WO2022134900A1 - 一种可任意裁剪的电致变色器件及应用 - Google Patents

一种可任意裁剪的电致变色器件及应用 Download PDF

Info

Publication number
WO2022134900A1
WO2022134900A1 PCT/CN2021/129541 CN2021129541W WO2022134900A1 WO 2022134900 A1 WO2022134900 A1 WO 2022134900A1 CN 2021129541 W CN2021129541 W CN 2021129541W WO 2022134900 A1 WO2022134900 A1 WO 2022134900A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
electrolyte
solvent
layer
acid
Prior art date
Application number
PCT/CN2021/129541
Other languages
English (en)
French (fr)
Inventor
杨诚
任汐
Original Assignee
清华大学深圳国际研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳国际研究生院 filed Critical 清华大学深圳国际研究生院
Publication of WO2022134900A1 publication Critical patent/WO2022134900A1/zh
Priority to US18/306,054 priority Critical patent/US20230258994A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/157Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F2001/164Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect the electrolyte is made of polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the invention belongs to the field of electrochromic materials and devices, and in particular relates to an electrochromic device that can be tailored arbitrarily and its application.
  • Electrochromism is the use of organic color-changing materials and/or inorganic color-changing materials under the action of alternating high and low or positive and negative external electric fields, by injecting or extracting charged ions or electrons, so as to be in a low transmittance colored state and high transmittance achromatic.
  • the special phenomenon of reversible changes between states is manifested in the principle of reversible changes in color and transparency in terms of appearance performance.
  • Electrochromic materials have the characteristics of controllable structure, rich colors, low cost, energy saving and low consumption. They are mainly used in buildings, automobiles, electronic instruments and other products. They can adjust and control energy, and have high efficiency, low consumption, green, and no pollution. , intelligent features, in line with the requirements of sustainable development strategy.
  • the present invention proposes an electrochromic device that can be arbitrarily tailored and its application.
  • An electrochromic device that can be cut arbitrarily, comprising a first transparent flexible substrate, a first transparent electronic conductive layer, an electrochromic layer, and an electrolytic device that can be automatically cured in the presence of air and/or moisture so as to have an automatic packaging function.
  • the electrolytic solution includes a component, a solvent and an electrolyte that can be cured in the presence of air and/or moisture, and in the electrolyte, the mass fraction of the component that can be cured in the presence of air and/or moisture is 20-70%, the total mass fraction of the electrolyte and the solvent is 30-80%, and in both the electrolyte and the solvent, the concentration of the electrolyte is 0.1-10.0 mol/L.
  • the electrolyte also includes ionically non-conductive inorganic nanoparticles or nanofibers, compared with the total mass of the air and/or moisture-curable component, the solvent and the electrolyte,
  • the mass percentage of the ionically non-conductive inorganic nanoparticles or nanofibers is greater than 0 and less than or equal to 10%.
  • the concentration of the electrolyte is 0.5-5.0 mol/L, preferably 1.0-2.5 mol/L.
  • the mass percentage of the ionically non-conductive inorganic nanoparticles or nanofibers is 0.5%-5%.
  • the air-curable component is an alkyd resin; wherein, preferably, the alkyd resin is a condensation product of polyol, acid anhydride and/or acrylic acid, polyunsaturated fatty acid, and has the formula (I).
  • the alkyd resin is a condensation product of polyol, acid anhydride and/or acrylic acid, polyunsaturated fatty acid, and has the formula (I). The structure shown:
  • the X group is derived from a dibasic acid or a dibasic acid anhydride, preferably phthalic anhydride, maleic anhydride, and terephthalic acid;
  • R 4 is H or derived from a polyunsaturated fatty acid having 6 to 30 carbons , preferably linoleic acid, conjugated linoleic acid, stearidonic acid ( ⁇ -linolenic acid), ⁇ -linolenic acid, stearidonic acid, arachidonic acid, eicosatrienoic acid, di- Decapentaenoic acid, docosahexaenoic acid;
  • R 5 is H, methyl, acrylate group, methacrylate group, or any one selected from R 4 .
  • the moisture-curable component is isocyanate, preferably toluene diisocyanate (TDI), isophorone diisocyanate (IPDI), diphenylmethane diisocyanate (MDI), dicyclohexylmethane diisocyanate Isocyanate (HMDI), hexamethylene diisocyanate (HDI), lysine diisocyanate (LDI), triphenylmethane triisocyanate, trimer of hexamethylene diisocyanate (HDI trimer) and polyphenyl polyisocyanate At least one of methylene polyisocyanates (PAPI); preferably polyphenyl polymethylene polyisocyanates (PAPI).
  • PAPI methylene polyisocyanates
  • the electrolyte is prepared by the following process: first, the electrolyte is dissolved in the solvent to prepare a solution of a predetermined concentration, and then the components that can be cured in the presence of air and/or moisture are added and mixed evenly; preferably , the thickness of the electrolyte is 10 nm-300 ⁇ m, more preferably 50 nm-150 ⁇ m.
  • the materials of the first transparent flexible substrate and the second transparent flexible substrate are independently polyethylene (PE), polyethylene terephthalate (PET), polyvinyl chloride (PVC), nylon (PA), Polyethyleneimine (PEI), Polyimide (PI), Polypropylene (PP), Polycarbonate (PC), Cyclic Olefin Polymer (COP), Cellulose Acetate, Polyurethane (PU) and At least one of polydimethylsiloxane (PDMS), preferably at least one of polyethylene terephthalate (PET), polycarbonate (PC), and polyvinyl chloride (PVC);
  • the thicknesses of the first transparent flexible substrate and the second transparent flexible substrate are each independently 0.05 nm-1.00 mm, preferably 0.100 nm-0.50 mm.
  • the materials of the first transparent electronically conductive layer and the second transparent electronically conductive layer are independently at least one of metal oxides, doped metal oxides, conductive transparent nitrides, metals and alloys , preferably at least one of an indium tin oxide layer (ITO), a fluorine-doped tin oxide layer (FTO) and a nano-silver wire layer; the thicknesses of the first transparent electronically conductive layer and the second transparent electronically conductive layer are respectively 10nm-1000nm independently, preferably 20nm-200nm.
  • the electrochromic layer is at least one of an inorganic electrochromic layer and an organic electrochromic layer
  • the material of the inorganic electrochromic layer is tungsten oxide (WO 3 ), niobium oxide ( Nb 2 O 5 ), titanium oxide (TiO 2 ), molybdenum oxide (MoO 3 ), copper oxide (CuO), chromium oxide (Cr 2 O 3 ), manganese oxide (MnO 2 ), vanadium oxide (V 2 O 5 ) , at least one of cobalt oxide (Co 3 O 4 ), nickel oxide (NiO), Prussian blue, transition metal sulfides and phthalocyanine compounds; preferably, the material of the organic electrochromic layer is viologen At least one of (quaternary ammonium salts of 1,1'-disubstituted-4,4'-bipyridine compounds), polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh) and their derivatives
  • WO 3
  • the ion storage layer adopts a material complementary to that of the electrochromic layer, preferably tungsten oxide (WO 3 ), titanium oxide (TiO 2 ), zinc oxide (ZnO), Prussian blue, viologen ( 1,1'-disubstituted-4,4'-dipyridine quaternary ammonium salt), polyaniline (PANI); the thickness of the ion storage layer is 1 nm-2000 nm, preferably 30 nm-1000 nm.
  • the electrolyte is H + , Li + , Na + , K + , Ag + , Ca 2+ , Zn 2+ , Mg 2+ , Ni 2+ , Mn 2+ , Al 3+ , Fe 3+ At least one cation and F - , Cl - , Br - , I - , BF 4 - , PF 6 - , AsF 6 - , SbF 6 - , BC 2 O 4 - , BFC 4 O 8 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , C 4 F 9 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 ) 2 SO 2 N - , (CF 3 CF 2 ) 2 SO 2 N
  • the ionically non-conductive inorganic nanoparticles or nanofibers are one of inorganic oxide nanoparticles, inorganic nitride nanoparticles or ore nanoparticles;
  • the inorganic oxide nanoparticles are silicon dioxide, oxide At least one of aluminum, titanium dioxide, zirconium oxide, magnesium oxide, yttrium oxide, zinc oxide, iron oxide and ceria;
  • the inorganic nitride nanoparticles are at least one of silicon nitride, titanium nitride and boron nitride One;
  • the ore nanoparticles are calcium carbonate, calcium sulfate, aluminum hydroxide, potassium titanate, barium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, white lead, At least one of mica, chlorite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth and silic
  • the solvent is at least one of water and organic solvent
  • the organic solvent is alcohol solvent, ether solvent, ketone solvent, ester solvent, amide solvent, sulfoxide or sulfone
  • the alcoholic solvent is preferably methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, cyclohexanol, benzyl alcohol, ethylene glycol, propylene glycol, glycerol
  • the beneficial effects of the present invention include: the present invention adds components that can be rapidly cured in the presence of air (oxygen-containing) and/or moisture (water-containing) into the electrolyte, and during the cutting process, the electrolyte exposed at the cutting place encounters When air and/or moisture is present, it will solidify, forming a closed structure to block air and/or moisture, preventing the loss and decomposition of the electrolyte, and realizing self-encapsulation after cutting, so as to achieve the effect of arbitrary cutting.
