WO2022138435A1 - 二重ロープ構造体 - Google Patents
二重ロープ構造体 Download PDFInfo
- Publication number
- WO2022138435A1 WO2022138435A1 PCT/JP2021/046486 JP2021046486W WO2022138435A1 WO 2022138435 A1 WO2022138435 A1 WO 2022138435A1 JP 2021046486 W JP2021046486 W JP 2021046486W WO 2022138435 A1 WO2022138435 A1 WO 2022138435A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rope structure
- double rope
- inner layer
- yarn
- strength
- Prior art date
Links
- 239000000835 fiber Substances 0.000 claims abstract description 74
- 238000005452 bending Methods 0.000 claims description 37
- 229920000728 polyester Polymers 0.000 claims description 28
- 239000004973 liquid crystal related substance Substances 0.000 claims description 22
- 238000012360 testing method Methods 0.000 claims description 19
- 230000014759 maintenance of location Effects 0.000 claims description 12
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 claims description 6
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 claims description 5
- 239000004760 aramid Substances 0.000 claims description 5
- 229920006231 aramid fiber Polymers 0.000 claims description 5
- 125000005605 benzo group Chemical group 0.000 claims 1
- -1 aromatic diol Chemical class 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 125000003118 aryl group Chemical group 0.000 description 7
- 239000000470 constituent Substances 0.000 description 6
- 239000011162 core material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000009954 braiding Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229920000508 Vectran Polymers 0.000 description 4
- 239000004979 Vectran Substances 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 4
- 238000007667 floating Methods 0.000 description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 125000001309 chloro group Chemical group Cl* 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 125000001624 naphthyl group Chemical group 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920001494 Technora Polymers 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 125000006606 n-butoxy group Chemical group 0.000 description 2
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004950 technora Substances 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- UPHOPMSGKZNELG-UHFFFAOYSA-N 2-hydroxynaphthalene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=C(O)C=CC2=C1 UPHOPMSGKZNELG-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229920000561 Twaron Polymers 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002577 polybenzoxazole Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000004762 twaron Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/02—Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
- D07B1/025—Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics comprising high modulus, or high tenacity, polymer filaments or fibres, e.g. liquid-crystal polymers
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/02—Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04C—BRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
- D04C1/00—Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
- D04C1/06—Braid or lace serving particular purposes
- D04C1/12—Cords, lines, or tows
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/10—Rope or cable structures
- D07B2201/1012—Rope or cable structures characterised by their internal structure
- D07B2201/102—Rope or cable structures characterised by their internal structure including a core
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/10—Rope or cable structures
- D07B2201/104—Rope or cable structures twisted
- D07B2201/1044—Rope or cable structures twisted characterised by a value or range of the pitch parameter given
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/10—Rope or cable structures
- D07B2201/1096—Rope or cable structures braided
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2001—Wires or filaments
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2041—Strands characterised by the materials used
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2047—Cores
- D07B2201/2052—Cores characterised by their structure
- D07B2201/2055—Cores characterised by their structure comprising filaments or fibers
- D07B2201/2057—Cores characterised by their structure comprising filaments or fibers resulting in a twisted structure
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2047—Cores
- D07B2201/2067—Cores characterised by the elongation or tension behaviour
- D07B2201/2068—Cores characterised by the elongation or tension behaviour having a load bearing function
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2083—Jackets or coverings
- D07B2201/209—Jackets or coverings comprising braided structures
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/20—Organic high polymers
- D07B2205/201—Polyolefins
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/20—Organic high polymers
- D07B2205/201—Polyolefins
- D07B2205/2014—High performance polyolefins, e.g. Dyneema or Spectra
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/20—Organic high polymers
- D07B2205/2028—Polyvinyl alcohols
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/20—Organic high polymers
- D07B2205/2039—Polyesters
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/20—Organic high polymers
- D07B2205/2039—Polyesters
- D07B2205/2042—High performance polyesters, e.g. Vectran
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/20—Organic high polymers
- D07B2205/2046—Polyamides, e.g. nylons
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/20—Organic high polymers
- D07B2205/2046—Polyamides, e.g. nylons
- D07B2205/205—Aramides
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/20—Organic high polymers
- D07B2205/2096—Poly-p-phenylenebenzo-bisoxazole [PBO]
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2401/00—Aspects related to the problem to be solved or advantage
- D07B2401/20—Aspects related to the problem to be solved or advantage related to ropes or cables
- D07B2401/2055—Improving load capacity
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2401/00—Aspects related to the problem to be solved or advantage
- D07B2401/20—Aspects related to the problem to be solved or advantage related to ropes or cables
- D07B2401/206—Improving radial flexibility
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2501/00—Application field
- D07B2501/20—Application field related to ropes or cables
- D07B2501/2038—Agriculture, forestry and fishery
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2501/00—Application field
- D07B2501/20—Application field related to ropes or cables
- D07B2501/2061—Ship moorings
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/06—Load-responsive characteristics
- D10B2401/063—Load-responsive characteristics high strength
Definitions
- the present invention relates to a double rope structure composed of an inner layer and an outer layer.
- a rope is made by twisting or braiding a large number of strands into a rope or string, and is used for mooring ships, water applications such as fishing net rim ropes, and land applications such as tow ropes and cargo ropes.
- the strand is composed of a plurality of yarns, and the yarn is formed by using a plurality of single yarns as raw yarns.
- the rope has a double-structured rope structure in addition to the single-layered rope structure.
- the double-structured rope structure is formed by arranging twisted or braided strands in the inner layer and the outer layer, respectively.
- the core material is made of high-strength and high-elasticity fibers
- the outer layer rope is a braid made of yarn in which high-strength and high-elasticity fibers and general-purpose fibers are mixed.
- a fiber rope is disclosed, wherein the outer layer rope contains a large amount of high-strength and high-elasticity fibers as compared with general-purpose fibers.
- an object of the present invention is to provide a double rope structure having excellent strength and bending resistance.
- the inventors of the present invention have obtained the strength characteristics of the high-strength and high-elasticity fibers when the high-strength and high-elasticity fibers are used as the inner layer of the double rope structure. It was confirmed that the strength of the rope structure can be improved by the origin, but on the other hand, the strength of the double rope structure is always high even when high-strength and high-elasticity fibers are used for the inner layer. I found that it did not improve. As a result of further research, when the length of the yarn constituting the high-strength and high elastic modulus fiber used for the inner layer is adjusted to a specific ratio to the length of the rope, the high-strength and high elastic modulus are adjusted. We have found that not only can the strength inherent in the fiber be effectively utilized, but also the bending resistance of the rope structure can be improved, and the present invention has been completed.
- the present invention can be configured in the following aspects.
- Aspect 1 It is a double rope structure composed of an inner layer and an outer layer.
- the inner layer is composed of high-strength and high elastic modulus fibers having a yarn strength of 20 cN / dtex or more (preferably 22 cN / dtex or more) and a yarn elastic modulus of 400 cN / dtex or more (preferably 450 cN / dtex or more).
- the ratio of the average value of the yarn lengths of the yarns constituting the inner layer of the cut portion to the rope length of the cut portion obtained by cutting the double rope structure to a predetermined length is 1.005 or more as the yarn length / rope length.
- a double rope structure of 1.200 or less (preferably 1.006 to 1.180, more preferably 1.007 to 1.150, particularly preferably 1.007 to 1.130).
- the crossing angle of the strands constituting the inner layer with respect to the rope longitudinal direction is 40 ° or less (preferably 35 ° or less, more preferably 33 ° or less, still more preferably 30 °). Below, particularly preferably 27 ° or less), a double rope structure.
