WO2022138764A1 - 再生補強繊維の製造方法 - Google Patents

再生補強繊維の製造方法 Download PDF

Info

Publication number
WO2022138764A1
WO2022138764A1 PCT/JP2021/047695 JP2021047695W WO2022138764A1 WO 2022138764 A1 WO2022138764 A1 WO 2022138764A1 JP 2021047695 W JP2021047695 W JP 2021047695W WO 2022138764 A1 WO2022138764 A1 WO 2022138764A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
fiber
resin
resin material
reinforced resin
Prior art date
Application number
PCT/JP2021/047695
Other languages
English (en)
French (fr)
Inventor
春菜 円子
Original Assignee
株式会社ミライ化成
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=82157000&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022138764(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社ミライ化成 filed Critical 株式会社ミライ化成
Priority to KR1020237024823A priority Critical patent/KR20230124997A/ko
Priority to CN202180085700.3A priority patent/CN116635465A/zh
Priority to JP2022567565A priority patent/JP7240567B2/ja
Priority to EP21910904.8A priority patent/EP4269485A4/en
Priority to US18/267,460 priority patent/US20240042651A1/en
Publication of WO2022138764A1 publication Critical patent/WO2022138764A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • C08J11/08Recovery or working-up of waste materials of polymers without chemical reactions using selective solvents for polymer components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/26Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing carboxylic acid groups, their anhydrides or esters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
    • D06M11/11Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with halogen acids or salts thereof
    • D06M11/13Ammonium halides or halides of elements of Groups 1 or 11 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with hydrogen peroxide or peroxides of metals; with persulfuric, permanganic, pernitric, percarbonic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/51Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof
    • D06M11/55Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof with sulfur trioxide; with sulfuric acid or thiosulfuric acid or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/64Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with nitrogen oxides; with oxyacids of nitrogen or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/68Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with phosphorus or compounds thereof, e.g. with chlorophosphonic acid or salts thereof
    • D06M11/70Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with phosphorus or compounds thereof, e.g. with chlorophosphonic acid or salts thereof with oxides of phosphorus; with hypophosphorous, phosphorous or phosphoric acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0293Dissolving the materials in gases or liquids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for producing a recycled reinforcing fiber.
  • Fiber reinforced plastic which uses fibers such as glass fiber as a reinforcing material, is a lightweight, high-strength, and highly elastic material, and is widely used for parts such as small ships, automobiles, and railroad vehicles. ing.
  • CFRP carbon fiber reinforced plastics
  • CFRP carbon fiber reinforced plastics
  • the methods for recovering the reinforcing fibers of the fiber-reinforced plastic are mainly the thermal decomposition method in which the resin component is thermally decomposed and removed by heat treatment to recover the reinforcing fiber, and the thermal decomposition method in which the resin component is dissolved and removed and reinforced by using a solvent.
  • Examples include a solvent method for recovering fibers. Of these, the solvent method is advantageous from the viewpoint of resource recycling because the resin component can be easily recovered.
  • Patent Document 1 describes a step of immersing a carbon fiber composite material in an acidic aqueous solution to elute at least a part of the resin component of the carbon fiber composite material to obtain a substantially fibrous material, and a step of immersing the substantially fibrous material in an alkaline aqueous solution.
  • a method for producing carbon fiber has been proposed, which comprises a step of immersing in a fiber to obtain a fibrous material by eluting at least a part of the resin content of the fibrous material.
  • Patent Document 2 includes a step of dissolving a base material of a carbon fiber reinforced plastic material using a solution containing phosphoric acid, and the phosphoric acid concentration of the solution is 110% by mass or more.
  • a carbon fiber recovery method has been proposed in which the melting step is performed at a temperature of 200 ° C. or higher and 300 ° C. or lower.
  • the efficiency of removing the resin component is not sufficiently high.
  • the fiber-reinforced resin material is made in consideration of the permeation of the treatment liquid containing the solvent. Is finely cut into chips of about several centimeters, and then the resin component is removed.
  • the fiber-reinforced resin material is cut into small pieces in this way, the length of the regenerated reinforcing fiber recovered from the fiber-reinforced resin material is inevitably shortened, and the reinforcing fibers contained in the fiber-reinforced resin material before recovery are inevitably shortened. It becomes difficult to maintain the performance, and the use of the recovered reinforcing fiber is limited.
  • long-term treatment under harsh conditions such as high temperature is required.
  • the type of the resin component contained in the fiber-reinforced resin material also has a great influence on the removal efficiency of the resin component.
  • the amine-cured epoxy resin was very difficult to dissolve in the treatment liquid, and it was difficult to apply the solvent method.
  • the reinforcing fibers can be recovered by the solvent method, the reinforcing fibers can be obtained from more fiber-reinforced resin materials. It will be possible to collect it.
  • an object of the present invention is to provide a method for producing a regenerated reinforcing fiber capable of efficiently recovering a reinforcing fiber for a fiber-reinforced resin material containing a resin component having a basic chemical structure while being a solvent method. To do.
  • the present inventors are investigating the recovery of reinforcing fibers from a fiber-reinforced resin material containing a resin component having a basic chemical structure (hereinafter, also simply referred to as “basic structure”), using an acidic solution. It has been found that the resin component having a basic structure is efficiently dissolved in a solvent by swelling the fiber-reinforced resin material and then oxidizing the resin component with an oxidizing agent. Then, based on the above findings, the present inventors further studied and came to the present invention.
  • the gist of the present invention is as follows.
  • a step of treating a fiber-reinforced resin material containing a resin and a reinforcing fiber with an acidic solution containing an acid comprises a step of treating the fiber-reinforced resin material with a treatment liquid containing an oxidizing agent, and dissolving at least a part of the resin of the fiber-reinforced resin material in the treatment liquid.
  • the acid having oxidizing power is one or more selected from the group consisting of nitric acid, a mixed acid of sulfuric acid and sulfuric acid, a mixed acid of nitric acid and hydrochloric acid (Osui), and a mixed solution of hydrogen peroxide and sulfuric acid.
  • the method for producing a regenerated reinforcing fiber according to the present invention includes a step of treating a fiber-reinforced resin material containing a resin and a reinforcing fiber with an acidic solution containing an acid (acid treatment step), and a step of treating the fiber-reinforced resin material with an oxidizing agent. It has a step of treating with a treatment liquid and dissolving at least a part of the resin of the fiber-reinforced resin material in the treatment liquid (oxidation step), and the resin has a basic chemical structure (basic structure). ) Is included.
  • each step of the method for producing the regenerated reinforcing fiber according to the present embodiment will be described in order.
  • the fiber reinforced resin material is prepared prior to the acid treatment process.
  • the fiber reinforced resin material is a resin material reinforced by embedding reinforcing fibers in a matrix resin (also simply referred to as "resin”).
  • a matrix resin also simply referred to as "resin”
  • Such fiber reinforced resin materials are not particularly limited, and for example, carbon fiber reinforced plastics (CFRP), glass fiber reinforced plastics (GFRP), and glass long fiber mat reinforced heat.
  • CFRP carbon fiber reinforced plastics
  • GFRP glass fiber reinforced plastics
  • the carbon fiber reinforced plastic is used in a relatively large amount and the amount of energy consumed during the production of the carbon fiber is large, the used carbon fiber reinforced plastic and / or the carbon fiber in this prepreg is used. It is desirable to collect and reuse it.
  • the reinforcing fibers in the fiber-reinforced resin material exist in the state of a fiber bundle (toe) in which a plurality of reinforcing fibers are aligned in one direction, or a woven fabric or a non-woven fabric in which the fiber bundle of the reinforcing fibers is used for warps and wefts.
  • each reinforcing fiber may be present in a state of being arranged at a random position and direction.
  • the reinforcing fiber may be in the form of chips, and in this case, for example, chopped fibers obtained by cutting fiber bundles, chip-shaped woven fabrics, and the like can be mentioned.
  • the resin constituting the fiber reinforced resin material contains a resin component having a basic structure.
  • the resin component having a basic structure can be swelled by coordinating hydrogen ions (protons) in an acidic solution in an acid treatment step described later.
  • the oxidizing agent can sufficiently permeate the swelled resin component having a basic structure in the oxidation step described later, and as a result, the dissolution of the resin component in the treatment liquid is promoted.
  • the basic structure of the resin component is not particularly limited, but is amide bond, imide bond, azo group, diazo group, urea bond, urethane bond, peptide bond, isocyanato group, hydrangea group, etc., or derived or similar thereof. Examples thereof include a chemical structure, and the resin component having a basic structure may contain one or more of these. Among the above, the method according to the present embodiment can be suitably used for swelling and decomposing a resin component having a 1, 2 or tertiary amide bond as a basic structure.
  • the resin component having a basic structure preferably contains a chemical bond having a basic structure in its main chain structure. This makes it possible to further swell the reaction with the basic chemical structure in the acid treatment step, and promote the decomposition of the resin component and the subsequent dissolution in the treatment liquid in the oxidation step described later. Can be done.
  • the resin component having such a basic structure include amine-cured epoxy resin, urethane resin, polyimide resin, polyamide, melamine resin, aniline resin, urea resin and the like, and the resin may be one or two of these. More than a seed can be contained as a resin component.
  • the resin component having a basic structure may contain a basic structure in its side chain.
  • Examples of such a resin component include those having a basic structure as described above in the side chains of various resin components described later.
  • the content of the resin component having a basic structure in the resin in the fiber-reinforced resin material is not particularly limited, but is, for example, 1% by mass or more, preferably 5% by mass or more, and more preferably 10% by mass or more. More preferably, the resin is essentially composed of a resin component having a basic structure, and most preferably the resin is composed of a resin component having a basic structure. This makes it easier to remove the resin from the fiber-reinforced resin material and recover the reinforcing fibers.
  • the resin in the fiber reinforced resin material may have a resin component other than the resin component having a basic structure.
  • the resin component is not particularly limited, and may be, for example, either a thermosetting resin or a thermoplastic resin. Further, the thermosetting resin may be an uncured one or a cured product.
  • thermosetting resin is not particularly limited, and examples thereof include epoxy resin, unsaturated polyester resin, vinyl ester resin, phenol resin, cyanate resin, polycarbonate resin, polyacetal resin, and the like, and one of them is used alone. Alternatively, two or more types can be used in combination.
