentioned wrapping pad in the presence of a slurry to obtain a wrapping work piece.
  • the holding surface plate and the wrapping surface plate are relatively rotated while the workpiece is pressed against the wrapping pad side by the holding surface plate while supplying the slurry. Then, the machined surface of the workpiece is wrapped by the action of the wrapping pad.
  • the holding surface plate and the wrapping surface plate may rotate in the same direction at different rotation speeds, or may rotate in different directions. Further, the workpiece may be wrapped while moving (rotating) inside the frame portion during the lapping process.
  • the slurry contains water, an oxidizing agent typified by hydrogen peroxide, a chemical component such as an acid component and an alkaline component, an additive, and abrasive grains (abrasive particles; for example, diamond, depending on the workpiece and wrapping conditions. It may contain SiC, B4C, Al 2 O 3 ) and the like.
  • the work piece is not particularly limited, but for example, an optical material such as a lens, a parallel flat plate, and a reflective mirror, a semiconductor wafer material such as a SiC disk, a crystal, a metal, a stone material, a wood, and a resin material. , And materials such as ceramics.
  • Example group 1 Each evaluation method in Examples and Comparative Examples was as follows.
  • the integrated pore volume (pore distribution) of the resin sheet was measured by the mercury intrusion method.
  • a 10 mm square sample piece was cut out from a resin sheet having a thickness of 2 mm and used for measurement.
  • the integrated pore volume was measured using the product name "Auto Pore III" manufactured by Micromeritics under the conditions of a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm.
  • the mercury pressure from 0.5 psia to 30000 psia, the integrated pore volume from the pore diameter of 360 ⁇ m to the pore diameter of 0.005 ⁇ m was determined.
  • the pore distribution was determined using data processing software for porosimeter (manufactured by Shimadzu Corporation, product name "POREPLOT-PCW"). For each measurement result, the pore distribution from the pore diameter of 360 ⁇ m to the pore diameter of 0.010 ⁇ m is shown.
  • Example 1-1 A urethane prepolymer having an NCO equivalent of 407 containing 2,4-toluene diisocyanate (TDI) as a main component was prepared. In addition to 61.83 parts by mass of this urethane prepolymer, 15.18 parts by mass of 4,4'-methylenebis (2-chloroaniline) (MOCA) (NH 2 equivalent 134) and 5.65 parts by mass of polypropylene glycol (OH equivalent 1345). The parts were mixed.
  • TDI 2,4-toluene diisocyanate
  • the obtained mixed solution was cast into a mold preheated to 50 ° C. and first cured at 50 ° C. for 15 minutes.
  • the formed block-shaped molded product was taken out from the mold and secondarily cured in an oven at 120 ° C. for 8 hours to obtain a urethane resin block.
  • the obtained urethane resin block was allowed to cool to 25 ° C. and then sliced to obtain a resin sheet having a thickness of 2.0 mm.
  • the density of the obtained resin sheet was 0.55 g / cm 3 .
  • the measurement result of the pore distribution is shown in FIG. 1-1. Further, the integrated pore volume V in the range of the pore diameter of 0.010 ⁇ m or more and 1.0 ⁇ m or less, and the integrated pore volume V 0 in the range of the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less, which are obtained from the pore distribution.
  • Table 1 shows the peak positions of the maximum peaks in the range of the ratio V / V 0 , the average opening diameter, and the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less.
  • Example 1-2 A urethane prepolymer having an NCO equivalent of 382 containing 2,4-toluene diisocyanate (TDI) as a main component was prepared. 5.26 parts by mass of this urethane prepolymer, 14,4'-methylenebis (2-chloroaniline) (MOCA) (NH 2 equivalent 134) 15.27 parts by mass, and polytetramethylene glycol (OH equivalent 972) 7. 04 parts by mass and 4.24 parts by mass of polypropylene glycol (OH equivalent 1345) were mixed.
  • TDI 2,4-toluene diisocyanate
  • the obtained mixed solution was cast into a mold preheated to 50 ° C. and first cured at 50 ° C. for 15 minutes.
  • the formed block-shaped molded product was taken out from the mold and secondarily cured in an oven at 120 ° C. for 8 hours to obtain a urethane resin block.
  • the obtained urethane resin block was allowed to cool to 25 ° C. and then sliced to obtain a resin sheet having a thickness of 2.0 mm.
  • the density of the obtained resin sheet was 0.89 g / cm 3 .
  • the measurement results of the pore distribution are shown in Figure 1-4. Further, the integrated pore volume V in the range of the pore diameter of 0.010 ⁇ m or more and 1.0 ⁇ m or less, and the integrated pore volume V 0 in the range of the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less, which are obtained from the pore distribution.
  • Table 1 shows the peak positions of the maximum peaks in the range of the ratio V / V 0 , the average opening diameter, and the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less.
  • An example of an SEM image is shown in FIG. 1-5.
  • the obtained mixed solution was cast into a mold preheated to 50 ° C. and first cured at 50 ° C. for 15 minutes.
  • the formed block-shaped molded product was taken out from the mold and secondarily cured in an oven at 120 ° C. for 8 hours to obtain a urethane resin block.
  • the obtained urethane resin block was allowed to cool to 25 ° C. and then sliced to obtain a resin sheet having a thickness of 2.0 mm.
  • the density of the obtained resin sheet was 0.53 g / cm 3 .
  • the measurement results of the pore distribution are shown in FIG. 1-6. Further, the integrated pore volume V in the range of the pore diameter of 0.010 ⁇ m or more and 1.0 ⁇ m or less, and the integrated pore volume V 0 in the range of the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less, which are obtained from the pore distribution.
  • Table 1 shows the peak positions of the maximum peaks in the range of the ratio V / V 0 , the average opening diameter, and the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less.
  • Comparative Example 1-1 when the surface of the resin sheet of Comparative Example 1-1 was observed with a scanning electron microscope, no microphase-separated structure was confirmed. An example of the SEM image is shown in FIG. 1-7.
  • Comparative Example 1-1 at least, the desired curing reaction did not proceed and microphase separation did not occur due to insufficient amount of the curing agent having an OH equivalent of 1000 or more and 2000 or less. Conceivable.
  • the position of the maximum peak in the range of 1.0 ⁇ m or more and 360 ⁇ m or less in Example 1-1 was 129 ⁇ m, and the height thereof was 0.40 cm 3 / g.
  • the position of the maximum peak in the range of the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less was 0.0822 ⁇ m, and the height was 1.65 cm 3 / g.
  • the resin sheet of Example 1-1 includes both voids derived from the foaming agent and voids derived from the microphase-separated structure, and the latter voids communicate with each other over the entire polishing pad. It was confirmed that it was.
  • the position of the maximum peak in the range of 1.0 ⁇ m or more and 360 ⁇ m or less in Example 1-2 was 77 ⁇ m, and the height was 0.075 cm 3 / g.
  • the position of the maximum peak in the range of the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less was 0.0411 ⁇ m, and the height was 0.447 cm 3 / g.
  • the resin sheet of Example 1-2 includes both voids derived from the foaming agent and voids derived from the microphase-separated structure, and the latter voids communicate with each other over the entire polishing pad. It was confirmed that it was.
  • polishing pads of Examples 1-1 and 1-2 Using the polishing pads of Examples 1-1 and 1-2, a polishing test and an evaluation test of affinity with the slurry were performed. As a control, a polishing test and an affinity evaluation test with the slurry were performed under the same conditions using the polishing pad of Comparative Example 1-1. As a result, the polishing pads of Examples 1-1 and 1-2 can impart better flatness to the object to be polished as compared with the polishing pads of Comparative Example 1-1, and can be combined with the slurry. It was found that the affinity of Scouring Pad was excellent.
  • Example group 2 Each evaluation method in Examples and Comparative Examples was as follows.
  • the integrated pore volume (pore distribution) of the resin sheet was measured by the mercury intrusion method.
  • a 10 mm square sample piece was cut out from a resin sheet having a thickness of 2 mm and used for measurement.
  • the integrated pore volume was measured using the product name "Auto Pore III" manufactured by Micromeritics under the conditions of a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm.
  • the mercury pressure from 0.5 psia to 30000 psia, the integrated pore volume from the pore diameter of 360 ⁇ m to the pore diameter of 0.005 ⁇ m was determined.
  • the pore distribution was determined using data processing software for porosimeter (manufactured by Shimadzu Corporation, product name "POREPLOT-PCW"). For each measurement result, the pore distribution from the pore diameter of 360 ⁇ m to the pore diameter of 0.100 ⁇ m is shown.
  • Example 2-1 A urethane prepolymer having an NCO equivalent of 407 containing 2,4-toluene diisocyanate (TDI) as a main component was prepared.
  • TDI 2,4-toluene diisocyanate
  • the obtained mixed solution was cast into a mold preheated to 50 ° C. and first cured at 50 ° C. for 15 minutes.
  • the formed block-shaped molded product was taken out from the mold and secondarily cured in an oven at 120 ° C. for 8 hours to obtain a urethane resin block.
  • the obtained urethane resin block was allowed to cool to 25 ° C. and then sliced to obtain a resin sheet having a thickness of 2.0 mm.
  • the density of the obtained resin sheet was 1.2 g / cm 3 , the shore D hardness was 54 degrees, the compressibility was 0.8%, and the compressibility was 85%.
  • the measurement result of the pore distribution is shown in FIG. 2-1. Further, the integrated pore volume V in the range of the pore diameter of 0.100 ⁇ m or more and 10.0 ⁇ m or less, and the integrated pore volume V in the range of the pore diameter of 0.050 ⁇ m or more and less than 0.100 ⁇ m, which are obtained from the pore distribution.
  • Table 1 shows the integrated pore volume V 0 and the ratio V / V 0 in the range of the pore diameter of 0.100 ⁇ m or more and 360 ⁇ m or less.
  • microphase-separated structure three-dimensional network structure
  • a mottled and intricate structure of at least two kinds of resins having different compositions was observed, and it was evaluated to have at least a double gyroid structure. More specifically, an example of an SEM image is shown in FIG. 2-2 (A). As shown by the broken line in FIG. 2-2 (B), microphase separation structures were confirmed at multiple locations.
  • Example 2-2 54.0 parts by mass of urethane prepolymer similar to Example 2-1 and 9.6 parts by mass of 4,4'-methylenebis (2-chloroaniline) (MOCA) (NH 2 equivalent 134), polytetramethylene glycol. (OH equivalent 325) by 22.9 parts by mass, polypropylene glycol (OH equivalent 1345) by 13.2 parts by mass, silicone-based defoaming agent (manufactured by DOW CORNING, product name "71aditive”) by 0.33 parts by mass, 0.01 parts by mass of a catalyst (manufactured by Toso Co., Ltd., product name "Toyocat ET”) was mixed to obtain a mixed solution as a precursor of a resin sheet. The R value of the mixed solution was 0.9.
  • MOCA 4,4'-methylenebis (2-chloroaniline)
  • the obtained mixed solution was cast into a mold preheated to 70 ° C. and first cured at 70 ° C. for 10 minutes.
  • the formed block-shaped molded product was taken out from the mold and secondarily cured in an oven at 120 ° C. for 15 minutes to obtain a urethane resin block.
  • the obtained urethane resin block was allowed to cool to 25 ° C. and then sliced to obtain a resin sheet having a thickness of 2.0 mm.
  • the density of the obtained resin sheet was 1.1 g / cm 3 , the shore D hardness was 64 degrees, the compressibility was 1.3%, and the compressibility was 80%.
  • the integrated pore volume V of the obtained resin sheet, the integrated pore volume V'in the range of the pore diameter of 0.050 ⁇ m or more and less than 0.100 ⁇ m, the integrated pore volume V 0 , and the ratio V / V 0 are the values. 0.020 cm 3 / g or more and 0.100 cm 3 / g or less, 0.000 cm 3 / g or more and 0.120 cm 3 / g or less, 0.040 cm 3 / g or more and 0.120 cm 3 / g or less, and 50%, respectively. That was all.
  • Toyocat ET 0.04 parts by mass, 0.07 parts by mass of water as a foaming agent, and 0.10 parts by mass of silicone-based defoaming agent (manufactured by Toray Dow Corning Co., Ltd., product name "SH193”) was added to obtain a mixed solution as a precursor of the resin sheet.
  • the R value of the mixed solution was 0.9.
  • the obtained mixed solution was cast into a mold preheated to 50 ° C. and first cured at 50 ° C. for 15 minutes.
  • the formed block-shaped molded product was taken out from the mold and secondarily cured in an oven at 120 ° C. for 8 hours to obtain a urethane resin block.
  • the obtained urethane resin block was allowed to cool to 25 ° C. and then sliced to obtain a resin sheet having a thickness of 2.0 mm.
  • the density of the obtained resin sheet was 1.1 g / cm 3 , the shore D hardness was 69 degrees, the compressibility was 1.1%, and the compressibility was 90%.
  • the measurement results of the pore distribution are shown in FIG. 2-4. Further, the integrated pore volume V in the range of the pore diameter of 0.100 ⁇ m or more and 10.0 ⁇ m or less, and the integrated pore volume V 0 in the range of the pore diameter of 0.100 ⁇ m or more and 360 ⁇ m or less, which are obtained from the pore distribution.
  • the ratio V / V 0 is shown in Table 1.
  • polishing pads of Examples 2-1 to 2-2 Using the polishing pads of Examples 2-1 to 2-2, a polishing test and an evaluation test of affinity with the slurry were performed. As a control, a polishing test and an affinity evaluation test with the slurry were performed under the same conditions using the polishing pad of Comparative Example 2-1. As a result, the polishing pads of Examples 2-1 to 2-2 can impart better flatness to the object to be polished as compared with the polishing pads of Comparative Example 2-1 and have an affinity with the slurry. It turned out to be excellent in sex.
  • Example group 3 Each evaluation method in Examples and Comparative Examples was as follows.
  • the integrated pore volume (pore distribution) of the resin sheet was measured by the mercury intrusion method.
  • a 10 mm square sample piece was cut out from a resin sheet having a thickness of 2 mm and used for measurement.
  • the integrated pore volume was measured using the product name "Auto Pore III" manufactured by Micromeritics under the conditions of a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm.
  • the mercury pressure from 0.5 psia to 30000 psia, the integrated pore volume from the pore diameter of 360 ⁇ m to the pore diameter of 0.005 ⁇ m was determined.
  • the pore distribution was determined using data processing software for porosimeter (manufactured by Shimadzu Corporation, product name "POREPLOT-PCW"). For each measurement result, the pore distribution from the pore diameter of 360 ⁇ m to the pore diameter of 0.010 ⁇ m is shown.
  • Example 3-1 A urethane prepolymer having an NCO equivalent of 407 containing 2,4-toluene diisocyanate (TDI) as a main component was prepared. In addition to 61.83 parts by mass of this urethane prepolymer, 15.18 parts by mass of 4,4'-methylenebis (2-chloroaniline) (MOCA) (NH 2 equivalent 134) and 5.65 parts by mass of polypropylene glycol (OH equivalent 1345). The parts were mixed.
  • TDI 2,4-toluene diisocyanate
  • the obtained mixed solution was cast into a mold preheated to 50 ° C. and first cured at 50 ° C. for 15 minutes.
  • the formed block-shaped molded product was taken out from the mold and secondarily cured in an oven at 120 ° C. for 8 hours to obtain a urethane resin block.
  • the obtained urethane resin block was allowed to cool to 25 ° C. and then sliced to obtain a resin sheet having a thickness of 2.0 mm.
  • the density of the obtained resin sheet was 0.55 g / cm 3 .
  • the measurement result of the pore distribution is shown in FIG. 3-1. Further, the integrated pore volume V in the range of the pore diameter of 0.010 ⁇ m or more and 1.0 ⁇ m or less, and the integrated pore volume V 0 in the range of the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less, which are obtained from the pore distribution.
  • Table 1 shows the peak positions of the maximum peaks in the range of the ratio V / V 0 , the average opening diameter, and the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less.
  • Example 3-2 A urethane prepolymer having an NCO equivalent of 382 containing 2,4-toluene diisocyanate (TDI) as a main component was prepared. 5.26 parts by mass of this urethane prepolymer, 14,4'-methylenebis (2-chloroaniline) (MOCA) (NH 2 equivalent 134) 15.27 parts by mass, and polytetramethylene glycol (OH equivalent 972) 7. 04 parts by mass and 4.24 parts by mass of polypropylene glycol (OH equivalent 1345) were mixed.
  • TDI 2,4-toluene diisocyanate
  • the obtained mixed solution was cast into a mold preheated to 50 ° C. and first cured at 50 ° C. for 15 minutes.
  • the formed block-shaped molded product was taken out from the mold and secondarily cured in an oven at 120 ° C. for 8 hours to obtain a urethane resin block.
  • the obtained urethane resin block was allowed to cool to 25 ° C. and then sliced to obtain a resin sheet having a thickness of 2.0 mm.
  • the density of the obtained resin sheet was 0.89 g / cm 3 .
  • the measurement result of the pore distribution is shown in FIG. 3-4.
  • Table 1 shows the peak positions of the maximum peaks in the range of the ratio V / V 0 , the average opening diameter, and the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less.
  • An example of an SEM image is shown in FIG. 3-5.
  • Example 3-1 The same urethane prepolymer as in Example 3-1: 61.59 parts by mass, 4,4'-methylenebis (2-chloroaniline) (MOCA) (NH 2 equivalent 134) 9.24 parts by mass, and crude MOCA (NH 2 ). Equivalent 189) 9.24 parts by mass was mixed.
  • the obtained mixed solution was cast into a mold preheated to 50 ° C. and first cured at 50 ° C. for 15 minutes.
  • the formed block-shaped molded product was taken out from the mold and secondarily cured in an oven at 120 ° C. for 8 hours to obtain a urethane resin block.
  • the obtained urethane resin block was allowed to cool to 25 ° C. and then sliced to obtain a resin sheet having a thickness of 2.0 mm.
  • the density of the obtained resin sheet was 0.53 g / cm 3 .
  • the measurement result of the pore distribution is shown in FIG. 3-6. Further, the integrated pore volume V in the range of the pore diameter of 0.010 ⁇ m or more and 1.0 ⁇ m or less, and the integrated pore volume V 0 in the range of the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less, which are obtained from the pore distribution.
  • Table 1 shows the peak positions of the maximum peaks in the range of the ratio V / V 0 , the average opening diameter, and the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less.
  • Comparative Example 3-1 when the surface of the resin sheet of Comparative Example 3-1 was observed with a scanning electron microscope, no microphase-separated structure was confirmed. An example of the SEM image is shown in FIG. 3-7.
  • Comparative Example 3-1 at least, the desired curing reaction did not proceed and microphase separation did not occur due to insufficient amount of the curing agent having an OH equivalent of 1000 or more and 2000 or less. Conceivable.
  • the position of the maximum peak in the range of 1.0 ⁇ m or more and 360 ⁇ m or less in Example 3-1 was 129 ⁇ m, and the height thereof was 0.40 cm 3 / g.
  • the position of the maximum peak in the range of the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less was 0.0822 ⁇ m, and the height was 1.65 cm 3 / g.
  • the resin sheet of Example 3-1 contains both voids derived from the foaming agent and voids derived from the microphase-separated structure, and the latter voids communicate with each other over the entire wrapping pad. It was confirmed that it was.
  • the position of the maximum peak in the range of 1.0 ⁇ m or more and 360 ⁇ m or less in Example 3-2 was 77 ⁇ m, and the height thereof was 0.075 cm 3 / g.
  • the position of the maximum peak in the range of the pore diameter of 0.010 ⁇ m or more and 360 ⁇ m or less was 0.0411 ⁇ m, and the height was 0.447 cm 3 / g.
  • the resin sheet of Example 3-2 includes both voids derived from the foaming agent and voids derived from the microphase-separated structure, and the latter voids communicate with each other over the entire wrapping pad. It was confirmed that it was.
  • Example 3-1 and Example 3-2 Using the wrapping pads of Example 3-1 and Example 3-2, a wrapping test and an evaluation test of affinity with the slurry were performed. As a control, a lapping test and an affinity evaluation test with a slurry were performed under the same conditions using the wrapping pad of Comparative Example 3-1. As a result, the wrapping pads of Examples 3-1 and 3-2 can impart better flatness to the workpiece as compared with the wrapping pads of Comparative Example 3-1 and can be combined with the slurry. It was found that it has an excellent affinity for.
  • Example group 4 Each evaluation method in Examples and Comparative Examples was as follows.
  • the integrated pore volume (pore distribution) of the resin sheet was measured by the mercury intrusion method.
  • a 10 mm square sample piece was cut out from a resin sheet having a thickness of 2 mm and used for measurement.
  • the integrated pore volume was measured using the product name "Auto Pore III" manufactured by Micromeritics under the conditions of a contact angle of 130 ° and a mercury surface tension of 485 dyn / cm.
  • the mercury pressure from 0.5 psia to 30000 psia, the integrated pore volume from the pore diameter of 360 ⁇ m to the pore diameter of 0.005 ⁇ m was determined.
  • the pore distribution was determined using data processing software for porosimeter (manufactured by Shimadzu Corporation, product name "POREPLOT-PCW"). For each measurement result, the pore distribution from the pore diameter of 360 ⁇ m to the pore diameter of 0.100 ⁇ m is shown.
  • Example 4-1 A urethane prepolymer having an NCO equivalent of 407 containing 2,4-toluene diisocyanate (TDI) as a main component was prepared.
  • TDI 2,4-toluene diisocyanate
  • the obtained mixed solution was cast into a mold preheated to 50 ° C. and first cured at 50 ° C. for 15 minutes.
  • the formed block-shaped molded product was taken out from the mold and secondarily cured in an oven at 120 ° C. for 8 hours to obtain a urethane resin block.
  • the obtained urethane resin block was allowed to cool to 25 ° C. and then sliced to obtain a resin sheet having a thickness of 2.0 mm.
  • the density of the obtained resin sheet was 1.2 g / cm 3 , the shore D hardness was 54 degrees, the compressibility was 0.8%, and the compressibility was 85%.
  • the measurement result of the pore distribution is shown in FIG. 4-1. Further, the integrated pore volume V in the range of the pore diameter of 0.100 ⁇ m or more and 10.0 ⁇ m or less, and the integrated pore volume V in the range of the pore diameter of 0.050 ⁇ m or more and less than 0.100 ⁇ m, which are obtained from the pore distribution.
  • Table 1 shows the integrated pore volume V 0 and the ratio V / V 0 in the range of the pore diameter of 0.100 ⁇ m or more and 360 ⁇ m or less.
  • microphase-separated structure three-dimensional network structure
  • a mottled and intricate structure of at least two kinds of resins having different compositions was observed, and it was evaluated to have at least a double gyroid structure. More specifically, an example of an SEM image is shown in FIG. 4-2 (A). As shown by the broken line in FIG. 4-2 (B), microphase separation structures were confirmed at multiple locations.
  • Example 4-2 54.0 parts by mass of urethane prepolymer similar to Example 4-1 and 9.6 parts by mass of 4,4'-methylenebis (2-chloroaniline) (MOCA) (NH 2 equivalent 134), polytetramethylene glycol. (OH equivalent 325) by 22.9 parts by mass, polypropylene glycol (OH equivalent 1345) by 13.2 parts by mass, silicone-based defoaming agent (manufactured by DOW CORNING, product name "71aditive”) by 0.33 parts by mass, 0.01 parts by mass of a catalyst (manufactured by Toso Co., Ltd., product name "Toyocat ET”) was mixed to obtain a mixed solution as a precursor of a resin sheet. The R value of the mixed solution was 0.9.
  • MOCA 4,4'-methylenebis (2-chloroaniline)
  • the obtained mixed solution was cast into a mold preheated to 70 ° C. and first cured at 70 ° C. for 10 minutes.
  • the formed block-shaped molded product was taken out from the mold and secondarily cured in an oven at 120 ° C. for 15 minutes to obtain a urethane resin block.
  • the obtained urethane resin block was allowed to cool to 25 ° C. and then sliced to obtain a resin sheet having a thickness of 2.0 mm.
  • the density of the obtained resin sheet was 1.1 g / cm 3 , the shore D hardness was 64 degrees, the compressibility was 1.3%, and the compressibility was 80%.
  • the integrated pore volume V of the obtained resin sheet, the integrated pore volume V'in the range of the pore diameter of 0.050 ⁇ m or more and less than 0.100 ⁇ m, the integrated pore volume V 0 , and the ratio V / V 0 are the values. 0.020 cm 3 / g or more and 0.100 cm 3 / g or less, 0.000 cm 3 / g or more and 0.120 cm 3 / g or less, 0.040 cm 3 / g or more and 0.120 cm 3 / g or less, and 50%, respectively. That was all.
  • Toyocat ET 0.04 parts by mass, water 0.07 parts by mass as foaming agent, and silicone-based defoaming agent (manufactured by Toray Dow Corning Co., Ltd., product name "SH193”) 0.10 parts by mass was added to obtain a mixed solution as a precursor of the resin sheet.
  • the R value of the mixed solution was 0.9.
  • the obtained mixed solution was cast into a mold preheated to 50 ° C. and first cured at 50 ° C. for 15 minutes.
  • the formed block-shaped molded product was taken out from the mold and secondarily cured in an oven at 120 ° C. for 8 hours to obtain a urethane resin block.
  • the obtained urethane resin block was allowed to cool to 25 ° C. and then sliced to obtain a resin sheet having a thickness of 2.0 mm.
  • the density of the obtained resin sheet was 1.1 g / cm 3 , the shore D hardness was 69 degrees, the compressibility was 1.1%, and the compressibility was 90%.
  • the measurement results of the pore distribution are shown in FIG. 4-4. Further, the integrated pore volume V in the range of the pore diameter of 0.100 ⁇ m or more and 10.0 ⁇ m or less, and the integrated pore volume V 0 in the range of the pore diameter of 0.100 ⁇ m or more and 360 ⁇ m or less, which are obtained from the pore distribution.
  • the ratio V / V 0 is shown in Table 1.
  • the wrapping pads of Examples 4-1 to 4-2 Using the wrapping pads of Examples 4-1 to 4-2, a wrapping test and an affinity evaluation test with the slurry were performed. As a control, a lapping test and an affinity evaluation test with a slurry were performed under the same conditions using the wrapping pad of Comparative Example 4-1. As a result, the wrapping pads of Examples 4-1 to 4-2 can impart better flatness to the workpiece as compared with the wrapping pads of Comparative Example 4-1 and have an affinity with the slurry. It turned out to be excellent in sex.
  • the polishing pad according to the first embodiment of the present invention is used for polishing materials such as lenses, parallel flat plates, optical materials such as reflective mirrors, semiconductor wafers, semiconductor devices, hard disk substrates, metals, and ceramics (particularly chemicals). It has industrial applicability as a polishing pad used for mechanical polishing (CMP).
  • CMP mechanical polishing
  • the polishing pad according to the second embodiment of the present invention is used for polishing materials such as lenses, parallel flat plates, optical materials such as reflective mirrors, semiconductor wafers, semiconductor devices, hard disk substrates, metals, and ceramics (particularly chemicals). It has industrial applicability as a polishing pad used for mechanical polishing (CMP).
  • CMP mechanical polishing
  • the wrapping pad according to the third embodiment of the present invention includes an optical material such as a lens, a parallel flat plate, and a reflection mirror, a semiconductor wafer material such as a SiC disk, a crystal, a metal, a stone material, a wood, a resin material, and a resin material. It has industrial potential as a wrapping pad used for wrapping materials such as ceramics.
  • the wrapping pad according to the fourth embodiment of the present invention includes an optical material such as a lens, a parallel flat plate, and a reflection mirror, a semiconductor wafer material such as a SiC disk, a crystal, a metal, a stone material, a wood, a resin material, and a resin material. It has industrial potential as a wrapping pad used for wrapping materials such as ceramics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

被研磨物に良好な平坦性を付与することができ、かつ、スラリーとの親和性に優れる研磨パッド等を提供する。すなわち、細孔を有する樹脂シートを備える、研磨パッドであって、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した前記樹脂シートの細孔分布において、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積Vが0.21cm/g以上1.00cm/g以下であり、前記樹脂シートの密度が0.3g/cm以上0.9g/cm以下である、研磨パッド等を提供する。

