WO2022134377A1 - 一种凝胶聚合物锂离子电容电池和电极及其制备方法 - Google Patents

一种凝胶聚合物锂离子电容电池和电极及其制备方法 Download PDF

Info

Publication number
WO2022134377A1
WO2022134377A1 PCT/CN2021/085420 CN2021085420W WO2022134377A1 WO 2022134377 A1 WO2022134377 A1 WO 2022134377A1 CN 2021085420 W CN2021085420 W CN 2021085420W WO 2022134377 A1 WO2022134377 A1 WO 2022134377A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
battery
lithium ion
electrode
gel polymer
Prior art date
Application number
PCT/CN2021/085420
Other languages
English (en)
French (fr)
Inventor
章庆林
薛鑫
周义荣
安仲勋
吴明霞
虞嘉菲
杨重阳
Original Assignee
上海奥威科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海奥威科技开发有限公司 filed Critical 上海奥威科技开发有限公司
Publication of WO2022134377A1 publication Critical patent/WO2022134377A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of electrochemical energy storage components, in particular to a gel polymer lithium ion capacitor battery and an electrode and a preparation method thereof.
  • lithium-ion batteries Since the invention of lithium-ion batteries by Sony in 1991, lithium-ion batteries have developed rapidly in the fields of consumer electronics, industry and automation, energy transportation, and aerospace. Traditional liquid lithium-ion batteries use flammable organic compounds as electrolyte solvents, which are prone to safety accidents. In order to solve the safety problems of lithium-ion batteries and pursue higher energy density lithium-ion batteries, solid-state lithium-ion batteries using high molecular polymers and solid-state electrolytes have been widely studied in recent years.
  • US5296318 took the lead in proposing a method for preparing a gel polymer battery, using PVDF-HFP as the binder of the polymer battery and the support of the polymer film, using acetone as the solvent to cast the film, and extracting the plasticizer to form the film. pores to increase the porosity of the electrode/separator.
  • this use of DTP as plasticizer and methanol as extractant has certain health and environmental hazards.
  • CN200480006242 proposes to use PEO/PVDF-HFP as the binder for polymer batteries, and use acrylonitrile as the solvent for slurrying wet electrode coating process, while changing the plasticizer to the solvent used in lithium-ion batteries such as PC/EC ingredients, thereby avoiding plasticizer hazards and eliminating the process of extracting plasticizers.
  • this method subsequently added an electrolyte composed of PC/EC and assembled a liquid battery, which did not achieve the fabrication of a gel polymer battery.
  • CN201980018155 further proposes to use PEO as the binder and separator for polymer batteries.
  • the electrode active material, conductive agent, PEO polymer, lithium salt, etc. are dissolved in acetonitrile solvent, and the electrode is wet-coated to form an electrode and then removed.
  • Acetonitrile solvent and a small amount of NMP solvent are further added for high temperature annealing treatment, so that PEO polymer has better swelling property, which is more conducive to the transport of Li+ in the polymer.
  • the above method improves the electrical properties of the gel polymer lithium ion battery by continuously improving the preparation process of the gel polymer electrode and improving the amorphous state of the polymer, and has achieved good results.
  • highly volatile, flammable and harmful organic substances are generally used as solvents to make electrodes, and there are still certain environmental occupational hazards and hidden dangers in production safety.
  • the purpose of the present invention is to solve the deficiencies of the prior art, and to provide a preparation method of a gel polymer lithium ion capacitor battery and an electrode thereof.
  • the gel polymer lithium ion capacitor battery prepared by the method has a simple and easy preparation process, no flammable volatile organic solvent exists in the electrode preparation process, and the preparation process is safe and environmentally friendly.
  • a preparation method of a gel polymer lithium ion capacitor battery and an electrode thereof comprising the following steps:
  • the mixed powder is put into the mechanical fusion machine, and the fusion granulation treatment is carried out under the heating state to obtain round-shaped mixed particles;
  • the mixed particles are repeatedly hot-rolled by a hot-roller to obtain an electrode film of uniform thickness
  • the lithium ion polymer battery is obtained after the battery core is processed by high temperature hot pressing shaping treatment, welding tabs, top side sealing, drying liquid injection sealing and other processes;
  • the lithium ion polymer battery is subjected to high temperature aging treatment, and the injected electrolyte promotes the polymer to fully swell to form a gel polymer lithium ion battery;
  • the gel polymer lithium ion battery is subjected to operations such as formation, volume separation, and secondary sealing according to the production process of conventional lithium ion batteries to obtain a final finished gel polymer lithium ion battery.
  • the electrode active material is activated carbon, carbon fiber, carbon aerogel, lithium iron phosphate (LFP), lithium iron manganese phosphate (LFMP), lithium vanadium phosphate (LVP), manganese acid
  • LFP lithium iron phosphate
  • LFMP lithium iron manganese phosphate
  • LVP lithium vanadium phosphate