  • thermoplastic resin is not particularly limited, and examples thereof include polyolefins, polyesters, polycarbonates, acrylic resins, acrylonitrile-butadiene-styrene copolymers, polyether ketones, polyphenylene sulfides, and the like, and one of these may be used alone. Alternatively, two or more types can be used in combination.
  • the fiber reinforced resin material itself may be in the form of a sheet or may be in the form of a cut chip.
  • the method according to the present embodiment can remove the resin relatively efficiently, it can be suitably applied to a sheet-shaped fiber-reinforced resin material in which it has been difficult to recover the reinforcing fibers in the past.
  • the size of the fiber reinforced resin material is not particularly limited. However, considering that the direction of the reinforcing fiber in the fiber reinforced resin material is maintained, the length of one piece of the fiber reinforced resin material can be, for example, 100 mm or more, preferably 500 mm or more and 3000 mm or less. More specifically, as the fiber reinforced resin material, for example, a laminated fiber reinforced resin material sheet having a width of 1000 mm ⁇ 500 mm and a thickness of about 300 mm can be used. In the relatively large fiber-reinforced resin material as described above, the permeation of the treatment liquid is difficult to proceed, and it is difficult to remove the resin and recover the reinforcing fibers. However, since the method according to the present embodiment can remove the resin relatively efficiently, it can be applied to a relatively large fiber reinforced resin material.
  • Acid treatment step In this step, the prepared fiber-reinforced resin material is treated with an acidic solution containing an acid. As described above, by treating the fiber-reinforced resin material with an acidic solution containing an acid, hydrogen ions in the acidic solution are coordinated with the resin component having a basic structure to form a salt, and as a result, the basic structure is formed. The resin component having the above, and thus the resin itself swells. As a result, the oxidizing agent easily permeates the resin in the oxidation step described later, and the decomposition / elution of the resin in the oxidation step is promoted.
  • the acidic solution in this step contains at least an acid and optionally a solvent.
  • an inorganic acid an organic acid or a mixture thereof can be used.
  • the inorganic acid include sulfuric acid, hydrochloric acid, phosphoric acid and the like, and one of these can be used alone or in combination of two or more.
  • phosphoric acid include orthophosphoric acid, metaphosphoric acid, hypophosphoric acid, phosphoric acid, hypophosphoric acid, pyrophosphoric acid, trimetaphosphoric acid, tetramethaphosphoric acid, pyrophosphoric acid and the like.
  • the organic acid include formic acid, acetic acid, citric acid, succinic acid, oxalic acid and the like.
  • the acid contains at least one selected from the group consisting of inorganic acids, particularly sulfuric acid, hydrochloric acid, phosphoric acid and acetic acid, because the resin component can be suitably swollen.
  • the acid dissociation constant pKa of the component having the highest molar concentration among the components contained in the acid is not particularly limited, but is preferably 5.0 or less, more preferably 1.5 or less. As described above, when the pKa of the component having the highest molar concentration among the components contained in the acid is sufficiently small, hydrogen ions are easily released into the acidic solution, and as a result, the resin component can be efficiently swollen. .. When the component having the highest molar concentration among the components contained in the acid has a plurality of acid dissociation constants, the first stage, that is, the smaller acid dissociation constant is preferably the above value.
  • the concentration of the acid contained in the acidic solution is not particularly limited, but is, for example, 0.5 mol / L or more, preferably 1.0 mol / L or more, and more preferably 3.5 mol / L or more. As a result, hydrogen ions are easily released into the acidic solution, and as a result, the resin component can be efficiently swollen.
  • the upper limit of the acid concentration is not limited as long as it can exist as an acidic solution, and varies depending on the type of acid.
  • the acidic solution usually contains a solvent.
  • the solvent is not particularly limited as long as it can be mixed with the above-mentioned acid and is chemically stable with respect to the acid, and for example, water and / or various organic solvents can be used.
  • the organic solvent is not particularly limited, and examples thereof include alcohol-based solvents, ether-based solvents, ketone-based solvents, aromatic hydrocarbons, halogenated aromatic hydrocarbons, halogenated aliphatic hydrocarbons, and the like. One type can be used alone or two or more types can be used in combination.
  • Examples of the alcohol-based solvent include aliphatic alcohol-based solvents, aromatic alcohol-based solvents, glycol-based solvents, and other polyhydric alcohols such as glycerin.
  • Examples of the fatty alcohol system include 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 3-pentanol and 2-.
  • Examples thereof include acyclic fatty alcohols such as cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, and alicyclic alcohols such as 4-methylcyclohexanol.
  • Examples of the aromatic alcohol solvent include phenol, cresol, benzyl alcohol, phenoxyethanol and the like.
  • the glycol-based solvent include ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, and diethylene glycol.
  • Monobutyl ether triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, tetraethylene glycol, polyethylene glycol (molecular weight 200-400), 1,2-propanediol, 1,3-propanediol, 1,2 -Butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, dipropylene glycol and the like can be mentioned.
  • ether solvent examples include aliphatic ethers such as dimethyl ether, diethyl ether, ethyl methyl ether, dipropyl ether, diisopropyl ether, dibutyl ether and dihexyl ether, 1,3-dioxolane, 1,4-dioxane, tetrahydrofuran and furan.
  • cyclic ethers such as, anisole, phenetol, diphenyl ether, and aromatic-containing ethers such as benzofuran.
  • ketone solvent examples include acetone, methyl ethyl ketone, 2-pentanone, 3-pentanone, 2-hexanone, methyl isobutyl ketone, 2-heptanone, 4-ptanone, diisobutyl ketone, cyclohexanone, methylcyclohexanone, holon, isophorone, and acetylacetone.
  • acetophenone diethyl ketone, diacetone alcohol and the like.
  • aromatic hydrocarbons include benzene, toluene, xylene and the like.
  • halogenated aromatic hydrocarbon include orthochlorophenol, orthochlorobenzene and the like.
  • halogenated aliphatic hydrocarbon include chloroform, methylene chloride and the like.
  • the solvent contains water in order to easily mix with the acid and appropriately dissociate the hydrogen ion in the acid.
  • the solvent may be water and a mixed solvent of an organic solvent miscible with water.
  • the organic solvent miscible with water include alcohol-based solvents and ketone-based solvents.
  • the content of the solvent contained in the acidic solution is not particularly limited and can be the balance of other components such as acid.
  • the fiber reinforced resin material is treated with the acidic solution as described above.
  • the temperature of the acidic solution during the treatment is not particularly limited, and is, for example, 0 ° C. or higher and 100 ° C. or lower, preferably 50 ° C. or higher and 100 ° C. or lower.
  • the treatment time with the acidic solution is not particularly limited, and is 5 minutes or more and 1200 minutes or less, preferably 10 minutes or more and 120 minutes or less after reaching the target temperature.
  • the treatment with an acidic solution may be carried out under normal pressure, under reduced pressure, or under pressure.
  • the treatment with an acidic solution is carried out under pressure, for example, the treatment can be carried out in an atmosphere of 0.11 MPa or more and 7.0 MPa or less, particularly 0.11 MPa or more and 2.0 MPa or less.
  • the treatment with an acidic solution is preferably performed under normal pressure.
  • the treatment of the fiber-reinforced resin material with the acidic solution is not particularly limited, and may be performed by immersing the fiber-reinforced resin material in the acidic solution, or spraying the acidic solution onto the fiber-reinforced resin material by spraying or the like. Any means can be adopted in which the acidic solution and the fiber-reinforced resin material can come into contact with each other. Further, the acidic solution may be stirred during the treatment with the acidic solution. Further, the fiber-reinforced resin material may be fixed by a fixative so that the fiber bundle of the fiber-reinforced resin material is maintained.
  • the resin in the fiber-reinforced resin material swells, but a part thereof may be decomposed and / or dissolved in an acidic solution.
  • Oxidation step In this step, the fiber-reinforced resin material containing the resin swollen by the acidic solution is treated with an oxidizing agent, the fiber-reinforced resin material is treated with a treatment liquid containing an oxidizing agent, and at least the resin of the fiber-reinforced resin material is treated. A part is dissolved in the treatment liquid.
  • the oxidizing agent easily penetrates into the resin, and as a result, in this step, the resin is efficiently decomposed and eluted by the oxidizing agent.
  • the treatment liquid in this step contains at least an oxidizing agent and optionally contains a solvent.
  • the oxidizing agent is not particularly limited, and is not particularly limited, such as nitric acid, hot concentrated sulfuric acid, mixed acid of sulfuric acid and nitric acid, mixed acid of nitric acid and hydrochloric acid (Osui), mixed solution of hydrogen peroxide and sulfuric acid, perchloric acid, and chloric acid.
  • hypochloric acid chloric acid, perbromic acid, bromic acid, hypobromic acid, bromine acid, periodic acid, iodic acid, hypoaiodic acid, subiodic acid and other oxidizing acids, these Alkaline (earth) metal salts, oxygen, ozone, hydrogen peroxide, oxygen-based oxidizing agents such as acetone peroxide (reaction product of hydrogen peroxide and acetone), chlorine, chlorine dioxide, bromine, fluorine, iodine, etc.
  • Halogen-based oxidizing agents and the like can be mentioned, and one of these can be used alone or in combination of two or more.
  • the alkali metal element include lithium, sodium, potassium, rubidium, cesium and franchium
  • examples of the alkaline earth metal include calcium, strontium, barium and radium.
  • the oxidizing agent preferably contains an acid having an oxidizing power because it is relatively easy to handle and the liquid property of the treatment liquid can be stabilized.
  • the oxidizing agent is more preferably composed of nitric acid, a mixed acid of sulfuric acid and sulfuric acid, a mixed acid of nitric acid and hydrochloric acid (Osui), and a mixed solution of hydrogen peroxide and sulfuric acid.
  • One or more selected from the group particularly preferably contains nitric acid or a mixed solution of hydrogen peroxide and sulfuric acid.
  • the concentration of the oxidizing agent in the treatment liquid is not particularly limited, and can be appropriately set according to the amount of the resin component in the fiber-reinforced resin material to be treated.
  • the concentration of the oxidizing agent in the treatment liquid is, for example, 5% by mass or more and 80% by mass or less, preferably 20% by mass or more and 50% by mass or less.
  • the treatment liquid usually contains a solvent.
  • the solvent is not particularly limited as long as it is stable with respect to the oxidizing agent to be used.
  • water or various organic solvents listed as the solvent of the above-mentioned treatment liquid may be used alone or in combination of two or more. can.
  • the solvent contained in the treatment liquid preferably contains water or an organic solvent contained in the solvent of the acidic solution described above.
  • the treatment liquid preferably contains one or more of these plurality of kinds of solvents.
  • the treatment liquid preferably contains water or a mixed solvent of an organic solvent miscible with water and water, and more preferably water, from the viewpoint of ease of handling and promotion of the oxidation reaction by the oxidizing agent.
  • the treatment liquid is preferably neutral or acidic, and more preferably acidic.
  • the pH of the treatment liquid at 25 ° C. is, for example, 5.0 or less, preferably 2.0 or less, and more preferably 1.5 or less.