  • the electrochromic device of the present invention After cutting, a closed film is formed at the electrolyte interface exposed to the air, and the electrolyte inside is still liquid during normal operation, and its ionic conductivity is close to that of commercial electrolytes, which is higher than that of solid polymer electrolytes and solid polymer electrolytes.
  • the solid inorganic electrolyte is high. Therefore, the electrochromic device of the present invention has a faster response time than the electrochromic device prepared by using the solid electrolyte, and has better reliability than the electrochromic device prepared by using the liquid electrolyte. Greatly reduces the risk of fluid leakage.
  • uniform size devices can be produced on a large scale, and then a specific size can be cut out according to needs, which can solve the high cost problem that traditional electrochromic devices need to be packaged and all sizes of devices need to be customized.
  • FIG. 1 is a schematic structural diagram of an electrochromic device that can be arbitrarily tailored according to Embodiment 1 of the present invention.
  • FIG. 2 is a coloring diagram of the electrochromic device of Example 1 after cutting.
  • Example 3 is a fading diagram of the electrochromic device of Example 1 after cutting.
  • an electrochromic device that can be arbitrarily tailored includes a first transparent flexible substrate, a first transparent electronically conductive layer, and an electrochromic layer that are stacked in sequence, and can be cured automatically in the presence of air and/or moisture so as to Electrolyte with automatic encapsulation function, ion storage layer, second transparent electronically conductive layer and second transparent flexible substrate.
  • the electrolytic solution includes a component, a solvent and an electrolyte that can be cured in the presence of air and/or moisture, and in the electrolyte, the mass fraction of the component that can be cured in the presence of air and/or moisture is 20-70%, the total mass fraction of the electrolyte and the solvent is 30-80%, and in both the electrolyte and the solvent, the concentration of the electrolyte is 0.1-10.0 mol/L.
  • Cutting methods include, but are not limited to, scissors cutting, knife cutting, laser cutting, special film cutting machine cutting, etc.
  • the electrolyte also includes ionically non-conductive inorganic nanoparticles or nanofibers, compared with the total mass of the air and/or moisture-curable component, the solvent and the electrolyte,
  • the mass percentage of the ionically non-conductive inorganic nanoparticles or nanofibers is greater than 0 and less than or equal to 10%.
  • the added ionically non-conductive inorganic nanoparticles or nanofibers have the effect of preventing short circuits. In practical applications, other functional additives can also be added as required.
  • the concentration of the electrolyte is 0.5-5.0 mol/L, preferably 1.0-2.5 mol/L.
  • the mass percentage of the ionically non-conductive inorganic nanoparticles or nanofibers is 0.5%-5%.
  • the air-curable component is an alkyd resin; wherein, preferably, the alkyd resin is a condensation product of polyol, acid anhydride and/or acrylic acid, polyunsaturated fatty acid, and has the formula (I).
  • the alkyd resin is a condensation product of polyol, acid anhydride and/or acrylic acid, polyunsaturated fatty acid, and has the formula (I). The structure shown:
  • the X group is derived from a dibasic acid or a dibasic acid anhydride, preferably phthalic anhydride, maleic anhydride, and terephthalic acid;
  • R 4 is H or derived from a polyunsaturated fatty acid having 6 to 30 carbons , preferably linoleic acid, conjugated linoleic acid, stearidonic acid ( ⁇ -linolenic acid), ⁇ -linolenic acid, stearidonic acid, arachidonic acid, eicosatrienoic acid, di- Decapentaenoic acid, docosahexaenoic acid;
  • R 5 is H, methyl, acrylate group, methacrylate group, or any one selected from R 4 .
  • Alkyd resin is the condensation product of polyhydric alcohol, acid anhydride and/or acrylic acid
  • polyunsaturated fatty acid specifically refers to: alkyd resin is the condensation product of polyhydric alcohol, acrylic acid and polyunsaturated fatty acid, or polyhydric alcohol, acid anhydride, The condensation product of three polyunsaturated fatty acids; or the condensation product of polyol, acid anhydride, acrylic acid and polyunsaturated fatty acid.
  • X group derived from dibasic acid or dibasic acid anhydride means that X group is the residue of dibasic acid or dibasic acid anhydride, and has the main structural fragment of dibasic acid or dibasic acid anhydride.
  • the alkyd resin is a dry alkyd resin, which can be cross-linked and rapidly cured in the presence of air (that is, containing oxygen), and can be a water-soluble alkyd resin or an oil-soluble alkyd resin.
  • the component curable in case of moisture is isocyanate, preferably toluene diisocyanate (TDI), isophorone diisocyanate (IPDI), diphenylmethane diisocyanate (MDI) ), dicyclohexylmethane diisocyanate (HMDI), hexamethylene diisocyanate (HDI), lysine diisocyanate (LDI), triphenylmethane triisocyanate, trimer of hexamethylene diisocyanate (HDI) trimer) and at least one of polyphenyl polymethylene polyisocyanate (PAPI); preferably polyphenyl polymethylene polyisocyanate (PAPI).
  • TDI toluene diisocyanate
  • IPDI isophorone diisocyanate
  • MDI diphenylmethane diisocyanate
  • HMDI dicyclohexylmethane diisocyanate
  • HDI hexam
  • the electrolyte is prepared by the following process: first, the electrolyte is dissolved in the solvent to prepare a solution of a predetermined concentration, and then the components that can be cured in the presence of air and/or moisture are added and mixed evenly; preferably , the thickness of the electrolyte is 10 nm-300 ⁇ m, more preferably 50 nm-150 ⁇ m.
  • the materials of the first transparent flexible substrate and the second transparent flexible substrate are independently polyethylene (PE), polyethylene terephthalate (PET), polyvinyl chloride (PVC), nylon (PA), Polyethyleneimine (PEI), Polyimide (PI), Polypropylene (PP), Polycarbonate (PC), Cyclic Olefin Polymer (COP), Cellulose Acetate, Polyurethane (PU) and At least one of polydimethylsiloxane (PDMS), preferably at least one of polyethylene terephthalate (PET), polycarbonate (PC), and polyvinyl chloride (PVC);
  • the thicknesses of the first transparent flexible substrate and the second transparent flexible substrate are each independently 0.05 nm-1.00 mm, preferably 0.100 nm-0.50 mm.
  • the materials of the first transparent electronically conductive layer and the second transparent electronically conductive layer are independently at least one of metal oxides, doped metal oxides, conductive transparent nitrides, metals and alloys , preferably at least one of an indium tin oxide layer (ITO), a fluorine-doped tin oxide layer (FTO) and a nano-silver wire layer; the thicknesses of the first transparent electronically conductive layer and the second transparent electronically conductive layer are respectively 10nm-1000nm independently, preferably 20nm-200nm.
  • the electrochromic layer is at least one of an inorganic electrochromic layer and an organic electrochromic layer
  • the material of the inorganic electrochromic layer is tungsten oxide (WO 3 ), niobium oxide ( Nb 2 O 5 ), titanium oxide (TiO 2 ), molybdenum oxide (MoO 3 ), copper oxide (CuO), chromium oxide (Cr 2 O 3 ), manganese oxide (MnO 2 ), vanadium oxide (V 2 O 5 ) , at least one of cobalt oxide (Co 3 O 4 ), nickel oxide (NiO), Prussian blue, transition metal sulfides and phthalocyanine compounds; preferably, the material of the organic electrochromic layer is viologen At least one of (quaternary ammonium salts of 1,1'-disubstituted-4,4'-bipyridine compounds), polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh) and their derivatives
  • WO 3
  • the ion storage layer adopts a complementary material that is discolored with the electrochromic layer.
  • the electrochromic layer is an anode color changing material
  • the ion storage layer can be a cathode color changing material, and the ion storage layer can also directly use a transparent material. High light rate, capacity-providing material.
  • the material of the ion storage layer is preferably tungsten oxide (WO 3 ), titanium oxide (TiO 2 ), zinc oxide (ZnO), Prussian blue, viologen (1,1'-disubstituted-4,4'-bipyridine)
  • the quaternary ammonium salt of the compound is 1 nm-2000 nm, preferably 30 nm-1000 nm.
  • the electrolyte is H + , Li + , Na + , K + , Ag + , Ca 2+ , Zn 2+ , Mg 2+ , Ni 2+ , Mn 2+ , Al 3+ , Fe 3+ At least one cation with F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , BC 2 O 4 ⁇ , BFC 4 O 8 ⁇ , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , C 4 F 9 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 ) 2 SO 2 N - , (CF 3 CF 2 ) 2 SO 2 N
  • the ionically non-conductive inorganic nanoparticles or nanofibers are one of inorganic oxide nanoparticles, inorganic nitride nanoparticles or ore nanoparticles;
  • the inorganic oxide nanoparticles are silicon dioxide, oxide At least one of aluminum, titanium dioxide, zirconium oxide, magnesium oxide, yttrium oxide, zinc oxide, iron oxide and ceria;
  • the inorganic nitride nanoparticles are at least one of silicon nitride, titanium nitride and boron nitride One;
  • the ore nanoparticles are calcium carbonate, calcium sulfate, aluminum hydroxide, potassium titanate, barium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, white lead, At least one of mica, chlorite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth and silic
  • the solvent is at least one of water and organic solvent
  • the organic solvent is alcohol solvent, ether solvent, ketone solvent, ester solvent, amide solvent, sulfoxide or sulfone
  • the alcoholic solvent is preferably methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, cyclohexanol, benzyl alcohol, ethylene glycol, propylene glycol, glycerol