Description

研磨パッド、その製造方法、及び研磨加工物の製造方法、並びに、ラッピングパッド、その製造方法、及びラップ加工物の製造方法
 本発明は、研磨パッド、その製造方法、及び研磨加工物の製造方法、並びに、ラッピングパッド、その製造方法、及びラップ加工物の製造方法に関する。
(第1の背景技術)
 一般に、レンズ、平行平面板、及び反射ミラーのような光学材料、半導体ウェハ、半導体デバイス、ハードディスク用基板、金属、並びにセラミック等の材料に対して、研磨パッドを用いた研磨加工が行われる。
 研磨加工において、被研磨物の研磨表面における平坦性や研磨加工の研磨レートを向上させることを目的として、様々な研磨パッドが開発されている。例えば、特許文献1には、第1の空隙容量を有する気孔と、第2の空隙容量を有する気孔とを有する研磨パッドが開示されている。
(第2の背景技術)
 一般に、レンズ、平行平面板、及び反射ミラーのような光学材料、半導体ウェハ、半導体デバイス、ハードディスク用基板、金属、並びにセラミック等の材料に対して、研磨パッドを用いた研磨加工が行われる。
 研磨加工において、被研磨物の研磨表面における平坦性や研磨加工の研磨レートを向上させることを目的として、様々な研磨パッドが開発されている。例えば、特許文献2には、熱可塑性ポリウレタンの非多孔性成形体であって、熱可塑性ポリウレタンにおいて、-70℃~-50℃の範囲における損失正接の最大値が4.00×10-2以下であることを特徴とする研磨パッドが開示されている。特許文献2には、そのような研磨パッドを用いた研磨加工により、研磨面に形成された凹部のコーナー部におけるバリの発生が抑制されることが開示されている。
 特許文献3には、微細気泡を有するポリウレタン樹脂発泡体からなる研磨層を有する研磨パッドであって、ポリウレタン樹脂発泡体は、アスカーD硬度が20~60度かつ特定の磨耗パラメータが所定の範囲内にあるポリウレタン樹脂を含有し、さらに気泡数が200個/mm以上かつ平均気泡径が50μm以下である研磨パッドが開示されている。特許文献3には、そのような研磨パッドは、被研磨材の表面にスクラッチが発生しにくく、ドレッシング性に優れ、かつ従来のものに比べて研磨レートが大きいことが開示されていている。
 特許文献4には、50μm以下の平均孔径を有し、75%以上の孔が平均孔径の20μm以内の孔径を有する多孔質発泡体を含む化学機械研磨用の研磨パッドであって;多孔質発泡体が、ポリマー樹脂として熱可塑性ポリウレタンを含み;当該熱可塑性ポリウレタンが所定の物性を有する熱可塑性ポリウレタンである研磨パッドが開示されている。特許文献4には、そのような研磨パッドは、被研磨物の研磨表面に優れた平坦性を付与できることが開示されている。
 特許文献5には、所定の硬度を有するポリウレタン系熱可塑性エラストマーの発泡体を用いた研磨パッドであって、発泡体の密度が0.2~1.3g/cm、平均セル径が1~10μm、かつセル数が1×10個/cm以上であることを特徴とする研磨パッドが開示されている。特許文献5には、そのような研磨パッドは、発泡状態が良好に維持され、被研磨物の研磨表面に優れた平坦性を付与できることが開示されている。
(第3の背景技術)
 一般に、レンズ、平行平面板、及び反射ミラーのような光学材料、SiC円盤のような半導体ウェハ材料、結晶体、金属、石材、木材、樹脂材、並びにセラミック等の材料に対して、研削加工、ラップ加工、及び研磨が行われるが、ラップ加工においてはラッピングパッドが用いられる。
 ラップ加工に関する技術としては、例えば、特許文献6において、プラテンと、前記プラテンに取り付けられているポリマー材料であって、前記ポリマー材料の密度は、約0.7g/cm~約3.0g/cmに及ぶ、ポリマー材料と、研磨粒子を備えているスラリーとを備えているラップ加工システムが開示されている。特許文献6においては、そのようなポリマー材料を用いたラップ加工により、長期間にわたり高い除去率での加工が可能となり、当該加工による欠陥は少ないとされている。
特許第5248861号公報 特許第6518680号公報 特開2014-111296号公報 特許第4624781号公報 特許第3649385号公報 特表2018-524193号公報
(第1の課題)
 第1の背景技術との関係で、一般に、モールド法により得られる研磨パッドにおける発泡は、研磨特性に大きく影響を与える。例えば、研磨パッドの発泡が少ないほど被研磨物の平坦性が向上するが、スラリーの保持性や表面の平滑化により研磨レートが低下し、ドレス性も低下する。逆に発泡、特に連通孔が多いほど被研磨物の平坦性が悪化するが研磨レートやドレス性は向上する傾向にある。一方、特許文献1に記載の研磨パッドによれば、例えば、50μm以下の平均孔径を有する第1の領域、及び1μm~20μmの平均孔径を有する第2の領域を有する等、複数の領域ごとに空隙構造が異なるため、研磨が不均一となる傾向にある。
 本発明は、上記の問題点に鑑みてなされたものであり、被研磨物に良好な平坦性を付与することができ、かつ、スラリーとの親和性に優れる、研磨パッド、その製造方法、及び研磨加工物の製造方法を提供することを第1の目的とする。
(第2の課題)
 第2の背景技術との関係で、一般的に、高度な平坦性が求められる研磨加工において、研磨パッドの沈み込みを適度なものとするために、高密度な研磨パッドを用いることが好ましい。一方、高密度な研磨パッドは、研磨加工に用いるスラリーとの親和性に劣る傾向にある。研磨パッドにおいて、スラリーとの親和性は、研磨レート、及び被研磨物の平坦性を高める観点から重要である。
 本発明者らが、特許文献2~5に記載のものを始めとする従来の研磨パッドを詳細に検討したところ、従来の研磨パッドは、少なくともスラリーとの親和性が不十分であるか、被研磨物の平坦性が不十分であることが判明している。
 例えば、特許文献2に開示されるような非多孔性の研磨パッドは、研磨パッドにスラリーが浸透しにくいため、スラリーとの親和性が不十分である。また、特許文献3~5に開示されるような研磨パッドは、低密度あることに起因して被研磨物に十分な平坦性を付与することができず、また、スラリーとの親和性も不十分である。
 本発明は、上記の問題点に鑑みてなされたものであり、被研磨物に良好な平坦性を付与することができ、かつ、スラリーとの親和性に優れる、研磨パッド、その製造方法、及び研磨加工物の製造方法を提供することを第2の目的とする。
(第3の課題)
 第3の背景技術との関係で、遊離砥粒(スラリー)を介在するラップ加工に用いられる樹脂シートには、次のような要求がある。すなわち、ラップ加工においてはダイヤモンドに代表される高硬度砥粒(特に、超砥粒)を含むスラリーが用いられることが多く、近年では仕上げ研磨コスト軽減のため、ラップ加工においても過度のスクラッチを抑制することが求められる。このような要求への対応として、樹脂シートの密度を調整することが考えられる。例えば、低密度の樹脂シートを用いる場合、砥粒が樹脂シートの発泡内に保持されやすく、砥粒が被加工物に強く接してスクラッチを与えることを抑制できる傾向にある。一方、単に密度を低くするのみでは、長時間の使用に際しては目潰れによる表面平滑化の経時劣化が発生する傾向にある。したがって、物性等に影響を与えずに、ドレスによる目出し性(いわゆるドレス性)及び/又は表面が平滑化せずに摩耗し新しい表面が出現する自己再生性が期待できる脆性を有する、樹脂シートが求められる。このような観点から、特許文献6に記載の技術は、未だ改善の余地がある。
 本発明は、上記の問題点に鑑みてなされたものであり、ドレス性に優れ、表面が平滑化されにくい、ラッピングパッド、その製造方法、及びラップ加工物の製造方法を提供することを第3の目的とする。
(第4の課題)
 第3の背景技術との関係で、遊離砥粒(スラリー)を介在するラップ加工に用いられる樹脂シートには、次のような要求がある。すなわち、ラップ加工においてはダイヤモンドに代表される高価な砥粒を含むスラリーが用いられることが多く、そのようなスラリーの使用量を低減できるような樹脂シートが求められる。換言すると、少量のスラリーを効率よく利用できる樹脂シートが求められる。このような要求への対応として、樹脂シートの密度を調整することが考えられるが、単に密度を高めるのみではスラリーの液体成分の利用効率が低下する傾向にある。一方で、発泡を有する低密度の樹脂シートを適用する場合、発泡内に砥粒が入り込んでしまい、砥粒成分の利用効率が低下する傾向にある。このような観点から、特許文献6に記載の技術は、未だ改善の余地がある。
 本発明は、上記の問題点に鑑みてなされたものであり、スラリーの液体保持性能及び砥粒保持性能(以下、これらを包括的に「スラリー親和性」ということがある。)の双方に優れる、ラッピングパッド、その製造方法、及びラップ加工物の製造方法を提供することを第4の目的とする。
 本発明者らは、第1の課題を解決するために鋭意研究を進めた結果、所定の物性を有する樹脂シートによって第1の課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を包含する。
[1]
 細孔を有する樹脂シートを備える、研磨パッドであって、
 接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した前記樹脂シートの細孔分布において、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積Vが0.21cm/g以上1.00cm/g以下であり、
 前記樹脂シートの密度が0.3g/cm以上0.9g/cm以下である、研磨パッド。
[2]
 前記樹脂シートの前記細孔分布において、0.010μm以上360μm以下の細孔径の範囲での積算細孔容積Vに対する、前記積算細孔容積Vの割合が50%以上である、[1]に記載の研磨パッド。
[3]
 前記樹脂シートにおける10μm以上の開孔を対象として測定される平均開孔径が、50μm以上200μm以下である、[1]又は[2]に記載の研磨パッド。
[4]
 前記樹脂シートの前記細孔分布において、0.010μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置が、0.010μm以上1.0μm以下の細孔径の範囲内にある、[1]~[3]のいずれかに記載の研磨パッド。
[5]
 前記樹脂シートは、ミクロ相分離構造を有する、[1]~[4]のいずれかに記載の研磨パッド。
[6]
 前記樹脂シートがポリウレタンを含む、[1]~[5]のいずれかに記載の研磨パッド。
[7]
 [1]~[6]のいずれかに記載の研磨パッドを製造する方法であって、
 少なくとも1種のプレポリマーと少なくとも2種の硬化剤との混合液を硬化させることにより、ミクロ相分離構造を有する樹脂シートを得る工程を含む、研磨パッドの製造方法。
[8]
 前記硬化剤が、NH当量が100以上300以下である第1の硬化剤と、OH当量が1000以上2000以下である第2の硬化剤と、を含む、[7]に記載の研磨パッドの製造方法。
[9]
 研磨スラリーの存在下、[1]~[6]のいずれかに記載の研磨パッドを用いて、被研磨物を研磨する研磨工程を有する、研磨加工物の製造方法。
 本発明者らは、第2の課題を解決するために鋭意研究を進めた結果、所定の物性を有する樹脂シートによって第2の課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を包含する。
[2-1]
 細孔を有する樹脂シートを備える、研磨パッドであって、
 接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した前記樹脂シートの細孔分布において、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積Vが、0.020cm/g以上0.100cm/g以下であり、
 前記樹脂シートの密度が、0.9g/cm以上1.3g/cm以下である、研磨パッド。
[2-2]
 前記樹脂シートの前記細孔分布において、0.050μm以上0.100μm未満の細孔径の範囲での積算細孔容積V’が、0.000cm/g以上0.120cm/g以下である、[2-1]に記載の研磨パッド。
[2-3]
 前記樹脂シートの前記細孔分布において、0.100μm以上360μm以下の細孔径の範囲での積算細孔容積Vに対する、前記積算細孔容積Vの割合が、50%以上である、[2-1]又は[2-2]に記載の研磨パッド。
[2-4]
 前記樹脂シートの前記細孔分布において、0.050μm以上360μm以下の細孔径の範囲での積算細孔容積V’に対する、前記積算細孔容積Vの割合が、50%以上である、[2-1]~[2-3]のいずれかに記載の研磨パッド。
[2-5]
 前記樹脂シートの前記細孔分布において、0.100μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置が、0.100μm以上10.0μm以下の細孔径の範囲内にある、[2-1]~[2-4]のいずれかに記載の研磨パッド。
[2-6]
 前記樹脂シートの前記細孔分布において、0.050μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置が、0.050μm以上10.0μm以下の細孔径の範囲内にある、[2-1]~[2-5]のいずれかに記載の研磨パッド。
[2-7]
 前記樹脂シートの前記細孔分布において、0.100μm以上360μm以下の細孔径の範囲での積算細孔容積Vが、0.040cm/g以上0.120cm/g以下である、[2-1]~[2-6]のいずれかに記載の研磨パッド。
[2-8]
 前記樹脂シートの前記細孔分布において、0.050μm以上360μm以下の細孔径の範囲での積算細孔容積V’が、0.040cm/g以上0.200cm/g以下である、[2-1]~[2-7]のいずれかに記載の研磨パッド。
[2-9]
 前記樹脂シートが、ミクロ相分離構造を有する、[2-1]~[2-8]のいずれかに記載の研磨パッド。
[2-10]
 前記樹脂シートが、ポリウレタンを含む、[2-1]~[2-9]のいずれかに記載の研磨パッド。
[2-11]
 細孔を有する樹脂シートを備える、研磨パッドであって、
 接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した前記樹脂シートの細孔分布において、0.050μm以上10.0μm以下の細孔径の範囲での積算細孔容積V’’が、0.020cm/g以上0.140cm/g以下であり、
 前記樹脂シートの密度が0.9g/cm以上1.3g/cm以下である、研磨パッド。
[2-12]
 [2-1]~[2-11]のいずれかに記載の研磨パッドを製造する方法であって、
 少なくとも1種のプレポリマーと少なくとも2種の硬化剤との混合液を硬化させることにより、ミクロ相分離構造を有する樹脂シートを得る工程を含む、研磨パッドの製造方法。
[2-13]
 前記硬化剤が、NH当量が100以上300以下である第1の硬化剤と、OH当量が200以上500以下である第2の硬化剤と、OH当量が1000以上2000以下である第3の硬化剤と、を含む、[2-12]に記載の研磨パッドの製造方法。
[2-14]
 研磨スラリーの存在下、[2-1]~[2-11]のいずれかに記載の研磨パッドを用いて、被研磨物を研磨する研磨工程を有する、研磨加工物の製造方法。
 本発明者らは、第3の課題を解決するために鋭意研究を進めた結果、所定の物性を有する樹脂シートによって第3の課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を包含する。
[3-1]
 細孔を有する樹脂シートを備える、ラッピングパッドであって、
 接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した前記樹脂シートの細孔分布において、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積Vが0.21cm/g以上1.00cm/g以下であり、
 前記樹脂シートの密度が0.3g/cm以上0.9g/cm以下である、ラッピングパッド。
[3-2]
 前記樹脂シートの前記細孔分布において、0.010μm以上360μm以下の細孔径の範囲での積算細孔容積Vに対する、前記積算細孔容積Vの割合が50%以上である、[3-1]に記載のラッピングパッド。
[3-3]
 前記樹脂シートにおける10μm以上の開孔を対象として測定される平均開孔径が、50μm以上200μm以下である、[3-1]又は[3-2]に記載のラッピングパッド。
[3-4]
 前記樹脂シートの前記細孔分布において、0.010μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置が、0.010μm以上1.0μm以下の細孔径の範囲内にある、[3-1]~[3-3]のいずれかに記載のラッピングパッド。
[3-5]
 前記樹脂シートは、ミクロ相分離構造を有する、[3-1]~[3-4]のいずれかに記載のラッピングパッド。
[3-6]
 前記樹脂シートがポリウレタンを含む、[3-1]~[3-5]のいずれかに記載のラッピングパッド。
[3-7]
 [3-1]~[3-6]のいずれかに記載のラッピングパッドを製造する方法であって、
 少なくとも1種のプレポリマーと少なくとも2種の硬化剤との混合液を硬化させることにより、ミクロ相分離構造を有する樹脂シートを得る工程を含む、ラッピングパッドの製造方法。
[3-8]
 前記硬化剤が、NH当量が100以上300以下である第1の硬化剤と、OH当量が1000以上2000以下である第2の硬化剤と、を含む、[3-7]に記載のラッピングパッドの製造方法。
[3-9]
 スラリーの存在下、[3-1]~[3-6]のいずれかに記載のラッピングパッドを用いて、被加工物をラップ加工するラッピング工程を有する、ラップ加工物の製造方法。
 本発明者らは、第4の課題を解決するために鋭意研究を進めた結果、所定の物性を有する樹脂シートによって第4の課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を包含する。
[4-1]
 細孔を有する樹脂シートを備える、ラッピングパッドであって、
 接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した前記樹脂シートの細孔分布において、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積Vが、0.020cm/g以上0.100cm/g以下であり、
 前記樹脂シートの密度が、0.9g/cm以上1.3g/cm以下である、ラッピングパッド。
[4-2]
 前記樹脂シートの前記細孔分布において、0.050μm以上0.100μm未満の細孔径の範囲での積算細孔容積V’が、0.000cm/g以上0.120cm/g以下である、[4-1]に記載のラッピングパッド。
[4-3]
 前記樹脂シートの前記細孔分布において、0.100μm以上360μm以下の細孔径の範囲での積算細孔容積Vに対する、前記積算細孔容積Vの割合が、50%以上である、[4-1]又は[4-2]に記載のラッピングパッド。
[4-4]
 前記樹脂シートの前記細孔分布において、0.050μm以上360μm以下の細孔径の範囲での積算細孔容積V’に対する、前記積算細孔容積Vの割合が、50%以上である、[4-1]~[4-3]のいずれかに記載のラッピングパッド。
[4-5]
 前記樹脂シートの前記細孔分布において、0.100μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置が、0.100μm以上10.0μm以下の細孔径の範囲内にある、[4-1]~[4-4]のいずれかに記載のラッピングパッド。
[4-6]
 前記樹脂シートの前記細孔分布において、0.050μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置が、0.050μm以上10.0μm以下の細孔径の範囲内にある、[4-1]~[4-5]のいずれかに記載のラッピングパッド。
[4-7]
 前記樹脂シートの前記細孔分布において、0.100μm以上360μm以下の細孔径の範囲での積算細孔容積Vが、0.040cm/g以上0.120cm/g以下である、[4-1]~[4-6]のいずれかに記載のラッピングパッド。
[4-8]
 前記樹脂シートの前記細孔分布において、0.050μm以上360μm以下の細孔径の範囲での積算細孔容積V’が、0.040cm/g以上0.200cm/g以下である、[4-1]~[4-7]のいずれかに記載のラッピングパッド。
[4-9]
 前記樹脂シートが、ミクロ相分離構造を有する、[4-1]~[4-8]のいずれかに記載のラッピングパッド。
[4-10]
 前記樹脂シートが、ポリウレタンを含む、[4-1]~[4-9]のいずれかに記載のラッピングパッド。
[4-11]
 細孔を有する樹脂シートを備える、ラッピングパッドであって、
 接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した前記樹脂シートの細孔分布において、0.050μm以上10.0μm以下の細孔径の範囲での積算細孔容積V’’が、0.020cm/g以上0.140cm/g以下であり、
 前記樹脂シートの密度が0.9g/cm以上1.3g/cm以下である、ラッピングパッド。
[4-12]
 [4-1]~[4-11]のいずれかに記載のラッピングパッドを製造する方法であって、
 少なくとも1種のプレポリマーと少なくとも2種の硬化剤との混合液を硬化させることにより、ミクロ相分離構造を有する樹脂シートを得る工程を含む、ラッピングパッドの製造方法。
[4-13]
 前記硬化剤が、NH当量が100以上300以下である第1の硬化剤と、OH当量が200以上500以下である第2の硬化剤と、OH当量が1000以上2000以下である第3の硬化剤と、を含む、[4-12]に記載のラッピングパッドの製造方法。
[4-14]
 スラリーの存在下、[4-1]~[4-11]のいずれかに記載のラッピングパッドを用いて、被加工物をラップ加工するラッピング工程を有する、ラップ加工物の製造方法。
(第1の課題に対応する効果)
 本発明によれば、被研磨物に良好な平坦性を付与することができ、かつ、スラリーとの親和性に優れる、研磨パッド、その製造方法、及び研磨加工物の製造方法を提供することができる。
(第2の課題に対応する効果)
 本発明によれば、被研磨物に良好な平坦性を付与することができ、かつ、スラリーとの親和性に優れる、研磨パッド、その製造方法、及び研磨加工物の製造方法を提供することができる。
(第3の課題に対応する効果)
 本発明によれば、ドレス性に優れ、表面が平滑化されにくい、ラッピングパッド、その製造方法、及びラップ加工物の製造方法を提供することができる。
(第4の課題に対応する効果)
 本発明によれば、スラリーの液体保持性能及び砥粒保持性能の双方に優れる、ラッピングパッド、その製造方法、及びラップ加工物の製造方法を提供することができる。
(第1実施形態に対応する図)
図1-1は、実施例1の樹脂シートの水銀圧入法による積算細孔容積(細孔分布)の測定結果である。 図1-2は、実施例1の樹脂シート表面を走査型電子顕微鏡により500倍で観察したSEM像である。 図1-3(A)は、実施例1の樹脂シート表面を走査型電子顕微鏡により2000倍で観察したSEM像である。図1-3(B)は、図1-3(A)中において、ミクロ相分離構造(ジャイロイド構造)が観察された部分を破線で囲ったものである。 図1-4は、実施例2の樹脂シートの水銀圧入法による積算細孔容積(細孔分布)の測定結果である。 図1-5は、実施例2の樹脂シート表面を走査型電子顕微鏡により500倍で観察したSEM像である。 図1-6は、比較例1の樹脂シートの水銀圧入法による積算細孔容積(細孔分布)の測定結果である。 図1-7は、比較例1の樹脂シート表面を走査型電子顕微鏡により500倍で観察したSEM像である。 (第2実施形態に対応する図) 図2-1は、実施例1の樹脂シートの水銀圧入法による積算細孔容積(細孔分布)の測定結果である。 図2-2(A)は、実施例1の樹脂シート表面を走査型電子顕微鏡により500倍で観察したSEM像である。図2-2(B)は、図2-2(A)中において、ミクロ相分離構造(ジャイロイド構造)が観察された部分を破線で囲ったものである。 図2-3は、実施例2の樹脂シート表面を走査型電子顕微鏡により500倍で観察したSEM像である。 図2-4は、比較例1の樹脂シートの水銀圧入法による積算細孔容積(細孔分布)の測定結果である。 図2-5は、比較例1の樹脂シート表面を走査型電子顕微鏡により500倍で観察したSEM像である。(第3実施形態に対応する図) 図3-1は、実施例1の樹脂シートの水銀圧入法による積算細孔容積(細孔分布)の測定結果である。 図3-2は、実施例1の樹脂シート表面を走査型電子顕微鏡により500倍で観察したSEM像である。 図3-3(A)は、実施例1の樹脂シート表面を走査型電子顕微鏡により2000倍で観察したSEM像である。図3-3(B)は、図3-3(A)中において、ミクロ相分離構造(ジャイロイド構造)が観察された部分を破線で囲ったものである。 図3-4は、実施例2の樹脂シートの水銀圧入法による積算細孔容積(細孔分布)の測定結果である。 図3-5は、実施例2の樹脂シート表面を走査型電子顕微鏡により500倍で観察したSEM像である。 図3-6は、比較例1の樹脂シートの水銀圧入法による積算細孔容積(細孔分布)の測定結果である。 図3-7は、比較例1の樹脂シート表面を走査型電子顕微鏡により500倍で観察したSEM像である。(第4実施形態に対応する図) 図4-1は、実施例1の樹脂シートの水銀圧入法による積算細孔容積(細孔分布)の測定結果である。 図4-2(A)は、実施例1の樹脂シート表面を走査型電子顕微鏡により500倍で観察したSEM像である。図4-2(B)は、図4-2(A)中において、ミクロ相分離構造(ジャイロイド構造)が観察された部分を破線で囲ったものである。 図4-3は、実施例2の樹脂シート表面を走査型電子顕微鏡により500倍で観察したSEM像である。 図4-4は、比較例1の樹脂シートの水銀圧入法による積算細孔容積(細孔分布)の測定結果である。 図4-5は、比較例1の樹脂シート表面を走査型電子顕微鏡により500倍で観察したSEM像である。
 以下、本発明の実施の形態(以下、「本実施形態」という。)について、<第1実施形態>、<第2実施形態>、<第3実施形態>及び<第4実施形態>の順に、詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
<第1実施形態>
 ここでは、本実施形態に係る第1の態様(本明細書中、「第1実施形態」ともいう。)について、詳細に説明する。なお、<第1実施形態>で使用する用語や符号は、後述する<第2実施形態>、<第3実施形態>及び<第4実施形態>の内容から独立して使用しているものとする。
(研磨パッド)
 本実施形態(以降、特に断りがない限り、<第1実施形態>における「本実施形態」は第1実施形態を意味する。)の研磨パッドは、細孔を有する樹脂シートを備える、研磨パッドであって、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した前記樹脂シートの細孔分布において、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積Vが0.21cm/g以上1.00cm/g以下であり、前記樹脂シートの密度が0.3g/cm以上0.9g/cm以下である。本実施形態の研磨パッドは、上記のように構成されているため、被研磨物に良好な平坦性を付与することができ、かつ、スラリーとの親和性に優れる。
 本実施形態の研磨パッドは、本実施形態における樹脂シートを備えるものであれば特に限定されず、研磨パッドは、樹脂シート以外の構成を有するものであってもよい。研磨パッドにおける、樹脂シート以外の構成としては、従来公知の、研磨層、クッション層、及び接着層等が挙げられる。
 本実施形態の研磨パッドは、好ましくは、上記の樹脂シートを研磨層として有するものである。「樹脂シートを研磨層として有する」とは、本実施形態の研磨パッドの少なくとも1つの表面が本実施形態における樹脂シートの表面に対応しており、当該樹脂シートの表面が、本実施形態の研磨の際、被研磨物に押し当てられる研磨面となることを意味する。したがって、本実施形態の研磨パッドは、好ましくは、少なくとも片面が本実施形態における樹脂シートにより構成されている。また、本実施形態の研磨パッドは、本実施形態における樹脂シートのみからなっていてもよい。
 本実施形態の研磨パッドは、必要に応じて、研磨面に溝加工、エンボス加工、及び/又は、穴加工(パンチング加工)が施されていてもよく、光透過部を備えてもよい。溝加工及びエンボス加工の形状に特に限定はなく、例えば、格子型、同心円型、及び放射型等の形状が挙げられる。
(樹脂シート)
 (密度)
 本実施形態における樹脂シートは、密度が0.3g/cm以上0.9g/cm以下である。本実施形態における樹脂シートの密度が0.3g/cm以上であると、研磨パッドは圧力に対して変形しにくいものとなるため、研磨加工において、研磨パッドから被研磨物に対して与えられる力が研磨面方向において均一になる。その結果、そのような樹脂シートを備える研磨パッドを用いた研磨加工において、被研磨物の研磨表面を一層平坦にすることができる。なお、本実施形態において「被研磨物の研磨表面が平坦である」とは、被研磨物の研磨された表面が全体としてより平坦であることを意味する。これは、グローバル平坦性が良好であると換言してもよい。同様の観点から、本実施形態における樹脂シートの密度は、好ましくは0.4g/cm以上、より好ましくは0.45g/cm以上である。
 一方、本実施形態における樹脂シートの密度が0.9g/cm以下であると、樹脂シートの硬度が低くなる傾向にあり、そのような樹脂シートを備える研磨パッドを用いた研磨加工において、スクラッチの発生を抑制できる傾向にある。
 本実施形態における樹脂シートの密度は、従来公知の方法により測定することができ、例えば、樹脂シート片の質量、及び体積を通常の方法により測定し、得られた値から密度を求めればよい。また、樹脂シートの密度を制御する方法としては、特に限定されないが、例えば、後述する本実施形態の研磨パッドの製造方法により研磨パッドを得ればよい。特に、本実施形態における樹脂シートの製造工程において、発泡剤の量を少なくする場合、樹脂シートの密度が高くなる傾向にある。
 (樹脂シートの細孔分布)
  (積算細孔容積V)
 本実施形態における樹脂シートは、細孔を有し、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した前記樹脂シートの細孔分布において、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積Vが0.21cm/g以上1.00cm/g以下である。
 なお、以下、本実施形態において、特に断りがない限り、「細孔分布」とは、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した細孔分布を意味するものとする。水銀圧入法は、印加する圧力を掃引しながら、測定試料表面の細孔に水銀を満たしていくことにより、測定試料表面における細孔分布を測定することができる方法である。したがって、発泡材料について水銀圧入法により細孔分布を測定する場合、その細孔分布は、主に連通気泡(一般に、「連続気泡」ともいう。)の細孔分布を反映するものであり、独立気泡の細孔分布の寄与は小さい。
 本実施形態の研磨パッドに関し、本発明者らは、水銀圧入法により測定した細孔分布において、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積Vが0.21cm/g以上であると、研磨パッドにおけるスラリーとの親和性が十分良好なものとなることを見出した。これは、積算細孔容積Vが0.21cm/g以上であると、0.010μm以上1.0μm以下の細孔径を有する連通気泡が、樹脂シートの全体に分布するようになり、研磨加工時において、スラリーが当該連通気泡を介して樹脂シート内部に均等に浸透するようになるからであると推察される。ただし、積算細孔容積Vが0.21cm/g以上であることにより、研磨パッドのスラリーとの親和性が十分良好なものとなる原因は、上記に限られない。
 スラリーとの親和性を一層向上させる観点から、本実施形態における樹脂シートにおいて、上記積算細孔容積Vは、好ましくは0.30cm/g以上であり、より好ましくは0.40cm/g以上である。
 本実施形態における樹脂シートにおいて、上記積算細孔容積Vは、1.00cm/g以下である。積算細孔容積Vが1.00cm/g以下であることにより、樹脂シートの密度が上記の範囲内となりやすい傾向にあり、そのような樹脂シートを備える研磨パッドを用いた研磨加工において、被研磨物の研磨表面を一層平坦にすることができる。同様の観点から、積算細孔容積Vは、好ましくは0.90cm/g以下である。
 積算細孔容積Vが0.21cm/g以上1.00cm/g以下の範囲内にあると、樹脂シートは、ドレス性に優れるようになる。なお、「ドレス」、又は「ドレス処理」とは、被研磨物を研磨する前に、砥粒等が固定されたドレス治具(例えば、ダイヤモンドドレッサー、又はサンドペーパー)を用いて、研磨パッドの研磨面の表面粗さを整えたり、平坦度を整えたりする処理を意味する。また、「ドレス性に優れる」とは、比較的容易な条件の処理によって、十分なドレス処理が行えることを意味する。「研磨面」とは、研磨パッドによって被研磨物を研磨する際に、研磨パッドが被研磨物に接触する面、又は接触することが想定される面を意味する。
  (積算細孔容積Vに対する積算細孔容積Vの割合)
 本実施形態の研磨パッドにおいて、被研磨物に付与する平坦性と、スラリーとの親和性とのバランスを一層向上させる観点から、樹脂シートの細孔分布において、0.010μm以上360μm以下の細孔径の範囲での積算細孔容積Vに対する、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積Vの割合は、好ましくは、50%以上である。換言すると、積算細孔容積Vに対する積算細孔容積Vの比(V/V)は、好ましくは0.50以上である。このような態様によれば、樹脂シートは、相対的に小さい細孔径を有する細孔の割合が増えるため、密度を従来品と同等に保ちつつ、樹脂シート内の連通気泡の数を一層多くすることができる。
 同様の観点から、積算細孔容積Vに対する積算細孔容積Vの割合は、より好ましくは60%以上であり、更に好ましくは65%以上であり、更により好ましくは70%以上である。積算細孔容積Vに対する積算細孔容積Vの割合の上限は特に限定されず、積算細孔容積Vに対する積算細孔容積Vの割合は、100%以下であってもよく、99%以下であってもよく、95%以下であってもよく、90%以下であってもよく、85%以下であってもよく、80%以下であってもよい。
  (最大ピークのピーク位置)
 本実施形態における樹脂シートの細孔分布において、0.010μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置は、0.010μm以上1.0μm以下の細孔径の範囲内にあることが好ましい。一般的に、水銀圧入法において、細孔分布は、測定範囲の最大の細孔径からの積算細孔容積として測定される。したがって、「0.010μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置」とは、水銀圧入法で得られた細孔分布から算出されるLog微分細孔容積分布(dV/d(logD))の最大ピークの位置(細孔径)を意味する。また、最大ピークとは、0.010μm以上360μm以下の細孔径の範囲における極大点が複数ある場合、極大値が最も大きい極大点を意味する。
 0.010μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置が0.010μm以上1.0μm以下の細孔径の範囲内にあることにより、樹脂シートは、0.010μm以上1.0μm以下の範囲で、分布が一層均一な細孔を有することとなるため、研磨パッドのスラリーとの親和性、及びドレス性が一層向上する傾向にある。研磨パッドのスラリーとの親和性、及びドレス性を一層向上させる観点から、0.010μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置は、より好ましくは0.010μm以上0.5μm以下、さらに好ましくは0.030μm以上0.5μm以下、よりさらに好ましくは0.050μm以上0.5μm以下の細孔径の範囲内にある。
 同様の観点から、1.0μm以上360μm以下の範囲内における最大ピークの位置は、より好ましくは50μm以上200μm以下の細孔径の範囲内にある。
  (ピークの数及びピーク高さ)
 本実施形態における樹脂シートのLog微分細孔容積分布において、0.010μm以上360μm以下の細孔径の範囲におけるピークの数は、好ましくは2以上4以下であり、より好ましくは2であり、更に好ましくは0.010μm以上1.0μm以下に1かつ1.0μm以上360μm以下に1である。ピークの数が上記の範囲内にあることにより、分布が一層均一な細孔を有することとなるため、研磨パッドのスラリーとの親和性、及びドレス性が一層向上する傾向にある。
 同様の観点から、Log微分細孔容積分布において、0.010μm以上1.0μm以下の細孔径の範囲における最大ピーク高さは、1.0μm以上360μm以下の細孔径の範囲における最大ピーク高さに比べて、好ましくは2倍以上であり、より好ましくは2.5倍以上であり、更に好ましくは3倍以上である。
  (積算細孔容積V
 本実施形態における樹脂シートの細孔分布において、0.010μm以上360μm以下の細孔径の範囲での積算細孔容積Vは、好ましくは0.1cm/g以上2.0cm/g以下であり、より好ましくは0.4cm/g以上2.0cm/g以下であり、更に好ましくは0.5cm/g以上1.5cm/g以下であり、より更に好ましくは0.6cm/g以上1.2cm/g以下である。積算細孔容積Vが上記の範囲内にあることにより、被研磨物に付与する平坦性と、スラリーとの親和性とのバランスが一層向上する傾向にある。
 本実施形態において、積算細孔容積V、及び積算細孔容積Vは、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定される細孔分布から算出されるが、より詳細な水銀圧入法の測定条件は、実施例に記載の方法を参照することができる。また、積算細孔容積V、積算細孔容積V、積算細孔容積Vに対する積算細孔容積Vの割合、最大ピークのピーク位置、ピークの数及びピーク高さの値を制御する方法としては、特に限定されないが、例えば、後述する本実施形態の研磨パッドの製造方法により研磨パッドを得ればよい。
 (樹脂シートの構造)
 本実施形態における樹脂シートは、ミクロ相分離構造を有することが好ましい。本実施形態において、「ミクロ相分離構造」は、ミクロ相分離を経て形成された相分離構造を意味する。また、本実施形態において、「ミクロ相分離」とは、巨視的には均質な物体において、微視的(典型的には、マイクロメートルオーダー)な構造パターンが少なくとも1次元の周期性をもって繰り返されるように生じる相分離を意味する。ミクロ相分離は、例えば、後述する本実施形態の研磨パッドの製造方法における好ましい製造条件を採用することで生じさせることができる。ミクロ相分離構造の典型例としては、以下に限定されないが、球状構造(海島構造)、シリンダー構造、ラメラ構造、及び三次元網目構造が挙げられる。本実施形態におけるミクロ相分離構造は、好ましくは、シリンダー構造、ラメラ構造及び三次元網目構造を含み、より好ましくは三次元網目構造である。
 本実施形態において、三次元網目構造は、三次元方向に網目状のネットワークを形成した構造を意味する。ミクロ相分離由来の三次元網目構造としては、シングルジャイロイド構造及び/又はダブル(多重)ジャイロイド構造を含むものであってもよい。本実施形態において、シングルジャイロイド構造は、典型的には、2つの三叉路が捻じれて対となった細線構造が組み合わさって単位胞を形成し、それが周期的に繰り返されたネットワーク構造を意味し、ダブル(多重)ジャイロイド構造は、2以上のシングルジャイロイド構造が入れ子に組み合わされた構造を意味する。
 従来の発泡剤や不活性気体の注入等に由来する連続発泡構造を有する樹脂シートの断面は略球状の発泡断面と樹脂平坦部(つまり、樹脂の海と空隙の島との海島状)が観察される傾向にある。一方、本実施形態における樹脂シートがダブル(多重)ジャイロイド構造を有する場合、その断面では、典型的には、2つ以上の樹脂がマイクロメーターオーダーでまだら状に入り組んで相分離した構造が観察される傾向にある。また、本実施形態における樹脂シートがシングルジャイロイド構造を有する場合、その断面では、典型的には、不定形の空隙断面と樹脂骨格/樹脂骨格断面とが観察される。樹脂骨格部が空隙と比較して充分に大きい場合では、樹脂骨格部が観察できず実質的に樹脂の海状に観察される場合があるが、この場合でも本実施形態における樹脂シートの空隙は、三次元網目状に相互に連通して形成されている。
 なお、本実施形態における樹脂シートの断面を観察したときに、2つ以上の樹脂のまだら状模様と、不定形の空隙断面と樹脂骨格/樹脂骨格断面との両方の特徴が観察され、すなわち、ダブル(多重)ジャイロイド構造とシングルジャイロイド構造との境界が明確に区別できない場合もあるが、この場合はシングルジャイロイド構造及びダブル(多重)ジャイロイド構造の少なくとも一方を含むものと評価できる。
 本実施形態における樹脂シートがシングルジャイロイド構造及び/又はダブル(多重)ジャイロイド構造を有する場合も、典型的にはLog微分細孔容積分布において0.010μm以上10.0μm以下の細孔径の範囲内にシャープなピーク(極大値)が計測される。
 本実施形態における樹脂シートは、組成が異なる2以上の相を含むことができる。本実施形態において、相の「組成」とは、相の主成分である樹脂、及び相に含まれる主成分以外の成分の両方を包含し、さらにこれらの配合比も考慮するものである。したがって、本実施形態における樹脂シートが有するミクロ相分離構造は、相の主成分である樹脂、及び相に含まれる主成分以外の成分の少なくともいずれかが互いに異なる2以上の相を含むことができ、典型的には、相の主成分である樹脂の構造、平均分子量、及び官能基の少なくとも1以上が異なる2以上の相を含むことができる。
 組成が異なる2つの相の例示としては、例えば、一方の相と他方の相とで、相を構成する樹脂の種類が異なる場合;一方の相と他方の相とで、含有する添加物の含有量が異なる場合;並びに、樹脂シートがABブロックポリマーからなる場合であって、一方の相がAブロックを主成分とする相であり、他方の相がBブロックを主成分とする相である場合が挙げられる。
 組成が互いに異なる2つの相を含むミクロ相分離構造の典型的な例示としては、第1の相が所定のプレポリマーと所定の硬化剤とが硬化した相であり、第2の相が、第1の相におけるプレポリマーとは異なるプレポリマーと第1の相における硬化剤とが硬化した相である場合;第1の相が所定のプレポリマーと所定の硬化剤とが硬化した相であり、第2の相が、第1の相におけるプレポリマーと第1の相における硬化剤とは異なる硬化剤が硬化した相である場合;並びに、第1の相が所定のプレポリマーと所定の硬化剤とが硬化した相であり、第2の相が、第1の相におけるプレポリマーとは異なるプレポリマーと第1の相における硬化剤とは異なる硬化剤が硬化した相である場合等が挙げられる。
 本実施形態における樹脂シートは、ミクロ相分離に起因する空隙を有することができる。かかる空隙は、ミクロ相分離構造を構成する空隙と換言してもよく、その具体例としては、以下に限定されないが、ジャイロイド構造を与える樹脂骨格により画成される空隙等が挙げられる。なお、本実施形態において、空隙は、細孔に由来するものであってもよいし、複数の細孔が連通した連通孔に由来するものであってもよい。
 本実施形態におけるミクロ相分離構造を有する樹脂シートは、例えば、後述する本実施形態の研磨パッドの製造方法により得ることができる。また、樹脂シートがミクロ相分離構造を有することは、倍率は300倍~3000倍程度で走査型電子顕微鏡(SEM)により観察することで確認することができる。
 なお、樹脂シートが、組成が異なる2以上の相を含むミクロ相分離構造を有していることないし前述した空隙を有していることは、光学顕微鏡、及び位相差顕微鏡のような光学的方法、走査型電子顕微鏡、及び透過型電子顕微鏡のような電子顕微鏡を用いた方法、光散乱、中性子線小角散乱、及びX線小角散乱のような粒子の散乱を用いた方法、X線回折法、蛍光法、並びにパルスNMR測定法等の方法を用いて観測することができる。
 (樹脂シートの平均開孔径)
 本実施形態における樹脂シートにおいて、10μm以上の開孔を対象として測定される平均開孔径は、特に限定されないが、好ましくは50μm以上300μm以下であり、より好ましくは50μm以上200μm以下である。
 上記平均開孔径は、例えば、後述する実施例に記載の方法により測定することができる。また、上記平均開孔径は、例えば、発泡剤や整泡剤の種類及び/又は添加量により上記した範囲に調整することができる。
 (樹脂シートの平均厚さ)
 本実施形態における樹脂シートの平均厚さは、特に限定されないが、好ましくは0.5mm以上10.0mm以下であり、より好ましくは0.6mm以上8.0mm以下であり、更に好ましくは0.7mm以上5.0mm以下である。
 (樹脂シートの物性)
 本実施形態における樹脂シートの圧縮率は、特に限定されないが、好ましくは0.1%以上5.0%以下であり、より好ましくは0.3%以上3.0%以下である。なお、樹脂シートの圧縮率は、日本産業規格(JIS L 1021)に従い、ショッパー型厚さ測定器(加圧面:直径1cmの円形)を使用して求めることが出来る。具体的には、無荷重状態から初荷重を30秒間かけた後の厚さt0を測定し、次に、厚さt0の状態から最終圧力を30秒間かけた後の厚さt1を測定することにより、以下の式から算出することができる。なお、初荷重は100g/cm、最終圧力は1120g/cmである。
 圧縮率(%)=100×(t0-t1)/t0
 本実施形態における樹脂シートの圧縮弾性率は、特に限定されないが、好ましくは70%以上100%以下であり、より好ましくは75%以上95%以下である。なお、樹脂シートの圧縮弾性率は、日本産業規格(JIS L 1021)に従い、ショッパー型厚さ測定器(加圧面:直径1cmの円形)を使用して求めることができる。具体的には、無荷重状態から初荷重を30秒間かけた後の厚さt0を測定し、次に、厚さt0の状態から最終圧力を30秒間かけた後の厚さt1を測定し、更に、厚さt1の状態から全ての荷重を除き、5分間放置(無荷重状態)とした後、再び初荷重を30秒間かけた後の厚さt0’を測定することにより、以下の式から算出することができる。なお、初荷重は100g/cm、最終圧力は1120g/cmである。
 圧縮率(%)=100×(t0’-t1)/(t0-t1)
 本実施形態における樹脂シートのショアD硬度は、特に限定されないが、好ましくは10以上70以下であり、より好ましくは20以上60以下である。なお、樹脂シートのショアD硬度は、日本産業規格(JIS K 7311)に従い、D型硬度計を使用して求めることができる。
 (樹脂シートの材料)
 本実施形態における樹脂シートの材料は特に限定されない。樹脂シートの材料としては、例えば、ポリウレタン樹脂が挙げられる。ポリウレタン樹脂としては、特に限定されないが、例えば、ポリエステル系ポリウレタン樹脂、ポリエーテル系ポリウレタン樹脂、及びポリカーボネート系ポリウレタン樹脂が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。