  • the content of the solvent contained in the treatment liquid is not particularly limited, and can be the balance of other components such as an oxidizing agent.
  • the fiber reinforced resin material is treated with the treatment liquid as described above.
  • the temperature of the treatment liquid during the treatment is not particularly limited, and is, for example, 0 ° C. or higher and 100 ° C. or lower, preferably 50 ° C. or higher and 100 ° C. or lower.
  • the treatment time with the treatment liquid is not particularly limited, and is 5 minutes or more and 1200 minutes or less, preferably 10 minutes or more and 120 minutes or less after reaching the target temperature.
  • the treatment with the treatment liquid may be performed under normal pressure, reduced pressure, or pressurized.
  • the treatment with the treatment liquid is performed under pressure
  • the treatment can be performed in an atmosphere of 0.11 MPa or more and 7.0 MPa or less, particularly 0.11 MPa or more and 2.0 MPa or less. In consideration of safety and economy, it is preferable to perform the treatment with the treatment liquid under normal pressure.
  • the treatment of the fiber-reinforced resin material with the treatment liquid is not particularly limited, and may be performed by immersing the fiber-reinforced resin material in the treatment liquid, or spraying the treatment liquid onto the fiber-reinforced resin material by spraying or the like. Any means can be adopted in which the treatment liquid and the fiber-reinforced resin material can come into contact with each other. Further, the treatment liquid may be agitated during the treatment with the treatment liquid. Further, the fiber-reinforced resin material may be fixed by a fixative so that the fiber bundle of the fiber-reinforced resin material is maintained.
  • Cleaning step cleaning is performed as necessary. Cleaning can be performed by bringing the cleaning liquid into contact with the fiber reinforced resin material. Specifically, in the above oxidation step, it can be carried out by replacing the treatment liquid with a cleaning liquid. However, the temperature of the cleaning liquid and the cleaning time at the time of cleaning can be appropriately set.
  • water or various organic solvents listed as the solvent of the above-mentioned treatment liquid can be used alone or in combination of two or more.
  • organic solvent in addition to the above-mentioned solvent, the following ester-based solvent and amide-based solvent may be used.
  • ester solvent examples include methyl formate, ethyl formate, propyl formate, butyl formate, isobutyl formate, pentyl formate, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, isopentyl acetate, and the like.
  • amide solvent examples include formamide, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, 2-pyrrolidone and N-methyl-2.
  • -Pyrrolidone, caprolactam, carbamid acid ester and the like can be mentioned.
  • the cleaning liquid may contain a basic substance. By neutralizing with a basic substance to adjust the liquid property, the residual resin component and its reactant in the fiber-reinforced resin material can be removed.
  • Examples of the basic substance include inorganic basic substances such as lithium, alkali metals, hydroxides of alkaline earth metals, carbonates, hydrogen carbonates, sulfates, sulfites and nitrates, and dimethylamine and diethylamine. Amine compounds are mentioned, and one of them can be used alone or in combination of two or more.
  • Examples of the alkali metal include sodium, potassium, cesium, rubidium and the like.
  • Examples of the alkaline earth metal include beryllium, magnesium, calcium, strontium, barium and the like.
  • the above acid treatment step, oxidation step and cleaning step can be performed multiple times as needed.
  • the washing step may be performed after repeating the acid treatment step and the oxidation step a plurality of times.
  • the acid treatment step may be performed a plurality of times, then the oxidation step may be performed, and then the cleaning step may be performed a required number of times.
  • the acid treatment step, the oxidation step, and the washing step may be performed in this order as many times as necessary.
  • the fiber-reinforced resin material may be dried in a state where the resin component is dissolved and removed from the fiber-reinforced resin material as described above. Drying can be performed, for example, by contacting the fiber-reinforced resin material with a gas.
  • the gas to be brought into contact is not particularly limited, but from the viewpoint of safety, an inert gas such as air or nitrogen is preferable.
  • the gas to be contacted may be heated during drying. This promotes drying.
  • the temperature of the gas at the time of heating is, for example, 0 ° C. or higher and 400 ° C. or lower, preferably 80 ° C. or higher and 110 ° C. or lower.
  • the fiber-reinforced resin material may be dried while being fixed as needed. This makes it possible to dry the reinforcing fibers while maintaining the shape and orientation of the reinforcing fibers contained in the fiber reinforced resin material 100.
  • the regenerated reinforcing fiber can be obtained.
  • a fiber-reinforced resin material containing a resin containing a resin component having a basic structure is treated with an acidic solution to swell the resin.
  • the fiber-reinforced resin material containing the swollen resin is treated with a treatment liquid containing an oxidizing agent, and at least a part of the resin of the fiber-reinforced resin material is dissolved in the treatment liquid.
  • the oxidizing agent easily permeates the resin, and as a result, the resin is efficiently decomposed by the oxidizing agent and eluted in the treatment liquid.
  • the reinforcing fiber can be efficiently recovered for the fiber-reinforced resin material containing the resin component having a basic structure even though it is a solvent method.
  • the resin since the resin can be efficiently removed, it is not necessary to finely cut the fiber-reinforced resin material and then perform the resin dissolution treatment, unlike the conventional method.
  • the resin can be swollen with an acid to promote the permeation of the oxidizing agent into the resin, which is uniform and efficient. Resin can be removed.
  • a carbon fiber reinforced resin material was prepared as a sample.
  • the carbon fiber resin material used was a sheet having a length of about 30 cm, a width of 5 cm, and a thickness of about 1 mm.
  • the resin constituting the carbon fiber reinforced resin material was an amine-cured epoxy resin.
  • Example 2 The regenerated carbon fiber according to Example 2 was obtained in the same manner as in Example 1 except that the reaction product was neutralized and washed with a 10 mass% sodium hydroxide aqueous solution (2.8 mol / L) in the washing step.
  • Example 3 The regenerated carbon fiber according to Example 3 was obtained in the same manner as in Example 1 except that the oxidation step was carried out as follows.
  • the oxidation step treatment with a mixed solution of hydrogen peroxide and sulfuric acid was performed.
  • the carbon fiber reinforced resin material after the acid treatment step was immersed in a 95 wt% (18.0 mol / L) sulfuric acid aqueous solution heated to 80 ° C. for 15 minutes, and then 10% in terms of the volume of sulfuric acid.
  • a 35 wt% (11.6 mol / L) hydrogen hydrogen aqueous solution corresponding to the above was added dropwise over 5 minutes to the sulfuric acid aqueous solution in which the carbon fiber reinforced resin material was immersed.
  • Example 4 The regenerated carbon fiber according to Example 4 was obtained in the same manner as in Example 3 except that the reaction product was neutralized and washed with a 10 mass% sodium hydroxide aqueous solution (2.8 mol / L) in the washing step.
  • Example 5 Regenerated carbon according to Example 5 in the same manner as in Example 3 except that a 35 wt% (11.3 mol / L) hydrochloric acid aqueous solution was used instead of the 40 wt% (5.3 mol / L) sulfuric acid aqueous solution in the acid treatment step. Obtained fiber.
  • Example 6 Regenerated carbon according to Example 6 in the same manner as in Example 4 except that a 35 wt% (11.3 mol / L) hydrochloric acid aqueous solution was used instead of the 40 wt% (5.3 mol / L) sulfuric acid aqueous solution in the acid treatment step. Obtained fiber.
  • Example 7 Regeneration according to Example 5 in the same manner as in Example 3 except that a 40 wt% (5.1 mol / L) phosphoric acid aqueous solution was used instead of the 40 wt% (5.3 mol / L) sulfuric acid aqueous solution in the acid treatment step. Obtained carbon fiber.
  • Example 8 Regeneration according to Example 6 in the same manner as in Example 4 except that a 40 wt% (5.1 mol / L) phosphoric acid aqueous solution was used instead of the 40 wt% (5.3 mol / L) sulfuric acid aqueous solution in the acid treatment step. Obtained carbon fiber.
  • Comparative Example 1 The regenerated carbon fiber according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the acid treatment step was omitted and the immersion time of the carbon fiber reinforced resin material in the sulfuric acid aqueous solution in the oxidation step was 120 minutes.
  • Comparative Example 2 The regenerated carbon fiber according to Comparative Example 2 was obtained in the same manner as in Example 2 except that the acid treatment step was omitted and the immersion time of the carbon fiber reinforced resin material in the sulfuric acid aqueous solution in the oxidation step was 120 minutes.
  • the amount of residual resin of the obtained regenerated carbon fibers according to Examples 1 to 8 and Comparative Examples 1 to 4 was calculated by thermogravimetric analysis (TGA). Specifically, first, the regenerated carbon fibers according to Examples 1 to 8 and Comparative Examples 1 to 4 are heated at a heating rate of 10 ° C./min while flowing nitrogen at a flow rate of 300 ml / min, and then 200 ° C. to 800. The decrease in the weight of the regenerated carbon fiber up to ° C was measured. Next, considering the weight loss of the carbon fiber itself in the thermogravimetric analysis, it was confirmed in advance by measurement that there was no weight loss of the new carbon fiber under the same conditions.
  • TGA thermogravimetric analysis
  • the above-mentioned residual resin amount was measured three times, and the average value was taken as the residual resin amount of the regenerated carbon fibers according to Examples 1 to 8 and Comparative Examples 1 to 4.
  • the amount of resin in the untreated carbon fiber reinforced resin material is 31.2% by weight. The results are shown in Table 1 together with the experimental conditions.
  • the resin could be efficiently removed from the carbon fiber reinforced resin material in Examples 1 to 8.
  • the regenerated carbon fiber according to Example 1 was compared with the regenerated carbon fiber according to Comparative Example 1
  • the regenerated carbon fiber according to Example 2 was compared with the regenerated carbon fiber according to Comparative Example 2.
  • the regenerated carbon fibers according to Examples 3, 5 and 7 were compared with the regenerated carbon fibers according to Comparative Example 3, and the regenerated carbon fibers according to Examples 4, 6 and 8 were compared with the regenerated carbon fibers according to Comparative Example 4.
  • the amount of residual resin was significantly small. From this, it can be seen that the resin component having a basic chemical structure can be efficiently removed from the carbon fiber reinforced resin material by combining the acid treatment step with the oxidation treatment.
  • the regenerated carbon fiber according to Example 1 showed a large difference in the amount of residual resin as compared with the regenerated carbon fiber according to Comparative Example 1.
  • Comparative Example 1 Comparing Example 1 and Comparative Example 1 in the cleaning step, the cleaning liquid permeated into the reaction product in Example 1, whereas in Comparative Example 1, the inside of the reaction product was introduced after the first-stage cleaning step. An unreacted part (hard part) was seen. It is considered that the resin swells due to the acid treatment step, so that the oxidation step proceeds uniformly to the inside. It is probable that the unreacted portion remained even after the second-stage cleaning step, and the permeability of the cleaning liquid was not good.
  • Example 2 and Comparative Example 2 Although there was no difference in the amount of residual resin between Example 2 and Comparative Example 2 as compared with Example 1 and Comparative Example 1, since an acidic aqueous solution was used in both the acid treatment step and the oxidation treatment step, the resin component. It is considered that the reason is that the neutralization reaction of the above was easy to proceed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