  • the electrochromic device of the present invention can be cut arbitrarily, a uniform size device can be produced on a large scale, and then a specific size can be cut out according to needs.
  • the electrochromic device of the present invention can be used in the display screen of electronic terminal equipment.
  • electronic terminal equipment includes but is not limited to mobile phones, tablet computers, notebook computers; the electrochromic device of the present invention can also be applied to intelligent green building intelligent window films, and the optical properties of the electrochromic device can be improved under the action of an external low-voltage electric field.
  • the electrochromic device of the present invention can also be applied to automotive color-changing glass, and applied to automotive vehicles.
  • the color-changing car window can not only reduce the irradiation intensity of sunlight to the user in the car, but also protect the privacy of the user; the electrochromic device of the present invention can also be applied to the car.
  • An electrochromic device that can be tailored arbitrarily is prepared by the following method:
  • the materials of the first transparent flexible substrate and the second transparent flexible substrate are PET with a thickness of 175 ⁇ m, and the materials of the first transparent electronic conductive layer and the second transparent conductive layer are ITO, the thickness of the ITO layer is 100 nm, and the square resistance is 10 ⁇ / ⁇ .
  • the electrochromic layer is electroplated Prussian Blue (PB), and its preparation process is as follows: the whole formed by the first transparent flexible substrate and the first transparent conductive layer (that is, the first PET-ITO substrate (the PET-ITO substrate can be The ITO layer is magnetron sputtering on the PET substrate or the PET-ITO substrate can be directly purchased)) and ultrasonically cleaned with acetone, deionized water and ethanol for 5 minutes for standby. A plating solution was prepared, the plating solution included 0.01mol/L K 3 [Fe(CN) 6 ], 0.01 mol/L FeCl 3 and 0.05 mol/L KCl, and the pH was adjusted to 1.2 with perchloric acid.
  • PB Prussian Blue
  • the first PET-ITO substrate As the working electrode, a platinum sheet of 1 square centimeter as the counter electrode, and Ag/AgCl as the reference electrode, a cathodic current density of 10 ⁇ A/cm 2 was applied at room temperature, and electroplating was performed for 10 minutes, so that the first PET was electroplated for 10 minutes.
  • - PB is formed on the ITO layer of the ITO substrate as an electrochromic layer.
  • the ion storage layer is made of electroplated WO 3 , and the preparation process is as follows: the whole formed by the second transparent flexible substrate and the second transparent conductive layer (ie, the second PET-ITO substrate) is ultrasonically cleaned with acetone, deionized water and ethanol respectively for 5 minutes to spare.
  • Configure the plating solution add 0.206g sodium tungstate/0.13mL hydrogen peroxide to 50ml deionized water, add perchloric acid to adjust the pH to 1.2, use the second PET-ITO substrate as the working electrode, and use a 1 square centimeter platinum sheet
  • Ag/AgCl was used as the reference electrode, and a cathodic current density of -0.7 V was applied at room temperature for 300 s, and WO 3 was electroplated on the ITO layer of the PET-ITO substrate as an ion storage layer.
  • the oily alkyd resin was purchased from Jining Tainuo Chemical Co., Ltd., that is, in formula (I), X is derived from phthalic acid, R 4 is derived from ⁇ -linolenic acid, and R 5 is an acrylate group.
  • the conductivity of the electrolyte was measured to be 7.6mS ⁇ cm -1 according to the DDS-11A of Shanghai Lei Magnetic Desktop Digital Conductivity Meter Laboratory.
  • the prepared electrolyte is scraped on the ion storage layer or on the electrochromic layer or on both the ion storage layer and the electrochromic layer, and is attached to form the structure shown in Figure 1, It includes a first transparent flexible substrate 1, a first transparent electronic conductive layer 2, an electrochromic layer 3, an electrolyte 4 that can be automatically cured in the presence of air and/or moisture and thus has an automatic encapsulation function, an ion storage layer 5,
  • the second transparent electronic conductive layer 6 and the second transparent flexible substrate 7 can be automatically packaged to obtain an electrochromic device after standing for 30 minutes. Testing, as shown in Figures 2 and 3, the electrochromic device cut out in this embodiment can be changed from transparent to dark blue, and the light modulation range is 76% at most.
  • the electrochromic device has a coloring time of 7s and a fading time of 20s, which can be cycled many times, and the electrochromic device can be bent for many times without attenuation.
  • An electrochromic device that can be tailored arbitrarily is prepared by the following method:
  • the material of the first transparent flexible substrate and the second transparent flexible substrate is PET with a thickness of 175 ⁇ m
  • the material of the first transparent electronic conductive layer and the second transparent conductive layer is ITO
  • the thickness of the ITO layer is 100 nm
  • the square resistance is 10 ⁇ / ⁇ .
  • the electrochromic layer is electroplated PANI (polyaniline), and its preparation process is as follows: ultrasonically clean the PET-ITO substrate with acetone, deionized water and ethanol for 5 minutes respectively for use. A plating solution was prepared including 100 mM aniline and 1 M H2SO4 .
  • the PET-ITO substrate was used as the working electrode, the platinum sheet of 1 cm2 was used as the counter electrode, and the Ag/AgCl was used as the reference electrode.
  • +2.0v was applied, electroplating for 45s, and the film was gently rinsed with high-purity water and allowed to dry.
  • PANI was formed as an electrochromic layer on the ITO layer of the PET-ITO substrate.
  • the material of the ion storage layer is ITO.
  • the preparation process of the electrolyte with self-encapsulation function is: dissolving LiClO 4 in water to make a 0.4mol/L solution, and then adding water-based alkyd resin (in the electrolyte, the mass fraction of the water-based alkyd resin is 50 mol/L) into the solution. %), mixed evenly to obtain an electrolyte solution with self-encapsulation function, wherein, the water-based alkyd resin was purchased from Jining Tainuo Chemical Co., Ltd., that is, in formula (I), X is derived from phthalic acid, and R is acrylate. The base, R 4 is derived from soybean oleic acid.
  • the conductivity of the electrolyte in this example was measured to be 4.3 mS ⁇ cm -1 according to the DDS-11A of the Shanghai Lei Magnetic Desktop Digital Conductivity Meter Laboratory.
  • the device shown in FIG. 1 is formed according to the method of Example 1, and the packaging is automatically completed after standing for 15 minutes, and then cutting is carried out, and one part of the device is tested.
  • the electrochromic device cut out in this embodiment can change from dark green to light yellow, the maximum light modulation range is 45%, the coloring time of the electrochromic device is 6s, the fading time is 10s, and it can be cycled multiple times.
  • An electrochromic device that can be tailored arbitrarily is prepared by the following method:
  • the materials of the first transparent flexible substrate and the second transparent flexible substrate are PET, with a thickness of 175 ⁇ m, and the materials of the first transparent electronic conductive layer and the second transparent conductive layer are ITO, the thickness of the ITO layer is 100 nm, and the square resistance is 10 ⁇ / ⁇ .
  • the electrochromic layer is made of WO 3 by magnetron sputtering.
  • the preparation process is as follows: put the PET-ITO substrate into the loading chamber of the magnetron sputtering equipment, use ion bombardment on the transparent film substrate to eliminate static electricity, and then vacuumize after sealing.
  • the PET-ITO substrate was transported to the sputtering chamber, and deposited by magnetron sputtering to obtain a WO 3 layer as an electronic discoloration layer;
  • the target used in the magnetron sputtering equipment was a tungsten target, and the magnetron sputtering DC/RF power is used for sputtering, the sputtering voltage is 160-170V, the magnetic field strength is 1100G-1450G, the process gas is a mixed gas of argon and oxygen, and the volume ratio of argon to oxygen in the mixed gas is 2.5:1.2.
  • the material of the ion storage layer is ITO.
  • the preparation process of the electrolyte with self-encapsulation function is: dissolve LiClO 4 in water to make a 0.4mol/L solution, and then add water-based alkyd resin to the solution (in the electrolyte, the mass fraction of the water-based alkyd resin is 50%), mixed evenly to obtain the electrolyte with self-encapsulation function, wherein, the water-based alkyd resin was purchased from Jining Tainuo Chemical Co., Ltd., that is, in formula (I), X is derived from phthalic acid, and R is acrylic acid The ester group, R 4 is derived from soy oleic acid.
  • the conductivity of the electrolyte was measured to be 4.3 mS ⁇ cm -1 according to the DDS-11A of Shanghai Lei Magnetic Desktop Digital Conductivity Meter Laboratory.
  • the device shown in FIG. 1 is formed according to the method of Example 1, and the packaging is automatically completed after standing for 15 minutes, and then cutting is carried out, and one part of the device is tested.
  • the electrochromic device cut out in this embodiment can be changed from transparent to dark blue, the maximum light modulation range is 65%, the coloring time of the electrochromic device is 4s, the fading time is 7s, and it can be cycled many times.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