 これらの中でも、本実施形態における樹脂シートの材料は、ポリエステル系ポリウレタン樹脂、及びポリエーテル系ポリウレタン樹脂の少なくともいずれかを含むことが好ましい。特に、本実施形態の研磨パッドの製造方法において後述する、ウレタンプレポリマーと、少なくとも2種の硬化剤とを含む混合液の硬化物であるポリウレタン樹脂を含むことが好ましい。このような樹脂を用いることにより、簡便に、密度及び細孔分布を上記の範囲内とすることができる傾向にある。
 また、本実施形態における樹脂シートは、樹脂成分以外に、添加剤に由来する成分を含有していてもよい。そのような添加剤としては、例えば、本実施形態の研磨パッドの製造方法において後述する、消泡剤、触媒、発泡剤、整泡剤、砥粒、染料、顔料、中実微粒子、難燃剤、親水化剤、疎水化剤、耐光剤、酸化防止剤、及び帯電防止剤等が挙げられる。
[研磨パッドの製造方法]
 本実施形態の研磨パッドの製造方法は、少なくとも1種のプレポリマーと少なくとも2種の硬化剤との混合液を硬化させることにより、ミクロ相分離構造を有する樹脂シートを得る工程を含む。このような方法によれば、簡便に本実施形態の研磨パッドを製造することができる。以下、研磨パッドの製造方法の各工程を詳述する。
(混合工程)
 本実施形態の研磨パッドの製造方法は、少なくとも1種のプレポリマーと少なくとも2種の硬化剤との混合液を調製する混合工程を含むことができる。混合工程において、少なくとも2種の硬化剤を用いることにより、混合工程の後の成形工程において、ミクロ相分離構造を有する樹脂シートを得ることができる。特に、硬化剤を2種以上用いてミクロ相分離構造を形成することにより、プレポリマーを2種以上用いてミクロ相分離構造を形成する場合よりも、硬化反応を制御しやすく、ミクロ相分離構造の形状を容易に制御することができる傾向にある。
 混合工程は、例えば、30℃~90℃に加温した少なくとも1種のプレポリマーと、少なくとも2種の硬化剤とを温度調整可能なジャケット付き混合機に投入し、30℃~130℃で攪拌すればよい。この際、必要に応じて攪拌機付きジャケット付きのタンクに混合液を受けて熟成させてもよい。攪拌時間は混合機の歯数や回転数、クリアランス等によって適宜調整するが、例えば0.1秒~60秒である。
 (硬化剤)
 混合工程において用いられる硬化剤は特に限定されないが、例えば、アミノ基含有化合物、及び水酸基含有化合物が挙げられる。アミノ基含有化合物としては、特に限定されないが、例えば、4,4’-メチレンビス(2-クロロアニリン)(MOCA)、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、イソホロンジアミン、ジシクロヘキシルメタン-4,4’-ジアミン、4-メチル-2,6-ビス(メチルチオ)-1,3-ベンゼンジアミン、2-メチル-4,6-ビス(メチルチオ)-1,3-ベンゼンジアミン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス[3-(イソプロピルアミノ)-4-ヒドロキシフェニル]プロパン、2,2-ビス[3-(1-メチルプロピルアミノ)-4-ヒドロキシフェニル]プロパン、2,2-ビス[3-(1-メチルペンチルアミノ)-4-ヒドロキシフェニル]プロパン、2,2-ビス(3,5-ジアミノ-4-ヒドロキシフェニル)プロパン、2,6-ジアミノ-4-メチルフェノール、トリメチルエチレンビス-4-アミノベンゾネート、及びポリテトラメチレンオキサイド-ジ-p-アミノベンゾネート等が挙げられる。アミノ基含有化合物としては、4,4’-メチレンビス(2-クロロアニリン)が好ましい。
 水酸基含有化合物としては、特に限定されないが、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリメチレングリコール、テトラエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,2-ブタンジオール、3-メチル-1,2-ブタンジオール、1,2-ペンタンジオール、1,4-ペンタンジオール、2,4-ペンタンジオール、2,3-ジメチルトリメチレングリコール、テトラメチレングリコール、3-メチル-4,3-ペンタンジオール、3-メチル-4,5-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、1,6-ヘキサンジオール、1,5-ヘキサンジオール、1,4-ヘキサンジオール、2,5-ヘキサンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、トリメチロールエタン、トリメチロールメタン、ポリテトラメチレングリコール、ポリエチレングリコール、及びポリプロピレングリコール等が挙げられる。反応を制御する観点から、水酸基含有化合物としては、3官能以上のものよりも、2官能(ジオール)のものを用いることが好ましい。また、水酸基含有化合物としては、ポリテトラメチレングリコールがより好ましい。
 なお、上記の硬化剤は、2種以上を組み合わせて用いられる。硬化剤の組み合わせは特に限定されないが、後述する組み合わせであると好ましい。
 硬化剤の活性水素当量(例えば、NH当量、及びOH当量)は、特に限定されず、例えば50以上5000以下であってもよく、100以上4000以下であってもよく、130以上3000以下であってもよい。また、水酸基含有化合物である硬化剤のOH当量は、100以上5000以下であってもよく、200以上4000以下であってもよく、300以上3000以下であってもよい。アミノ基含有化合物である硬化剤のNH当量は、50以上2000以下であってもよく、75以上1000以下であってもよく、100以上300以下であってもよい。
 混合工程において、少なくとも2種の硬化剤が用いられる。硬化剤の組み合わせとしては、互いに相溶性が低い、及び/又は反応性が異なる、及び/又は活性水素当量が異なる硬化剤を用いることが好ましい。そのような態様によれば、ミクロ相分離構造を一層確実に得ることができる傾向にある。反応性が異なる硬化剤の組み合わせの例としては、例えば、活性水素基が異なる硬化剤の組み合わせが挙げられ、より具体的には、例えば、アミノ基含有化合物及び水酸基含有化合物の組み合わせが挙げられる。
 同一の活性水素基を有する硬化剤を2種以上用いる場合、すなわち、水酸基含有化合物を2種以上用いるか、アミノ基含有化合物を2種以上用いる場合は、好ましくは、かかる2種以上の硬化剤は、活性水素当量の差が500以上2000以下である2つの硬化剤を含む。より好ましくは、かかる2種以上の硬化剤は、活性水素当量が200以上500以下である硬化剤と、活性水素当量が1000以上2000以下である硬化剤とを含む。
 同一の活性水素基を有する硬化剤を2種以上用いる場合であって、かかる2種以上の硬化剤が、活性水素当量の差が500以上2000以下である2つの硬化剤を含む場合、活性水素当量の小さい硬化剤の使用量と活性水素当量の大きい硬化剤の使用量との比は、「活性水素当量の小さい硬化剤:活性水素当量の大きい硬化剤」が、活性水素基数比で、1:1~1:15であることが好ましく、1:1~1:10であることがより好ましい。
 同一の活性水素基を有する硬化剤を2種以上用いる場合であって、かかる2種以上の硬化剤が、活性水素当量が200以上500以下である硬化剤と、活性水素当量が1000以上2000以下である硬化剤とを含む場合、活性水素当量が200以上500以下である硬化剤の使用量と活性水素当量が1000以上2000以下である硬化剤の使用量との比は、「活性水素当量が200以上500以下である硬化剤:活性水素当量が1000以上2000以下である硬化剤」が、活性水素基数比で、1:1~1:15であることが好ましく、1:1~1:10であることがより好ましい。
 具体的な好ましい硬化剤の組み合わせとして、少なくとも2種の硬化剤は、好ましくは、アミノ基含有化合物と、水酸基含有化合物とを含む。少なくとも2種の硬化剤は、より好ましくは、1種のアミノ基含有化合物と、2種以上の水酸基含有化合物とを含むか、2種以上のアミノ基含有化合物と、1種の水酸基含有化合物とを含む。少なくとも2種の硬化剤は、更に好ましくは、1種のアミノ基含有化合物と、2種以上の水酸基含有化合物とを含む。
 少なくとも2種の硬化剤が、アミノ基含有化合物と水酸基含有化合物とを含む場合、アミノ基含有化合物のNH当量と、水酸基含有化合物のOH当量の差は特に限定されないが、水酸基含有化合物のOH当量の方が大きいことが好ましく、水酸基含有化合物のOH当量がアミノ基含有化合物のNH当量に比べて、100以上2000以下大きいことがより好ましい。
 少なくとも2種の硬化剤が、アミノ基含有化合物と水酸基含有化合物とを含む場合、硬化剤の使用量の全体に対するアミノ基含有化合物である硬化剤の使用量の割合は、官能基数比で、35%以上95%以下であることが好ましく、40%以上90%以下であることがより好ましい。
 好ましい硬化剤の組み合わせの一例としては、例えば、少なくとも2種の硬化剤は、NH当量が100以上300以下である第1の硬化剤(アミノ基含有化合物)と、OH当量が1000以上2000以下である第2の硬化剤(水酸基含有化合物)とを含む。第1の硬化剤の使用量と、第2の硬化剤の使用量の比は、特に限定されないが、第1の硬化剤の使用量は、硬化剤の使用量全体に対して、官能基数比で、35%以上98%以下であることが好ましく、35%以上95%以下であることがより好ましく、40%以上90%以下であることがさらに好ましい。第2の硬化剤の使用量は、硬化剤の使用量全体に対して、官能基数比で、2%以上60%以下であることが好ましく、3%以上60%以下であることがより好ましく、5%以上50%以下であることがさらに好ましい。また、第1の硬化剤の使用量は、硬化剤の使用量全体に対して、質量比で、10%以上90%以下であることが好ましく、15%以上80%以下であることがより好ましい。第2の硬化剤の使用量は、硬化剤の使用量全体に対して、質量比で、10%以上50%以下であることが好ましく、15%以上40%以下であることがより好ましい。
 一般に、硬化剤の使用量の合計は、プレポリマーが有する官能基の数を1としたときの、硬化剤に存在する活性水素基(アミノ基及び水酸基)の当量比であるR値により規定される。硬化剤の使用量の合計は、R値が0.7以上1.3以下になるように調整されることが好ましい。R値は、より好ましくは0.8以上1.2以下である。
 なお、上記の好ましい硬化剤の組み合わせを適当な使用量で用いることにより、一層確実に、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した細孔分布において、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積Vが0.21cm/g以上1.00cm/g以下である樹脂シート、及び/又は、ミクロ相分離構造を有する樹脂シートを得ることができる。なお、硬化剤の組み合わせとして、互いに相溶性が低い2種以上の硬化剤を用いる、互いに反応性が異なる2種以上の硬化剤を用いる、及び/又は、活性水素当量が異なる硬化剤を用いることができる。仮に、そのような組み合わせによって明瞭なミクロ相分離構造を有する樹脂シートが得られない場合であっても、互いの相溶性が高くなるように硬化剤の種類を変更する、互いの反応性が類似するものとなるように硬化剤を変更する、及び/又は、互いの活性水素当量が近づくように硬化剤を変更する等の調整を行うことにより、ミクロ相分離構造を有する樹脂シートが得られる傾向にある。
 (プレポリマー)
 混合工程において用いられるプレポリマーとしては、特に限定されないが、例えば、ウレタンプレポリマーが挙げられる。ウレタンプレポリマーとしては、例えば、ヘキサメチレンジイソシアネートとヘキサントリオールとの付加物;2,4-トリレンジイソシアネートとプレンツカテコールとの付加物;2,4-トリレンジイソシアネートとポリ(オキシテトラメチレン)グリコールとジエチレングリコールとの付加物;トリレンジイソシアネートとヘキサントリオールとの付加物;トリレンジイソシアネートとトリメチロールプロパンとの付加物;キシリレンジイソシアネートとトリメチロールプロパンとの付加物;ヘキサメチレンジイソシアネートとトリメチロールプロパンとの付加物;及びイソシアヌル酸とヘキサメチレンジイソシアネートとの付加物が挙げられる。また、これ以外の、ポリイソシアネート化合物とポリオール化合物との反応により調製されるイソシアネート基含有化合物や、市販されている多様なウレタンプレポリマーを用いてもよい。
 イソシアネート基含有化合物の調製に用いられるポリイソシアネート化合物としては、分子内に2つ以上のイソシアネート基を有していれば特に限定されるものではない。例えば、分子内に2つのイソシアネート基を有するジイソシアネート化合物としては、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、2,6-トリレンジイソシアネート(2,6-TDI)、2,4-トリレンジイソシアネート(2,4-TDI)、ナフタレン-1,4-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネー卜(MDI)、4,4’-メチレン-ビス(シクロヘキシルイソシアネート)(水添MDI)、3,3’-ジメトキシ-4,4’-ビフェニルジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、キシリレン-1、4-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート、プロピレン-1,2-ジイソシアネート、ブチレン-1,2-ジイソシアネート、シクロヘキシレン-1,2-ジイソシアネート、シクロヘキシレン-1,4-ジイソシアネート、p-フェニレンジイソチオシアネート、キシリレン-1,4-ジイソチオシアネート、及びエチリジンジイソチオシアネート等が挙げられる。
 これらのポリイソシアネート化合物は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。ポリイソシアネート化合物としては、ジイソシアネート化合物が好ましく、2,4-TDI、及び2,6-TDI、MDIがより好ましい。
 イソシアネート基含有化合物の調製に用いられるポリオール化合物としては、例えば、エチレングリコール、ジエチレングリコール(DEG)、ブチレングリコール等のジオール化合物、トリオール化合物等;ポリプロピレングリコール(PPG)、及びポリ(オキシテトラメチレン)グリコール(PTMG)等のポリエーテルポリオール化合物;エチレングリコールとアジピン酸との反応物やブチレングリコールとアジピン酸との反応物等のポリエステルポリオール化合物;ポリカーボネートポリオール化合物、並びにポリカプロラクトンポリオール化合物等が挙げられる。また、エチレンオキサイドを付加した3官能性プロピレングリコールを用いることもできる。ポリオール化合物は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ウレタンプレポリマーのNCO当量は、好ましくは150以上700以下であり、より好ましくは200以上600以下であり、更に好ましくは200以上500以下である。「NCO当量」とは、“(ポリイソシアネート化合物の質量部+ポリオール化合物の質量部)/[(ポリイソシアネート化合物1分子当たりの官能基数×ポリイソシアネート化合物の質量部/ポリイソシアネート化合物の分子量)-(ポリオール化合物1分子当たりの官能基数×ポリオール化合物の質量部/ポリオール化合物の分子量)]”で求められる、NCO基1個当たりのウレタンプレポリマーの分子量を示す数値である。
 混合工程において、少なくとも1種のプレポリマーが用いられる。プレポリマーは上記のものを2種以上組み合わせて用いてもよいが、好ましくは1種を単独で用いられる。そのような態様によれば、硬化反応を制御しやすく、ミクロ相分離構造の形状を容易に制御することができる傾向にある。プレポリマーとして、トリレンジイソシアネートを主成分とするウレタンプレポリマーを単独で用いることが好ましい。
 プレポリマーの使用量は特に限定されないが、混合液全体に対して、好ましくは30質量部以上80質量部以下であり、より好ましくは40質量部以上75質量部以下である。
 (添加剤)
 混合工程において、プレポリマー及び硬化剤以外の成分を添加剤として混合してもよい。添加剤としては、ポリプロピレングリコールのような溶媒(希釈剤);シリコーン系消泡剤のような消泡剤;触媒;水や中空微粒子のような発泡剤;シリコーン系整泡剤のような整泡剤;並びに、酸化セリウムのようなフィラー(砥粒);染料;顔料;中実微粒子;難燃剤;親水化剤;疎水化剤;耐光剤;酸化防止剤;帯電防止剤等が挙げられる。得られる樹脂シートの密度を0.3g/cm以上0.9g/cm以下とする観点から、密度調整のために発泡剤を添加することが好ましく、発泡剤の添加量を調整することがより好ましい。
 混合工程において、添加する触媒の種類及び使用量を調整することにより、硬化反応の反応速度を制御し、形成されるミクロ相分離構造を制御することができる。
(成形工程)
 成形工程は、上記のようにして得られた混合液を硬化させることによりミクロ相分離構造を有する樹脂シートを得る工程である。成形工程は、例えば、混合工程により得られた混合液を30℃~150℃に予熱した型枠内に流し込み、30℃~150℃程度で10分~5時間程度加熱すればよい。これにより、プレポリマーと硬化剤とが反応して樹脂を形成することにより、上記混合液が硬化する。また、更に、オーブンにより、50℃~180℃程度で10分~10時間程度加熱することで、2次硬化してもよい。本実施形態の研磨パッドの製造方法では、混合液が上記のものであるため、ミクロ相分離構造を有する樹脂ブロックを得ることができる。
 なお、成形工程における混合液を硬化させる際の反応温度は、用いるプレポリマー、硬化剤及び添加剤の種類や配合比等によって適宜調整することができ、反応温度を調整することにより、硬化反応の反応速度を制御し、形成されるミクロ相分離構造を制御することができる傾向にある。
 また、成形工程では、上記のようにして得られた樹脂ブロックから、適当な厚さの樹脂シートを切り出すことにより、ミクロ相分離構造を有する樹脂シートを得る。得られた樹脂シートは、30℃~150℃で1時間~24時間程度エイジングしてもよい。
 このようにして得られた樹脂シートは、例えば、その後、片面に両面テープが貼り付けられ、所定形状、好ましくは円板状にカットされて、本実施形態の研磨パッドとして完成する。両面テープとしては、特に限定されず、従来公知の両面テープの中から任意に選択して用いることができる。
 また、本実施形態の研磨パッドは、樹脂シートのみからなる単層構造であってもよく、樹脂シートの片面に他の層(クッション層、又は基板層)を貼り合わせた複層からなっていてもよい。複層構造を有する場合には、両面テープや接着剤等を用いて、複数の層同士を必要により加圧しながら接着、固定すればよい。用いられる両面テープ、及び接着剤としては、特に限定されず、従来公知の両面テープ及び接着剤の中から任意に選択して用いることができる。
 更に、本実施形態の研磨パッドは、必要に応じて、表面に溝加工、エンボス加工、及び/又は、穴加工(パンチング加工)を施してもよい。溝加工及びエンボス加工の形状に特に限定はなく、例えば、格子型、同心円型、放射型などの形状が挙げられる。
 また、研磨パッドは、樹脂シートの表面及び/又は裏面にドレス(研削処理)を施してもよい。本実施形態の研磨パッドの製造方法における樹脂シートは、連通した細孔を有するため、ドレス性に優れ、容易な条件でドレス処理をすることができる。ドレス処理としては、特に限定されず、ダイヤモンドドレッサーによる研削等の公知の方法によりドレスすることができる。
[研磨加工物の製造方法]
 本実施形態の研磨加工物の製造方法は、研磨スラリーの存在下、上記の研磨パッドを用いて、被研磨物を研磨し、研磨加工物を得る研磨工程を有する。研磨工程は、一次研磨(粗研磨)であってもよく、仕上げ研磨であってもよく、それら両方の研磨を兼ねるものであってもよい。
 本実施形態の研磨加工物の製造方法においては、研磨スラリーの供給と共に、保持定盤で被研磨物を研磨パッド側に押圧しながら、保持定盤と研磨用定盤とを相対的に回転させることで、被研磨物の加工面が研磨パッドで化学機械研磨により研磨加工される。保持定盤と研磨用定盤は、互いに異なる回転速度で同方向に回転してもよく、異方向に回転してもよい。また、被研磨物は、研磨加工中に、枠部の内側で移動(自転)しながら研磨加工されてもよい。
 研磨スラリーは、被研磨物や研磨条件等に応じて、水、過酸化水素に代表される酸化剤、酸成分、アルカリ成分等の化学成分、添加剤、並びに砥粒(研磨粒子;例えば、SiC、SiO、Al、及びCeO)等を含んでいてもよい。
 また、被研磨物としては、特に限定されないが、例えば、レンズ、平行平面板、及び反射ミラーのような光学材料、半導体ウェハ、半導体デバイス、ハードディスク用基板、金属、並びにセラミック等の材料が挙げられる。
<第2実施形態>
 ここでは、本実施形態に係る第2の態様(本明細書中、「第2実施形態」ともいう。)について、詳細に説明する。なお、<第2実施形態>で使用する用語や符号は、後述する<第1実施形態>、<第3実施形態>及び<第4実施形態>の内容から独立して使用しているものとする。
(研磨パッド)
 本実施形態(以降、特に断りがない限り、<第2実施形態>における「本実施形態」は第2実施形態を意味する。)の研磨パッドは、細孔を有する樹脂シートを備え、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した樹脂シートの細孔分布において、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積Vが0.020cm/g以上0.100cm/g以下であり、樹脂シートの密度が0.9g/cm以上1.3g/cm以下である。本実施形態の研磨パッドは、上記のように構成されているため、被研磨物に良好な平坦性を付与することができ、かつ、スラリーとの親和性に優れる。
 また、本実施形態の研磨パッドは、後述する積算細孔容積V’の観点から、次のように特定することもできる。すなわち、本実施形態の研磨パッドは、細孔を有する樹脂シートを備え、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した樹脂シートの細孔分布において、0.050μm以上10.0μm以下の細孔径の範囲での積算細孔容積V’’が0.020cm/g以上0.140cm/g以下であり、樹脂シートの密度が0.9g/cm以上1.3g/cm以下である。このように特定される本実施形態の研磨パッドも、被研磨物に良好な平坦性を付与することができ、かつ、スラリーとの親和性に優れる。
 本実施形態の研磨パッドは、本実施形態における樹脂シートを備えるものであれば特に限定されず、研磨パッドは、樹脂シート以外の構成を有するものであってもよい。研磨パッドにおける、樹脂シート以外の構成としては、従来公知の、研磨層、クッション層、及び接着層等が挙げられる。
 なお、本実施形態において、「本実施形態における樹脂シート」と称するときは、「細孔を有する樹脂シートであって、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した当該樹脂シートの細孔分布において、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積Vが0.020cm/g以上0.100cm/g以下であり、当該樹脂シートの密度が0.9g/cm以上1.3g/cm以下である、樹脂シート」及び「細孔を有する樹脂シートであって、水銀表面張力485dyn/cmとした水銀圧入法により測定した当該樹脂シートの細孔分布において、0.050μm以上10.0μm以下の細孔径の範囲での積算細孔容積V’’が0.020cm/g以上0.140cm/g以下であり、当該樹脂シートの密度が0.9g/cm以上1.3g/cm以下である、樹脂シート」の双方を包含するものとする。
 本実施形態の研磨パッドは、好ましくは、上記の樹脂シートを研磨層として有するものである。「樹脂シートを研磨層として有する」とは、本実施形態の研磨パッドの少なくとも1つの表面が本実施形態における樹脂シートの表面に対応しており、当該樹脂シートの表面が、本実施形態の研磨の際、被研磨物に押し当てられる研磨面となることを意味する。したがって、本実施形態の研磨パッドは、好ましくは、少なくとも片面が本実施形態における樹脂シートにより構成されている。また、本実施形態の研磨パッドは、本実施形態における樹脂シートのみからなっていてもよい。
 本実施形態の研磨パッドは、必要に応じて、研磨面に溝加工、エンボス加工、及び/又は、穴加工(パンチング加工)が施されていてもよく、光透過部を備えてもよい。溝加工及びエンボス加工の形状に特に限定はなく、例えば、格子型、同心円型、及び放射型等の形状が挙げられる。
(樹脂シート)
 (密度)
 本実施形態における樹脂シートは、密度が0.9g/cm以上1.3g/cm以下である。本実施形態における樹脂シートの密度が0.9g/cm以上である、すなわち、樹脂シートが高密度であると、研磨パッドは圧力に対して変形しにくいものとなるため、研磨加工において、研磨パッドから被研磨物に対して与えられる力が研磨面方向において均一になる。その結果、そのような樹脂シートを備える研磨パッドを用いた研磨加工において、被研磨物の研磨表面を一層平坦にすることができる。なお、本実施形態において「被研磨物の研磨表面が平坦である」とは、被研磨物の研磨された表面が全体としてより平坦であることを意味する。これは、グローバル平坦性が良好であると換言してもよい。
 同様の観点から、本実施形態における樹脂シートの密度は、好ましくは0.9g/cm超であり、より好ましくは1.0g/cm以上であり、更に好ましくは1.1g/cm以上である。なお、樹脂シートの密度が0.9g/cm超であるとは、有効数字2桁で測定される樹脂の密度が0.91g/cm以上であることを意味する。
 本実施形態における樹脂シートの密度が1.3g/cm以下であると、樹脂シートの硬度が低くなる傾向にあり、そのような樹脂シートを備える研磨パッドを用いた研磨加工において、スクラッチの発生を抑制できる傾向にある。
 本実施形態における樹脂シートの密度は、従来公知の方法により測定することができ、例えば、樹脂シート片の質量、及び体積を通常の方法により測定し、得られた値から密度を求めればよい。また、樹脂シートの密度を制御する方法としては、特に限定されないが、例えば、後述する本実施形態の研磨パッドの製造方法により研磨パッドを得ればよい。特に、本実施形態における樹脂シートの製造工程において、発泡剤の量を少なくするか、発泡剤を用いないことにより、樹脂シートの密度を高くすることができる。
 (樹脂シートの細孔分布)
  (積算細孔容積V)
 本実施形態における樹脂シートは、細孔を有し、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した細孔分布において、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積Vが、0.020cm/g以上0.100cm/g以下である。
 なお、以下、本実施形態において、特に断りがない限り、「細孔分布」とは、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した細孔分布を意味するものとする。水銀圧入法は、印加する圧力を掃引しながら、測定試料表面の細孔に水銀を満たしていくことにより、測定試料表面における細孔分布を測定することができる方法である。したがって、発泡材料について水銀圧入法により細孔分布を測定する場合、その細孔分布は、主に連通気泡(一般に、「連続気泡」ともいう。)の細孔分布を反映するものであり、独立気泡の細孔分布の寄与は小さい。
 本実施形態の研磨パッドに関し、本発明者らは、水銀圧入法により測定した細孔分布において、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積Vが0.020cm/g以上であると、研磨パッドにおけるスラリーとの親和性が十分良好なものとなることを見出した。これは、積算細孔容積Vが0.020cm/g以上であると、0.100μm以上10.0μm以下の細孔径を有する連通気泡が、樹脂シートの全体に分布するようになり、研磨加工時において、スラリーが当該連通気泡を介して樹脂シート内部に均等に浸透するようになるからであると推察される。ただし、積算細孔容積Vが0.020cm/g以上であることにより、研磨パッドのスラリーとの親和性が十分良好なものとなる原因は、上記に限られない。
 スラリーとの親和性を一層向上させる観点から、本実施形態における樹脂シートにおいて、上記積算細孔容積Vは、好ましくは0.030cm/g以上であり、より好ましくは0.040cm/g以上であり、更に好ましくは0.050cm/g以上である。また、積算細孔容積Vが上記の範囲内にあると、樹脂シートは、高密度でありながらも、ドレス性に優れるようになる。なお、「ドレス」、又は「ドレス処理」とは、被研磨物を研磨する前に、砥粒等が固定されたドレス治具(例えば、ダイヤモンドドレッサー、又はサンドペーパー)を用いて、研磨パッドの研磨面の表面粗さを整えたり、平坦度を整えたりする処理を意味する。また、「ドレス性に優れる」とは、比較的容易な条件の処理によって、十分なドレス処理が行えることを意味する。「研磨面」とは、研磨パッドによって被研磨物を研磨する際に、研磨パッドが被研磨物に接触する面、又は接触することが想定される面を意味する。
 本実施形態における樹脂シートにおいて、上記積算細孔容積Vは、0.100cm/g以下である。積算細孔容積Vが0.100cm/g以下であることにより、樹脂シートの密度が上記の範囲内となりやすい傾向にあり、そのような樹脂シートを備える研磨パッドを用いた研磨加工において、被研磨物の研磨表面を一層平坦にすることができる。同様の観点から、積算細孔容積Vは、好ましくは0.090cm/g以下であり、より好ましくは0.080cm/g以下である。
  (積算細孔容積V’)
 本実施形態における樹脂シートの細孔分布において、0.050μm以上0.100μm未満の細孔径の範囲での積算細孔容積V’は、典型的には、0.000cm/g以上0.120cm/g以下であり、被研磨物に付与する平坦性と、スラリーとの親和性とのバランスを一層向上させる観点から、好ましくは0.000cm/g以上0.100cm/g以下であり、より好ましくは0.000cm/g以上0.080cm/g以下である。
 上記観点から、本実施形態の研磨パッドは、細孔を有する樹脂シートを備え、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した樹脂シートの細孔分布において、0.050μm以上10.0μm以下の細孔径の範囲での積算細孔容積V’’が0.020cm/g以上0.140cm/g以下であり、樹脂シートの密度が0.9g/cm以上1.3g/cm以下である、と特定することができる。なお、本実施形態における0.050μm以上10.0μm以下の細孔径の範囲での積算細孔容積V’’は、本実施形態における積算細孔容積Vと積算細孔容積V’の和として特定することができ、被研磨物に付与する平坦性と、スラリーとの親和性とのバランスを一層向上させる観点から、0.020cm/g以上0.140cm/g以下であり、好ましくは0.030cm/g以上0.130cm/g以下であり、より好ましくは0.050cm/g以上0.120cm/g以下である。
  (積算細孔容積Vに対する積算細孔容積Vの割合)
 本実施形態の研磨パッドにおいて、被研磨物に付与する平坦性と、スラリーとの親和性とのバランスを一層向上させる観点から、樹脂シートの細孔分布において、0.100μm以上360μm以下の細孔径の範囲での積算細孔容積Vに対する、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積Vの割合は、好ましくは、50%以上である。換言すると、積算細孔容積Vに対する積算細孔容積Vの比(V/V)は、好ましくは0.50以上である。このような態様によれば、樹脂シートは、相対的に小さい細孔径を有する細孔の割合が増えるため、密度を高密度に保ちつつ、樹脂シート内の連通気泡の数を一層多くすることができる。
 同様の観点から、積算細孔容積Vに対する積算細孔容積Vの割合は、より好ましくは60%以上であり、更に好ましくは65%以上であり、更により好ましくは70%以上である。積算細孔容積Vに対する積算細孔容積Vの割合の上限は特に限定されず、積算細孔容積Vに対する積算細孔容積Vの割合は、100%以下であってもよく、99%以下であってもよく、95%以下であってもよく、90%以下であってもよく、80%以下であってもよい。
 また、本実施形態における樹脂シートの細孔分布において、0.050μm以上360μm以下の細孔径の範囲での積算細孔容積V’に対する積算細孔容積Vの比(V/V’)は、上記と同様の観点から、好ましくは、50%以上であり、より好ましくは60%以上であり、更に好ましくは65%以上であり、更により好ましくは70%以上である。また、V/V’は、100%以下であってもよく、99%以下であってもよく、95%以下であってもよく、90%以下であってもよく、80%以下であってもよい。
  (最大ピークのピーク位置)
 本実施形態における樹脂シートの細孔分布において、0.100μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置は、0.100μm以上10.0μm以下の細孔径の範囲内にあることが好ましい。一般的に、水銀圧入法において、細孔分布は、測定範囲の最大の細孔径からの積算細孔容積として測定される。したがって、「0.100μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置」とは、水銀圧入法で得られた細孔分布から算出されるLog微分細孔容積分布(dV/d(logD))の最大ピークの位置(細孔径)を意味する。また、最大ピークとは、0.100μm以上360μm以下の細孔径の範囲における極大点が複数ある場合、極大値が最も大きい極大点を意味する。
 0.100μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置が0.100μm以上10.0μm以下の細孔径の範囲内にあることにより、樹脂シートは、0.100μm以上10.0μm以下の範囲で、分布が一層均一な細孔を有することとなるため、研磨パッドのスラリーとの親和性、及びドレス性が一層向上する傾向にある。研磨パッドのスラリーとの親和性、及びドレス性を一層向上させる観点から、0.100μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置は、より好ましくは0.500μm以上5.00μm以下の細孔径の範囲内にある。
 また、本実施形態における樹脂シートの細孔分布において、0.050μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置は、0.050μm以上10.0μm以下の細孔径の範囲内にあることが好ましく、より好ましくは0.050μm以上5.00μm以下の細孔径の範囲内にある。
  (ピークの数及びピーク高さ)
 本実施形態における樹脂シートの細孔分布において、0.100μm以上360μm以下の細孔径の範囲におけるピークの数は、好ましくは1以上3以下であり、より好ましくは1以上2以下であり、更に好ましくは1である。ピークの数が上記の範囲内にあることにより、分布が一層均一な細孔を有することとなるため、研磨パッドのスラリーとの親和性、及びドレス性が一層向上する傾向にある。
 同様の観点から、0.100μm以上360μm以下の細孔径の範囲にピークが2以上ある場合、最大ピークのピーク高さは、2番目に高いピークのピーク高さに比べて、好ましくは2倍以上であり、より好ましくは5倍以上であり、更に好ましくは10倍以上である。
  (積算細孔容積V
 本実施形態における樹脂シートの細孔分布において、0.100μm以上360μm以下の細孔径の範囲での積算細孔容積Vは、好ましくは0.040cm/g以上0.120cm/g以下であり、より好ましくは0.050cm/g以上0.110cm/g以下であり、更に好ましくは0.060cm/g以上0.100cm/g以下である。積算細孔容積Vが上記の範囲内にあることにより、被研磨物に付与する平坦性と、スラリーとの親和性とのバランスが一層向上する傾向にある。
 また、本実施形態における樹脂シートの細孔分布において、0.050μm以上360μm以下の細孔径の範囲での積算細孔容積V’は、本実施形態における積算細孔容積Vと積算細孔容積V’の和として特定することができ、上記と同様の観点から、好ましくは0.040cm/g以上0.200cm/g以下であり、より好ましくは0.050cm/g以上0.180cm/g以下であり、更に好ましくは0.060cm/g以上0.160cm/g以下である。
 本実施形態において、積算細孔容積V、積算細孔容積V’、積算細孔容積V’’、積算細孔容積V、積算細孔容積V’最大ピークのピーク位置、ピークの数、及びピーク高さの値は、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定される細孔分布から算出されるが、より詳細な水銀圧入法の測定条件は、実施例に記載の方法を参照することができる。また、積算細孔容積V、積算細孔容積V’、積算細孔容積V’’、積算細孔容積V、積算細孔容積V’最大ピークのピーク位置、ピークの数、及びピーク高さの値を制御する方法としては、特に限定されないが、例えば、後述する本実施形態の研磨パッドの製造方法により研磨パッドを得ればよい。
 (樹脂シートの構造)
 本実施形態における樹脂シートは、ミクロ相分離構造を有することが好ましい。本実施形態において、「ミクロ相分離構造」は、ミクロ相分離を経て形成された相分離構造を意味する。また、本実施形態において、「ミクロ相分離」とは、巨視的には均質な物体において、微視的(典型的には、マイクロメートルオーダー)な構造パターンが少なくとも1次元の周期性をもって繰り返されるように生じる相分離を意味する。ミクロ相分離は、例えば、後述する本実施形態の研磨パッドの製造方法における好ましい製造条件を採用することで生じさせることができる。ミクロ相分離構造の典型例としては、以下に限定されないが、球状構造(海島構造)、シリンダー構造、ラメラ構造、及び三次元網目構造が挙げられる。本実施形態におけるミクロ相分離構造は、好ましくは、シリンダー構造、ラメラ構造及び三次元網目構造を含み、より好ましくは三次元網目構造である。
 本実施形態において、三次元網目構造は、三次元方向に網目状のネットワークを形成した構造を意味する。ミクロ相分離由来の三次元網目構造としては、シングルジャイロイド構造及び/又はダブル(多重)ジャイロイド構造を含むものであってもよい。本実施形態において、シングルジャイロイド構造は、典型的には、2つの三叉路が捻じれて対となった細線構造が組み合わさって単位胞を形成し、それが周期的に繰り返されたネットワーク構造を意味し、ダブル(多重)ジャイロイド構造は、2以上のシングルジャイロイド構造が入れ子に組み合わされた構造を意味する。
 従来の発泡剤や不活性気体の注入等に由来する連続発泡構造を有する樹脂シートの断面は略球状の発泡断面と樹脂平坦部(つまり、樹脂の海と空隙の島との海島状)が観察される傾向にある。一方、本実施形態における樹脂シートがダブル(多重)ジャイロイド構造を有する場合、その断面では、典型的には、2つ以上の樹脂がマイクロメーターオーダーでまだら状に入り組んで相分離した構造が観察される傾向にある。また、本実施形態における樹脂シートがシングルジャイロイド構造を有する場合、その断面では、典型的には、不定形の空隙断面と樹脂骨格/樹脂骨格断面とが観察される。樹脂骨格部が空隙と比較して充分に大きい場合では、樹脂骨格部が観察できず実質的に樹脂の海状に観察される場合があるが、この場合でも本実施形態における樹脂シートの空隙は、三次元網目状に相互に連通して形成されている。
 なお、本実施形態における樹脂シートの断面を観察したときに、2つ以上の樹脂のまだら状模様と、不定形の空隙断面と樹脂骨格/樹脂骨格断面との両方の特徴が観察され、すなわち、ダブル(多重)ジャイロイド構造とシングルジャイロイド構造との境界が明確に区別できない場合もあるが、この場合はシングルジャイロイド構造及びダブル(多重)ジャイロイド構造の少なくとも一方を含むものと評価できる。
 本実施形態における樹脂シートがシングルジャイロイド構造及び/又はダブル(多重)ジャイロイド構造を有する場合も、典型的にはLog微分細孔容積分布において0.100μm以上10.0μm以下の細孔径の範囲内にシャープなピーク(極大値)が計測される。
 以下、本実施形態の研磨パッドにおいて観察される好ましい構造について詳述するが、いずれもミクロ相分離由来の構造であることを前提とするものである。
 本実施形態における樹脂シートは、組成が異なる2以上の相を含むことができる。本実施形態において、相の「組成」とは、相の主成分である樹脂、及び相に含まれる主成分以外の成分の両方を包含し、さらにこれらの配合比も考慮するものである。したがって、本実施形態における樹脂シートが有するミクロ相分離構造は、相の主成分である樹脂、及び相に含まれる主成分以外の成分の少なくともいずれかが互いに異なる2以上の相を含むことができ、典型的には、相の主成分である樹脂の構造、平均分子量、及び官能基の少なくとも1以上が異なる2以上の相を含むことができる。
 組成が異なる2つの相の例示としては、例えば、一方の相と他方の相とで、相を構成する樹脂の種類が異なる場合;一方の相と他方の相とで、含有する添加物の含有量が異なる場合;並びに、樹脂シートがABブロックポリマーからなる場合であって、一方の相がAブロックを主成分とする相であり、他方の相がBブロックを主成分とする相である場合が挙げられる。
 組成が互いに異なる2つの相を含むミクロ相分離構造の典型的な例示としては、第1の相が所定のプレポリマーと所定の硬化剤とが硬化した相であり、第2の相が、第1の相におけるプレポリマーとは異なるプレポリマーと第1の相における硬化剤とが硬化した相である場合;第1の相が所定のプレポリマーと所定の硬化剤とが硬化した相であり、第2の相が、第1の相におけるプレポリマーと第1の相における硬化剤とは異なる硬化剤が硬化した相である場合;並びに、第1の相が所定のプレポリマーと所定の硬化剤とが硬化した相であり、第2の相が、第1の相におけるプレポリマーとは異なるプレポリマーと第1の相における硬化剤とは異なる硬化剤が硬化した相である場合等が挙げられる。
 本実施形態における樹脂シートは、ミクロ相分離に起因する空隙を有することができる。かかる空隙は、ミクロ相分離構造を構成する空隙と換言してもよく、その具体例としては、以下に限定されないが、ジャイロイド構造を与える樹脂骨格により画成される空隙等が挙げられる。なお、本実施形態において、空隙は、細孔に由来するものであってもよいし、複数の細孔が連通した連通孔に由来するものであってもよい。
 本実施形態におけるミクロ相分離構造を有する樹脂シートは、例えば、後述する本実施形態の研磨パッドの製造方法により得ることができる。また、樹脂シートがミクロ相分離構造を有することは、倍率は300倍~3000倍程度で走査型電子顕微鏡(SEM)により観察することで確認することができる。
 なお、樹脂シートが、組成が異なる2以上の相を含むミクロ相分離構造を有していることないし前述した空隙を有していることは、光学顕微鏡、及び位相差顕微鏡のような光学的方法、走査型電子顕微鏡、及び透過型電子顕微鏡のような電子顕微鏡を用いた方法、光散乱、中性子線小角散乱、及びX線小角散乱のような粒子の散乱を用いた方法、X線回折法、蛍光法、並びにパルスNMR測定法等の方法を用いて観測することができる。
 (樹脂シートの平均厚さ)
 本実施形態における樹脂シートの平均厚さは、特に限定されないが、好ましくは0.5mm以上10.0mm以下であり、より好ましくは0.6mm以上8.0mm以下であり、更に好ましくは0.7mm以上5.0mm以下である。
 (樹脂シートの物性)
 本実施形態における樹脂シートの圧縮率は、特に限定されないが、好ましくは0.1%以上10.0%以下であり、より好ましくは0.5%以上5.0%以下である。なお、樹脂シートの圧縮率は、日本産業規格(JIS L 1021)に従い、ショッパー型厚さ測定器(加圧面:直径1cmの円形)を使用して求めることが出来る。具体的には、無荷重状態から初荷重を30秒間かけた後の厚さt0を測定し、次に、厚さt0の状態から最終圧力を30秒間かけた後の厚さt1を測定することにより、以下の式から算出することができる。なお、初荷重は100g/cm、最終圧力は1120g/cmである。
 圧縮率(%)=100×(t0-t1)/t0
 本実施形態における樹脂シートの圧縮弾性率は、特に限定されないが、好ましくは65%以上98%以下であり、より好ましくは70%以上95%以下である。なお、樹脂シートの圧縮弾性率は、日本産業規格(JIS L 1021)に従い、ショッパー型厚さ測定器(加圧面:直径1cmの円形)を使用して求めることが出来る。具体的には、無荷重状態から初荷重を30秒間かけた後の厚さt0を測定し、次に、厚さt0の状態から最終圧力を30秒間かけた後の厚さt1を測定し、更に、厚さt1の状態から全ての荷重を除き、5分間放置(無荷重状態)とした後、再び初荷重を30秒間かけた後の厚さt0’を測定することにより、以下の式から算出することができる。なお、初荷重は100g/cm、最終圧力は1120g/cmである。
 圧縮弾性率(%)=100×(t0’-t1)/(t0-t1)
 本実施形態における樹脂シートのショアD硬度は、特に限定されないが、好ましくは30以上90以下であり、より好ましくは40以上80以下である。なお、樹脂シートのショアD硬度は、日本産業規格(JIS K 7311)に従い、D型硬度計を使用して求めることが出来る。
 (樹脂シートの材料)
 本実施形態における樹脂シートの材料は特に限定されない。樹脂シートの材料としては、例えば、ポリウレタン樹脂が挙げられる。ポリウレタン樹脂としては、特に限定されないが、例えば、ポリエステル系ポリウレタン樹脂、ポリエーテル系ポリウレタン樹脂、及びポリカーボネート系ポリウレタン樹脂が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。
 これらの中でも、本実施形態における樹脂シートの材料は、ポリエステル系ポリウレタン樹脂、及びポリエーテル系ポリウレタン樹脂の少なくともいずれかを含むことが好ましい。特に、本実施形態の研磨パッドの製造方法において後述する、ウレタンプレポリマーと、少なくとも2種の硬化剤とを含む混合液の硬化物であるポリウレタン樹脂を含むことが好ましい。このような樹脂を用いることにより、簡便に、密度及び細孔分布を上記の範囲内とすることができる傾向にある。
 また、本実施形態における樹脂シートは、樹脂成分以外に、添加剤に由来する成分を含有していてもよい。そのような添加剤としては、例えば、本実施形態の研磨パッドの製造方法において後述する、消泡剤、触媒、発泡剤、整泡剤、砥粒、染料、顔料、中実微粒子、難燃剤、親水化剤、疎水化剤、耐光剤、酸化防止剤、及び帯電防止剤等が挙げられる。
[研磨パッドの製造方法]
 本実施形態の研磨パッドの製造方法は、少なくとも1種のプレポリマーと少なくとも2種の硬化剤との混合液を硬化させることにより、ミクロ相分離構造を有する樹脂シートを得る工程を含む。このような方法によれば、簡便に本実施形態の研磨パッドを製造することができる。以下、研磨パッドの製造方法の各工程を詳述する。
(混合工程)
 本実施形態の研磨パッドの製造方法は、少なくとも1種のプレポリマーと少なくとも2種の硬化剤との混合液を調製する混合工程を含むことができる。混合工程において、少なくとも2種の硬化剤を用いることにより、混合工程の後の成形工程において、ミクロ相分離構造を有する樹脂シートを得ることができる。特に、硬化剤を2種以上用いてミクロ相分離構造を形成することにより、プレポリマーを2種以上用いてミクロ相分離構造を形成する場合よりも、硬化反応を制御しやすく、ミクロ相分離構造の形状を容易に制御することができる傾向にある。