- a high-strength / high elastic modulus fiber yarn is used for the inner layer, and the length of the high-strength / high elastic modulus fiber yarn is adjusted to a specific range with respect to the length of the rope to form an inner layer.
- the inner layer is covered with an outer layer, it is possible to improve the strength and the bending resistance of the rope structure at the same time.
- FIG. 3 is a partially enlarged schematic perspective view of the strands forming the inner layer of the double rope structure of FIG. 1.
- FIG. 3 is a schematic perspective view for explaining the relationship between the length of one of a plurality of yarns forming a strand of a cut portion of a double rope structure and the length of the cut portion. It is a schematic disassembled side view of the double rope structure which concerns on other embodiment of this invention. It is a schematic side view for demonstrating a twisted wear test.
- FIG. 1 is a schematic exploded side view of a double rope structure according to an embodiment of the present invention
- FIG. 2 is a partially enlarged schematic view of a strand 3 forming an inner layer of the double rope structure of FIG. It is a perspective view.
- the double rope structure 10 includes an inner layer 1 and an outer layer 2 covering the inner layer.
- the illustration of the outer layer 2 is partially shown in order to show the state of the inner layer 1. It is omitted.
- the inner layer 1 and the outer layer 2 both have a structure in which a plurality of strands are braided, each strand is composed of a plurality of yarns, and each yarn is composed of a plurality of single yarns.
- the strand 3 forming the inner layer 1 of the double rope structure 10 of FIG. 1 is composed of a plurality of yarns 4, and each yarn 4 is a twisted body of a plurality of raw yarns. Is.
- FIG. 1 shows a cut portion 1A constituting a predetermined length V in the inner layer 1.
- the cut portion 1A shows an inner layer portion when the double rope structure 10 is cut to a predetermined length V.
- a plurality of strands constituting the cut portion 1A are obtained, and in FIG. 1, one of the strands 3A is indicated by dots.
- the strand 3A is composed of a plurality of yarns (not shown).
- FIG. 3 is a schematic perspective view for explaining the relationship between the length W of the yarn 4A of one of the plurality of yarns forming the strand 3A of the cut portion 1A and the length V of the cut portion 1A.
- the strand 3A is formed in the cut portion 1A from the viewpoint of improving both the strength and the bending resistance of the double rope structure by the high strength and high elastic modulus fibers constituting the inner layer 1.
- the length W of the yarn 4A forming the above is in the range of 1.005 or more and 1.200 or less as the yarn length / rope length (W / V).
- the double rope structure 10 makes the length of the yarn constituting the strand close to the length of the rope itself, thereby increasing the strength of the yarn formed from the high-strength and high elastic modulus fibers. It will be possible to use it often.
- the length of the yarn constituting the strand is too close to the length of the rope itself, not only is it difficult to make the strand into a twisted or braided body, but also the shape of the double rope structure is unstable. Therefore, it is difficult to improve the bending resistance.
- the crossing angles of the strands intersect at the smallest possible crossing angle with respect to the longitudinal direction Z passing through the center of the double rope structure (hereinafter, simply referred to as the rope longitudinal direction Z), for example, as shown in FIG.
- the strands 3A constituting the inner layer intersect with the rope longitudinal direction Z at an intersection angle ⁇ (0 ° ⁇ ⁇ 90 °).
- the crossing angle ⁇ can be measured by using an image of the side surface of the fiber in a state where the outer layer 1 is removed and the inner layer 2 is exposed.
- a strand 3A intersecting the rope longitudinal direction Z of the double rope structure 10 is randomly selected, and an angle formed between the rope longitudinal direction Z and the side of the strand 3A on the rope longitudinal direction Z side.
- ⁇ is the intersection angle.
- FIG. 4 is a schematic exploded side view of the double rope structure according to another embodiment of the present invention.
- the double rope structure 20 includes an inner layer 6 and an outer layer 2 that covers the inner layer.
- the outer layer 2 is a braided body, and is integrated with the inner layer 6 to form a double rope structure.
- the same reference numerals are used for the parts common to those in FIG. 1, and the description thereof will be omitted.
- the inner layer 6 has a combined twist structure in which a plurality of strands 7 are twisted together, each strand is composed of a plurality of yarns, and each yarn is composed of a plurality of single yarns.
- the strand 7 forming the inner layer 6 of the double rope structure 20 of FIG. 4 is composed of a plurality of yarns 4 as in the strand 3 shown in FIG. 2, and each yarn 4 is composed of a plurality of yarns. It is a twisted body.
- FIG. 4 shows the cut portion 6A constituting the predetermined length V in the inner layer 6.
- the cut portion 6A shows an inner layer portion when the double rope structure 20 is cut to a predetermined length V.
- a plurality of strands constituting the cut portion 6A are obtained, and in FIG. 4, one of the strands 7A is indicated by dots.
- the strand 7A is composed of a plurality of yarns (not shown), and the length W of the yarn forming the strand 7A is the yarn length / rope length (W /) with respect to the length V of the cut portion 6A.
- V) exists in the range of 1.005 or more and 1.200 or less.
- the strands 7A constituting the inner layer intersect with the rope longitudinal direction Z at an intersection angle ⁇ (0 ° ⁇ ⁇ 90 °).
- a strand 7A that intersects the rope longitudinal direction Z passing through the center of the double rope structure 20 is randomly selected, and is formed by the rope longitudinal direction Z and the side of the strand 7A on the rope longitudinal direction Z side.
- the angle ⁇ to be formed is defined as the crossing angle.
- the outer layer 2 is formed of a braided body of strands. As shown in FIG. 2, the strand is further composed of a plurality of yarns.
- the average value of the yarn lengths of the yarns constituting the inner layer of the cut portion with respect to the rope length of the cut portion cut at a length of 1 m (to be exact, 1.000 m).
- the yarn length / rope length (W / V) exists in the range of 1.005 or more and 1.200 or less, preferably 1.006 to 1.180, and more preferably 1.007 to 1. It may be 150, particularly preferably 1.007 to 1.130.
- the yarn length and the rope length are values measured by the method described in Examples described later. In the above range, the tensile strength of the double rope structure can be improved, and a high strength retention rate can be maintained even after bending.
- the inner layer of the double rope structure of the present invention may be a twisted body or a braided body as long as the yarn length / rope length (W / V) is satisfied within a predetermined range.
- the braided body may be eight-on-the-floor, twelve-on-the-floor, sixteen-on-the-floor, or thirty-two-on-the-floor.
- the braided body is preferable, the braided body of 8 strokes, 12 strokes and 16 strokes is preferable, and the braided body of 12 strokes and 16 strokes is more preferable.
- the braided body may be either rounded or squared, but is preferably rounded from the viewpoint of excellent wear resistance.
- the pitch (mesh / inch) may be adjusted to be, for example, 2.5 to 20, preferably 3 to 18, and more preferably 3.3 to 15. good.
- the pitch represents the number of yarns per inch in the longitudinal direction in the rope, and can be measured and confirmed by using, for example, a digital microscope VHX-2000 manufactured by KEYENCE CORPORATION.
- the lead (mm / stitch) may be adjusted to be, for example, 18 to 100, preferably 20 to 90, and more preferably 23 to 85.
- the reed represents the length required for the strand to go around the rope.
- the lead / diameter (/ stitch) may be adjusted to be, for example, 8 to 70, preferably 9 to 60, and more preferably 10 to 50. ..