一种可任意裁剪的电致变色器件及应用,电致变色器件包括依次叠加的第一透明柔性基底(1)、第一透明电子导电层(2)、电致变色层(3)、遇空气和/或湿气可自动固化从而具有自动封装功能的电解液(4)、离子存储层(5)、第二透明电子导电层(6)和第二透明柔性基底(7)。相对于采用固态电解质制备的电致变色器件有更快的响应时间,相对于采用液态电解质制备的电致变色器件有更好的可靠性,大大降低了漏液风险,且可任意裁剪而能应用于不同的场合。

Description

一种可任意裁剪的电致变色器件及应用 技术领域
本发明属于电致变色材料与器件领域,特别是涉及一种可任意裁剪的电致变色器件及应用。
背景技术
电致变色是利用有机变色材料和/或无机变色材料在交替的高低或正负外电场作用下,通过注入或抽取电荷离子或电子,从而在低透射率的着色状态和高透射率的消色状态之间产生可逆变化的特殊现象,在外观性能上则表现为颜色及透明度的可逆变化原理。电致变色材料具有结构可控、色彩丰富、成本低廉、节能低耗的特点,主要应用在建筑、汽车、电子仪器等产品上,可调节和控制能量,具有高效、低耗、绿色、无污染、智能的特点,符合可持续发展战略的要求。
现有初步得到应用的电致变色器件大部分仍局限于传统的刚性器件,且生产成本居高不下,随着人们需求的不断变化,传统的刚性器件不能再满足人们的需求,人们对柔性器件有了更大的需求,这就使柔性电致变色薄膜、柔性器件以及柔性可穿戴设备等方面的市场越来越大。
但现阶段的电致变色器件由于需要封装,不同的尺寸均需定制,大大增加了电致变色膜器件的制备成本,并且由于应用场景差异较大,定制成本不可小觑,且电致变色器件的响应时间较长,限制了其商业化发展。
发明内容
为了弥补上述现有技术的不足,本发明提出一种可任意裁剪的电致变色器件及应用。
本发明的技术问题通过以下的技术方案予以解决:
一种可任意裁剪的电致变色器件,包括依次叠加的第一透明柔性基底、第一透明电子导电层、电致变色层、遇空气和/或湿气可自动固化从而具有自动封装功能的电解液、离子存储层、第二透明电子导电层和第二透明柔性基底。
进一步地,所述电解液包括遇空气和/或湿气可固化的组分、溶剂和电解质,在所述电解液中,所述遇空气和/或湿气可固化的组分的质量分数为20-70%,所 述电解质和所述溶剂的总质量分数为30-80%,且在所述电解质和所述溶剂两者中,所述电解质的浓度为0.1-10.0mol/L。
进一步地,所述电解液还包括离子不导电的无机纳米颗粒或纳米纤维,与所述遇空气和/或湿气可固化的组分、所述溶剂和所述电解质三者总质量相比,所述离子不导电的无机纳米颗粒或纳米纤维的质量百分数大于0且小于等于10%。
进一步地,所述电解质的浓度为0.5-5.0mol/L,优选1.0-2.5mol/L。
进一步地,所述离子不导电的无机纳米颗粒或纳米纤维的质量百分数为0.5%-5%。
进一步地,所述遇空气可固化的组分为醇酸树脂;其中,优选,所述醇酸树脂是多元醇、酸酐和/或丙烯酸、多不饱和脂肪酸的缩合产物,具有式(Ⅰ)所示的结构:
Figure PCTCN2021129541-appb-000001
式中X基团来源于二元酸或二元酸酐,优选邻苯二甲酸酐、顺丁烯二酸酐、对苯二甲酸;R 4为H或来源于6~30个碳的多不饱和脂肪酸,优选亚油酸、共轭亚油酸、十八碳三烯酸(α-亚麻酸)、γ-亚麻酸、十八碳四烯酸、花生四烯酸、二十碳三烯酸、二十碳五烯酸、二十二碳六烯酸;R 5为H、甲基、丙烯酸酯基、甲基丙烯酸酯基、或者选自R 4中任意一种。
进一步地,所述遇湿气可固化的组分为异氰酸酯,优选为甲苯二异氰酸酯(TDI)、异佛尔酮二异氰酸酯(IPDI)、二苯基甲烷二异氰酸酯(MDI)、二环己基甲烷二异氰酸酯(HMDI)、六亚甲基二异氰酸酯(HDI)、赖氨酸二异氰酸酯(LDI)、三苯基甲烷三异氰酸酯、六亚甲基二异氰酸酯的三聚体(HDI trimer)和多苯基多亚甲基多异氰酸酯(PAPI)中的至少一种;优选多苯基多亚甲基多异氰酸酯(PAPI)。
进一步地,所述电解液采用如下过程配制:先将所述电解质溶于所述溶剂中配成预定浓度的溶液,然后加入所述遇空气和/或湿气可固化的组分混合均匀; 优选,所述电解液的厚度为10nm-300μm,更优选为50nm-150μm。
进一步地,所述第一透明柔性基底和所述第二透明柔性基底的材料各自独立地为聚乙烯(PE)、聚对苯二甲酸乙二酯(PET)、聚氯乙烯(PVC)、尼龙(PA)、聚乙烯亚胺(PEI)、聚酰亚胺(PI)、聚丙烯(PP)、聚碳酸酯(PC)、环烯烃聚合物(COP)、醋酸纤维素、聚氨酯(PU)和聚二甲基硅氧烷(PDMS)中的至少一种,优选为聚对苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚氯乙烯(PVC)中的至少一种;所述第一透明柔性基底和所述第二透明柔性基底的厚度各自独立地为0.05nm-1.00mm,优选为0.100nm—0.50mm。
进一步地,所述第一透明电子导电层和所述第二透明电子导电层的材料各自独立地为金属氧化物、掺杂金属氧化物、导电的透明氮化物、金属和合金中的至少一种,优选为氧化铟锡层(ITO)、掺氟氧化锡层(FTO)和纳米银线层中的至少一种;所述第一透明电子导电层和所述第二透明电子导电层的厚度各自独立地为10nm-1000nm,优选为20nm-200nm。
进一步地,所述电致变色层为无机电致变色层和有机电致变色层中的至少一种,优选地,所述无机电致变色层的材料为氧化钨(WO 3)、氧化铌(Nb 2O 5)、氧化钛(TiO 2)、氧化钼(MoO 3)、氧化铜(CuO)、氧化铬(Cr 2O 3)、氧化锰(MnO 2)、氧化钒(V 2O 5)、氧化钴(Co 3O 4)、氧化镍(NiO)、普鲁士蓝、过渡金属硫化物及酞菁类化合物中的至少一种;优选地,所述有机电致变色层的材料为紫罗精(1,1’-双取代-4,4’-联吡啶类化合物的季胺盐)、聚苯胺(PANI)、聚吡咯(PPy)、聚噻吩(PTh)以及它们的衍生物中的至少一种;优选地,所述电致变色层的材料为氧化钨(WO 3)、氧化钛(TiO 2)、氧化锰氧化钒(V 2O 5)、普鲁士蓝、紫罗精(1,1’-双取代-4,4’-联吡啶类化合物的季胺盐)、聚苯胺(PANI)、聚吡咯(PPy)、聚噻吩(PTh)以及它们的衍生物中的至少一种;所述电致变色层的厚度为10nm-2000nm,优选为30nm-1000nm。
进一步地,所述离子储存层采用与所述电致变色层变色的互补材料,优选为氧化钨(WO 3)、氧化钛(TiO 2)、氧化锌(ZnO)、普鲁士蓝、紫罗精(1,1’-双取代-4,4’-联吡啶类化合物的季胺盐)、聚苯胺(PANI);所述离子储存层的厚度为1nm-2000nm,优选为30nm-1000nm。
进一步地,所述电解质是H +、Li +、Na +、K +、Ag +、Ca 2+、Zn 2+、Mg 2+、Ni 2+、Mn 2+、Al 3+、Fe 3+中至少一种阳离子与F 、Cl 、Br 、I 、BF 4 、PF 6 、AsF 6 、 SbF 6 、BC 2O 4 、BFC 4O 8 、(CF 3) 2PF 4 、(CF 3) 3PF 3 、(CF 3) 4PF 2 、(CF 3) 5PF 、(CF 3) 6P 、CF 3SO 3 、C 4F 9SO 3 、CF 3CF 2SO 3 、(CF 3) 2SO 2N 、(CF 3CF 2) 2SO 2N 、F 2SO 2N 、CF 3CF 2(CF 3) 2CO 、CF 3CO 2 、CH 3CO 2 、(CF 3SO 2) 2CH 、CF 3(CF 2) 7SO 3 、ClO 4 、NO 3 、SO 4 2-、SCN 、PO 4 3-中至少一种阴离子组成的电解质;所述的电解质的阳离子优选为Li +、Na +、K +、Zn 2+、Al 3+,阴离子优选Cl 、BF 4 、PF 6 、AsF 6 、BC 2O 4 、CF 3SO 3 、(CF 3) 2SO 2N 、ClO 4 、NO 3 、SO 4 2-;所述电解质优选为KCl、LiClO 4、HCl、H 2SO 4中的至少一种。
进一步地,所述离子不导电的无机纳米颗粒或纳米纤维,是无机氧化物纳米颗粒、无机氮化物纳米颗粒或矿石纳米颗粒中的一种;所述无机氧化物纳米颗粒为二氧化硅、氧化铝、二氧化钛、氧化锆、氧化镁、氧化钇、氧化锌、氧化铁和二氧化铈中的至少一种;所述无机氮化物纳米颗粒为氮化硅、氮化钛和氮化硼中的至少一种;所述矿石纳米颗粒为碳酸钙、硫酸钙、氢氧化铝、钛酸钾、钛酸钡、滑石、高岭土粘土、高岭石、多水高岭土、叶腊石、蒙脱石、白铅矿、云母、镁绿泥石、膨润土、石棉、沸石、硅酸钙、硅酸镁、硅藻土和硅砂中的至少一种。
进一步地,所述溶剂是水和有机溶剂中的至少一种,优选地,所述有机溶剂是醇类溶剂、醚类溶剂、酮类溶剂、酯类溶剂、酰胺类溶剂、亚砜或砜类溶剂中的至少一种;所述醇类溶剂优选为甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、环己醇、苯甲醇、乙二醇、丙二醇、丙三醇中的至少一种;所述醚类溶剂优选为乙醚、丙醚、丁醚、四氢呋喃、吡喃、1,3-二氧五环(DOL)、1,4-二氧六环、乙二醇单甲醚、乙二醇单乙醚、乙二醇甲乙醚、乙二醇二乙醚中的至少一种;所述酮类溶剂优选为丙酮、丁酮、甲基异丁基酮、环己酮、苯乙酮、苯丙酮、乙酰丙酮中的至少一种;所述酯类溶剂优选为乙酸乙酯、乙酸丁酯、乙酸苯酯、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸亚乙烯酯(VC)中的至少一种;所述酰胺类溶剂优选为N,N-二甲基甲酰胺(DMF),N,N-二甲基乙酰胺(DMAc),N-甲基吡咯烷酮(NMP)中的至少一种;所述亚砜或砜类溶剂优选为二甲基亚砜(DMSO);进一步地,所述的溶剂优选为水、四氢呋喃、1,3-二氧五环(DOL)、1,4-二氧六环、乙二醇单甲醚、乙二醇单乙醚、乙二醇甲乙醚、乙二醇二乙醚、乙酸乙酯、乙酸丁酯、乙酸苯酯、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸亚乙烯酯(VC)、氟代碳酸乙烯酯(FEC)中的至少一种。