溶媒法でありながら塩基性を有する化学構造を有する樹脂成分を含む繊維強化樹脂材料について効率的に補強繊維を回収することのできる、再生補強繊維の製造方法を提供する。 樹脂と補強繊維とを含む繊維強化樹脂材料を酸を含む酸性溶液により処理する工程と、前記繊維強化樹脂材料を酸化剤を含む処理液により処理し、前記繊維強化樹脂材料の前記樹脂の少なくとも一部を前記処理液に溶解させる工程と、を有し、前記樹脂が、塩基性を有する化学構造を有する樹脂成分を含む、再生補強繊維の製造方法。

Description

再生補強繊維の製造方法 関連出願の相互参照
 本出願は、2020年12月23日に日本国において出願された日本国特許出願:特願2020-213708に基づく優先権を主張し、その全内容を参照により援用する。
 本発明は、再生補強繊維の製造方法に関する。
 ガラス繊維等の繊維を強化材として用いた繊維強化プラスチック(Fiber Reinforced Plastics;FRP)は、軽量、高強度、かつ高弾性の材料であり、小型船舶、自動車、鉄道車両等の部材に幅広く使用されている。また、更なる軽量化、高強度化、及び高弾性化を目的として、炭素繊維を強化材として用いた炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastics;CFRP)が開発されており、航空機、自動車等の部材に使用されている。
 近年、使用済みの繊維強化プラスチックの廃棄量が増大傾向にあり、その再生利用技術の開発が検討されている。繊維強化プラスチックの補強繊維を回収する方法としては、主に、熱処理により樹脂成分を熱分解して除去し補強繊維を回収する熱分解法と、溶媒を用いて樹脂成分を溶解させて除去し補強繊維を回収する溶媒法とが挙げられる。このうち、溶媒法は、樹脂成分の回収が容易であり、資源リサイクルの観点から有利である。
 溶媒法としては、例えば、特許文献1、2において提案される方法が挙げられる。特許文献1には、炭素繊維複合材料を、酸性水溶液に浸漬して、炭素繊維複合材料の樹脂分の少なくとも一部を溶出して略繊維状物を得る工程、及び略繊維状物をアルカリ性水溶液に浸漬して、略繊維状物の樹脂分の少なくとも一部を溶出して繊維状物を得る工程を含む、炭素繊維の製造方法が提案されている。また、特許文献2には、リン酸を含有する溶解液を用いて、炭素繊維強化プラスチック材の母材を溶解する工程を備え、前記溶解液のリン酸濃度は、110質量%以上であり、前記溶解する工程は、前記溶解液の温度が200℃以上300℃以下で行われる炭素繊維回収方法が提案されている。
特開2019-136932号公報 特開2020-50704号公報
 しかしながら、従来の溶媒法においては、樹脂成分を除去する効率が十分に高くなく、例えば特許文献1、2に記載される方法においては、溶媒を含む処理液の浸透を考慮して繊維強化樹脂材料を数センチ程度のチップ状に細かく裁断した上で樹脂成分を除去している。このように繊維強化樹脂材料を細かく裁断してしまうと、繊維強化樹脂材料から回収される再生補強繊維の長さが必然的に短くなり、回収前の繊維強化樹脂材料中に含まれる補強繊維の性能を維持することが困難となるとともに、回収される補強繊維の用途が、限定されてしまう。一方で、溶媒法により樹脂成分を効率除去するためには、高温等の過酷な条件で長時間処理することが要求される。
 また、溶媒法においては、繊維強化樹脂材料に含まれる樹脂成分の種類も、樹脂成分の除去効率に大きな影響を与える。例えば、アミン硬化エポキシ樹脂は、処理液への溶解が非常に困難であり、溶媒法の適用が困難であった。アミン硬化エポキシ樹脂をはじめとする塩基性を有する化学構造を有する樹脂成分を含む繊維強化樹脂材料についても、溶媒法により補強繊維を回収することができれば、より多くの繊維強化樹脂材料から補強繊維を回収することが可能となる。
 したがって、本発明の目的は、溶媒法でありながら塩基性を有する化学構造を有する樹脂成分を含む繊維強化樹脂材料について効率的に補強繊維を回収することのできる、再生補強繊維の製造方法を提供することにある。
 本発明者らは、塩基性を有する化学構造(以下、単に「塩基性構造」ともいう)を有する樹脂成分を含む繊維強化樹脂材料から補強繊維の回収を検討する中で、酸性溶液を用いて繊維強化樹脂材料を膨潤させ、その後酸化剤により樹脂成分を酸化させることにより、塩基性構造を有する樹脂成分が溶媒に効率よく溶解することを見出した。
 そして、以上の知見に基づき、本発明者らはさらに検討を行い、本発明に至った。
 本発明の要旨は、以下の通りである。
(1) 樹脂と補強繊維とを含む繊維強化樹脂材料を酸を含む酸性溶液により処理する工程と、
 前記繊維強化樹脂材料を酸化剤を含む処理液により処理し、前記繊維強化樹脂材料の前記樹脂の少なくとも一部を前記処理液に溶解させる工程と、を有し、
 前記樹脂が、塩基性を有する化学構造を有する樹脂成分を含む、再生補強繊維の製造方法。
(2) 前記酸に含まれる成分のうち最もモル濃度の大きい成分のpKaが、5.0以下である、(1)に記載の再生補強繊維の製造方法。
(3) 前記酸は、硫酸、塩酸、リン酸および酢酸からなる群から選択される1種以上を含む、(1)または(2)に記載の再生補強繊維の製造方法。
(4) 前記酸性溶液中における前記酸の濃度が、0.5mol/L以上である、(1)~(3)のいずれか一項に記載の再生補強繊維の製造方法。
(5) 前記酸化剤は、酸化力を有する酸を含む、(1)~(4)のいずれか一項に記載の再生補強繊維の製造方法。
(6) 前記酸化力を有する酸は、硝酸、硫酸と硝酸との混酸、硝酸と塩酸との混酸(王水)および過酸化水素と硫酸との混合溶液からなる群から選択される1種以上を含む、(1)~(5)のいずれか一項に記載の再生補強繊維の製造方法。
(7) 前記塩基性を有する化学構造を有する樹脂成分は、主鎖構造に前記塩基性を有する化学構造を有する、(1)~(6)のいずれか一項に記載の再生補強繊維の製造方法。
(8) 前記塩基性を有する化学構造は、1、2または3級アミド結合である、(1)~(7)のいずれか一項に記載の再生補強繊維の製造方法。
 以上の構成により溶媒法でありながら塩基性を有する化学構造を有する樹脂成分を含む繊維強化樹脂材料について効率的に補強繊維を回収することのできる、再生補強繊維の製造方法を提供することができる。
 以下、本発明の好適な実施形態に係る再生補強繊維の製造方法の一例について説明する。本発明に係る再生補強繊維の製造方法は、樹脂と補強繊維とを含む繊維強化樹脂材料を酸を含む酸性溶液により処理する工程(酸処理工程)と、前記繊維強化樹脂材料を酸化剤を含む処理液により処理し、前記繊維強化樹脂材料の前記樹脂の少なくとも一部を前記処理液に溶解させる工程(酸化工程)と、を有し、前記樹脂が、塩基性を有する化学構造(塩基性構造)を有する樹脂成分を含む。以下、本実施形態に係る再生補強繊維の製造方法の各工程について順に説明する。
2.1. 準備工程
 まず、酸処理工程に先立ち、繊維強化樹脂材料を準備する。繊維強化樹脂材料は、補強繊維がマトリックス樹脂(単に「樹脂」ともいう)に埋設されることにより強化された樹脂材料である。このような、繊維強化樹脂材料としては、特に限定されず、例えば、炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastics;CFRP)、ガラス繊維強化プラスチック(Glass Fiber Reinforced Plastics;GFRP)、ガラス長繊維マット強化熱可塑性プラスチック(Glass-Mat reinforced Thermoplastics;GMT)、アラミド繊維強化プラスチック(Aramid-Fiber-Reinforced Plastics;AFRP)、ケブラー繊維強化プラスチック(Kevlar Fiber Reinforced Plastics;KFRP)、ダイニーマ繊維強化プラスチック(Dyneema Fiber-Reinforced Plastics;DFRP)、バサルト繊維強化プラスチック、ボロン繊維強化プラスチック、およびこれらのプリプレグ等が挙げられる。上述した中でも、炭素繊維強化プラスチックは、使用量が比較的多く、また炭素繊維の製造時における消費エネルギー量が多大であるため、使用済みの炭素繊維強化プラスチックおよび/またはこのプリプレグ中の炭素繊維を回収し、再利用することが望ましい。
 また、繊維強化樹脂材料中の補強繊維は、複数の補強繊維を一方向に引き揃えた繊維束(トウ)、補強繊維の繊維束を経糸および緯糸に用いた織物または不織布の状態で存在してもよいし、各補強繊維がランダムな位置および方向に配置された状態で存在していてもよい。なお、補強繊維はチップ状であってもよく、この場合、例えば、繊維束を切断したチョップド繊維、チップ状の織物等が挙げられる。
 本実施形態において、繊維強化樹脂材料を構成する樹脂は、塩基性構造を有する樹脂成分を含む。塩基性構造を有する樹脂成分は、後述する酸処理工程において、酸性溶液中の水素イオン(プロトン)を配位させ、膨潤することができる。膨潤した塩基性構造を有する樹脂成分に対しては後述する酸化工程において酸化剤が十分に浸透することができ、この結果樹脂成分の処理液への溶解が促進される。
