CN105185996B - 一种混合动力汽车启动电源用方形锂离子电池及制造方法 - Google Patents

一种混合动力汽车启动电源用方形锂离子电池及制造方法 Download PDF

Info

Publication number
CN105185996B
CN105185996B CN201510695135.9A CN201510695135A CN105185996B CN 105185996 B CN105185996 B CN 105185996B CN 201510695135 A CN201510695135 A CN 201510695135A CN 105185996 B CN105185996 B CN 105185996B
Authority
CN
China
Prior art keywords
lithium ion
stirring
battery
ion battery
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510695135.9A
Other languages
English (en)
Other versions
CN105185996A (zh
Inventor
沈晓彦
吴金燕
张慕蓉
唐琛明
王兴威
黄金健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Haisida Power Supply Co ltd
Jiangsu New Power Battery & Material Engineering Technology Research Center Co ltd
Original Assignee
Jiangsu New Power Battery & Material Engineering Technology Research Center Co ltd
Jiangsu Highstar Battery Manufacturing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu New Power Battery & Material Engineering Technology Research Center Co ltd, Jiangsu Highstar Battery Manufacturing Co ltd filed Critical Jiangsu New Power Battery & Material Engineering Technology Research Center Co ltd
Priority to CN201510695135.9A priority Critical patent/CN105185996B/zh
Publication of CN105185996A publication Critical patent/CN105185996A/zh
Application granted granted Critical
Publication of CN105185996B publication Critical patent/CN105185996B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及锂离子二次电池制作技术领域,提供了一种混合动力汽车启动电源用方形锂离子电池及制作方法。该电池包括正极片、负极片、隔膜、电解液、绝缘衬套及电池外壳组成,其中正极片包含正极活性物质、粘结剂、导电剂和铝箔等,负极片包含负极活性物质、粘结剂、导电剂和铜箔等。本发明对材料体系进行了优化,所述正极活性物质为含N石墨烯负载Al2O3的复合材料掺杂磷酸铁锂,所述负极活性物质为多壁碳纳米管负载CuO/Cu的复合材料包覆天然石墨。在优化条件下制作的锂离子电池内阻小,倍率循环性能及大电流放电性能优异,可满足混合动力汽车启动电源需求。