- the lead / diameter represents the ratio of the lead to the diameter of the inner layer.
- the crossing angles of the strands intersect at the smallest possible crossing angle with respect to the longitudinal direction of the rope, and ⁇ may be 40 ° or less.
- the crossing angle ⁇ of the strands constituting the layer with respect to the longitudinal direction of the rope may be preferably 35 ° or less, more preferably 33 ° or less, still more preferably 30 ° or less, and particularly preferably 27 ° or less.
- the lower limit of the crossing angle may be, for example, 2 ° or more, preferably 3 ° or more, and more preferably 6 ° or more.
- the number of twists of each yarn may be 150 to 0.1 T / m, preferably 100 to 2 T / m, more preferably 80 to 3 T / m, and even more preferably. It may be 70 to 5 T / m, particularly preferably 60 to 6 T / m.
- 0.1 T / m is synonymous with 1 T / 10 m.
- the plurality of strands constituting the inner layer may be twisted as necessary within a range satisfying the specific yarn length / rope length specified in the present invention. Further, a plurality of strands may be further twisted, if necessary, as long as the specific yarn length / rope length specified in the present invention is satisfied.
- the fineness of the yarn can be appropriately set according to the fineness required for the double rope structure, and may be, for example, 30 dtex or more, preferably 200 dtex or more, and more preferably 400 dtex or more. good. Further, the yarn fineness may be 6000 dtex or less, preferably 5000 dtex or less, more preferably 4000 dtex or less, and even more preferably 2500 dtex or less.
- the diameter of the inner layer can be appropriately set depending on the intended use, but may be, for example, 0.5 to 100 mm, preferably 1.5 to 80 mm, and more preferably 2 to 60 mm. ..
- the diameter of the inner layer can be measured by an electronic caliper after embedding the double rope structure with a resin and cutting the fiber cross section in a direction orthogonal to the longitudinal direction of the rope.
- the ratio of the inner layer in the double rope structure may be, for example, 40% by weight or more and 90% by weight or less, preferably 50% by weight or more and 80% by weight, from the viewpoint of utilizing the strength of the high-strength and high elastic modulus fibers. % Or less, and more preferably 60% by weight or more and 75% by weight or less.
- the high-strength and high-elasticity fibers constituting the inner layer are not particularly limited as long as they are high-strength and high-elasticity fibers capable of achieving a yarn strength of 20 cN / dtex or more and a yarn elasticity of 400 cN / dtex or more.
- Specific examples include, for example, liquid crystal polyester fibers (Vectran (trademark), Ciberus (trademark), Zexion (trademark), etc.), ultra-high molecular weight polyethylene fibers (Izanas (trademark), Dyneema (trademark), etc.), and aramid fibers (Kevlar).
- liquid crystal polyester fiber or ultra-high molecular weight polyethylene fiber is preferable from the viewpoint of excellent wear resistance
- liquid crystal polyester fiber or aramid fiber is preferable from the viewpoint of heat resistance
- liquid crystal polyester fiber or aramid fiber is preferable, and from the viewpoint of excellent heat resistance and wear resistance.
- Liquid crystal polyester fibers are preferred.
- the liquid crystal polyester fiber can be produced, for example, by melt-spinning the liquid crystal polyester and further solid-phase polymerizing the spinning yarn.
- the liquid crystal polyester multifilament is a fiber in which two or more liquid crystal polyester monofilaments are gathered.
- the liquid crystal polyester is a polyester that exhibits optical anisotropy (liquid crystal property) in the molten phase, and can be certified by, for example, placing the sample on a hot stage, heating it in a nitrogen atmosphere, and observing the transmitted light of the sample with a polarizing microscope. ..
- the liquid crystal polyester is composed of a repeating structural unit derived from, for example, an aromatic diol, an aromatic dicarboxylic acid, an aromatic hydroxycarboxylic acid, etc., and the structural unit is the chemical composition thereof as long as the effect of the present invention is not impaired.
- the liquid crystal polyester may contain a structural unit derived from an aromatic diamine, an aromatic hydroxyamine or an aromatic aminocarboxylic acid as long as the effect of the present invention is not impaired.
- Y exists in a number in the range of the maximum number that can be substituted in 1 to the aromatic ring, and each of them independently has a hydrogen atom and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.).
- Alkyl group eg, methyl group, ethyl group, isopropyl group, t-butyl group and other alkyl groups having 1 to 4 carbon atoms
- alkoxy group eg, methoxy group, ethoxy group, isopropoxy group, n-butoxy.
- aryl groups eg, phenyl group, naphthyl group, etc.
- aralkyl groups [benzyl group (phenylmethyl group), phenethyl group (phenylethyl group), etc.]
- aryloxy groups eg, phenoxy group, etc.
- aralkyl It is selected from the group consisting of an oxy group (for example, a benzyloxy group, etc.).
- More preferable structural units include the structural units shown in Examples (1) to (18) shown in Tables 2, 3 and 4 below.
- the structural unit in the formula is a structural unit capable of exhibiting a plurality of structures, two or more such structural units may be combined and used as the structural unit constituting the polymer.
- n is an integer of 1 or 2
- Y 1 and Y 2 Are independently carbons such as hydrogen atom, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom, etc.) and alkyl group (for example, methyl group, ethyl group, isopropyl group, t-butyl group, etc.).
- Alkyl group of number 1 to 4 alkoxy group (eg, methoxy group, ethoxy group, isopropoxy group, n-butoxy group, etc.), aryl group (eg, phenyl group, naphthyl group, etc.), aralkyl group [benzyl group, etc.) (Phenylmethyl group), phenethyl group (phenylethyl group), etc.], aryloxy group (eg, phenoxy group, etc.), aralkyloxy group (eg, benzyloxy group, etc.) and the like.
- preferable Y includes a hydrogen atom, a chlorine atom, a bromine atom or a methyl group.
- the preferable liquid crystalline polyester preferably has two or more kinds of naphthalene skeletons as a constituent unit.
- the liquid crystal polyester contains both a structural unit (A) derived from hydroxybenzoic acid and a structural unit (B) derived from hydroxynaphthoic acid.
- the following formula (A) can be mentioned as the constituent unit (A)
- the following formula (B) can be mentioned as the constituent unit (B).
- the ratio of the structural unit (B) may be preferably in the range of 9/1 to 1/1, more preferably 7/1 to 1/1, and even more preferably 5/1 to 1/1.
- the total of the constituent units of (A) and (B) may be, for example, 65 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% with respect to all the constituent units. That may be the above.
- liquid crystal polyester in which the constituent unit of (B) is 4 to 45 mol% is particularly preferable.
- the melting point of the liquid crystal polyester preferably used in the present invention is preferably 250 to 360 ° C, more preferably 260 to 320 ° C.
- the melting point is the main absorption peak temperature measured and observed by a differential scanning calorimeter (DSC; “TA3000” manufactured by METTLER CORPORATION) in accordance with the JIS K7121 test method. Specifically, after taking 10 to 20 mg of a sample in the DSC device and enclosing it in an aluminum pan, nitrogen as a carrier gas is circulated at 100 cc / min, and the endothermic peak when the temperature is raised at 20 ° C./min is obtained. Measure.
- Thermoplastic polymers such as polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyamide, polyphenylene sulfide, polyether ether ketone, and fluororesin are added to the liquid crystal polyester as long as the effects of the present invention are not impaired. May be. Further, various additives such as inorganic substances such as titanium oxide, kaolin, silica and barium oxide, colorants such as carbon black, dyes and pigments, antioxidants, ultraviolet absorbers and light stabilizers may be added.