  • cathode materials such as lithium (LMO), lithium cobalt oxide (LCO), lithium nickelate (LNO), nickel cobalt lithium manganate (NMC), lithium nickel manganate (LNMO), or graphite ( Gr), mesophase carbon microspheres (MCMB), soft carbon (SC), hard carbon (HC), carbon fiber (CF), lithium titanate (LTO) and other negative electrode materials one or more mixtures
  • the conductive The agent is one or a mixture of carbon black, acetylene black, carbon nanotube, graphene, vapor grown carbon fiber (VGCF), flake graphite, etc.
  • the lithium salt is lithium hexafluorophosphate (LiPF6), lithium bis-trifluoromethanesulfonimide (LiTFSI), lithium bis-fluorosulfonimide (LiFSI), lithium tetrafluoroborate (LiBF4), lithium bis-oxalate borate (LiBOB), One or more mixtures of organic lithium salts such as lithium difluorooxalate borate (LiODFB) and lithium difluorophosphate (LDFP); PEO polymer is polyethylene oxide with a molecular weight in the range of 200,000 to 7,000,000, preferably a molecular weight of 400 ⁇ 5 million polyethylene oxide.
  • the heating state in the step S2 refers to heating the powder at 60-120°C, preferably 80-100°C.
  • the temperature of the hot rolling process is 80-100°C.
  • the conductive coating in the step S4 may contain sodium carboxymethyl cellulose (CMC), styrene-butadiene rubber (SBR), polyvinyl alcohol (PVA), polyoxyethylene (PEO), polymethyl cellulose
  • CMC carboxymethyl cellulose
  • SBR styrene-butadiene rubber
  • PVA polyvinyl alcohol
  • PEO polyoxyethylene
  • the conductive carbon layer of the hot-melt adhesive of methyl acrylate (PMMA) can also be selected to contain conductive paste including conductive carbon black, conductive graphite, carbon nanotubes, and graphene.
  • the temperature of the hot-pressing composite molding is 100-120°C.
  • the battery separator in the step S5 is that the base material contains one or both of polyethylene PE, polypropylene PP, cellulose paper, and PET, and is coated with polyvinylidene fluoride copolymer on both sides of the surface of the separator. (PVDF-HFP) battery separator.
  • the temperature of the high temperature hot pressing shaping treatment is 80-100°C; the injection amount of the electrolyte is between 0.2-1.2h/Ah, preferably 0.4-0.7g/Ah.
  • the high-temperature aging temperature is 60-90° C.; the high-temperature aging time is 0.5-8 h, preferably 2-4 h.
  • the present invention also includes a gel polymer lithium ion capacitor battery electrode prepared by the above method and a gel polymer lithium ion capacitor battery prepared by the above method.
  • the advantages of the gel polymer lithium ion capacitor battery and its electrode and preparation method provided by the present invention include but are not limited to: the method of the present invention is simple and easy to implement.
  • the lithium ion capacitor battery electrode piece and the gel polymer lithium ion capacitor battery prepared according to the invention have good electrochemical performance and service life, no free liquid electrolyte exists, and high safety performance.
  • Fig. 1 is the contrast schematic diagram of the charge-discharge curve of the capacitor battery of the present invention and traditional lithium-ion battery;
  • FIG. 2 is a 45°C cycle life curve of the capacitor battery of the present invention.
  • the present invention provides a preparation method of a gel polymer-based lithium ion capacitor battery and an electrode thereof.
  • the specific preparation method includes:
  • the electrode active material and the conductive agent, lithium salt, PEO polymer powder, etc. are put into the powder mixer according to the weight ratio, and are uniformly mixed.
  • the electrode active material, conductive agent, lithium salt and PEO polymer powder, etc. are mixed with powder, and powder mixer, V-type powder mixer, three-dimensional mixer, double cone Mixing equipment commonly used in the field of battery materials such as mixers can meet the requirements of uniform mixing of materials.
  • the electrode active material may include activated carbon (AC), carbon fiber (ACF), carbon aerogel, lithium iron phosphate (LFP), lithium iron manganese phosphate (LFMP), lithium vanadium phosphate (LVP), manganese
  • cathode materials such as lithium oxide (LMO), lithium cobalt oxide (LCO), lithium nickel oxide (LNO), lithium nickel cobalt manganate (NMC), lithium nickel manganese oxide (LNMO), or graphite
  • One or more mixtures of negative electrode materials such as (Gr), mesocarbon microspheres (MCMB), soft carbon (SC), hard carbon (HC), carbon fiber (CF), lithium titanate (LTO).
  • the conductive agent is one or more mixtures of carbon black, acetylene black, carbon nanotubes, graphene, vapor grown carbon fibers (VGCF), flake graphite, etc., which are solid powder particles.
  • the lithium salt is Lithium Hexafluorophosphate (LiPF6), Lithium Bistrifluoromethanesulfonimide (LiTFSI), Lithium Bisfluorosulfonimide (LiFSI), Lithium Tetrafluoroborate (LiBF4), Lithium Bisoxalateborate
  • LiPF6 Lithium Hexafluorophosphate
  • LiTFSI Lithium Bistrifluoromethanesulfonimide
  • LiFSI Lithium Bisfluorosulfonimide
  • LiBF4 Lithium Tetrafluoroborate
  • LiBF4 Lithium Bisoxalateborate
  • LiBOB Lithium difluorooxalate borate
  • LDFP lithium difluorophosphate
  • the PEO polymer is polyethylene oxide (PEO) with a molecular weight in the range of 200,000 to 7,000,000, and preferably polyethylene oxide with a molecular weight of 4,000,000 to 5,000,000.
  • PEO polyethylene oxide
