WO2022137877A1 - 回転電機のロータ - Google Patents

回転電機のロータ Download PDF

Info

Publication number
WO2022137877A1
WO2022137877A1 PCT/JP2021/041708 JP2021041708W WO2022137877A1 WO 2022137877 A1 WO2022137877 A1 WO 2022137877A1 JP 2021041708 W JP2021041708 W JP 2021041708W WO 2022137877 A1 WO2022137877 A1 WO 2022137877A1
Authority
WO
WIPO (PCT)
Prior art keywords
press
tubular member
fitting
rotor
welded portion
Prior art date
Application number
PCT/JP2021/041708
Other languages
English (en)
French (fr)
Inventor
片桐慶大
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to US18/267,906 priority Critical patent/US20240039351A1/en
Priority to CN202180080827.6A priority patent/CN116584023A/zh
Priority to DE112021006582.3T priority patent/DE112021006582T5/de
Publication of WO2022137877A1 publication Critical patent/WO2022137877A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts

Definitions

  • the present invention relates to a rotor of a rotary electric machine.
  • a rotor of a rotary electric machine as disclosed in Patent Document 1 is provided on at least one of a tubular member, a magnetic body arranged in the tubular member, and both ends in the axial direction of the tubular member, and is provided in the axial direction. It includes a shaft member that is fixed to the inner peripheral surface of the tubular member in a state of being adjacent to the magnetic material.
  • the tubular member suppresses deformation of the magnetic material that receives centrifugal force due to the rotation of the rotor.
  • the shaft member has a press-fitting portion that is press-fitted into the inner peripheral surface of the tubular member.
  • the shaft member is fixed to the inner peripheral surface of the tubular member by press-fitting the press-fitting portion into the inner peripheral surface of the tubular member.
  • the shaft member is joined by welding to the cylinder member. It is considered to do.
  • the rotor may include a welded portion for welding the tubular member and the shaft member.
  • the press-fitting stress from the press-fitting portion acts on the tubular member.
  • the welded portion is not separated from the press-fitted portion in the axial direction of the tubular member and the welded portion is continuous with the press-fitted portion in the axial direction of the tubular member, the press-fitting stress acting on the tubular member from the press-fitted portion is applied. It is easily transmitted to the welded portion, and the press-fitting stress applied to the tubular member from the press-fitted portion may act on the welded portion. Then, the joint strength between the shaft member and the tubular member via the welded portion may decrease, and the reliability of the rotor of the rotary electric machine may decrease.
  • the rotor of the rotary electric machine for solving the above-mentioned problems is provided on at least one of a tubular member, a magnetic body arranged in the tubular member, and both ends of the tubular member in the axial direction, and the rotor is provided in the axial direction.
  • the shaft member is provided with a shaft member fixed to the inner peripheral surface of the tubular member in a state of being adjacent to the magnetic body, and a welded portion for welding the tubular member and the shaft member, and the shaft member is the tubular member.
  • a rotor of a rotary electric machine having a press-fitting portion to be press-fitted to an inner peripheral surface, the press-fitting portion is arranged at a position closer to the magnetic body than the welded portion, and the welded portion is located in the axial direction. It is separated from the press-fitting portion.
  • the welded portion is separated from the press-fitted portion in the axial direction of the tubular member, it becomes difficult to transmit the press-fitting stress acting on the tubular member from the press-fitted portion to the welded portion. Therefore, since the press-fitting stress applied to the cylinder member from the press-fitting portion is suppressed from acting on the welded portion, it is possible to suppress a decrease in the joint strength between the shaft member and the cylinder member via the welded portion. As a result, the reliability of the rotor of the rotary electric machine can be improved.
  • the shaft member has a smaller diameter in the radial direction of the cylinder member than the press-fitting portion, and has a small diameter portion arranged inside the cylinder member, and the small diameter portion is the axis line. It is preferable that the press-fitting portion and the welded portion are arranged in the direction.
  • the small diameter portion is arranged between the press-fitted portion and the welded portion in the axial direction of the tubular member, the welded portion is separated from the press-fitted portion without changing the design of the tubular member. Can be done.
  • the shaft member may be an output shaft that outputs a driving force.
  • the welded portion for welding the tubular member and the output shaft is separated from the press-fitted portion in the axial direction of the tubular member, the press-fitting stress acting on the tubular member from the press-fitted portion is applied to the tubular member and the output shaft. It is suppressed that it acts on the welded portion to be welded with. Therefore, in the output shaft on which a load is easily applied, it is possible to suppress a decrease in the joint strength between the output shaft and the tubular member via the welded portion. As a result, the reliability of the rotor of the rotary electric machine can be improved.
  • the welded portion may be separated from the press-fitted portion in the axial direction so that the stress acting on the welded portion when the rotor rotates is minimized.
  • stress due to the centrifugal force generated by the rotation of the rotor acts on the welded portion.
  • the welded portion receives centrifugal force generated by the rotation of the rotor. Since only the accompanying stress acts, the stress acting on the weld is the minimum value.
  • the welded portion is separated from the press-fitted portion in the axial direction of the tubular member so that the stress acting on the welded portion when the rotor rotates is minimized. According to this, even if the rotor rotates, the stress acting on the welded portion is only the stress caused by the centrifugal force generated by the rotation of the rotor, so that the decrease in the joint strength between the shaft member and the cylinder member is further suppressed. be able to. As a result, the reliability of the rotor of the rotary electric machine can be further improved.
  • Sectional view for demonstrating the rotary electric machine in embodiment Sectional drawing which shows by breaking a part of a rotor.
  • the graph which shows the result of having measured the stress acting at the time of rotation of a rotor at each position from the 1st weld part to the 1st press-fitting part in a cylinder member, and the part which opposes in the radial direction of a cylinder member.
  • the rotary electric machine 10 is housed in a cylindrical housing 11.
  • the housing 11 includes a bottomed cylindrical first housing structure 12 and a plate-shaped second housing structure 13 connected to the first housing structure 12.
  • the first housing structure 12 and the second housing structure 13 are made of metal, for example, aluminum.
  • the first housing configuration 12 has a plate-shaped bottom wall 12a and a peripheral wall 12b extending in a cylindrical shape from the outer peripheral portion of the bottom wall 12a.
  • the second housing structure 13 is connected to the first housing structure 12 in a state where the opening on the peripheral wall 12b opposite to the bottom wall 12a is closed.
  • a cylindrical boss portion 12c is provided on the inner surface of the bottom wall 12a of the first housing structure 12 in a protruding state.
  • the axis of the boss portion 12c coincides with the axis of the peripheral wall 12b of the first housing structure 12.
  • a cylindrical boss portion 13a is provided on the inner surface of the second housing structure 13 in a protruding state.
  • the axis of the boss portion 13a coincides with the axis of the peripheral wall 12b of the first housing structure 12. Therefore, the axes of both boss portions 12c and 13a are aligned.
  • the rotary electric machine 10 includes a stator 14 and a rotor 15.
  • the stator 14 has a cylindrical stator core 14a fixed to the inner peripheral surface of the peripheral wall 12b of the first housing structure 12, and a coil 14b wound around the stator core 14a.