- inorganic substances such as titanium oxide, kaolin, silica and barium oxide
- colorants such as carbon black, dyes and pigments, antioxidants, ultraviolet absorbers and light stabilizers may be added.
- the yarn strength of the high-strength / high elastic modulus fiber is 20 cN / dtex or more, and preferably 22 cN / dtex or more.
- the upper limit is not particularly limited, but may be, for example, 40 cN / dtex.
- the yarn elastic modulus of the high-strength and high elastic modulus fiber may be 400 cN / dtex or more, preferably 450 cN / dtex or more.
- the upper limit is not particularly limited, but may be, for example, 600 cN / dtex.
- the yarn elongation of the high-strength and high elastic modulus fiber may be, for example, 3 to 6%, preferably 3.5 to 5.5%.
- the yarn strength, the yarn elastic modulus, and the yarn elongation are values measured by the methods described in Examples described later.
- the outer layer is composed of a twisted body or a braided body of strands covering the inner layer.
- the wound twisted body can be formed by spirally winding the strands around the inner layer, and the braided body has 8 strokes, 12 strokes, 16 strokes, 24 strokes, 32 strokes, and 40 strokes with the inner layer as the core. It can be formed by braiding with 48 strokes, 64 strokes, or the like. Of these, a braid of 16 strokes, 24 strokes, 32 strokes, 40 strokes, and 48 strokes is preferable, and a braided body of 24 strokes, 32 strokes, or 40 strokes is more preferable.
- the strand constituting the outer layer may be formed of the high-strength / high elastic modulus fiber, or may be formed of a non-high-strength / non-high elastic modulus fiber (hereinafter, simply referred to as a non-high-strength / high elastic modulus fiber). May be good.
- the yarn strength may be less than 20 cN / dtex, and usually, it may be about 1 cN / dtex to 15 cN / dtex.
- the yarn elastic modulus may be less than 400 cN / dtex, and usually may be about 10 cN / dtex to 200 cN / dtex.
- the yarn elongation may be, for example, 3 to 20%, preferably 7 to 20%.
- the non-high strength and high elasticity fiber include general-purpose synthetic fiber, for example, general-purpose polyester fiber (for example, polyethylene terephthalate fiber), polyolefin fiber (for example, polyethylene fiber and polypropylene fiber), and polyamide fiber (for example, nylon 6 fiber and nylon). 6 and 6 fibers), polyvinyl alcohol fibers (for example, Viniron TM, etc.) and the like.
- the outer layer may be substantially composed of non-high strength and high elastic modulus fibers.
- substantially means that the ratio of the non-high-strength / high elastic modulus fiber in the outer layer is 80% by weight or more, and preferably 90% by weight or more (90 to 100% by weight). ..
- the fineness of the yarn forming the strands of the outer layer can be appropriately set according to the fineness required for the double rope structure and the like, but may be, for example, 50 to 1000 dtex, preferably 100 to 500 dtex. It may be preferably 200 to 400 dtex.
- the double rope structure of the present invention is a double rope structure composed of an inner layer and an outer layer, and has a specific inner layer structure, so that both strength and bending resistance can be improved.
- the tensile strength may exceed, for example, 2.0 kN, preferably 2.2 kN or more, and more preferably 2. It may be .4 kN or more, and even more preferably 3.0 kN or more.
- the upper limit is not particularly limited, but may be 6.0 kN, for example.
- the tensile strength of the double rope structure is a value measured by the method described in Examples described later.
- the higher the strong utilization rate of the double rope structure the more preferable, but for example, it may be 40% or more, preferably 50% or more, more preferably 55% or more, still more preferably 60%. It may be the above.
- the upper limit is not particularly limited, but may be 100%, for example.
- the strength utilization of the double rope structure is calculated by displaying the ratio of the tensile strength of the double rope structure to the total number of strands in the yarn strength ⁇ the inner layer of the yarn constituting the inner layer as a percentage.
- the double rope structure has a strong retention rate before and after bending, for example, when the double rope structure is subjected to a bending test in which bending R is 7.5 mm and bending is repeated 300,000 times at a bending angle of 240 °.
- the higher the strong retention rate before and after the bending test the more preferable, but for example, it may be 45% or more, preferably 50% or more, and more preferably 55% or more.
- the upper limit is not particularly limited, but may be 100%, for example.
- the strong retention rate after bending is a value measured by the method described in Examples described later.
- the double rope structure has excellent wear resistance, and the loop-shaped double rope structure is twisted three times between the upper and lower pulleys having an inner diameter of 45 mm arranged at intervals of 500 mm.
- Double rope when a twisted wear test was performed in which the pulley was reciprocated at an angle of 180 degrees and a cycle of 60 times / minute (MV 34.2 Hz) with a load of 3 kg applied to the lower pulley.
- the number of twisting wears until the structure is cut may be, for example, 100,000 times or more, preferably 200,000 times or more, and may exceed 550,000 times, more preferably. It may be 600,000 times or more, more preferably 800,000 times or more, and particularly preferably 1 million times or more.
- the upper limit may be set to 277 hours (wear 1 million times) and the wear resistance may be determined. The upper limit is not particularly limited, but may be about 5 million times.
- the double rope structure is preferably excellent in heat resistance, and the strong retention rate after holding at 80 ° C., which is an index of heat resistance, for 30 days may be, for example, 45% or more. It may be preferably 60% or more, more preferably 80% or more. The upper limit is not particularly limited, but may be 100%, for example.
- the heat resistance of the double rope structure is a value measured by the method described in Examples described later.
- a load of 3 kg was applied to the side pulley in the direction indicated by the lower arrow.
- the upper limit of the number of round trips was set to 1 million.
- the double rope structure was previously stored in a thermostat under the condition of 80 ° C. for 30 days, and then taken out into a test room under standard conditions (temperature: 20 ⁇ 2 ° C., relative humidity 65 ⁇ 2%) and taken out for 30. Tensile strength was measured within minutes. As the heat resistance, the tensile strength of the double rope structure after the heating test was calculated with respect to the tensile strength of the double rope structure before the heating test, and expressed as a percentage.
- Example 1 Liquid crystal polyester multifilament (manufactured by Kuraray Co., Ltd., "Vectran", fineness 1760 dtex) is used as a high-strength and high elastic modulus fiber, and the pitch is 13 stitches in an EL type 12-strand string making machine (manufactured by Kokubun Limited).
- the inner layer rope was manufactured by adjusting the rotation speed and the take-up speed of the braider so as to be inch.
- polyester multifilament manufactured by Toray Co., Ltd., fineness 280 dtex, yarn strength 7.2 cN / dtex, yarn elastic modulus 88 cN / dtex, yarn elongation 15.1%
- a double rope was manufactured by adjusting the rotation speed and the pick-up speed of the braider so that the pitch was 46 stitches / inch in a string making machine (manufactured by Kokubun Limited Co., Ltd.).
- Example 2 to 4 A double rope structure was manufactured in the same manner as in Example 1 except that the pitch and lead / diameter of the inner layer of the double rope structure were changed as shown in Table 5. The results are shown in Table 5.
- Example 5 Same as Example 1 except that the inner layer of the double rope structure is changed to ultra-high molecular weight polyethylene multifilament (manufactured by Toyobo Co., Ltd., "Izanas", fineness 1750 dtex) as a high-strength and high elastic modulus fiber. A double rope structure was manufactured. The results are shown in Table 5.