  • the mixed powder is put into a mechanical fusion machine, and is subjected to fusion and granulation treatment in a heated state to obtain quasi-circular mixed particles.
  • the heating state can be carried out at 60-120°C, particularly preferably at a temperature of 80-100°C.
  • the softening temperature of PEO polymer is usually between 65 and 67°C.
  • positive mixed particles can be obtained by fusion granulation.
  • the positive electrode active material can be nano-scale particles, which are easy to absorb water and agglomerate in the process of material fusion and granulation; by introducing nitrogen atmosphere protection in the mechanical fusion machine, the influence of moisture in the air or the environment on the performance of the material can be further reduced.
  • the negative electrode mixed particles can be obtained by fusion granulation.
  • the negative electrode carbon material requires relatively less moisture and does not require nitrogen atmosphere protection or dry environmental conditions.
  • the mixed particles are subjected to hot rolling by a rolling machine to obtain an electrode film with a uniform thickness.
  • the temperature of the hot rolling process of the roller press is 80-100°C.
  • the PEO polymer in the electrode is in a softened state, and the material changes to an amorphous state during the rolling process, and the polymer electrolyte composed of lithium salt/PEO has better ionic conductivity.
  • the fact that the positive active particles contain part of activated carbon or carbon fibers can help to improve the film-forming effect of rolling and avoid the breakage of the electrode film during the rolling process; the electrode film after hot rolling treatment
  • the compacted density can be between 0.8 and 4.0 g/cm3.
  • the compaction density of the positive electrode film can be 2.0-4.0g/cm3, specifically 2.1g/cm3; and the compaction density of the negative electrode film can be 0.8-2.0g/cm3, specifically 1.7g/cm3.
  • electrodes made of PEO polymers can obtain larger electrode thickness and comparable compaction density, which is more conducive to improving the energy density of capacitor batteries.
  • the conductive coating in this step may contain sodium carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), polyvinyl alcohol (PVA), polyoxyethylene (PEO), polymethyl methacrylate (PMMA)
  • CMC carboxymethyl cellulose
  • SBR styrene butadiene rubber
  • PVA polyvinyl alcohol
  • PEO polyoxyethylene
  • PMMA polymethyl methacrylate
  • the conductive carbon layer of the hot-melt adhesive can also be coated with commercially available brands such as EB-012, T602, etc. or conductive paste containing conductive carbon black, conductive graphite, carbon nanotubes, graphene and other conductive agents.
  • the formed conductive coating; the temperature of hot pressing composite forming is 100-120°C.
  • conductive carbon layers containing CMC/SBR binder are coated on both sides of the aluminum foil, and the conductive carbon layers are composed of carbon black superp, flake graphite SFG-6, and the like.
  • the battery separator coated with PVDF copolymer on both sides of the surface can be a commercially available lithium-ion battery separator, and can be a substrate containing one or two of polyethylene PE, polypropylene PP, cellulose paper, PET, etc.
  • the separator is obtained by surface coating PVDF copolymer.
  • the lithium ion polymer capacitor battery is obtained after the battery core is processed by high temperature hot pressing shaping treatment, welding tabs, top side sealing, drying liquid injection sealing and other processes.
  • the high temperature hot pressing shaping temperature in this step is 80-100°C.
  • the injection volume of the electrolyte in this step is between 0.2-1.2h/Ah, more preferably 0.4-0.7g/Ah.
  • the injection amount of the electrolyte is 0.6 g/Ah.
  • the lithium ion polymer capacitor battery is subjected to high temperature aging treatment, and the injected electrolyte promotes the polymer to fully swell to form a gel polymer lithium ion capacitor battery.
  • the high-temperature aging temperature in this step is 60-90° C.; the high-temperature aging time is usually 0.5-8 h, preferably 2-4 h.
  • the swelling of the polymer in the positive and negative electrodes/separators is further promoted by high temperature aging.
  • the high temperature aging process is 80°C for 4h.
  • the gel polymer lithium ion capacitor battery is subjected to operations such as formation, volume separation and secondary sealing according to the production process of conventional lithium ion batteries to obtain the final finished gel polymer lithium ion capacitor battery.
  • Figure 1 shows a comparison of the specific effects of the lithium-ion polymer capacitor battery prepared by the above-mentioned embodiment and the conventional lithium-ion battery charge-discharge curve in the prior art.
  • the provided lithium-ion polymer capacitor battery is slightly better than the traditional lithium-ion battery.
  • the lithium ion polymer capacitor battery provided by the present invention has a good cycle life under the environmental condition of 45°C.
  • the preparation method provided by the present invention is simple and feasible, and the prepared gel polymer lithium ion capacitor battery has no free electrolyte, excellent electrochemical performance and high safety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