 混合工程は、例えば、30℃~90℃に加温した少なくとも1種のプレポリマーと、少なくとも2種の硬化剤とを温度調整可能なジャケット付き混合機に投入し、30℃~130℃で攪拌すればよい。この際、必要に応じて攪拌機付きジャケット付きのタンクに混合液を受けて熟成させてもよい。攪拌時間は混合機の歯数や回転数、クリアランス等によって適宜調整するが、例えば0.1秒~60秒である。
 (硬化剤)
 混合工程において用いられる硬化剤は特に限定されないが、例えば、アミノ基含有化合物、及び水酸基含有化合物が挙げられる。アミノ基含有化合物としては、特に限定されないが、例えば、4,4’-メチレンビス(2-クロロアニリン)(MOCA)、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、イソホロンジアミン、ジシクロヘキシルメタン-4,4’-ジアミン、4-メチル-2,6-ビス(メチルチオ)-1,3-ベンゼンジアミン、2-メチル-4,6-ビス(メチルチオ)-1,3-ベンゼンジアミン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス[3-(イソプロピルアミノ)-4-ヒドロキシフェニル]プロパン、2,2-ビス[3-(1-メチルプロピルアミノ)-4-ヒドロキシフェニル]プロパン、2,2-ビス[3-(1-メチルペンチルアミノ)-4-ヒドロキシフェニル]プロパン、2,2-ビス(3,5-ジアミノ-4-ヒドロキシフェニル)プロパン、2,6-ジアミノ-4-メチルフェノール、トリメチルエチレンビス-4-アミノベンゾネート、及びポリテトラメチレンオキサイド-ジ-p-アミノベンゾネート等が挙げられる。アミノ基含有化合物としては、4,4’-メチレンビス(2-クロロアニリン)が好ましい。
 水酸基含有化合物としては、特に限定されないが、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリメチレングリコール、テトラエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,2-ブタンジオール、3-メチル-1,2-ブタンジオール、1,2-ペンタンジオール、1,4-ペンタンジオール、2,4-ペンタンジオール、2,3-ジメチルトリメチレングリコール、テトラメチレングリコール、3-メチル-4,3-ペンタンジオール、3-メチル-4,5-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、1,6-ヘキサンジオール、1,5-ヘキサンジオール、1,4-ヘキサンジオール、2,5-ヘキサンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、トリメチロールエタン、トリメチロールメタン、ポリテトラメチレングリコール、ポリエチレングリコール、及びポリプロピレングリコール等が挙げられる。反応を制御する観点から、水酸基含有化合物としては、3官能以上のものよりも、2官能(ジオール)のものを用いることが好ましい。また、水酸基含有化合物としては、ポリテトラメチレングリコールがより好ましい。
 なお、上記の硬化剤は、2種以上を組み合わせて用いられる。硬化剤の組み合わせは特に限定されないが、後述する組み合わせであると好ましい。
 硬化剤の活性水素当量(例えば、NH当量、及びOH当量)は、特に限定されず、例えば50以上5000以下であってもよく、100以上4000以下であってもよく、130以上3000以下であってもよい。また、水酸基含有化合物である硬化剤のOH当量は、100以上5000以下であってもよく、200以上4000以下であってもよく、300以上3000以下であってもよい。アミノ基含有化合物である硬化剤のNH当量は、50以上2000以下であってもよく、75以上1000以下であってもよく、100以上300以下であってもよい。
 混合工程において、少なくとも2種の硬化剤が用いられる。硬化剤の組み合わせとしては、互いに相溶性が低い、及び/又は反応性が異なる、及び/又は活性水素当量が異なる硬化剤を用いることが好ましい。そのような態様によれば、ミクロ相分離構造を一層確実に得ることができる傾向にある。反応性が異なる硬化剤の組み合わせの例としては、例えば、活性水素基が異なる硬化剤の組み合わせが挙げられ、より具体的には、例えば、アミノ基含有化合物及び水酸基含有化合物の組み合わせが挙げられる。
 同一の活性水素基を有する硬化剤を2種以上用いる場合、すなわち、水酸基含有化合物を2種以上用いるか、アミノ基含有化合物を2種以上用いる場合は、好ましくは、かかる2種以上の硬化剤は、活性水素当量の差が500以上2000以下である2つの硬化剤を含む。より好ましくは、かかる2種以上の硬化剤は、活性水素当量が200以上500以下である硬化剤と、活性水素当量が1000以上2000以下である硬化剤とを含む。
 同一の活性水素基を有する硬化剤を2種以上用いる場合であって、かかる2種以上の硬化剤が、活性水素当量の差が500以上2000以下である2つの硬化剤を含む場合、活性水素当量の小さい硬化剤の使用量と活性水素当量の大きい硬化剤の使用量との比は、「活性水素当量の小さい硬化剤:活性水素当量の大きい硬化剤」が、活性水素基数比で、1:1~15:1であることが好ましく、1:1~10:1であることがより好ましい。
 同一の活性水素基を有する硬化剤を2種以上用いる場合であって、かかる2種以上の硬化剤が、活性水素当量が200以上500以下である硬化剤と、活性水素当量が1000以上2000以下である硬化剤とを含む場合、活性水素当量が200以上500以下である硬化剤の使用量と活性水素当量が1000以上2000以下である硬化剤の使用量との比は、「活性水素当量が200以上500以下である硬化剤:活性水素当量が1000以上2000以下である硬化剤」が、活性水素基数比で、1:1~15:1であることが好ましく、1:1~10:1であることがより好ましい。
 具体的な好ましい硬化剤の組み合わせとして、少なくとも2種の硬化剤は、好ましくは、アミノ基含有化合物と、水酸基含有化合物とを含む。少なくとも2種の硬化剤は、より好ましくは、1種のアミノ基含有化合物と、2種以上の水酸基含有化合物とを含むか、2種以上のアミノ基含有化合物と、1種の水酸基含有化合物とを含む。少なくとも2種の硬化剤は、更に好ましくは、1種のアミノ基含有化合物と、2種以上の水酸基含有化合物とを含む。
 少なくとも2種の硬化剤が、アミノ基含有化合物と水酸基含有化合物とを含む場合、アミノ基含有化合物のNH当量と、水酸基含有化合物のOH当量の差は特に限定されないが、水酸基含有化合物のOH当量の方が大きいことが好ましく、水酸基含有化合物のOH当量がアミノ基含有化合物のNH当量に比べて、100以上2000以下大きいことがより好ましい。
 少なくとも2種の硬化剤が、アミノ基含有化合物と水酸基含有化合物とを含む場合、硬化剤の使用量の全体に対するアミノ基含有化合物である硬化剤の使用量の割合は、官能基数比で、35%以上95%以下であることが好ましく、40%以上90%以下であることがより好ましい。
 好ましい硬化剤の組み合わせの一例としては、例えば、少なくとも2種の硬化剤は、NH当量が100以上300以下である第1の硬化剤(アミノ基含有化合物)と、OH当量が200以上600以下である第2の硬化剤(水酸基含有化合物)と、OH当量が1000以上2000以下である第3の硬化剤(水酸基含有化合物)とを含む。第1の硬化剤の使用量と、第2の硬化剤の使用量と、第3の硬化剤の使用量の比は、特に限定されないが、第1の硬化剤の使用量は、硬化剤の使用量全体に対して、官能基数比で、30%以上95%以下であることが好ましく、40%以上90%以下であることがより好ましい。第2の硬化剤の使用量は、硬化剤の使用量全体に対して、官能基数比で、1%以上70%以下であることが好ましく、5%以上60%以下であることがより好ましい。第3の硬化剤の使用量は、硬化剤の使用量全体に対して、官能基数比で、3%以上60%以下であることが好ましく、5%以上50%以下であることがより好ましい。
 一般に、硬化剤の使用量の合計は、プレポリマーが有する官能基の数を1としたときの、硬化剤に存在する活性水素基(アミノ基及び水酸基)の当量比であるR値により規定される。硬化剤の使用量の合計は、R値が0.7以上1.3以下になるように調整されることが好ましい。R値は、より好ましくは0.8以上1.2以下である。
 なお、上記の好ましい硬化剤の組み合わせを適当な使用量で用いることにより、一層確実に、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した細孔分布において、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積Vが、0.020cm/g以上0.100cm/g以下である樹脂シート、及び/又は、ミクロ相分離構造を有する樹脂シートを得ることができる。なお、硬化剤の組み合わせとして、互いに相溶性が低い2種以上の硬化剤を用いる、互いに反応性が異なる2種以上の硬化剤を用いる、及び/又は、活性水素当量が異なる硬化剤を用いることができる。仮に、そのような組み合わせによって明瞭なミクロ相分離構造を有する樹脂シートが得られない場合であっても、互いの相溶性が高くなるように硬化剤の種類を変更する、互いの反応性が類似するものとなるように硬化剤を変更する、及び/又は、互いの活性水素当量が近づくように硬化剤を変更する等の調整を行うことにより、ミクロ相分離構造を有する樹脂シートが得られる傾向にある。
 (プレポリマー)
 混合工程において用いられるプレポリマーとしては、特に限定されないが、例えば、ウレタンプレポリマーが挙げられる。ウレタンプレポリマーとしては、例えば、ヘキサメチレンジイソシアネートとヘキサントリオールとの付加物;2,4-トリレンジイソシアネートとプレンツカテコールとの付加物;2,4-トリレンジイソシアネートとポリ(オキシテトラメチレン)グリコールとジエチレングリコールとの付加物;トリレンジイソシアネートとヘキサントリオールとの付加物;トリレンジイソシアネートとトリメチロールプロパンとの付加物;キシリレンジイソシアネートとトリメチロールプロパンとの付加物;ヘキサメチレンジイソシアネートとトリメチロールプロパンとの付加物;及びイソシアヌル酸とヘキサメチレンジイソシアネートとの付加物が挙げられる。また、これ以外の、ポリイソシアネート化合物とポリオール化合物との反応により調製されるイソシアネート基含有化合物や、市販されている多様なウレタンプレポリマーを用いてもよい。
 イソシアネート基含有化合物の調製に用いられるポリイソシアネート化合物としては、分子内に2つ以上のイソシアネート基を有していれば特に限定されるものではない。例えば、分子内に2つのイソシアネート基を有するジイソシアネート化合物としては、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、2,6-トリレンジイソシアネート(2,6-TDI)、2,4-トリレンジイソシアネート(2,4-TDI)、ナフタレン-1,4-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネー卜(MDI)、4,4’-メチレン-ビス(シクロヘキシルイソシアネート)(水添MDI)、3,3’-ジメトキシ-4,4’-ビフェニルジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、キシリレン-1、4-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート、プロピレン-1,2-ジイソシアネート、ブチレン-1,2-ジイソシアネート、シクロヘキシレン-1,2-ジイソシアネート、シクロヘキシレン-1,4-ジイソシアネート、p-フェニレンジイソチオシアネート、キシリレン-1,4-ジイソチオシアネート、及びエチリジンジイソチオシアネート等が挙げられる。
 これらのポリイソシアネート化合物は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。ポリイソシアネート化合物としては、ジイソシアネート化合物が好ましく、2,4-TDI、及び2,6-TDI、MDIがより好ましい。
 イソシアネート基含有化合物の調製に用いられるポリオール化合物としては、例えば、エチレングリコール、ジエチレングリコール(DEG)、ブチレングリコール等のジオール化合物、トリオール化合物等;ポリプロピレングリコール(PPG)、及びポリ(オキシテトラメチレン)グリコール(PTMG)等のポリエーテルポリオール化合物;エチレングリコールとアジピン酸との反応物やブチレングリコールとアジピン酸との反応物等のポリエステルポリオール化合物;ポリカーボネートポリオール化合物、並びにポリカプロラクトンポリオール化合物等が挙げられる。また、エチレンオキサイドを付加した3官能性プロピレングリコールを用いることもできる。ポリオール化合物は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ウレタンプレポリマーのNCO当量は、好ましくは150以上700以下であり、より好ましくは200以上600以下であり、更に好ましくは200以上500以下である。「NCO当量」とは、“(ポリイソシアネート化合物の質量部+ポリオール化合物の質量部)/[(ポリイソシアネート化合物1分子当たりの官能基数×ポリイソシアネート化合物の質量部/ポリイソシアネート化合物の分子量)-(ポリオール化合物1分子当たりの官能基数×ポリオール化合物の質量部/ポリオール化合物の分子量)]”で求められる、NCO基1個当たりのウレタンプレポリマーの分子量を示す数値である。
 混合工程において、少なくとも1種のプレポリマーが用いられる。プレポリマーは上記のものを2種以上組み合わせて用いてもよいが、好ましくは1種を単独で用いられる。そのような態様によれば、硬化反応を制御しやすく、ミクロ相分離構造の形状を容易に制御することができる傾向にある。プレポリマーとして、トリレンジイソシアネートを主成分とするウレタンプレポリマーを単独で用いることが好ましい。
 プレポリマーの使用量は特に限定されないが、混合液全体に対して、好ましくは30質量部以上80質量部以下であり、より好ましくは40質量部以上75質量部以下である。
 (添加剤)
 混合工程において、プレポリマー及び硬化剤以外の成分を添加剤として混合してもよい。添加剤としては、ポリプロピレングリコールのような溶媒(希釈剤);シリコーン系消泡剤のような消泡剤;触媒;水や中空微粒子のような発泡剤;シリコーン系整泡剤のような整泡剤;並びに、酸化セリウムのようなフィラー(砥粒);染料;顔料;中実微粒子;難燃剤;親水化剤;疎水化剤;耐光剤;酸化防止剤;帯電防止剤等が挙げられる。得られる樹脂シートの密度を0.9g/cm以上1.3g/cm以下とする観点から、発泡剤は添加しないか、添加量を少量とすることが好ましく、消泡剤を使用することがより好ましい。
 混合工程において、添加する触媒の種類及び使用量を調整することにより、硬化反応の反応速度を制御し、形成されるミクロ相分離構造を制御することができる。
(成形工程)
 成形工程は、上記のようにして得られた混合液を硬化させることによりミクロ相分離構造を有する樹脂シートを得る工程である。成形工程は、例えば、混合工程により得られた混合液を30℃~150℃に予熱した型枠内に流し込み、30℃~150℃程度で10分~5時間程度加熱すればよい。これにより、プレポリマーと硬化剤とが反応して樹脂を形成することにより、上記混合液が硬化する。また、更に、オーブンにより、50℃~180℃程度で10分~12時間程度加熱することで、2次硬化してもよい。本実施形態の研磨パッドの製造方法では、混合液が上記のものであるため、ミクロ相分離構造を有する樹脂ブロックを得ることができる。
 なお、成形工程における混合液を硬化させる際の反応温度は、用いるプレポリマー、硬化剤及び添加剤の種類や配合比等によって適宜調整することができ、反応温度を調整することにより、硬化反応の反応速度を制御し、形成されるミクロ相分離構造を制御することができる傾向にある。
 また、成形工程では、上記のようにして得られた樹脂ブロックから、適当な厚さの樹脂シートを切り出すことにより、ミクロ相分離構造を有する樹脂シートを得る。得られた樹脂シートは、30℃~150℃で1時間~24時間程度エイジングしてもよい。
 このようにして得られた樹脂シートは、例えば、その後、片面に両面テープが貼り付けられ、所定形状、好ましくは円板状にカットされて、本実施形態の研磨パッドとして完成する。両面テープとしては、特に限定されず、従来公知の両面テープの中から任意に選択して用いることができる。
 また、本実施形態の研磨パッドは、樹脂シートのみからなる単層構造であってもよく、樹脂シートの片面に他の層(クッション層、又は基板層)を貼り合わせた複層からなっていてもよい。複層構造を有する場合には、両面テープや接着剤等を用いて、複数の層同士を必要により加圧しながら接着、固定すればよい。用いられる両面テープ、及び接着剤としては、特に限定されず、従来公知の両面テープ及び接着剤の中から任意に選択して用いることができる。
 更に、本実施形態の研磨パッドは、必要に応じて、必要に応じて、表面に溝加工、エンボス加工、及び/又は、穴加工(パンチング加工)を施してもよい。溝加工及びエンボス加工の形状に特に限定はなく、例えば、格子型、同心円型、放射型などの形状が挙げられる。
 また、研磨パッドは、樹脂シートの表面及び/又は裏面にドレス(研削処理)を施してもよい。本実施形態の研磨パッドの製造方法における樹脂シートは、高密度であるものの、連通した細孔を有するため、ドレス性に優れ、容易な条件でドレス処理をすることができる。ドレス処理としては、特に限定されず、ダイヤモンドドレッサーによる研削等の公知の方法によりドレスすることができる。
[研磨加工物の製造方法]
 本実施形態の研磨加工物の製造方法は、研磨スラリーの存在下、上記の研磨パッドを用いて、被研磨物を研磨し、研磨加工物を得る研磨工程を有する。研磨工程は、一次研磨(粗研磨)であってもよく、仕上げ研磨であってもよく、それら両方の研磨を兼ねるものであってもよい。
 本実施形態の研磨加工物の製造方法においては、研磨スラリーの供給と共に、保持定盤で被研磨物を研磨パッド側に押圧しながら、保持定盤と研磨用定盤とを相対的に回転させることで、被研磨物の加工面が研磨パッドで化学機械研磨により研磨加工される。保持定盤と研磨用定盤は、互いに異なる回転速度で同方向に回転してもよく、異方向に回転してもよい。また、被研磨物は、研磨加工中に、枠部の内側で移動(自転)しながら研磨加工されてもよい。
 研磨スラリーは、被研磨物や研磨条件等に応じて、水、過酸化水素に代表される酸化剤、酸成分、アルカリ成分等の化学成分、添加剤、並びに砥粒(研磨粒子;例えば、SiC、SiO、Al、及びCeO)等を含んでいてもよい。
 また、被研磨物としては、特に限定されないが、例えば、レンズ、平行平面板、及び反射ミラーのような光学材料、半導体ウェハ、半導体デバイス、ハードディスク用基板、金属、並びにセラミック等の材料が挙げられる。
<第3実施形態>
 ここでは、本実施形態に係る第3の態様(本明細書中、「第3実施形態」ともいう。)について、詳細に説明する。なお、<第3実施形態>で使用する用語や符号は、後述する<第1実施形態>、<第2実施形態>及び<第4実施形態>の内容から独立して使用しているものとする。
(ラッピングパッド)
 本実施形態(以降、特に断りがない限り、<第3実施形態>における「本実施形態」は第3実施形態を意味する。)のラッピングパッドは、細孔を有する樹脂シートを備える、ラッピングパッドであって、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した前記樹脂シートの細孔分布において、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積Vが0.21cm/g以上1.00cm/g以下であり、前記樹脂シートの密度が0.3g/cm以上0.9g/cm以下である。本実施形態のラッピングパッドは、上記のように構成されているため、ドレス性に優れ、表面が平滑化されにくい。
 本実施形態のラッピングパッドは、本実施形態における樹脂シートを備えるものであれば特に限定されず、ラッピングパッドは、樹脂シート以外の構成を有するものであってもよい。ラッピングパッドにおける、樹脂シート以外の構成としては、従来公知の、ラッピング層、クッション層、及び接着層等が挙げられる。
 本実施形態のラッピングパッドは、好ましくは、上記の樹脂シートをラッピング層として有するものである。「樹脂シートをラッピング層として有する」とは、本実施形態のラッピングパッドの少なくとも1つの表面が本実施形態における樹脂シートの表面に対応しており、当該樹脂シートの表面が、本実施形態のラップ加工の際、被加工物に押し当てられるラッピング面となることを意味する。したがって、本実施形態のラッピングパッドは、好ましくは、少なくとも片面が本実施形態における樹脂シートにより構成されている。また、本実施形態のラッピングパッドは、本実施形態における樹脂シートのみからなっていてもよい。
 本実施形態のラッピングパッドは、必要に応じて、ラッピング面に溝加工、エンボス加工、及び/又は、穴加工(パンチング加工)が施されていてもよく、光透過部を備えてもよい。溝加工及びエンボス加工の形状に特に限定はなく、例えば、格子型、同心円型、及び放射型等の形状が挙げられる。
(樹脂シート)
 (密度)
 本実施形態における樹脂シートは、密度が0.3g/cm以上0.9g/cm以下である。本実施形態における樹脂シートの密度が0.3g/cm以上であると、ラッピングパッドは圧力に対して変形しにくいものとなるため、ラップ加工において、ラッピングパッドから被加工物に対して与えられる力がラッピング面方向において均一になる。その結果、そのような樹脂シートを備えるラッピングパッドを用いたラップ加工において、被加工物の表面を一層平坦にすることができる。なお、本実施形態において「被加工物の表面が平坦である」とは、被加工物のラップ加工された表面が全体としてより平坦であることを意味する。これは、グローバル平坦性が良好であると換言してもよい。同様の観点から、本実施形態における樹脂シートの密度は、好ましくは0.4g/cm以上、より好ましくは0.45g/cm以上である。
 一方、本実施形態における樹脂シートの密度が0.9g/cm以下であると、砥粒が被加工物に強く接してスクラッチを与えることを抑制できる。また、樹脂シートの硬度が低くなる傾向にあり、このような観点からも、スクラッチの発生を抑制できる傾向にある。
 本実施形態における樹脂シートの密度は、従来公知の方法により測定することができ、例えば、樹脂シート片の質量、及び体積を通常の方法により測定し、得られた値から密度を求めればよい。また、樹脂シートの密度を制御する方法としては、特に限定されないが、例えば、後述する本実施形態のラッピングパッドの製造方法によりラッピングパッドを得ればよい。特に、本実施形態における樹脂シートの製造工程において、発泡剤の量を少なくする場合、樹脂シートの密度が高くなる傾向にある。
 (樹脂シートの細孔分布)
  (積算細孔容積V)
 本実施形態における樹脂シートは、細孔を有し、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した前記樹脂シートの細孔分布において、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積Vが0.21cm/g以上1.00cm/g以下である。
 なお、以下、本実施形態において、特に断りがない限り、「細孔分布」とは、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した細孔分布を意味するものとする。水銀圧入法は、印加する圧力を掃引しながら、測定試料表面の細孔に水銀を満たしていくことにより、測定試料表面における細孔分布を測定することができる方法である。したがって、発泡材料について水銀圧入法により細孔分布を測定する場合、その細孔分布は、主に連通気泡(一般に、「連続気泡」ともいう。)の細孔分布を反映するものであり、独立気泡の細孔分布の寄与は小さい。
 本実施形態のラッピングパッドに関し、本発明者らは、水銀圧入法により測定した細孔分布において、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積Vが0.21cm/g以上であると、ラッピングパッドにおけるスラリーとの親和性が十分良好なものとなることを見出した。これは、積算細孔容積Vが0.21cm/g以上であると、0.010μm以上1.0μm以下の細孔径を有する連通気泡が、樹脂シートの全体に分布するようになり、ラップ加工時において、スラリーが当該連通気泡を介して樹脂シート内部に均等に浸透するようになるからであると推察される。ただし、積算細孔容積Vが0.21cm/g以上であることにより、ラッピングパッドのスラリーとの親和性が十分良好なものとなる原因は、上記に限られない。
 スラリーとの親和性を一層向上させる観点から、本実施形態における樹脂シートにおいて、上記積算細孔容積Vは、好ましくは0.30cm/g以上であり、より好ましくは0.40cm/g以上である。
 本実施形態における樹脂シートにおいて、上記積算細孔容積Vは、1.00cm/g以下である。積算細孔容積Vが1.00cm/g以下であることにより、樹脂シートの密度が上記の範囲内となりやすい傾向にあり、そのような樹脂シートを備えるラッピングパッドを用いたラップ加工において、被加工物の表面を一層平坦にすることができる。同様の観点から、積算細孔容積Vは、好ましくは0.90cm/g以下である。
 積算細孔容積Vが0.21cm/g以上1.00cm/g以下の範囲内にあると、樹脂シートは、ドレス性に優れるようになる。なお、「ドレス」、又は「ドレス処理」とは、被加工物をラップ加工する前に、砥粒等が固定されたドレス治具(例えば、ダイヤモンドドレッサー、又はサンドペーパー)を用いて、ラッピングパッドのラッピング面の表面粗さを整えたり、平坦度を整えたりする処理を意味する。また、「ドレス性に優れる」とは、比較的容易な条件の処理によって、十分なドレス処理が行えることを意味する。「ラッピング面」とは、ラッピングパッドによって被加工物をラップ加工する際に、ラッピングパッドが被加工物に接触する面、又は接触することが想定される面を意味する。
  (積算細孔容積Vに対する積算細孔容積Vの割合)
 本実施形態のラッピングパッドにおいて、被加工物に付与する平坦性と、スラリーとの親和性とのバランスを一層向上させる観点から、樹脂シートの細孔分布において、0.010μm以上360μm以下の細孔径の範囲での積算細孔容積Vに対する、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積Vの割合は、好ましくは、50%以上である。換言すると、積算細孔容積Vに対する積算細孔容積Vの比(V/V)は、好ましくは0.50以上である。このような態様によれば、樹脂シートは、相対的に小さい細孔径を有する細孔の割合が増えるため、密度を従来品と同等に保ちつつ、樹脂シート内の連通気泡の数を一層多くすることができる。
 同様の観点から、積算細孔容積Vに対する積算細孔容積Vの割合は、より好ましくは60%以上であり、更に好ましくは65%以上であり、更により好ましくは70%以上である。積算細孔容積Vに対する積算細孔容積Vの割合の上限は特に限定されず、積算細孔容積Vに対する積算細孔容積Vの割合は、100%以下であってもよく、99%以下であってもよく、95%以下であってもよく、90%以下であってもよく、85%以下であってもよく、80%以下であってもよい。
  (最大ピークのピーク位置)
 本実施形態における樹脂シートの細孔分布において、0.010μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置は、0.010μm以上1.0μm以下の細孔径の範囲内にあることが好ましい。一般的に、水銀圧入法において、細孔分布は、測定範囲の最大の細孔径からの積算細孔容積として測定される。したがって、「0.010μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置」とは、水銀圧入法で得られた細孔分布から算出されるLog微分細孔容積分布(dV/d(logD))の最大ピークの位置(細孔径)を意味する。また、最大ピークとは、0.010μm以上360μm以下の細孔径の範囲における極大点が複数ある場合、極大値が最も大きい極大点を意味する。
 0.010μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置が0.010μm以上1.0μm以下の細孔径の範囲内にあることにより、樹脂シートは、0.010μm以上1.0μm以下の範囲で、分布が一層均一な細孔を有することとなるため、ラッピングパッドのスラリーとの親和性、及びドレス性が一層向上する傾向にある。ラッピングパッドのスラリーとの親和性、及びドレス性を一層向上させる観点から、より好ましくは0.010μm以上0.5μm以下、さらに好ましくは0.030μm以上0.5μm以下、よりさらに好ましくは0.050μm以上0.5μm以下の細孔径の範囲内にある。
 同様の観点から、1.0μm以上360μm以下の範囲内における最大ピークの位置は、より好ましくは50μm以上200μm以下の細孔径の範囲内にある。
  (ピークの数及びピーク高さ)
 本実施形態における樹脂シートのLog微分細孔容積分布において、0.010μm以上360μm以下の細孔径の範囲におけるピークの数は、好ましくは2以上4以下であり、より好ましくは2であり、更に好ましくは0.010μm以上1.0μm以下に1かつ1.0μm以上360μm以下に1である。ピークの数が上記の範囲内にあることにより、分布が一層均一な細孔を有することとなるため、ラッピングパッドのスラリーとの親和性、及びドレス性が一層向上する傾向にある。
 同様の観点から、Log微分細孔容積分布において、0.010μm以上1.0μm以下の細孔径の範囲における最大ピーク高さは、1.0μm以上360μm以下の細孔径の範囲における最大ピーク高さに比べて、好ましくは2倍以上であり、より好ましくは2.5倍以上であり、更に好ましくは3倍以上である。
  (積算細孔容積V
 本実施形態における樹脂シートの細孔分布において、0.010μm以上360μm以下の細孔径の範囲での積算細孔容積Vは、好ましくは0.1cm/g以上2.0cm/g以下であり、より好ましくは0.4cm/g以上2.0cm/g以下であり、更に好ましくは0.5cm/g以上1.5cm/g以下であり、より更に好ましくは0.6cm/g以上1.2cm/g以下である。積算細孔容積Vが上記の範囲内にあることにより、被加工物に付与する平坦性と、スラリーとの親和性とのバランスが一層向上する傾向にある。
 本実施形態において、積算細孔容積V、及び積算細孔容積Vは、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定される細孔分布から算出されるが、より詳細な水銀圧入法の測定条件は、実施例に記載の方法を参照することができる。また、積算細孔容積V、積算細孔容積V、積算細孔容積Vに対する積算細孔容積Vの割合、最大ピークのピーク位置、ピークの数及びピーク高さの値を制御する方法としては、特に限定されないが、例えば、後述する本実施形態のラッピングパッドの製造方法によりラッピングパッドを得ればよい。
 (樹脂シートの構造)
 本実施形態における樹脂シートは、ミクロ相分離構造を有することが好ましい。本実施形態において、「ミクロ相分離構造」は、ミクロ相分離を経て形成された相分離構造を意味する。また、本実施形態において、「ミクロ相分離」とは、巨視的には均質な物体において、微視的(典型的には、マイクロメートルオーダー)な構造パターンが少なくとも1次元の周期性をもって繰り返されるように生じる相分離を意味する。ミクロ相分離は、例えば、後述する本実施形態のラッピングパッドの製造方法における好ましい製造条件を採用することで生じさせることができる。ミクロ相分離構造の典型例としては、以下に限定されないが、球状構造(海島構造)、シリンダー構造、ラメラ構造、及び三次元網目構造が挙げられる。本実施形態におけるミクロ相分離構造は、好ましくは、シリンダー構造、ラメラ構造及び三次元網目構造を含み、より好ましくは三次元網目構造である。
 本実施形態において、三次元網目構造は、三次元方向に網目状のネットワークを形成した構造を意味する。ミクロ相分離由来の三次元網目構造としては、シングルジャイロイド構造及び/又はダブル(多重)ジャイロイド構造を含むものであってもよい。本実施形態において、シングルジャイロイド構造は、典型的には、2つの三叉路が捻じれて対となった細線構造が組み合わさって単位胞を形成し、それが周期的に繰り返されたネットワーク構造を意味し、ダブル(多重)ジャイロイド構造は、2以上のシングルジャイロイド構造が入れ子に組み合わされた構造を意味する。
 従来の発泡剤や不活性気体の注入等に由来する連続発泡構造を有する樹脂シートの断面は略球状の発泡断面と樹脂平坦部(つまり、樹脂の海と空隙の島との海島状)が観察される傾向にある。一方、本実施形態における樹脂シートがダブル(多重)ジャイロイド構造を有する場合、その断面では、典型的には、2つ以上の樹脂がマイクロメーターオーダーでまだら状に入り組んで相分離した構造が観察される傾向にある。また、本実施形態における樹脂シートがシングルジャイロイド構造を有する場合、その断面では、典型的には、不定形の空隙断面と樹脂骨格/樹脂骨格断面とが観察される。樹脂骨格部が空隙と比較して充分に大きい場合では、樹脂骨格部が観察できず実質的に樹脂の海状に観察される場合があるが、この場合でも本実施形態における樹脂シートの空隙は、三次元網目状に相互に連通して形成されている。
 なお、本実施形態における樹脂シートの断面を観察したときに、2つ以上の樹脂のまだら状模様と、不定形の空隙断面と樹脂骨格/樹脂骨格断面との両方の特徴が観察され、すなわち、ダブル(多重)ジャイロイド構造とシングルジャイロイド構造との境界が明確に区別できない場合もあるが、この場合はシングルジャイロイド構造及びダブル(多重)ジャイロイド構造の少なくとも一方を含むものと評価できる。
 本実施形態における樹脂シートがシングルジャイロイド構造及び/又はダブル(多重)ジャイロイド構造を有する場合も、典型的にはLog微分細孔容積分布において0.010μm以上10.0μm以下の細孔径の範囲内にシャープなピーク(極大値)が計測される。
 本実施形態における樹脂シートは、組成が異なる2以上の相を含むことができる。本実施形態において、相の「組成」とは、相の主成分である樹脂、及び相に含まれる主成分以外の成分の両方を包含し、さらにこれらの配合比も考慮するものである。したがって、本実施形態における樹脂シートが有するミクロ相分離構造は、相の主成分である樹脂、及び相に含まれる主成分以外の成分の少なくともいずれかが互いに異なる2以上の相を含むことができ、典型的には、相の主成分である樹脂の構造、平均分子量、及び官能基の少なくとも1以上が異なる2以上の相を含むことができる。
 組成が異なる2つの相の例示としては、例えば、一方の相と他方の相とで、相を構成する樹脂の種類が異なる場合;一方の相と他方の相とで、含有する添加物の含有量が異なる場合;並びに、樹脂シートがABブロックポリマーからなる場合であって、一方の相がAブロックを主成分とする相であり、他方の相がBブロックを主成分とする相である場合が挙げられる。
 組成が互いに異なる2つの相を含むミクロ相分離構造の典型的な例示としては、第1の相が所定のプレポリマーと所定の硬化剤とが硬化した相であり、第2の相が、第1の相におけるプレポリマーとは異なるプレポリマーと第1の相における硬化剤とが硬化した相である場合;第1の相が所定のプレポリマーと所定の硬化剤とが硬化した相であり、第2の相が、第1の相におけるプレポリマーと第1の相における硬化剤とは異なる硬化剤が硬化した相である場合;並びに、第1の相が所定のプレポリマーと所定の硬化剤とが硬化した相であり、第2の相が、第1の相におけるプレポリマーとは異なるプレポリマーと第1の相における硬化剤とは異なる硬化剤が硬化した相である場合等が挙げられる。
 本実施形態における樹脂シートは、ミクロ相分離に起因する空隙を有することができる。かかる空隙は、ミクロ相分離構造を構成する空隙と換言してもよく、その具体例としては、以下に限定されないが、ジャイロイド構造を与える樹脂骨格により画成される空隙等が挙げられる。なお、本実施形態において、空隙は、細孔に由来するものであってもよいし、複数の細孔が連通した連通孔に由来するものであってもよい。
 本実施形態におけるミクロ相分離構造を有する樹脂シートは、例えば、後述する本実施形態のラッピングパッドの製造方法により得ることができる。また、樹脂シートがミクロ相分離構造を有することは、倍率は300倍~3000倍程度で走査型電子顕微鏡(SEM)により観察することで確認することができる。
 なお、樹脂シートが、組成が異なる2以上の相を含むミクロ相分離構造を有していることないし前述した空隙を有していることは、光学顕微鏡、及び位相差顕微鏡のような光学的方法、走査型電子顕微鏡、及び透過型電子顕微鏡のような電子顕微鏡を用いた方法、光散乱、中性子線小角散乱、及びX線小角散乱のような粒子の散乱を用いた方法、X線回折法、蛍光法、並びにパルスNMR測定法等の方法を用いて観測することができる。
 (樹脂シートの平均開孔径)
 本実施形態における樹脂シートにおいて、10μm以上の開孔を対象として測定される平均開孔径は、特に限定されないが、好ましくは50μm以上300μm以下であり、より好ましくは50μm以上200μm以下である。
 上記平均開孔径は、例えば、後述する実施例に記載の方法により測定することができる。また、上記平均開孔径は、例えば、発泡剤や整泡剤の種類及び/又は添加量により上記した範囲に調整することができる。
 (樹脂シートの平均厚さ)
 本実施形態における樹脂シートの平均厚さは、特に限定されないが、好ましくは0.5mm以上10.0mm以下であり、より好ましくは0.6mm以上8.0mm以下であり、更に好ましくは0.7mm以上5.0mm以下である。
 (樹脂シートの物性)
 本実施形態における樹脂シートの圧縮率は、特に限定されないが、好ましくは0.1%以上5.0%以下であり、より好ましくは0.3%以上3.0%以下である。なお、樹脂シートの圧縮率は、日本産業規格(JIS L 1021)に従い、ショッパー型厚さ測定器(加圧面:直径1cmの円形)を使用して求めることが出来る。具体的には、無荷重状態から初荷重を30秒間かけた後の厚さt0を測定し、次に、厚さt0の状態から最終圧力を30秒間かけた後の厚さt1を測定することにより、以下の式から算出することができる。なお、初荷重は100g/cm、最終圧力は1120g/cmである。
 圧縮率(%)=100×(t0-t1)/t0
 本実施形態における樹脂シートの圧縮弾性率は、特に限定されないが、好ましくは70%以上100%以下であり、より好ましくは75%以上95%以下である。なお、樹脂シートの圧縮弾性率は、日本産業規格(JIS L 1021)に従い、ショッパー型厚さ測定器(加圧面:直径1cmの円形)を使用して求めることができる。具体的には、無荷重状態から初荷重を30秒間かけた後の厚さt0を測定し、次に、厚さt0の状態から最終圧力を30秒間かけた後の厚さt1を測定し、更に、厚さt1の状態から全ての荷重を除き、5分間放置(無荷重状態)とした後、再び初荷重を30秒間かけた後の厚さt0’を測定することにより、以下の式から算出することができる。なお、初荷重は100g/cm、最終圧力は1120g/cmである。
 圧縮率(%)=100×(t0’-t1)/(t0-t1)
 本実施形態における樹脂シートのショアD硬度は、特に限定されないが、好ましくは10以上70以下であり、より好ましくは20以上60以下である。なお、樹脂シートのショアD硬度は、日本産業規格(JIS K 7311)に従い、D型硬度計を使用して求めることができる。
 (樹脂シートの材料)
 本実施形態における樹脂シートの材料は特に限定されない。樹脂シートの材料としては、例えば、ポリウレタン樹脂が挙げられる。ポリウレタン樹脂としては、特に限定されないが、例えば、ポリエステル系ポリウレタン樹脂、ポリエーテル系ポリウレタン樹脂、及びポリカーボネート系ポリウレタン樹脂が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。
 これらの中でも、本実施形態における樹脂シートの材料は、ポリエステル系ポリウレタン樹脂、及びポリエーテル系ポリウレタン樹脂の少なくともいずれかを含むことが好ましい。特に、本実施形態のラッピングパッドの製造方法において後述する、ウレタンプレポリマーと、少なくとも2種の硬化剤とを含む混合液の硬化物であるポリウレタン樹脂を含むことが好ましい。このような樹脂を用いることにより、簡便に、密度及び細孔分布を上記の範囲内とすることができる傾向にある。
 また、本実施形態における樹脂シートは、樹脂成分以外に、添加剤に由来する成分を含有していてもよい。そのような添加剤としては、例えば、本実施形態のラッピングパッドの製造方法において後述する、消泡剤、触媒、発泡剤、整泡剤、砥粒、染料、顔料、中実微粒子、難燃剤、親水化剤、疎水化剤、耐光剤、酸化防止剤、及び帯電防止剤等が挙げられる。
[ラッピングパッドの製造方法]
 本実施形態のラッピングパッドの製造方法は、少なくとも1種のプレポリマーと少なくとも2種の硬化剤との混合液を硬化させることにより、ミクロ相分離構造を有する樹脂シートを得る工程を含む。このような方法によれば、簡便に本実施形態のラッピングパッドを製造することができる。以下、ラッピングパッドの製造方法の各工程を詳述する。
(混合工程)
 本実施形態のラッピングパッドの製造方法は、少なくとも1種のプレポリマーと少なくとも2種の硬化剤との混合液を調製する混合工程を含むことができる。混合工程において、少なくとも2種の硬化剤を用いることにより、混合工程の後の成形工程において、ミクロ相分離構造を有する樹脂シートを得ることができる。特に、硬化剤を2種以上用いてミクロ相分離構造を形成することにより、プレポリマーを2種以上用いてミクロ相分離構造を形成する場合よりも、硬化反応を制御しやすく、ミクロ相分離構造の形状を容易に制御することができる傾向にある。
 混合工程は、例えば、30℃~90℃に加温した少なくとも1種のプレポリマーと、少なくとも2種の硬化剤とを温度調整可能なジャケット付き混合機に投入し、30℃~130℃で攪拌すればよい。この際、必要に応じて攪拌機付きジャケット付きのタンクに混合液を受けて熟成させてもよい。攪拌時間は混合機の歯数や回転数、クリアランス等によって適宜調整するが、例えば0.1秒~60秒である。
 (硬化剤)
 混合工程において用いられる硬化剤は特に限定されないが、例えば、アミノ基含有化合物、及び水酸基含有化合物が挙げられる。アミノ基含有化合物としては、特に限定されないが、例えば、4,4’-メチレンビス(2-クロロアニリン)(MOCA)、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、イソホロンジアミン、ジシクロヘキシルメタン-4,4’-ジアミン、4-メチル-2,6-ビス(メチルチオ)-1,3-ベンゼンジアミン、2-メチル-4,6-ビス(メチルチオ)-1,3-ベンゼンジアミン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス[3-(イソプロピルアミノ)-4-ヒドロキシフェニル]プロパン、2,2-ビス[3-(1-メチルプロピルアミノ)-4-ヒドロキシフェニル]プロパン、2,2-ビス[3-(1-メチルペンチルアミノ)-4-ヒドロキシフェニル]プロパン、2,2-ビス(3,5-ジアミノ-4-ヒドロキシフェニル)プロパン、2,6-ジアミノ-4-メチルフェノール、トリメチルエチレンビス-4-アミノベンゾネート、及びポリテトラメチレンオキサイド-ジ-p-アミノベンゾネート等が挙げられる。アミノ基含有化合物としては、4,4’-メチレンビス(2-クロロアニリン)が好ましい。
 水酸基含有化合物としては、特に限定されないが、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリメチレングリコール、テトラエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,2-ブタンジオール、3-メチル-1,2-ブタンジオール、1,2-ペンタンジオール、1,4-ペンタンジオール、2,4-ペンタンジオール、2,3-ジメチルトリメチレングリコール、テトラメチレングリコール、3-メチル-4,3-ペンタンジオール、3-メチル-4,5-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、1,6-ヘキサンジオール、1,5-ヘキサンジオール、1,4-ヘキサンジオール、2,5-ヘキサンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、トリメチロールエタン、トリメチロールメタン、ポリテトラメチレングリコール、ポリエチレングリコール、及びポリプロピレングリコール等が挙げられる。反応を制御する観点から、水酸基含有化合物としては、3官能以上のものよりも、2官能(ジオール)のものを用いることが好ましい。また、水酸基含有化合物としては、ポリテトラメチレングリコールがより好ましい。
 なお、上記の硬化剤は、2種以上を組み合わせて用いられる。硬化剤の組み合わせは特に限定されないが、後述する組み合わせであると好ましい。
 硬化剤の活性水素当量(例えば、NH当量、及びOH当量)は、特に限定されず、例えば50以上5000以下であってもよく、100以上4000以下であってもよく、130以上3000以下であってもよい。また、水酸基含有化合物である硬化剤のOH当量は、100以上5000以下であってもよく、200以上4000以下であってもよく、300以上3000以下であってもよい。アミノ基含有化合物である硬化剤のNH当量は、50以上2000以下であってもよく、75以上1000以下であってもよく、100以上300以下であってもよい。
 混合工程において、少なくとも2種の硬化剤が用いられる。硬化剤の組み合わせとしては、互いに相溶性が低い、及び/又は反応性が異なる、及び/又は活性水素当量が異なる硬化剤を用いることが好ましい。そのような態様によれば、ミクロ相分離構造を一層確実に得ることができる傾向にある。反応性が異なる硬化剤の組み合わせの例としては、例えば、活性水素基が異なる硬化剤の組み合わせが挙げられ、より具体的には、例えば、アミノ基含有化合物及び水酸基含有化合物の組み合わせが挙げられる。
 同一の活性水素基を有する硬化剤を2種以上用いる場合、すなわち、水酸基含有化合物を2種以上用いるか、アミノ基含有化合物を2種以上用いる場合は、好ましくは、かかる2種以上の硬化剤は、活性水素当量の差が500以上2000以下である2つの硬化剤を含む。より好ましくは、かかる2種以上の硬化剤は、活性水素当量が200以上500以下である硬化剤と、活性水素当量が1000以上2000以下である硬化剤とを含む。
 同一の活性水素基を有する硬化剤を2種以上用いる場合であって、かかる2種以上の硬化剤が、活性水素当量の差が500以上2000以下である2つの硬化剤を含む場合、活性水素当量の小さい硬化剤の使用量と活性水素当量の大きい硬化剤の使用量との比は、「活性水素当量の小さい硬化剤:活性水素当量の大きい硬化剤」が、活性水素基数比で、1:1~1:15であることが好ましく、1:1~1:10であることがより好ましい。
 同一の活性水素基を有する硬化剤を2種以上用いる場合であって、かかる2種以上の硬化剤が、活性水素当量が200以上500以下である硬化剤と、活性水素当量が1000以上2000以下である硬化剤とを含む場合、活性水素当量が200以上500以下である硬化剤の使用量と活性水素当量が1000以上2000以下である硬化剤の使用量との比は、「活性水素当量が200以上500以下である硬化剤:活性水素当量が1000以上2000以下である硬化剤」が、活性水素基数比で、1:1~1:15であることが好ましく、1:1~1:10であることがより好ましい。
