WO2023223762A1 - ロータハウジング - Google Patents

ロータハウジング Download PDF

Info

Publication number
WO2023223762A1
WO2023223762A1 PCT/JP2023/015733 JP2023015733W WO2023223762A1 WO 2023223762 A1 WO2023223762 A1 WO 2023223762A1 JP 2023015733 W JP2023015733 W JP 2023015733W WO 2023223762 A1 WO2023223762 A1 WO 2023223762A1
Authority
WO
WIPO (PCT)
Prior art keywords
end plate
cylindrical
cylindrical portion
rotor housing
rotor
Prior art date
Application number
PCT/JP2023/015733
Other languages
English (en)
French (fr)
Inventor
裕之 土屋
幸司 加藤
Original Assignee
株式会社デンソー
トピー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トピー工業株式会社 filed Critical 株式会社デンソー
Publication of WO2023223762A1 publication Critical patent/WO2023223762A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets

Definitions

  • the disclosure in this specification relates to a rotor housing used in a rotating electric machine.
  • Patent Document 1 is known as a prior art related to a rotor of a rotating electric machine.
  • the rotor includes a first annular core part, a magnet provided on the inner periphery of the first core part, and a circumferential end part of the magnet fixed to the inner periphery of the first core part.
  • a configuration is described that includes a second core part that covers the first core part from the opposite side.
  • a configuration is described in which a connecting portion that connects the first core portion to the rotating shaft is fixed to an axial end portion of the first core portion.
  • the rotor housing is a member that generates centrifugal force and vibration as it rotates, and a technology that can appropriately respond to changes in centrifugal force and vibration due to changes in performance requirements is desired.
  • the present disclosure has been made in view of the above circumstances, and aims to provide a rotor housing that can suitably meet various demands.
  • Means 1 is A rotor housing used for a rotor of a rotating electric machine, a cylindrical part having a cylindrical shape and holding a magnet of the rotor; an end plate part joined to an axial end part of the cylindrical part and to which a shaft serving as a rotation axis is fixed; The cylindrical portion and the end plate portion are formed separately, and are integrated by being joined to each other.
  • the cylindrical part that holds the magnets and the end plate part to which the shaft, which is the rotating shaft, is fixed are provided as one piece, but if the performance requirements and applications of the rotating electrical machine differ, the cylindrical part and the end plate part The required performance will be different.
  • the cylindrical part and the end plate part are formed separately and integrated by joining them together, it is easy to accommodate variations according to the performance requirements and uses of the rotating electric machine. As a result, it is possible to realize a rotor housing that can suitably meet various demands.
  • the cylindrical portion and the end plate portion are integrated in a state in which the joint portion on the cylindrical portion side and the joint portion on the end plate side are fitted into each other in the radial direction.
  • the cylindrical part and the end plate part are configured to be integrated with the joint part on the cylindrical part side and the joint part on the end plate side fitted together in the radial direction. In this case, the accuracy of coaxiality of the cylindrical portion and the end plate portion with respect to each other is improved.
  • Means 3 is a rotor housing in which the magnet is attached to the radially inner side of the cylindrical part, and the cylindrical part and the end plate part are arranged so that the joint part on the cylindrical part side is radially outer and the end plate part side is attached to the rotor housing. are joined to each other with the joined portion facing inward in the radial direction.
  • the cylindrical part and the end plate part were joined to each other with the joined part on the cylindrical part side being on the radially outer side and the joining part on the end plate side being on the radially inner side.
  • the axial end surface of the end plate portion joined to the radially inner side of the cylindrical portion faces the axial end surface of the magnet. This allows the end plate portion to position the magnet in the axial direction.
  • Means 4 is a rotor housing in which the magnet is attached to the radially inner side of the cylindrical part, and the cylindrical part and the end plate part are arranged so that the joint part on the cylindrical part side is radially inner and the end plate part side is attached to the rotor housing. are joined to each other with the joint portion facing outward in the radial direction.
  • the cylindrical part and the end plate were joined to each other with the joined part on the cylindrical part side radially inward and the joined part on the end plate side radially outward, so that when the rotor rotates, the cylindrical part that holds the magnets When centrifugal force is applied, the centrifugal force can be suitably supported by the radially outer end plate portion of the cylindrical portion.
  • the end plate portion has an annular portion extending in the axial direction
  • the cylindrical portion has a projecting portion projecting inward in the radial direction at the end portion in the axial direction, and the projecting portion extends in the radial direction.
  • An annular fitting portion extending in the axial direction is provided at the radial end of the exit portion, and the cylindrical portion and the end plate portion radially connect the fitting portion, which is the joint portion on the cylindrical portion side. They are fitted with the annular portion, which is the joint portion on the inner side in the direction and the end plate portion side, on the outer side in the radial direction.
  • the cylindrical part and the end plate part are fitted together with the fitting part, which is the joining part on the cylindrical part side, being radially inner, and the annular part, which is the joining part on the end plate side, being radially outer.
  • the coaxial precision of the end plate and the end plate is further improved.
  • the cylindrical part and the end plate part overlap each other with the joint part on the cylindrical part side being radially inner and the joint part on the end plate side being radially outer, and the end plate part is configured to overlap the cylindrical portion and the magnet in the radial direction.
  • the joint portion of the end plate portion overlaps the joint portion of the cylindrical portion side in the radial direction, and also overlaps the magnet on the inner peripheral side of the cylindrical portion, so that the centrifugal force of the magnet is applied to the end when the rotor rotates. It is suitably supported by the plate part.
  • the cylindrical portion is made of a magnetic material
  • the end plate portion is made of a material that is non-magnetic and lighter than the cylindrical portion.
  • the cylindrical part necessary for the magnetic circuit a magnetic material and making the end plate part a lightweight non-magnetic material (for example, aluminum), weight reduction can be achieved while ensuring proper rotor function. can.
  • a cylindrical extending portion extending axially outward from the region where the magnet is arranged is provided at an end portion of the cylindrical portion opposite to the end plate portion in the axial direction, and the cylindrical portion and The cylindrical extension portions are each formed separately, and are integrated by being joined to each other.
  • the cylindrical extension part is provided separately from the cylindrical part, and the cylindrical extension part is joined to the axial end of the cylindrical part.
  • the change can be suitably accommodated.
  • the end plate portion has a disk portion extending in a direction perpendicular to the axial direction, and a shaft fixing portion provided on the radially center side of the disk portion and fixing the shaft,
  • the disk portion and the shaft fixing portion are formed separately, and are integrated by being joined to each other.
  • the end plate portion of the rotor housing has a disk portion extending in a direction perpendicular to the axial direction, and a shaft fixing portion provided on the radial center side of the disk portion, and these disks The part and the shaft fixing part are joined to each other. In this case, even if the form of the shaft fixed to the end plate portion is changed as appropriate, the change can be suitably accommodated.
  • the cylindrical portion and the end plate portion have different thickness dimensions, and the thickness dimension of the cylindrical portion is larger than the thickness dimension of the end plate portion.
  • the respective thickness dimensions of the cylindrical portion and the end plate portion can be easily made different. Since the thickness of the cylindrical portion is made larger than the thickness of the end plate portion, it can suitably be used in a rotating electric machine where, for example, the rotor requires high strength against centrifugal force. Furthermore, since the thickness of the rotor housing is increased only at necessary locations, it is possible to suppress an increase in the size and weight of the rotor.
  • the cylindrical portion and the end plate portion have different thickness dimensions, and the thickness dimension of the end plate portion is larger than the thickness dimension of the cylindrical portion.
  • the thickness of the end plate portion is made larger than the thickness of the cylindrical portion, it is possible to suitably cope with cases where, for example, vibrations occurring around the shaft (rotation axis) of the rotating electric machine are large.
  • FIG. 1 is a perspective view showing an overview of the rotor
  • FIG. 2 is a longitudinal cross-sectional view of the rotor
  • FIG. 3 is an exploded cross-sectional view of the rotor housing
  • FIG. 4 is a cross-sectional view showing the configuration of the joint between the cylindrical part and the end plate part
  • FIG. 5 is a cross-sectional view showing the structure of the joint between the cylindrical part and the end plate part
  • FIG. 6 is a sectional view showing the configuration of the joint between the cylindrical part and the enlarged diameter part
  • FIG. 7 is a longitudinal cross-sectional view of the rotor
  • FIG. 8 is a longitudinal sectional view of the rotor housing
  • FIG. 9 is a longitudinal sectional view of the rotor housing.
  • a rotating electrical machine is used, for example, as a vehicle-mounted electric device.
  • rotating electric machines can be widely used for industrial purposes, ships, aircraft, home appliances, OA equipment, game machines, and the like.
  • the rotating electric machine according to the present embodiment is an outer rotor type surface magnet type motor, and has a rotor and a stator as is well known.
  • the rotor and stator are arranged to face each other in the radial direction, and the rotor is rotatable about the rotation axis with respect to the stator.
  • FIGS. 1(a) and 1(b) are perspective views showing an outline of the rotor 10, and FIG. 2 is a vertical cross-sectional view of the rotor 10.
  • the direction in which the rotational axis of the rotor 10 extends (vertical direction in the figure) is the axial direction
  • the direction extending radially from the center of the rotational axis is the radial direction
  • the direction in which the rotational axis of the rotor 10 extends is the radial direction.
  • the direction in which it extends is the circumferential direction.
  • the rotor 10 has a substantially cylindrical cup-shaped rotor housing 11 and an annular magnet unit 12 fixed to the rotor housing 11.
  • the rotor housing 11 includes a cylindrical portion 13 having a cylindrical shape, an end plate portion 14 provided at one end of the cylindrical portion 13 in the axial direction, and an end plate portion 14 provided at the other end of the cylindrical portion 13 in the axial direction. It also has an enlarged diameter portion 15 whose diameter is enlarged.