一种所述的可任意裁剪的电致变色器件在电子终端设备的显示屏、智能绿色建筑智能窗、汽车变色玻璃或自动防眩目后视镜中的应用。
本发明的有益效果包括:本发明将遇空气(含氧气)和/或湿气(含水)可快速固化的组分加入到电解液中,在裁剪过程中,裁切处裸露的电解液遇到空气和/或湿气时会发生固化,形成密闭结构阻隔空气和/或湿气,防止电解液的流失和分解,实现裁剪后的自我封装,从而达到任意裁剪的效果。裁剪后,暴露在空气中的电解液界面处形成密闭的膜,内部的电解液在正常工作时仍为液态,其离子电导率接近于商业化电解液的离子电导率,比固态聚合物电解质和固态无机电解质高,因此,本发明的电致变色器件相对于采用固态电解质制备的电致变色器件有更快的响应时间,相对于采用液态电解质制备的电致变色器件有更好的可靠性,大大降低了漏液风险。此外,通过本发明的方案,可大规模生产统一尺寸器件,再根据需要裁剪出特定的尺寸,可解决传统电致变色器件由于需要封装,所有尺寸的器件都需要定制的高成本问题。
附图说明
图1是本发明的实施例1的可任意裁剪的电致变色器件的结构示意图。
图2为实施例1的电致变色器件裁剪后的着色图。
图3为实施例1的电致变色器件裁剪后的褪色图。
具体实施方式
下面对照附图并结合优选的实施方式对本发明作进一步说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在一种实施例中,一种可任意裁剪的电致变色器件包括依次叠加的第一透明柔性基底、第一透明电子导电层、电致变色层、遇空气和/或湿气可自动固化从而具有自动封装功能的电解液、离子存储层、第二透明电子导电层和第二透明柔性基底。
进一步地,所述电解液包括遇空气和/或湿气可固化的组分、溶剂和电解质,在所述电解液中,所述遇空气和/或湿气可固化的组分的质量分数为20-70%,所述电解质和所述溶剂的总质量分数为30-80%,且在所述电解质和所述溶剂两者中,所述电解质的浓度为0.1—10.0mol/L。
将遇空气和/或湿气可快速固化的组分加入到电解液中,在裁剪过程中,裁切处裸露的电解液遇到空气和/或湿气时会发生固化,形成密闭结构阻隔空气和/或湿气,防止电解液的流失和分解,实现裁剪后的自我封装,从而达到任意裁剪的效果。裁剪方式包括但不限于,剪刀裁剪、裁刀裁剪、激光切割、专用的膜材裁切机裁剪等。
进一步地,所述电解液还包括离子不导电的无机纳米颗粒或纳米纤维,与所述遇空气和/或湿气可固化的组分、所述溶剂和所述电解质三者总质量相比,所述离子不导电的无机纳米颗粒或纳米纤维的质量百分数大于0且小于等于10%。
添加的离子不导电的无机纳米颗粒或纳米纤维具有防止短路的作用,在实际应用中,还可以根据需要,添加其他功能性添加剂。
进一步地,所述电解质的浓度为0.5-5.0mol/L,优选1.0-2.5mol/L。
进一步地,所述离子不导电的无机纳米颗粒或纳米纤维的质量百分数为0.5%-5%。
进一步地,所述遇空气可固化的组分为醇酸树脂;其中,优选,所述醇酸树脂是多元醇、酸酐和/或丙烯酸、多不饱和脂肪酸的缩合产物,具有式(Ⅰ)所示的结构:
Figure PCTCN2021129541-appb-000002
式中X基团来源于二元酸或二元酸酐,优选邻苯二甲酸酐、顺丁烯二酸酐、对苯二甲酸;R 4为H或来源于6~30个碳的多不饱和脂肪酸,优选亚油酸、共轭亚油酸、十八碳三烯酸(α-亚麻酸)、γ-亚麻酸、十八碳四烯酸、花生四烯酸、二十碳三烯酸、二十碳五烯酸、二十二碳六烯酸;R 5为H、甲基、丙烯酸酯基、甲基丙烯酸酯基、或者选自R 4中任意一种。
醇酸树脂是多元醇、酸酐和/或丙烯酸、多不饱和脂肪酸的缩合产物具体是指:醇酸树脂是多元醇、丙烯酸和多不饱和脂肪酸三者的缩合产物,或是多元醇、 酸酐、多不饱和脂肪酸三者的缩合产物;或是多元醇、酸酐、丙烯酸和多不饱和脂肪酸四者的缩合产物。
X基团来源于二元酸或二元酸酐是指X基团是二元酸或二元酸酐的残基,具有二元酸或二元酸酐的主要结构片段。该醇酸树脂为干性醇酸树脂,在遇空气(即含氧气)可发生交联而快速固化,可以是水溶性的醇酸树脂或者油溶性的醇酸树脂。
进一步地,所述遇湿气(即含H 2O)可固化的组分为异氰酸酯,优选为甲苯二异氰酸酯(TDI)、异佛尔酮二异氰酸酯(IPDI)、二苯基甲烷二异氰酸酯(MDI)、二环己基甲烷二异氰酸酯(HMDI)、六亚甲基二异氰酸酯(HDI)、赖氨酸二异氰酸酯(LDI)、三苯基甲烷三异氰酸酯、六亚甲基二异氰酸酯的三聚体(HDI trimer)和多苯基多亚甲基多异氰酸酯(PAPI)中的至少一种;优选多苯基多亚甲基多异氰酸酯(PAPI)。
进一步地,所述电解液采用如下过程配制:先将所述电解质溶于所述溶剂中配成预定浓度的溶液,然后加入所述遇空气和/或湿气可固化的组分混合均匀;优选,所述电解液的厚度为10nm-300μm,更优选为50nm-150μm。
进一步地,所述第一透明柔性基底和所述第二透明柔性基底的材料各自独立地为聚乙烯(PE)、聚对苯二甲酸乙二酯(PET)、聚氯乙烯(PVC)、尼龙(PA)、聚乙烯亚胺(PEI)、聚酰亚胺(PI)、聚丙烯(PP)、聚碳酸酯(PC)、环烯烃聚合物(COP)、醋酸纤维素、聚氨酯(PU)和聚二甲基硅氧烷(PDMS)中的至少一种,优选为聚对苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚氯乙烯(PVC)中的至少一种;所述第一透明柔性基底和所述第二透明柔性基底的厚度各自独立地为0.05nm-1.00mm,优选为0.100nm—0.50mm。
进一步地,所述第一透明电子导电层和所述第二透明电子导电层的材料各自独立地为金属氧化物、掺杂金属氧化物、导电的透明氮化物、金属和合金中的至少一种,优选为氧化铟锡层(ITO)、掺氟氧化锡层(FTO)和纳米银线层中的至少一种;所述第一透明电子导电层和所述第二透明电子导电层的厚度各自独立地为10nm-1000nm,优选为20nm-200nm。
进一步地,所述电致变色层为无机电致变色层和有机电致变色层中的至少一种,优选地,所述无机电致变色层的材料为氧化钨(WO 3)、氧化铌(Nb 2O 5)、氧化钛(TiO 2)、氧化钼(MoO 3)、氧化铜(CuO)、氧化铬(Cr 2O 3)、氧化锰(MnO 2)、 氧化钒(V 2O 5)、氧化钴(Co 3O 4)、氧化镍(NiO)、普鲁士蓝、过渡金属硫化物及酞菁类化合物中的至少一种;优选地,所述有机电致变色层的材料为紫罗精(1,1’-双取代-4,4’-联吡啶类化合物的季胺盐)、聚苯胺(PANI)、聚吡咯(PPy)、聚噻吩(PTh)以及它们的衍生物中的至少一种;优选地,所述电致变色层的材料为氧化钨(WO 3)、氧化钛(TiO 2)、氧化锰氧化钒(V 2O 5)、普鲁士蓝、紫罗精(1,1’-双取代-4,4’-联吡啶类化合物的季胺盐)、聚苯胺(PANI)、聚吡咯(PPy)、聚噻吩(PTh)以及它们的衍生物中的至少一种;所述电致变色层的厚度为10nm-2000nm,优选为30nm-1000nm。
进一步地,所述离子储存层采用与所述电致变色层变色的互补材料,例如若电致变色层是阳极变色材料,离子储存层就可以是阴极变色材料,离子储存层也可以直接采用透光率高的、能提供容量的材料。离子储存层的材料优选为氧化钨(WO 3)、氧化钛(TiO 2)、氧化锌(ZnO)、普鲁士蓝、紫罗精(1,1’-双取代-4,4’-联吡啶类化合物的季胺盐)、聚苯胺(PANI);所述离子储存层的厚度为1nm-2000nm,优选为30nm-1000nm。
进一步地,所述电解质是H +、Li +、Na +、K +、Ag +、Ca 2+、Zn 2+、Mg 2+、Ni 2+、Mn 2+、Al 3+、Fe 3+中至少一种阳离子与F 、Cl 、Br 、I 、BF 4 、PF 6 、AsF 6 、SbF 6 、BC 2O 4 、BFC 4O 8 、(CF 3) 2PF 4 、(CF 3) 3PF 3 、(CF 3) 4PF 2 、(CF 3) 5PF 、(CF 3) 6P 、CF 3SO 3 、C 4F 9SO 3 、CF 3CF 2SO 3 、(CF 3) 2SO 2N 、(CF 3CF 2) 2SO 2N 、F 2SO 2N 、CF 3CF 2(CF 3) 2CO 、CF 3CO 2 、CH 3CO 2 、(CF 3SO 2) 2CH 、CF 3(CF 2) 7SO 3 、ClO 4 、NO 3 、SO 4 2-、SCN 、PO 4 3-中至少一种阴离子组成的电解质;所述的电解质的阳离子优选为Li +、Na +、K +、Zn 2+、Al 3+,阴离子优选Cl 、BF 4 、PF 6 、AsF 6 、BC 2O 4 、CF 3SO 3 、(CF 3) 2SO 2N 、ClO 4 、NO 3 、SO 4 2-;所述电解质优选为KCl、LiClO 4、HCl、H 2SO 4中的至少一种。
进一步地,所述离子不导电的无机纳米颗粒或纳米纤维,是无机氧化物纳米颗粒、无机氮化物纳米颗粒或矿石纳米颗粒中的一种;所述无机氧化物纳米颗粒为二氧化硅、氧化铝、二氧化钛、氧化锆、氧化镁、氧化钇、氧化锌、氧化铁和二氧化铈中的至少一种;所述无机氮化物纳米颗粒为氮化硅、氮化钛和氮化硼中的至少一种;所述矿石纳米颗粒为碳酸钙、硫酸钙、氢氧化铝、钛酸钾、钛酸钡、滑石、高岭土粘土、高岭石、多水高岭土、叶腊石、蒙脱石、白铅矿、云母、镁绿泥石、膨润土、石棉、沸石、硅酸钙、硅酸镁、硅藻土和硅砂中的至少一种。