 樹脂成分が有する塩基性構造としては、特に限定されないがアミド結合、イミド結合、アゾ基、ジアゾ基、ウレア結合、ウレタン結合、ペプチド結合、イソシアナート基、アジ基等、もしくはそれらから派生、類似した化学構造等が挙げられ、塩基性構造を有する樹脂成分はこれらのうち1種または2種以上を含むことができる。上述した中でも、本実施形態に係る方法は、塩基性構造として1、2または3級アミド結合を有する樹脂成分を膨潤、分解するのに好適に用いることができる。
 また、塩基性構造を有する樹脂成分は、好ましくは、その主鎖構造に塩基性をもつ化学結合を含む。これにより、酸処理工程において、塩基性を有する化学構造と反応することをより一層膨潤させることができ、後述する酸化工程において、樹脂成分の分解およびこれに引き続く処理液への溶解を促進させることができる。このような塩基性構造を有する樹脂成分としては、アミン硬化エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、ポリアミド、メラミン樹脂、アニリン樹脂、ウレア樹脂等が挙げられ、樹脂は、これらのうち1種をまたは2種以上を樹脂成分として含むことができる。
 なお、塩基性構造を有する樹脂成分は、その側鎖に塩基性構造を含んでもよい。このような樹脂成分としては、後述する各種樹脂成分の側鎖に上述したような塩基性構造を有するものが挙げられる。
 また、繊維強化樹脂材料中の樹脂における塩基性構造を有する樹脂成分の含有量は、特に限定されないが、例えば1質量%以上、好ましくは5質量%以上、より好ましくは10質量%以上であり、さらに好ましくは樹脂は本質的に塩基性構造を有する樹脂成分からなり、最も好ましくは樹脂は塩基性構造を有する樹脂成分からなる。これにより、繊維強化樹脂材料からの樹脂の除去および補強繊維の回収がより一層容易となる。
 また、繊維強化樹脂材料中の樹脂は、塩基性構造を有する樹脂成分以外の樹脂成分を有してもよい。このような樹脂成分としては、特に限定されるものではなく、例えば、熱硬化性樹脂および熱可塑性樹脂のいずれであってもよい。また、熱硬化性樹脂は、未硬化のものであってもよいし、硬化物であってもよい。
 熱硬化性樹脂としては、特に限定されないが、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、シアネート樹脂、ポリカーボネート樹脂、ポリアセタール樹脂等が挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせで用いることができる。
 熱可塑性樹脂としては、特に限定されないが、例えば、ポリオレフィン、ポリエステル、ポリカーボネート、アクリル樹脂、アクリロニトリル-ブタジエン-スチレン共重合体、ポリエーテルケトン、ポリフェニレンスルフィド等が挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることができる。
 また、繊維強化樹脂材料は、それ自身がシート状をなしていてもよいし、裁断されたチップ状をなしていてもよい。特に、本実施形態に係る方法は、樹脂の除去を比較的効率よく行うことができるため、従来補強繊維の回収が困難であったシート状の繊維強化樹脂材料についても好適に適用できる。
 また、繊維強化樹脂材料の大きさも特に限定されない。しかしながら、繊維強化樹脂材料中の補強繊維の方向を保持することを考慮すると、繊維強化樹脂材料の一片の長さは、例えば、100mm以上、好ましくは500mm以上3000mm以下であることができる。より具体的には、繊維強化樹脂材料として、例えば1000mm×500mmの広さの積層された厚さ300mm程度の繊維強化樹脂材料シートを利用することもできる。上述したような比較的大きな繊維強化樹脂材料は、処理液の浸透が進行しにくく、樹脂の除去および補強繊維の回収が困難であった。しかしながら、本実施形態に係る方法は、樹脂の除去を比較的効率よく行うことができるため、比較的大きな繊維強化樹脂材料についても適用可能である。
2.2. 酸処理工程
 本工程においては、準備した繊維強化樹脂材料を酸を含む酸性溶液により処理する。このように、繊維強化樹脂材料を酸を含む酸性溶液により処理することにより、塩基性構造を有する樹脂成分に酸性溶液中の水素イオンを配位させて塩を形成させ、この結果、塩基性構造を有する樹脂成分ひいては樹脂自体が膨潤する。これにより、後述する酸化工程において酸化剤が樹脂に浸透しやすくなり、酸化工程における樹脂の分解・溶出が促進される。
 本工程における酸性溶液は、少なくとも酸を含み、任意に溶媒を含む。酸としては、無機酸もしくは有機酸またはこれらの混合物を用いることができる。無機酸としては、例えば、硫酸、塩酸、リン酸等を挙げることができ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることができる。リン酸としては、例えば、正リン酸、メタリン酸、次リン酸、亜リン酸、次亜リン酸、ピロリン酸、トリメタリン酸、テトラメタリン酸、ピロ亜リン酸等が挙げられる。有機酸としては、例えば、ギ酸、酢酸、クエン酸、コハク酸、シュウ酸等が挙げられる。
 上述した中でも、樹脂成分を好適に膨潤させることができることから、酸は、無機酸、特に硫酸、塩酸、リン酸および酢酸からなる群から選択される1種以上を含むことが好ましい。
 また、酸に含まれる成分のうち最もモル濃度の大きい成分の酸解離定数pKaは、特に限定されないが、好ましくは5.0以下、より好ましくは1.5以下である。このように酸に含まれる成分のうち最もモル濃度の大きい成分のpKaが十分に小さいことにより、酸性溶液中に水素イオンが放出されやすくなり、この結果、効率よく樹脂成分を膨潤させることができる。なお、酸に含まれる成分のうち最もモル濃度の大きい成分が複数の酸解離定数を有する場合、1段目、すなわちより小さい酸解離定数が上記の値であることが好ましい。
 酸性溶液中に含まれる酸の濃度は特に限定されないが、例えば0.5mol/L以上、好ましくは1.0mol/L以上、より好ましくは3.5mol/L以上である。これにより、酸性溶液中に水素イオンが放出されやすくなり、この結果、効率よく樹脂成分を膨潤させることができる。なお、酸の濃度の上限は、酸性溶液として存在し得る限り限定されるものではなく、酸の種類によって異なる。
 また、酸性溶液は、通常溶媒を含む。溶媒としては、上述した酸と混合可能であり、かつ当該酸に対して化学的に安定であれば、特に限定されず、例えば、水および/または各種有機溶媒を用いることができる。
 有機溶媒としては、特に限定されないが、例えば、アルコール系溶媒、エーテル系溶媒、ケトン系溶媒、芳香族炭化水素、ハロゲン化芳香族炭化水素、ハロゲン化脂肪族炭化水素等が挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることができる。
 アルコール系溶媒としては、脂肪族アルコール系溶媒、芳香族アルコール系溶媒、グリコール系溶媒等や、グリセリン等のその他多価アルコールが挙げられる。
 脂肪族アルコール系としては、例えば、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、2-メチル-2-ブタノール、3-メチル-1-ブタノール、3-メチル-2-ブタノール、2,2-ジメチル-1-プロパノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2-エチルヘキサノール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、ドデカノール、メタノール、エタノール等の非環式脂肪族アルコールや、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、4-メチルシクロヘキサノール等の脂環式アルコールが挙げられる。
 芳香族アルコール系溶媒としては、例えば、フェノール、クレゾール、ベンジルアルコール、フェノキシエタノール等が挙げられる。
 グリコール系溶媒としては、例えば、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコール、ポリエチレングリコール(分子量200~400)、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、ジプロピレングリコール等が挙げられる。
 エーテル系溶媒としては、例えば、ジメチルエーテル、ジエチルエーテル、エチルメチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル等の脂肪族エーテル、1,3-ジオキソラン、1,4-ジオキサン、テトラヒドロフラン、フラン等の環式エーテル、アニソール、フェネトール、ジフェニルエーテル、ベンゾフラン等の芳香族含有エーテル等が挙げられる。
 ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、2-ペンタノン、3-ペンタノン、2-ヘキサノン、メチルイソブチルケトン、2-ヘプタノン、4-プタノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ホロン、イソホロン、アセチルアセトン、アセトフェノン、ジエチルケトン、ジアセトンアルコール等が挙げられる。