一种凝胶聚合物锂离子电容电池及其电极和制备方法,涉及电化学储能元器件技术领域,通过引入PEO聚合物制备锂离子电容电池,并在高温陈化后通过电解液使所述聚合物溶胀,因此省去了易燃性的有机溶剂,制备得到的凝胶聚合物锂离子电容电池无游离的液态电解液存在,具有高的安全性能,同时具有良好的电化学性能和使用寿命,且所述的制备方法简单易行。

Description

一种凝胶聚合物锂离子电容电池和电极及其制备方法 技术领域
本发明涉及电化学储能元器件技术领域,具体来说是一种凝胶聚合物锂离子电容电池和电极及其制备方法。
背景技术
自1991年索尼公司发明锂离子电池以来,锂离子电池在消费电子、工业及自动化、能源交通、航空航天等领域得到了迅猛发展。传统的液态锂离子电池采用易燃性的有机化合物作为电解液溶剂,极易产生安全事故。为了解决锂离子电池的安全性问题和追求更高能量密度的锂离子电池,采用高分子聚合物和固态电解质的固态锂电池近年来得到了广泛研究。
US5296318率先提出了一种凝胶聚合物电池的制备方法,将PVDF-HFP作为聚合物电池的粘结剂和聚合物膜的支撑物,采用丙酮作为溶剂浇注法成膜并通过增塑剂萃取造孔来提高电极/隔膜的孔隙率。但这种采用DTP作为增塑剂和甲醇作为萃取剂存在着一定的健康和环境危害。
CN200480006242提出了采用PEO/PVDF-HFP作为聚合物电池的粘结剂,采用丙烯腈作为溶剂制浆后湿法电极涂布工艺的同时将增塑剂改为PC/EC等锂离子电池使用的溶剂成份,从而避免了增塑剂危害且省去了萃取增塑剂的过程。但这种方法随后加入由PC/EC组成的电解液并组装成液态电池,没有实现凝胶聚合物电池的制作。
CN201980018155进一步提出了采用PEO作为聚合物电池的粘结剂和隔膜, 电极制备过程中将电极活性材料、导电剂和PEO聚合物、锂盐等溶解在乙腈溶剂中,湿法涂布成电极后去除乙腈溶剂并进一步加入少量NMP溶剂高温退火处理,使PEO聚合物得到更好的溶胀性已更有利于Li+在聚合物中的传输。
以上方法通过不断改进凝胶聚合物电极的制备工艺和改善聚合物的非结晶态来提高凝胶聚合物锂离子电池的电性能,取得了较好的效果。但制造过程中普遍采用高挥发、易燃有害的有机物作为溶剂来制作电极,仍然存在着一定的环境职业危害和生产安全隐患。
发明内容
本发明的目的在于解决现有技术的不足,提供一种凝胶聚合物锂离子电容电池及其电极的制备方法。该方法制备的凝胶聚合物锂离子电容电池具有制备工艺简单易行,电极制备过程中无易燃挥发性有机溶剂存在,制备过程安全环保。
为了实现上述目的,设计一种凝胶聚合物锂离子电容电池及其电极的制备方法,包括以下步骤:
S1.将电极活性材料与导电剂、锂盐、PEO聚合物粉末按重量比投入粉体混料机中,进行均匀混合:
S2.经混合后的粉体投入机械融合机中,在加温状态下进行融合造粒处理,得到类圆形的混合颗粒;
S3.混合颗粒经热辊压机反复热辊压处理,得到均匀厚度的电极膜片;
S4.电极膜片和表面两侧涂有导电涂层的集流体经热压复合,得到正负极片;
S5.将正负极片裁切成合适尺寸的电池电极,并在叠片机上用表面两侧涂有PVDF共聚物的电池隔膜叠片成电芯;
S6.电芯经高温热压整形处理、焊接极耳、顶侧封、干燥注液封口等工序处理后得到锂离子聚合物电池;
S7.锂离子聚合物电池经高温陈化处理,注入的电解液促使聚合物充分溶胀,形成凝胶聚合物锂离子电池;
S8.对凝胶聚合物锂离子电池按照常规锂离子电池的生产工序进行化成、分容和二次封口等操作,得到最终的成品凝胶聚合物锂离子电池。
进一步的,在所述步骤S1中,所述电极活性材料为活性炭、炭纤维、碳气凝胶、磷酸铁锂(LFP)、磷酸铁锰锂(LFMP)、磷酸钒锂(LVP)、锰酸锂(LMO)、钴酸锂(LCO)、镍酸锂(LNO)、镍钴锰酸锂(NMC)、镍锰酸锂(LNMO)等正极材料中的一种或多种混合物,或石墨(Gr)、中间相炭微球(MCMB)、软碳(SC)、硬炭(HC)、碳纤维(CF)、钛酸锂(LTO)等负极材料中的一种或多种混合物;所述导电剂为炭黑、乙炔黑、碳纳米管、石墨烯、气相生长碳纤维(VGCF)、鳞片石墨等中的一种或几种混合物。所述锂盐为六氟磷酸锂(LiPF6)、双三氟甲烷磺酰亚胺锂(LiTFSI)、双氟磺酰亚胺锂(LiFSI)、四氟硼酸锂(LiBF4)、双草酸硼酸锂(LiBOB)、二氟草酸硼酸锂(LiODFB)、二氟磷锂(LDFP)等有机锂盐中的一种或多种混合物;PEO聚合物为分子量在20~700万范围的聚氧化乙烯,优选为分子量400~500万的聚氧化乙烯。