  • the rotor 15 is arranged in the housing 11 so as to be rotatable inside the stator 14 in the radial direction.
  • the rotor 15 includes a tubular member 16, a permanent magnet 17 which is a magnetic body, and a first shaft member 18 and a second shaft member 19 as shaft members.
  • the tubular member 16 is made of Inconel.
  • the cylindrical member 16 has a cylindrical shape in which the axis of the tubular member 16 extends linearly. The wall thickness of the tubular member 16 is uniform.
  • the permanent magnet 17 is a solid columnar shape.
  • the permanent magnet 17 is arranged in the tubular member 16.
  • the axis of the permanent magnet 17 coincides with the axis of the tubular member 16.
  • the permanent magnet 17 is magnetized in the radial direction of the permanent magnet 17.
  • the permanent magnet 17 is press-fitted into the inner peripheral surface 160 of the tubular member 16.
  • the length of the permanent magnet 17 in the direction in which the axis extends is shorter than the length of the tubular member 16 in the direction in which the axis extends.
  • Both end faces 17a and 17b located on both sides of the permanent magnet 17 in the axial direction are flat surfaces extending in a direction orthogonal to the axial direction of the permanent magnet 17.
  • the end face 17a of the permanent magnet 17 is located inside the tubular member 16. Therefore, the first end portion 16a of the tubular member 16 projects in the axial direction from the end surface 17a of the permanent magnet 17. Further, the end surface 17b of the permanent magnet 17 is located inside the tubular member 16. Therefore, the second end portion 16b in the axial direction of the tubular member 16 projects in the axial direction from the end surface 17b of the permanent magnet 17.
  • the first shaft member 18 is provided at the first end portion 16a of the tubular member 16.
  • the first shaft member 18 is made of iron.
  • the first shaft member 18 has a first press-fitting portion 18a as a press-fitting portion, a first small-diameter portion 18b as a small-diameter portion, a first flange portion 18c, and a first shaft portion 18d.
  • the first press-fitting portion 18a is columnar.
  • the first press-fitting portion 18a is press-fitted into the first end portion 16a of the tubular member 16. Therefore, the first shaft member 18 is fixed to the inner peripheral surface 160 of the tubular member 16.
  • the axis of the first shaft member 18 coincides with the axis of the permanent magnet 17.
  • the first small diameter portion 18b is columnar.
  • the first small diameter portion 18b projects from the end surface of the first press-fitting portion 18a on the opposite side of the permanent magnet 17.
  • the outer diameter of the first small diameter portion 18b is smaller than the outer diameter of the first press-fitting portion 18a. Therefore, the first small diameter portion 18b has a smaller dimension in the radial direction of the tubular member 16 than the first press-fitting portion 18a.
  • the axis of the first small diameter portion 18b coincides with the axis of the first press-fitting portion 18a.
  • the first small diameter portion 18b is gap-fitted to the inner peripheral surface 160 of the tubular member 16. Therefore, the first small diameter portion 18b is arranged inside the tubular member 16. In addition, in FIGS. 2 and 3, the gap between the first small diameter portion 18b and the inner peripheral surface 160 of the tubular member 16 is exaggerated.
  • the first flange portion 18c is cylindrical.
  • the first flange portion 18c is continuous with the end portion of the first small diameter portion 18b opposite to the first press-fitting portion 18a.
  • the outer diameter of the first flange portion 18c is larger than the outer diameter of the first press-fitting portion 18a.
  • the first shaft portion 18d is columnar.
  • the first shaft portion 18d is continuous with the end portion of the first flange portion 18c opposite to the first small diameter portion 18b.
  • the outer diameter of the first shaft portion 18d is smaller than the outer diameter of the first flange portion 18c.
  • the second shaft member 19 is provided at the second end portion 16b of the tubular member 16.
  • the second shaft member 19 is made of iron.
  • the second shaft member 19 has a second press-fit portion 19a and a second shaft portion 19b as press-fit portions.
  • the second press-fitting portion 19a has a columnar shape.
  • the second press-fitting portion 19a is press-fitted into the second end portion 16b of the tubular member 16. Therefore, the second shaft member 19 is fixed to the inner peripheral surface 160 of the tubular member 16.
  • the axis of the second shaft member 19 coincides with the axis of the permanent magnet 17.
  • the second shaft portion 19b is columnar.
  • the second shaft portion 19b projects from the end surface of the second press-fitting portion 19a on the opposite side of the permanent magnet 17.
  • the outer diameter of the second shaft portion 19b is smaller than the outer diameter of the second press-fitting portion 19a.
  • the axis of the second shaft portion 19b coincides with the axis of the second press-fitting portion 19a.
  • the portion of the second shaft portion 19b on the side of the second press-fitting portion 19a is arranged inside the tubular member 16, and the other portions of the second shaft portion 19b project from the tubular member 16.
  • the portion of the second shaft portion 19b on the side of the second press-fitting portion 19a has a smaller radial dimension of the tubular member 16 than the second press-fitting portion 19a, and is a small diameter portion arranged inside the tubular member 16.
  • 2 Small diameter portion 19c Small diameter portion 19c.
  • the second small diameter portion 19c is gap-fitted to the inner peripheral surface 160 of the tubular member 16. In FIG. 2, the gap between the second small diameter portion 19c and the inner peripheral surface 160 of the tubular member 16 is exaggerated.
  • the outer diameter of the first press-fitting portion 18a is equal to the outer diameter of the second press-fitting portion 19a. Further, the outer diameters of the first small diameter portion 18b and the second small diameter portion 19c are equal to each other. The axis of the first shaft member 18 and the axis of the second shaft member 19 coincide with each other.
  • the end surface 180a of the first press-fitting portion 18a opposite to the first small diameter portion 18b is a flat surface extending in a direction orthogonal to the direction in which the axis of the first shaft member 18 extends.
  • the end face 180a of the first press-fitting portion 18a is in surface contact with the end face 17a of the permanent magnet 17. Therefore, the first shaft member 18 is fixed to the inner peripheral surface of the cylinder member 16 in a state of being adjacent to the permanent magnet 17 in the axial direction of the cylinder member 16.
  • the end surface 190a of the second press-fitting portion 19a on the opposite side of the second small diameter portion 19c is a flat surface extending in a direction orthogonal to the direction in which the axis of the second shaft member 19 extends.
  • the end face 190a of the second press-fitting portion 19a is in surface contact with the end face 17b of the permanent magnet 17. Therefore, the second shaft member 19 is fixed to the inner peripheral surface of the cylinder member 16 in a state of being adjacent to the permanent magnet 17 in the axial direction of the cylinder member 16.
  • the first shaft portion 18d of the first shaft member 18 passes through the inside of the boss portion 13a, penetrates the second housing structure 13, and protrudes to the outside of the housing 11.
  • a first bearing 21 is provided between the inner peripheral surface of the boss portion 13a and the outer peripheral surface of the first shaft portion 18d.
  • the first shaft member 18 is supported by the boss portion 13a via the first bearing 21 so as to be rotatably supported by the housing 11.
  • An impeller 23 is attached to an end portion of the first shaft portion 18d of the first shaft member 18 opposite to the first small diameter portion 18b.
  • the impeller 23 can rotate integrally with the first shaft member 18. Therefore, the impeller 23 is driven by transmitting the rotation of the first shaft member 18 as a driving force. Therefore, the first shaft member 18 to which the impeller 23 is attached is an output shaft that outputs a driving force.