 芳香族炭化水素としては、例えば、ベンゼン、トルエン、キシレン等が挙げられる。
 ハロゲン化芳香族炭化水素としては、例えば、オルトクロロフェノール、オルト時クロロベンゼン等が挙げられる。
 ハロゲン化脂肪族炭化水素としては、例えば、クロロホルム、塩化メチレン等が挙げられる。
 上述した中でも、酸との混合が容易であり、酸における水素イオンの解離を適切に行うために、溶媒が水を含むことが好ましい。なお、溶媒は、水および水と混和可能な有機溶媒の混合溶媒であってもよい。水と混和可能な有機溶媒としては、例えば、アルコール系溶媒、ケトン系溶媒等が挙げられる。
 酸性溶液中に含まれる溶媒の含有量は、特に限定されず、酸等の他の成分の残部とすることができる。
 上述したような酸性溶液を用いて繊維強化樹脂材料を処理する。処理中における酸性溶液の温度は、特に限定されず、例えば0℃以上100℃以下、好ましくは50℃以上100℃以下である。
 酸性溶液による処理の時間は、特に限定されず、目的とする温度に達してから5分以上1200分以下、好ましくは10分以上120分以下である。
 また、酸性溶液による処理は、常圧下で行ってもよいし、減圧下で行ってもよいし、または加圧下で行ってもよい。酸性溶液による処理を加圧下で行う場合、例えば、0.11MPa以上7.0MPa以下、特に0.11MPa以上2.0MPa以下の雰囲気下で処理を行うことができる。なお、安全性および経済性を考慮すると、酸性溶液による処理は、常圧下で行うことが好ましい。
 なお、酸性溶液による繊維強化樹脂材料の処理は、特に限定されず、酸性溶液中に繊維強化樹脂材料を浸漬することにより行ってもよいし、スプレー等により酸性溶液を繊維強化樹脂材料に対し噴霧することにより行ってもよく、酸性溶液と繊維強化樹脂材料とが接触可能な任意の手段を採用することができる。また、酸性溶液による処理中において、酸性溶液を攪拌してもよい。また、繊維強化樹脂材料の繊維束が維持されるように繊維強化樹脂材料を固定具により固定してもよい。
 また、本工程において、繊維強化樹脂材料中の樹脂は、膨潤するが、その一部が分解および/または酸性溶液へ溶解してもよい。
2.3. 酸化工程
 本工程においては、酸性溶液により膨潤した樹脂を含む繊維強化樹脂材料を酸化剤により処理して、繊維強化樹脂材料を酸化剤を含む処理液により処理し、繊維強化樹脂材料の樹脂の少なくとも一部を処理液に溶解させる。酸性溶液により膨潤した樹脂を含む繊維強化樹脂材料は、酸化剤が樹脂に浸透しやすくなり、この結果、本工程においては、酸化剤により樹脂が効率よく分解・溶出する。
 本工程における処理液は、少なくとも酸化剤を含み、任意に溶媒を含む。酸化剤としては、特に限定されず、硝酸、熱濃硫酸、硫酸と硝酸との混酸、硝酸と塩酸との混酸(王水)、過酸化水素と硫酸との混合溶液、過塩素酸、塩素酸、次亜塩素酸、亜塩素酸、過臭素酸、臭素酸、次亜臭素酸、亜臭素酸、過ヨウ素酸、ヨウ素酸、次亜ヨウ素酸、亜ヨウ素酸等の酸化力を有する酸、これらのアルカリ(土類)金属塩、酸素、オゾン、過酸化水素、過酸化アセトン(過酸化水素とアセトンとの反応物)等の酸素系酸化剤、塩素、二酸化塩素、臭素、フッ素、ヨウ素等のハロゲン系酸化剤等が挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることができる。また、アルカリ金属元素としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムが挙げられ、アルカリ土類金属としては、カルシウム、ストロンチウム、バリウム、およびラジウムが挙げられる。
 上述した中でも、比較的取り扱いやすくかつ処理液の液性を安定させることができることから、酸化剤は、好ましくは酸化力を有する酸を含む。特に、樹脂成分の分解の効率の観点から、酸化剤は、より好ましくは硝酸、硫酸と硝酸との混酸、硝酸と塩酸との混酸(王水)および過酸化水素と硫酸との混合溶液からなる群から選択される1種以上を、特に好ましくは硝酸または過酸化水素と硫酸との混合溶液を含む。
 処理液中における酸化剤の濃度は、特に限定されず、処理される繊維強化樹脂材料中の樹脂成分の量に応じて適宜設定できる。しかしながら、例えば、酸化剤が酸化力を有する酸である場合、処理液における酸化剤の濃度は、例えば5質量%以上80質量%以下、好ましくは20質量%以上50質量%以下である。
 また、処理液は、通常溶媒を含む。溶媒としては、使用する酸化剤に対し安定であれば特に限定されず、例えば上述した処理液の溶媒に挙げられた水や各種有機溶媒を1種単独でまたは2種以上を組み合わせて用いることができる。
 中でも、処理液に含まれる溶媒は、上述した酸性溶液の溶媒に含まれる水または有機溶媒を含むことが好ましい。酸性溶液が複数種の溶媒を含む場合、処理液は、これらの複数種の溶媒のうち1種以上を含むことが好ましい。これにより、処理液を繊維強化樹脂材料に接触させた際に、不本意な副反応が生じたり、膨潤した繊維強化樹脂材料が不本意に収縮したりすることがより確実に抑制される。
 また、処理液は、取り扱いの容易性および酸化剤による酸化反応を促進させる観点から、好ましくは水または水と混和可能な有機溶媒と水との混合溶媒、より好ましくは水を含む。
 また、処理液は、好ましくは中性または酸性、より好ましくは酸性を呈する。これにより、処理液を繊維強化樹脂材料に接触させた際に、酸性溶液により膨潤した繊維強化樹脂材料が中和されて不本意に収縮することが抑制される。
 具体的には、25℃の処理液のpHは、例えば、5.0以下、好ましくは2.0以下、より好ましくは1.5以下である。
 処理液中に含まれる溶媒の含有量は、特に限定されず、酸化剤等の他の成分の残部とすることができる。
 上述したような処理液を用いて繊維強化樹脂材料を処理する。処理中における処理液の温度は、特に限定されず、例えば0℃以上100℃以下、好ましくは50℃以上100℃以下である。
 処理液による処理の時間は、特に限定されず、目的とする温度に達してから5分以上1200分以下、好ましくは10分以上120分以下である。
 また、処理液による処理は、常圧下で行ってもよいし、減圧下で行ってもよいし、または加圧下で行ってもよい。処理液による処理を加圧下で行う場合、例えば、0.11MPa以上7.0MPa以下、特に0.11MPa以上2.0MPa以下の雰囲気下で処理を行うことができる。なお、安全性および経済性を考慮すると、処理液による処理は、常圧下で行うことが好ましい。
 なお、処理液による繊維強化樹脂材料の処理は、特に限定されず、処理液中に繊維強化樹脂材料を浸漬することにより行ってもよいし、スプレー等により処理液を繊維強化樹脂材料に対し噴霧することにより行ってもよく、処理液と繊維強化樹脂材料とが接触可能な任意の手段を採用することができる。また、処理液による処理中において、処理液を攪拌してもよい。また、繊維強化樹脂材料の繊維束が維持されるように繊維強化樹脂材料を固定具により固定してもよい。
2.4. 洗浄工程
 次に、必要に応じて洗浄を行う。洗浄は、洗浄液を繊維強化樹脂材料と接触させることにより行うことができる。具体的には、上記の酸化工程において、処理液を洗浄液に置き換えることにより実施できる。ただし、洗浄時における洗浄液の温度や洗浄時間は、適宜設定できる。
 洗浄液としては、上述した処理液の溶媒に挙げられた水や各種有機溶媒を1種単独でまたは2種以上を組み合わせて用いることができる。また、有機溶媒としては、上述した溶媒の他、以下のエステル系溶媒、アミド系溶媒を用いてもよい。
 エステル系溶媒としては、例えば、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸ペンチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチル、3-メトキシブチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、酢酸シクロヘキシル、酢酸ベンジル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、プロピオン酸イソペンチル、乳酸メチル、乳酸エチル、乳酸ブチル、酪酸メチル、酪酸エチル、酪酸ブチル、酪酸イソペンチル、イソ酪酸イソブチル、イソ吉草酸エチル、イソ吉草酸イソペンチル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、γ-ブチロラクトン、シュウ酸ジエチル、シュウ酸ジブチル、マロン酸ジエチル、サリチル酸メチル、エチレングリコールジアセタート、ホウ酸トリブチル、リン酸トリメチル、リン酸トリエチル等が挙げられる。
 アミド系溶媒としては、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、2-ピロリドン、N-メチル-2-ピロリドン、カプロラクタム、カルバミド酸エステル等が挙げられる。
 また、洗浄液には、塩基性物質が含まれていてもよい。塩基性物質により中和を行って液性を調節することにより、繊維強化樹脂材料中の残存する樹脂成分やその反応物を除去することができる。