进一步的,所述步骤S2中的加温状态是指将粉末在60~120℃下进行加热,优选为80~100℃。
进一步的,所述步骤S3中,所述热辊压处理的温度为80~100℃。
进一步的,所述步骤S4中的导电涂层可以是含有包括羧甲基纤维素钠(CMC)、丁苯橡胶(SBR)、聚乙烯醇(PVA)、聚氧乙烯(PEO)、聚甲基丙烯酸甲酯(PMMA)的热熔型粘结剂的导电碳层,也可以选择含有包括导电炭黑、导电石墨、碳纳米管、石墨烯的导电剂的导电浆料涂布成型的导电涂层,且所述热压复合成型的温度为100~120℃。
进一步的,所述步骤S5中的电池隔膜为基材含有聚乙烯PE、聚丙烯PP、纤维素纸、PET一种或两种,并在隔膜表面两侧涂布有聚偏二氟乙烯共聚物(PVDF-HFP)的电池隔膜。
进一步的,所述步骤S6中,所述高温热压整形处理的温度为80~100℃;电解液的注液量为0.2~1.2h/Ah之间,优选为0.4~0.7g/Ah。
进一步的,所述步骤S7中,所述高温陈化温度为60~90℃;高温陈化时间为0.5~8h,优选为2~4h。
本发明还包括一种采用上述方法制备的凝胶聚合物锂离子电容电池电极和一种采用上述方法制备的凝胶聚合物锂离子电容电池。
发明的有益效果
本发明所提供的一种凝胶聚合物锂离子电容电池及其电极和制备方法的优 点包括但不限于:本发明的方法简单易行。按照本发明制备的锂离子电容电池电极极片和凝胶聚合物锂离子电容电池具有良好的电化学性能和使用寿命,无游离的液态电解液存在,具有高的安全性能。
附图说明
图1是本发明的电容电池和传统锂离子电池充放电曲线的对比示意图;
图2是本发明的电容电池45℃循环寿命曲线。
具体实施方式
下面结合实施例对本发明作进一步说明,应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提出了一种凝胶聚合物基锂离子电容电池及其电极的制备方法,根据本发明的实施例,具体制作方法包括:
(1)将电极活性材料与导电剂、锂盐、PEO聚合物粉末等按重量比例投入粉体混料机中,进行均匀混合。
在本发明的一些实施例中,将电极活性材料、导电剂、锂盐和PEO聚合物粉末等进行粉体混合,可采用粉体混料机、V型混粉机、三维混合机、双锥混合机等电池材料领域常用的混合设备,能够满足材料的均匀混合要求即可。
在一些实施例中,电极活性材料可以包括活性炭(AC)、炭纤维(ACF)、碳气凝胶、磷酸铁锂(LFP)、磷酸铁锰锂(LFMP)、磷酸钒锂(LVP)、锰酸锂(LMO)、钴酸锂(LCO)、镍酸锂(LNO)、镍钴锰酸锂(NMC)、镍锰酸锂(LNMO)等正极 材料中的一种或多种混合物,或石墨(Gr)、中间相炭微球(MCMB)、软碳(SC)、硬炭(HC)、碳纤维(CF)、钛酸锂(LTO)等负极材料中的一种或多种混合物。
在一些实施例中,导电剂为炭黑、乙炔黑、碳纳米管、石墨烯、气相生长碳纤维(VGCF)、鳞片石墨等中的一种或几种混合物,属于固体粉末颗粒。
在一些实施例中,锂盐为六氟磷酸锂(LiPF6)、双三氟甲烷磺酰亚胺锂(LiTFSI)、双氟磺酰亚胺锂(LiFSI)、四氟硼酸锂(LiBF4)、双草酸硼酸锂(LiBOB)、二氟草酸硼酸锂(LiODFB)、二氟磷锂(LDFP)等有机锂盐中的一种或多种混合物。
在一些实施例中,PEO聚合物为分子量在20~700万范围的聚氧化乙烯(PEO),尤以分子量400~500万的聚氧化乙烯为佳。
(2)经混合后的粉体投入机械融合机中,在加温状态下进行融合造粒处理,得到类圆形的混合颗粒。
在该步骤中,加温状态可以是在60~120℃下进行,特别是在温度80~100℃更佳。PEO聚合物的软化温度通常在65~67℃,在其软化点温度之上进行机械融合,PEO能更好的起到粘接成型的效果;特别是在其熔点温度附近进行处理效果更佳。
在本发明的一些实施例中,融合造粒处理得到的可以是正极混合颗粒。正极活性材料可以是纳米级的颗粒,材料融合造粒过程中容易吸水团聚;通过在机械融合机中通入氮气氛保护,可以进一步降低空气或环境中水分对材料性能的影响。