 具体的な好ましい硬化剤の組み合わせとして、少なくとも2種の硬化剤は、好ましくは、アミノ基含有化合物と、水酸基含有化合物とを含む。少なくとも2種の硬化剤は、より好ましくは、1種のアミノ基含有化合物と、2種以上の水酸基含有化合物とを含むか、2種以上のアミノ基含有化合物と、1種の水酸基含有化合物とを含む。少なくとも2種の硬化剤は、更に好ましくは、1種のアミノ基含有化合物と、2種以上の水酸基含有化合物とを含む。
 少なくとも2種の硬化剤が、アミノ基含有化合物と水酸基含有化合物とを含む場合、アミノ基含有化合物のNH当量と、水酸基含有化合物のOH当量の差は特に限定されないが、水酸基含有化合物のOH当量の方が大きいことが好ましく、水酸基含有化合物のOH当量がアミノ基含有化合物のNH当量に比べて、100以上2000以下大きいことがより好ましい。
 少なくとも2種の硬化剤が、アミノ基含有化合物と水酸基含有化合物とを含む場合、硬化剤の使用量の全体に対するアミノ基含有化合物である硬化剤の使用量の割合は、官能基数比で、35%以上95%以下であることが好ましく、40%以上90%以下であることがより好ましい。
 好ましい硬化剤の組み合わせの一例としては、例えば、少なくとも2種の硬化剤は、NH当量が100以上300以下である第1の硬化剤(アミノ基含有化合物)と、OH当量が1000以上2000以下である第2の硬化剤(水酸基含有化合物)とを含む。第1の硬化剤の使用量と、第2の硬化剤の使用量の比は、特に限定されないが、第1の硬化剤の使用量は、硬化剤の使用量全体に対して、官能基数比で、35%以上98%以下であることが好ましく、35%以上95%以下であることがより好ましく、40%以上90%以下であることがさらに好ましい。第2の硬化剤の使用量は、硬化剤の使用量全体に対して、官能基数比で、2%以上60%以下であることが好ましく、3%以上60%以下であることがより好ましく、5%以上50%以下であることがさらに好ましい。また、第1の硬化剤の使用量は、硬化剤の使用量全体に対して、質量比で、10%以上90%以下であることが好ましく、15%以上80%以下であることがより好ましい。第2の硬化剤の使用量は、硬化剤の使用量全体に対して、質量比で、10%以上50%以下であることが好ましく、15%以上40%以下であることがより好ましい。
 一般に、硬化剤の使用量の合計は、プレポリマーが有する官能基の数を1としたときの、硬化剤に存在する活性水素基(アミノ基及び水酸基)の当量比であるR値により規定される。硬化剤の使用量の合計は、R値が0.7以上1.3以下になるように調整されることが好ましい。R値は、より好ましくは0.8以上1.2以下である。
 なお、上記の好ましい硬化剤の組み合わせを適当な使用量で用いることにより、一層確実に、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した細孔分布において、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積Vが0.21cm/g以上1.00cm/g以下である樹脂シート、及び/又は、ミクロ相分離構造を有する樹脂シートを得ることができる。なお、硬化剤の組み合わせとして、互いに相溶性が低い2種以上の硬化剤を用いる、互いに反応性が異なる2種以上の硬化剤を用いる、及び/又は、活性水素当量が異なる硬化剤を用いることができる。仮に、そのような組み合わせによって明瞭なミクロ相分離構造を有する樹脂シートが得られない場合であっても、互いの相溶性が高くなるように硬化剤の種類を変更する、互いの反応性が類似するものとなるように硬化剤を変更する、及び/又は、互いの活性水素当量が近づくように硬化剤を変更する等の調整を行うことにより、ミクロ相分離構造を有する樹脂シートが得られる傾向にある。
 (プレポリマー)
 混合工程において用いられるプレポリマーとしては、特に限定されないが、例えば、ウレタンプレポリマーが挙げられる。ウレタンプレポリマーとしては、例えば、ヘキサメチレンジイソシアネートとヘキサントリオールとの付加物;2,4-トリレンジイソシアネートとプレンツカテコールとの付加物;2,4-トリレンジイソシアネートとポリ(オキシテトラメチレン)グリコールとジエチレングリコールとの付加物;トリレンジイソシアネートとヘキサントリオールとの付加物;トリレンジイソシアネートとトリメチロールプロパンとの付加物;キシリレンジイソシアネートとトリメチロールプロパンとの付加物;ヘキサメチレンジイソシアネートとトリメチロールプロパンとの付加物;及びイソシアヌル酸とヘキサメチレンジイソシアネートとの付加物が挙げられる。また、これ以外の、ポリイソシアネート化合物とポリオール化合物との反応により調製されるイソシアネート基含有化合物や、市販されている多様なウレタンプレポリマーを用いてもよい。
 イソシアネート基含有化合物の調製に用いられるポリイソシアネート化合物としては、分子内に2つ以上のイソシアネート基を有していれば特に限定されるものではない。例えば、分子内に2つのイソシアネート基を有するジイソシアネート化合物としては、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、2,6-トリレンジイソシアネート(2,6-TDI)、2,4-トリレンジイソシアネート(2,4-TDI)、ナフタレン-1,4-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネー卜(MDI)、4,4’-メチレン-ビス(シクロヘキシルイソシアネート)(水添MDI)、3,3’-ジメトキシ-4,4’-ビフェニルジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、キシリレン-1、4-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート、プロピレン-1,2-ジイソシアネート、ブチレン-1,2-ジイソシアネート、シクロヘキシレン-1,2-ジイソシアネート、シクロヘキシレン-1,4-ジイソシアネート、p-フェニレンジイソチオシアネート、キシリレン-1,4-ジイソチオシアネート、及びエチリジンジイソチオシアネート等が挙げられる。
 これらのポリイソシアネート化合物は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。ポリイソシアネート化合物としては、ジイソシアネート化合物が好ましく、2,4-TDI、及び2,6-TDI、MDIがより好ましい。
 イソシアネート基含有化合物の調製に用いられるポリオール化合物としては、例えば、エチレングリコール、ジエチレングリコール(DEG)、ブチレングリコール等のジオール化合物、トリオール化合物等;ポリプロピレングリコール(PPG)、及びポリ(オキシテトラメチレン)グリコール(PTMG)等のポリエーテルポリオール化合物;エチレングリコールとアジピン酸との反応物やブチレングリコールとアジピン酸との反応物等のポリエステルポリオール化合物;ポリカーボネートポリオール化合物、並びにポリカプロラクトンポリオール化合物等が挙げられる。また、エチレンオキサイドを付加した3官能性プロピレングリコールを用いることもできる。ポリオール化合物は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ウレタンプレポリマーのNCO当量は、好ましくは150以上700以下であり、より好ましくは200以上600以下であり、更に好ましくは200以上500以下である。「NCO当量」とは、“(ポリイソシアネート化合物の質量部+ポリオール化合物の質量部)/[(ポリイソシアネート化合物1分子当たりの官能基数×ポリイソシアネート化合物の質量部/ポリイソシアネート化合物の分子量)-(ポリオール化合物1分子当たりの官能基数×ポリオール化合物の質量部/ポリオール化合物の分子量)]”で求められる、NCO基1個当たりのウレタンプレポリマーの分子量を示す数値である。
 混合工程において、少なくとも1種のプレポリマーが用いられる。プレポリマーは上記のものを2種以上組み合わせて用いてもよいが、好ましくは1種を単独で用いられる。そのような態様によれば、硬化反応を制御しやすく、ミクロ相分離構造の形状を容易に制御することができる傾向にある。プレポリマーとして、トリレンジイソシアネートを主成分とするウレタンプレポリマーを単独で用いることが好ましい。
 プレポリマーの使用量は特に限定されないが、混合液全体に対して、好ましくは30質量部以上80質量部以下であり、より好ましくは40質量部以上75質量部以下である。
 (添加剤)
 混合工程において、プレポリマー及び硬化剤以外の成分を添加剤として混合してもよい。添加剤としては、ポリプロピレングリコールのような溶媒(希釈剤);シリコーン系消泡剤のような消泡剤;触媒;水や中空微粒子のような発泡剤;シリコーン系整泡剤のような整泡剤;並びに、酸化セリウムのようなフィラー(砥粒);染料;顔料;中実微粒子;難燃剤;親水化剤;疎水化剤;耐光剤;酸化防止剤;帯電防止剤等が挙げられる。得られる樹脂シートの密度を0.3g/cm以上0.9g/cm以下とする観点から、密度調整のために発泡剤を添加することが好ましく、発泡剤の添加量を調整することがより好ましい。
 混合工程において、添加する触媒の種類及び使用量を調整することにより、硬化反応の反応速度を制御し、形成されるミクロ相分離構造を制御することができる。
(成形工程)
 成形工程は、上記のようにして得られた混合液を硬化させることによりミクロ相分離構造を有する樹脂シートを得る工程である。成形工程は、例えば、混合工程により得られた混合液を30℃~150℃に予熱した型枠内に流し込み、30℃~150℃程度で10分~5時間程度加熱すればよい。これにより、プレポリマーと硬化剤とが反応して樹脂を形成することにより、上記混合液が硬化する。また、更に、オーブンにより、50℃~180℃程度で10分~10時間程度加熱することで、2次硬化してもよい。本実施形態のラッピングパッドの製造方法では、混合液が上記のものであるため、ミクロ相分離構造を有する樹脂ブロックを得ることができる。
 なお、成形工程における混合液を硬化させる際の反応温度は、用いるプレポリマー、硬化剤及び添加剤の種類や配合比等によって適宜調整することができ、反応温度を調整することにより、硬化反応の反応速度を制御し、形成されるミクロ相分離構造を制御することができる傾向にある。
 また、成形工程では、上記のようにして得られた樹脂ブロックから、適当な厚さの樹脂シートを切り出すことにより、ミクロ相分離構造を有する樹脂シートを得る。得られた樹脂シートは、30℃~150℃で1時間~24時間程度エイジングしてもよい。
 このようにして得られた樹脂シートは、例えば、その後、片面に両面テープが貼り付けられ、所定形状、好ましくは円板状にカットされて、本実施形態のラッピングパッドとして完成する。両面テープとしては、特に限定されず、従来公知の両面テープの中から任意に選択して用いることができる。
 また、本実施形態のラッピングパッドは、樹脂シートのみからなる単層構造であってもよく、樹脂シートの片面に他の層(クッション層、又は基板層)を貼り合わせた複層からなっていてもよい。複層構造を有する場合には、両面テープや接着剤等を用いて、複数の層同士を必要により加圧しながら接着、固定すればよい。用いられる両面テープ、及び接着剤としては、特に限定されず、従来公知の両面テープ及び接着剤の中から任意に選択して用いることができる。
 更に、本実施形態のラッピングパッドは、必要に応じて、必要に応じて、表面に溝加工、エンボス加工、及び/又は、穴加工(パンチング加工)を施してもよい。溝加工及びエンボス加工の形状に特に限定はなく、例えば、格子型、同心円型、放射型などの形状が挙げられる。
 また、ラッピングパッドは、樹脂シートの表面及び/又は裏面にドレス(研削処理)を施してもよい。本実施形態のラッピングパッドの製造方法における樹脂シートは、高密度であるものの、連通した細孔を有するため、ドレス性に優れ、容易な条件でドレス処理をすることができる。ドレス処理としては、特に限定されず、ダイヤモンドドレッサーによる研削等の公知の方法によりドレスすることができる。
[ラップ加工物の製造方法]
 本実施形態のラップ加工物の製造方法は、スラリーの存在下、上記のラッピングパッドを用いて、被加工物をラップ加工し、ラップ加工物を得るラッピング工程を有する。
 本実施形態のラップ加工物の製造方法においては、スラリーの供給と共に、保持定盤で被加工物をラッピングパッド側に押圧しながら、保持定盤とラッピング用定盤とを相対的に回転させることで、被加工物の加工面がラッピングパッドの作用を受けてラッピング加工される。保持定盤とラッピング用定盤は、互いに異なる回転速度で同方向に回転してもよく、異方向に回転してもよい。また、被加工物は、ラップ加工中に、枠部の内側で移動(自転)しながらラップ加工されてもよい。
 スラリーは、被加工物やラッピング条件等に応じて、水、油等の液体成分、添加剤、並びに砥粒(研磨粒子;例えば、ダイヤモンド、SiC、BC、及びAl)等を含んでいてもよい。
 また、被加工物としては、特に限定されないが、例えば、レンズ、平行平面板、及び反射ミラーのような光学材料、SiC円盤のような半導体ウェハ材料、結晶体、金属、石材、木材、樹脂材、並びにセラミック等の材料が挙げられる。
<第4実施形態>
 ここでは、本実施形態に係る第4の態様(本明細書中、「第4実施形態」ともいう。)について、詳細に説明する。なお、<第4実施形態>で使用する用語や符号は、後述する<第1実施形態>、<第2実施形態>及び<第3実施形態>の内容から独立して使用しているものとする。
(ラッピングパッド)
 本実施形態(以降、特に断りがない限り、<第4実施形態>における「本実施形態」は第4実施形態を意味する。)のラッピングパッドは、細孔を有する樹脂シートを備え、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した樹脂シートの細孔分布において、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積Vが0.020cm/g以上0.100cm/g以下であり、樹脂シートの密度が0.9g/cm以上1.3g/cm以下である。本実施形態のラッピングパッドは、上記のように構成されているため、高密度を維持しながらもスラリーの液体保持性能及び砥粒保持性能の双方に優れる。
 また、本実施形態のラッピングパッドは、後述する積算細孔容積V’の観点から、次のように特定することもできる。すなわち、本実施形態のラッピングパッドは、細孔を有する樹脂シートを備え、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した樹脂シートの細孔分布において、0.050μm以上10.0μm以下の細孔径の範囲での積算細孔容積V’’が0.020cm/g以上0.140cm/g以下であり、樹脂シートの密度が0.9g/cm以上1.3g/cm以下である。このように特定される本実施形態のラッピングパッドも、被加工物に良好な平坦性を付与することができ、かつ、スラリーとの親和性に優れる。
 本実施形態のラッピングパッドは、本実施形態における樹脂シートを備えるものであれば特に限定されず、ラッピングパッドは、樹脂シート以外の構成を有するものであってもよい。ラッピングパッドにおける、樹脂シート以外の構成としては、従来公知の、ラッピング層、クッション層、及び接着層等が挙げられる。
 なお、本実施形態において、「本実施形態における樹脂シート」と称するときは、「細孔を有する樹脂シートであって、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した当該樹脂シートの細孔分布において、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積Vが0.020cm/g以上0.100cm/g以下であり、当該樹脂シートの密度が0.9g/cm以上1.3g/cm以下である、樹脂シート」及び「細孔を有する樹脂シートであって、水銀表面張力485dyn/cmとした水銀圧入法により測定した当該樹脂シートの細孔分布において、0.050μm以上10.0μm以下の細孔径の範囲での積算細孔容積V’’が0.020cm/g以上0.140cm/g以下であり、当該樹脂シートの密度が0.9g/cm以上1.3g/cm以下である、樹脂シート」の双方を包含するものとする。
 本実施形態のラッピングパッドは、好ましくは、上記の樹脂シートをラッピング層として有するものである。「樹脂シートをラッピング層として有する」とは、本実施形態のラッピングパッドの少なくとも1つの表面が本実施形態における樹脂シートの表面に対応しており、当該樹脂シートの表面が、本実施形態のラップ加工の際、被加工物に押し当てられるラッピング面となることを意味する。したがって、本実施形態のラッピングパッドは、好ましくは、少なくとも片面が本実施形態における樹脂シートにより構成されている。また、本実施形態のラッピングパッドは、本実施形態における樹脂シートのみからなっていてもよい。
 本実施形態のラッピングパッドは、必要に応じて、ラッピング面に溝加工、エンボス加工、及び/又は、穴加工(パンチング加工)が施されていてもよく、光透過部を備えてもよい。溝加工及びエンボス加工の形状に特に限定はなく、例えば、格子型、同心円型、及び放射型等の形状が挙げられる。
(樹脂シート)
 (密度)
 本実施形態における樹脂シートは、密度が0.9g/cm以上1.3g/cm以下である。本実施形態における樹脂シートの密度が0.9g/cm以上である、すなわち、樹脂シートが高密度であると、ラップ加工の際に砥粒が樹脂シート内に移行して研磨に寄与しなくなることを抑制できる。また、ラッピングパッドは圧力に対して変形しにくいものとなるため、ラップ加工において、ラッピングパッドから被加工物に対して与えられる力がラッピング面方向において均一になる。その結果、そのような樹脂シートを備えるラッピングパッドを用いたラップ加工において、被加工物の表面を一層平坦にすることができる。なお、本実施形態において「被加工物の表面が平坦である」とは、被加工物のラップ加工された表面が全体としてより平坦であることを意味する。これは、グローバル平坦性が良好であると換言してもよい。
 同様の観点から、本実施形態における樹脂シートの密度は、好ましくは0.9g/cm超であり、より好ましくは1.0g/cm以上であり、更に好ましくは1.1g/cm以上である。なお、樹脂シートの密度が0.9g/cm超であるとは、有効数字2桁で測定される樹脂の密度が0.91g/cm以上であることを意味する。
 本実施形態における樹脂シートの密度が1.3g/cm以下であると、スラリーの液体保持性能が向上する。また、樹脂シートの硬度が低くなる傾向にあり、そのような樹脂シートを備えるラッピングパッドを用いたラップ加工において、スクラッチの発生を抑制できる傾向にある。
 本実施形態における樹脂シートの密度は、従来公知の方法により測定することができ、例えば、樹脂シート片の質量、及び体積を通常の方法により測定し、得られた値から密度を求めればよい。また、樹脂シートの密度を制御する方法としては、特に限定されないが、例えば、後述する本実施形態のラッピングパッドの製造方法によりラッピングパッドを得ればよい。特に、本実施形態における樹脂シートの製造工程において、発泡剤の量を少なくするか、発泡剤を用いないことにより、樹脂シートの密度を高くすることができる。
 (樹脂シートの細孔分布)
  (積算細孔容積V)
 本実施形態における樹脂シートは、細孔を有し、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した細孔分布において、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積Vが、0.020cm/g以上0.100cm/g以下である。
 なお、以下、本実施形態において、特に断りがない限り、「細孔分布」とは、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した細孔分布を意味するものとする。水銀圧入法は、印加する圧力を掃引しながら、測定試料表面の細孔に水銀を満たしていくことにより、測定試料表面における細孔分布を測定することができる方法である。したがって、発泡材料について水銀圧入法により細孔分布を測定する場合、その細孔分布は、主に連通気泡(一般に、「連続気泡」ともいう。)の細孔分布を反映するものであり、独立気泡の細孔分布の寄与は小さい。
 本実施形態のラッピングパッドに関し、本発明者らは、水銀圧入法により測定した細孔分布において、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積Vが0.020cm/g以上であると、ラッピングパッドの砥粒保持性能が十分良好なものとなることを見出した。これは、積算細孔容積Vが0.020cm/g以上であると、0.100μm以上10.0μm以下の細孔径を有する連通気泡が、樹脂シートの全体に分布するようになり、当該連通気泡に起因する凹凸が樹脂シート表面に形成されることで、ラップ加工時において、当該凹凸が砥粒の保持に寄与し、少量のスラリーを効率よく利用できるためと推察される。ただし、積算細孔容積Vが0.020cm/g以上であることにより、ラッピングパッドのスラリーとの親和性が十分良好なものとなる原因は、上記に限られない。
 砥粒保持性能を一層向上させる観点から、本実施形態における樹脂シートにおいて、上記積算細孔容積Vは、好ましくは0.030cm/g以上であり、より好ましくは0.040cm/g以上であり、更に好ましくは0.050cm/g以上である。また、積算細孔容積Vが上記の範囲内にあると、樹脂シートは、高密度でありながらも、ドレス性に優れるようになる。なお、「ドレス」、又は「ドレス処理」とは、被加工物をラッピングする前に、砥粒等が固定されたドレス治具(例えば、ダイヤモンドドレッサー、又はサンドペーパー)を用いて、ラッピングパッドのラッピング面の表面粗さを整えたり、平坦度を整えたりする処理を意味する。また、「ドレス性に優れる」とは、比較的容易な条件の処理によって、十分なドレス処理が行えることを意味する。「ラッピング面」とは、ラッピングパッドによって被加工物をラップ加工する際に、ラッピングパッドが被加工物に接触する面、又は接触することが想定される面を意味する。
 本実施形態における樹脂シートにおいて、上記積算細孔容積Vは、0.100cm/g以下である。積算細孔容積Vが0.100cm/g以下であることにより、樹脂シートの密度が上記の範囲内となりやすい傾向にあり、そのような樹脂シートを備えるラッピングパッドを用いたラップ加工において、被加工物の表面を一層平坦にすることができる。同様の観点から、積算細孔容積Vは、好ましくは0.090cm/g以下であり、より好ましくは0.080cm/g以下である。
  (積算細孔容積V’)
 本実施形態における樹脂シートの細孔分布において、0.050μm以上0.100μm未満の細孔径の範囲での積算細孔容積V’は、典型的には、0.000cm/g以上0.120cm/g以下であり、被加工物に付与する平坦性と、スラリーとの親和性とのバランスを一層向上させる観点から、好ましくは0.000cm/g以上0.100cm/g以下であり、より好ましくは0.000cm/g以上0.080cm/g以下である。
 上記観点から、本実施形態のラッピングパッドは、細孔を有する樹脂シートを備え、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した樹脂シートの細孔分布において、0.050μm以上10.0μm以下の細孔径の範囲での積算細孔容積V’’が0.020cm/g以上0.140cm/g以下であり、樹脂シートの密度が0.9g/cm以上1.3g/cm以下である、と特定することができる。なお、本実施形態における0.050μm以上10.0μm以下の細孔径の範囲での積算細孔容積V’’は、本実施形態における積算細孔容積Vと積算細孔容積V’の和として特定することができ、被加工物に付与する平坦性と、スラリーとの親和性とのバランスを一層向上させる観点から、0.020cm/g以上0.140cm/g以下であり、好ましくは0.030cm/g以上0.130cm/g以下であり、より好ましくは0.050cm/g以上0.120cm/g以下である。
  (積算細孔容積Vに対する積算細孔容積Vの割合)
 本実施形態のラッピングパッドにおいて、被加工物に付与する平坦性と、スラリーとの親和性とのバランスを一層向上させる観点から、樹脂シートの細孔分布において、0.100μm以上360μm以下の細孔径の範囲での積算細孔容積Vに対する、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積Vの割合は、好ましくは、50%以上である。換言すると、積算細孔容積Vに対する積算細孔容積Vの比(V/V)は、好ましくは0.50以上である。このような態様によれば、樹脂シートは、相対的に小さい細孔径を有する細孔の割合が増えるため、密度を高密度に保ちつつ、樹脂シート内の連通気泡の数を一層多くすることができる。
 同様の観点から、積算細孔容積Vに対する積算細孔容積Vの割合は、より好ましくは60%以上であり、更に好ましくは65%以上であり、更により好ましくは70%以上である。積算細孔容積Vに対する積算細孔容積Vの割合の上限は特に限定されず、積算細孔容積Vに対する積算細孔容積Vの割合は、100%以下であってもよく、99%以下であってもよく、95%以下であってもよく、90%以下であってもよく、80%以下であってもよい。
 また、本実施形態における樹脂シートの細孔分布において、0.050μm以上360μm以下の細孔径の範囲での積算細孔容積V’に対する積算細孔容積Vの比(V/V’)は、上記と同様の観点から、好ましくは、50%以上であり、より好ましくは60%以上であり、更に好ましくは65%以上であり、更により好ましくは70%以上である。また、V/V’は、100%以下であってもよく、99%以下であってもよく、95%以下であってもよく、90%以下であってもよく、80%以下であってもよい。
  (最大ピークのピーク位置)
 本実施形態における樹脂シートの細孔分布において、0.100μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置は、0.100μm以上10.0μm以下の細孔径の範囲内にあることが好ましい。一般的に、水銀圧入法において、細孔分布は、測定範囲の最大の細孔径からの積算細孔容積として測定される。したがって、「0.100μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置」とは、水銀圧入法で得られた細孔分布から算出されるLog微分細孔容積分布(dV/d(logD))の最大ピークの位置(細孔径)を意味する。また、最大ピークとは、0.100μm以上360μm以下の細孔径の範囲における極大点が複数ある場合、極大値が最も大きい極大点を意味する。
 0.100μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置が0.100μm以上10.0μm以下の細孔径の範囲内にあることにより、樹脂シートは、0.100μm以上10.0μm以下の範囲で、分布が一層均一な細孔を有することとなるため、ラッピングパッドのスラリーとの親和性、及びドレス性が一層向上する傾向にある。ラッピングパッドのスラリーとの親和性、及びドレス性を一層向上させる観点から、0.100μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置は、より好ましくは0.500μm以上5.00μm以下の細孔径の範囲内にある。
 また、本実施形態における樹脂シートの細孔分布において、0.050μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置は、0.050μm以上10.0μm以下の細孔径の範囲内にあることが好ましく、より好ましくは0.050μm以上5.00μm以下の細孔径の範囲内にある。
  (ピークの数及びピーク高さ)
 本実施形態における樹脂シートの細孔分布において、0.100μm以上360μm以下の細孔径の範囲におけるピークの数は、好ましくは1以上3以下であり、より好ましくは1以上2以下であり、更に好ましくは1である。ピークの数が上記の範囲内にあることにより、分布が一層均一な細孔を有することとなるため、ラッピングパッドのスラリーとの親和性、及びドレス性が一層向上する傾向にある。
 同様の観点から、0.100μm以上360μm以下の細孔径の範囲にピークが2以上ある場合、最大ピークのピーク高さは、2番目に高いピークのピーク高さに比べて、好ましくは2倍以上であり、より好ましくは5倍以上であり、更に好ましくは10倍以上である。
  (積算細孔容積V
 本実施形態における樹脂シートの細孔分布において、0.100μm以上360μm以下の細孔径の範囲での積算細孔容積Vは、好ましくは0.040cm/g以上0.120cm/g以下であり、より好ましくは0.050cm/g以上0.110cm/g以下であり、更に好ましくは0.060cm/g以上0.100cm/g以下である。積算細孔容積Vが上記の範囲内にあることにより、被加工物に付与する平坦性と、スラリーとの親和性とのバランスが一層向上する傾向にある。
 また、本実施形態における樹脂シートの細孔分布において、0.050μm以上360μm以下の細孔径の範囲での積算細孔容積V’は、本実施形態における積算細孔容積Vと積算細孔容積V’の和として特定することができ、上記と同様の観点から、好ましくは0.040cm/g以上0.200cm/g以下であり、より好ましくは0.050cm/g以上0.180cm/g以下であり、更に好ましくは0.060cm/g以上0.160cm/g以下である。
 本実施形態において、積算細孔容積V、積算細孔容積V’、積算細孔容積V’’、積算細孔容積V、積算細孔容積V’最大ピークのピーク位置、ピークの数、及びピーク高さの値は、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定される細孔分布から算出されるが、より詳細な水銀圧入法の測定条件は、実施例に記載の方法を参照することができる。また、積算細孔容積V、積算細孔容積V’、積算細孔容積V’’、積算細孔容積V、積算細孔容積V’最大ピークのピーク位置、ピークの数、及びピーク高さの値を制御する方法としては、特に限定されないが、例えば、後述する本実施形態のラッピングパッドの製造方法によりラッピングパッドを得ればよい。
 (樹脂シートの構造)
 本実施形態における樹脂シートは、ミクロ相分離構造を有することが好ましい。本実施形態において、「ミクロ相分離構造」は、ミクロ相分離を経て形成された相分離構造を意味する。また、本実施形態において、「ミクロ相分離」とは、巨視的には均質な物体において、微視的(典型的には、マイクロメートルオーダー)な構造パターンが少なくとも1次元の周期性をもって繰り返されるように生じる相分離を意味する。ミクロ相分離は、例えば、後述する本実施形態のラッピングパッドの製造方法における好ましい製造条件を採用することで生じさせることができる。ミクロ相分離構造の典型例としては、以下に限定されないが、球状構造(海島構造)、シリンダー構造、ラメラ構造、及び三次元網目構造が挙げられる。本実施形態におけるミクロ相分離構造は、好ましくは、シリンダー構造、ラメラ構造及び三次元網目構造を含み、より好ましくは三次元網目構造である。
 本実施形態において、三次元網目構造は、三次元方向に網目状のネットワークを形成した構造を意味する。ミクロ相分離由来の三次元網目構造としては、シングルジャイロイド構造及び/又はダブル(多重)ジャイロイド構造を含むものであってもよい。本実施形態において、シングルジャイロイド構造は、典型的には、2つの三叉路が捻じれて対となった細線構造が組み合わさって単位胞を形成し、それが周期的に繰り返されたネットワーク構造を意味し、ダブル(多重)ジャイロイド構造は、2以上のシングルジャイロイド構造が入れ子に組み合わされた構造を意味する。
 従来の発泡剤や不活性気体の注入等に由来する連続発泡構造を有する樹脂シートの断面は略球状の発泡断面と樹脂平坦部(つまり、樹脂の海と空隙の島との海島状)が観察される傾向にある。一方、本実施形態における樹脂シートがダブル(多重)ジャイロイド構造を有する場合、その断面では、典型的には、2つ以上の樹脂がマイクロメーターオーダーでまだら状に入り組んで相分離した構造が観察される傾向にある。また、本実施形態における樹脂シートがシングルジャイロイド構造を有する場合、その断面では、典型的には、不定形の空隙断面と樹脂骨格/樹脂骨格断面とが観察される。樹脂骨格部が空隙と比較して充分に大きい場合では、樹脂骨格部が観察できず実質的に樹脂の海状に観察される場合があるが、この場合でも本実施形態における樹脂シートの空隙は、三次元網目状に相互に連通して形成されている。
 なお、本実施形態における樹脂シートの断面を観察したときに、2つ以上の樹脂のまだら状模様と、不定形の空隙断面と樹脂骨格/樹脂骨格断面との両方の特徴が観察され、すなわち、ダブル(多重)ジャイロイド構造とシングルジャイロイド構造との境界が明確に区別できない場合もあるが、この場合はシングルジャイロイド構造及びダブル(多重)ジャイロイド構造の少なくとも一方を含むものと評価できる。
 本実施形態における樹脂シートがシングルジャイロイド構造及び/又はダブル(多重)ジャイロイド構造を有する場合も、典型的にはLog微分細孔容積分布において0.100μm以上10.0μm以下の細孔径の範囲内にシャープなピーク(極大値)が計測される。
 以下、本実施形態のラッピングパッドにおいて観察される好ましい構造について詳述するが、いずれもミクロ相分離由来の構造であることを前提とするものである。
 本実施形態における樹脂シートは、組成が異なる2以上の相を含むことができる。本実施形態において、相の「組成」とは、相の主成分である樹脂、及び相に含まれる主成分以外の成分の両方を包含し、さらにこれらの配合比も考慮するものである。したがって、本実施形態における樹脂シートが有するミクロ相分離構造は、相の主成分である樹脂、及び相に含まれる主成分以外の成分の少なくともいずれかが互いに異なる2以上の相を含むことができ、典型的には、相の主成分である樹脂の構造、平均分子量、及び官能基の少なくとも1以上が異なる2以上の相を含むことができる。
 組成が異なる2つの相の例示としては、例えば、一方の相と他方の相とで、相を構成する樹脂の種類が異なる場合;一方の相と他方の相とで、含有する添加物の含有量が異なる場合;並びに、樹脂シートがABブロックポリマーからなる場合であって、一方の相がAブロックを主成分とする相であり、他方の相がBブロックを主成分とする相である場合が挙げられる。
 組成が互いに異なる2つの相を含むミクロ相分離構造の典型的な例示としては、第1の相が所定のプレポリマーと所定の硬化剤とが硬化した相であり、第2の相が、第1の相におけるプレポリマーとは異なるプレポリマーと第1の相における硬化剤とが硬化した相である場合;第1の相が所定のプレポリマーと所定の硬化剤とが硬化した相であり、第2の相が、第1の相におけるプレポリマーと第1の相における硬化剤とは異なる硬化剤が硬化した相である場合;並びに、第1の相が所定のプレポリマーと所定の硬化剤とが硬化した相であり、第2の相が、第1の相におけるプレポリマーとは異なるプレポリマーと第1の相における硬化剤とは異なる硬化剤が硬化した相である場合等が挙げられる。
 本実施形態における樹脂シートは、ミクロ相分離に起因する空隙を有することができる。かかる空隙は、ミクロ相分離構造を構成する空隙と換言してもよく、その具体例としては、以下に限定されないが、ジャイロイド構造を与える樹脂骨格により画成される空隙等が挙げられる。なお、本実施形態において、空隙は、細孔に由来するものであってもよいし、複数の細孔が連通した連通孔に由来するものであってもよい。
 本実施形態におけるミクロ相分離構造を有する樹脂シートは、例えば、後述する本実施形態のラッピングパッドの製造方法により得ることができる。また、樹脂シートがミクロ相分離構造を有することは、倍率は300倍~3000倍程度で走査型電子顕微鏡(SEM)により観察することで確認することができる。
 なお、樹脂シートが、組成が異なる2以上の相を含むミクロ相分離構造を有していることないし前述した空隙を有していることは、光学顕微鏡、及び位相差顕微鏡のような光学的方法、走査型電子顕微鏡、及び透過型電子顕微鏡のような電子顕微鏡を用いた方法、光散乱、中性子線小角散乱、及びX線小角散乱のような粒子の散乱を用いた方法、X線回折法、蛍光法、並びにパルスNMR測定法等の方法を用いて観測することができる。
 (樹脂シートの平均厚さ)
 本実施形態における樹脂シートの平均厚さは、特に限定されないが、好ましくは0.5mm以上10.0mm以下であり、より好ましくは0.6mm以上8.0mm以下であり、更に好ましくは0.7mm以上5.0mm以下である。
 (樹脂シートの物性)
 本実施形態における樹脂シートの圧縮率は、特に限定されないが、好ましくは0.1%以上10.0%以下であり、より好ましくは0.5%以上5.0%以下である。なお、樹脂シートの圧縮率は、日本産業規格(JIS L 1021)に従い、ショッパー型厚さ測定器(加圧面:直径1cmの円形)を使用して求めることが出来る。具体的には、無荷重状態から初荷重を30秒間かけた後の厚さt0を測定し、次に、厚さt0の状態から最終圧力を30秒間かけた後の厚さt1を測定することにより、以下の式から算出することができる。なお、初荷重は100g/cm、最終圧力は1120g/cmである。
 圧縮率(%)=100×(t0-t1)/t0
 本実施形態における樹脂シートの圧縮弾性率は、特に限定されないが、好ましくは65%以上98%以下であり、より好ましくは70%以上95%以下である。なお、樹脂シートの圧縮弾性率は、日本産業規格(JIS L 1021)に従い、ショッパー型厚さ測定器(加圧面:直径1cmの円形)を使用して求めることが出来る。具体的には、無荷重状態から初荷重を30秒間かけた後の厚さt0を測定し、次に、厚さt0の状態から最終圧力を30秒間かけた後の厚さt1を測定し、更に、厚さt1の状態から全ての荷重を除き、5分間放置(無荷重状態)とした後、再び初荷重を30秒間かけた後の厚さt0’を測定することにより、以下の式から算出することができる。なお、初荷重は100g/cm、最終圧力は1120g/cmである。
 圧縮弾性率(%)=100×(t0’-t1)/(t0-t1)
 本実施形態における樹脂シートのショアD硬度は、特に限定されないが、好ましくは30以上90以下であり、より好ましくは40以上80以下である。なお、樹脂シートのショアD硬度は、日本産業規格(JIS K 7311)に従い、D型硬度計を使用して求めることが出来る。
 (樹脂シートの材料)
 本実施形態における樹脂シートの材料は特に限定されない。樹脂シートの材料としては、例えば、ポリウレタン樹脂が挙げられる。ポリウレタン樹脂としては、特に限定されないが、例えば、ポリエステル系ポリウレタン樹脂、ポリエーテル系ポリウレタン樹脂、及びポリカーボネート系ポリウレタン樹脂が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。
 これらの中でも、本実施形態における樹脂シートの材料は、ポリエステル系ポリウレタン樹脂、及びポリエーテル系ポリウレタン樹脂の少なくともいずれかを含むことが好ましい。特に、本実施形態のラッピングパッドの製造方法において後述する、ウレタンプレポリマーと、少なくとも2種の硬化剤とを含む混合液の硬化物であるポリウレタン樹脂を含むことが好ましい。このような樹脂を用いることにより、簡便に、密度及び細孔分布を上記の範囲内とすることができる傾向にある。
 また、本実施形態における樹脂シートは、樹脂成分以外に、添加剤に由来する成分を含有していてもよい。そのような添加剤としては、例えば、本実施形態のラッピングパッドの製造方法において後述する、消泡剤、触媒、発泡剤、整泡剤、砥粒、染料、顔料、中実微粒子、難燃剤、親水化剤、疎水化剤、耐光剤、酸化防止剤、及び帯電防止剤等が挙げられる。
[ラッピングパッドの製造方法]
 本実施形態のラッピングパッドの製造方法は、少なくとも1種のプレポリマーと少なくとも2種の硬化剤との混合液を硬化させることにより、ミクロ相分離構造を有する樹脂シートを得る工程を含む。このような方法によれば、簡便に本実施形態のラッピングパッドを製造することができる。以下、ラッピングパッドの製造方法の各工程を詳述する。
(混合工程)
 本実施形態のラッピングパッドの製造方法は、少なくとも1種のプレポリマーと少なくとも2種の硬化剤との混合液を調製する混合工程を含むことができる。混合工程において、少なくとも2種の硬化剤を用いることにより、混合工程の後の成形工程において、ミクロ相分離構造を有する樹脂シートを得ることができる。特に、硬化剤を2種以上用いてミクロ相分離構造を形成することにより、プレポリマーを2種以上用いてミクロ相分離構造を形成する場合よりも、硬化反応を制御しやすく、ミクロ相分離構造の形状を容易に制御することができる傾向にある。
 混合工程は、例えば、30℃~90℃に加温した少なくとも1種のプレポリマーと、少なくとも2種の硬化剤とを温度調整可能なジャケット付き混合機に投入し、30℃~130℃で攪拌すればよい。この際、必要に応じて攪拌機付きジャケット付きのタンクに混合液を受けて熟成させてもよい。攪拌時間は混合機の歯数や回転数、クリアランス等によって適宜調整するが、例えば0.1秒~60秒である。
 (硬化剤)
 混合工程において用いられる硬化剤は特に限定されないが、例えば、アミノ基含有化合物、及び水酸基含有化合物が挙げられる。アミノ基含有化合物としては、特に限定されないが、例えば、4,4’-メチレンビス(2-クロロアニリン)(MOCA)、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、イソホロンジアミン、ジシクロヘキシルメタン-4,4’-ジアミン、4-メチル-2,6-ビス(メチルチオ)-1,3-ベンゼンジアミン、2-メチル-4,6-ビス(メチルチオ)-1,3-ベンゼンジアミン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス[3-(イソプロピルアミノ)-4-ヒドロキシフェニル]プロパン、2,2-ビス[3-(1-メチルプロピルアミノ)-4-ヒドロキシフェニル]プロパン、2,2-ビス[3-(1-メチルペンチルアミノ)-4-ヒドロキシフェニル]プロパン、2,2-ビス(3,5-ジアミノ-4-ヒドロキシフェニル)プロパン、2,6-ジアミノ-4-メチルフェノール、トリメチルエチレンビス-4-アミノベンゾネート、及びポリテトラメチレンオキサイド-ジ-p-アミノベンゾネート等が挙げられる。アミノ基含有化合物としては、4,4’-メチレンビス(2-クロロアニリン)が好ましい。
 水酸基含有化合物としては、特に限定されないが、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリメチレングリコール、テトラエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,2-ブタンジオール、3-メチル-1,2-ブタンジオール、1,2-ペンタンジオール、1,4-ペンタンジオール、2,4-ペンタンジオール、2,3-ジメチルトリメチレングリコール、テトラメチレングリコール、3-メチル-4,3-ペンタンジオール、3-メチル-4,5-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、1,6-ヘキサンジオール、1,5-ヘキサンジオール、1,4-ヘキサンジオール、2,5-ヘキサンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、トリメチロールエタン、トリメチロールメタン、ポリテトラメチレングリコール、ポリエチレングリコール、及びポリプロピレングリコール等が挙げられる。反応を制御する観点から、水酸基含有化合物としては、3官能以上のものよりも、2官能(ジオール)のものを用いることが好ましい。また、水酸基含有化合物としては、ポリテトラメチレングリコールがより好ましい。
 なお、上記の硬化剤は、2種以上を組み合わせて用いられる。硬化剤の組み合わせは特に限定されないが、後述する組み合わせであると好ましい。
 硬化剤の活性水素当量(例えば、NH当量、及びOH当量)は、特に限定されず、例えば50以上5000以下であってもよく、100以上4000以下であってもよく、130以上3000以下であってもよい。また、水酸基含有化合物である硬化剤のOH当量は、100以上5000以下であってもよく、200以上4000以下であってもよく、300以上3000以下であってもよい。アミノ基含有化合物である硬化剤のNH当量は、50以上2000以下であってもよく、75以上1000以下であってもよく、100以上300以下であってもよい。
 混合工程において、少なくとも2種の硬化剤が用いられる。硬化剤の組み合わせとしては、互いに相溶性が低い、及び/又は反応性が異なる、及び/又は活性水素当量が異なる硬化剤を用いることが好ましい。そのような態様によれば、ミクロ相分離構造を一層確実に得ることができる傾向にある。反応性が異なる硬化剤の組み合わせの例としては、例えば、活性水素基が異なる硬化剤の組み合わせが挙げられ、より具体的には、例えば、アミノ基含有化合物及び水酸基含有化合物の組み合わせが挙げられる。
 同一の活性水素基を有する硬化剤を2種以上用いる場合、すなわち、水酸基含有化合物を2種以上用いるか、アミノ基含有化合物を2種以上用いる場合は、好ましくは、かかる2種以上の硬化剤は、活性水素当量の差が500以上2000以下である2つの硬化剤を含む。より好ましくは、かかる2種以上の硬化剤は、活性水素当量が200以上500以下である硬化剤と、活性水素当量が1000以上2000以下である硬化剤とを含む。
 同一の活性水素基を有する硬化剤を2種以上用いる場合であって、かかる2種以上の硬化剤が、活性水素当量の差が500以上2000以下である2つの硬化剤を含む場合、活性水素当量の小さい硬化剤の使用量と活性水素当量の大きい硬化剤の使用量との比は、「活性水素当量の小さい硬化剤:活性水素当量の大きい硬化剤」が、活性水素基数比で、1:1~15:1であることが好ましく、1:1~10:1であることがより好ましい。
 同一の活性水素基を有する硬化剤を2種以上用いる場合であって、かかる2種以上の硬化剤が、活性水素当量が200以上500以下である硬化剤と、活性水素当量が1000以上2000以下である硬化剤とを含む場合、活性水素当量が200以上500以下である硬化剤の使用量と活性水素当量が1000以上2000以下である硬化剤の使用量との比は、「活性水素当量が200以上500以下である硬化剤:活性水素当量が1000以上2000以下である硬化剤」が、活性水素基数比で、1:1~15:1であることが好ましく、1:1~10:1であることがより好ましい。
 具体的な好ましい硬化剤の組み合わせとして、少なくとも2種の硬化剤は、好ましくは、アミノ基含有化合物と、水酸基含有化合物とを含む。少なくとも2種の硬化剤は、より好ましくは、1種のアミノ基含有化合物と、2種以上の水酸基含有化合物とを含むか、2種以上のアミノ基含有化合物と、1種の水酸基含有化合物とを含む。少なくとも2種の硬化剤は、更に好ましくは、1種のアミノ基含有化合物と、2種以上の水酸基含有化合物とを含む。
 少なくとも2種の硬化剤が、アミノ基含有化合物と水酸基含有化合物とを含む場合、アミノ基含有化合物のNH当量と、水酸基含有化合物のOH当量の差は特に限定されないが、水酸基含有化合物のOH当量の方が大きいことが好ましく、水酸基含有化合物のOH当量がアミノ基含有化合物のNH当量に比べて、100以上2000以下大きいことがより好ましい。