Description

一种混合动力汽车启动电源用方形锂离子电池及制造方法
技术领域
本发明属于锂离子电池生产技术领域,涉及一种混合动力汽车启动电源用方形锂离子电池及其制造方法。该电池包括正极片、负极片、隔膜、电解液、绝缘衬套及电池外壳,正极片包含正极活性物质、粘结剂、导电剂和铝箔,负极片包含负极活性物质、粘结剂、导电剂和铜箔,隔膜为PP/PE/PP三层膜,电解液为高电导率安全型电解液,绝缘衬套为聚丙烯薄膜,电池外壳采用铝合金材质,激光焊成型。本发明对材料体系进行了优化,包括正极活性物质优化,正极活性物质为石墨烯复合材料掺杂锂源;包括负极活性物质优化,负极活性物质为多壁碳纳米管复合材料包覆天然石墨。在优化条件下制作的锂离子电池内阻小,倍率循环性能及大电流放电性能优异,满足了混合电动汽车的使用需求。
背景技术
混合动力汽车的动力系统包括发电机和蓄电池,传统的混合动力汽车用蓄电池有铅酸电池和镍镉电池,但这两种电池在使用过程中存在高污染以及存储失效等缺陷,且铅酸电池在放电态下,性能衰退严重。而磷酸铁锂电池不含任何重金属与稀有金属,无毒无污染,且充放电效率高,循环性能好。其晶体中的P-O键稳固,即使在高温或过充情况下也不会发生结构崩塌现象,因此稳定性较好。此外磷酸铁锂电池重量轻,同等容量的锂离子电池重量是铅酸电池的1/3。这一系列的问题激发了人们研究锂离子电池替换传统蓄电池的热潮。然而普通锂离子电池在使用过程中仍然存在一些问题,例如:
1、部分锂离子电池存在内阻偏大的问题,而锂离子电池的内阻对电池性能有较大的影响,电池内阻大,会产生大量焦耳热,导致电池放电工作电压降低,放电时间缩短,影响电池寿命。
2、混合动力汽车领域,需要所适配的电池具有瞬时的高功率,这对电池的大电流放电性能有较高要求,而锂离子电池在大电流放电情况下,电池迅速升温,甚至发生短路,存在严重的安全隐患。
3、普通锂离子电池倍率循环性能差,倍率循环条件下,电池内部极化增大,内阻增大,随着循环次数增多,电解液及正负极材料出现不同程度的损耗,降低了电池的容量与寿命。
因此,开发内阻小、大电流及倍率循环性能优异的锂离子电池成为近几年的研究热点。
发明内容
本发明提供了一种混合动力汽车启动电源用方形锂离子电池及其制造方法,包括正极片、负极片、隔膜、电解液、绝缘衬套及电池外壳。所述正极片中浆料质量百分比为(不包括溶剂):按正极活性物质89%-95%、粘结剂2%-4%、导电剂3%-7%。所述负极片中浆料质量百分比为(不包括溶剂):按负极活性物质86%-92%、粘结剂3%-5%、导电剂5%-9%。
通过的途径和解决的问题分析如下:
1、优选正极材料
本项目优选正极材料,采用含N石墨烯负载Al2O3的复合材料掺杂磷酸铁锂,得到正极活性物质{Al2O3/Graphene(N)- LiFePO4}。磷酸铁锂作为锂离子电池正极材料具有安全性能高,工作温度范围广,循环寿命好等优点被广泛开发利用。然而其作为电池正极材料依然存在一些致命的缺点,例如能量密度低,电导率低,大电流放电性能差。因此本项目采用复合材料掺杂磷酸铁锂的手段克服以上缺陷。石墨烯具有非同寻常的导电性能,少量石墨烯的加入即可提高材料的导电性,然而石墨烯极易团聚,本项目通过加入Al2O3纳米球的手段阻止石墨烯的团聚。石墨烯掺杂N原子的目的是增加其表面的活性位点,有利于金属氧化物的负载。用Al2O3/Graphene(N)复合材料掺杂磷酸铁锂,可以提高正极活性物质的电导率并增大其比表面积,提高利用率。
2、优选负极材料
本项目优选负极材料,采用多壁碳纳米管负载纳米CuO/Cu的复合材料包覆天然石墨,得到负极活性物质{ CuO/Cu/CNTs-C},CuO理论容量大,为石墨负极材料的两倍以上,但其循环性能差,不可逆容量高,将Cu均匀包覆在CuO表面可以缓解脱嵌锂过程中形成的应力,提高其循环性能。加入多壁碳纳米管的目的是:多壁碳纳米管对CuO/Cu起到分散作用,增大CuO/Cu的比表面积提高其利用率,此外其特殊的多壁管状结构有利于锂离子的嵌入和脱出。