在本发明的一些实施例中,融合造粒处理得到的可以是负极混合颗粒。负极碳材料对水分相对要求较少,无需氮气氛保护或干燥环境条件。
(3)混合颗粒经辊压机热辊压处理,得到厚度均匀的电极膜片。
在本步骤中,辊压机热辊压处理温度在80~100℃。通过热辊压处理,电极中的PEO聚合物处于软化状态,辊压过程中材料往非晶态转变,锂盐/PEO构成的聚合物电解质具有更好的离子导电性。
在本发明的一些实施例中,正极活性颗粒含有部分活性炭或炭纤维能够有利于提高辊压的成膜效果,避免辊压过程中电极膜片的破碎;经过热辊压处理后的电极膜片压实密度可以在0.8~4.0g/cm3之间。其中正极膜片的压实密度可以在2.0~4.0g/cm3,具体如2.1g/cm3;而负极膜片的压实密度可以在0.8~2.0g/cm3,具体如1.7g/cm3。相较于传统的液态锂离子电池电极而言,采用PEO聚合物制作的电极可以获得更大的极片厚度和相当的压实密度从而更有利于提高电容电池的能量密度。
(4)电极膜片与表面两侧涂有导电涂层的集流体(铜箔、铝箔等)经热压复合,得到正负极片。
本步骤中的导电涂层可以是含有羧甲基纤维素钠(CMC)、丁苯橡胶(SBR)、聚乙烯醇(PVA)、聚氧乙烯(PEO)、聚甲基丙烯酸甲酯(PMMA)等热熔型粘结剂的导电碳层,也可以选择市售的牌号如EB-012、T602等或含有导电炭黑、导电石墨、碳纳米管、石墨烯等导电剂的导电浆料涂布成型的导电涂层;热压复合成型的温度为100~120℃。
在本发明的一个实施例中,铝箔两侧涂布含有CMC/SBR粘结剂的导电碳层,导电碳层由炭黑superp、片状石墨SFG-6等组成。
(5)将正负极片裁切成合适尺寸的电池电极,并在叠片机上用表面两侧涂有PVDF共聚物的电池隔膜叠片成电芯。
本步骤中表面两侧涂有PVDF共聚物的电池隔膜可以是市售的商业化锂离子电池隔膜,可以是基材含有聚乙烯PE、聚丙烯PP、纤维素纸、PET等一种或两种的隔膜经表面涂布PVDF共聚物得到。
(6)电芯经高温热压整形处理、焊接极耳、顶侧封、干燥注液封口等工序处理后得到锂离子聚合物电容电池。
本步骤中的高温热压整形温度在80~100℃。经过高温热压整形处理的电芯,正负极片中的PEO聚合物和隔膜中的PVDF共聚物均在软化状态下互相粘合,电芯形成一个整体,电极/隔膜界面更加良好,接触内阻进一步降低。
本步骤中的电解液的注液量为0.2~1.2h/Ah之间,更佳的是0.4~0.7g/Ah。通过在电芯中注入少量电解液,促进正负极片中的PEO聚合物和隔膜中的PVDF共聚物充分溶胀,能够提高锂离子在电极/隔膜中的离子电导率,同时为电池循环过程中的“锂损耗”提供了锂源。
本发明的一个实施例中,电解液的注液量是0.6g/Ah。
(7)锂离子聚合物电容电池经高温陈化处理,注入的电解液促使聚合物充分溶胀,形成凝胶聚合物锂离子电容电池。
本步骤中的高温陈化温度为60~90℃;高温陈化时间通常为0.5~8h,更佳的是2~4h。通过高温陈化,进一步促进正负电极/隔膜中的聚合物的溶胀。
本发明的一个实施例中,高温陈化工艺为80℃4h。
(8)对凝胶聚合物锂离子电容电池按照常规锂离子电池的生产工序进行化成、分容和二次封口等操作,得到最终的成品凝胶聚合物锂离子电容电池。
本步骤的电容电池化成、分容和二次封口等工艺与常规的锂离子电池完全相同,可参照现成的锂离子电池生产工艺进行制作。本领域的技术工程人员通过上述描述能够充分理解。
通过上述实施例制备的锂离子聚合物电容电池与现有技术中常见的传统锂离子电池充放电曲线的具体效果对比如图1所示,由图1可知,在相同充放电条件下,本发明所提供的锂离子聚合物电容电池效果要略好于传统锂离子电池。
参见图2,本发明所提供的锂离子聚合物电容电池在45℃的环境条件下具有较好的循环寿命。
综上所述,本发明所提供的制备方法,工艺简单易行,制备的凝胶聚合物锂离子电容电池无游离电解液,电化学性能优良,安全性高。
尽管上面示出和描述了本发明的实施例,但可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制。本领域的技术工程人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变形。