- Example 6 A double rope structure was manufactured in the same manner as in Example 5, except that the pitch and lead / diameter of the inner layer of the double rope structure were changed as shown in Table 5. The results are shown in Table 5.
- Example 7 Double rope in the same manner as in Example 1 except that the inner layer of the double rope structure is changed to p-aramid multifilament (made by Teijin Aramid, "Technora", fineness 1700 dtex) as a high-strength and high elastic modulus fiber. Manufactured the structure. The results are shown in Table 5.
- Example 8 A double rope structure was manufactured in the same manner as in Example 7, except that the pitch and lead / diameter of the inner layer of the double rope structure were changed as shown in Table 5. The results are shown in Table 5.
- Example 9 Liquid crystal polyester multifilament (manufactured by Kuraray Co., Ltd., "Vectran", fineness 1760 dtex) is used as a high-strength and high elastic modulus fiber, and the pitch is 9 stitches on a large square 8-strand string making machine (manufactured by Kokubun Limited).
- the inner layer rope was manufactured by adjusting the rotation speed and the take-up speed of the braider so as to be inch.
- polyester multifilament manufactured by Toray Co., Ltd., fineness 167 dtex, yarn strength 7.2 cN / dtex, yarn elastic modulus 88 cN / dtex, yarn elongation 15.1%
- a double rope was manufactured by adjusting the rotation speed and the pick-up speed of the braider so that the pitch was 46 stitches / inch in a string making machine (manufactured by Kokubun Limited Co., Ltd.).
- Example 10 Liquid crystal polyester multifilament (manufactured by Kuraray Co., Ltd., "Vectran", fineness 5280 dtex) is used as a high-strength and high elastic modulus fiber, and the pitch is 9 stitches in an EL type 12-strand string making machine (manufactured by Kokubun Limited).
- the inner layer rope was manufactured by adjusting the rotation speed and the take-up speed of the braider so as to be inch.
- polyester multifilament manufactured by Toray Co., Ltd., fineness 244 dtex, yarn strength 7.2 cN / dtex, yarn elastic modulus 88 cN / dtex, yarn elongation 15.1%
- a double rope was manufactured by adjusting the rotation speed and the pick-up speed of the braider so that the pitch was 30 stitches / inch in a string making machine (manufactured by Kokubun Limited Co., Ltd.).
- Example 3 A double rope structure was manufactured in the same manner as in Example 1 except that the number of yarn twists and the pitch of the inner layer of the double rope structure were changed as shown in Table 5. The results are shown in Table 5.
- Examples 1 to 10 can show a higher tensile strength and a strong utilization rate of the double rope structure than in Comparative Example 1, and show a stronger holding rate after bending than in Comparative Example 2. be able to.
- the double rope structures of Examples 1 to 6 and 9 to 10 are excellent in twisting wear, and the double rope structures of Examples 1 to 4 and 7 to 10 are excellent in heat resistance.
- the double rope structure of the present invention has a floating marine structure used for mooring ships, mooring ropes for fishing nets, mooring floating floating equipment provided floating on the water, exploration of marine resources, etc. on the seabed. It can be very preferably used in water applications such as mooring ropes, land applications such as tow ropes, load ropes, wind power generation facilities, and substation facilities, as well as sports and leisure applications.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ropes Or Cables (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Abstract
Description
〔態様1〕
内層と外層とで構成される二重ロープ構造体であって、
前記内層は、ヤーン強度20cN/dtex以上(好ましくは22cN/dtex以上)であり、ヤーン弾性率400cN/dtex以上(好ましくは450cN/dtex以上)である高強度・高弾性率繊維で構成され、
前記二重ロープ構造体を所定の長さで切断した切断部のロープ長に対する、前記切断部の内層を構成するヤーンのヤーン長の平均値の比が、ヤーン長/ロープ長として1.005以上1.200以下(好ましくは1.006~1.180、より好ましくは1.007~1.150、特に好ましくは1.007~1.130)である、二重ロープ構造体。
〔態様2〕
態様1の二重ロープ構造体であって、外層が非高強度・高弾性率繊維で実質的に構成される、二重ロープ構造体。
〔態様3〕
態様1または2の二重ロープ構造体であって、内層を構成するストランドの、ロープ長手方向に対する交差角が40°以下(好ましくは35°以下、より好ましくは33°以下、さらに好ましくは30°以下、特に好ましくは27°以下)である、二重ロープ構造体。
〔態様4〕
態様3に記載の二重ロープ構造体であって、内層のヤーンの撚り数が150~0.1T/m(好ましくは100~2T/m、より好ましくは80~3T/m、さらにより好ましくは60~6T/m)である、二重ロープ構造体。
〔態様5〕
態様1~4のいずれか一態様に記載の二重ロープ構造体であって、高強度・高弾性率繊維のヤーン伸度が3~6%(好ましくは3.5~5.5%)である、二重ロープ構造体。
〔態様6〕