 塩基性物質としては、例えば、リチウム、アルカリ金属、アルカリ土類金属の水酸化物、炭酸塩、炭酸水素塩、硫酸塩、亜硫酸塩、硝酸塩等の無機塩基性物質や、ジメチルアミン、ジエチルアミン等のアミン化合物が挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることができる。アルカリ金属としては、例えばナトリウム、カリウム、セシウム、ルビジウム等を挙げることができる。アルカリ土類金属としては、例えばベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。
 以上の酸処理工程、酸化工程および洗浄工程は、必要に応じてそれぞれ複数回行うことができる。例えば、酸処理工程および酸化工程を複数回繰り返したのちに洗浄工程を行ってもよい。また例えば、酸処理工程を複数回行った後、酸化工程を行い、その後洗浄工程を必要な回数行ってもよい。あるいは、例えば、酸処理工程、酸化工程、および洗浄工程をこの順に必要な回数行ってもよい。
2.5. 乾燥工程
 以上のようにして繊維強化樹脂材料から樹脂成分を溶解、除去した状態で、繊維強化樹脂材料を乾燥してもよい。乾燥は、例えば、繊維強化樹脂材料を気体に接触させることより行うことができる。接触させる気体としては、特に限定されないが、安全面から、空気または窒素等の不活性ガスが好ましい。
 また、乾燥時において、接触させる気体を加温してもよい。これにより、乾燥が促進される。加温時における気体の温度は、例えば0℃以上400℃以下、好ましくは80℃以上110℃以下である。
 ここで、繊維強化樹脂材料を必要に応じて固定しつつ乾燥を行ってもよい。これにより、繊維強化樹脂材料100に含まれる補強繊維の形状や配向を維持したまま補強繊維を乾燥させることが可能である。
 以上により、再生補強繊維を得ることができる。本実施形態に係る再生補強繊維の製造方法では、塩基性構造を有する樹脂成分を含む樹脂を含む繊維強化樹脂材料を酸性溶液により処理して、樹脂を膨潤させる。次いで、膨潤した樹脂を含む繊維強化樹脂材料を酸化剤を含む処理液により処理し、繊維強化樹脂材料の樹脂の少なくとも一部を処理液に溶解させる。酸性溶液により膨潤した樹脂を含む繊維強化樹脂材料は、酸化剤が樹脂に浸透しやすくなり、この結果、酸化剤により樹脂が効率よく分解し、処理液に溶出する。
 これにより、本実施形態によれば、溶媒法でありながら塩基性構造を有する樹脂成分を含む繊維強化樹脂材料について効率的に補強繊維を回収することができる。特に、本実施形態によれば、アミン硬化エポキシ樹脂等の従来除去が困難であった樹脂を用いた繊維強化樹脂材料からの補強繊維の回収が可能となる。さらには、本実施形態によれば、効率的な樹脂の除去が可能であることから、従来とは異なり、繊維強化樹脂材料を細かく裁断してから樹脂の溶解処理を行う必要がない。すなわち、比較的大きな繊維強化樹脂材料であっても、本実施形態に係る方法を採用することにより、樹脂を酸により膨潤させて酸化剤の樹脂への浸透を促進させることができ、均一かつ効率的な樹脂の除去が可能である。
 なお、酸性溶液や処理液に溶解した樹脂については、回収してリサイクルすることも可能である。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
1.再生補強繊維の製造
(実施例1)
(i)準備工程
 まず、試料としての炭素繊維強化樹脂材料を用意した。用いた炭素繊維樹脂材料は、長さ約30cm、幅5cm、厚さ約1mmのシートであった。また、炭素繊維強化樹脂材料を構成する樹脂は、アミン硬化エポキシ樹脂であった。
(ii)酸処理工程
 次に、炭素繊維強化樹脂材料を80℃に加熱しておいた40wt%(5.3mol/L)硫酸水溶液に1時間浸漬した。浸漬時において、硫酸水溶液の温度は80℃に維持した。
(iii)酸化工程
 次に、炭素繊維強化樹脂材料を80℃に加熱しておいた40wt%(8.0mol/L)硝酸水溶液に60分間浸漬した。浸漬時において、硝酸水溶液の温度は80℃に維持した。
(iv)洗浄工程
 次に、反応生成物をN-メチル-2-ピロリドンで洗浄し、その後20質量%炭酸水素ナトリウム水溶液で中和し、その後炭素繊維強化樹脂材料中の炭素繊維を回収して、実施例1に係る再生炭素繊維を得た。
(実施例2)
 洗浄工程において反応生成物を10質量%水酸化ナトリウム水溶液(2.8mol/L)で中和および洗浄した以外は、実施例1と同様にして、実施例2に係る再生炭素繊維を得た。
(実施例3)
 酸化工程を以下のようにして行った以外は、実施例1と同様にして、実施例3に係る再生炭素繊維を得た。
 酸化工程では、過酸化水素と硫酸との混合溶液による処理を行った。具体的には、酸処理工程後の炭素繊維強化樹脂材料を80℃に加熱しておいた95wt%(18.0mol/L)硫酸水溶液に15分浸漬し、その後、硫酸の体積換算で10%に当たる35wt%(11.6mol/L)過酸化水素水溶液を、炭素繊維強化樹脂材料を浸漬している硫酸水溶液に対し、5分かけて滴下した。
(実施例4)
 洗浄工程において反応生成物を10質量%水酸化ナトリウム水溶液(2.8mol/L)で中和および洗浄した以外は、実施例3と同様にして、実施例4に係る再生炭素繊維を得た。
(実施例5)
 酸処理工程において40wt%(5.3mol/L)硫酸水溶液に代えて35wt%(11.3mol/L)塩酸水溶液を用いた以外は、実施例3と同様にして、実施例5に係る再生炭素繊維を得た。
(実施例6)
 酸処理工程において40wt%(5.3mol/L)硫酸水溶液に代えて35wt%(11.3mol/L)塩酸水溶液を用いた以外は、実施例4と同様にして、実施例6に係る再生炭素繊維を得た。
(実施例7)
 酸処理工程において40wt%(5.3mol/L)硫酸水溶液に代えて40wt%(5.1mol/L)りん酸水溶液を用いた以外は、実施例3と同様にして、実施例5に係る再生炭素繊維を得た。
(実施例8)
 酸処理工程において40wt%(5.3mol/L)硫酸水溶液に代えて40wt%(5.1mol/L)りん酸水溶液を用いた以外は、実施例4と同様にして、実施例6に係る再生炭素繊維を得た。
(比較例1)
 酸処理工程を省略し、酸化工程における炭素繊維強化樹脂材料の硫酸水溶液への浸漬時間を120分間とした以外は、実施例1と同様にして、比較例1に係る再生炭素繊維を得た。
(比較例2)
 酸処理工程を省略し、酸化工程における炭素繊維強化樹脂材料の硫酸水溶液への浸漬時間を120分間とした以外は、実施例2と同様にして、比較例2に係る再生炭素繊維を得た。
(比較例3)
 酸処理工程を省略した以外は、実施例3と同様にして、比較例3に係る再生炭素繊維を得た。
(比較例4)
 酸処理工程を省略した以外は、実施例4と同様にして、比較例4に係る再生炭素繊維を得た。
2.再生補強繊維の評価
 得られた実施例1~8および比較例1~4にかかる再生炭素繊維について、熱重量分析(TGA)により残存樹脂量を算出した。具体的には、まず、300ml/minの流量で窒素を流しながら10℃/minの昇温速度で実施例1~8および比較例1~4にかかる再生炭素繊維を加熱し、200℃から800℃までの間の再生炭素繊維の重量の減少分を測定した。次に、熱重量分析における炭素繊維自体の重量減少を考慮し、同条件下での新品炭素繊維の重量減少がないことを予め測定で確認した。なお、上記の残存樹脂量の測定は、3回行い、その平均値を実施例1~8および比較例1~4にかかる再生炭素繊維の残存樹脂量とした。なお、未処理の炭素繊維補強樹脂材料中の樹脂量は、31.2重量%である。結果を実験条件とともに表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~8においては炭素繊維強化樹脂材料から効率よく樹脂を除去できたことが確認できた。具体的には、実施例1に係る再生炭素繊維は比較例1に係る再生炭素繊維と比較して、実施例2に係る再生炭素繊維は比較例2に係る再生炭素繊維と比較して、実施例3、5、7に係る再生炭素繊維は比較例3に係る再生炭素繊維と比較して、実施例4、6、8に係る再生炭素繊維は比較例4に係る再生炭素繊維と比較して、優位に残存樹脂量が少なかった。これにより、酸処理工程を酸化処理と組み合わせることによって効率よく炭素繊維強化樹脂材料から塩基性を有する化学構造を有する樹脂成分を除去できることがわかる。
 実施例1に係る再生炭素繊維は比較例1に係る再生炭素繊維と比較して残存樹脂量に大きな差が見られた。洗浄工程における実施例1と比較例1とを比較すると、実施例1では反応生成物内部まで洗浄液が浸透していたのに対し、比較例1では1段目の洗浄工程後に反応生成物内部に未反応箇所(固い部分)が見られた。酸処理工程によって樹脂が膨潤することで酸化工程が内部まで均一に進行した効果であると考えられる。未反応箇所は2段目の洗浄工程後も残存しており、洗浄液の浸透性が良好でなかったと考えられる。
 また、実施例2と比較例2では実施例1と比較例1の比較ほど残存樹脂量に差は見られなかったが、酸処理工程・酸化処理工程共に酸性の水溶液を用いていたため、樹脂成分の中和反応が進行しやすかったことが要因として考えられる。
 さらに、今回試料として用いた炭素繊維強化樹脂材料は、比較的大きな寸法を有していたが、実施例1~8においては、十分に樹脂成分を除去することが可能であった。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。