  • the second shaft portion 19b of the second shaft member 19 is inserted inside the boss portion 12c.
  • a second bearing 22 is provided between the inner peripheral surface of the boss portion 12c and the outer peripheral surface of the second shaft portion 19b.
  • the second shaft member 19 is supported by the housing 11 in a rotatable state by the second shaft portion 19b being supported by the boss portion 12c via the second bearing 22.
  • the rotor 15 includes a first welded portion 30 as a welded portion for welding the tubular member 16 and the first shaft member 18.
  • the tubular member 16 and the first shaft member 18 are joined via a first welded portion 30.
  • the first welded portion 30 is formed so as to join the boundary between the open end surface of the first end portion 16a of the tubular member 16 and the first flange portion 18c.
  • the first welded portion 30 opens the opening end surface of the first end portion 16a of the tubular member 16 and the opening of the first end portion 16a of the tubular member 16 in the axial direction of the tubular member 16 in the first flange portion 18c. It is a part that is joined by melting each of the parts facing the end face and solidifying the melted parts.
  • the first welded portion 30 is formed so as to spread on both sides across the boundary between the open end surface of the first end portion 16a of the tubular member 16 and the first flange portion 18c in the axial direction of the tubular member 16. , Is arranged between the first end portion 16a and the first flange portion 18c of the tubular member 16.
  • the center of the first welded portion 30 in the axial direction of the tubular member 16 is the open end surface of the first end portion 16a of the tubular member 16 before joining the tubular member 16 and the first flange portion 18c by the first welded portion 30. It corresponds to the boundary with the first flange portion 18c.
  • the first press-fitting portion 18a, the first small diameter portion 18b, and the first welded portion 30 are arranged side by side in this order from the permanent magnet 17 toward the first end portion 16a of the tubular member 16. ing. That is, the first press-fitting portion 18a is arranged at a position closer to the permanent magnet 17 than the first welded portion 30. Therefore, the first small diameter portion 18b is arranged between the first press-fitting portion 18a and the first welded portion 30. Therefore, the first welded portion 30 is separated from the first press-fitted portion 18a in the axial direction of the tubular member 16.
  • the rotor 15 includes a second welded portion 31 as a welded portion for welding the tubular member 16 and the second shaft member 19.
  • the tubular member 16 and the second shaft member 19 are joined via a second welded portion 31.
  • the second welded portion 31 is formed so as to join the inner peripheral surface 160 of the tubular member 16 and the outer peripheral surface of the second small diameter portion 19c.
  • the second welded portion 31 is a portion facing the second small diameter portion 19c in the radial direction of the tubular member 16 at the opening edge of the second end portion 16b of the tubular member 16, and the cylinder in the second small diameter portion 19c.
  • the second welded portion 31 is arranged between the second end portion 16b of the tubular member 16 and the second small diameter portion 19c. Therefore, in the axial direction, the second press-fitting portion 19a, the second small diameter portion 19c, and the second welded portion 31 are arranged side by side in this order from the permanent magnet 17 toward the second end portion 16b of the tubular member 16. .. That is, the second press-fitting portion 19a is arranged at a position closer to the permanent magnet 17 than the second welded portion 31. Therefore, the second small diameter portion 19c is arranged between the second press-fitting portion 19a and the second welded portion 31. Therefore, the second welded portion 31 is separated from the second press-fitted portion 19a in the axial direction.
  • the present inventors have conducted experiments or the like that, for example, as the first welded portion 30 approaches the first press-fitted portion 18a, the stress acting on the tubular member 16 when the rotor 15 rotates gradually increases. I found it.
  • FIG. 3 the stress acting during the rotation of the rotor 15 is measured at each position between the first welded portion 30 and the first press-fitted portion 18a of the tubular member 16 and the radially opposed portions of the tubular member 16. The result is shown.
  • the vertical axis of FIG. 3 shows the stress acting during the rotation of the rotor 15 at each position between the first welded portion 30 and the first press-fitted portion 18a of the tubular member 16 and the radially opposed portions of the tubular member 16. Is shown.
  • the horizontal axis of FIG. 3 indicates, in a coordinate system, the respective positions between the first welded portion 30 and the first press-fitted portion 18a of the tubular member 16 and the portions of the tubular member 16 facing each other in the radial direction.
  • the coordinate "0" corresponds to the first welded portion 30.
  • the coordinates "0" are the open end surface of the first end portion 16a of the cylinder member 16 and the first flange portion 18c before joining the cylinder member 16 and the first flange portion 18c by the first welded portion 30.
  • the coordinate "0" corresponds to the center of the first welded portion 30 in the axial direction of the tubular member 16.
  • the position corresponding to the portion of the tubular member 16 that overlaps the end surface 180a of the first press-fitting portion 18a in the radial direction is defined as the coordinate “8”.
  • the stress between the coordinates “0” and the coordinates “1” has a minimum value ⁇ min, and the value is constant.
  • the portion of the tubular member 16 corresponding to the coordinate "1" is a portion located closer to the first press-fitting portion 18a than the first welded portion 30. Therefore, the entire first welded portion 30 is separated from the first press-fitted portion 18a in the axial direction of the tubular member 16 from the portion of the tubular member 16 corresponding to the coordinate "1". Then, the coordinates increase from the coordinates "1", and the stress gradually increases as the coordinates approach "8". Therefore, as the portion of the tubular member 16 corresponding to the coordinate “1” approaches the first press-fitting portion 18a, the stress acting on the tubular member 16 gradually increases when the rotor 15 rotates.
  • the press-fitting stress from the first press-fitting portion 18a acts on the tubular member 16. Therefore, in the tubular member 16, the closer to the first press-fitting portion 18a in the axial direction of the tubular member 16, the easier it is to transmit the press-fitting stress acting on the tubular member 16 from the first press-fitting portion 18a. Further, when the rotor 15 is rotated, stress due to the centrifugal force generated by the rotation of the rotor 15 also acts on the tubular member 16.
  • the stress is the minimum value ⁇ min, and the value is constant. Therefore, the first welded portion from the portion of the tubular member 16 corresponding to the coordinates "1". It is assumed that the press-fitting stress acting on the tubular member 16 from the first press-fitting portion 18a does not act on the portion up to 30, but only the stress due to the centrifugal force generated by the rotation of the rotor 15 acts. To.
  • the first small diameter portion 18b is arranged between the first press-fitting portion 18a and the first welded portion 30, and the first welded portion 30 is arranged in the axial direction of the tubular member 16. 1 It is separated from the press-fitted portion 18a so that the coordinate "0" at which the stress acting during the rotation of the rotor 15 is the minimum value ⁇ min corresponds to the first welded portion 30. That is, the first welded portion 30 is separated from the first press-fitted portion 18a in the axial direction of the tubular member 16 so that the stress acting on the first welded portion 30 when the rotor 15 rotates has a minimum value of ⁇ min.
  • the press-fitting stress acting on the tubular member 16 from the first press-fitting portion 18a becomes difficult to be transmitted to the first welded portion 30. Therefore, since the press-fitting stress applied to the cylinder member 16 from the first press-fitting portion 18a is suppressed from acting on the first welded portion 30, the first shaft member 18 and the cylinder member via the first welded portion 30 are suppressed. The decrease in the bonding strength with 16 is suppressed.