態様1~5のいずれか一態様に記載の二重ロープ構造体であって、高強度・高弾性率繊維が、液晶ポリエステル繊維、超高分子量ポリエチレン繊維、アラミド繊維、およびポリ(パラフェニレンベンゾビスオキサゾール)繊維からなる群から選択される少なくとも一種から選択される、二重ロープ構造体。
〔態様7〕
態様1~6のいずれか一態様に記載の二重ロープ構造体であって、内層を構成するストランドのヤーン強力×内層中の総ストランド数に対する、二重ロープ構造体の引張強力の比率が、40%以上(好ましくは50%以上、より好ましくは55%以上であってもよく、さらに好ましくは60%以上)である、二重ロープ構造体。
〔態様8〕
態様1~7のいずれか一態様に記載の二重ロープ構造体であって、二重ロープ構造体を曲げRを7.5mmとし、屈曲角度240°において30万回屈曲を繰り返す屈曲試験に供した場合の屈曲試験前後の強力保持率が45%以上(好ましくは50%以上、より好ましくは55%以上)である、二重ロープ構造体。
〔態様9〕
態様1~8のいずれか一態様に記載の二重ロープ構造体であって、80℃での強力保持率が45%以上(好ましくは60%以上、より好ましくは80%以上)である、二重ロープ構造体。
〔態様10〕
態様1~9のいずれか一態様に記載の二重ロープ構造体であって、内層および外層が編組体である、二重ロープ構造体。
〔態様11〕
態様1~10のいずれか一態様に記載の二重ロープ構造体であって、二重ロープ構造体における内層の比率が40重量%以上である、二重ロープ構造体。
(内層)
本発明の二重ロープ構造体を構成する内層では、長さ1m(正確には1.000m)で切断した切断部分のロープ長に対する、前記切断部の内層を構成するヤーンのヤーン長の平均値の比として、前記ヤーン長/ロープ長(W/V)が、1.005以上1.200以下の範囲に存在し、好ましくは1.006~1.180、より好ましくは1.007~1.150、特に好ましくは1.007~1.130であってもよい。なお、ヤーン長およびロープ長の長さは、後述する実施例に記載された方法により測定される値である。前記範囲においては、二重ロープ構造体の引張強力を向上できるとともに、屈曲後においても高い強力保持率を維持することができる。
液晶ポリエステルは、溶融相において光学的異方性(液晶性)を示すポリエステルであり、例えば試料をホットステージに載せ窒素雰囲気下で加熱し、試料の透過光を偏光顕微鏡で観察することにより認定できる。また、液晶ポリエステルは、例えば芳香族ジオール、芳香族ジカルボン酸又は芳香族ヒドロキシカルボン酸等に由来する反復構成単位からなり、本発明の効果を損なわない限り、前記構成単位は、その化学的構成について特に限定されない。さらに、また、本発明の効果を阻害しない範囲で、液晶ポリエステルは、芳香族ジアミン、芳香族ヒドロキシアミン又は芳香族アミノカルボン酸に由来する構成単位を含んでもよい。
また、高強度・高弾性率繊維の有するヤーン弾性率は400cN/dtex以上であり、好ましくは450cN/dtex以上であってもよい。上限は特に限定されないが、例えば、600cN/dtexであってもよい。
さらに、高強度・高弾性率繊維の有するヤーン伸度は、例えば、3~6%であってもよく、好ましくは3.5~5.5%であってもよい。
ヤーン強度、ヤーン弾性率およびヤーン伸度は、後述する実施例に記載された方法により測定される値である。
本発明の二重ロープ構造体では、外層は、内層を被覆するストランドの包撚体または編組体で構成される。包撚体は、内層に対してストランドをらせん状に巻きつけることにより形成することができ、編組体は、内層を芯として8打ち、12打ち、16打ち、24打ち、32打ち、40打ち、48打ち、64打ちなどにより編組して形成することができる。これらのうち、16打ち、24打ち、32打ち、40打ち、48打ちの編組体が好ましく、24打ち、32打ちまたは40打ちの編組体がより好ましい。
非高強度・高弾性率繊維としては、汎用の合成繊維、例えば、汎用ポリエステル繊維(例えば、ポリエチレンテレフタレート繊維)、ポリオレフィン繊維(例えば、ポリエチレン繊維、ポリプロピレン繊維)、ポリアミド繊維(例えばナイロン6繊維、ナイロン6,6繊維)、ポリビニルアルコール繊維(例えば、ビニロン(商標)など)などが挙げられる。
本発明の二重ロープ構造体では、内層と外層とで構成される二重ロープ構造体であって、特定の内層構造を有するため、強度および耐屈曲性の双方を向上することができる。
二重ロープ構造体(以下、単にロープ構造体と称する場合がある)から、ランダムに選択して1.000mを切断し、ロープ長とした。また、切断した部分を構成するストランドを分解し内層を取出し、さらに、内層を構成する任意に選択した1本のストランドを分解して内層を構成するヤーンを得て、得られた内層ヤーンの全てについて、JIS L 1013に基づいてピンと張った状態で長さを測定して、平均値をヤーン長とした。
ロープ構造体を構成するストランドを分解して内層および外層を構成するヤーンを得て、得られたヤーンについてJIS L 1013に基づいてヤーン繊度を測定した。
ロープ構造体を構成するストランドを分解して内層を構成するヤーンを得て、得られたヤーンについてJIS L 1013に基づいてヤーンの引張強さをヤーン強力(N)として測定するとともに、ヤーン伸度およびヤーン弾性率を測定した。また、ヤーン強力(cN)をヤーンの繊度(dtex)により除した値をヤーン強度(cN/dtex)とした。
(株)キーエンス製デジタルマイクロスコープVHX-2000を用いて、ロープ中の1インチ間に存在するヤーン数を測定してピッチとした。また、ストランドがロープを一周するのに必要な長さであるリードは、25.4/(ピッチ)×(ストランド数)により算出した。
二重ロープ構造体および内層の直径は、電子ノギスを用いて測定した。
(株)キーエンス製デジタルマイクロスコープVHX-2000を用いて、二重ロープ構造体の内層中のストランドがロープの長手方向に対する角度を測定した。
解舒したヤーンをメジャーで計測し、解舒したヤーンの撚りを測定した。
二重ロープ構造体について万能試験機のつかみ治具として、ロープ評価用渦巻き型治具(株式会社中部マシン製)を用いて、渦巻き部の溝部分にロープを巻き付け、表面の摩擦抵抗でロープを固定して、JIS L 1013に基づいて二重ロープ構造体の引張強力を測定した。
また、二重ロープ構造体の強力利用率は、内層を構成するストランドのヤーン強力×内層中の総ストランド数で算出された最大強力に対する二重ロープ構造体の引張強力を算出し、パーセント表示した。
屈曲試験機(TC111L/ユアサシステム製)において無張力屈曲試験治具(DX-TFB/ユアサシステム機器株式会社製)を用いて、曲げRを7.5mmとし、屈曲角度240°において30万回屈曲を繰り返す屈曲試験を行い、屈曲試験前後の二重ロープ構造体の引張強力を測定した。屈曲後保持率として、屈曲試験前の二重ロープ構造体の引張強力に対する屈曲試験後の二重ロープ構造体の引張強力を算出し、パーセント表示した。
図5に示すように、撚り合わせ摩耗試験に際しては、二重ロープ構造体のサンプルを上側プーリーおよび下側プーリーに掛け、プーリーと二重ロープ構造体が滑らないように固定した。なお上側プーリーおよび下側プーリーの内径はいずれも45mmであり、二重ロープ構造体が固定された状態における、上側プーリーおよび下側プーリーの中心間の間隔を500mmに調整した。
二重ロープ構造体は、まずループ状とし、次いでループ状になった二重ロープ構造体を3回ねじって20mm程度のねじり部分Xを形成した状態で、上側および下側プーリーに固定し、下側プーリーに下側矢印で示す向きに3kgの荷重を掛けた。プーリーを角度180度、周期60回/分(MV=34.2Hz)で往復運動させて、二重ロープ構造体を撚り合わされた部分で摩耗させたときに、内層が破断するまでのプーリー往復回数をカウントした。なお、往復回数の上限は100万回とした。
あらかじめ、二重ロープ構造体を恒温器中で80℃の条件下にて30日間保管処理した後、標準状態(温度:20±2℃、相対湿度65±2%)の試験室内に取り出し、30分以内に引張強力を測定した。耐熱性としては、加熱試験前の二重ロープ構造体の引張強力に対する加熱試験後の二重ロープ構造体の引張強力を算出し、パーセント表示した。
高強度・高弾性率繊維として液晶ポリエステルマルチフィラメント((株)クラレ製、「ベクトラン」、繊度1760dtex)を用い、EL型12打製紐機(株式会社コクブンリミテッド製)においてピッチが13目/inchになるようにブレーダーの回転数と引取り速度を調整して内層ロープを製造した。得られた内層ロープを芯材としてポリエステルマルチフィラメント(株式会社東レ製、繊度280dtex、ヤーン強度7.2cN/dtex、ヤーン弾性率88cN/dtex、ヤーン伸度15.1%)を用い、中型32打製紐機(株式会社コクブンリミテッド製)においてピッチが46目/inchになるようにブレーダーの回転数と引取り速度を調整して二重ロープを製造した。
二重ロープ構造体の内層のピッチおよびリード/直径を表5に示すように変更したこと以外は、実施例1と同様にして二重ロープ構造体を製造した。結果を表5に示す。
二重ロープ構造体の内層の高強度・高弾性率繊維として、超高分子量ポリエチレンマルチフィラメント(東洋紡(株)製、「イザナス」、繊度1750dtex)に変更した以外は、実施例1と同様にして二重ロープ構造体を製造した。結果を表5に示す。
二重ロープ構造体の内層のピッチおよびリード/直径を表5に示すように変更したこと以外は、実施例5と同様にして二重ロープ構造体を製造した。結果を表5に示す。
二重ロープ構造体の内層の高強度・高弾性率繊維として、p-アラミドマルチフィラメント(テイジンアラミド製、「テクノーラ」、繊度1700dtex)に変更した以外は、実施例1と同様にして二重ロープ構造体を製造した。結果を表5に示す。
二重ロープ構造体の内層のピッチおよびリード/直径を表5に示すように変更したこと以外は、実施例7と同様にして二重ロープ構造体を製造した。結果を表5に示す。