本发明提供的一种混合动力汽车启动电源用方形锂离子电池及其制造方法,包括以下几个步骤:
1、正极片的制备方法:在预先配制的胶水中加入导电剂,经过一定时间的高速搅拌后加入正极活性物质,继续高速搅拌,随后加入溶剂NMP调节粘度,搅拌均匀后出料涂在铝箔的两面并进行烘干、辊压、分条、制片一系列操作,最后制成特定尺寸的带极耳的正极片。
2、负极片的制备方法:在预先配制的胶水中加入导电剂,经过一定时间的高速搅拌后加入负极活性物质,继续高速搅拌,最后加入溶剂NMP调节粘度,搅拌均匀后涂在铜箔的两面并进行烘干、辊压、分条、制片,制成特定尺寸的带极耳的负极片。
3、电池装配:将制备好的正负极片和隔膜在一定温度及真空度下,经过一定时间烘烤后,进行叠片,并对叠片后极组吸尘,经过正负极超焊后贴胶并入壳,在一定温度及真空度下烘烤一定时间后注入电解液并进行预封口。
4、电池陈化:将预封口后的电池放入真空烘箱,温度30-70℃,时间20-60h,静置。
5、化成:陈化后的电池冷却,然后进行预充,将电池以0.02C-0.2C电流进行短时间充电,充电一定时间后,静置10min,将充电电流设置为0.05C-0.2C预充一段时间,在负极片表面形成稳定致密、阻抗较小的SEI膜,化成后的电池进行真空脱泡和打钢珠,最后作充放电分容测试。
按照此方法制备的混合动力汽车启动电源用方形锂离子电池将达到如下技术效果:
1、内阻的减小
本发明制备的混合动力汽车启动电源用方形锂离子电池,内阻≤1.3mΩ,电池内阻的减小有利于提高其放电性能,延长电池的放电时间,提高电池的使用寿命。
2、大电流放电性能的提高
本发明制备混合动力汽车启动电源用方形锂离子电池,在-10-55℃的环境下,100C大电流放电,放电时间≥4.8s。
3、倍率循环性能的提高
本发明制备的混合动力汽车启动电源用方形锂离子电池,3C充电5C放电,循环1000次,残余容量≥97%额定容量。
4、产品安全性能的提高
本发明制备的混合动力汽车启动电源用方形锂离子电池,充满电后能在热滥用、挤压、震动、跌落等测试条件下不起火、不爆炸。
附图说明
图1为混合动力汽车启动电源用方形锂离子电池在100C大电流放电条件下的放电曲线,用8A的电流恒流充至3.65V时,转恒压充电,当充电电流小于0.4A时截止,充电时间不超过2h。搁置30min,然后采用800A放电,截止电压为1.8V,放电时间≥4.8s。
图2为混合动力汽车启动电源用方形锂离子电池在3C充电,5C放电条件下的循环性能曲线。电池以24A恒流充电至3.65V时,转为恒压充电,截止电流为0.4A,搁置60min,电池以40A 恒流放电至2.5V,搁置60min。重复以上步骤,直至循环的放电容量少于80%额定容量时寿命即为终止,电池循环1000次,容量依然大于97%的额定容量。
具体实施方式
以下结合具体实施方式和附图对本发明做进一步的描述,以下实施例为本发明优选的实施例,并不能对本发明的权利要求进行限定,本发明尚有多种其它实施方式,凡采用等同替换或者等效变换而形成的技术方案,均在本发明要求保护的范围之内。
实施例一:
混合动力汽车启动电源用方形锂离子电池制备方法:
正极活性物质的制备方法:
1、尿素溶液搅拌下加入至氧化石墨烯GrO溶液中,混合搅拌均匀,超声5-10min,除水后将混合物转移至管式炉,氮气氛围中400℃热处理,得到GrO-N;
2、将GrO-N与Al盐混合搅拌,并超声10-15min,调节pH为8-12,搅拌条件下缓慢加入还原剂,继续搅拌2-4h,抽滤并用去离子水洗涤,洗涤过后的产物转移至真空干燥箱60-80℃,干燥8-10h,随后将干燥后的产物转移至管式炉,氮气保护下500-700℃,煅烧2-6h,得到Al2O3/Gr-N复合材料;
3、将Al2O3/Gr-N复合材料与磷酸铁锂分散于乙二醇中,混合搅拌2-8h,超声10-30min,抽滤并洗涤,之后将混合物转移至烘箱60-80℃,干燥8-10h,得到正极活性物质。
其中步骤1中尿素与GrO摩尔比为1:32-1:11,步骤2中GrO-N与Al盐摩尔比为20:1-40:1,步骤3中Al2O3/Gr-N复合材料与磷酸铁锂(LiFePO4)摩尔比为1:300-1:20。
正极片的制备方法:
正极片中浆料质量百分比为(不包括溶剂):按正极活性物质89%-95%、粘结剂(PVDF) 2%-4%、导电剂(Super P) 2%-4%、导电剂(KS-6) 1%-3%。
1、先在预先配制的胶水中加入导电剂Super P,高速搅拌1.5h;
2、随后加入导电剂KS-6,高速搅拌1.5h;
3、加入50%正极活性物质高速搅拌0.5h;
4、再加入剩余正极活性物质和适量NMP溶剂,继续高速搅拌2.5h;
5、最后加入溶剂NMP调节粘度;
6、搅拌均匀后出料涂在铝箔的两面并进行烘干、辊压、分条、制片一系列操作,最后制成特定尺寸的带极耳的正极片。
负极活性物质的制备方法:
1、取一定量的多壁碳纳米管分散于乙二醇中,超声5-30min,得到多壁碳纳米管的分散液;
2、取一定量的CuSO4与NaOH固体分散于乙二醇中,超声5-30min,搅拌条件下加入至多壁碳纳米管的分散液中,超声5-30min,加热至80-160℃,一定搅拌速度下反应2-20h,之后抽滤,分别用乙二醇和去离子水洗涤,并于70℃-100℃干燥2-8h,得到CuO/CNTs复合物;
3、将CuO/CNTs复合物转移至管式炉,N2/H2混合气氛围下,40-220℃,煅烧0.5-2h,得到CuO/Cu/CNTs复合物;
4、采用液相化学涂覆法,将CuO/Cu/CNTs复合物与天然石墨分散于乙二醇中,喷雾干燥,最后得到负极活性物质。
步骤2中多壁碳纳米管与CuSO4摩尔比为20:1-50:1,步骤4中CuO/Cu/CNTs复合物与天然石墨摩尔比为1:2-1:20。
负极片的制备方法:
负极片中浆料质量百分比为(不包括溶剂):按负极活性物质86%-92%、粘结剂(PVDF) 3%-5%、导电剂(Super P) 1%-3%、导电剂(硬炭) 4-6%。
1、先在预先配制的胶水中加入导电剂Super P,高速搅拌1.5h;
2、再加入导电剂硬炭,高速搅拌1h;
3、随后加入50%负极活性物质,高速搅拌1h;
4、再加入剩余50%负极活性物质及一定量的溶剂NMP,先低速搅拌1h,再高速搅拌4h;
5、加入草酸高速搅拌1h;
6、加入溶剂NMP调节粘度;
7、搅拌均匀后涂在铜箔的两面并进行烘干、辊压、分条、制片,制成特定尺寸的带极耳的负极片。
电池装配:将制备好的正负极片分别于100℃、110℃烘烤13h,然后进行叠片,并对叠片后极组吸尘,经过正负极超焊后贴胶并装入铝合金外壳,80℃烘烤12h后通过真空注液机注入电解液50-80g,并进行预封口。
电池陈化:将预封口后的电池放入真空烘箱,温度38℃,时间48h,静置。
电池化成:陈化后的电池室温冷却,然后进行预充,将电池以0.02C-0.2C电流充电6h,静置10min后,将充电电流设置为0.05C-0.2C充电13h,在负极片表面形成稳定致密、阻抗较小的SEI膜,化成后的电池进行真空脱泡和打钢珠,脱泡时间60min,换气时间每10min一次,最后作充放电分容测试。
采用以上工艺,制成的混合动力汽车启动电源用方形锂离子电池厚度为17mm,宽度为80mm,长度为123mm,容量达到8Ah,电池内阻≤1.3mΩ,100C大电流放电条件下,放电时间≥4.8s。3C充电,5C放电条件下,循环1000次,残余容量≥97%额定容量。充满电后能在热滥用、挤压、震动、跌落等测试条件下不起火、不爆炸。