  • a magnet unit 12 is fixed to the radially inner side of the cylindrical portion 13.
  • the other end of the rotor housing 11 in the axial direction is open.
  • the magnet unit 12 is composed of a plurality of magnets arranged so that the polarity alternates along the circumferential direction of the rotor 10.
  • the magnet unit 12 has a plurality of magnetic poles in the circumferential direction. It is preferable that the magnets be divided into magnetic poles and arranged so that the circumferential side surfaces face each other.
  • the cylindrical portion 13 functions as a magnet holding member.
  • the end plate portion 14 has a hole 22 in the center in the radial direction, and around the hole 22 there are a plurality of fasteners for fastening fasteners 23 such as bolts for fixing the shaft.
  • a section 24 is provided.
  • the fastened portion 24 is preferably constituted by a through hole penetrating the end plate portion 14 in the thickness direction and a nut (weld nut) fixed to the plate surface of the end plate portion 14.
  • the shaft 21 is inserted into the hole 22 and fixed to the end plate 14 by a fastener 23 . Note that it is also possible to fix a rotating part of a stationary part such as a ball bearing and a rotating part to the end plate part 14, and to fix the shaft 21 to the rotating part.
  • the end plate portion 14 and the enlarged diameter portion 15 are portions of the rotor housing 11 that are provided on the outer side in the axial direction than the area where the magnet unit 12 is arranged.
  • the enlarged diameter portion 15 corresponds to a “cylindrical extension portion”.
  • a closing plate 25 for closing the open end side of the rotor housing 11 is fixed to the enlarged diameter portion 15 with bolts or the like.
  • FIG. 3 is an exploded sectional view of the rotor housing 11.
  • the cylindrical portion 13 is made of a magnetic material, and is formed by, for example, bending an electromagnetic steel plate into a cylindrical shape and joining the circumferential ends of the plate material by welding or the like.
  • the cylindrical portion 13 may have a configuration in which a plurality of electromagnetic steel plates punched into an annular shape are laminated in the axial direction, or a configuration in which linearly extending laminated steel plates are wound spirally to form the cylindrical portion 13. It is also possible to use a directional stacked configuration.
  • the cylindrical portion 13 functions as a rotor core.
  • the end plate portion 14 and the enlarged diameter portion 15 are made of a material that is non-magnetic and lighter than the cylindrical portion 13, and are formed by, for example, pressing, forging, or casting aluminum.
  • the weight of the rotor 10 can be reduced by using lightweight metals such as aluminum.
  • the cylindrical portion 13, the end plate portion 14, and the enlarged diameter portion 15 may each be appropriately subjected to surface treatment for rust prevention and corrosion resistance.
  • the end plate portion 14 has a hollow disk-shaped disk portion 31 and a joining end portion 32 that extends in an annular shape from the outer peripheral edge of the disk portion 31 and is joined to the cylindrical portion 13.
  • the disc portion 31 is provided with the plurality of fastened portions 24 described above.
  • the joining end portion 32 extends in an annular shape in the axial direction, and the coil end portion of the stator coil is accommodated on the inner peripheral side thereof.
  • the joint end portion 32 corresponds to the “annular portion”.
  • the joint end portion 32 is a portion that constitutes the end portion on the radially outer peripheral side of the cylindrical portion 13, and the joint end portion 32 is coupled to the cylindrical portion 13 by fitting in the radial direction. In the configuration of FIG. 3, the cylindrical portion 13 is placed on the outside in the radial direction, and the joining end portion 32 of the end plate portion 14 is placed on the inside in the radial direction, and these two parts are fitted together.
  • FIG. 4 The specific configuration is shown in Figure 4.
  • the cylindrical portion 13 and the end plate portion 14 are combined so that their joint portions overlap in the radial direction. More specifically, the cylindrical part 13 and the end plate part 14 are assembled to each other in such a way that the joint end 32 of the end plate part 14 enters the inner circumferential side of the cylindrical part 13 (that is, the cylindrical part 13 is They are assembled to each other with the end plate portion 14 facing radially outside and the end plate portion 14 facing radially inside), and their joint surfaces are joined by brazing or welding.
  • the joining of the cylindrical portion 13 and the end plate portion 14 is performed over the entire circumference in the circumferential direction on both the outer circumferential side and the inner circumferential side of the rotor housing 11 (directions A1 and A2 in FIG. 4). good. This makes it possible to improve the strength and sealing performance of the rotor housing 11.
  • the joint portion between the cylindrical portion 13 and the end plate portion 14 is preferably covered with a sealing material 33 such as a liquid gasket. Thereby, even if the sealing performance due to the joining of the cylindrical portion 13 and the end plate portion 14 is insufficient, the insufficient sealing performance can be suitably compensated for.
  • the cylindrical portion 13 and the end plate portion 14 are made of different metals, there is a concern that contact corrosion of different metals (galvanic corrosion) may occur, but the joint portion is covered with the sealing material 33. This suppresses the occurrence of contact corrosion between different metals.
  • the axial end surface of the end plate portion 14 joined to the radially inner side of the cylindrical portion 13 (specifically, the axial end surface of the joined end portion 32 ) faces the axial end surface of the magnet unit 12. .
  • FIG. 5(a) similarly to FIG. 4, the cylindrical portion 13 and the end plate portion 14 are mutually connected with the joint portion of the cylindrical portion 13 on the outside in the radial direction and the joint portion of the end plate portion 14 on the inside in the radial direction. It is assembled.
  • an annular flange 32a extending radially outward is provided at the axial end of the joint end 32 of the end plate part 14 on the opposite side to the disc part 31.
  • the cylindrical portion 13 and the end plate portion 14 are assembled to each other such that the annular flange 32a enters inside the cylindrical portion 13 in the radial direction.
  • FIG. 5(b) unlike FIG. 4, the cylindrical portion 13 and the end plate portion 14 are mutually connected with the joint portion of the cylindrical portion 13 on the inside in the radial direction and the joint portion of the end plate portion 14 on the outside in the radial direction. It is assembled. Specifically, an annular annular flange 16 is provided at the axial end of the cylindrical portion 13 so as to project inward in the radial direction, and the annular flange 16 has a diameter smaller than that of the cylindrical portion 13. It has a reduced diameter portion 16a.
  • the annular flange 16 corresponds to the "projecting part”
  • the reduced diameter part 16a corresponds to the "fitting part”.
  • the joining end portion 32 of the end plate portion 14 is fitted to the radially outer side of the reduced diameter portion 16a.
  • the cylindrical part 13 and the end plate part 14 are joined to each other by a so-called spigot structure, with the joining part of the cylindrical part 13 being radially inner and the joining part of the end plate 14 being radially outer. This improves the coaxial precision of the cylindrical portion 13 and the end plate portion 14.
  • the centrifugal The force is preferably supported by the radially outer end plate portion 14 of the cylindrical portion 13.
  • annular flange 16 is preferably formed by press working or the like after the cylindrical portion 13 is manufactured, for example.
  • the annular flange 16 is provided at a portion of the cylindrical portion 13 that is axially outer than the magnet fixing range where the magnet unit 12 is fixed on the radially inner side, and the annular flange 16 faces the axial end surface of the magnet unit 12. This makes it possible to position the magnet unit 12 in the axial direction using the annular flange 16.
  • the cylindrical portion 13 and the end plate portion 14 are arranged such that the joint portion of the cylindrical portion 13 is on the inside in the radial direction and the joint portion of the end plate portion 14 is on the outside in the radial direction. and are assembled together.
  • the joining end portion 32 of the end plate portion 14 overlaps both the cylindrical portion 13 and the magnet unit 12 in the radial direction.
  • the centrifugal force of the magnet unit 12 is suitably supported by the end plate portion 14 when the rotor 10 rotates.
  • the respective joint portions of the cylindrical portion 13 and the end plate portion 14 are joined to each other in a state where they are overlapped in the axial direction.
  • the annular flange 16 on the cylindrical portion 13 side and the annular flange 32a on the end plate portion 14 side are joined to each other by brazing or the like in a state where they overlap in the axial direction.
  • the enlarged diameter portion 15 has an annular inner flange 35 and an outer flange 36, of which the inner flange 35 is a joint portion joined to the cylindrical portion 13.
  • the cylindrical portion 13 is placed on the inside in the radial direction, and the inner flange 35 of the enlarged diameter portion 15 is placed on the outside in the radial direction, and these two parts are fitted together.
  • FIG. 6 The specific configuration is shown in FIG. As shown in FIG. 6, the cylindrical portion 13 and the enlarged diameter portion 15 are combined so that their joint portions overlap in the radial direction. More specifically, the cylindrical portion 13 and the enlarged diameter portion 15 are assembled to each other such that the inner flange 35 of the enlarged diameter portion 15 is fitted to the outer circumferential side of the cylindrical portion 13 (that is, the cylindrical portion 13 is They are assembled to each other with the enlarged diameter portion 15 facing radially inside and the enlarged diameter portion 15 facing radially outside), and their joint surfaces are joined by brazing or welding.
  • the magnitude of centrifugal force and vibration generated during operation of the rotating electrical machine differs depending on specifications such as performance and size of the rotating electrical machine.
  • the magnitude of the centrifugal force generated in the rotor 10 changes depending on the expected rotational speed of the rotating electrical machine and the outer diameter (rotor diameter) of the rotor 10, and the higher the estimated rotational speed of the rotating electrical machine or the larger the rotor diameter, the greater the The centrifugal force generated on the rotor 10 increases. It is also considered that the centrifugal force changes depending on the amount of magnets in the magnet unit 12 and the thickness of the magnets.
  • the magnitude of the vibration generated in the shaft of the rotor 10 changes depending on the use of the rotating electric machine, for example, and if it is used as a driving power source in a vehicle, especially as an in-wheel motor, the vibration will be large. When used in equipment, vibration is considered to be relatively small.
  • the present embodiment has a configuration in which the thickness dimensions of the cylindrical portion 13, end plate portion 14, and enlarged diameter portion 15 of the rotor housing 11 can be individually selected according to specifications such as performance and size of the rotating electric machine. It has become.