高強度・高弾性率繊維として液晶ポリエステルマルチフィラメント((株)クラレ製、「ベクトラン」、繊度1760dtex)を用い、大型角8打製紐機(株式会社コクブンリミテッド製)においてピッチが9目/inchになるようにブレーダーの回転数と引取り速度を調整して内層ロープを製造した。得られた内層ロープを芯材としてポリエステルマルチフィラメント(株式会社東レ製、繊度167dtex、ヤーン強度7.2cN/dtex、ヤーン弾性率88cN/dtex、ヤーン伸度15.1%)を用い、中型32打製紐機(株式会社コクブンリミテッド製)においてピッチが46目/inchになるようにブレーダーの回転数と引取り速度を調整して二重ロープを製造した。
高強度・高弾性率繊維として液晶ポリエステルマルチフィラメント((株)クラレ製、「ベクトラン」、繊度5280dtex)を用い、EL型12打製紐機(株式会社コクブンリミテッド製)においてピッチが9目/inchになるようにブレーダーの回転数と引取り速度を調整して内層ロープを製造した。得られた内層ロープを芯材としてポリエステルマルチフィラメント(株式会社東レ製、繊度244dtex、ヤーン強度7.2cN/dtex、ヤーン弾性率88cN/dtex、ヤーン伸度15.1%)を用い、中型54打製紐機(株式会社コクブンリミテッド製)においてピッチが30目/inchになるようにブレーダーの回転数と引取り速度を調整して二重ロープを製造した。
二重ロープ構造体の内層のピッチおよびリード/直径を表5に示すように変更したこと以外は、実施例1と同様にして二重ロープ構造体を製造した。結果を表5に示す。
二重ロープ構造体の内層のヤーン撚り数およびピッチを表5に示すように変更したこと以外は、実施例1と同様にして二重ロープ構造体を製造した。結果を表5に示す。
二重ロープ構造体の内層ロープを芯材としてポリエステルマルチフィラメント(株式会社東レ製、繊度1670dtex、ヤーン強度7.2cN/dtex、ヤーン弾性率88cN/dtex、ヤーン伸度15.1%)に変更した以外は、実施例2と同様にして二重ロープ構造体を製造した。結果を表5に示す。
また、比較例2では、ヤーン長/ロープ長が小さいため、屈曲後の強度保持率が十分維持できていない。
さらに、比較例3では、高強度・高弾性率繊維を強撚糸することで、強度を有効に利用することができないため、使用する繊維および、ピッチ数が適正でも二重ロープ構造体のロープ引張強力が十分でない。
比較例4では、ヤーン強度およびヤーン弾性率が小さすぎるため、二重ロープ構造体の引張強力が十分ではない。
特に、実施例1~6および9~10の二重ロープ構造体は撚り合わせ摩耗について優れており、実施例1~4および7~10の二重ロープ構造体は耐熱性に優れている。
Claims (11)
- 内層と外層とで構成される二重ロープ構造体であって、
前記内層は、ヤーン強度20cN/dtex以上であり、ヤーン弾性率400cN/dtex以上である高強度・高弾性率繊維で構成され、
前記二重ロープ構造体を所定の長さで切断した切断部のロープ長に対する、前記切断部の内層を構成するヤーンのヤーン長の平均値の比が、ヤーン長/ロープ長として1.005以上1.200以下である、二重ロープ構造体。 - 請求項1の二重ロープ構造体であって、外層が非高強度・高弾性率繊維で実質的に構成される、二重ロープ構造体。
- 請求項1または2の二重ロープ構造体であって、内層を構成するストランドの、ロープ長手方向に対する交差角が40°以下である、二重ロープ構造体。
- 請求項3に記載の二重ロープ構造体であって、内層のヤーンの撚り数が150~0.1T/mである、二重ロープ構造体。
- 請求項1~4のいずれか一項に記載の二重ロープ構造体であって、高強度・高弾性率繊維のヤーン伸度が3~6%である、二重ロープ構造体。
- 請求項1~5のいずれか一項に記載の二重ロープ構造体であって、高強度・高弾性率繊維が、液晶ポリエステル繊維、超高分子量ポリエチレン繊維、アラミド繊維、およびポリ(パラフェニレンベンゾビスオキサゾール)繊維からなる群から選択される少なくとも一種から選択される、二重ロープ構造体。
- 請求項1~6のいずれか一項に記載の二重ロープ構造体であって、内層を構成するストランドのヤーン強力×内層中の総ストランド数に対する、二重ロープ構造体の引張強力の比率が、40%以上である、二重ロープ構造体。
- 請求項1~7のいずれか一項に記載の二重ロープ構造体であって、二重ロープ構造体を曲げRを7.5mmとし、屈曲角度240°において30万回屈曲を繰り返す屈曲試験に供した場合の屈曲試験前後の強力保持率が45%以上である、二重ロープ構造体。
- 請求項1~8のいずれか一項に記載の二重ロープ構造体であって、80℃での強力保持率が45%以上である、二重ロープ構造体。
- 請求項1~9のいずれか一項に記載の二重ロープ構造体であって、内層および外層が編組体である、二重ロープ構造体。
- 請求項1~10のいずれか一項に記載の二重ロープ構造体であって、二重ロープ構造体における内層の比率が40重量%以上である、二重ロープ構造体。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180045314.1A CN115867702B (zh) | 2020-12-25 | 2021-12-16 | 双重绳索结构体 |
KR1020237034968A KR20230148390A (ko) | 2020-12-25 | 2021-12-16 | 이중 로프 구조체 |
JP2022552698A JP7249468B2 (ja) | 2020-12-25 | 2021-12-16 | 二重ロープ構造体 |
CA3202915A CA3202915A1 (en) | 2020-12-25 | 2021-12-16 | Double braid rope structure |
KR1020227036612A KR102591744B1 (ko) | 2020-12-25 | 2021-12-16 | 이중 로프 구조체 |
CN202410295060.4A CN118147933A (zh) | 2020-12-25 | 2021-12-16 | 双重绳索结构体 |
EP21910583.0A EP4265838A4 (en) | 2020-12-25 | 2021-12-16 | DOUBLE BRAID ROPE STRUCTURE |
JP2023042660A JP2023075309A (ja) | 2020-12-25 | 2023-03-17 | 二重ロープ構造体 |
US18/212,929 US20230332350A1 (en) | 2020-12-25 | 2023-06-22 | Double braid rope structure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-217505 | 2020-12-25 | ||
JP2020217505 | 2020-12-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/212,929 Continuation US20230332350A1 (en) | 2020-12-25 | 2023-06-22 | Double braid rope structure |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2022138435A1 true WO2022138435A1 (ja) | 2022-06-30 |
WO2022138435A8 WO2022138435A8 (ja) | 2022-09-29 |
Family
ID=82159291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/046486 WO2022138435A1 (ja) | 2020-12-25 | 2021-12-16 | 二重ロープ構造体 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20230332350A1 (ja) |
EP (1) | EP4265838A4 (ja) |
JP (2) | JP7249468B2 (ja) |
KR (2) | KR102591744B1 (ja) |
CN (2) | CN115867702B (ja) |
CA (1) | CA3202915A1 (ja) |
TW (1) | TW202240043A (ja) |
WO (1) | WO2022138435A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10317289A (ja) * | 1997-05-13 | 1998-12-02 | Toyobo Co Ltd | コード |
WO2011145224A1 (ja) * | 2010-05-17 | 2011-11-24 | 東京製綱株式会社 | ハイブリッドロープおよびその製造方法 |
JP2013530314A (ja) * | 2010-04-29 | 2013-07-25 | ディーエスエム アイピー アセッツ ビー.ブイ. | マルチフィラメント糸構造 |
JP3199266U (ja) | 2015-06-03 | 2015-08-13 | ナロック株式会社 | 繊維ロープ |
WO2019069817A1 (ja) * | 2017-10-06 | 2019-04-11 | 株式会社クラレ | 組紐 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2052580A (en) * | 1979-05-30 | 1981-01-28 | Marlow Ropes Ltd | Rope assembly |
JPH0681282A (ja) * | 1992-09-01 | 1994-03-22 | Teijin Ltd | ポリエステル系複合嵩高糸よりなるロープ |