Claims (3)

1.一种混合动力汽车启动电源用方形锂离子电池,其特征在于,该电池由正极片、负极片、隔膜、电解液、绝缘衬套及电池外壳组成,主要用于混合动力汽车作为启动电源,所述的正极片中浆料组成按质量百分比计,主要为正极活性物质89%-95%、粘结剂2%-4%、导电剂3%-7%,其中正极活性物质为改性石墨烯负载金属氧化物MaOb的复合材料掺杂锂源;所述的负极片中浆料组成按质量百分比计,主要为负极活性物质86%-92%、粘结剂3%-5%、导电剂5%-9%,其中负极活性物质为多壁碳纳米管负载金属基复合物A/BmOn的复合材料包覆天然石墨;所述正极活性物质中的改性石墨烯为含N石墨烯;
所述正极活性物质的制备方法:
1、尿素溶液搅拌下加入至氧化石墨烯GrO溶液中,混合搅拌均匀,超声5-10min,除水后将混合物转移至管式炉,氮气氛围中400℃热处理,得到GrO-N;
2、将GrO-N与Al盐混合搅拌,并超声10-15min,调节pH为8-12,搅拌条件下缓慢加入还原剂,继续搅拌2-4h,抽滤并洗涤过后的产物转移至真空干燥箱60-80℃,干燥8-10h,随后将干燥后的产物转移至管式炉,氮气保护下500-700℃,煅烧2-6h,得到Al2O3/Gr-N复合材料;
3、将Al2O3/Gr-N复合材料与磷酸铁锂分散于乙二醇中,混合搅拌2-8h,超声10-30min,抽滤并洗涤,之后将混合物转移至烘箱60-80℃,干燥8-10h,得到正极活性物质;
所述负极活性物质的制备方法:
1、将多壁碳纳米管分散于乙二醇中,超声5-30min,得到多壁碳纳米管的分散液;
2、将CuSO4与NaOH固体分散于乙二醇中,超声5-30min,搅拌条件下加入至多壁碳纳米管的分散液中,超声5-30min,加热至80-160℃,搅拌反应2-20h,之后抽滤,分别用乙二醇和去离子水洗涤,并于70℃-100℃干燥2-8h,得到CuO/CNTs复合物;
3、将CuO/CNTs复合物转移至管式炉,N2/H2混合气氛围下,220℃,煅烧0.5-2h,得到CuO/Cu/CNTs复合物;
4、采用液相化学涂覆法,将CuO/Cu/CNTs复合物与天然石墨分散于乙二醇中,喷雾干燥,最后得到负极活性物质。
2.如权利要求1所述的锂离子电池,其中,所述正极片浆料中的导电剂为导电炭黑、导电石墨、碳纳米管、纳米碳纤维中的一种或多种,粘结剂为聚偏氟乙烯。
3.如权利要求1所述的锂离子电池,其中所述隔膜为厚度18-25μm、孔隙率35%-48%的PP/PE/PP三层膜。
CN201510695135.9A 2015-10-23 2015-10-23 一种混合动力汽车启动电源用方形锂离子电池及制造方法 Active CN105185996B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510695135.9A CN105185996B (zh) 2015-10-23 2015-10-23 一种混合动力汽车启动电源用方形锂离子电池及制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510695135.9A CN105185996B (zh) 2015-10-23 2015-10-23 一种混合动力汽车启动电源用方形锂离子电池及制造方法

Publications (2)

Publication Number Publication Date
CN105185996A CN105185996A (zh) 2015-12-23
CN105185996B true CN105185996B (zh) 2020-05-19

Family

ID=54907947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510695135.9A Active CN105185996B (zh) 2015-10-23 2015-10-23 一种混合动力汽车启动电源用方形锂离子电池及制造方法

Country Status (1)

Country Link
CN (1) CN105185996B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410151B (zh) * 2016-10-28 2019-07-12 合肥国轩高科动力能源有限公司 一种石墨烯/氧化铝共包覆锂离子电池正极材料的制备方法
CN109192959A (zh) * 2018-09-18 2019-01-11 北京旭碳新材料科技有限公司 一种负载石墨烯的镍钴锰酸锂三元材料及其制备方法
CN109742322B (zh) * 2018-12-05 2023-01-06 江苏海四达电源有限公司 一种高功率磷酸铁锂电池及其制备方法
CN113972363B (zh) * 2021-09-28 2023-01-31 惠州锂威新能源科技有限公司 一种负极材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185139A (zh) * 2011-03-31 2011-09-14 中国科学院过程工程研究所 一种纳米金属氧化物/石墨烯掺杂磷酸铁锂电极材料的制备方法
CN102694152A (zh) * 2011-03-25 2012-09-26 比亚迪股份有限公司 一种负极活性材料及其制备方法和一种锂离子电池
CN104681823A (zh) * 2015-01-23 2015-06-03 西华师范大学 一种氮掺杂石墨烯与Co3O4空心纳米球复合材料及其制备方法和应用
CN104944418A (zh) * 2015-06-17 2015-09-30 哈尔滨工业大学 一种一步原位制备氮含量和种类可调的掺杂石墨烯的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694152A (zh) * 2011-03-25 2012-09-26 比亚迪股份有限公司 一种负极活性材料及其制备方法和一种锂离子电池
CN102185139A (zh) * 2011-03-31 2011-09-14 中国科学院过程工程研究所 一种纳米金属氧化物/石墨烯掺杂磷酸铁锂电极材料的制备方法
CN104681823A (zh) * 2015-01-23 2015-06-03 西华师范大学 一种氮掺杂石墨烯与Co3O4空心纳米球复合材料及其制备方法和应用
CN104944418A (zh) * 2015-06-17 2015-09-30 哈尔滨工业大学 一种一步原位制备氮含量和种类可调的掺杂石墨烯的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
One-Pot Synthesis of Carbon Nanotube@SnO2-Au Coaxial Nanocable for Lithium-Ion Batteries with High Rate Capability;Ge Chen etal;《Chem. Mater》;20081028;第20卷;第6951-6956页 *

Also Published As

Publication number Publication date
CN105185996A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
CN101436654B (zh) 磷酸铁锂型安全高功率锂离子电池
CN107204466B (zh) 一种超低温电池电容及其制备
CN109103399B (zh) 一种锂硫电池用功能性隔膜及其制备方法和在锂硫电池中的应用
CN100590761C (zh) 一种超级电容电池的制造方法
CN101626099A (zh) 一种聚合物磷酸钒锂动力电池及其制备方法
WO2012146046A1 (zh) 一种聚酰亚胺电容电池及其制作方法
CN102208598A (zh) 石墨烯涂层改性的锂二次电池的电极极片及其制作方法
CN109817868B (zh) 一种高电压、高安全锂离子电池及其制备方法
CN103700808A (zh) 一种锂离子电池复合负极极片、制备方法及锂离子电池
CN101197442A (zh) 一种磷酸铁锂锂离子电池
CN110364761B (zh) 一种高能量密度长循环磷酸铁锂电池
CN105470460A (zh) 一种锂离子电池负极片及其制作方法
CN110233284B (zh) 一种低温型高能量密度长循环磷酸铁锂电池
CN111799470B (zh) 正极极片及钠离子电池
CN112018428A (zh) 一种锂离子电池及其制备方法和用途
CN105185996B (zh) 一种混合动力汽车启动电源用方形锂离子电池及制造方法
CN103715452A (zh) 一种低温磷酸铁锂锂离子动力电池
WO2016202168A1 (zh) 一种锂离子电池正极浆料及其制备方法
CN113066962B (zh) 含硅负极片和高能量密度电池
CN106169617A (zh) 一种空间用安全高功率锂离子蓄电池
CN102956874B (zh) 正极膜片和锂离子动力电池及其制备方法
CN112271325A (zh) 一种三维固态锂电池及其制备方法
CN103000385B (zh) 一种超级混合电容电池及其制造方法
CN111463433A (zh) 一种超高倍率磷酸铁锂电池及其制备方法
CN104466236A (zh) 一种能量功率兼顾型锂离子蓄电池及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 226200 No.306 Heping South Road, Huilong Town, Qidong City, Nantong City, Jiangsu Province

Patentee after: Jiangsu haisida power supply Co.,Ltd.

Patentee after: JIANGSU NEW POWER BATTERY & MATERIAL ENGINEERING TECHNOLOGY RESEARCH CENTER CO.,LTD.

Address before: 226200 No.306 Heping South Road, Qidong City, Nantong City, Jiangsu Province

Patentee before: JIANGSU HIGHSTAR BATTERY MANUFACTURING Co.,Ltd.

Patentee before: JIANGSU NEW POWER BATTERY & MATERIAL ENGINEERING TECHNOLOGY RESEARCH CENTER CO.,LTD.