进一步地,所述溶剂是水和有机溶剂中的至少一种,优选地,所述有机溶剂是醇类溶剂、醚类溶剂、酮类溶剂、酯类溶剂、酰胺类溶剂、亚砜或砜类溶剂中的至少一种;所述醇类溶剂优选为甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、环己醇、苯甲醇、乙二醇、丙二醇、丙三醇中的至少一种;所述醚类溶剂优选为乙醚、丙醚、丁醚、四氢呋喃、吡喃、1,3-二氧五环(DOL)、1,4-二氧六环、乙二醇单甲醚、乙二醇单乙醚、乙二醇甲乙醚、乙二醇二乙醚中的至少一种;所述酮类溶剂优选为丙酮、丁酮、甲基异丁基酮、环己酮、苯乙酮、苯丙酮、乙酰丙酮中的至少一种;所述酯类溶剂优选为乙酸乙酯、乙酸丁酯、乙酸苯酯、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸亚乙烯酯(VC)中的至少一种;所述酰胺类溶剂优选为N,N-二甲基甲酰胺(DMF),N,N-二甲基乙酰胺(DMAc),N-甲基吡咯烷酮(NMP)中的至少一种;所述亚砜或砜类溶剂优选为二甲基亚砜(DMSO);进一步地,所述的溶剂优选为水、四氢呋喃、1,3-二氧五环(DOL)、1,4-二氧六环、乙二醇单甲醚、乙二醇单乙醚、乙二醇甲乙醚、乙二醇二乙醚、乙酸乙酯、乙酸丁酯、乙酸苯酯、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸亚乙烯酯(VC)、氟代碳酸乙烯酯(FEC)中的至少一种。
在另一种实施例中,一种所述的可任意裁剪的电致变色器件在电子终端设备的显示屏、智能绿色建筑智能窗、汽车变色玻璃或自动防眩目后视镜中的应用。
由于本发明的电致变色器件具有可任意裁剪性,可大规模生产统一尺寸器件,再根据需要裁剪出特定的尺寸,例如:本发明的电致变色器件可在电子终端设备的显示屏中的应用,电子终端设备包括但不限于手机、平板电脑、笔记本电脑;本发明的电致变色器件还可以应用于智能绿色建筑智能窗膜中,在外加低压电场作用下电致变色器件的光学性质能发生可控变化,利用此性质,可以实现特定空间内光热调控,从而达到调温储能节能的目的;本发明的电致变色器件还可以应用于汽车变色玻璃,将其应用于汽车的车窗上,在阳光强烈照射的情况下,变色车窗不仅可以降低太阳光线对车内用户的照射强度,还可以起到保护用户隐私的效果;本发明的电致变色器件还可以应用于汽车的自动防眩目后视镜中,根据后视镜的大小形状任意裁剪,粘贴即可。
实施例1
一种可任意裁剪的电致变色器件,通过以下方法制备:
第一透明柔性基底和第二透明柔性基底的材料都选用厚度为175μm的PET,第一透明电子导电层和第二透明导电层的材料都选用ITO,ITO层厚度为100nm,方阻为10Ω/□。
电致变色层选用电镀的普鲁士蓝(Prussian Blue,PB),其制备流程为:将第一透明柔性基底和第一透明导电层形成的整体(即第一PET-ITO基底(PET-ITO基底可以是在PET基底上磁控溅射ITO层或者也可以直接购买得到制作好的PET-ITO基底))分别用丙酮、去离子水、乙醇超声清洗5分钟备用。配置镀液,镀液包括0.01Mol/L K 3[Fe(CN) 6]、0.01mol/L FeCl 3和0.05mol/L KCl,并用高氯酸调节pH至1.2。以第一PET-ITO基底为工作电极、1平方厘米的铂片为对电极、Ag/AgCl为参比电极,室温下施加10μA/cm 2的阴极电流密度,电镀10分钟,以在第一PET-ITO基底的ITO层上形成PB作为电致变色层。
离子储存层选用电镀的WO 3,其制备流程为:将第二透明柔性基底和第二透明导电层形成的整体(即第二PET-ITO基底)分别用丙酮、去离子水、乙醇超声清洗5分钟备用。配置镀液:将0.206g钨酸钠/0.13mL过氧化氢加入50ml去离子水,加高氯酸调节pH至1.2,以该第二PET-ITO基底为工作电极、以1平方厘米的铂片为对电极,以Ag/AgCl为参比电极,室温下施加-0.7V的阴极电流密度,电镀300s,以在PET-ITO基底的ITO层上电镀WO 3作为离子储存层。
具有自封装功能的电解液的制备流程为:在无水无氧的条件下,将LiClO 4溶于碳酸二甲酯:碳酸甲乙酯:碳酸乙烯酯=1:1:1(体积比)的混合溶剂中配成1.5mol/L的溶液,然后往溶液中加入油性醇酸树脂(在电解液中,油性醇酸树脂的质量分数为50%),混合均匀,制得具有自封装功能的电解液,其中,油性醇酸树脂购于济宁泰诺化工有限公司,即式(Ⅰ)中X来源于邻苯二甲酸、R 4来源于α-亚麻酸,R 5为丙烯酸酯基。根据上海雷磁台式数显电导率仪电导仪实验室DDS-11A测得该电解液电导率为7.6mS·cm -1
将制备得到的电解液刮涂在离子储存层上或者刮涂在电致变色层上或者刮涂在离子储存层和电致变色层两者上,并贴合形成如图1所示的结构,包括依次叠加的第一透明柔性基底1、第一透明电子导电层2、电致变色层3、遇空气和/或湿气可自动固化从而具有自动封装功能的电解液4、离子存储层5、第二透明电子导电层6和第二透明柔性基底7,将其静置30分钟后即可自动完成封装得 到电致变色器件,对封装形成的电致变色器件进行裁剪,对其中一份器件进行检测,如图2和3所示,本实施例裁剪下来的电致变色器件可由透明变为深蓝色,光调制范围最大为76%。电致变色器件着色时间为7s,褪色时间为20s,可多次循环,电致变色器件可多次弯曲变色性能不衰减。
实施例2
一种可任意裁剪的电致变色器件,通过以下方法制备:
第一透明柔性基底和第二透明柔性基底的材料都选用厚度为175μm的PET,第一透明电子导电层和第二透明导电层的材料选用ITO,ITO层厚度为100nm,方阻为10Ω/□。
电致变色层选用电镀的PANI(聚苯胺),其制备流程为:将PET-ITO基底分别用丙酮、去离子水、乙醇超声清洗5分钟备用。配置镀液,该镀液包括100mM苯胺和1M H 2SO 4。以PET-ITO基底为工作电极、1平方厘米的铂片为对电极、Ag/AgCl为参比电极,室温下施+2.0v,电镀45s,用高纯度水轻轻冲洗薄膜,并使其干燥过夜,以在PET-ITO基底的ITO层上形成PANI作为电致变色层。
离子储存层的材料选用ITO。
具有自封装功能的电解液制备流程为:将LiClO 4溶于水中配成0.4mol/L的溶液,然后往溶液中加入水性醇酸树脂(在电解液中,水性醇酸树脂的质量分数为50%),混合均匀,制得具有自封装功能的电解液,其中,水性醇酸树脂购于济宁泰诺化工有限公司,即式(Ⅰ)中X来源于邻苯二甲酸、R 5为丙烯酸酯基、R 4来源于豆油酸。根据上海雷磁台式数显电导率仪电导仪实验室DDS-11A测得本实施例的电解液电导率为4.3mS·cm -1
按实施例1的方法组成如图1所示的器件,静置15分钟后自动完成封装,然后进行裁剪,对其中一份器件进行检测。本实施例裁剪下来的电致变色器件可由深绿色变为浅黄色,光调制范围最大为45%,电致变色器件着色时间为6s,褪色时间为10s,可多次循环。
实施例3
一种可任意裁剪的电致变色器件,通过以下方法制备:
第一透明柔性基底和第二透明柔性基底的材料都选用PET,厚度为175μm,第一透明电子导电层和第二透明导电层的材料选用ITO,ITO层厚度为100nm,方阻为10Ω/□。
电致变色层选用磁控溅射的WO 3,其制备流程为:将PET-ITO基底放入磁控溅射设备的装载室,采用离子轰击透明薄膜基材消除静电,密封后进行抽真空,再在室温下,将PET-ITO基底运送至溅射室,采用磁控溅射方式进行沉积,得到WO 3层作为电子变色层;磁控溅射设备所用的靶材为钨靶,磁控溅射时采用直流/射频电源,溅射电压160~170V,磁场强度1100G~1450G,工艺气体采用氩气与氧气混合气体,混合气体中氩气:氧气的体积比为2.5:1.2。
离子储存层的材料选用ITO。
具有自封装功能的电解液制备流程为:将LiClO 4溶于水中配成0.4mol/L的溶液,然后往溶液中按加入水性醇酸树脂(在电解液中,水性醇酸树脂的质量分数为50%),混合均匀,制得具有自封装功能的电解液,其中,水性醇酸树脂购于济宁泰诺化工有限公司,即式(Ⅰ)中X来源于邻苯二甲酸、R 5为丙烯酸酯基、R 4来源于豆油酸。根据上海雷磁台式数显电导率仪电导仪实验室DDS-11A测得该电解液电导率为4.3mS·cm -1
按实施例1的方法组成如图1所示的器件,静置15分钟后自动完成封装,然后进行裁剪,对其中一份器件进行检测。本实施例裁剪下来的电致变色器件可由透明变为深蓝色,光调制范围最大为65%,电致变色器件着色时间为4s,褪色时间为7s,可多次循环。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种可任意裁剪的电致变色器件,其特征在于,包括依次叠加的第一透明柔性基底、第一透明电子导电层、电致变色层、遇空气和/或湿气可自动固化从而具有自动封装功能的电解液、离子存储层、第二透明电子导电层和第二透明柔性基底。
  2. 根据权利要求1所述的电致变色器件,其特征在于,所述电解液包括遇空气和/或湿气可固化的组分、溶剂和电解质,在所述电解液中,所述遇空气和/或湿气可固化的组分的质量分数为20-70%,所述电解质和所述溶剂的总质量分数为30-80%,且在所述电解质和所述溶剂两者中,所述电解质的浓度为0.1-10.0mol/L。