  • the stress acting during the rotation of the rotor 15 at each position between the second welded portion 31 and the second press-fitted portion 19a of the tubular member 16 and the radially opposed portions of the tubular member 16 is the same as in FIG. Measurement results can be obtained. Therefore, also in the second welded portion 31, the second small diameter portion 19c is arranged between the second press-fitted portion 19a and the second welded portion 31, and the second welded portion 31 is placed in the axial direction of the tubular member 16. It is separated from the second press-fitted portion 19a so that the coordinate "0" at which the stress acting during the rotation of the rotor 15 is the minimum value ⁇ min corresponds to the second welded portion 31.
  • the second welded portion 31 is separated from the second welded portion 19a in the axial direction of the tubular member 16 so that the stress acting on the second welded portion 31 when the rotor 15 rotates has a minimum value of ⁇ min.
  • the following effects can be obtained. (1) Since the first welded portion 30 is separated from the first press-fitted portion 18a in the axial direction of the tubular member 16, the press-fitting stress acting on the tubular member 16 from the first press-fitted portion 18a is transmitted to the first welded portion 30. It becomes difficult to do. Further, since the second welded portion 31 is separated from the second press-fitted portion 19a in the axial direction of the tubular member 16, the press-fitting stress acting on the tubular member 16 from the second press-fitted portion 19a is transmitted to the second welded portion 31. It becomes difficult.
  • the press-fitting stress applied to the cylinder member 16 from the first press-fitting portion 18a acts on the first welded portion 30, and the press-fitting stress applied to the cylinder member 16 from the second press-fitting portion 19a acts on the second welded portion 31. It is suppressed that it acts on. Therefore, the joint strength between the first shaft member 18 and the cylinder member 16 via the first welded portion 30 is lowered, and the joint strength between the second shaft member 19 and the cylinder member 16 via the second welded portion 31 is reduced. The decrease can be suppressed. As a result, the reliability of the rotor 15 of the rotary electric machine 10 can be improved.
  • the design of the tubular member 16 is not changed.
  • the first welded portion 30 can be separated from the first press-fitted portion 18a.
  • the second small diameter portion 19c is arranged between the second press-fitting portion 19a and the second welded portion 31 in the axial direction of the tubular member 16, the design of the tubular member 16 is not changed. 2
  • the welded portion 31 can be separated from the second press-fitted portion 19a.
  • the stress acting on the first welded portion 30 is only the stress caused by the centrifugal force generated by the rotation of the rotor 15, so that the first shaft member 18 and the cylinder member 16 It is possible to further suppress the decrease in the bonding strength of the material.
  • the second welded portion 31 is separated from the second welded portion 19a in the axial direction of the cylinder member 16 so that the press-fitting stress applied to the cylinder member 16 from the second press-fitted portion 19a does not act on the second welded portion 31. Since only the stress due to the centrifugal force generated by the rotation of the rotor 15 acts on the second welded portion 31, the stress acting on the second welded portion 31 becomes a minimum value.
  • the first welded portion 30 is separated from the first press-fitted portion 18a in the axial direction of the tubular member 16 so that the stress acting on the first welded portion 30 when the rotor 15 rotates has a minimum value of ⁇ min. According to this, even if the rotor 15 rotates, the stress acting on the first welded portion 30 is only the stress caused by the centrifugal force generated by the rotation of the rotor 15, so that the first shaft member 18 and the cylinder member 16 It is possible to further suppress the decrease in the bonding strength of the material. As a result, the reliability of the rotor 15 of the rotary electric machine 10 can be further improved.
  • the first shaft member 18 does not have the first small diameter portion 18b, for example, a portion of the tubular member 16 between the portion where the first press-fitting portion 18a is press-fitted and the first welded portion 30.
  • the first welded portion 30 may be separated from the first press-fitted portion 18a in the axial direction of the tubular member 16 by increasing the inner diameter of the first welded portion 30.
  • the second shaft member 19 does not have the second small diameter portion 19c, and for example, the inner diameter of the portion of the tubular member 16 between the portion where the second press-fit portion 19a is press-fitted and the second weld portion 31 is set. By increasing the size, the second welded portion 31 may be separated from the second press-fitted portion 19a in the axial direction of the tubular member 16.
  • the magnetic material is not limited to the permanent magnet 17, and may be, for example, a laminated core, an amorphous core, a dust core, or the like.
  • the impeller 23 may be attached to the end of the second shaft portion 19b of the second shaft member 19 opposite to the second small diameter portion 19c. The impeller 23 can rotate integrally with the second shaft member 19. Therefore, the impeller 23 is driven by transmitting the rotation of the second shaft member 19 as a driving force. Therefore, the second shaft member 19 to which the impeller 23 is attached is an output shaft that outputs a driving force. In short, at least one of the first shaft member 18 and the second shaft member 19 may be an output shaft that outputs a driving force.
  • the tubular member 16 may be made of a metal such as, for example, a nickel alloy.
  • the end face 180a of the first press-fitting portion 18a and the end face 17a of the permanent magnet 17 are in surface contact with each other, but the end face 180a of the first press-fitting portion 18a and the end face 17a of the permanent magnet 17 are separated from each other. May be.
  • the end surface 190a of the second press-fitting portion 19a and the end surface 17b of the permanent magnet 17 were in surface contact with each other, even if the end surface 190a of the second press-fitting portion 19a and the end surface 17b of the permanent magnet 17 were separated from each other. good.
  • the position of the first welded portion 30 may be brought closer to the first press-fitted portion 18a as long as the stress acting on the first welded portion 30 when the rotor 15 is rotated becomes a minimum value ⁇ min.
  • the center of the first welded portion 30 may correspond to the coordinate "1" closer to the coordinate "0" shown by the solid line L1 in FIG.
  • the first weld is maintained while the entire first welded portion 30 is separated from the first press-fitted portion 18a in the axial direction of the tubular member 16 from the portion of the tubular member 16 corresponding to the coordinate "1". It is necessary to bring the position of the portion 30 closer to the first press-fitting portion 18a.
  • the position of the first welded portion 30 may be changed to a position where the stress acting on the first welded portion 30 when the rotor 15 is rotated becomes a stress larger than the minimum value ⁇ min.
  • the center of the first welded portion 30 may correspond to a coordinate closer to the first press-fitted portion 18a than the coordinate “1” shown by the solid line L1 in FIG. In this case, the first welded portion 30 needs to be separated from the first press-fitted portion 18a in the axial direction of the tubular member 16.
  • the first welded portion 30 is not separated from the first press-fitted portion 18a in the axial direction of the tubular member 16, and the first welded portion 30 is first press-fitted in the axial direction of the tubular member 16. Compared with the case where it is continuous with the portion 18a, the press-fitting stress acting on the tubular member 16 from the first press-fitting portion 18a is less likely to be transmitted to the first welded portion 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