  • the rotor housing 11 is manufactured by manufacturing the cylindrical part 13, end plate part 14, and enlarged diameter part 15 each having an optimal thickness dimension, and by integrating them.
  • the thickness dimensions T1, T2, and T3 of the cylindrical portion 13, end plate portion 14, and enlarged diameter portion 15 are such that “T1>T2, T3”.
  • the thickness T1 of the cylindrical portion 13 is larger than the thickness T2 and T3 of the other portions.
  • the thickness dimensions T1, T2, and T3 of the cylindrical portion 13, end plate portion 14, and enlarged diameter portion 15 are “T1 ⁇ T2, T3”.
  • the thickness dimensions T2 and T3 of the end plate portion 14 and the enlarged diameter portion 15 are larger than the thickness dimension T1 of the cylindrical portion 13. This makes it possible to suitably deal with cases where, for example, vibrations occurring around the shaft of a rotating electric machine are large.
  • the thickness dimensions T2 and T3 may be the same or different.
  • the cylindrical portion 13, the end plate portion 14, and the enlarged diameter portion 15, which are the constituent members of the rotor housing 11, are prepared in advance, and these members are joined by joining means such as brazing or welding. do.
  • a sealing material 33 is used to seal the joints between the members as necessary.
  • the materials and thickness dimensions of the cylindrical portion 13, end plate portion 14, and enlarged diameter portion 15 are set in an appropriate combination pattern according to the specifications of the rotating electrical machine, and then these respective members are joined to each other.
  • the magnet unit 12 is assembled to the rotor housing 11 using adhesive or the like.
  • the rotor 10 shown in FIGS. 1 and 2 is completed.
  • the shaft 21 is fixed, integrated with a stator (not shown), the closing plate 25 is fixed, etc.
  • coil end portions of the stator coils are accommodated on the inner circumferential side of the end plate portion 14 and on the inner circumferential side of the enlarged diameter portion 15, respectively.
  • the cylindrical part 13 that holds the magnet unit 12 and the end plate part 14 to which the shaft 21 is fixed are provided as an integral part.
  • the performance required of the end plate portion 14 is different.
  • the cylindrical part 13 and the end plate part 14 are formed separately and integrated by joining them together, it is easy to accommodate variations according to the performance requirements and uses of the rotating electric machine. As a result, it is possible to realize a rotor housing 11 that can suitably meet various demands.
  • the cylindrical portion 13 is a magnet holding portion that holds a magnet
  • the end plate portion 14 is a coil end accommodating portion that accommodates a coil end portion of the stator coil. Therefore, the above configuration corresponds to a configuration in which the magnet holding part and the coil end accommodating part are each formed separately in the rotor housing 11, and are integrated by joining them to each other.
  • the cylindrical portion 13 and the end plate portion 14 are configured to be integrated with the joint portion on the cylindrical portion 13 side and the joint portion on the end plate portion 14 side fitted together in the radial direction. In this case, the accuracy of coaxiality of the cylindrical portion 13 and the end plate portion 14 is enhanced.
  • the cylindrical part 13 and the end plate part 14 are joined to each other with the joined part on the cylindrical part 13 side being radially outward and the joined part on the end plate part 14 side being radially inward (Figs. 4 and 5). (a)).
  • the axial end surface of the end plate section 14 joined to the radially inner side of the cylindrical section 13 faces the axial end surface of the magnet unit 12 . This allows the end plate portion 14 to position the magnet unit 12 in the axial direction.
  • the cylindrical part 13 and the end plate part 14 are connected such that the reduced diameter part 16a (fitting part) which is the joint part on the cylindrical part 13 side is radially inner, and the joint end part 32 (annular part) which is the joint part on the end plate part 14 side. ) are fitted on the outside in the radial direction (FIG. 5(b)). Thereby, the coaxial precision of the cylindrical portion 13 and the end plate portion 14 is further improved.
  • the joint portion of the end plate portion 14 overlaps the joint portion on the cylindrical portion 13 side in the radial direction, and also overlaps the magnet unit 12 on the inner peripheral side of the cylindrical portion 13 (FIG. 5(c)). Thereby, the centrifugal force of the magnet unit 12 is suitably supported by the end plate portion 14 when the rotor rotates.
  • the cylindrical part 13 necessary for the magnetic circuit a magnetic material and making the end plate part 14 a lightweight non-magnetic material (for example, aluminum), weight reduction can be achieved while ensuring the rotor function. .
  • an enlarged diameter portion 15 is provided at an end portion of the cylindrical portion 13 on the opposite side in the axial direction from the end plate portion 14 as a cylindrical extension portion extending axially outward from the magnet arrangement region. 13 and the enlarged diameter portion 15 are formed separately, and are joined to each other. Thereby, even if the form of the component attached to the end portion of the rotor housing 11 on the opposite side in the axial direction from the end plate portion 14 is changed as appropriate, the change can be suitably accommodated.
  • the thickness dimensions of the cylindrical portion 13 and the end plate portion 14 can be easily made different.
  • the thickness of the cylindrical portion 13 larger than the thickness of the end plate portion 14, it is possible to suitably respond to the case where, for example, the rotor 10 has a high strength requirement against centrifugal force in the rotating electric machine.
  • the thickness of the rotor housing 11 is increased only at necessary locations, it is possible to suppress an increase in the size and weight of the rotor 10.
  • the thickness of the end plate portion 14 By making the thickness of the end plate portion 14 larger than the thickness of the cylindrical portion 13 in the rotor housing 11, it is possible to suitably cope with cases where, for example, vibrations occurring around the shaft of the rotating electric machine are large.
  • the end plate portion 14 of the rotor housing 11 includes a disk portion 31 extending in a direction perpendicular to the axial direction, and a shaft fixing portion 41 provided on the radial center side of the disk portion 31.
  • the disk portion 31 and the shaft fixing portion 41 may be joined to each other.
  • the shaft fixing part 41 is preferably provided with a plurality of fastened parts 24 made of nuts (weld nuts).
  • the disk portion 31 and the shaft fixing portion 41 are formed separately, and are integrated by being joined to each other. In this case, even if the form of the shaft 21 fixed to the end plate portion 14 is changed as appropriate, the change can be suitably accommodated.
  • the cylindrical portion 13, the end plate portion 14, and the enlarged diameter portion 15 of the rotor housing 11 may have individual reinforcing structures depending on the strength requirements of each.
  • stress concentration at the corners is a concern.
  • reinforcement measures be taken to increase the strength of the corners of the cylindrical portion 13, end plate portion 14, and enlarged diameter portion 15.
  • the corners of each member may be suitably subjected to work hardening treatment such as bending.
  • reinforcing ribs may be provided at the corners of the cylindrical portion 13, the end plate portion 14, and the enlarged diameter portion 15.
  • ribs 42 may be provided in the end plate portion 14 so as to connect the disk portion 31 and the joining end portion 32. This rib 42 is preferably formed, for example, when the end plate portion 14 is cast.
  • a surface magnet type rotor is used as the rotor 10, but instead of this, a structure may be adopted in which an embedded magnet type rotor is used.
  • a magnet unit including a rotor core and a plurality of magnets embedded in the rotor core may be assembled into the rotor housing.
  • the rotating electrical machine has an outer rotor structure, but this may be changed to a rotating electrical machine having an inner rotor structure.
  • the stator is provided on the outside in the radial direction
  • the rotor is provided on the inside in the radial direction.
  • the cylindrical portion and the end plate portion are joined to each other with the joint portion on the cylindrical portion side being radially inward and the joint portion on the end plate side being radially outside.
  • the cylindrical portion and the end plate portion may be joined to each other with the joined portion on the cylindrical portion side being on the radially outer side and the joining portion on the end plate side being on the radially inner side.
  • the disclosure in this specification is not limited to the illustrated embodiments.
  • the disclosure includes the illustrated embodiments and variations thereon by those skilled in the art.
  • the disclosure is not limited to the combinations of parts and/or elements illustrated in the embodiments.
  • the disclosure can be implemented in various combinations.
  • the disclosure may have additional parts that can be added to the embodiments.
  • the disclosure includes those in which parts and/or elements of the embodiments are omitted.
  • the disclosure encompasses any substitutions or combinations of parts and/or elements between one embodiment and other embodiments.
  • the disclosed technical scope is not limited to the description of the embodiments.
  • the technical scope of some of the disclosed technical scopes is indicated by the description of the claims, and should be understood to include equivalent meanings and all changes within the scope of the claims.
  • the cylindrical portion and the end plate portion are each formed separately and are integrated by being joined to each other.
  • [Configuration 3] A rotor housing in which the magnet is attached to the radially inner side of the cylindrical portion, The rotor according to configuration 2, wherein the cylindrical part and the end plate part are joined to each other with the joined part on the cylindrical part side being radially outer and the joined part on the end plate side being radially inner. housing.
  • [Configuration 4] A rotor housing in which the magnet is attached to the radially inner side of the cylindrical portion, The rotor according to configuration 2, wherein the cylindrical part and the end plate part are joined to each other with the joined part on the cylindrical part side being radially inner and the joined part on the end plate side being radially outer. housing.
  • the end plate portion has an annular portion (32) extending in the axial direction,
  • the cylindrical portion has an overhang (16) extending radially inward at its axial end, and an annular fitting portion (16) extending axially at the radial end of the overhang. 16a) is provided,
  • the cylindrical portion and the end plate portion are fitted together with the fitting portion, which is a joint portion on the cylindrical portion side, being radially inner, and the annular portion, being a joint portion on the end plate side, being radially outer.
  • the rotor housing according to configuration 4.
  • a cylindrical extending portion (15) extending axially outward from the magnet arrangement area is provided at an end portion of the cylindrical portion on the opposite side in the axial direction from the end plate portion, 8.
  • the end plate portion includes a disk portion (31) extending in a direction perpendicular to the axial direction, and a shaft fixing portion (41) provided on the radially center side of the disk portion and fixing the shaft. death, 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