  3. 根据权利要求2所述的电致变色器件,其特征在于,所述电解液还包括离子不导电的无机纳米颗粒或纳米纤维,与所述遇空气和/或湿气可固化的组分、所述溶剂和所述电解质三者总质量相比,所述离子不导电的无机纳米颗粒或纳米纤维的质量百分数大于0且小于等于10%。
  4. 根据权利要求2所述的电致变色器件,其特征在于,所述电解质的浓度为0.5-5.0mol/L,优选1.0-2.5mol/L。
  5. 根据权利要求3所述的电致变色器件,其特征在于,所述离子不导电的无机纳米颗粒或纳米纤维的质量百分数为0.5%-5%。
  6. 根据权利要求2所述的电致变色器件,其特征在于,所述遇空气可固化的组分为醇酸树脂;其中,优选,所述醇酸树脂是多元醇、酸酐和/或丙烯酸、多不饱和脂肪酸的缩合产物,具有式(Ⅰ)所示的结构:
    Figure PCTCN2021129541-appb-100001
    式中X基团来源于二元酸或二元酸酐,优选邻苯二甲酸酐、顺丁烯二酸酐、对苯二甲酸;R 4为H或来源于6~30个碳的多不饱和脂肪酸,优选亚油酸、共轭 亚油酸、十八碳三烯酸(α-亚麻酸)、γ-亚麻酸、十八碳四烯酸、花生四烯酸、二十碳三烯酸、二十碳五烯酸、二十二碳六烯酸;R 5为H、甲基、丙烯酸酯基、甲基丙烯酸酯基、或者选自R 4中任意一种;和/或
    所述遇湿气可固化的组分为异氰酸酯,优选为甲苯二异氰酸酯(TDI)、异佛尔酮二异氰酸酯(IPDI)、二苯基甲烷二异氰酸酯(MDI)、二环己基甲烷二异氰酸酯(HMDI)、六亚甲基二异氰酸酯(HDI)、赖氨酸二异氰酸酯(LDI)、三苯基甲烷三异氰酸酯、六亚甲基二异氰酸酯的三聚体(HDI trimer)和多苯基多亚甲基多异氰酸酯(PAPI)中的至少一种;优选多苯基多亚甲基多异氰酸酯(PAPI)。
  7. 根据权利要求3所述的电致变色器件,其特征在于:所述电解液采用如下过程配制:先将所述电解质溶于所述溶剂中配成预定浓度的溶液,然后加入所述遇空气和/或湿气可固化的组分混合均匀,最后加入所述离子不导电的无机纳米颗粒或纳米纤维;优选地,在所述电致变色器件中,所述电解液的厚度为10nm-300μm,更优选为50nm-150μm。
  8. 根据权利要求1所述的电致变色器件,其特征在于:
    所述第一透明柔性基底和所述第二透明柔性基底的材料各自独立地为聚乙烯(PE)、聚对苯二甲酸乙二酯(PET)、聚氯乙烯(PVC)、尼龙(PA)、聚乙烯亚胺(PEI)、聚酰亚胺(PI)、聚丙烯(PP)、聚碳酸酯(PC)、环烯烃聚合物(COP)、醋酸纤维素、聚氨酯(PU)和聚二甲基硅氧烷(PDMS)中的至少一种,优选为聚对苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、聚氯乙烯(PVC)中的至少一种;所述第一透明柔性基底和所述第二透明柔性基底的厚度各自独立地为0.05nm-1.00mm,优选为0.100nm-0.50mm;和/或
    所述第一透明电子导电层和所述第二透明电子导电层的材料各自独立地为金属氧化物、掺杂金属氧化物、导电的透明氮化物、金属和合金中的至少一种,优选为氧化铟锡层(ITO)、掺氟氧化锡层(FTO)和纳米银线层中的至少一种;所述第一透明电子导电层和所述第二透明电子导电层的厚度各自独立地为10nm-1000nm,优选为20nm-200nm;和/或
    所述电致变色层为无机电致变色层和有机电致变色层中的至少一种,优选地,所述无机电致变色层的材料为氧化钨(WO 3)、氧化铌(Nb 2O 5)、氧化钛(TiO 2)、氧化钼(MoO 3)、氧化铜(CuO)、氧化铬(Cr 2O 3)、氧化锰(MnO 2)、氧化钒(V 2O 5)、氧化钴(Co 3O 4)、氧化镍(NiO)、普鲁士蓝、过渡金属硫化物及酞菁 类化合物中的至少一种;优选地,所述有机电致变色层的材料为紫罗精(1,1’-双取代-4,4’-联吡啶类化合物的季胺盐)、聚苯胺(PANI)、聚吡咯(PPy)、聚噻吩(PTh)以及它们的衍生物中的至少一种;优选地,所述电致变色层的材料为氧化钨(WO 3)、氧化钛(TiO 2)、氧化锰氧化钒(V 2O 5)、普鲁士蓝、紫罗精(1,1’-双取代-4,4’-联吡啶类化合物的季胺盐)、聚苯胺(PANI)、聚吡咯(PPy)、聚噻吩(PTh)以及它们的衍生物中的至少一种;所述电致变色层的厚度为10nm-2000nm,优选为30nm-1000nm;和/或
    所述离子储存层采用与所述电致变色层变色的互补材料,优选为氧化钨(WO 3)、氧化钛(TiO 2)、氧化锌(ZnO)、普鲁士蓝、紫罗精(1,1’-双取代-4,4’-联吡啶类化合物的季胺盐)、聚苯胺(PANI);所述离子储存层的厚度为1nm-2000nm,优选为30nm-1000nm。
  9. 根据权利要求3所述的电致变色器件,其特征在于:
    所述电解质是H +、Li +、Na +、K +、Ag +、Ca 2+、Zn 2+、Mg 2+、Ni 2+、Mn 2+、Al 3+、Fe 3+中至少一种阳离子与F 、Cl 、Br 、I 、BF 4 、PF 6 、AsF 6 、SbF 6 、BC 2O 4 、BFC 4O 8 、(CF 3) 2PF 4 、(CF 3) 3PF 3 、(CF 3) 4PF 2 、(CF 3) 5PF 、(CF 3) 6P 、CF 3SO 3 、C 4F 9SO 3 、CF 3CF 2SO 3 、(CF 3) 2SO 2N 、(CF 3CF 2) 2SO 2N 、F 2SO 2N 、CF 3CF 2(CF 3) 2CO 、CF 3CO 2 、CH 3CO 2 、(CF 3SO 2) 2CH 、CF 3(CF 2) 7SO 3 、ClO 4 、NO 3 、SO 4 2-、SCN 、PO 4 3-中至少一种阴离子组成的电解质;所述的电解质的阳离子优选为Li +、Na +、K +、Zn 2+、Al 3+,阴离子优选Cl 、BF 4 、PF 6 、AsF 6 、BC 2O 4 、CF 3SO 3 、(CF 3) 2SO 2N 、ClO 4 、NO 3 、SO 4 2-;所述电解质优选为KCl、LiClO 4、HCl、H 2SO 4中的至少一种;和/或
    所述离子不导电的无机纳米颗粒或纳米纤维,是无机氧化物纳米颗粒、无机氮化物纳米颗粒或矿石纳米颗粒中的一种;所述无机氧化物纳米颗粒为二氧化硅、氧化铝、二氧化钛、氧化锆、氧化镁、氧化钇、氧化锌、氧化铁和二氧化铈中的至少一种;所述无机氮化物纳米颗粒为氮化硅、氮化钛和氮化硼中的至少一种;所述矿石纳米颗粒为碳酸钙、硫酸钙、氢氧化铝、钛酸钾、钛酸钡、滑石、高岭土粘土、高岭石、多水高岭土、叶腊石、蒙脱石、白铅矿、云母、镁绿泥石、膨润土、石棉、沸石、硅酸钙、硅酸镁、硅藻土和硅砂中的至少一种;和/或
    所述溶剂是水和有机溶剂中的至少一种,优选地,所述有机溶剂是醇类溶剂、醚类溶剂、酮类溶剂、酯类溶剂、酰胺类溶剂、亚砜或砜类溶剂中的至少一种; 所述醇类溶剂优选为甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、环己醇、苯甲醇、乙二醇、丙二醇、丙三醇中的至少一种;所述醚类溶剂优选为乙醚、丙醚、丁醚、四氢呋喃、吡喃、1,3-二氧五环(DOL)、1,4-二氧六环、乙二醇单甲醚、乙二醇单乙醚、乙二醇甲乙醚、乙二醇二乙醚中的至少一种;所述酮类溶剂优选为丙酮、丁酮、甲基异丁基酮、环己酮、苯乙酮、苯丙酮、乙酰丙酮中的至少一种;所述酯类溶剂优选为乙酸乙酯、乙酸丁酯、乙酸苯酯、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸亚乙烯酯(VC)中的至少一种;所述酰胺类溶剂优选为N,N-二甲基甲酰胺(DMF),N,N-二甲基乙酰胺(DMAc),N-甲基吡咯烷酮(NMP)中的至少一种;所述亚砜或砜类溶剂优选为二甲基亚砜(DMSO);进一步地,所述的溶剂优选为水、四氢呋喃、1,3-二氧五环(DOL)、1,4-二氧六环、乙二醇单甲醚、乙二醇单乙醚、乙二醇甲乙醚、乙二醇二乙醚、乙酸乙酯、乙酸丁酯、乙酸苯酯、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸亚乙烯酯(VC)、氟代碳酸乙烯酯(FEC)中的至少一种。
  10. 一种权利要求1-9任意一项所述的可任意裁剪的电致变色器件在电子终端设备的显示屏、智能绿色建筑智能窗、汽车变色玻璃或自动防眩目后视镜中的应用。
PCT/CN2021/129541 2020-12-24 2021-11-09 一种可任意裁剪的电致变色器件及应用 WO2022134900A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/306,054 US20230258994A1 (en) 2020-12-24 2023-04-24 Arbitrarily tailorable electrochromic device and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011556671.8 2020-12-24
CN202011556671.8A CN112540488B (zh) 2020-12-24 2020-12-24 一种可任意裁剪的电致变色器件及应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/306,054 Continuation US20230258994A1 (en) 2020-12-24 2023-04-24 Arbitrarily tailorable electrochromic device and use thereof