Claims (8)

  1.  樹脂と補強繊維とを含む繊維強化樹脂材料を酸を含む酸性溶液により処理する工程と、
     前記繊維強化樹脂材料を酸化剤を含む処理液により処理し、前記繊維強化樹脂材料の前記樹脂の少なくとも一部を前記処理液に溶解させる工程と、を有し、
     前記樹脂が、塩基性を有する化学構造を有する樹脂成分を含む、再生補強繊維の製造方法。
  2.  前記酸に含まれる成分のうち最もモル濃度の大きい成分のpKaが、5.0以下である、請求項1に記載の再生補強繊維の製造方法。
  3.  前記酸は、硫酸、塩酸、リン酸および酢酸からなる群から選択される1種以上を含む、請求項1または2に記載の再生補強繊維の製造方法。
  4.  前記酸性溶液中における前記酸の濃度が、0.5mol/L以上である、請求項1~3のいずれか一項に記載の再生補強繊維の製造方法。
  5.  前記酸化剤は、酸化力を有する酸を含む、請求項1~4のいずれか一項に記載の再生補強繊維の製造方法。
  6.  前記酸化力を有する酸は、硝酸、硫酸と硝酸との混酸、硝酸と塩酸との混酸(王水)および過酸化水素と硫酸との混合溶液からなる群から選択される1種以上を含む、請求項5に記載の再生補強繊維の製造方法。
  7.  前記塩基性を有する化学構造を有する樹脂成分は、主鎖構造に前記塩基性を有する化学構造を有する、請求項1~6のいずれか一項に記載の再生補強繊維の製造方法。
  8.  前記塩基性を有する化学構造は、1、2または3級アミド結合である、請求項1~7のいずれか一項に記載の再生補強繊維の製造方法。
     
PCT/JP2021/047695 2020-12-23 2021-12-22 再生補強繊維の製造方法 WO2022138764A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237024823A KR20230124997A (ko) 2020-12-23 2021-12-22 재생 보강섬유의 제조 방법
CN202180085700.3A CN116635465A (zh) 2020-12-23 2021-12-22 再生增强纤维的制造方法
JP2022567565A JP7240567B2 (ja) 2020-12-23 2021-12-22 再生補強繊維の製造方法
EP21910904.8A EP4269485A4 (en) 2020-12-23 2021-12-22 METHOD FOR MANUFACTURING RECYCLED REINFORCEMENT FIBERS
US18/267,460 US20240042651A1 (en) 2020-12-23 2021-12-22 Method of producing recycled reinforcing fibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020213708 2020-12-23
JP2020-213708 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022138764A1 true WO2022138764A1 (ja) 2022-06-30

Family

ID=82157000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047695 WO2022138764A1 (ja) 2020-12-23 2021-12-22 再生補強繊維の製造方法

Country Status (6)

Country Link
US (1) US20240042651A1 (ja)
EP (1) EP4269485A4 (ja)
JP (1) JP7240567B2 (ja)
KR (1) KR20230124997A (ja)
CN (1) CN116635465A (ja)
WO (1) WO2022138764A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7470450B1 (ja) 2022-10-06 2024-04-18 株式会社ミライ化成 再生補強繊維の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109138A (ja) * 1997-10-03 1999-04-23 Hitachi Cable Ltd 光ファイバ被覆除去方法
KR20110047750A (ko) * 2009-10-30 2011-05-09 한국철도기술연구원 폐 씨에프알피로부터 탄소섬유를 회수하는 순환흐름 반응기 및 그 방법
CN102731821A (zh) * 2012-07-06 2012-10-17 中国科学院宁波材料技术与工程研究所 碳纤维增强环氧树脂复合材料的回收方法
CN104592546A (zh) * 2014-12-29 2015-05-06 武汉理工大学 一种回收废旧碳纤维/环氧树脂复合材料的方法
JP2017104847A (ja) * 2015-12-07 2017-06-15 現代自動車株式会社Hyundai Motor Company 強化繊維回収装置及びこれを用いた方法
CN111171373A (zh) * 2020-03-09 2020-05-19 艾达索高新材料芜湖有限公司 一种纤维增强复合材料的回收方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911860B2 (ja) 1998-07-21 2007-05-09 東レ株式会社 ナイロン6製品類のリサイクル方法
CN102391543B (zh) 2011-09-02 2013-05-08 中国科学院宁波材料技术与工程研究所 回收碳纤维增强环氧树脂复合材料的方法
WO2016177305A1 (en) * 2015-05-01 2016-11-10 Adesso Advanced Materials Wuxi Co., Ltd. Methods for degrading and recycling cross-linked polymers and reinforced polymer composites
US20170096540A1 (en) * 2015-10-06 2017-04-06 Korea Institute Of Science And Technology Method and composition for swelling pretreatment before decomposition of cured theremosetting resin materials
JP7359405B2 (ja) 2018-02-09 2023-10-11 アイカーボン株式会社 炭素繊維及び炭素繊維強化樹脂組成物の製造方法
JP7032276B2 (ja) 2018-09-25 2022-03-08 トヨタ自動車株式会社 炭素繊維回収方法
JP7041084B2 (ja) 2019-01-18 2022-03-23 トヨタ自動車株式会社 炭素繊維回収方法
EP3754054B1 (en) * 2019-04-09 2024-06-19 AI-Carbon Co., Ltd. Preparation method of carbon fiber and carbon fiber reinforced resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109138A (ja) * 1997-10-03 1999-04-23 Hitachi Cable Ltd 光ファイバ被覆除去方法
KR20110047750A (ko) * 2009-10-30 2011-05-09 한국철도기술연구원 폐 씨에프알피로부터 탄소섬유를 회수하는 순환흐름 반응기 및 그 방법
CN102731821A (zh) * 2012-07-06 2012-10-17 中国科学院宁波材料技术与工程研究所 碳纤维增强环氧树脂复合材料的回收方法
CN104592546A (zh) * 2014-12-29 2015-05-06 武汉理工大学 一种回收废旧碳纤维/环氧树脂复合材料的方法
JP2017104847A (ja) * 2015-12-07 2017-06-15 現代自動車株式会社Hyundai Motor Company 強化繊維回収装置及びこれを用いた方法
CN111171373A (zh) * 2020-03-09 2020-05-19 艾达索高新材料芜湖有限公司 一种纤维增强复合材料的回收方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4269485A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7470450B1 (ja) 2022-10-06 2024-04-18 株式会社ミライ化成 再生補強繊維の製造方法

Also Published As

Publication number Publication date
KR20230124997A (ko) 2023-08-28
JPWO2022138764A1 (ja) 2022-06-30
CN116635465A (zh) 2023-08-22
EP4269485A1 (en) 2023-11-01
US20240042651A1 (en) 2024-02-08
JP7240567B2 (ja) 2023-03-15
EP4269485A4 (en) 2024-07-10

Similar Documents

Publication Publication Date Title
Hanaoka et al. Recovery of carbon fiber from prepreg using nitric acid and evaluation of recycled CFRP
WO2024075786A1 (ja) 再生補強繊維の製造方法
Nakagawa CFRP recycling technology using depolymerization under ordinary pressure
WO2022138764A1 (ja) 再生補強繊維の製造方法
Xing et al. Recycling of carbon fiber-reinforced epoxy resin composite via a novel acetic acid swelling technology
WO2022118756A1 (ja) 補強繊維回収用反応装置および再生補強繊維の製造方法
JP4696423B2 (ja) 再生繊維で強化された繊維強化プラスチック
EP3153543B1 (en) Method and composition for swelling pretreatment before decomposition of cured thermosetting resin materials
KR101863276B1 (ko) 용해 공정을 이용한 복합 재료 리페어 방법 및 장치
JP7470450B1 (ja) 再生補強繊維の製造方法
JP2006232942A (ja) プラスチックの分解方法
CN106432787B (zh) 一种碳纤维复合废料的回收方法
KR101900338B1 (ko) 열경화성 수지 경화물의 분해 전 팽윤 전처리 조성물 및 팽윤 전처리 방법
EP3301128B1 (en) Recovery of fibers from fiber reinforced polymers with lewis bases
JP6693522B2 (ja) 熱硬化性樹脂硬化物の分解生成物の回収方法及び再生材料の製造方法
JP2002363339A (ja) エポキシ樹脂硬化物の処理溶液、これを用いた処理方法および処理生成物
JP4978104B2 (ja) 繊維強化プラスチック溶解触媒の再生方法
JP4004387B2 (ja) 非金属ハニカムパネルの分解方法
de Oliveira et al. High quality carbon fibers from end-of-life fiber reinforced plastics-A new recycling technology
US20240327601A1 (en) Catalytic degradation of thermosetting polymers
JP2008036547A (ja) エステル交換反応触媒の再生方法
JP2020040302A (ja) 両性金属の回収方法及び再生両性金属の製造方法
Dang et al. Decomposition of GFRP in nitric acid and hydrogen peroxide solution for chemical recycling
JP2023110547A (ja) 熱硬化性樹脂硬化物の処理方法および熱可塑性樹脂の製造方法
JP4601223B2 (ja) ポリウレタンの分解方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910904

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022567565

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18267460

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180085700.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237024823

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021910904

Country of ref document: EP

Effective date: 20230724