Claims (10)

  1. 一种凝胶聚合物锂离子电容电池及其电极的制备方法,其特征在于,包括以下步骤:
    S1.将电极活性材料与导电剂、锂盐、PEO聚合物粉末按重量比投入粉体混料机中,进行均匀混合:
    S2.经混合后的粉体投入机械融合机中,在加温状态下进行融合造粒处理,得到类圆形的混合颗粒;
    S3.混合颗粒经热辊压机反复热辊压处理,得到均匀厚度的电极膜片;
    S4.电极膜片和表面两侧涂有导电涂层的集流体经热压复合,得到正负极片;
    S5.将正负极片裁切成合适尺寸的电池电极,并在叠片机上用表面两侧涂有PVDF共聚物的电池隔膜叠片成电芯;
    S6.电芯经高温热压整形处理、焊接极耳、顶侧封、干燥注液封口等工序处理后得到锂离子聚合物电池;
    S7.锂离子聚合物电池经高温陈化处理,注入的电解液促使聚合物充分溶胀,形成凝胶聚合物锂离子电池;
    S8.对凝胶聚合物锂离子电池按照常规锂离子电池的生产工序进行化成、分容和二次封口等操作,得到最终的成品凝胶聚合物锂离子电池。
  2. 如权利要求1所述的一种凝胶聚合物锂离子电容电池及其电极的制备方法,其特征在于,所述步骤S1中,所述电极活性材料为活性炭、炭纤维、碳气 凝胶、磷酸铁锂(LFP)、磷酸铁锰锂(LFMP)、磷酸钒锂(LVP)、锰酸锂(LMO)、钴酸锂(LCO)、镍酸锂(LNO)、镍钴锰酸锂(NMC)、镍锰酸锂(LNMO)等正极材料中的一种或多种混合物,或石墨(Gr)、中间相炭微球(MCMB)、软碳(SC)、硬炭(HC)、碳纤维(CF)、钛酸锂(LTO)等负极材料中的一种或多种混合物;所述导电剂为炭黑、乙炔黑、碳纳米管、石墨烯、气相生长碳纤维(VGCF)、鳞片石墨等中的一种或几种混合物。所述锂盐为六氟磷酸锂(LiPF6)、双三氟甲烷磺酰亚胺锂(LiTFSI)、双氟磺酰亚胺锂(LiFSI)、四氟硼酸锂(LiBF4)、双草酸硼酸锂(LiBOB)、二氟草酸硼酸锂(LiODFB)、二氟磷锂(LDFP)等有机锂盐中的一种或多种混合物;PEO聚合物为分子量在20~700万范围的聚氧化乙烯,优选为分子量400~500万的聚氧化乙烯。
  3. 如权利要求1所述的一种凝胶聚合物锂离子电容电池及其电极的制备方法,其特征在于,所述步骤S2中的加温状态是指将粉末在60~120℃下进行加热,优选为80~100℃。
  4. 如权利要求1所述的一种凝胶聚合物锂离子电容电池及其电极的制备方法,其特征在于,所述步骤S3中,所述热辊压处理的温度为80~100℃。
  5. 如权利要求1所述的一种凝胶聚合物锂离子电容电池及其电极的制备方法,其特征在于,所述步骤S4中的导电涂层可以是含有包括羧甲基纤维素钠(CMC)、丁苯橡胶(SBR)、聚乙烯醇(PVA)、聚氧乙烯(PEO)、聚甲基丙烯酸甲酯(PMMA)热熔型粘结剂的导电碳层,也可以选择含有包括导电炭黑、导电石墨、碳纳米管、石墨烯导电剂的导电浆料涂布成型的导电涂层,且所述热压复合成型的温度为100~120℃。
  6. 如权利要求1所述的一种凝胶聚合物锂离子电容电池及其电极的制备方法,其特征在于,所述步骤S5中的电池隔膜为基材含有聚乙烯PE、聚丙烯PP、纤维素纸、PET一种或两种,并在隔膜表面两侧涂布有聚偏二氟乙烯共聚物(PVDF-HFP)的电池隔膜。
  7. 如权利要求1所述的一种凝胶聚合物锂离子电容电池及其电极的制备方法,其特征在于,所述步骤S6中,所述高温热压整形处理的温度为80~100℃;电解液的注液量为0.2~1.2h/Ah之间,优选为0.4~0.7g/Ah。
  8. 如权利要求1所述的一种凝胶聚合物锂离子电容电池及其电极的制备方法,其特征在于,步骤S7中,所述高温陈化温度为60~90℃;高温陈化时间为0.5~8h,优选为2~4h。
  9. 一种采用权利要求1~5任一所述方法制备的凝胶聚合物锂离子电容电池电极。
  10. 一种采用权利要求1~8任一所述方法制备的凝胶聚合物锂离子电容电池。
PCT/CN2021/085420 2020-12-25 2021-04-02 一种凝胶聚合物锂离子电容电池和电极及其制备方法 WO2022134377A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011556480.1 2020-12-25
CN202011556480.1A CN112599726B (zh) 2020-12-25 2020-12-25 一种凝胶聚合物锂离子电容电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2022134377A1 true WO2022134377A1 (zh) 2022-06-30

Family

ID=75201988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085420 WO2022134377A1 (zh) 2020-12-25 2021-04-02 一种凝胶聚合物锂离子电容电池和电极及其制备方法

Country Status (2)

Country Link
CN (1) CN112599726B (zh)
WO (1) WO2022134377A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115148508A (zh) * 2022-08-08 2022-10-04 凌容新能源科技(上海)股份有限公司 储能电容及其制备方法
CN118367228A (zh) * 2024-06-20 2024-07-19 西北工业大学 一种快充长循环硅基锂离子电池的制备方法及循环充电方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335365A (zh) * 2007-06-27 2008-12-31 郑州大学 锂离子聚合物电解质膜及含该膜的锂离子电池的制造方法
CN103093969A (zh) * 2012-12-17 2013-05-08 海博瑞恩电子科技无锡有限公司 一种全程无污染的含有电解液盐的电极制造方法
KR20180027486A (ko) * 2018-03-08 2018-03-14 한국생산기술연구원 전도성 고분자를 포함하는 전고체 리튬이차전지 및 그의 제조방법
CN111342053A (zh) * 2020-03-02 2020-06-26 太仓中科赛诺新能源科技有限公司 一种柔性一体化电极片及其制备方法与应用
CN111837258A (zh) * 2018-05-03 2020-10-27 株式会社Lg化学 制造含聚合物固体电解质的电极的方法和由此获得的电极