 少なくとも2種の硬化剤が、アミノ基含有化合物と水酸基含有化合物とを含む場合、硬化剤の使用量の全体に対するアミノ基含有化合物である硬化剤の使用量の割合は、官能基数比で、35%以上95%以下であることが好ましく、40%以上90%以下であることがより好ましい。
 好ましい硬化剤の組み合わせの一例としては、例えば、少なくとも2種の硬化剤は、NH当量が100以上300以下である第1の硬化剤(アミノ基含有化合物)と、OH当量が200以上600以下である第2の硬化剤(水酸基含有化合物)と、OH当量が1000以上2000以下である第3の硬化剤(水酸基含有化合物)とを含む。第1の硬化剤の使用量と、第2の硬化剤の使用量と、第3の硬化剤の使用量の比は、特に限定されないが、第1の硬化剤の使用量は、硬化剤の使用量全体に対して、官能基数比で、30%以上95%以下であることが好ましく、40%以上90%以下であることがより好ましい。第2の硬化剤の使用量は、硬化剤の使用量全体に対して、官能基数比で、1%以上70%以下であることが好ましく、5%以上60%以下であることがより好ましい。第3の硬化剤の使用量は、硬化剤の使用量全体に対して、官能基数比で、3%以上60%以下であることが好ましく、5%以上50%以下であることがより好ましい。
 一般に、硬化剤の使用量の合計は、プレポリマーが有する官能基の数を1としたときの、硬化剤に存在する活性水素基(アミノ基及び水酸基)の当量比であるR値により規定される。硬化剤の使用量の合計は、R値が0.7以上1.3以下になるように調整されることが好ましい。R値は、より好ましくは0.8以上1.2以下である。
 なお、上記の好ましい硬化剤の組み合わせを適当な使用量で用いることにより、一層確実に、接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した細孔分布において、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積Vが、0.020cm/g以上0.100cm/g以下である樹脂シート、及び/又は、ミクロ相分離構造を有する樹脂シートを得ることができる。なお、硬化剤の組み合わせとして、互いに相溶性が低い2種以上の硬化剤を用いる、互いに反応性が異なる2種以上の硬化剤を用いる、及び/又は、活性水素当量が異なる硬化剤を用いることができる。仮に、そのような組み合わせによって明瞭なミクロ相分離構造を有する樹脂シートが得られない場合であっても、互いの相溶性が高くなるように硬化剤の種類を変更する、互いの反応性が類似するものとなるように硬化剤を変更する、及び/又は、互いの活性水素当量が近づくように硬化剤を変更する等の調整を行うことにより、ミクロ相分離構造を有する樹脂シートが得られる傾向にある。
 (プレポリマー)
 混合工程において用いられるプレポリマーとしては、特に限定されないが、例えば、ウレタンプレポリマーが挙げられる。ウレタンプレポリマーとしては、例えば、ヘキサメチレンジイソシアネートとヘキサントリオールとの付加物;2,4-トリレンジイソシアネートとプレンツカテコールとの付加物;2,4-トリレンジイソシアネートとポリ(オキシテトラメチレン)グリコールとジエチレングリコールとの付加物;トリレンジイソシアネートとヘキサントリオールとの付加物;トリレンジイソシアネートとトリメチロールプロパンとの付加物;キシリレンジイソシアネートとトリメチロールプロパンとの付加物;ヘキサメチレンジイソシアネートとトリメチロールプロパンとの付加物;及びイソシアヌル酸とヘキサメチレンジイソシアネートとの付加物が挙げられる。また、これ以外の、ポリイソシアネート化合物とポリオール化合物との反応により調製されるイソシアネート基含有化合物や、市販されている多様なウレタンプレポリマーを用いてもよい。
 イソシアネート基含有化合物の調製に用いられるポリイソシアネート化合物としては、分子内に2つ以上のイソシアネート基を有していれば特に限定されるものではない。例えば、分子内に2つのイソシアネート基を有するジイソシアネート化合物としては、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、2,6-トリレンジイソシアネート(2,6-TDI)、2,4-トリレンジイソシアネート(2,4-TDI)、ナフタレン-1,4-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネー卜(MDI)、4,4’-メチレン-ビス(シクロヘキシルイソシアネート)(水添MDI)、3,3’-ジメトキシ-4,4’-ビフェニルジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、キシリレン-1、4-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート、プロピレン-1,2-ジイソシアネート、ブチレン-1,2-ジイソシアネート、シクロヘキシレン-1,2-ジイソシアネート、シクロヘキシレン-1,4-ジイソシアネート、p-フェニレンジイソチオシアネート、キシリレン-1,4-ジイソチオシアネート、及びエチリジンジイソチオシアネート等が挙げられる。
 これらのポリイソシアネート化合物は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。ポリイソシアネート化合物としては、ジイソシアネート化合物が好ましく、2,4-TDI、及び2,6-TDI、MDIがより好ましい。
 イソシアネート基含有化合物の調製に用いられるポリオール化合物としては、例えば、エチレングリコール、ジエチレングリコール(DEG)、ブチレングリコール等のジオール化合物、トリオール化合物等;ポリプロピレングリコール(PPG)、及びポリ(オキシテトラメチレン)グリコール(PTMG)等のポリエーテルポリオール化合物;エチレングリコールとアジピン酸との反応物やブチレングリコールとアジピン酸との反応物等のポリエステルポリオール化合物;ポリカーボネートポリオール化合物、並びにポリカプロラクトンポリオール化合物等が挙げられる。また、エチレンオキサイドを付加した3官能性プロピレングリコールを用いることもできる。ポリオール化合物は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ウレタンプレポリマーのNCO当量は、好ましくは150以上700以下であり、より好ましくは200以上600以下であり、更に好ましくは200以上500以下である。「NCO当量」とは、“(ポリイソシアネート化合物の質量部+ポリオール化合物の質量部)/[(ポリイソシアネート化合物1分子当たりの官能基数×ポリイソシアネート化合物の質量部/ポリイソシアネート化合物の分子量)-(ポリオール化合物1分子当たりの官能基数×ポリオール化合物の質量部/ポリオール化合物の分子量)]”で求められる、NCO基1個当たりのウレタンプレポリマーの分子量を示す数値である。
 混合工程において、少なくとも1種のプレポリマーが用いられる。プレポリマーは上記のものを2種以上組み合わせて用いてもよいが、好ましくは1種を単独で用いられる。そのような態様によれば、硬化反応を制御しやすく、ミクロ相分離構造の形状を容易に制御することができる傾向にある。プレポリマーとして、トリレンジイソシアネートを主成分とするウレタンプレポリマーを単独で用いることが好ましい。
 プレポリマーの使用量は特に限定されないが、混合液全体に対して、好ましくは30質量部以上80質量部以下であり、より好ましくは40質量部以上75質量部以下である。
 (添加剤)
 混合工程において、プレポリマー及び硬化剤以外の成分を添加剤として混合してもよい。添加剤としては、ポリプロピレングリコールのような溶媒(希釈剤);シリコーン系消泡剤のような消泡剤;触媒;水や中空微粒子のような発泡剤;シリコーン系整泡剤のような整泡剤;並びに、酸化セリウムのようなフィラー(砥粒);染料;顔料;中実微粒子;難燃剤;親水化剤;疎水化剤;耐光剤;酸化防止剤;帯電防止剤等が挙げられる。得られる樹脂シートの密度を0.9g/cm以上1.3g/cm以下とする観点から、発泡剤は添加しないか、添加量を少量とすることが好ましく、消泡剤を使用することがより好ましい。
 混合工程において、添加する触媒の種類及び使用量を調整することにより、硬化反応の反応速度を制御し、形成されるミクロ相分離構造を制御することができる。
(成形工程)
 成形工程は、上記のようにして得られた混合液を硬化させることによりミクロ相分離構造を有する樹脂シートを得る工程である。成形工程は、例えば、混合工程により得られた混合液を30℃~150℃に予熱した型枠内に流し込み、30℃~150℃程度で10分~5時間程度加熱すればよい。これにより、プレポリマーと硬化剤とが反応して樹脂を形成することにより、上記混合液が硬化する。また、更に、オーブンにより、50℃~180℃程度で10分~12時間程度加熱することで、2次硬化してもよい。本実施形態のラッピングパッドの製造方法では、混合液が上記のものであるため、ミクロ相分離構造を有する樹脂ブロックを得ることができる。
 なお、成形工程における混合液を硬化させる際の反応温度は、用いるプレポリマー、硬化剤及び添加剤の種類や配合比等によって適宜調整することができ、反応温度を調整することにより、硬化反応の反応速度を制御し、形成されるミクロ相分離構造を制御することができる傾向にある。
 また、成形工程では、上記のようにして得られた樹脂ブロックから、適当な厚さの樹脂シートを切り出すことにより、ミクロ相分離構造を有する樹脂シートを得る。得られた樹脂シートは、30℃~150℃で1時間~24時間程度エイジングしてもよい。
 このようにして得られた樹脂シートは、例えば、その後、片面に両面テープが貼り付けられ、所定形状、好ましくは円板状にカットされて、本実施形態のラッピングパッドとして完成する。両面テープとしては、特に限定されず、従来公知の両面テープの中から任意に選択して用いることができる。
 また、本実施形態のラッピングパッドは、樹脂シートのみからなる単層構造であってもよく、樹脂シートの片面に他の層(クッション層、又は基板層)を貼り合わせた複層からなっていてもよい。複層構造を有する場合には、両面テープや接着剤等を用いて、複数の層同士を必要により加圧しながら接着、固定すればよい。用いられる両面テープ、及び接着剤としては、特に限定されず、従来公知の両面テープ及び接着剤の中から任意に選択して用いることができる。
 更に、本実施形態のラッピングパッドは、必要に応じて、必要に応じて、表面に溝加工、エンボス加工、及び/又は、穴加工(パンチング加工)を施してもよい。溝加工及びエンボス加工の形状に特に限定はなく、例えば、格子型、同心円型、放射型などの形状が挙げられる。
 また、ラッピングパッドは、樹脂シートの表面及び/又は裏面にドレス(研削処理)を施してもよい。本実施形態のラッピングパッドの製造方法における樹脂シートは、高密度であるものの、連通した細孔を有するため、ドレス性に優れ、容易な条件でドレス処理をすることができる。ドレス処理としては、特に限定されず、ダイヤモンドドレッサーによる研削等の公知の方法によりドレスすることができる。
[ラップ加工物の製造方法]
 本実施形態のラップ加工物の製造方法は、スラリーの存在下、上記のラッピングパッドを用いて、被加工物をラップ加工し、ラップ加工物を得るラッピング工程を有する。
 本実施形態のラップ加工物の製造方法においては、スラリーの供給と共に、保持定盤で被加工物をラッピングパッド側に押圧しながら、保持定盤とラッピング用定盤とを相対的に回転させることで、被加工物の加工面がラッピングパッドの作用を受けてラップ加工される。保持定盤とラッピング用定盤は、互いに異なる回転速度で同方向に回転してもよく、異方向に回転してもよい。また、被加工物は、ラップ加工中に、枠部の内側で移動(自転)しながらラップ加工されてもよい。
 スラリーは、被加工物やラッピング条件等に応じて、水、過酸化水素に代表される酸化剤、酸成分、アルカリ成分等の化学成分、添加剤、並びに砥粒(研磨粒子;例えば、ダイヤモンド、SiC、BC、及びAl)等を含んでいてもよい。
 また、被加工物としては、特に限定されないが、例えば、レンズ、平行平面板、及び反射ミラーのような光学材料、SiC円盤のような半導体ウェハ材料、結晶体、金属、石材、木材、樹脂材、並びにセラミック等の材料が挙げられる。
 以下、実施例及び比較例を用いて本実施形態をより具体的に説明する。本実施形態は、以下の実施例によって何ら限定されるものではない。
 なお、以下では、<第1実施形態>に対応する実施例及び比較例を<実施例群1>とし、<第2実施形態>に対応する実施例及び比較例を<実施例群2>とし、<第3実施形態>に対応する実施例及び比較例を<実施例群3>とし、<第4実施形態>に対応する実施例及び比較例を<実施例群4>とし、それぞれ説明する。
<実施例群1>
 実施例及び比較例における、各評価方法は以下のとおりとした。
[水銀圧入法による積算細孔容積(細孔分布)の測定]
 樹脂シートの積算細孔容積(細孔分布)は、水銀圧入法により測定した。厚み2mmの樹脂シートから10mm角の試料片を切り出し測定に用いた。積算細孔容積の測定は、接触角130°、水銀表面張力485dyn/cmの条件で、マイクロメリティックス社製の製品名「Auto Pore III」を用いて行った。水銀圧を0.5psiaから30000psiaに掃引することにより、細孔径360μmから細孔径0.005μmまでの積算細孔容積を求めた。細孔分布は、ポロシメーター用データ処理ソフト(島津製作所製、製品名「POREPLOT-PCW」)を用いて求めた。なお、各測定結果について、細孔径360μmから細孔径0.010μmまでの細孔分布を示す。
[樹脂シートの観察]
 樹脂シートが、ミクロ相分離構造を有するか否かについては、走査型電子顕微鏡(SEM)による観察により確認した。SEM観察の倍率は300倍~3000倍程度とした。
[平均開孔径の測定]
 マイクロスコープ(VH-6300、KEYENCE製)で研磨パッド表面の約1.3mm四方の範囲を175倍に拡大して観察し、得られた画像を画像処理ソフト(Image Analyzer V20LAB Ver.1.3、ニコン製)により二値化処理して気泡個数を確認し、各々の開孔の面積から円相当径を求め、それらの平均値を平均開孔径(μm)とした。このとき、開孔径のカットオフ値(下限)は10μmとすることで、10μm以上の開孔径の平均値として平均開孔径を得た。
[実施例1-1]
 2,4-トリレンジイソシアネート(TDI)を主成分とするNCO当量407のウレタンプレポリマーを用意した。このウレタンプレポリマー61.83質量部に、4,4’-メチレンビス(2-クロロアニリン)(MOCA)(NH当量134)15.18質量部、及びポリプロピレングリコール(OH当量1345)5.65質量部を混合した。これに、シリコーン系整泡剤(東レ・ダウコーニング社製、製品名「SH193」)0.15質量部、触媒(東ソー株式会社製、製品名「トヨキャットET」)0.03質量部、発泡剤としての水0.16質量部、及び砥粒としての炭酸カルシウムフィラー17質量部を更に添加することにより、樹脂シートの前駆体となる混合液を得た。混合液のR値は0.9であった。
 得られた混合液を、50℃に予熱した型枠に注型して、15分間、50℃にて1次硬化させた。形成されたブロック状の成形物を型枠から抜き出し、オーブンにて8時間、120℃で、2次硬化し、ウレタン樹脂ブロックを得た。得られたウレタン樹脂ブロックを25℃まで放冷した後、スライス処理を施し、厚さ2.0mmの樹脂シートを得た。
 樹脂シートから切り出したサンプルの体積と重量から密度を算出した結果、得られた樹脂シートの密度は、0.55g/cmであった。細孔分布の測定結果を図1-1に示す。また、細孔分布から求められる、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積V、0.010μm以上360μm以下の細孔径の範囲での積算細孔容積V、比V/V、平均開孔径、0.010μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置を表1に示す。
 また、樹脂シートの表面を走査型電子顕微鏡により観察したところ、ミクロ相分離構造(三次元網目構造)を有することが確かめられた。SEM像の一例を図1-2(500倍)及び図1-3(A)(2000倍)に示す。図1-3(B)において破線で囲っているように、特に同図の左上部分において、不定形の空隙断面と樹脂骨格/樹脂骨格断面を有することが確認されたため、少なくともシングルジャイロイド構造を有すると評価された。
[実施例1-2]
 2,4-トリレンジイソシアネート(TDI)を主成分とするNCO当量382のウレタンプレポリマーを用意した。このウレタンプレポリマー55.26質量部に、4,4’-メチレンビス(2-クロロアニリン)(MOCA)(NH当量134)15.27質量部、及びポリテトラメチレングリコール(OH当量972)7.04質量部、及びポリプロピレングリコール(OH当量1345)4.24質量部を混合した。これに、シリコーン系整泡剤(東レ・ダウコーニング社製、製品名「SH193」)0.11質量部、触媒(東ソー株式会社製、製品名「トヨキャットET」)0.03質量部、発泡剤としての水0.05質量部、及び砥粒としての炭酸カルシウムフィラー18質量部を更に添加することにより、樹脂シートの前駆体となる混合液を得た。混合液のR値は0.9であった。
 得られた混合液を、50℃に予熱した型枠に注型して、15分間、50℃にて1次硬化させた。形成されたブロック状の成形物を型枠から抜き出し、オーブンにて8時間、120℃で、2次硬化し、ウレタン樹脂ブロックを得た。得られたウレタン樹脂ブロックを25℃まで放冷した後、スライス処理を施し、厚さ2.0mmの樹脂シートを得た。
 樹脂シートから切り出したサンプルの体積と重量から密度を算出した結果、得られた樹脂シートの密度は、0.89g/cmであった。細孔分布の測定結果を図1-4に示す。また、細孔分布から求められる、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積V、0.010μm以上360μm以下の細孔径の範囲での積算細孔容積V、比V/V、平均開孔径、0.010μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置を表1に示す。また、SEM像の一例を図1-5に示す。
[比較例1-1]
 実施例1-1と同じウレタンプレポリマー61.59質量部に、4,4’-メチレンビス(2-クロロアニリン)(MOCA)(NH当量134)9.24質量部、及び粗製MOCA(NH当量189)9.24質量部を混合した。これに、シリコーン系整泡剤(東レ・ダウコーニング社製、製品名「SH193」)0.18質量部、希釈剤としてのポリエーテル(OH当量1007)2.58質量部、触媒(東ソー株式会社製、製品名「トヨキャットET」)0.04質量部、発泡剤としての水0.13質量部、及び砥粒としての炭酸カルシウムフィラー17質量部を更に添加することにより、樹脂シートの前駆体となる混合液を得た。混合液のR値は0.9であった。
 得られた混合液を、50℃に予熱した型枠に注型して、15分間、50℃にて1次硬化させた。形成されたブロック状の成形物を型枠から抜き出し、オーブンにて8時間、120℃で、2次硬化し、ウレタン樹脂ブロックを得た。得られたウレタン樹脂ブロックを25℃まで放冷した後、スライス処理を施し、厚さ2.0mmの樹脂シートを得た。
 樹脂シートから切り出したサンプルの体積と重量から密度を算出した結果、得られた樹脂シートの密度は、0.53g/cmであった。細孔分布の測定結果を図1-6に示す。また、細孔分布から求められる、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積V、0.010μm以上360μm以下の細孔径の範囲での積算細孔容積V、比V/V、平均開孔径、0.010μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置を表1に示す。
 また、比較例1-1の樹脂シートの表面を走査型電子顕微鏡により観察したところ、ミクロ相分離構造は確認されなかった。SEM像の一例を図1-7に示す。比較例1-1では、少なくとも、OH当量が1000以上2000以下である硬化剤使用量が不足していることに起因して所望とする硬化反応が進行せずミクロ相分離が生じなかったものと考えられる。
Figure JPOXMLDOC01-appb-T000001
 実施例1-1における1.0μm以上360μm以下の範囲内における最大ピークの位置は129μmであり、その高さは0.40cm/gであった。また、0.010μm以上360μm以下の細孔径の範囲における最大ピークの位置は0.0822μmであり、その高さは1.65cm/gであった。
 以上の測定結果より、実施例1-1の樹脂シートは、発泡剤に由来する空隙と、ミクロ相分離構造に由来する空隙との両方を含み、後者の空隙は研磨パッド全体にわたって相互に連通していることが確認された。
 実施例1-2における1.0μm以上360μm以下の範囲内における最大ピークの位置は77μmであり、その高さは0.075cm/gであった。また、0.010μm以上360μm以下の細孔径の範囲における最大ピークの位置は0.0411μmであり、その高さは0.447cm/gであった。
 以上の測定結果より、実施例1-2の樹脂シートは、発泡剤に由来する空隙と、ミクロ相分離構造に由来する空隙との両方を含み、後者の空隙は研磨パッド全体にわたって相互に連通していることが確認された。
 実施例1-1及び実施例1-2の研磨パッドを用いて、研磨試験及びスラリーとの親和性の評価試験を行った。対照として、比較例1-1の研磨パッドを用いて、同条件で研磨試験及びスラリーとの親和性の評価試験を行った。その結果、実施例1-1及び実施例1-2の研磨パッドは、比較例1-1の研磨パッドに比べて、被研磨物に良好な平坦性を付与することができ、かつ、スラリーとの親和性に優れることがわかった。
<実施例群2>
 実施例及び比較例における、各評価方法は以下のとおりとした。
[水銀圧入法による積算細孔容積(細孔分布)の測定]
 樹脂シートの積算細孔容積(細孔分布)は、水銀圧入法により測定した。厚み2mmの樹脂シートから10mm角の試料片を切り出し測定に用いた。積算細孔容積の測定は、接触角130°、水銀表面張力485dyn/cmの条件で、マイクロメリティックス社製の製品名「Auto Pore III」を用いて行った。水銀圧を0.5psiaから30000psiaに掃引することにより、細孔径360μmから細孔径0.005μmまでの積算細孔容積を求めた。細孔分布は、ポロシメーター用データ処理ソフト(島津製作所製、製品名「POREPLOT-PCW」)を用いて求めた。なお、各測定結果について、細孔径360μmから細孔径0.100μmまでの細孔分布を示す。
[樹脂シートの観察]
 樹脂シートが、ミクロ相分離構造を有するか否かについては、走査型電子顕微鏡(SEM)による観察により確認した。SEM観察の倍率は300倍~3000倍程度とした。
[実施例2-1]
 2,4-トリレンジイソシアネート(TDI)を主成分とするNCO当量407のウレタンプレポリマーを用意した。
 上記のウレタンプレポリマー48.7質量部に、4,4’-メチレンビス(2-クロロアニリン)(MOCA)(NH当量134)14.1質量部、ポリテトラメチレングリコール(OH当量325)5.7質量部、及びポリプロピレングリコール(OH当量1345)11.3質量部を混合した。更に、上記混合液に、シリコーン系消泡剤(DOW CORNING社製、製品名「71additive」)0.25質量部、触媒(東ソー株式会社製、製品名「トヨキャットET」)0.01質量部、及び砥粒としての酸化セリウムフィラー20.0質量部を添加することにより、樹脂シートの前駆体となる混合液を得た。混合液のR値は1.1であった。
 得られた混合液を、50℃に予熱した型枠に注型して、15分間、50℃にて1次硬化させた。形成されたブロック状の成形物を型枠から抜き出し、オーブンにて8時間、120℃で、2次硬化し、ウレタン樹脂ブロックを得た。得られたウレタン樹脂ブロックを25℃まで放冷した後、スライス処理を施し、厚さ2.0mmの樹脂シートを得た。
 得られた樹脂シートの密度は、1.2g/cm、ショアD硬度は54度、圧縮率は0.8%、圧縮弾性率は85%であった。細孔分布の測定結果を図2-1に示す。また、細孔分布から求められる、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積V、0.050μm以上0.100μm未満の細孔径の範囲での積算細孔容積V’、0.100μm以上360μm以下の細孔径の範囲での積算細孔容積V、比V/Vを表1に示す。
 また、樹脂シートの表面を走査型電子顕微鏡により観察したところ、ミクロ相分離構造(三次元網目構造)を有することが確かめられた。具体的には、組成の異なる少なくとも2種の樹脂がまだら状に入り組んだ構造が観察され、少なくともダブルジャイロイド構造を有するものと評価された。より具体的には、SEM像の一例を図2-2(A)に示す。図2-2(B)において破線で囲っているように、複数個所においてミクロ相分離構造が確認された。
[実施例2-2]
 実施例2-1と同様のウレタンプレポリマーを54.0質量部、4,4’-メチレンビス(2-クロロアニリン)(MOCA)(NH当量134)を9.6質量部、ポリテトラメチレングリコール(OH当量325)を22.9質量部、ポリプロピレングリコール(OH当量1345)を13.2質量部、シリコーン系消泡剤(DOW CORNING社製、製品名「71additive」)を0.33質量部、触媒(東ソー株式会社製、製品名「トヨキャットET」)を0.01質量部混合して樹脂シートの前駆体となる混合液を得た。なお、混合液のR値は、0.9であった。
 得られた混合液を、70℃に予熱した型枠に注型して、10分間、70℃にて1次硬化させた。形成されたブロック状の成形物を型枠から抜き出し、オーブンにて15分、120℃で、2次硬化し、ウレタン樹脂ブロックを得た。得られたウレタン樹脂ブロックを25℃まで放冷した後、スライス処理を施し、厚さ2.0mmの樹脂シートを得た。
 得られた樹脂シートの密度は、1.1g/cm、ショアD硬度は64度、圧縮率は1.3%、圧縮弾性率は80%であった。得られた樹脂シートの積算細孔容積V、0.050μm以上0.100μm未満の細孔径の範囲での積算細孔容積V’、積算細孔容積V、比V/Vの値は、それぞれ、0.020cm/g以上0.100cm/g以下、0.000cm/g以上0.120cm/g以下、0.040cm/g以上0.120cm/g以下、及び50%以上であった。当該樹脂シートの表面を走査型電子顕微鏡により観察したところ、樹脂の海部と空隙の島部の構造は観察されず、少なくともシングルジャイロイド構造を有するものと評価された。SEM像の一例を図2-3に示す。
[比較例2-1]
 2,4-トリレンジイソシアネート(TDI)を主成分とする第1のウレタンプレポリマー(NCO当量400)、及びヘキサメチレンジイソシアネートを主成分とする第2のウレタンプレポリマー(NCO当量200)を用意した。
 第1のウレタンプレポリマー51.6質量部、及び第2のウレタンプレポリマー17.2質量部に、4,4’-メチレンビス(2-クロロアニリン)(MOCA)(NH当量134)23.3質量部、及びポリテトラメチレングリコール(OH当量500)4.7質量部を混合した。更に、上記混合液に、希釈剤としてのポリエーテル1.39質量部、シリコーン系消泡剤(DOW CORNING社製、製品名「71additive」)1.67質量部、触媒(東ソー株式会社製、製品名「トヨキャットET」)0.04質量部、発泡剤としての水0.07質量部、及びシリコーン系整泡剤(東レ・ダウコーニング株式会社製、製品名「SH193」)0.10質量部を添加することにより、樹脂シートの前駆体となる混合液を得た。混合液のR値は0.9であった。
 得られた混合液を、50℃に予熱した型枠に注型して、15分間、50℃にて1次硬化させた。形成されたブロック状の成形物を型枠から抜き出し、オーブンにて8時間、120℃で、2次硬化し、ウレタン樹脂ブロックを得た。得られたウレタン樹脂ブロックを25℃まで放冷した後、スライス処理を施し、厚さ2.0mmの樹脂シートを得た。
 得られた樹脂シートの密度は、1.1g/cm、ショアD硬度は69度、圧縮率は1.1%、圧縮弾性率は90%であった。細孔分布の測定結果を図2-4に示す。また、細孔分布から求められる、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積V、0.100μm以上360μm以下の細孔径の範囲での積算細孔容積V、比V/Vを表1に示す。
 また、樹脂シートの表面を走査型電子顕微鏡により観察したところ、ミクロ相分離構造は確認されなかった。SEM像の一例を図2-5に示す。比較例2-1では、少なくとも、OH当量が1000以上2000以下である硬化剤が不足していることに起因して、所望とする硬化反応が進行せずミクロ相分離が生じなかったものと考えられる。
Figure JPOXMLDOC01-appb-T000002
 実施例2-1~2-2の研磨パッドを用いて、研磨試験及びスラリーとの親和性の評価試験を行った。対照として、比較例2-1の研磨パッドを用いて、同条件で研磨試験及びスラリーとの親和性の評価試験を行った。その結果、実施例2-1~2-2の研磨パッドは、比較例2-1の研磨パッドに比べて、被研磨物に良好な平坦性を付与することができ、かつ、スラリーとの親和性に優れることがわかった。
<実施例群3>
 実施例及び比較例における、各評価方法は以下のとおりとした。
[水銀圧入法による積算細孔容積(細孔分布)の測定]
 樹脂シートの積算細孔容積(細孔分布)は、水銀圧入法により測定した。厚み2mmの樹脂シートから10mm角の試料片を切り出し測定に用いた。積算細孔容積の測定は、接触角130°、水銀表面張力485dyn/cmの条件で、マイクロメリティックス社製の製品名「Auto Pore III」を用いて行った。水銀圧を0.5psiaから30000psiaに掃引することにより、細孔径360μmから細孔径0.005μmまでの積算細孔容積を求めた。細孔分布は、ポロシメーター用データ処理ソフト(島津製作所製、製品名「POREPLOT-PCW」)を用いて求めた。なお、各測定結果について、細孔径360μmから細孔径0.010μmまでの細孔分布を示す。
[樹脂シートの観察]
 樹脂シートが、ミクロ相分離構造を有するか否かについては、走査型電子顕微鏡(SEM)による観察により確認した。SEM観察の倍率は300倍~3000倍程度とした。
[平均開孔径の測定]
 マイクロスコープ(VH-6300、KEYENCE製)でラッピングパッド表面の約1.3mm四方の範囲を175倍に拡大して観察し、得られた画像を画像処理ソフト(Image Analyzer V20LAB Ver.1.3、ニコン製)により二値化処理して気泡個数を確認し、各々の開孔の面積から円相当径を求め、それらの平均値を平均開孔径(μm)とした。このとき、開孔径のカットオフ値(下限)は10μmとすることで、10μm以上の開孔径の平均値として平均開孔径を得た。
[実施例3-1]
 2,4-トリレンジイソシアネート(TDI)を主成分とするNCO当量407のウレタンプレポリマーを用意した。このウレタンプレポリマー61.83質量部に、4,4’-メチレンビス(2-クロロアニリン)(MOCA)(NH当量134)15.18質量部、及びポリプロピレングリコール(OH当量1345)5.65質量部を混合した。これに、シリコーン系整泡剤(東レ・ダウコーニング社製、製品名「SH193」)0.15質量部、触媒(東ソー株式会社製、製品名「トヨキャットET」)0.03質量部、発泡剤としての水0.16質量部、及び砥粒としての炭酸カルシウムフィラー17質量部を更に添加することにより、樹脂シートの前駆体となる混合液を得た。混合液のR値は0.9であった。
 得られた混合液を、50℃に予熱した型枠に注型して、15分間、50℃にて1次硬化させた。形成されたブロック状の成形物を型枠から抜き出し、オーブンにて8時間、120℃で、2次硬化し、ウレタン樹脂ブロックを得た。得られたウレタン樹脂ブロックを25℃まで放冷した後、スライス処理を施し、厚さ2.0mmの樹脂シートを得た。
 樹脂シートから切り出したサンプルの体積と重量から密度を算出した結果、得られた樹脂シートの密度は、0.55g/cmであった。細孔分布の測定結果を図3-1に示す。また、細孔分布から求められる、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積V、0.010μm以上360μm以下の細孔径の範囲での積算細孔容積V、比V/V、平均開孔径、0.010μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置を表1に示す。
 また、樹脂シートの表面を走査型電子顕微鏡により観察したところ、ミクロ相分離構造(三次元網目構造)を有することが確かめられた。SEM像の一例を図3-2(500倍)及び図3-3(A)(2000倍)に示す。図3-3(B)において破線で囲っているように、特に同図の左上部分において、不定形の空隙断面と樹脂骨格/樹脂骨格断面を有することが確認されたため、少なくともシングルジャイロイド構造を有すると評価された。
[実施例3-2]
 2,4-トリレンジイソシアネート(TDI)を主成分とするNCO当量382のウレタンプレポリマーを用意した。このウレタンプレポリマー55.26質量部に、4,4’-メチレンビス(2-クロロアニリン)(MOCA)(NH当量134)15.27質量部、及びポリテトラメチレングリコール(OH当量972)7.04質量部、及びポリプロピレングリコール(OH当量1345)4.24質量部を混合した。これに、シリコーン系整泡剤(東レ・ダウコーニング社製、製品名「SH193」)0.11質量部、触媒(東ソー株式会社製、製品名「トヨキャットET」)0.03質量部、発泡剤としての水0.05質量部、及び砥粒としての炭酸カルシウムフィラー18質量部を更に添加することにより、樹脂シートの前駆体となる混合液を得た。混合液のR値は0.9であった。
 得られた混合液を、50℃に予熱した型枠に注型して、15分間、50℃にて1次硬化させた。形成されたブロック状の成形物を型枠から抜き出し、オーブンにて8時間、120℃で、2次硬化し、ウレタン樹脂ブロックを得た。得られたウレタン樹脂ブロックを25℃まで放冷した後、スライス処理を施し、厚さ2.0mmの樹脂シートを得た。
 樹脂シートから切り出したサンプルの体積と重量から密度を算出した結果、得られた樹脂シートの密度は、0.89g/cmであった。細孔分布の測定結果を図3-4に示す。また、細孔分布から求められる、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積V、0.010μm以上360μm以下の細孔径の範囲での積算細孔容積V、比V/V、平均開孔径、0.010μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置を表1に示す。また、SEM像の一例を図3-5に示す。
[比較例3-1]
 実施例3-1と同じウレタンプレポリマー61.59質量部に、4,4’-メチレンビス(2-クロロアニリン)(MOCA)(NH当量134)9.24質量部、及び粗製MOCA(NH当量189)9.24質量部を混合した。これに、シリコーン系整泡剤(東レ・ダウコーニング社製、製品名「SH193」)0.18質量部、希釈剤としてのポリエーテル(OH当量1007)2.58質量部、触媒(東ソー株式会社製、製品名「トヨキャットET」)0.04質量部、発泡剤としての水0.13質量部、及び砥粒としての炭酸カルシウムフィラー17質量部を更に添加することにより、樹脂シートの前駆体となる混合液を得た。混合液のR値は0.9であった。
 得られた混合液を、50℃に予熱した型枠に注型して、15分間、50℃にて1次硬化させた。形成されたブロック状の成形物を型枠から抜き出し、オーブンにて8時間、120℃で、2次硬化し、ウレタン樹脂ブロックを得た。得られたウレタン樹脂ブロックを25℃まで放冷した後、スライス処理を施し、厚さ2.0mmの樹脂シートを得た。
 樹脂シートから切り出したサンプルの体積と重量から密度を算出した結果、得られた樹脂シートの密度は、0.53g/cmであった。細孔分布の測定結果を図3-6に示す。また、細孔分布から求められる、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積V、0.010μm以上360μm以下の細孔径の範囲での積算細孔容積V、比V/V、平均開孔径、0.010μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置を表1に示す。
 また、比較例3-1の樹脂シートの表面を走査型電子顕微鏡により観察したところ、ミクロ相分離構造は確認されなかった。SEM像の一例を図3-7に示す。比較例3-1では、少なくとも、OH当量が1000以上2000以下である硬化剤使用量が不足していることに起因して所望とする硬化反応が進行せずミクロ相分離が生じなかったものと考えられる。
Figure JPOXMLDOC01-appb-T000003
 実施例3-1における1.0μm以上360μm以下の範囲内における最大ピークの位置は129μmであり、その高さは0.40cm/gであった。また、0.010μm以上360μm以下の細孔径の範囲における最大ピークの位置は0.0822μmであり、その高さは1.65cm/gであった。
 以上の測定結果より、実施例3-1の樹脂シートは、発泡剤に由来する空隙と、ミクロ相分離構造に由来する空隙との両方を含み、後者の空隙はラッピングパッド全体にわたって相互に連通していることが確認された。
 実施例3-2における1.0μm以上360μm以下の範囲内における最大ピークの位置は77μmであり、その高さは0.075cm/gであった。また、0.010μm以上360μm以下の細孔径の範囲における最大ピークの位置は0.0411μmであり、その高さは0.447cm/gであった。
 以上の測定結果より、実施例3-2の樹脂シートは、発泡剤に由来する空隙と、ミクロ相分離構造に由来する空隙との両方を含み、後者の空隙はラッピングパッド全体にわたって相互に連通していることが確認された。
 実施例3-1及び実施例3-2のラッピングパッドを用いて、ラップ加工試験及びスラリーとの親和性の評価試験を行った。対照として、比較例3-1のラッピングパッドを用いて、同条件でラップ加工試験及びスラリーとの親和性の評価試験を行った。その結果、実施例3-1及び実施例3-2のラッピングパッドは、比較例3-1のラッピングパッドに比べて、被加工物に良好な平坦性を付与することができ、かつ、スラリーとの親和性に優れることがわかった。
<実施例群4>
 実施例及び比較例における、各評価方法は以下のとおりとした。
[水銀圧入法による積算細孔容積(細孔分布)の測定]
 樹脂シートの積算細孔容積(細孔分布)は、水銀圧入法により測定した。厚み2mmの樹脂シートから10mm角の試料片を切り出し測定に用いた。積算細孔容積の測定は、接触角130°、水銀表面張力485dyn/cmの条件で、マイクロメリティックス社製の製品名「Auto Pore III」を用いて行った。水銀圧を0.5psiaから30000psiaに掃引することにより、細孔径360μmから細孔径0.005μmまでの積算細孔容積を求めた。細孔分布は、ポロシメーター用データ処理ソフト(島津製作所製、製品名「POREPLOT-PCW」)を用いて求めた。なお、各測定結果について、細孔径360μmから細孔径0.100μmまでの細孔分布を示す。
[樹脂シートの観察]
 樹脂シートが、ミクロ相分離構造を有するか否かについては、走査型電子顕微鏡(SEM)による観察により確認した。SEM観察の倍率は300倍~3000倍程度とした。
[実施例4-1]
 2,4-トリレンジイソシアネート(TDI)を主成分とするNCO当量407のウレタンプレポリマーを用意した。
 上記のウレタンプレポリマー48.7質量部に、4,4’-メチレンビス(2-クロロアニリン)(MOCA)(NH当量134)14.1質量部、ポリテトラメチレングリコール(OH当量325)5.7質量部、及びポリプロピレングリコール(OH当量1345)11.3質量部を混合した。更に、上記混合液に、シリコーン系消泡剤(DOW CORNING社製、製品名「71additive」)0.25質量部、触媒(東ソー株式会社製、製品名「トヨキャットET」)0.01質量部、及び砥粒としての酸化セリウムフィラー20.0質量部を添加することにより、樹脂シートの前駆体となる混合液を得た。混合液のR値は1.1であった。
 得られた混合液を、50℃に予熱した型枠に注型して、15分間、50℃にて1次硬化させた。形成されたブロック状の成形物を型枠から抜き出し、オーブンにて8時間、120℃で、2次硬化し、ウレタン樹脂ブロックを得た。得られたウレタン樹脂ブロックを25℃まで放冷した後、スライス処理を施し、厚さ2.0mmの樹脂シートを得た。
 得られた樹脂シートの密度は、1.2g/cm、ショアD硬度は54度、圧縮率は0.8%、圧縮弾性率は85%であった。細孔分布の測定結果を図4-1に示す。また、細孔分布から求められる、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積V、0.050μm以上0.100μm未満の細孔径の範囲での積算細孔容積V’、0.100μm以上360μm以下の細孔径の範囲での積算細孔容積V、比V/Vを表1に示す。
 また、樹脂シートの表面を走査型電子顕微鏡により観察したところ、ミクロ相分離構造(三次元網目構造)を有することが確かめられた。具体的には、組成の異なる少なくとも2種の樹脂がまだら状に入り組んだ構造が観察され、少なくともダブルジャイロイド構造を有するものと評価された。より具体的には、SEM像の一例を図4-2(A)に示す。図4-2(B)において破線で囲っているように、複数個所においてミクロ相分離構造が確認された。
[実施例4-2]
 実施例4-1と同様のウレタンプレポリマーを54.0質量部、4,4’-メチレンビス(2-クロロアニリン)(MOCA)(NH当量134)を9.6質量部、ポリテトラメチレングリコール(OH当量325)を22.9質量部、ポリプロピレングリコール(OH当量1345)を13.2質量部、シリコーン系消泡剤(DOW CORNING社製、製品名「71additive」)を0.33質量部、触媒(東ソー株式会社製、製品名「トヨキャットET」)を0.01質量部混合して樹脂シートの前駆体となる混合液を得た。なお、混合液のR値は、0.9であった。
 得られた混合液を、70℃に予熱した型枠に注型して、10分間、70℃にて1次硬化させた。形成されたブロック状の成形物を型枠から抜き出し、オーブンにて15分、120℃で、2次硬化し、ウレタン樹脂ブロックを得た。得られたウレタン樹脂ブロックを25℃まで放冷した後、スライス処理を施し、厚さ2.0mmの樹脂シートを得た。
 得られた樹脂シートの密度は、1.1g/cm、ショアD硬度は64度、圧縮率は1.3%、圧縮弾性率は80%であった。得られた樹脂シートの積算細孔容積V、0.050μm以上0.100μm未満の細孔径の範囲での積算細孔容積V’、積算細孔容積V、比V/Vの値は、それぞれ、0.020cm/g以上0.100cm/g以下、0.000cm/g以上0.120cm/g以下、0.040cm/g以上0.120cm/g以下、及び50%以上であった。当該樹脂シートの表面を走査型電子顕微鏡により観察したところ、樹脂の海部と空隙の島部の構造は観察されず、少なくともシングルジャイロイド構造を有するものと評価された。SEM像の一例を図4-3に示す。
[比較例4-1]
 2,4-トリレンジイソシアネート(TDI)を主成分とする第1のウレタンプレポリマー(NCO当量400)、及びヘキサメチレンジイソシアネートを主成分とする第2のウレタンプレポリマー(NCO当量200)を用意した。
 第1のウレタンプレポリマー51.6質量部、及び第2のウレタンプレポリマー17.2質量部に、4,4’-メチレンビス(2-クロロアニリン)(MOCA)(NH当量134)23.3質量部、及びポリテトラメチレングリコール(OH当量500)4.7質量部を混合した。更に、上記混合液に、希釈剤としてのポリエーテル1.39質量部、シリコーン系消泡剤(DOW CORNING社製、製品名「71additive」)1.67質量部、触媒(東ソー株式会社製、製品名「トヨキャットET」)0.04質量部、発泡剤としての水0.07質量部、及びシリコーン系整泡剤(東レ・ダウコーニング株式会社製、製品名「SH193」)0.10質量部を添加することにより、樹脂シートの前駆体となる混合液を得た。混合液のR値は0.9であった。
 得られた混合液を、50℃に予熱した型枠に注型して、15分間、50℃にて1次硬化させた。形成されたブロック状の成形物を型枠から抜き出し、オーブンにて8時間、120℃で、2次硬化し、ウレタン樹脂ブロックを得た。得られたウレタン樹脂ブロックを25℃まで放冷した後、スライス処理を施し、厚さ2.0mmの樹脂シートを得た。
 得られた樹脂シートの密度は、1.1g/cm、ショアD硬度は69度、圧縮率は1.1%、圧縮弾性率は90%であった。細孔分布の測定結果を図4-4に示す。また、細孔分布から求められる、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積V、0.100μm以上360μm以下の細孔径の範囲での積算細孔容積V、比V/Vを表1に示す。
 また、樹脂シートの表面を走査型電子顕微鏡により観察したところ、ミクロ相分離構造は確認されなかった。SEM像の一例を図4-5に示す。比較例4-1では、少なくとも、OH当量が1000以上2000以下である硬化剤が不足していることに起因して、所望とする硬化反応が進行せずミクロ相分離が生じなかったものと考えられる。
Figure JPOXMLDOC01-appb-T000004
 実施例4-1~4-2のラッピングパッドを用いて、ラップ加工試験及びスラリーとの親和性の評価試験を行った。対照として、比較例4-1のラッピングパッドを用いて、同条件でラップ加工試験及びスラリーとの親和性の評価試験を行った。その結果、実施例4-1~4-2のラッピングパッドは、比較例4-1のラッピングパッドに比べて、被加工物に良好な平坦性を付与することができ、かつ、スラリーとの親和性に優れることがわかった。
 本出願は、2020年12月25日出願の日本特許出願(特願2020-216946号、特願2020-216988号、特願2020-216952号及び特願2020-217005号)、並びに2021年12月17日出願の日本特許出願(特願2021-205117号、特願2021-205047号、特願2021-205119号及び特願2021-205051号)に基づくものであり、それらの内容はここに参照として取り込まれる。
 本発明の第1実施形態に係る研磨パッドは、レンズ、平行平面板、及び反射ミラーのような光学材料、半導体ウェハ、半導体デバイス、ハードディスク用基板、金属、並びにセラミック等の材料の研磨(とりわけ化学機械研磨(CMP))に用いられる研磨パッドとして、産業上の利用可能性を有する。
 本発明の第2実施形態に係る研磨パッドは、レンズ、平行平面板、及び反射ミラーのような光学材料、半導体ウェハ、半導体デバイス、ハードディスク用基板、金属、並びにセラミック等の材料の研磨(とりわけ化学機械研磨(CMP))に用いられる研磨パッドとして、産業上の利用可能性を有する。
 本発明の第3実施形態に係るラッピングパッドは、レンズ、平行平面板、及び反射ミラーのような光学材料、SiC円盤のような半導体ウェハ材料、結晶体、金属、石材、木材、樹脂材、並びにセラミック等の材料のラップ加工に用いられるラッピングパッドとして、産業上の利用可能性を有する。
 本発明の第4実施形態に係るラッピングパッドは、レンズ、平行平面板、及び反射ミラーのような光学材料、SiC円盤のような半導体ウェハ材料、結晶体、金属、石材、木材、樹脂材、並びにセラミック等の材料のラップ加工に用いられるラッピングパッドとして、産業上の利用可能性を有する。