回転電機のロータは、ロータハウジング(11)と磁石とを有している。ロータハウジングは、円筒状をなし、前記ロータの磁石を保持する円筒部(13)と、前記円筒部の軸方向端部に接合され、回転軸であるシャフトが固定される端板部(14)と、を備えている。前記円筒部と前記端板部とはそれぞれ別体で形成され、互いに接合されることで一体化されている。

Description

ロータハウジング 関連出願の相互参照
 本出願は、2022年5月17日に出願された日本出願番号2022-081042号に基づくもので、ここにその記載内容を援用する。
 この明細書における開示は、回転電機に用いられるロータハウジングに関する。
 回転電機のロータに関する先行技術として、例えば特許文献1が知られている。この特許文献1には、ロータとして、円環状の第1コア部と、第1コア部の内周に設けられる磁石と、第1コア部の内周に固定され、磁石の周方向端部を第1コア部とは反対側から覆う第2コア部とを備える構成が記載されている。また、第1コア部の軸方向端部に、第1コア部を回転軸に連結する連結部を固定した構成が記載されている。
特開2007-159308号公報
 ところで、回転電機には、例えば性能に関して様々な要求が生じる。また、回転電機の様々な要求に対応して個別にロータを製造するには、手間やコストが嵩むことが懸念される。特にロータハウジングは、回転に伴い遠心力や振動が生じる部材であり、性能要求が変わることにより遠心力や振動が変わっても、適正に対応できる技術が望まれる。
 本開示は、上記事情に鑑みてなされたものであり、様々な要求に応じて好適に対応することができるロータハウジングを提供することを目的とする。
 この明細書における開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。この明細書に開示される目的、特徴、および効果は、後続の詳細な説明、および添付の図面を参照することによってより明確になる。
 手段1は、
 回転電機のロータに用いられるロータハウジングであって、
 円筒状をなし、前記ロータの磁石を保持する円筒部と、
 前記円筒部の軸方向端部に接合され、回転軸であるシャフトが固定される端板部と、を備え、
 前記円筒部と前記端板部とはそれぞれ別体で形成され、互いに接合されることで一体化されている。
 ロータにおいて、磁石を保持する円筒部と、回転軸であるシャフトが固定される端板部とは一体物として設けられるが、回転電機の性能要求や用途等が相違すると、円筒部及び端板部に求められる性能が異なるものとなる。この点、円筒部と端板部とをそれぞれ別体で形成し、互いに接合することで一体化するものとしたため、回転電機の性能要求や用途等に応じたバリエーション対応が容易となる。その結果、様々な要求に応じて好適に対応することが可能なロータハウジングを実現できる。
 手段2では、前記円筒部及び前記端板部は、前記円筒部側の接合部分と前記端板部側の接合部分とが径方向に互いに嵌め合わされた状態で一体化されている。
 円筒部及び端板部を、円筒部側の接合部分と端板部側の接合部分とが径方向に互いに嵌め合わされた状態で一体化する構成とした。この場合、円筒部及び端板部について互いの同軸の精度が高められるものとなっている。
 手段3では、前記円筒部の径方向内側に前記磁石が取り付けられるロータハウジングであって、前記円筒部及び前記端板部は、前記円筒部側の接合部分を径方向外側、前記端板部側の接合部分を径方向内側にした状態で互いに接合されている。
 円筒部及び端板部を、円筒部側の接合部分を径方向外側、端板部側の接合部分を径方向内側にした状態で互いに接合するようにした。この場合、ロータにおいて、円筒部の径方向内側に接合された端板部の軸方向端面が、磁石の軸方向端面に対向する。これにより、端板部による磁石の軸方向の位置決めが可能になっている。
 手段4では、前記円筒部の径方向内側に前記磁石が取り付けられるロータハウジングであって、前記円筒部及び前記端板部は、前記円筒部側の接合部分を径方向内側、前記端板部側の接合部分を径方向外側にした状態で互いに接合されている。
 円筒部及び端板部を、円筒部側の接合部分を径方向内側、端板部側の接合部分を径方向外側にした状態で互いに接合したため、ロータの回転時において磁石を保持する円筒部に遠心力がかかる場合に、その遠心力を、円筒部の径方向外側の端板部により好適に支えることができる。
 手段5では、前記端板部は、軸方向に延びる円環状の環状部を有し、前記円筒部は、その軸方向端部に、径方向内側に張り出す張出部を有し、その張出部の径方向端部に、軸方向に延びる円環状の嵌合部が設けられており、前記円筒部及び前記端板部は、前記円筒部側の接合部分である前記嵌合部を径方向内側、前記端板部側の接合部分である前記環状部を径方向外側として嵌め合わされている。
 上記構成では、円筒部及び端板部が、円筒部側の接合部分である嵌合部を径方向内側、端板部側の接合部分である環状部を径方向外側として嵌め合わされており、円筒部及び端板部の同軸の精度が一層高められるものとなっている。
 手段6では、前記円筒部及び前記端板部が、前記円筒部側の接合部分を径方向内側、前記端板部側の接合部分を径方向外側にして互いに重なった状態において、前記端板部が、径方向に前記円筒部と前記磁石とに重なるようになっている。
 上記構成によれば、端板部の接合部分が、径方向において円筒部側の接合部分に重なり、さらに円筒部の内周側で磁石にも重なるため、ロータ回転時において磁石の遠心力が端板部により好適に支えられるものとなっている。
 手段7では、前記円筒部は磁性材料により形成され、前記端板部は、非磁性でありかつ前記円筒部よりも軽量な材料により形成されている。
 上記構成によれば、磁気回路として必要な円筒部を磁性体とし、端板部を軽量な非磁性体(例えばアルミニウム)とすることで、適正なるロータ機能を確保しつつ軽量化を図ることができる。
 手段8では、前記円筒部において前記端板部とは軸方向逆側の端部に、前記磁石の配置領域よりも軸方向外側に延びる筒状延出部が設けられており、前記円筒部と前記筒状延出部とがそれぞれ別体で形成され、互いに接合されることで一体化されている。
 上記構成では、ロータハウジングにおいて、円筒部とは別体で筒状延出部が設けられ、円筒部の軸方向端部に筒状延出部が接合されている。この場合、ロータハウジングにおいて、端板部とは軸方向逆側の端部に取り付けられる部品の形態が適宜変更されても、その変更に好適に対応できるものとなっている。
 手段9では、前記端板部は、軸方向に直交する方向に延びる円板部と、前記円板部の径方向中心側に設けられ、前記シャフトを固定するシャフト固定部と、を有し、前記円板部と前記シャフト固定部とがそれぞれ別体で形成され、互いに接合されることで一体化されている。
 上記構成では、ロータハウジングの端板部が、軸方向に直交する方向に延びる円板部と、円板部の径方向中心側に設けられたシャフト固定部とを有しており、これら円板部とシャフト固定部とが互いに接合されるものとなっている。この場合、端板部に固定されるシャフトの形態が適宜変更されても、その変更に好適に対応できるものとなっている。
 手段10では、前記円筒部と前記端板部とは厚さ寸法が互いに異なっており、前記円筒部の厚さ寸法が、前記端板部の厚さ寸法よりも大きい。
 ロータハウジングにおいて円筒部と端板部とが個別に作製される構成では、これら円筒部及び端板部のそれぞれの厚さ寸法を容易に相違させることができる。円筒部の厚さ寸法を端板部の厚さ寸法よりも大きくしたため、回転電機において例えばロータの遠心力に対する強度要求が高い場合に好適に対応できる。また、ロータハウジングにおいて必要箇所だけで厚さ寸法を大きくしているため、ロータとしての大型化や重量増加を抑制できるものとなっている。
 手段11では、前記円筒部と前記端板部とは厚さ寸法が互いに異なっており、前記端板部の厚さ寸法が、前記円筒部の厚さ寸法よりも大きい。
 端板部の厚さ寸法を円筒部の厚さ寸法よりも大きくしたため、回転電機において例えばシャフト(回転軸)周りに生じる振動が大きい場合に好適に対応できる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、ロータの概要を示す斜視図であり、 図2は、ロータの縦断面図であり、 図3は、ロータハウジングの分解断面図であり、 図4は、円筒部と端板部との接合部の構成を示す断面図であり、 図5は、円筒部と端板部との接合部の構成を示す断面図であり、 図6は、円筒部と拡径部との接合部の構成を示す断面図であり、 図7は、ロータの縦断面図であり、 図8は、ロータハウジングの縦断面図であり、 図9は、ロータハウジングの縦断面図である。
 以下、実施形態を図面に基づいて説明する。回転電機は、例えば車載の電動装置として用いられるものとなっている。ただし、回転電機は、産業用、船舶用、航空機用、家電用、OA機器用、遊技機用などとして広く用いられることが可能となっている。本実施形態に係る回転電機は、アウタロータ式の表面磁石型モータであり、周知のとおりロータ(回転子)とステータ(固定子)とを有している。ロータ及びステータは、相互に径方向に対向するように配置されており、ステータに対して、ロータが回転軸を中心にして回転可能となっている。
 図1(a),(b)は、ロータ10の概要を示す斜視図であり、図2は、ロータ10の縦断面図である。図1,図2において、ロータ10の回転軸線の延びる方向(図の上下方向)が軸方向であり、回転軸線の中心から放射状に延びる方向が径方向であり、回転軸線を中心として円周状に延びる方向が周方向である。
 ロータ10は、略円筒カップ状のロータハウジング11と、そのロータハウジング11に固定された環状の磁石ユニット12とを有している。ロータハウジング11は、円筒状をなす円筒部13と、その円筒部13の軸方向一端側に設けられた端板部14と、円筒部13の軸方向他端側に設けられ、円筒部13よりも拡径された拡径部15と、を有している。
 円筒部13の径方向内側には磁石ユニット12が固定されている。ロータハウジング11の軸方向他端側は開放されている。磁石ユニット12は、ロータ10の周方向に沿って極性が交互に変わるように配置された複数の磁石により構成されている。これにより、磁石ユニット12は、周方向に複数の磁極を有する。磁石は磁極ごとに分割されて設けられ、周方向の側面が互いに対向するように並べて配置されているとよい。円筒部13が磁石保持部材として機能する。
 端板部14には、ロータ10の回転中心となるシャフト21が固定される。具体的には、端板部14は径方向中心部に孔部22を有し、その孔部22の周りには、シャフト固定用のボルト等の締結具23を締結させるための複数の被締結部24が設けられている。被締結部24は、端板部14の板厚方向に貫通する貫通孔と、端板部14の板面に固定されたナット(ウェルドナット)とにより構成されているとよい。シャフト21は、孔部22に挿通された状態で、端板部14に対して締結具23により固定される。なお、端板部14に対して、玉軸受等の静止部及び回転部のうち回転部を固定するとともに、その回転部にシャフト21を固定する構成とすることも可能である。
 端板部14及び拡径部15は、ロータハウジング11において磁石ユニット12の配置領域よりも軸方向外側に設けられる部位である。拡径部15が「筒状延出部」に相当する。拡径部15には、ロータハウジング11の開放端側を閉じるための閉鎖板25がボルト等により固定される。
 本実施形態では、ロータハウジング11において円筒部13、端板部14及び拡径部15が、それぞれ個別に作製され、溶接やロウ付け等の接合手段により互いに接合されるようになっており、以下にその詳細を説明する。図3は、ロータハウジング11の分解断面図である。
 円筒部13は、磁性材料よりなり、例えば電磁鋼板を円筒状に湾曲加工し、その板材の周方向端部どうしを溶接等により接合することで成形されている。ただし、この構成以外に、円筒部13として、円環状に打ち抜き形成された複数の電磁鋼板が軸方向に積層された構成や、線状に延びる積層鋼板が螺旋状に巻回されることで軸方向に積層された構成を用いることも可能である。円筒部13が磁性体である場合、円筒部13はロータコアとして機能する。
 また、端板部14及び拡径部15は、非磁性でありかつ円筒部13よりも軽量な材料よりなり、例えばアルミニウムのプレス加工や鍛造、鋳造により成形されている。アルミニウム等の軽量金属の使用によりロータ10の軽量化が可能になっている。ただし、端板部14及び拡径部15の少なくともいずれかを、円筒部13と同様に磁性材料により成形することも可能である。円筒部13、端板部14及び拡径部15にはそれぞれ、防錆や耐腐食のための表面処理が適宜実施されているとよい。
 端板部14は、中空円板状の円板部31と、その円板部31の外周縁部から円環状に延び、円筒部13に接合される接合端部32とを有している。円板部31には、上述した複数の被締結部24が設けられている。接合端部32は軸方向に円環状に延び、その内周側には、ステータコイルのコイルエンド部分が収容されるようになっている。接合端部32が「環状部」に相当する。接合端部32は、円筒部13の径方向外周側の端部を構成する部位であり、その接合端部32が、径方向の嵌め合いにより円筒部13に対して結合される。図3の構成では、円筒部13を径方向外側、端板部14の接合端部32を径方向内側にして、これら両者が嵌め合わされるようになっている。
 その具体的な構成を図4に示す。図4に示すように、円筒部13と端板部14とは、その接合部分が径方向に重なるように組み合わされている。より詳しくは、円筒部13と端板部14とは、円筒部13の内周側に端板部14の接合端部32が入り込むようにして相互に組み付けられており(すなわち、円筒部13を径方向外側、端板部14を径方向内側にして相互に組み付けられており)、それら両者の互いの接合面がロウ付けや溶接により接合されている。
 ここで、円筒部13及び端板部14の接合は、ロータハウジング11の外周側及び内周側の両方(図4のA1,A2の方向)において、周方向の全周にわたって行われているとよい。これにより、ロータハウジング11の強度向上やシール性の向上が可能となる。また、円筒部13及び端板部14の接合部分が、液状ガスケット等のシール材33により覆われているとよい。これにより、仮に円筒部13及び端板部14の接合によるシール性が不足していても、そのシール性の不足を好適に補うことができる。また、円筒部13及び端板部14が互いに異なる金属により構成されている場合には、異種金属接触腐食(ガルバニック腐食)の発生が懸念されるが、その接合部分がシール材33により覆われていることで、異種金属接触腐食の発生が抑制される。
 図4の構成では、円筒部13の径方向内側に接合された端板部14の軸方向端面(詳しくは、接合端部32の軸方向端面)が、磁石ユニット12の軸方向端面に対向する。これにより、端板部14による磁石ユニット12の軸方向の位置決めが可能となり、磁石ユニット12の軸方向の位置決めのための治具や設備が不要になっている。
 また、円筒部13と端板部14との接合に関して、図5(a)~(d)に示す構成とすることも可能である。
 図5(a)では、図4と同様に、円筒部13と端板部14とが、円筒部13の接合部分を径方向外側、端板部14の接合部分を径方向内側にして相互に組み付けられている。ただし、図4との相違点として、端板部14の接合端部32において円板部31とは逆側の軸方向端部に、径方向外側に延びる環状フランジ32aが設けられており、その環状フランジ32aが円筒部13の径方向内側に入り込むようにして、円筒部13及び端板部14が相互に組み付けられている。
 図5(b)では、図4とは異なり、円筒部13と端板部14とが、円筒部13の接合部分を径方向内側、端板部14の接合部分を径方向外側にして相互に組み付けられている。詳しくは、円筒部13の軸方向端部には、径方向内側に張り出すようにして円環状の環状フランジ16が設けられており、その環状フランジ16は、円筒部13よりも縮径された縮径部16aを有している。環状フランジ16が「張出部」に相当し、縮径部16aが「嵌合部」に相当する。そして、縮径部16aの径方向外側に端板部14の接合端部32が嵌め合わされている。要するに、円筒部13と端板部14とは、円筒部13の接合部分を径方向内側、端板部14の接合部分を径方向外側にして、いわゆるインロー構造により互いに接合されている。これにより、円筒部13及び端板部14の同軸の精度が高められる。また、円筒部13が径方向内側、端板部14が径方向外側になっていることで、ロータ10の回転時において磁石ユニット12を保持する円筒部13に遠心力がかかる場合に、その遠心力が、円筒部13の径方向外側の端板部14により好適に支えられる。
 なお、環状フランジ16は、例えば円筒部13が作製された後に、プレス加工等により成形されるとよい。環状フランジ16は、円筒部13において径方向内側に磁石ユニット12が固定される磁石固定範囲よりも軸方向外側となる部位に設けられており、環状フランジ16が磁石ユニット12の軸方向端面に対向することで、環状フランジ16による磁石ユニット12の軸方向の位置決めが可能になっている。
 図5(c)では、図5(b)と同様に、円筒部13と端板部14とが、円筒部13の接合部分を径方向内側、端板部14の接合部分を径方向外側にして相互に組み付けられている。この構成では特に、端板部14の接合端部32が、径方向に円筒部13及び磁石ユニット12の両方に重なるようになっている。これにより、ロータ10の回転時において磁石ユニット12の遠心力が端板部14により好適に支えられるものとなっている。
 図5(d)では、円筒部13及び端板部14の各接合部分が軸方向に重ね合わされた状態で互いに接合されている。具体的には、円筒部13側の環状フランジ16と、端板部14側の環状フランジ32aとが軸方向に重なった状態で、これらがロウ付け等により互いに接合されている。
 また、拡径部15は、円環状の内側フランジ35と外側フランジ36とを有し、そのうち内側フランジ35が円筒部13に接合される接合部分となっている。図3の構成では、円筒部13を径方向内側、拡径部15の内側フランジ35を径方向外側にして、これら両者が嵌め合わされるようになっている。
 その具体的な構成を図6に示す。図6に示すように、円筒部13と拡径部15とは、その接合部分が径方向に重なるように組み合わされている。より詳しくは、円筒部13と拡径部15とは、円筒部13の外周側に拡径部15の内側フランジ35が嵌め合わされるようにして相互に組み付けられており(すなわち、円筒部13を径方向内側、拡径部15を径方向外側にして相互に組み付けられており)、それら両者の互いの接合面がロウ付けや溶接により接合されている。
 ところで、ロータ10では、回転電機の性能や大きさ等の仕様に応じて、回転電機の運転時に生じる遠心力や振動の大きさが相違する。例えば回転電機の想定回転数やロータ10の外径(ロータ径)に応じて、ロータ10に生じる遠心力の大きさが変わり、回転電機の想定回転数が高いほど、又はロータ径が大きいほど、ロータ10に生じる遠心力が大きくなる。磁石ユニット12における磁石量や磁石の厚さ寸法によっても遠心力が変わるとも考えられる。また、例えば回転電機の用途に応じて、ロータ10の軸部に生じる振動の大きさが変わり、車両において走行動力源としての使用、特にインホイールモータとしての使用であれば振動が大きく、設置型装置での使用であれば振動が比較的小さいと考えられる。
 この点、本実施形態では、回転電機の性能や大きさ等の仕様に応じて、ロータハウジング11の円筒部13、端板部14及び拡径部15の厚さ寸法が個別に選択できる構成となっている。例えば、円筒部13、端板部14及び拡径部15として、各々に最適な厚さ寸法となるものを作製するとともに、それらを一体化することでロータハウジング11を作製する。また、回転電機の仕様に応じて、円筒部13、端板部14及び拡径部15の材質を個別に変更することが可能であり、これら各部材の材質を、必要に応じて高ヤング率、高引張強度のものにするとよい。
 図7(a)に示す構成では、円筒部13、端板部14及び拡径部15について各々の厚さ寸法T1,T2,T3が、「T1>T2,T3」となっている。この場合、円筒部13、端板部14及び拡径部15のうち円筒部13の厚さ寸法T1が、他の部位の厚さ寸法T2,T3よりも大きくなっている。これにより、例えば回転電機においてロータ10の遠心力に対する強度要求が高い場合に好適に対応できる。
 また、図7(b)に示す構成では、円筒部13、端板部14及び拡径部15について各々の厚さ寸法T1,T2,T3が、「T1<T2,T3」となっている。この場合、円筒部13、端板部14及び拡径部15のうち端板部14及び拡径部15の厚さ寸法T2,T3が円筒部13の厚さ寸法T1よりも大きくなっている。これにより、例えば回転電機においてシャフト周りに生じる振動が大きい場合に好適に対応できる。なお、図7(a),(b)において、厚さ寸法T2,T3は、同じであっても相違していてもよい。
 ロータ10の製造時には、ロータハウジング11の構成部材である円筒部13、端板部14及び拡径部15をそれぞれ予め作製しておき、これら各部材を、ロウ付けや溶接等の接合手段により接合する。この場合、必要に応じて各部材どうしの接合箇所にシール材33によるシールを実施する。ここで、回転電機の仕様に応じて、円筒部13、端板部14及び拡径部15の材質や厚み寸法が適正な組み合わせパターンで設定され、その上でこれら各部材が互いに接合される。
 その後、ロータハウジング11に対して、接着剤等により磁石ユニット12を組み付ける。これにより、図1,図2に示すロータ10が完成する。ロータ10の完成後において、シャフト21の固定、不図示のステータとの一体化、閉鎖板25の固定等が行われる。なお、ロータ10において、端板部14の内周側、及び拡径部15の内周側には、ステータコイルのコイルエンド部分がそれぞれ収容されるようになっている。
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。
 ロータ10において、磁石ユニット12を保持する円筒部13と、シャフト21が固定される端板部14とは一体物として設けられるが、回転電機の性能要求や用途等が相違すると、円筒部13及び端板部14に求められる性能が異なるものとなる。この点、円筒部13と端板部14とをそれぞれ別体で形成し、互いに接合することで一体化するものとしたため、回転電機の性能要求や用途等に応じたバリエーション対応が容易となる。その結果、様々な要求に応じて好適に対応することが可能なロータハウジング11を実現できる。
 なお、円筒部13は磁石を保持する磁石保持部であり、端板部14はステータコイルのコイルエンド部分を収容するコイルエンド収容部である。そのため、上記構成は、ロータハウジング11において、磁石保持部とコイルエンド収容部とをそれぞれ別体で形成し、互いに接合することで一体化した構成に相当する。
 円筒部13及び端板部14を、円筒部13側の接合部分と端板部14側の接合部分とが径方向に互いに嵌め合わされた状態で一体化する構成とした。この場合、円筒部13及び端板部14について互いの同軸の精度が高められるものとなっている。
 円筒部13及び端板部14を、円筒部13側の接合部分を径方向外側、端板部14側の接合部分を径方向内側にした状態で互いに接合するようにした(図4,図5(a))。この場合、円筒部13の径方向内側に接合された端板部14の軸方向端面が、磁石ユニット12の軸方向端面に対向する。これにより、端板部14による磁石ユニット12の軸方向の位置決めが可能になっている。
 円筒部13及び端板部14を、円筒部13側の接合部分を径方向内側、端板部14側の接合部分を径方向外側にした状態で互いに接合したため(図5(b),(c))、ロータ10の回転時において磁石ユニット12を保持する円筒部13に遠心力がかかる場合に、その遠心力を、円筒部13の径方向外側の端板部14により好適に支えることができる。
 円筒部13及び端板部14を、円筒部13側の接合部分である縮径部16a(嵌合部)を径方向内側、端板部14側の接合部分である接合端部32(環状部)を径方向外側として嵌め合わせる構成とした(図5(b))。これにより、円筒部13及び端板部14の同軸の精度が一層高められるものとなっている。
 端板部14の接合部分を、径方向において円筒部13側の接合部分に重ねるとともに、円筒部13の内周側で磁石ユニット12にも重ねる構成とした(図5(c))。これにより、ロータ回転時において磁石ユニット12の遠心力が端板部14により好適に支えられるものとなっている。
 ロータハウジング11において、磁気回路として必要な円筒部13を磁性体とし、端板部14を軽量な非磁性体(例えばアルミニウム)とすることで、ロータ機能を確保しつつ軽量化を図ることができる。
 円筒部13において端板部14とは軸方向逆側の端部に、磁石配置領域よりも軸方向外側に延びる筒状延出部として拡径部15が設けられたロータハウジング11において、円筒部13と拡径部15とをそれぞれ別体で形成し、それらを互いに接合する構成とした。これにより、ロータハウジング11において、端板部14とは軸方向逆側の端部に取り付けられる部品の形態が適宜変更されても、その変更に好適に対応できるものとなっている。
 ロータハウジング11において円筒部13と端板部14とが個別に作製される構成では、これら円筒部13及び端板部14のそれぞれの厚さ寸法を容易に相違させることができる。ここで、円筒部13の厚さ寸法を端板部14の厚さ寸法よりも大きくすることで、回転電機において例えばロータ10の遠心力に対する強度要求が高い場合に好適に対応できる。また、ロータハウジング11において必要箇所だけで厚さ寸法を大きくしているため、ロータ10としての大型化や重量増加を抑制できるものとなっている。
 ロータハウジング11において、端板部14の厚さ寸法を円筒部13の厚さ寸法よりも大きくすることで、回転電機において例えばシャフト周りに生じる振動が大きい場合に好適に対応できる。
 (変形例)
 ・図8に示すように、ロータハウジング11の端板部14が、軸方向に直交する方向に延びる円板部31と、円板部31の径方向中心側に設けられたシャフト固定部41とを有し、これら円板部31とシャフト固定部41とが互いに接合されるものとなっていてもよい。シャフト固定部41には、ナット(ウェルドナット)よりなる複数の被締結部24が設けられているとよい。円板部31とシャフト固定部41とは、それぞれ別体で形成され、互いに接合されることで一体化されている。この場合、端板部14に固定されるシャフト21の形態が適宜変更されても、その変更に好適に対応できるものとなっている。
 ・ロータハウジング11の円筒部13、端板部14及び拡径部15において、各々の強度要求に応じて、個別に補強構造を有する構成であってもよい。例えば、ロータハウジング11の円筒部13、端板部14及び拡径部15において、径方向に屈曲された角部(屈曲部)を有する構成では、その角部での応力集中が懸念される。この点を考慮し、円筒部13、端板部14及び拡径部15における角部の強度を高めるための補強処置が施されているとよい。例えば、各部材の角部において、曲げなどによる加工硬化処理が適宜施されているとよい。
 また、円筒部13、端板部14及び拡径部15の角部に補強リブが設けられてもよい。具体的には、図9に示すように、端板部14において円板部31と接合端部32とを繋ぐようにしてリブ42が設けられているとよい。このリブ42は、例えば端板部14の鋳造成形時に形成されるとよい。
 ・上記各実施形態では、ロータ10として表面磁石型ロータを用いたが、これに代えて、埋込磁石型ロータを用いる構成としてもよい。埋込磁石型ロータの場合、ロータコアと、そのロータコアに埋設された複数の磁石とからなる磁石ユニットがロータハウジングに組み付けられる構成であるとよい。
 ・上記各実施形態では、回転電機をアウタロータ構造のものとしたが、これを変更し、インナロータ構造の回転電機であってもよい。インナロータ構造の回転電機では、ステータが径方向外側に設けられ、ロータが径方向内側に設けられる。かかる場合にも、上記同様、ロータハウジングにおいて、円筒部及び端板部が、円筒部側の接合部分を径方向内側、端板部側の接合部分を径方向外側にした状態で互いに接合されているとよい。又は、円筒部及び端板部が、円筒部側の接合部分を径方向外側、端板部側の接合部分を径方向内側にした状態で互いに接合されているとよい。
 この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
 上述の実施形態から抽出される技術思想を以下に記載する。
[構成1]
 回転電機のロータ(10)に用いられるロータハウジング(11)であって、
 円筒状をなし、前記ロータの磁石(12)を保持する円筒部(13)と、
 前記円筒部の軸方向端部に接合され、回転軸であるシャフト(21)が固定される端板部(14)と、を備え、
 前記円筒部と前記端板部とはそれぞれ別体で形成され、互いに接合されることで一体化されている、ロータハウジング。
[構成2]
 前記円筒部及び前記端板部は、前記円筒部側の接合部分と前記端板部側の接合部分とが径方向に互いに嵌め合わされた状態で一体化されている、構成1に記載のロータハウジング。
[構成3]
 前記円筒部の径方向内側に前記磁石が取り付けられるロータハウジングであって、
 前記円筒部及び前記端板部は、前記円筒部側の接合部分を径方向外側、前記端板部側の接合部分を径方向内側にした状態で互いに接合されている、構成2に記載のロータハウジング。
[構成4]
 前記円筒部の径方向内側に前記磁石が取り付けられるロータハウジングであって、
 前記円筒部及び前記端板部は、前記円筒部側の接合部分を径方向内側、前記端板部側の接合部分を径方向外側にした状態で互いに接合されている、構成2に記載のロータハウジング。
[構成5]
 前記端板部は、軸方向に延びる円環状の環状部(32)を有し、
 前記円筒部は、その軸方向端部に、径方向内側に張り出す張出部(16)を有し、その張出部の径方向端部に、軸方向に延びる円環状の嵌合部(16a)が設けられており、
 前記円筒部及び前記端板部は、前記円筒部側の接合部分である前記嵌合部を径方向内側、前記端板部側の接合部分である前記環状部を径方向外側として嵌め合わされている、構成4に記載のロータハウジング。
[構成6]
 前記円筒部及び前記端板部が、前記円筒部側の接合部分を径方向内側、前記端板部側の接合部分を径方向外側にして互いに重なった状態において、前記端板部が、径方向に前記円筒部と前記磁石とに重なるようになっている、構成4に記載のロータハウジング。
[構成7]
 前記円筒部は磁性材料により形成され、
 前記端板部は、非磁性でありかつ前記円筒部よりも軽量な材料により形成されている、構成1~6のいずれか1つに記載のロータハウジング。
[構成8]
 前記円筒部において前記端板部とは軸方向逆側の端部に、前記磁石の配置領域よりも軸方向外側に延びる筒状延出部(15)が設けられており、
 前記円筒部と前記筒状延出部とがそれぞれ別体で形成され、互いに接合されることで一体化されている、構成1~7のいずれか1つに記載のロータハウジング。
[構成9]
 前記端板部は、軸方向に直交する方向に延びる円板部(31)と、前記円板部の径方向中心側に設けられ、前記シャフトを固定するシャフト固定部(41)と、を有し、
 前記円板部と前記シャフト固定部とがそれぞれ別体で形成され、互いに接合されることで一体化されている、構成1~8のいずれか1つに記載のロータハウジング。
[構成10]
 前記円筒部と前記端板部とは厚さ寸法が互いに異なっており、前記円筒部の厚さ寸法が、前記端板部の厚さ寸法よりも大きい、構成1~9のいずれか1項に記載のロータハウジング。
[構成11]
 前記円筒部と前記端板部とは厚さ寸法が互いに異なっており、前記端板部の厚さ寸法が、前記円筒部の厚さ寸法よりも大きい、構成1~9のいずれか1項に記載のロータハウジング。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (11)