第1溶接部30が筒部材16の軸線方向で第1圧入部18aから離間しているため、第1圧入部18aから筒部材16に作用した圧入応力が第1溶接部30に伝達し難くなる。また、第2溶接部31が筒部材16の軸線方向で第2圧入部19aから離間しているため、第2圧入部19aから筒部材16に作用した圧入応力が第2溶接部31に伝達し難くなる。

Description

回転電機のロータ
  本発明は、回転電機のロータに関する。
  例えば特許文献1に開示されているような回転電機のロータは、筒部材と、筒部材内に配置された磁性体と、筒部材の軸線方向の両端部の少なくとも一方に設けられるとともに軸線方向で磁性体と隣り合った状態で筒部材の内周面に固定される軸部材と、を備えている。筒部材は、ロータの回転によって遠心力を受ける磁性体の変形を抑制する。軸部材は、筒部材の内周面に対して圧入される圧入部を有する。そして、圧入部が筒部材の内周面に圧入されることにより、軸部材が筒部材の内周面に固定されている。ここで、軸部材における筒部材に対する固定をさらに強固なものとするために、圧入部における筒部材の内周面に対する圧入に加えて、例えば、軸部材を筒部材に対して溶接することにより接合することが考えられている。このように、ロータは、筒部材と軸部材とを溶接する溶接部を備えている場合がある。
特開2004-112849号公報
  ところで、軸部材の圧入部が筒部材の内周面に圧入されていると、圧入部からの圧入応力が筒部材に作用する。ここで、溶接部が筒部材の軸線方向で圧入部から離間しておらず、溶接部が筒部材の軸線方向で圧入部と連続していると、圧入部から筒部材に作用した圧入応力が溶接部に伝達し易く、圧入部から筒部材に作用した圧入応力が溶接部に作用してしまう虞がある。すると、溶接部を介した軸部材と筒部材との接合強度が低下して、回転電機のロータの信頼性が低下する虞がある。
  上記課題を解決するための回転電機のロータは、筒部材と、前記筒部材内に配置された磁性体と、前記筒部材の軸線方向の両端部の少なくとも一方に設けられるとともに前記軸線方向で前記磁性体と隣り合った状態で前記筒部材の内周面に固定される軸部材と、前記筒部材と前記軸部材とを溶接する溶接部と、を備え、前記軸部材は、前記筒部材の内周面に対して圧入される圧入部を有する回転電機のロータであって、前記圧入部は、前記溶接部よりも前記磁性体から近い位置に配置され、前記溶接部は、前記軸線方向で前記圧入部から離間している。
  これによれば、溶接部が筒部材の軸線方向で圧入部から離間しているため、圧入部から筒部材に作用した圧入応力が溶接部に伝達し難くなる。したがって、圧入部から筒部材に作用した圧入応力が溶接部に作用してしまうことが抑制されるため、溶接部を介した軸部材と筒部材との接合強度の低下を抑制することができる。その結果、回転電機のロータの信頼性を向上させることができる。
  上記回転電機のロータにおいて、前記軸部材は、前記圧入部よりも前記筒部材の径方向における寸法が小さく、前記筒部材の内側に配置される小径部を有し、前記小径部は、前記軸線方向で前記圧入部と前記溶接部との間に配置されているとよい。
  これによれば、小径部が、筒部材の軸線方向で圧入部と溶接部との間に配置されていることにより、筒部材の設計を変更することなく、溶接部を圧入部から離間することができる。
  上記回転電機のロータにおいて、前記軸部材は、駆動力を出力する出力軸であってもよい。
  これによれば、筒部材と出力軸とを溶接する溶接部が、筒部材の軸線方向で圧入部から離間しているため、圧入部から筒部材に作用した圧入応力が、筒部材と出力軸とを溶接する溶接部に作用してしまうことが抑制される。したがって、負荷のかかり易い出力軸において、溶接部を介した出力軸と筒部材との接合強度の低下を抑制することができる。その結果、回転電機のロータの信頼性を向上させることができる。
  上記回転電機のロータにおいて、前記溶接部は、前記ロータの回転時に前記溶接部に作用する応力が極小値となるように前記軸線方向で前記圧入部から離間しているとよい。
  ロータの回転時では、溶接部には、ロータの回転によって生じる遠心力に伴う応力が作用する。ここで、圧入部から筒部材に作用した圧入応力が溶接部に作用しないように溶接部を筒部材の軸線方向で圧入部から離間させると、溶接部には、ロータの回転によって生じる遠心力に伴う応力のみが作用するため、溶接部に作用する応力が極小値となる。そこで、溶接部を、ロータの回転時に溶接部に作用する応力が極小値となるように筒部材の軸線方向で圧入部から離間させた。これによれば、ロータが回転しても、溶接部に作用する応力が、ロータの回転によって生じる遠心力に伴う応力のみとなるため、軸部材と筒部材との接合強度の低下をさらに抑制することができる。その結果、回転電機のロータの信頼性をさらに向上させることができる。
  この発明によれば、信頼性を向上させることができる。
実施形態における回転電機を説明するための断面図。 ロータの一部分を破断して示す断面図。 第1溶接部から、筒部材における第1圧入部と筒部材の径方向で対向する部位までの間のそれぞれの位置でロータの回転時に作用する応力を計測した結果を示すグラフ。
  以下、回転電機のロータを具体化した一実施形態を図1~図3にしたがって説明する。
  図1に示すように、回転電機10は、筒状のハウジング11内に収容されている。ハウジング11は、有底筒状の第1ハウジング構成体12と、第1ハウジング構成体12に連結される板状の第2ハウジング構成体13と、を備えている。第1ハウジング構成体12及び第2ハウジング構成体13は金属製であり、例えば、アルミニウム製である。
  第1ハウジング構成体12は、板状の底壁12aと、底壁12aの外周部から筒状に延びる周壁12bと、を有している。第2ハウジング構成体13は、周壁12bにおける底壁12aとは反対側の開口を閉塞した状態で第1ハウジング構成体12に連結されている。
  第1ハウジング構成体12の底壁12aの内面には、円筒状のボス部12cが突出した状態で設けられている。ボス部12cの軸線は、第1ハウジング構成体12の周壁12bの軸線と一致している。また、第2ハウジング構成体13の内面には、円筒状のボス部13aが突出した状態で設けられている。ボス部13aの軸線は、第1ハウジング構成体12の周壁12bの軸線と一致している。よって、両ボス部12c,13aの軸線は一致している。
  回転電機10は、ステータ14と、ロータ15と、を備えている。ステータ14は、第1ハウジング構成体12の周壁12bの内周面に固定される円筒状のステータコア14aと、ステータコア14aに巻回されるコイル14bと、を有する。ロータ15は、ハウジング11において、ステータ14の径方向内側に回転可能な状態で配置されている。
  図2に示すように、ロータ15は、筒部材16と、磁性体である永久磁石17と、軸部材としての第1軸部材18及び第2軸部材19と、を備えている。本実施形態においては、筒部材16はインコネル製である。筒部材16は、筒部材16の軸線が直線状に延びる筒状である。筒部材16の肉厚は均一である。
  永久磁石17は、中実円柱状である。永久磁石17は、筒部材16内に配置されている。永久磁石17の軸線は、筒部材16の軸線と一致している。永久磁石17は、永久磁石17の径方向に着磁されている。永久磁石17は、筒部材16の内周面160に圧入されている。永久磁石17における軸線が延びる方向の長さは、筒部材16における軸線が延びる方向の長さよりも短い。永久磁石17の軸線方向両側に位置する両端面17a,17bは、永久磁石17の軸線方向に対して直交する方向に延びる平坦面である。
  永久磁石17の端面17aは、筒部材16の内側に位置している。よって、筒部材16の第1端部16aは、永久磁石17の端面17aよりも軸線方向へ突出している。また、永久磁石17の端面17bは、筒部材16の内側に位置している。よって、筒部材16の軸線方向の第2端部16bは、永久磁石17の端面17bよりも軸線方向へ突出している。
  第1軸部材18は、筒部材16の第1端部16aに設けられている。第1軸部材18は、鉄製である。第1軸部材18は、圧入部としての第1圧入部18a、小径部としての第1小径部18b、第1フランジ部18c、及び第1軸部18dを有している。第1圧入部18aは、円柱状である。第1圧入部18aは、筒部材16の第1端部16aに圧入されている。よって、第1軸部材18は、筒部材16の内周面160に固定されている。第1軸部材18の軸線は、永久磁石17の軸線と一致している。
  第1小径部18bは、円柱状である。第1小径部18bは、第1圧入部18aにおける永久磁石17とは反対側の端面から突出している。第1小径部18bの外径は、第1圧入部18aの外径よりも小さい。したがって、第1小径部18bは、第1圧入部18aよりも筒部材16の径方向における寸法が小さい。第1小径部18bの軸線は、第1圧入部18aの軸線と一致している。第1小径部18bは、筒部材16の内周面160に対して隙間嵌めされている。したがって、第1小径部18bは、筒部材16の内側に配置されている。なお、図2及び図3では、第1小径部18bと筒部材16の内周面160との間の隙間を誇張して示している。
  第1フランジ部18cは、円柱状である。第1フランジ部18cは、第1小径部18bにおける第1圧入部18aとは反対側の端部に連続している。第1フランジ部18cの外径は、第1圧入部18aの外径よりも大きい。第1軸部18dは、円柱状である。第1軸部18dは、第1フランジ部18cにおける第1小径部18bとは反対側の端部に連続している。第1軸部18dの外径は、第1フランジ部18cの外径よりも小さい。
  第2軸部材19は、筒部材16の第2端部16bに設けられている。第2軸部材19は、鉄製である。第2軸部材19は、圧入部としての第2圧入部19a、及び第2軸部19bを有している。第2圧入部19aは、円柱状である。第2圧入部19aは、筒部材16の第2端部16bに圧入されている。よって、第2軸部材19は、筒部材16の内周面160に固定されている。第2軸部材19の軸線は、永久磁石17の軸線と一致している。
  第2軸部19bは、円柱状である。第2軸部19bは、第2圧入部19aにおける永久磁石17とは反対側の端面から突出している。第2軸部19bの外径は、第2圧入部19aの外径よりも小さい。第2軸部19bの軸線は、第2圧入部19aの軸線と一致している。第2軸部19bにおける第2圧入部19a側の部位は、筒部材16の内側に配置されており、第2軸部19bにおけるその他の部位は、筒部材16から突出している。したがって、第2軸部19bにおける第2圧入部19a側の部位は、第2圧入部19aよりも筒部材16の径方向における寸法が小さく、筒部材16の内側に配置される小径部としての第2小径部19cである。第2小径部19cは、筒部材16の内周面160に対して隙間嵌めされている。なお、図2では、第2小径部19cと筒部材16の内周面160との間の隙間を誇張して示している。
  第1圧入部18aの外径と第2圧入部19aの外径とは等しい。また、第1小径部18bと第2小径部19cの外径とは等しい。第1軸部材18の軸線と第2軸部材19の軸線とは一致している。
  第1圧入部18aにおける第1小径部18bとは反対側の端面180aは、第1軸部材18の軸線が延びる方向に対して直交する方向に延びる平坦面である。第1圧入部18aの端面180aは、永久磁石17の端面17aに面接触している。したがって、第1軸部材18は、筒部材16の軸線方向で永久磁石17と隣り合った状態で筒部材16の内周面に固定されている。
  第2圧入部19aにおける第2小径部19cとは反対側の端面190aは、第2軸部材19の軸線が延びる方向に対して直交する方向に延びる平坦面である。第2圧入部19aの端面190aは、永久磁石17の端面17bに面接触している。したがって、第2軸部材19は、筒部材16の軸線方向で永久磁石17と隣り合った状態で筒部材16の内周面に固定されている。
  図1に示すように、第1軸部材18の第1軸部18dは、ボス部13aの内側を通過するとともに第2ハウジング構成体13を貫通してハウジング11の外へ突出している。ボス部13aの内周面と第1軸部18dの外周面との間には、第1軸受21が設けられている。そして、第1軸部材18は、第1軸受21を介してボス部13aに支持されることにより、ハウジング11に回転可能な状態で支持されている。
  第1軸部材18の第1軸部18dにおける第1小径部18bとは反対側の端部には、インペラ23が取り付けられている。インペラ23は、第1軸部材18と一体回転可能である。よって、インペラ23は、第1軸部材18の回転が駆動力として伝達されることにより駆動する。したがって、インペラ23が取り付けられた第1軸部材18は、駆動力を出力する出力軸である。
  第2軸部材19の第2軸部19bは、ボス部12cの内側に挿入されている。ボス部12cの内周面と第2軸部19bの外周面との間には、第2軸受22が設けられている。そして、第2軸部材19は、第2軸部19bが第2軸受22を介してボス部12cに支持されることにより、ハウジング11に回転可能な状態で支持されている。
  図2に示すように、ロータ15は、筒部材16と第1軸部材18とを溶接する溶接部としての第1溶接部30を備えている。筒部材16と第1軸部材18とは、第1溶接部30を介して接合されている。第1溶接部30は、筒部材16の第1端部16aの開口端面と第1フランジ部18cとの境界を接合するように形成されている。具体的には、第1溶接部30は、筒部材16の第1端部16aの開口端面と、第1フランジ部18cにおける筒部材16の軸線方向で筒部材16の第1端部16aの開口端面と対向する部位と、をそれぞれ溶融させて、溶融した部位同士が固化することで接合された部分である。よって、第1溶接部30は、筒部材16の軸線方向において、筒部材16の第1端部16aの開口端面と第1フランジ部18cとの境界を跨いだ両側に広がるように形成されており、筒部材16の第1端部16aと第1フランジ部18cとの間に配置されている。筒部材16の軸線方向における第1溶接部30の中央は、第1溶接部30によって筒部材16と第1フランジ部18cとを接合する前の筒部材16の第1端部16aの開口端面と第1フランジ部18cとの境界に対応している。
  筒部材16の軸線方向において、第1圧入部18a、第1小径部18b、及び第1溶接部30は、永久磁石17から筒部材16の第1端部16aに向けてこの順に並んで配置されている。つまり、第1圧入部18aは、第1溶接部30よりも永久磁石17から近い位置に配置されている。よって、第1小径部18bは、第1圧入部18aと第1溶接部30との間に配置されている。したがって、第1溶接部30は、筒部材16の軸線方向で第1圧入部18aから離間している。
  ロータ15は、筒部材16と第2軸部材19とを溶接する溶接部としての第2溶接部31を備えている。筒部材16と第2軸部材19とは、第2溶接部31を介して接合されている。第2溶接部31は、筒部材16の内周面160と第2小径部19cの外周面とを接合するように形成されている。具体的には、第2溶接部31は、筒部材16の第2端部16bの開口縁における筒部材16の径方向で第2小径部19cと対向する部位と、第2小径部19cにおける筒部材16の径方向で筒部材16の第2端部16bの開口縁と対向する部位と、をそれぞれ溶融させて、溶融した部位同士が固化することで接合された部分である。よって、第2溶接部31は、筒部材16の第2端部16bと第2小径部19cとの間に配置されている。したがって、軸線方向において、第2圧入部19a、第2小径部19c、及び第2溶接部31は、永久磁石17から筒部材16の第2端部16bに向けてこの順に並んで配置されている。つまり、第2圧入部19aは、第2溶接部31よりも永久磁石17から近い位置に配置されている。よって、第2小径部19cは、第2圧入部19aと第2溶接部31との間に配置されている。したがって、第2溶接部31は、軸線方向で第2圧入部19aから離間している。
  次に、本実施形態の作用について説明する。
  ここで、本発明者らは、例えば、第1溶接部30から第1圧入部18aに近づくにつれて、ロータ15の回転時に筒部材16に作用する応力が徐々に増大していくことを実験等によって見出した。図3では、第1溶接部30から、筒部材16における第1圧入部18aと筒部材16の径方向で対向する部位までの間のそれぞれの位置でロータ15の回転時に作用する応力を計測した結果を示している。
  図3の縦軸は、第1溶接部30から、筒部材16における第1圧入部18aと筒部材16の径方向で対向する部位までの間のそれぞれの位置でロータ15の回転時に作用する応力を示している。図3の横軸は、第1溶接部30から、筒部材16における第1圧入部18aと筒部材16の径方向で対向する部位までの間のそれぞれの位置を座標系で示している。座標「0」は、第1溶接部30に対応している。具体的には、座標「0」は、第1溶接部30によって筒部材16と第1フランジ部18cとを接合する前の筒部材16の第1端部16aの開口端面と第1フランジ部18cとの境界に対応している。したがって、座標「0」は、筒部材16の軸線方向において、第1溶接部30の中央に対応している。そして、図3では、座標が大きくなるにつれて、第1溶接部30から第1圧入部18aに近づくことを意味している。なお、図3では、筒部材16における第1圧入部18aの端面180aと筒部材16の径方向で重なる部位に対応する位置を、座標「8」としている。
  図3において実線L1で示すように、例えば、座標「0」から座標「1」までの間での応力は、極小値σminであり、その値は一定である。座標「1」に対応する筒部材16の部位は、第1溶接部30よりも第1圧入部18a寄りに位置する部位である。したがって、第1溶接部30全体が、座標「1」に対応する筒部材16の部位よりも筒部材16の軸線方向で第1圧入部18aから離間している。そして、座標「1」から座標が大きくなっていき、座標「8」に近づくにつれて応力が徐々に大きくなっていく。したがって、座標「1」に対応する筒部材16の部位から第1圧入部18aに近づくにつれて、ロータ15の回転時に筒部材16に作用する応力が徐々に増大していく。
  ここで、第1軸部材18の第1圧入部18aが筒部材16の内周面160に圧入されていると、第1圧入部18aからの圧入応力が筒部材16に作用する。したがって、筒部材16において、筒部材16の軸線方向で第1圧入部18aに近いほど、第1圧入部18aから筒部材16に作用した圧入応力が伝達し易くなっている。また、筒部材16には、ロータ15の回転時では、ロータ15の回転によって生じる遠心力に伴う応力も作用する。
  図3において実線L1で示すように、座標「1」から座標が大きくなるにつれて応力が徐々に大きくなっているため、座標「1」に対応する筒部材16の部位から第1圧入部18a側の部位では、第1圧入部18aから筒部材16に作用した圧入応力が作用していることが想定される。
  一方で、座標「0」から座標「1」までの間では、応力が極小値σminであり、その値は一定であるため、座標「1」に対応する筒部材16の部位から第1溶接部30までの間の部位では、第1圧入部18aから筒部材16に作用した圧入応力が作用しておらず、ロータ15の回転によって生じる遠心力に伴う応力のみが作用していることが想定される。
  このように、本実施形態では、第1小径部18bを、第1圧入部18aと第1溶接部30との間に配置して、第1溶接部30を、筒部材16の軸線方向で第1圧入部18aから離間させ、ロータ15の回転時に作用する応力が極小値σminである座標「0」が第1溶接部30に対応するようにした。すなわち、第1溶接部30は、ロータ15の回転時に第1溶接部30に作用する応力が極小値σminとなるように筒部材16の軸線方向で第1圧入部18aから離間している。これにより、第1圧入部18aから筒部材16に作用した圧入応力が第1溶接部30に伝達し難くなる。したがって、第1圧入部18aから筒部材16に作用した圧入応力が第1溶接部30に作用してしまうことが抑制されるため、第1溶接部30を介した第1軸部材18と筒部材16との接合強度の低下が抑制される。
  なお、第2溶接部31から筒部材16における第2圧入部19aと筒部材16の径方向で対向する部位までの間のそれぞれの位置でロータ15の回転時に作用する応力も、図3と同様な計測結果が得られる。したがって、第2溶接部31においても、第2小径部19cを、第2圧入部19aと第2溶接部31との間に配置して、第2溶接部31を、筒部材16の軸線方向で第2圧入部19aから離間させ、ロータ15の回転時に作用する応力が極小値σminである座標「0」が第2溶接部31に対応するようにした。すなわち、第2溶接部31は、ロータ15の回転時に第2溶接部31に作用する応力が極小値σminとなるように筒部材16の軸線方向で第2圧入部19aから離間している。これにより、第2圧入部19aから筒部材16に作用した圧入応力が第2溶接部31に伝達し難くなる。したがって、第2圧入部19aから筒部材16に作用した圧入応力が第2溶接部31に作用してしまうことが抑制されるため、第2溶接部31を介した第2軸部材19と筒部材16との接合強度の低下が抑制される。
  上記実施形態では以下の効果を得ることができる。
  (1)第1溶接部30が筒部材16の軸線方向で第1圧入部18aから離間しているため、第1圧入部18aから筒部材16に作用した圧入応力が第1溶接部30に伝達し難くなる。また、第2溶接部31が筒部材16の軸線方向で第2圧入部19aから離間しているため、第2圧入部19aから筒部材16に作用した圧入応力が第2溶接部31に伝達し難くなる。したがって、第1圧入部18aから筒部材16に作用した圧入応力が第1溶接部30に作用してしまうこと、及び第2圧入部19aから筒部材16に作用した圧入応力が第2溶接部31に作用してしまうことが抑制される。このため、第1溶接部30を介した第1軸部材18と筒部材16との接合強度の低下、及び第2溶接部31を介した第2軸部材19と筒部材16との接合強度の低下を抑制することができる。その結果、回転電機10のロータ15の信頼性を向上させることができる。
  (2)第1小径部18bが、筒部材16の軸線方向で第1圧入部18aと第1溶接部30との間に配置されていることにより、筒部材16の設計を変更することなく、第1溶接部30を第1圧入部18aから離間することができる。また、第2小径部19cが、筒部材16の軸線方向で第2圧入部19aと第2溶接部31との間に配置されていることにより、筒部材16の設計を変更することなく、第2溶接部31を第2圧入部19aから離間することができる。
  (3)筒部材16と第1軸部材18とを溶接する第1溶接部30が、筒部材16の軸線方向で第1圧入部18aから離間しているため、第1圧入部18aから筒部材16に作用した圧入応力が、筒部材16と第1軸部材18とを溶接する第1溶接部30に作用してしまうことが抑制される。したがって、負荷のかかり易い第1軸部材18において、第1溶接部30を介した第1軸部材18と筒部材16との接合強度の低下を抑制することができる。その結果、回転電機10のロータ15の信頼性を向上させることができる。
  (4)第1圧入部18aから筒部材16に作用した圧入応力が第1溶接部30に作用しないように第1溶接部30を筒部材16の軸線方向で第1圧入部18aから離間させると、第1溶接部30には、ロータ15の回転によって生じる遠心力に伴う応力のみが作用するため、第1溶接部30に作用する応力が極小値となる。そこで、第1溶接部30を、ロータ15の回転時に第1溶接部30に作用する応力が極小値σminとなるように筒部材16の軸線方向で第1圧入部18aから離間させた。これによれば、ロータ15が回転しても、第1溶接部30に作用する応力が、ロータ15の回転によって生じる遠心力に伴う応力のみとなるため、第1軸部材18と筒部材16との接合強度の低下をさらに抑制することができる。また、第2圧入部19aから筒部材16に作用した圧入応力が第2溶接部31に作用しないように第2溶接部31を筒部材16の軸線方向で第2圧入部19aから離間させると、第2溶接部31には、ロータ15の回転によって生じる遠心力に伴う応力のみが作用するため、第2溶接部31に作用する応力が極小値となる。そこで、第1溶接部30を、ロータ15の回転時に第1溶接部30に作用する応力が極小値σminとなるように筒部材16の軸線方向で第1圧入部18aから離間させた。これによれば、ロータ15が回転しても、第1溶接部30に作用する応力が、ロータ15の回転によって生じる遠心力に伴う応力のみとなるため、第1軸部材18と筒部材16との接合強度の低下をさらに抑制することができる。その結果、回転電機10のロータ15の信頼性をさらに向上させることができる。
  (5)例えば、筒部材16と第1軸部材18を溶接する際に、溶接する部位に過大な圧入応力が作用していると、筒部材16の第1端部16aと第1フランジ部18cとがずれた状態で溶接されて、溶接不良が起こる虞がある。これに対して、溶接する部位を筒部材16の軸線方向で第1圧入部18aから離間させると、溶接する部位に作用する圧入応力が低減される。その結果、筒部材16の第1端部16aと第1フランジ部18cとがずれ難くなるため、溶接不良が起こり難くなる。
  なお、上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
  ○  実施形態において、第1軸部材18が第1小径部18bを有しておらず、例えば、筒部材16における第1圧入部18aが圧入される部分と第1溶接部30との間の部位の内径を大きくすることにより、第1溶接部30を、筒部材16の軸線方向で第1圧入部18aから離間させてもよい。また、第2軸部材19が第2小径部19cを有しておらず、例えば、筒部材16における第2圧入部19aが圧入される部分と第2溶接部31との間の部位の内径を大きくすることにより、第2溶接部31を、筒部材16の軸線方向で第2圧入部19aから離間させてもよい。
  ○  実施形態において、磁性体としては、永久磁石17に限らず、例えば、積層コア、アモルファスコア、又は圧粉コア等であってもよい。
  ○  実施形態において、第2軸部材19の第2軸部19bにおける第2小径部19cとは反対側の端部にもインペラ23が取り付けられる構成であってもよい。インペラ23は、第2軸部材19と一体回転可能である。よって、インペラ23は、第2軸部材19の回転が駆動力として伝達されることにより駆動する。したがって、インペラ23が取り付けられた第2軸部材19は、駆動力を出力する出力軸である。要は、第1軸部材18及び第2軸部材19のうちの少なくとも一つが、駆動力を出力する出力軸であればよい。
  ○  実施形態において、筒部材16は、例えば、ニッケル合金のような金属製でもよい。
  ○  実施形態において、第1圧入部18aの端面180aと永久磁石17の端面17aとは、面接触していたが、第1圧入部18aの端面180aと永久磁石17の端面17aとは、離間していてもよい。また、第2圧入部19aの端面190aと永久磁石17の端面17bとは、面接触していたが、第2圧入部19aの端面190aと永久磁石17の端面17bとは、離間していてもよい。
  ○  実施形態において、ロータ15の回転時に第1溶接部30に作用する応力が極小値σminとなる位置であれば、第1溶接部30の位置を第1圧入部18aに近づけてもよい。例えば、第1溶接部30の中央が、図3において実線L1で示す座標「0」よりも座標「1」寄りに対応するようにしてもよい。このとき、第1溶接部30全体が、座標「1」に対応する筒部材16の部位よりも筒部材16の軸線方向で第1圧入部18aから離間した状態を維持しつつも、第1溶接部30の位置を第1圧入部18aに近づける必要がある。
  ○  実施形態において、第1溶接部30の位置を、ロータ15の回転時に第1溶接部30に作用する応力が極小値σminよりも大きい応力となる位置に変更してもよい。例えば、第1溶接部30の中央が、図3において実線L1で示す座標「1」よりも第1圧入部18aに近い座標に対応するようにしてもよい。この場合、第1溶接部30が筒部材16の軸線方向で第1圧入部18aから離間している必要がある。この場合であっても、例えば、第1溶接部30が筒部材16の軸線方向で第1圧入部18aから離間しておらず、第1溶接部30が筒部材16の軸線方向で第1圧入部18aと連続している場合に比べると、第1圧入部18aから筒部材16に作用した圧入応力が第1溶接部30に伝達し難くなる。
 10…回転電機
 15…ロータ
 16…筒部材
 17…磁性体である永久磁石
 18…軸部材であるとともに出力軸である第1軸部材
 18a…圧入部としての第1圧入部
 18b…小径部としての第1小径部
 19…軸部材としての第2軸部材
 19a…圧入部としての第2圧入部
 19c…小径部としての第2小径部
 30…溶接部としての第1溶接部
 31…溶接部としての第2溶接部
 

 

Claims (4)

  1.   筒部材と、
      前記筒部材内に配置された磁性体と、
      前記筒部材の軸線方向の両端部の少なくとも一方に設けられるとともに前記軸線方向で前記磁性体と隣り合った状態で前記筒部材の内周面に固定される軸部材と、
      前記筒部材と前記軸部材とを溶接する溶接部と、を備え、
      前記軸部材は、前記筒部材の内周面に対して圧入される圧入部を有する回転電機のロータであって、
      前記圧入部は、前記溶接部よりも前記磁性体から近い位置に配置され、
      前記溶接部は、前記軸線方向で前記圧入部から離間していることを特徴とする回転電機のロータ。
  2.   前記軸部材は、前記圧入部よりも前記筒部材の径方向における寸法が小さく、前記筒部材の内側に配置される小径部を有し、
      前記小径部は、前記軸線方向で前記圧入部と前記溶接部との間に配置されていることを特徴とする請求項1に記載の回転電機のロータ。
  3.   前記軸部材は、駆動力を出力する出力軸であることを特徴とする請求項1又は請求項2に記載の回転電機のロータ。
  4.   前記溶接部は、前記ロータの回転時に前記溶接部に作用する応力が極小値となるように前記軸線方向で前記圧入部から離間していることを特徴とする請求項1~請求項3のいずれか一項に記載の回転電機のロータ。
     

     
PCT/JP2021/041708 2020-12-21 2021-11-12 回転電機のロータ WO2022137877A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/267,906 US20240039351A1 (en) 2020-12-21 2021-11-12 Rotor of rotating electrical machine
CN202180080827.6A CN116584023A (zh) 2020-12-21 2021-11-12 旋转电机的转子
DE112021006582.3T DE112021006582T5 (de) 2020-12-21 2021-11-12 Rotor einer elektrischen drehmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020211799A JP7413990B2 (ja) 2020-12-21 2020-12-21 回転電機のロータ
JP2020-211799 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022137877A1 true WO2022137877A1 (ja) 2022-06-30

Family

ID=82159036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041708 WO2022137877A1 (ja) 2020-12-21 2021-11-12 回転電機のロータ

Country Status (5)

Country Link
US (1) US20240039351A1 (ja)
JP (1) JP7413990B2 (ja)
CN (1) CN116584023A (ja)
DE (1) DE112021006582T5 (ja)
WO (1) WO2022137877A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234975A (ja) * 1998-02-18 1999-08-27 Mitsubishi Motors Corp 発電機の回転子の組み付け方法
JP2015070786A (ja) * 2013-09-26 2015-04-13 エスカエフ・マニュティック・メシャトロニク 永久磁石回転子軸組立体および方法
JP2020198682A (ja) * 2019-05-31 2020-12-10 株式会社豊田自動織機 ロータ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004112849A (ja) 2002-09-13 2004-04-08 Honda Motor Co Ltd 永久磁石型回転子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234975A (ja) * 1998-02-18 1999-08-27 Mitsubishi Motors Corp 発電機の回転子の組み付け方法
JP2015070786A (ja) * 2013-09-26 2015-04-13 エスカエフ・マニュティック・メシャトロニク 永久磁石回転子軸組立体および方法
JP2020198682A (ja) * 2019-05-31 2020-12-10 株式会社豊田自動織機 ロータ

Also Published As

Publication number Publication date
JP2022098321A (ja) 2022-07-01
JP7413990B2 (ja) 2024-01-16
DE112021006582T5 (de) 2023-10-05
CN116584023A (zh) 2023-08-11
US20240039351A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
US6998752B2 (en) Dynamo-electric machine
WO2020230507A1 (ja) ロータ及びそれを備えたモータ
CN108370208A (zh) 具有壳体的电的驱动单元
WO2017073036A1 (ja) 回転電気機械のロータ
WO2008068910A1 (ja) ポリゴンミラースキャナモータとその製造方法
US20030192880A1 (en) Yoke structure that is adapted to be secured to a tube using magnetic pulse welding techniques
JP5386885B2 (ja) 永久磁石式回転機の回転子構造
WO2022137877A1 (ja) 回転電機のロータ
JP2013132127A (ja) 回転電機の固定子
JP6419111B2 (ja) ロータ、回転電機及びロータの製造方法
WO2021176818A1 (ja) ロータおよびロータの製造方法
JP2020156277A (ja) 固定子及び回転電気
JP7431180B2 (ja) ロータ、モータ、およびロータの製造方法
JPWO2019150500A1 (ja) 回転子部材、回転子及び回転電機
JP2022008378A (ja) 回転電機のロータの製造方法
JP2006250204A (ja) 圧縮機の電磁クラッチ
JP7172940B2 (ja) 電動機
WO2022138727A1 (ja) 回転子、ブラシレスモータ、回転子の製造方法
WO2023223762A1 (ja) ロータハウジング
WO2024084549A1 (ja) 回転電機
WO2022097253A1 (ja) モータ及びモータの製造方法
JP6926874B2 (ja) ロータ
JPH0112520Y2 (ja)
JP2017214971A (ja) 電磁クラッチ
JP2005295766A (ja) アキシャルギャップ電動機のロータ構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910030

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180080827.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18267906

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112021006582

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910030

Country of ref document: EP

Kind code of ref document: A1