Claims (46)

  1.  細孔を有する樹脂シートを備える、研磨パッドであって、
     接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した前記樹脂シートの細孔分布において、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積Vが0.21cm/g以上1.00cm/g以下であり、
     前記樹脂シートの密度が0.3g/cm以上0.9g/cm以下である、研磨パッド。
  2.  前記樹脂シートの前記細孔分布において、0.010μm以上360μm以下の細孔径の範囲での積算細孔容積Vに対する、前記積算細孔容積Vの割合が50%以上である、請求項1に記載の研磨パッド。
  3.  前記樹脂シートにおける10μm以上の開孔を対象として測定される平均開孔径が、50μm以上200μm以下である、請求項1又は2に記載の研磨パッド。
  4.  前記樹脂シートの前記細孔分布において、0.010μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置が、0.010μm以上1.0μm以下の細孔径の範囲内にある、請求項1~3のいずれか1項に記載の研磨パッド。
  5.  前記樹脂シートは、ミクロ相分離構造を有する、請求項1~4のいずれか1項に記載の研磨パッド。
  6.  前記樹脂シートがポリウレタンを含む、請求項1~5のいずれか1項に記載の研磨パッド。
  7.  請求項1~6のいずれか1項に記載の研磨パッドを製造する方法であって、
     少なくとも1種のプレポリマーと少なくとも2種の硬化剤との混合液を硬化させることにより、ミクロ相分離構造を有する樹脂シートを得る工程を含む、研磨パッドの製造方法。
  8.  前記硬化剤が、NH当量が100以上300以下である第1の硬化剤と、OH当量が1000以上2000以下である第2の硬化剤と、を含む、請求項7に記載の研磨パッドの製造方法。
  9.  研磨スラリーの存在下、請求項1~6のいずれか1項に記載の研磨パッドを用いて、被研磨物を研磨する研磨工程を有する、研磨加工物の製造方法。
  10.  細孔を有する樹脂シートを備える、研磨パッドであって、
     接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した前記樹脂シートの細孔分布において、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積Vが、0.020cm/g以上0.100cm/g以下であり、
     前記樹脂シートの密度が、0.9g/cm以上1.3g/cm以下である、研磨パッド。
  11.  前記樹脂シートの前記細孔分布において、0.050μm以上0.100μm未満の細孔径の範囲での積算細孔容積V’が、0.000cm/g以上0.120cm/g以下である、請求項10に記載の研磨パッド。
  12.  前記樹脂シートの前記細孔分布において、0.100μm以上360μm以下の細孔径の範囲での積算細孔容積Vに対する、前記積算細孔容積Vの割合が、50%以上である、請求項10又は11に記載の研磨パッド。
  13.  前記樹脂シートの前記細孔分布において、0.050μm以上360μm以下の細孔径の範囲での積算細孔容積V’に対する、前記積算細孔容積Vの割合が、50%以上である、請求項10~12のいずれか1項に記載の研磨パッド。
  14.  前記樹脂シートの前記細孔分布において、0.100μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置が、0.100μm以上10.0μm以下の細孔径の範囲内にある、請求項10~13のいずれか1項に記載の研磨パッド。
  15.  前記樹脂シートの前記細孔分布において、0.050μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置が、0.050μm以上10.0μm以下の細孔径の範囲内にある、請求項10~14のいずれか1項に記載の研磨パッド。
  16.  前記樹脂シートの前記細孔分布において、0.100μm以上360μm以下の細孔径の範囲での積算細孔容積Vが、0.040cm/g以上0.120cm/g以下である、請求項10~15のいずれか1項に記載の研磨パッド。
  17.  前記樹脂シートの前記細孔分布において、0.050μm以上360μm以下の細孔径の範囲での積算細孔容積V’が、0.040cm/g以上0.200cm/g以下である、請求項10~16のいずれか1項に記載の研磨パッド。
  18.  前記樹脂シートが、ミクロ相分離構造を有する、請求項10~17のいずれか1項に記載の研磨パッド。
  19.  前記樹脂シートが、ポリウレタンを含む、請求項10~18のいずれか1項に記載の研磨パッド。
  20.  細孔を有する樹脂シートを備える、研磨パッドであって、
     接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した前記樹脂シートの細孔分布において、0.050μm以上10.0μm以下の細孔径の範囲での積算細孔容積V’’が、0.020cm/g以上0.140cm/g以下であり、
     前記樹脂シートの密度が0.9g/cm以上1.3g/cm以下である、研磨パッド。
  21.  請求項10~20のいずれか1項に記載の研磨パッドを製造する方法であって、
     少なくとも1種のプレポリマーと少なくとも2種の硬化剤との混合液を硬化させることにより、ミクロ相分離構造を有する樹脂シートを得る工程を含む、研磨パッドの製造方法。
  22.  前記硬化剤が、NH当量が100以上300以下である第1の硬化剤と、OH当量が200以上500以下である第2の硬化剤と、OH当量が1000以上2000以下である第3の硬化剤と、を含む、請求項21に記載の研磨パッドの製造方法。
  23.  研磨スラリーの存在下、請求項10~20のいずれか1項に記載の研磨パッドを用いて、被研磨物を研磨する研磨工程を有する、研磨加工物の製造方法。
  24.  細孔を有する樹脂シートを備える、ラッピングパッドであって、
     接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した前記樹脂シートの細孔分布において、0.010μm以上1.0μm以下の細孔径の範囲での積算細孔容積Vが0.21cm/g以上1.00cm/g以下であり、
     前記樹脂シートの密度が0.3g/cm以上0.9g/cm以下である、ラッピングパッド。
  25.  前記樹脂シートの前記細孔分布において、0.010μm以上360μm以下の細孔径の範囲での積算細孔容積Vに対する、前記積算細孔容積Vの割合が50%以上である、請求項24に記載のラッピングパッド。
  26.  前記樹脂シートにおける10μm以上の開孔を対象として測定される平均開孔径が、50μm以上200μm以下である、請求項24又は25に記載のラッピングパッド。
  27.  前記樹脂シートの前記細孔分布において、0.010μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置が、0.010μm以上1.0μm以下の細孔径の範囲内にある、請求項24~26のいずれか1項に記載のラッピングパッド。
  28.  前記樹脂シートは、ミクロ相分離構造を有する、請求項24~27のいずれか1項に記載のラッピングパッド。
  29.  前記樹脂シートがポリウレタンを含む、請求項24~28のいずれか1項に記載のラッピングパッド。
  30.  請求項24~29のいずれか1項に記載のラッピングパッドを製造する方法であって、
     少なくとも1種のプレポリマーと少なくとも2種の硬化剤との混合液を硬化させることにより、ミクロ相分離構造を有する樹脂シートを得る工程を含む、ラッピングパッドの製造方法。
  31.  前記硬化剤が、NH当量が100以上300以下である第1の硬化剤と、OH当量が1000以上2000以下である第2の硬化剤と、を含む、請求項30に記載のラッピングパッドの製造方法。
  32.  スラリーの存在下、請求項24~29のいずれか1項に記載のラッピングパッドを用いて、被加工物をラップ加工するラッピング工程を有する、ラップ加工物の製造方法。
  33.  細孔を有する樹脂シートを備える、ラッピングパッドであって、
     接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した前記樹脂シートの細孔分布において、0.100μm以上10.0μm以下の細孔径の範囲での積算細孔容積Vが、0.020cm/g以上0.100cm/g以下であり、
     前記樹脂シートの密度が、0.9g/cm以上1.3g/cm以下である、ラッピングパッド。
  34.  前記樹脂シートの前記細孔分布において、0.050μm以上0.100μm未満の細孔径の範囲での積算細孔容積V’が、0.000cm/g以上0.120cm/g以下である、請求項33に記載のラッピングパッド。
  35.  前記樹脂シートの前記細孔分布において、0.100μm以上360μm以下の細孔径の範囲での積算細孔容積Vに対する、前記積算細孔容積Vの割合が、50%以上である、請求項33又は34に記載のラッピングパッド。
  36.  前記樹脂シートの前記細孔分布において、0.050μm以上360μm以下の細孔径の範囲での積算細孔容積V’に対する、前記積算細孔容積Vの割合が、50%以上である、請求項33~35のいずれか1項に記載のラッピングパッド。
  37.  前記樹脂シートの前記細孔分布において、0.100μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置が、0.100μm以上10.0μm以下の細孔径の範囲内にある、請求項33~36のいずれか1項に記載のラッピングパッド。
  38.  前記樹脂シートの前記細孔分布において、0.050μm以上360μm以下の細孔径の範囲における最大ピークのピーク位置が、0.050μm以上10.0μm以下の細孔径の範囲内にある、請求項33~37のいずれか1項に記載のラッピングパッド。
  39.  前記樹脂シートの前記細孔分布において、0.100μm以上360μm以下の細孔径の範囲での積算細孔容積Vが、0.040cm/g以上0.120cm/g以下である、請求項33~38のいずれか1項に記載のラッピングパッド。
  40.  前記樹脂シートの前記細孔分布において、0.050μm以上360μm以下の細孔径の範囲での積算細孔容積V’が、0.040cm/g以上0.200cm/g以下である、請求項33~39のいずれか1項に記載のラッピングパッド。
  41.  前記樹脂シートが、ミクロ相分離構造を有する、請求項33~40のいずれか1項に記載のラッピングパッド。
  42.  前記樹脂シートが、ポリウレタンを含む、請求項33~41のいずれか1項に記載のラッピングパッド。
  43.  細孔を有する樹脂シートを備える、ラッピングパッドであって、
     接触角130°、水銀表面張力485dyn/cmとした水銀圧入法により測定した前記樹脂シートの細孔分布において、0.050μm以上10.0μm以下の細孔径の範囲での積算細孔容積V’’が、0.020cm/g以上0.140cm/g以下であり、
     前記樹脂シートの密度が0.9g/cm以上1.3g/cm以下である、ラッピングパッド。
  44.  請求項33~43のいずれか1項に記載のラッピングパッドを製造する方法であって、
     少なくとも1種のプレポリマーと少なくとも2種の硬化剤との混合液を硬化させることにより、ミクロ相分離構造を有する樹脂シートを得る工程を含む、ラッピングパッドの製造方法。
  45.  前記硬化剤が、NH当量が100以上300以下である第1の硬化剤と、OH当量が200以上500以下である第2の硬化剤と、OH当量が1000以上2000以下である第3の硬化剤と、を含む、請求項44に記載のラッピングパッドの製造方法。
  46.  スラリーの存在下、請求項33~43のいずれか1項に記載のラッピングパッドを用いて、被加工物をラップ加工するラッピング工程を有する、ラップ加工物の製造方法。
PCT/JP2021/048381 2020-12-25 2021-12-24 研磨パッド、その製造方法、及び研磨加工物の製造方法、並びに、ラッピングパッド、その製造方法、及びラップ加工物の製造方法 WO2022138958A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237017705A KR20230121042A (ko) 2020-12-25 2021-12-24 연마 패드, 그 제조 방법 및 연마 가공물의 제조 방법, 및 랩핑 패드, 그 제조 방법 및 랩 가공물의 제조 방법
CN202180078379.6A CN116568734A (zh) 2020-12-25 2021-12-24 研磨垫、其制造方法及研磨加工物的制造方法、以及抛光垫、其制造方法及抛光加工物的制造方法