  1.  回転電機のロータ(10)に用いられるロータハウジング(11)であって、
     円筒状をなし、前記ロータの磁石(12)を保持する円筒部(13)と、
     前記円筒部の軸方向端部に接合され、回転軸であるシャフト(21)が固定される端板部(14)と、を備え、
     前記円筒部と前記端板部とはそれぞれ別体で形成され、互いに接合されることで一体化されている、ロータハウジング。
  2.  前記円筒部及び前記端板部は、前記円筒部側の接合部分と前記端板部側の接合部分とが径方向に互いに嵌め合わされた状態で一体化されている、請求項1に記載のロータハウジング。
  3.  前記円筒部の径方向内側に前記磁石が取り付けられるロータハウジングであって、
     前記円筒部及び前記端板部は、前記円筒部側の接合部分を径方向外側、前記端板部側の接合部分を径方向内側にした状態で互いに接合されている、請求項2に記載のロータハウジング。
  4.  前記円筒部の径方向内側に前記磁石が取り付けられるロータハウジングであって、
     前記円筒部及び前記端板部は、前記円筒部側の接合部分を径方向内側、前記端板部側の接合部分を径方向外側にした状態で互いに接合されている、請求項2に記載のロータハウジング。
  5.  前記端板部は、軸方向に延びる円環状の環状部(32)を有し、
     前記円筒部は、その軸方向端部に、径方向内側に張り出す張出部(16)を有し、その張出部の径方向端部に、軸方向に延びる円環状の嵌合部(16a)が設けられており、
     前記円筒部及び前記端板部は、前記円筒部側の接合部分である前記嵌合部を径方向内側、前記端板部側の接合部分である前記環状部を径方向外側として嵌め合わされている、請求項4に記載のロータハウジング。
  6.  前記円筒部及び前記端板部が、前記円筒部側の接合部分を径方向内側、前記端板部側の接合部分を径方向外側にして互いに重なった状態において、前記端板部が、径方向に前記円筒部と前記磁石とに重なるようになっている、請求項4に記載のロータハウジング。
  7.  前記円筒部は磁性材料により形成され、
     前記端板部は、非磁性でありかつ前記円筒部よりも軽量な材料により形成されている、請求項1に記載のロータハウジング。
  8.  前記円筒部において前記端板部とは軸方向逆側の端部に、前記磁石の配置領域よりも軸方向外側に延びる筒状延出部(15)が設けられており、
     前記円筒部と前記筒状延出部とがそれぞれ別体で形成され、互いに接合されることで一体化されている、請求項1に記載のロータハウジング。
  9.  前記端板部は、軸方向に直交する方向に延びる円板部(31)と、前記円板部の径方向中心側に設けられ、前記シャフトを固定するシャフト固定部(41)と、を有し、
     前記円板部と前記シャフト固定部とがそれぞれ別体で形成され、互いに接合されることで一体化されている、請求項1に記載のロータハウジング。
  10.  前記円筒部と前記端板部とは厚さ寸法が互いに異なっており、前記円筒部の厚さ寸法が、前記端板部の厚さ寸法よりも大きい、請求項1~9のいずれか1項に記載のロータハウジング。
  11.  前記円筒部と前記端板部とは厚さ寸法が互いに異なっており、前記端板部の厚さ寸法が、前記円筒部の厚さ寸法よりも大きい、請求項1~9のいずれか1項に記載のロータハウジング。
PCT/JP2023/015733 2022-05-17 2023-04-20 ロータハウジング WO2023223762A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022081042A JP2023169738A (ja) 2022-05-17 2022-05-17 ロータハウジング
JP2022-081042 2022-05-17