Publications (1)

Publication Number Publication Date
WO2022134900A1 true WO2022134900A1 (zh) 2022-06-30

Family

ID=75017457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129541 WO2022134900A1 (zh) 2020-12-24 2021-11-09 一种可任意裁剪的电致变色器件及应用

Country Status (3)

Country Link
US (1) US20230258994A1 (zh)
CN (1) CN112540488B (zh)
WO (1) WO2022134900A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112540488B (zh) * 2020-12-24 2023-04-04 清华大学深圳国际研究生院 一种可任意裁剪的电致变色器件及应用
CN113376916B (zh) * 2021-06-25 2022-05-31 绍兴迪飞新材料有限公司 一种智能动态调光膜及其制备方法和应用
CN113433756A (zh) * 2021-07-26 2021-09-24 中国科学院宁波材料技术与工程研究所 一种互补型电致变色能量存储器件及其制备方法
CN114859614B (zh) * 2022-06-23 2023-12-05 广西大学 一种具有光热调控功能的普鲁士蓝双波段电致变色器件
TWI828348B (zh) * 2022-09-30 2024-01-01 昶曜科技股份有限公司 電致變色薄膜及其製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106371258A (zh) * 2016-10-21 2017-02-01 北京华逸高科科技有限公司 电致变色薄膜的制备方法及电致变色器件
CN108519709A (zh) * 2018-06-01 2018-09-11 Oppo广东移动通信有限公司 电致变色母板、电致变色单元、壳体以及电子设备
CN108549182A (zh) * 2018-06-19 2018-09-18 Oppo广东移动通信有限公司 制备壳体的方法、壳体、电致变色贴纸、电子设备
CN108659772A (zh) * 2017-03-29 2018-10-16 孚能科技(赣州)有限公司 灌封胶和电池组
WO2020022381A1 (en) * 2018-07-25 2020-01-30 Ricoh Company, Ltd. Electrochromic compound, electrochromic composition, and electrochromic element
CN112540488A (zh) * 2020-12-24 2021-03-23 清华大学深圳国际研究生院 一种可任意裁剪的电致变色器件及应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180431A (ja) * 1997-09-05 1999-03-26 Showa Denko Kk 水膨潤性エラストマー組成物
TW200640061A (en) * 2005-01-04 2006-11-16 Hitachi Chemical Co Ltd Phase separation type polymer electrolyte film, electrode/phase separation type polymer electrolyte film assembly employing the same, processes for producing the same, and fuel cell employing the same
CN101434708B (zh) * 2008-12-19 2012-01-11 成都中科来方能源科技有限公司 水性聚合物改性微孔聚烯烃隔膜及其制备方法和用途
JP5035255B2 (ja) * 2009-01-13 2012-09-26 セイコーエプソン株式会社 電気泳動表示装置
CN105938919A (zh) * 2016-07-08 2016-09-14 南方科技大学 一种含无机物添加剂的电解液及含该电解液的锂离子电池
CN106932992A (zh) * 2017-03-31 2017-07-07 中国航发北京航空材料研究院 一种调控近红外光的柔性电致变色器件及制备方法
CN106997134A (zh) * 2017-03-31 2017-08-01 中国航发北京航空材料研究院 一种智能遥控自供能电致变色窗及其制备方法
CN109401693B (zh) * 2018-10-31 2020-06-26 清华大学深圳研究生院 醇酸树脂改性的聚合物电解质及其制备方法和应用
CN109755636A (zh) * 2019-03-15 2019-05-14 杉杉新材料(衢州)有限公司 一种高温高压安全性锂离子电池电解液以及锂离子电池
CN111224167B (zh) * 2020-01-13 2021-05-14 苏州大学 一种漏液自修复锂金属电池电解液及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106371258A (zh) * 2016-10-21 2017-02-01 北京华逸高科科技有限公司 电致变色薄膜的制备方法及电致变色器件
CN108659772A (zh) * 2017-03-29 2018-10-16 孚能科技(赣州)有限公司 灌封胶和电池组
CN108519709A (zh) * 2018-06-01 2018-09-11 Oppo广东移动通信有限公司 电致变色母板、电致变色单元、壳体以及电子设备
CN108549182A (zh) * 2018-06-19 2018-09-18 Oppo广东移动通信有限公司 制备壳体的方法、壳体、电致变色贴纸、电子设备
WO2020022381A1 (en) * 2018-07-25 2020-01-30 Ricoh Company, Ltd. Electrochromic compound, electrochromic composition, and electrochromic element
CN112540488A (zh) * 2020-12-24 2021-03-23 清华大学深圳国际研究生院 一种可任意裁剪的电致变色器件及应用

Also Published As

Publication number Publication date
US20230258994A1 (en) 2023-08-17
CN112540488A (zh) 2021-03-23
CN112540488B (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2022134900A1 (zh) 一种可任意裁剪的电致变色器件及应用
US9778534B2 (en) Chromatic systems
WO2018207591A1 (ja) 有機/金属ハイブリッドポリマーを用いたエレクトロクロミックデバイスおよびその製造方法
Hong et al. A red-to-gray poly (3-methylthiophene) electrochromic device using a zinc hexacyanoferrate/PEDOT: PSS composite counter electrode
CN101852960A (zh) 全固态高分子可控电致变色柔性薄膜器件及其制造方法
CN109946897A (zh) 自供电电致变色器件及其制备方法
US11079649B2 (en) Metal sensitized color changing material
Faure et al. High cycling stability of electrochromic devices using a metallic counter electrode
CN103186003A (zh) 可挠式有机电致变色装置及其制程方法
Xu et al. The Progress and Outlook of Multivalent‐Ion‐Based Electrochromism
WO2019099919A1 (en) Dynamic windows comprising aqueous electrolytes having enhanced temperature stability
EP4083699A1 (en) Electrochromic device and electrochromic method therefor
EP0961159B1 (de) Elektrochrome Anordnung
Meng Organic Electronics for Electrochromic Materials and Devices
Collomb-Dunand-Sauthier et al. Spectroelectrochemical behaviour of poly (3-octylthiophene): application to electrochromic windows with polyaniline and iridium oxide
CN105446046A (zh) 一种基于电量可视化面板的电源模块
CN113204146B (zh) 一种以水蒸气为电解质的可修复无机全薄膜电致变色器件及其制备方法
CN102191526B (zh) 光学装置的制备方法
CN112666772B (zh) 一种可自封装的电致变色器件及其制备方法
CN103135305A (zh) 具有多孔结构的电致变色装置及其制程方法
KR20220004575A (ko) 전기변색 물질, 이를 포함하는 전기변색 소자 및 전기변색 소자의 제조방법
Henni et al. Electrochromics for Smart Windows: Oxide-Based Thin Films
Wang et al. Carbon dots as multifunctional electrolyte additives toward multicolor and low self-discharge electrochromic energy storage devices
CN219903692U (zh) 一种电致变色装饰器件
WO2023004973A1 (zh) 一种基于透明金属网电极的电致变色器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908900

Country of ref document: EP

Kind code of ref document: A1