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2020-216952 2020-12-25
JP2020216946 2020-12-25
JP2020-217005 2020-12-25
JP2020216952 2020-12-25
JP2020217005 2020-12-25
JP2020-216946 2020-12-25
JP2020216988 2020-12-25
JP2020-216988 2020-12-25
JP2021-205119 2021-12-17
JP2021205047A JP2022103096A (ja) 2020-12-25 2021-12-17 研磨パッド、その製造方法、及び研磨加工物の製造方法
JP2021205051A JP2022103097A (ja) 2020-12-25 2021-12-17 ラッピングパッド、その製造方法、及びラップ加工物の製造方法
JP2021205119A JP2022103100A (ja) 2020-12-25 2021-12-17 ラッピングパッド、その製造方法、及びラップ加工物の製造方法
JP2021205117A JP2022103099A (ja) 2020-12-25 2021-12-17 研磨パッド、その製造方法、及び研磨加工物の製造方法
JP2021-205051 2021-12-17
JP2021-205117 2021-12-17
JP2021-205047 2021-12-17

Publications (1)

Publication Number Publication Date
WO2022138958A1 true WO2022138958A1 (ja) 2022-06-30

Family

ID=82158278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048381 WO2022138958A1 (ja) 2020-12-25 2021-12-24 研磨パッド、その製造方法、及び研磨加工物の製造方法、並びに、ラッピングパッド、その製造方法、及びラップ加工物の製造方法

Country Status (3)

Country Link
KR (1) KR20230121042A (ja)
TW (1) TW202239829A (ja)
WO (1) WO2022138958A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348271A (ja) * 2000-06-01 2001-12-18 Tosoh Corp 研磨用成形体及びこれを用いた研磨用定盤
JP2005512832A (ja) * 2001-12-20 2005-05-12 ピーピージー インダストリーズ オハイオ, インコーポレイテッド 研磨パッド
JP2005236200A (ja) * 2004-02-23 2005-09-02 Toyo Tire & Rubber Co Ltd 研磨パッドおよびそれを使用する半導体デバイスの製造方法
JP2005539398A (ja) * 2002-09-25 2005-12-22 ピーピージー インダストリーズ オハイオ, インコーポレイテッド 平坦化するための研磨パッド
JP2009514690A (ja) * 2005-11-02 2009-04-09 キャボット マイクロエレクトロニクス コーポレイション 制御された細孔径を有する微孔質cmp材料の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3690545A (en) 1970-11-27 1972-09-12 Continental Can Co Contour bottom bag
JPS5735635A (en) 1980-08-12 1982-02-26 Akebono Brake Ind Co Ltd Annealing electrode utilizing spot welding machine
US6913517B2 (en) 2002-05-23 2005-07-05 Cabot Microelectronics Corporation Microporous polishing pads
JP2014111296A (ja) 2012-11-05 2014-06-19 Toyo Tire & Rubber Co Ltd 研磨パッド及びその製造方法
KR102398130B1 (ko) 2014-10-31 2022-05-13 주식회사 쿠라레 연마층용 비다공성 성형체, 연마 패드 및 연마 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348271A (ja) * 2000-06-01 2001-12-18 Tosoh Corp 研磨用成形体及びこれを用いた研磨用定盤
JP2005512832A (ja) * 2001-12-20 2005-05-12 ピーピージー インダストリーズ オハイオ, インコーポレイテッド 研磨パッド
JP2005539398A (ja) * 2002-09-25 2005-12-22 ピーピージー インダストリーズ オハイオ, インコーポレイテッド 平坦化するための研磨パッド
JP2005236200A (ja) * 2004-02-23 2005-09-02 Toyo Tire & Rubber Co Ltd 研磨パッドおよびそれを使用する半導体デバイスの製造方法
JP2009514690A (ja) * 2005-11-02 2009-04-09 キャボット マイクロエレクトロニクス コーポレイション 制御された細孔径を有する微孔質cmp材料の製造方法

Also Published As

Publication number Publication date
TW202239829A (zh) 2022-10-16
KR20230121042A (ko) 2023-08-17

Similar Documents

Publication Publication Date Title
KR100909605B1 (ko) 연마 패드 및 그 제조 방법
KR100949560B1 (ko) 연마 패드
JP3754436B2 (ja) 研磨パッドおよびそれを使用する半導体デバイスの製造方法
TWI488712B (zh) Polishing pad and manufacturing method thereof
SG177963A1 (en) Polishing pad and method for producing the same
KR20140039080A (ko) 연마 패드
KR20200128180A (ko) 연마 패드 및 그의 제조 방법
JP5426469B2 (ja) 研磨パッドおよびガラス基板の製造方法
KR101399519B1 (ko) 연마 패드 및 그 제조 방법, 및 반도체 디바이스의 제조 방법
TWI429503B (zh) Polishing pad and manufacturing method thereof, and manufacturing method of semiconductor device
JP2020055040A (ja) 研磨パッド及び研磨加工物の製造方法
WO2022138958A1 (ja) 研磨パッド、その製造方法、及び研磨加工物の製造方法、並びに、ラッピングパッド、その製造方法、及びラップ加工物の製造方法
JP2022103100A (ja) ラッピングパッド、その製造方法、及びラップ加工物の製造方法
JP2022103097A (ja) ラッピングパッド、その製造方法、及びラップ加工物の製造方法
JP2022103096A (ja) 研磨パッド、その製造方法、及び研磨加工物の製造方法
JP2022103099A (ja) 研磨パッド、その製造方法、及び研磨加工物の製造方法
EP3858547A1 (en) Polishing pad and method for producing polished article
CN116568734A (zh) 研磨垫、其制造方法及研磨加工物的制造方法、以及抛光垫、其制造方法及抛光加工物的制造方法
JP2021003790A (ja) 研磨パッド
US20240149389A1 (en) Polishing pad and method for producing polished product
JP7384608B2 (ja) 研磨パッド及び研磨加工物の製造方法
JP2024051595A (ja) 研磨パッド、及び研磨パッドの製造方法
JP2022155532A (ja) 研磨パッド及び研磨加工物の製造方法
KR20230162661A (ko) 연마 패드 및 연마 가공물의 제조 방법
JP2024028398A (ja) 研磨パッド及び研磨加工物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911095

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180078379.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21911095

Country of ref document: EP

Kind code of ref document: A1