Publications (1)

Publication Number Publication Date
WO2023223762A1 true WO2023223762A1 (ja) 2023-11-23

Family

ID=88834975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015733 WO2023223762A1 (ja) 2022-05-17 2023-04-20 ロータハウジング

Country Status (2)

Country Link
JP (1) JP2023169738A (ja)
WO (1) WO2023223762A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06245413A (ja) * 1993-02-19 1994-09-02 Mitsubishi Electric Corp 電動機
JP2004245248A (ja) * 2003-02-10 2004-09-02 Nippon Densan Corp 軸受機構、モータおよびディスク駆動装置
JP2008054447A (ja) * 2006-08-25 2008-03-06 Minebea Co Ltd ディスク駆動用モータ及びそのロータの製造方法
JP2014039429A (ja) * 2012-08-20 2014-02-27 Nippon Densan Corp モータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06245413A (ja) * 1993-02-19 1994-09-02 Mitsubishi Electric Corp 電動機
JP2004245248A (ja) * 2003-02-10 2004-09-02 Nippon Densan Corp 軸受機構、モータおよびディスク駆動装置
JP2008054447A (ja) * 2006-08-25 2008-03-06 Minebea Co Ltd ディスク駆動用モータ及びそのロータの製造方法
JP2014039429A (ja) * 2012-08-20 2014-02-27 Nippon Densan Corp モータ

Also Published As

Publication number Publication date
JP2023169738A (ja) 2023-11-30

Similar Documents

Publication Publication Date Title
US9793768B2 (en) Rotor and rotary electric machine having the same
WO2014199516A1 (ja) 回転電機
JP5257038B2 (ja) 回転電機
US7629721B2 (en) Stator of motor
JP2010098853A (ja) ダブルステータ型モータ
WO2020230507A1 (ja) ロータ及びそれを備えたモータ
US6624545B1 (en) Electric rotating machine and manufacturing method thereof
JP2006254530A (ja) 電動機
WO2007145374A1 (ja) ステータ及びモータ
JP4730664B2 (ja) インホイールモータ
JP2007282331A (ja) ダブルステータ型モータ
US10418867B2 (en) Switched reluctance motor
GB2546177A (en) Rotor of rotating electrical machine, rotating electrical, machine and air conditioning device
WO2023223762A1 (ja) ロータハウジング
JP2000184643A (ja) ホイールインモータのアウターロータ
JP2020188674A (ja) 回転電機
JPH08116632A (ja) 回転電機の固定子
JP2018026935A (ja) ロータおよびモータ
JP2003299271A (ja) 回転電機のステータピース支持構造
US11063483B2 (en) Electric motor
WO2023162171A1 (ja) 回転体および回転電機並びに電動圧縮機、回転体の製造方法
JP2012016112A (ja) 車両用回転電機のエンドプレート
JP7047290B2 (ja) モータ
CN113491052B (zh) 定子和马达
US11909268B2 (en) Integrated rotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807374

Country of ref document: EP

Kind code of ref document: A1