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468696B1 (en) * 2000-11-03 2002-10-22 Advanced Polymer Research, Inc. Polymer gel electrolyte systems
CN102115649A (zh) * 2009-12-31 2011-07-06 珠海光宇电池有限公司 高循环寿命的凝胶态聚合物电池及其制造方法
KR20130026791A (ko) * 2011-09-06 2013-03-14 삼성전기주식회사 금속 집전체, 이의 제조방법, 및 이를 구비한 전기 화학 커패시터
CN102437369B (zh) * 2011-12-20 2014-07-02 中国东方电气集团有限公司 一种锂离子电池
CN104098785B (zh) * 2013-04-07 2017-02-08 中国科学院长春应用化学研究所 Pvdf凝胶聚合物电解质及其制备方法
CN103682417A (zh) * 2013-11-22 2014-03-26 深圳市迪凯特电池科技有限公司 一种凝胶聚合物储能锂离子电池及其制备方法
CN203690419U (zh) * 2013-12-20 2014-07-02 天津力神电池股份有限公司 一种聚合物锂离子凝胶电解液电池
KR101704172B1 (ko) * 2015-03-09 2017-02-07 현대자동차주식회사 나노 고체 전해질을 포함하는 전고체 전지 및 이의 제조방법
CN105575670A (zh) * 2015-12-16 2016-05-11 上海奥威科技开发有限公司 有关固态柔性聚合物凝胶电解质混合型超级电容器及方法
CN106486703A (zh) * 2016-11-02 2017-03-08 浙江超威创元实业有限公司 一种使用复合凝胶隔膜的软包锂离子电池制作方法
CN108511685B (zh) * 2017-04-05 2021-02-26 万向一二三股份公司 一种含有导电涂层的锂离子电池负极片及其制备方法
US12057548B2 (en) * 2017-08-28 2024-08-06 Honeycomb Battery Company Continuous process for producing electrochemical cells
DE102018200977A1 (de) * 2018-01-23 2019-07-25 Robert Bosch Gmbh Verfahren zur Herstellung eines Elektrodenmaterials
KR102536633B1 (ko) * 2018-03-14 2023-05-25 주식회사 엘지에너지솔루션 양극의 제조 방법
CN112103506B (zh) * 2020-09-29 2022-03-22 蜂巢能源科技有限公司 准固态电池正极浆料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335365A (zh) * 2007-06-27 2008-12-31 郑州大学 锂离子聚合物电解质膜及含该膜的锂离子电池的制造方法
CN103093969A (zh) * 2012-12-17 2013-05-08 海博瑞恩电子科技无锡有限公司 一种全程无污染的含有电解液盐的电极制造方法
KR20180027486A (ko) * 2018-03-08 2018-03-14 한국생산기술연구원 전도성 고분자를 포함하는 전고체 리튬이차전지 및 그의 제조방법
CN111837258A (zh) * 2018-05-03 2020-10-27 株式会社Lg化学 制造含聚合物固体电解质的电极的方法和由此获得的电极
CN111342053A (zh) * 2020-03-02 2020-06-26 太仓中科赛诺新能源科技有限公司 一种柔性一体化电极片及其制备方法与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115148508A (zh) * 2022-08-08 2022-10-04 凌容新能源科技(上海)股份有限公司 储能电容及其制备方法
CN118367228A (zh) * 2024-06-20 2024-07-19 西北工业大学 一种快充长循环硅基锂离子电池的制备方法及循环充电方法

Also Published As

Publication number Publication date
CN112599726A (zh) 2021-04-02
CN112599726B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
CN101369652B (zh) 聚合物锂离子电池负极及聚合物锂离子电池的制造方法
CN108232318A (zh) 一种全固态动力锂离子电池的制作方法
EP2541566A1 (en) Manufacturing method for long-lived negative electrode and capacitor battery adopting the same
WO2022151944A1 (zh) 一种极片及其制备方法和电池
CN100590761C (zh) 一种超级电容电池的制造方法
CN110311130B (zh) 一种铌酸钛负极材料及其制备方法
CN114665065B (zh) 一种正极极片及其制备方法和应用
CN106654169A (zh) 一种锂离子电池正极片及其制备方法
CN103682417A (zh) 一种凝胶聚合物储能锂离子电池及其制备方法
CN110364761B (zh) 一种高能量密度长循环磷酸铁锂电池
CN101944635A (zh) 一种高功率锂离子二次电池及其制造方法
CN112164797A (zh) 一种预锂极片膜及其制备方法和用途
CN111969182B (zh) 正极极片、其制备方法及其相关的锂离子二次电池、电动车辆和电子产品
WO2022134377A1 (zh) 一种凝胶聚合物锂离子电容电池和电极及其制备方法
CN110739437A (zh) 一种高倍率且安全圆柱型锂离子电池及其制造方法
CN105552302A (zh) 一种可折叠硫正极复合电极结构
CN101250276A (zh) 聚合物锂离子电池用改性隔膜的制备方法
CN114094070A (zh) 一种铌酸钛包覆硬碳复合材料及其制备方法
CN114613974A (zh) 一种长寿命快充型锂离子电池负极材料及其制备方法
CN111710900A (zh) 一种石墨烯基“磷酸亚铁锂正极-硅氧复合负极”低温高倍率高能量密度的锂离子电池
JP2024099670A (ja) セパレータ、電気化学装置および電子装置
CN105185996B (zh) 一种混合动力汽车启动电源用方形锂离子电池及制造方法
CN114497773A (zh) 一种正极片及其制备方法和电池
CN113299974A (zh) 电池
KR101657742B1 (ko) 이차전지용 양극 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908389

Country of ref document: EP

Kind code of ref document: A1