JP3480865B2 (ja) * | 1995-04-11 | 2003-12-22 | 沖電気工業株式会社 | 複合弾性繊維ロープ |
JP3199266B2 (ja) * | 1995-08-22 | 2001-08-13 | シーゲート テクノロジー,インコーポレッテッド | 磁気記録媒体のレーザ表面処理 |
AU720080B2 (en) | 1996-11-04 | 2000-05-25 | E.B.F. Manufacturing Limited | Electrobraid fence |
JP3225224B2 (ja) * | 1998-04-10 | 2001-11-05 | 東京製綱繊維ロープ株式会社 | 高強力繊維ロープ |
JP2002038386A (ja) * | 2000-07-25 | 2002-02-06 | Yoshimitsu Seiko Kk | ヨット用ロープ |
KR100985938B1 (ko) * | 2002-04-09 | 2010-10-06 | 도요 보세키 가부시키가이샤 | 폴리에틸렌 섬유 및 그의 제조 방법 |
KR20080073838A (ko) * | 2007-02-07 | 2008-08-12 | 주식회사 효성 | 3/8 구조의 차량용 타이어의 스틸코드 |
CN101638856A (zh) * | 2008-08-01 | 2010-02-03 | 扬州中远九力绳缆有限公司 | 深海缆绳 |
KR20140125528A (ko) * | 2013-04-19 | 2014-10-29 | 박항우 | 예인로프 및 그 제조방법 |
CN104762748B (zh) * | 2015-04-15 | 2017-11-17 | 泰州宏达绳网有限公司 | 一种耐磨高强缆绳及其制备方法 |
CN106812001A (zh) * | 2017-01-18 | 2017-06-09 | 浙江四兄绳业有限公司 | 海工绳缆及其加工方法 |
JP3216535U (ja) * | 2018-02-09 | 2018-06-07 | ナロック株式会社 | 繊維ロープ |
CN110016758A (zh) * | 2019-05-07 | 2019-07-16 | 鲁普耐特集团有限公司 | 一种高强、低延伸且耐弯曲疲劳的帆船绳及其制作方法 |
-
2021
- 2021-12-16 CA CA3202915A patent/CA3202915A1/en active Pending
- 2021-12-16 JP JP2022552698A patent/JP7249468B2/ja active Active
- 2021-12-16 EP EP21910583.0A patent/EP4265838A4/en active Pending
- 2021-12-16 KR KR1020227036612A patent/KR102591744B1/ko active IP Right Grant
- 2021-12-16 WO PCT/JP2021/046486 patent/WO2022138435A1/ja active Application Filing
- 2021-12-16 CN CN202180045314.1A patent/CN115867702B/zh active Active
- 2021-12-16 CN CN202410295060.4A patent/CN118147933A/zh active Pending
- 2021-12-16 KR KR1020237034968A patent/KR20230148390A/ko active Application Filing
- 2021-12-24 TW TW110148627A patent/TW202240043A/zh unknown
-
2023
- 2023-03-17 JP JP2023042660A patent/JP2023075309A/ja active Pending
- 2023-06-22 US US18/212,929 patent/US20230332350A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10317289A (ja) * | 1997-05-13 | 1998-12-02 | Toyobo Co Ltd | コード |
JP2013530314A (ja) * | 2010-04-29 | 2013-07-25 | ディーエスエム アイピー アセッツ ビー.ブイ. | マルチフィラメント糸構造 |
WO2011145224A1 (ja) * | 2010-05-17 | 2011-11-24 | 東京製綱株式会社 | ハイブリッドロープおよびその製造方法 |
JP3199266U (ja) | 2015-06-03 | 2015-08-13 | ナロック株式会社 | 繊維ロープ |
WO2019069817A1 (ja) * | 2017-10-06 | 2019-04-11 | 株式会社クラレ | 組紐 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4265838A4 |
Also Published As
Publication number | Publication date |
---|---|
KR20230148390A (ko) | 2023-10-24 |
KR20220146700A (ko) | 2022-11-01 |
EP4265838A1 (en) | 2023-10-25 |
CA3202915A1 (en) | 2022-06-30 |
JP7249468B2 (ja) | 2023-03-30 |
TW202240043A (zh) | 2022-10-16 |
CN115867702A (zh) | 2023-03-28 |
JPWO2022138435A1 (ja) | 2022-06-30 |
US20230332350A1 (en) | 2023-10-19 |
CN115867702B (zh) | 2024-04-02 |
JP2023075309A (ja) | 2023-05-30 |
WO2022138435A8 (ja) | 2022-09-29 |
KR102591744B1 (ko) | 2023-10-19 |
EP4265838A4 (en) | 2024-03-13 |
CN118147933A (zh) | 2024-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4820869B2 (ja) | 編組ロープ構造物 | |
US6945153B2 (en) | Rope for heavy lifting applications | |
KR101321194B1 (ko) | 고성능 폴리에틸렌 섬유를 함유하는 로프 | |
JP5678122B2 (ja) | フルオロポリマー繊維複合束 | |
CA2643049C (en) | Ropes having improved cyclic bend over sheave performance | |
WO2006101723A1 (en) | A rope | |
JP2011518964A (ja) | 耐摩耗性生地 | |
JP7249569B2 (ja) | 撚糸及びそれを用いた撚糸構造体 | |
JPH08140538A (ja) | 釣 糸 | |
JP4851486B2 (ja) | 糸条と該糸条からなる釣糸 | |
JP2023536426A (ja) | ロープ | |
WO2022138435A1 (ja) | 二重ロープ構造体 | |
JP2022103147A (ja) | 二重ロープ構造体 | |
JP3518617B2 (ja) | 係船索 | |
WO2023249125A1 (ja) | 二重ロープ構造体 | |
JP3476422B2 (ja) | 高強力繊維融着糸 | |
US20230399773A1 (en) | Core-sheath composite fiber, production method therefor, and fiber structure | |
CN116194627A (zh) | 横截面积变化的编织绳及其制造方法 | |
JPS58126313A (ja) | ポリエステル繊維ロープの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022552698 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21910583 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227036612 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3202915 Country of ref document: CA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112023012598 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112023012598 Country of ref document: BR Kind code of ref document: A2 Effective date: 20230622 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021910583 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2021910583 Country of ref document: EP Effective date: 20230720 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |