WO2022131255A1 - 表示装置及び電子機器 - Google Patents

表示装置及び電子機器 Download PDF

Info

Publication number
WO2022131255A1
WO2022131255A1 PCT/JP2021/046059 JP2021046059W WO2022131255A1 WO 2022131255 A1 WO2022131255 A1 WO 2022131255A1 JP 2021046059 W JP2021046059 W JP 2021046059W WO 2022131255 A1 WO2022131255 A1 WO 2022131255A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
resonance
electrode
display device
portion corresponding
Prior art date
Application number
PCT/JP2021/046059
Other languages
English (en)
French (fr)
Inventor
達也 加納
卓 坂入
朋芳 市川
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US18/256,948 priority Critical patent/US20240040908A1/en
Priority to CN202180083418.1A priority patent/CN116601693A/zh
Priority to JP2022570009A priority patent/JPWO2022131255A1/ja
Publication of WO2022131255A1 publication Critical patent/WO2022131255A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • H05B33/24Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers of metallic reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • This disclosure relates to a display device and an electronic device using the display device.
  • Patent Document 1 As a technique for improving the light extraction efficiency in a display device provided with an electroluminescence layer (hereinafter, simply referred to as a display device), for example, as shown in Patent Document 1, a plurality of reflective plates and interlayer films are two-dimensionally arranged. A resonator structure including a plurality of transparent electrodes, an electroluminescence layer, and a semitransmissive electrode in this order is known. In the resonator structure, the emitted light from the electroluminescence layer is resonated.
  • a display device having a resonator structure it is required to suppress the problem that light having a color different from the color of the light desired to be extracted by the sub pixel is extracted at the peripheral portion of the sub pixel. Therefore, in a display device having a resonator structure, there is room for improvement in terms of improving color purity.
  • the present disclosure has been made in view of the above points, and one of the purposes of the present disclosure is to provide a display device and an electronic device having excellent color purity.
  • the present disclosure relates to, for example, (1) a plurality of first electrodes arranged two-dimensionally.
  • the second electrode arranged on the first surface side of the first electrode and the second electrode
  • An electroluminescence layer arranged between the first electrode and the second electrode,
  • a reflector facing the second surface of the first electrode and
  • the interlayer film covering the reflector and
  • An insulating layer provided between the adjacent first electrodes and having a plurality of openings.
  • Each of the openings is provided on the first surface of each of the first electrodes.
  • the reflector, the interlayer film, the first electrode, the electroluminescence layer, and the second electrode form a resonator structure that resonates the emitted light from the electroluminescence layer.
  • the resonance order of the portion corresponding to the first region and the resonance order of the portion corresponding to the second region are different. It is a display device.
  • present disclosure may be (2) an electronic device provided with the display device described in (1) above, for example.
  • FIG. 1 is a cross-sectional view for explaining an embodiment of a display device.
  • FIG. 2A is a plan view for explaining one of the embodiments of the display device.
  • FIG. 2B is a partially enlarged plan view of an enlarged portion of the region XS surrounded by the broken line in FIG. 2A.
  • FIG. 3 is a cross-sectional view for explaining the display device according to the first embodiment.
  • 4A and 4B are plan views showing an example of the layout of sub-pixels of the display device.
  • FIG. 5 is a cross-sectional view for explaining an embodiment of a modification of the display device according to the first embodiment.
  • FIG. 6 is a cross-sectional view for explaining an embodiment of the display device according to the second embodiment.
  • FIG. 7 is a cross-sectional view for explaining an embodiment of a modification of the display device according to the second embodiment.
  • FIG. 8 is a cross-sectional view for explaining an embodiment of a modification of the display device according to the second embodiment.
  • FIG. 9 is a cross-sectional view for explaining an embodiment of the display device according to the third embodiment and the fourth embodiment.
  • FIG. 10 is a cross-sectional view for explaining an embodiment of the display device according to the fifth embodiment.
  • 11A, 11B, 11C, 11D, 11E, 11F and 11G are cross-sectional views for explaining an embodiment of a method for manufacturing a display device.
  • 12A, 12B, 12C, 12D and 12E are cross-sectional views for explaining an embodiment of a method for manufacturing a display device.
  • FIG. 13A and 13B are diagrams for explaining an embodiment of an electronic device using a display device.
  • FIG. 14 is a diagram for explaining an embodiment of an electronic device using a display device.
  • FIG. 15 is a diagram for explaining an embodiment of an electronic device using a display device.
  • the Z-axis direction is the vertical direction (upper side is + Z direction, the lower side is -Z direction), the X-axis direction is the front-back direction (front side is + X direction, the rear side is -X direction), and the Y-axis direction.
  • FIG. 1 and 3 are cross-sectional views showing a configuration example of a display device 10 which is an embodiment of the present disclosure.
  • the display device 10 includes a drive substrate 11, a plurality of reflectors 13, an interlayer film 14, a plurality of first electrodes 15, an electroluminescence layer, a second electrode 18, and a protective layer 19. It has an insulating layer 12 arranged between adjacent first electrodes 15.
  • the electroluminescence layer is the organic EL layer 17 as an example.
  • FIG. 3 is a cross-sectional view taken out from a portion of one sub-pixel of FIG.
  • the display device 10 is a top emission type display device.
  • the drive board 11 is located on the back surface side of the display device 10, and the direction (+ Z direction) from the drive board 11 toward the organic EL layer 17 is the front surface side (display surface 10A side) of the display device 10. ing.
  • the surface on the display surface 10A side of the display device 10 is referred to as a first surface (upper surface), and the surface on the back surface side of the display device 10 is referred to as a second surface. It is called (bottom surface).
  • the reflector 13, the interlayer film 14, the first electrode 15, the organic EL layer 17, and the second electrode 18 formed on the drive substrate 11 form the organic EL element 100. ..
  • a plurality of organic EL elements 100 are formed on the display device 10 according to the layout of the pixels.
  • the layout of the organic EL element 100 is not particularly limited.
  • the plurality of organic EL elements 100 have a layout in which they are two-dimensionally arranged in two predetermined directions (X-axis direction and Y-axis direction in FIG. 2A).
  • FIG. 2A is a plan view for explaining an embodiment of the display surface 10A of the display device 10.
  • reference numeral 10B is a non-display portion surrounding the display surface 10A.
  • one pixel is formed by a combination of a plurality of sub-pixels corresponding to a plurality of color types.
  • three colors of red, blue, and green are defined as a plurality of color types, and three types of sub-pixels, sub-pixel 101R, sub-pixel 101G, and sub-pixel 101B, are provided.
  • the sub-pixel 101R, sub-pixel 101G, and sub-pixel 101B are a red sub-pixel, a blue sub-pixel, and a green sub-pixel, respectively, and display red, blue, and green, respectively.
  • the organic EL element 100R, the organic EL element 100G, and the organic EL element 100B are provided corresponding to the sub pixel 101R, the sub pixel 101G, and the sub pixel 101B. ..
  • the examples of FIGS. 2A and 2B are examples, and are not limited to the case where the display device 10 has a plurality of sub-pixels corresponding to a plurality of color types.
  • the color type may be one type, or the pixels may be formed without having sub-pixels.
  • the light corresponding to each of the red, green, and blue color types has a main wavelength in the wavelength range of 610 nm to 650 nm, 510 nm to 590 nm, and 440 nm to 480 nm, respectively. It can be defined as the light to have.
  • the layout of the sub-pixels 101R, 101G, and 101B is a striped layout in the examples of FIGS. 1 and 2B, but the layout is not limited to this example.
  • the layout of the sub-pixels 101R, 101G, and 101B may be, for example, a delta-shaped layout as shown in FIG. 4A or a square arrangement as shown in FIG. 4B.
  • the shapes of the sub-pixels 101R, 101G, and 101B are also not particularly limited.
  • sub-pixel 101 is used unless the sub-pixels 101R, 101G, and 101B are particularly distinguished.
  • the term organic EL element 100 is used.
  • FIG. 3 one sub-pixel 101 and a portion of the organic EL element 100 are extracted and shown, but as shown in the examples of FIGS. 1, 2A, and 2B, the sub-pixels are shown.
  • each of the plurality of organic EL elements 100R, 100G, 100B corresponding to the plurality of sub-pixels 101R, 101G, 101B A similar configuration can be adopted.
  • the configuration of the organic EL element and the configuration of the pixels are the same for the second to fifth embodiments described later, each modification example thereof, and an example of a manufacturing method.
  • the display device 10 may have one pixel formed by a combination of a plurality of sub-pixels corresponding to a plurality of color types. However, one type of color may be used, or the pixels may be formed without having sub-pixels.
  • the drive substrate 11 is provided with various circuits for driving a plurality of organic EL elements 100 on the substrate 11A.
  • various circuits include a drive circuit that controls the drive of the organic EL element 100 and a power supply circuit that supplies electric power to a plurality of organic EL elements 100 (none of which are shown).
  • the substrate 11A may be made of, for example, glass or resin having low permeability of water and oxygen, or may be made of a semiconductor such as a transistor which can be easily formed.
  • the substrate 11A may be a glass substrate, a semiconductor substrate, a resin substrate, or the like.
  • the glass substrate includes, for example, high strain point glass, soda glass, borosilicate glass, forsterite, lead glass, quartz glass and the like.
  • the semiconductor substrate includes, for example, amorphous silicon, polycrystalline silicon, single crystal silicon, and the like.
  • the resin substrate contains, for example, at least one selected from the group consisting of polymethylmethacrylate, polyvinyl alcohol, polyvinylphenol, polyethersulfone, polyimide, polycarbonate, polyethylene terephthalate, polyethylene naphthalate and the like.
  • a plurality of contact plugs (not shown) for connecting the organic EL element 100 and various circuits provided on the board 11A are provided on the first surface of the drive board 11.
  • a resonator structure 102 is formed on the display device 10.
  • the resonator structure 102 is a cavity structure, and is a structure that resonates the emitted light from the organic EL layer 17, which will be described later.
  • the resonator structure 102 is formed in the organic EL element 100, and the reflector 13, the interlayer film 14, the first electrode 15, the organic EL layer 17, and the second electrode 18 have a resonator structure. Forming 102.
  • Resonating the light emitted from the organic EL layer 17 means resonating the light having a specific wavelength contained in the emitted light.
  • the organic EL layer 17 uses white light as emitted light, and the resonator structure 102 resonates light having a specific wavelength included in the white light.
  • the light having a predetermined wavelength is emphasized.
  • the light is emitted from the second electrode 18 side of the organic EL element 100 toward the outside in a state where the light having a predetermined wavelength is emphasized.
  • the light having a predetermined wavelength is light corresponding to a predetermined color type, and indicates light corresponding to a color type determined according to the sub-pixel 101.
  • the display device 10 has sub-pixels 101R, 101G, 101B, and has organic EL elements 100R, 100G, 100B according to the sub-pixels 101R, 101G, 101B, respectively.
  • Resonator structures 102R, 102G, 102B are formed in the organic EL elements 100R, 100G, and 100B, respectively.
  • red light resonates among the light emitted from the organic EL layer 17.
  • Light is emitted from the second electrode 18 of the organic EL element 100R toward the outside in a state where the red light is emphasized.
  • green light and blue light of the emitted light from the organic EL layer 17 resonate, respectively.
  • the resonance of the emitted light from the organic EL layer 17 is realized by the reflection between the second electrode 18 and the reflector 13.
  • the optical path length (sometimes referred to as an optical distance) between the second electrode 18 and the reflector 13 is set according to the light of a predetermined color type.
  • the predetermined color type is a color type that the sub-pixel 101 wants to emit light.
  • the optical path length between the reflector 13 and the second electrode 18 is set so as to cause resonance of red light.
  • the optical path length between the reflector 13 and the second electrode 18 is set so as to cause resonance of green light and blue light, respectively. ..
  • the region corresponding to the opening 120 described later is defined as the first region Sc, and the region corresponding to the outside of the first region Sc among the regions corresponding to the first electrode 15 is the second region.
  • the structure that resonates the emitted light from the organic EL layer 17 in both the portions corresponding to the first region Sc and the second region Sp. Is formed.
  • the portion of the resonator structure 102 corresponding to the first region Sc is referred to as the first resonance structure E1 (indicated by the range indicated by the double-headed arrow in FIG. 3).
  • the portion of the resonator structure 102 corresponding to the second region Sp is referred to as a second resonance structure E 2 (indicated by the range indicated by the double-headed arrow in FIG. 3).
  • the first resonance structure E 1 and the second resonance structure E 2 have the first resonance structure E 1 R, E 1 G, E 1 B, and the second resonance structure E 2 R, E in the sub pixels 101R, 101G, and 101G, respectively. 2 G and E 2 B are formed.
  • the "region corresponding to the outside of the first region Sc among the regions corresponding to the first electrode 15" indicating the second region Sp is the outer peripheral edge of the opening 120 in the plan view of the display device 10. It is a region corresponding to the portion, and is a region where the insulating layer 12 and the first electrode 15 overlap.
  • the optical path length (optical distance) between the second electrode 18 and the reflector 13 is set according to the light of a predetermined color type, respectively. It can be realized by setting.
  • the resonator structure 102 is formed in both the portion corresponding to the first region Sc and the portion corresponding to the second region Sp, and further, in the resonator structure 102, the first region Sc is formed.
  • the resonance order in the portion corresponding to the second region Sp is different from the resonance order in the portion corresponding to the second region Sp. That is, the display device 10 makes the resonance order of the first resonance structure E 1 different from the resonance order of the second resonance structure E 2 in the resonator structure 102.
  • the optical path length between the second electrode 18 and the reflecting plate 13 in the portion corresponding to the first region Sc is set to the resonance order of the first resonance structure E1.
  • the optical path length between the second electrode 18 and the reflecting plate 13 in the portion corresponding to the second region Sp is set to the value corresponding to the resonance order of the second resonance structure E2. It can be realized by forming the configuration to be used.
  • the resonance condition satisfies the following formula 1 and the following formula 2, and is a combination of the following formula 3 and the following formula 4, or a combination of the following formula 5 and the following formula 6. Indicates that the above is satisfied.
  • L 1 is the optical distance [nm], L 2 between the reflecting plate 13 and the second electrode 18 in the portion corresponding to the first region Sc. Is the optical distance [nm] between the reflector 13 and the second electrode 18 in the portion corresponding to the second region Sp, and ⁇ is the peak wavelength of the spectrum of light corresponding to the predetermined color type. [Nm] and ⁇ are the magnitudes of the phase shift caused by the reflection of light by the reflecting plate 13 and the second electrode 18, [rad] (radian), and m 1 is the resonance in the portion corresponding to the first region Sc.
  • the integer of the order, m 2 indicates the integer of the resonance order in the portion corresponding to the second region Sp.
  • the light corresponding to the predetermined color type corresponds to the light to be extracted to the outside.
  • the optical distance L 1 forms a portion corresponding to the first region Sc and indicates the sum of the products of the thickness and the refractive index of each layer formed between the reflector 13 and the second electrode 18.
  • each layer for example, between the reflector 13 and the first electrode 15 in the interlayer film 14
  • the thickness [nm] of the portion interposed therein, the first electrode 15, and the layer forming the organic EL layer 17) is set to d 1 1, d 1 2, d 1 3 ..., D 1 k 1 (k 1 is).
  • the number of layers (integer) forming the portion corresponding to the first region Sc, and the refractive index corresponding to each layer is n 1 1, n 1 2, n 1 3 ..., n 1 k 1
  • L 1 is a value calculated by d 1 1 ⁇ n 1 1 + d 1 2 ⁇ n 1 2 + d 1 3 ⁇ n 1 3 + ... + d 1 k 1 ⁇ n 1 k 1 .
  • the optical distance L 1 corresponds to the optical distance of the first resonance structure E 1 .
  • the optical distance L 2 forms a portion corresponding to the second region Sp, and indicates the sum of the products of the thickness and the refractive index of the layer formed between the reflector 13 and the second electrode 18.
  • each layer for example, between the reflector 13 and the first electrode 15 of the interlayer film 14
  • the thickness [nm] of the portion interposed therein, the first electrode 15, and the layer forming the organic EL layer 17) is set to d 2 1, d 2 2, d 2 3 ..., D 2 k 2 (k 2 is).
  • L 2 is a value calculated by d 2 1 ⁇ n 2 1 + d 2 2 ⁇ n 2 2 + d 2 3 ⁇ n 2 3 + ... + d 2 k 2 ⁇ n 2 k 2 .
  • the optical distance L 2 corresponds to the optical distance of the second resonance structure E 2 .
  • the phase shift ⁇ is ⁇ 1 + ⁇ 2 when the phase shift caused by the reflection of light on the reflecting plate 13 is ⁇ 1 and the magnitude of the phase shift caused by the reflection of light on the second electrode 18 is ⁇ 2 . It is a value calculated by.
  • ⁇ 1 can be specified by using the refractive index of the reflector 13, the absorption coefficient of the reflector 13, the refractive index of the interlayer film 14 in contact with the reflector 13, and the like.
  • ⁇ 2 can be specified by using the refractive index of the reflector 13, the absorption coefficient of the reflector 13, the refractive index of the interlayer film 14 in contact with the reflector 13, and the like.
  • the description of Principles of Opics, Max Born and Emil Wolf, 1974 (PERGAMON PRESS) and the like can be referred to.
  • the separation distance from the first electrode 15 to the reflector 13 in the portion corresponding to the first region Sc is the distance determined based on the optical distance corresponding to the resonance order of the first resonance structure E1.
  • the separation distance from the first electrode 15 to the reflector 13 in the portion corresponding to the second region Sp is a distance determined based on the optical distance corresponding to the resonance order of the second resonance structure E2.
  • a configuration is adopted in which the resonance order of the first resonance structure E 1 and the resonance order of the second resonance structure E 2 are individually different for each of the resonator structures 102R, 102G, and 102B.
  • a configuration may be adopted in which the resonance order of the first resonance structure E1 and the resonance order of the second resonance structure E 2 are different for a part of the resonator structures 102R, 102G, and 102B.
  • the configuration in which the resonance order of the first resonance structure E 1 and the resonance order of the second resonance structure E 2 are different corresponds to the film thickness of the interlayer film 14 corresponding to the first region. It is also shown that it is realized by setting the value corresponding to the resonance order of each portion in the portion and the portion corresponding to the second region. That is, in the example shown in FIG. 3, in the portion corresponding to the first region Sc, from the first surface of the reflector 13 to the first surface of the interlayer film 14 (the first surface of the interlayer film 14B).
  • the thickness to the surface) is A 1 , and in the portion corresponding to the second region Sp, the first surface of the reflector 13 to the first surface of the interlayer film 14 (the first surface of the interlayer film 14B) of the interlayer film 14
  • the separation distance from the first electrode 15 to the reflector 13 in the portion corresponding to the first region Sc corresponds to A 1 and corresponds to the second region Sp.
  • the separation distance from the first electrode 15 to the reflector 13 in the portion corresponding to A2 corresponds to A2. Therefore, A 1 and A 2 are distances determined based on the optical distance corresponding to the resonance order of the first resonance structure E 1 and the optical distance corresponding to the resonance order of the second resonance structure E 2 , respectively.
  • a 1 and A 2 corresponding to the separation distance from the first electrode 15 to the reflector 13 have different values.
  • the thicknesses A1 and A2 as shown in FIG. 1, the thicknesses (A1R, A2R , A1G , A2G , A1B, A ) for each sub-pixel 101R, 101G, 101B 2 B) is defined.
  • the resonator structure 102 shown in the example of the display device 10 of FIG. 3 shows a case where the resonance order of the second resonance structure E 2 is larger than the resonance order of the first resonance structure E 1 .
  • Examples of such a case include a case where the resonance order m 1 of the first resonance structure E 1 is 1 and the resonance order m 2 of the second resonance structure E 2 is 2.
  • the optical distance L 1 according to the resonance order of the first resonance structure E 1 and the resonance order of the second resonance structure E 2 according to the conditions of the values of ⁇ and ⁇ from Equation 1 and Equation 2 of the above resonance conditions.
  • the optical distance L 2 can be determined. Further, in this case, the optical distance L 2 becomes longer than the optical distance L 1 .
  • the shape of the reflector 13 can be determined so as to satisfy the specified L 1 and L 2 .
  • the reflector 13 has a step (thickness difference) formed on the first surface side. That is, of the thickness of the reflector 13, the thickness Wr2 of the portion corresponding to the second region Sp is smaller than the thickness Wr1 of the portion corresponding to the first region Sc.
  • the position of the first surface of the reflector 13 is set to the second region Sp rather than the portion corresponding to the first region Sc so that the optical distance L 1 and the optical distance L 2 are satisfied.
  • the corresponding portion is located farther from the second electrode 18.
  • the specific values of the optical distance L 1 and the optical distance L 2 are the thickness of each layer forming the organic EL element 100 ((d 1 1, d 1 2, ... d 1 k 1 ), (d 2 ). 1, d 2 2, ..., d 2 k 2 )), refractive index ((n 1 1, n 1 2, ..., n 1 k 1 ), (n 2 1, n 2 2, ...) It can be specified according to conditions such as, n 2 k 2 )), ⁇ , and ⁇ .
  • Each layer is configured as follows.
  • a plurality of first electrodes 15 are provided on the first surface side of the drive substrate 11.
  • the plurality of first electrodes 15 are two-dimensionally arranged corresponding to the layout of the sub-pixel 101.
  • the plurality of first electrodes 15 are formed on the first surface of the interlayer film 14 described later.
  • the first electrode 15 is an anode.
  • the first electrode 15 is preferably made of a material having a high work function and a high transmittance.
  • the first electrode 15 is a transparent electrode.
  • the transparent electrode is not particularly limited, and includes, for example, a transparent conductive oxide (TCO: Conductive Oxide).
  • TCO transparent conductive oxide
  • Examples of the transparent conductive oxide include an indium-based transparent conductive oxide, a tin-based transparent conductive oxide, and a zinc-based transparent conductive oxide.
  • the transparent electrode may contain a plurality of types of these various exemplified transparent conductive oxides.
  • the indium-based transparent conductive oxide indicates a transparent conductive oxide containing indium, and exemplifies a group of compounds such as indium tin oxide (ITO), indium zinc oxide (IZO), and indium gallium oxide (IFO). be able to.
  • the tin-based transparent conductive oxide indicates a transparent conductive oxide containing tin, and examples thereof include a group of compounds such as tin oxide, antimony-doped tin oxide (ATO), and fluorine-doped tin oxide (FTO). can.
  • the zinc-based transparent conductive oxide indicates a transparent conductive oxide containing zinc, and a group of compounds such as zinc oxide, aluminum-doped zinc oxide (AZO), and boron-doped zinc oxide can be exemplified.
  • the first electrode 15 is an electrode formed of ITO as a transparent electrode.
  • An insulating layer 12 having an opening 120 is formed between the adjacent first electrodes 15.
  • the insulating layer 12 is formed on the surface of the interlayer film 14 described later and on the first surface of the first electrode 15.
  • the opening 120 of the insulating layer 12 is formed at a position where the first electrode 15 is formed in the plan view of the display device 10.
  • the opening 120 is formed in a pattern corresponding to the arrangement pattern of the sub-pixel 101, and one section of the opening 120 defines a unit section of the sub-pixel 101.
  • the opening 120 is provided on the first surface of each first electrode 15, as shown in the examples of FIGS. 1 to 3.
  • the opening 120 is formed on the first surface of the first electrode 15, that the insulating layer 12 covers the side end surface of the first electrode 15 and the outer edge portion of the upper surface (first surface). It is shown that it is formed so as to ride on the upper surface side of the electrode 15 of 1.
  • the plan view of the display device 10 means a case where the vertical direction is the line-of-sight direction.
  • the insulating layer 12 is a layer that electrically separates the adjacent first electrodes 15.
  • the insulating layer 12 is not particularly limited, and may be formed of an organic insulating film such as a polyimide resin or an inorganic insulating film such as silicon nitride.
  • the organic EL layer 17 is arranged between the first electrode 15 and the second electrode 18 described later, as shown in FIGS. 1 and 3.
  • the organic EL layer 17 covers the first electrode 15 and the insulating layer 12.
  • the organic EL layer 17 is an organic EL layer common to all pixels and all sub-pixels.
  • the organic EL layer 17 includes at least a light emitting layer.
  • the light emitting layer is formed of an organic light emitting material. In the light emitting layer, holes and electrons injected from each of the first electrode 15 and the second electrode 18 are bonded to each other, and light is generated. The generated light becomes the light emitted from the organic EL layer 17.
  • the organic EL layer 17 has a structure in which a hole transport layer, a light emitting layer, and an electron transport layer are laminated in this order from the first electrode 15 toward the second electrode 18 (from bottom to top). May be good. When the organic EL layer 17 has such a structure, the luminous efficiency can be further increased. Further, the organic EL layer 17 has a structure in which a hole injection layer, a hole transport layer, a light emitting layer electron, an injection layer, and an electron transport layer are laminated in this order from the first electrode 15 to the second electrode 18. You may have.
  • the light emitted from the organic EL layer 17 is preferably white light in that it contains light of various wavelengths as a component, but this is because the light emitted from the organic EL layer 17 is emitted. It does not specifically regulate the color of the emitted light.
  • the organic EL layer 17 is a layer common to all sub-pixels 101, but the display device 10 is not limited to this.
  • the organic EL layer 17 may be formed for each sub-pixel 101, or the organic EL layer 17 may be formed for each color type of the sub-pixel 101.
  • the organic EL layer 17 emits red light corresponding to each of the organic EL elements 100R, 100G, and 100B.
  • the EL layer, the organic EL layer that emits green light, and the organic EL layer that emits blue light may be formed in a state of being separated from each other. However, even in this case, the insulating layer 12 and the opening 120 are formed.
  • the second electrode 18 is arranged on the first surface side of the first electrode 15.
  • the second electrode 18 is a layer common to all the sub-pixels 101, but the display device 10 is not limited to this. Similar to the organic EL layer 17, the display device 10 may form a second electrode 18 for each sub-pixel 101, or may form a second electrode 18 for each color type of the sub-pixel 101. ..
  • the second electrode 18 is a cathode.
  • the second electrode 18 can reflect the emitted light generated from the organic EL layer 17 and can transmit the light resonated by the resonator structure 102.
  • the second electrode 18 is preferably a semi-transmissive electrode.
  • the semi-transmissive electrode indicates an electrode having both a light-reflecting property and a light-transmitting property.
  • the second electrode 18 is preferably formed of a layer having a low work function from the viewpoint of improving the luminous efficiency of the organic EL element 100.
  • the second electrode 18 may be formed of, for example, a single-layer film or a multilayer film of one of a metal layer and a metal oxide layer, or may be formed of a laminated film of a metal layer and a metal oxide layer.
  • the metal layer is directed toward the organic EL layer 17 from the viewpoint of facing the layer having a low work function to the organic EL layer. It is preferable to have.
  • the metal layer may contain at least one metal element selected from the metal group consisting of, for example, magnesium (Mg), aluminum (Al), silver (Ag), calcium (Ca), sodium (Na) and the like. Suitable.
  • the metal layer may be an alloy containing a metal element selected from the above metal group as a constituent element. Examples of the metal oxide include ITO, IZO, ZnO and the like.
  • the reflector 13 is provided so as to face the second surface side of the first electrode 15.
  • the reflector 13 is provided for each first electrode 15, that is, for each sub-pixel 101. Further, the reflector 13 faces the organic EL layer 17 via the first electrode 15.
  • the reflector 13 reflects the light emitted from the organic EL layer 17.
  • the reflector 13 is not particularly limited as long as it can form a surface having light reflectivity, but is preferably formed of a layer containing metal (reflection layer) from the viewpoint of enhancing light reflectivity.
  • the metal include silver (Ag), silver alloy, aluminum (Al), aluminum alloy (Al), platinum (Pt), gold (Au), chromium (Cr), tungsten (W) and the like. ..
  • the reflector 13 may be formed of a reflective layer, but may have a laminated structure in which a reflective layer is formed on an underlying layer. In this case, the reflector 13 has a surface on which the reflective layer is formed as a first surface.
  • the base layer is preferably formed of a layer containing titanium (Ti) or a titanium-based compound. Examples of the titanium-based compound include titanium nitride (TiN) and titanium oxide.
  • the thickness Wr1 of the portion of the reflector 13 corresponding to the first region Sc and the thickness Wr2 of the portion corresponding to the second region Sp are different.
  • the thickness (Wr1, Wr2) of the reflector 13 is determined according to the resonance order of the first resonance structure E1 and the resonance order of the second resonance structure E2 in the resonator structure 102. Further, the shape of the reflector 13 can be determined according to the thickness (Wr1, Wr2) of the reflector 13.
  • the example of the display device 10 of FIGS. 1 to 3 is an example in which the resonance order of the first resonance structure E 1 is smaller than the resonance order of the second resonance structure E 2 (for example, the resonance order of the first resonance structure). Is 1, and the resonance order of the second resonance structure E 2 is 2). Based on the above equations 1 and 2 showing the resonance conditions, the larger the resonance order, the more the resonance condition is satisfied under the condition that the light of the same color is to be resonated in the first region Sc and the second region Sp. The optical distance of is increased. From this point of view, in the examples of FIGS. 1 to 3, the thickness and shape of the reflector 13 correspond to the second region Sp, and the position on the first surface side corresponds to the first region Sc. It is determined to be in a direction farther from the second surface of the first electrode 15 than the position on the first surface side.
  • the interlayer film 14 is arranged on the second surface side of the first electrode 15, and covers the first surface side of the reflector 13.
  • the reflector 13 is embedded in the interlayer film 14. More specifically, the interlayer film 14 is composed of two layers (interlayer film 14A and interlayer film 14B), and the reflector 13 is arranged on the interlayer film 14A so as to cover the interlayer film 13. 14B is formed.
  • the interlayer film 14 covers the first surface of the drive substrate 11.
  • the interlayer film 14 functions as an optical adjustment layer for adjusting the optical distance between the reflector 13 and the second electrode 18. The adjustment of the optical distance between the reflector 13 and the second electrode 18 can be realized by determining the distance between the first surface of the interlayer film 14 and the first surface of the reflector 13.
  • the resonator structure 102R has an optical distance L 1 R that resonates red light in the first resonance structure E 1 .
  • the distance (thickness A 1 R) between the first surface of the interlayer film 14 and the first surface of the reflector 13 (the region corresponding to the first region Sc of the first plane) is determined.
  • the interlayer film 14 is provided so that the resonator structure 102R has an optical distance L2R that resonates red light in the second resonance structure E2.
  • the distance (thickness A 2 R) between the first surface of the above and the first surface of the reflector 13 (the region corresponding to the second region Sp of the first surface) is determined.
  • the distance between the first surface of the interlayer film 14 and the first surface of the reflector 13 for the portion corresponding to the first region Sc is determined.
  • B) and the distance (thickness A 2 G, A 2 B) between the first surface of the interlayer film 14 and the first surface of the reflector 13 for the portion corresponding to the second region Sp are determined.
  • these distances correspond to the organic EL elements 100R, 100G, 100B.
  • the shape (thickness) of the reflector 13 is determined so as to satisfy the condition of 2B), and the position of the reflector 13 in the interlayer film 14 is determined so as to satisfy the condition of these distances.
  • the first surface of the interlayer film 14A is a flat surface, and the depth from the first surface of the interlayer film 14B to the position of the reflector 13 is subject to the above-mentioned distance condition. It is a corresponding distance.
  • this example is an example, in which the first surface of the interlayer film 14B becomes a flat surface, and the first surface of the interlayer film 14A is unevenly formed from the first surface of the interlayer film 14B to the position of the reflector 13.
  • the depth of the above may be set according to the above-mentioned distance condition.
  • a protective layer 19 is formed on the second electrode 18.
  • the protective layer 19 is made of an insulating material.
  • the insulating material for example, a thermosetting resin or the like can be used.
  • the insulating material may be SiO, SiON, AlO, TiO or the like.
  • a CVD film containing SiO, SiON, etc., an ALD film containing AlO, TiO, SiO, etc., and the like can be exemplified.
  • a color filter layer 103 may be provided on the protective layer 19.
  • the color filter layer 103 may be provided according to the sub-pixel 101.
  • the color filter layers 103R, 103G, 103B corresponding to the sub-pixels 101R, 101G, 101B are provided.
  • the filled resin layer 104 may be formed on the color filter layer 103.
  • the filled resin layer 104 can have a function of protecting the color filter layer 103, and can flatten the first surface side of the color filter layer 103.
  • the filled resin layer 104 can have a function as an adhesive layer for adhering the protective layer 19 and the facing substrate 105 described later.
  • the filled resin layer 104 can be exemplified by an ultraviolet curable resin, a thermosetting resin, or the like.
  • the facing substrate 105 is provided on the filling resin layer 104 in a state of facing the drive substrate 11.
  • the facing substrate 105 seals the organic EL element 100 together with the filled resin layer 104.
  • the facing substrate 105 is preferably made of a material such as glass.
  • the first surface of the first electrode has a region exposed from the opening of the insulating layer and a region covered with the insulating layer, and is organic so as to cover these regions.
  • carriers holes, etc.
  • the organic EL layer may emit light not only in the opening but also in the peripheral region of the opening in the insulating layer.
  • a technique for improving the light extraction efficiency by providing a resonator structure that resonates the emitted light from the organic EL layer has been proposed.
  • the resonator structure is formed in the display device, not only the emitted light resonates in the portion corresponding to the first region corresponding to the opening, but also corresponds to the second region outside the first region.
  • the emitted light may resonate even in a part.
  • the portion corresponding to the second region is different from the portion corresponding to the first region, and an insulating layer is formed on the first electrode.
  • the optical distance between the reflector and the second electrode in the portion corresponding to the first region and the optical distance between the reflector and the second electrode in the portion corresponding to the second region There is a difference between the distance and the distance, and different colors may be emitted in the first region and the second region (color shift). Therefore, in a display device having an organic EL layer, even when the resonator structure is provided and the first region and the second region are formed, the color shift between the first region and the second region can be prevented. It is required to suppress it.
  • the resonance order of the portion corresponding to the first region Sc and the resonance order of the portion corresponding to the second region Sp are different.
  • light of the same color resonates between the portion corresponding to the first region Sc and the portion corresponding to the second region Sp with different resonance orders. Therefore, according to the display device 10, it is possible to suppress the color shift between the first region Sc and the second region Sp.
  • the first region Sc since the resonance order is different between the portion corresponding to the first region Sc and the portion corresponding to the second region Sp, the first region Sc It is possible to secure a machining margin in the portion corresponding to the portion corresponding to the second region Sp and the portion corresponding to the second region Sp.
  • the resonance order of the portion corresponding to the first region Sc and the resonance order of the portion corresponding to the second region Sp are determined. In order to realize a uniform design, it may be necessary to design the reflector 13 so that the portion corresponding to the second region Sp is usually located on the side of the first electrode 15.
  • the display device 10 since the resonance order is different between the portion corresponding to the first region Sc and the portion corresponding to the second region Sp, the second region It has become possible to design the portion corresponding to Sp so that the distance between the first electrode 15 and the reflector 13 can be sufficiently secured, and the portion corresponding to the second region Sp is highly feasible. Can be designed.
  • the resonance order of the second resonance structure E 2 is larger than the resonance order of the first resonance structure.
  • the resonance order of the first resonance structure E 1 may be larger than the resonance order of the second resonance structure E 2 .
  • the resonance order of the first resonance structure E 1 may be 2, and the resonance order of the second resonance structure E 2 may be 1.
  • the first resonance structure E1 having a larger resonance order has the second resonance based on the above-mentioned equations 1 and 2 indicating the resonance conditions.
  • the optical distance for satisfying the resonance condition is longer than that of the structure E2.
  • the position of the portion of the reflector 13 corresponding to the first region Sc on the first surface side corresponds to the second region Sp. It is preferable that the portion is formed so as to be in a direction farther from the first electrode 15 than the position on the first surface side of the portion. Therefore, in the example shown in FIG. 5, in the reflector 13, the value of the thickness of the portion corresponding to the second region Sp is larger than the value of the thickness of the portion corresponding to the first region Sc.
  • the resonance order is different between the portion corresponding to the first region Sc and the portion corresponding to the second region Sp. Since the light of the same color resonates in this state, it is possible to suppress the color shift between the first region Sc and the second region Sp.
  • the display device 10 according to the second embodiment of the present disclosure will be described.
  • the display device 10 according to the second embodiment has the resonator structure 102 as in the first embodiment, and the resonator structure 102 has the resonance order of the first resonance structure E1 and the second resonance structure E. It is provided with a configuration in which the resonance order of 2 is different.
  • the configuration in which the resonance order of the first resonance structure E 1 and the resonance order of the second resonance structure E 2 are different is the first region of the first electrode 15.
  • the thickness We1 of the portion corresponding to Sc and the thickness We2 of the portion corresponding to the second region Sp are set to different values according to the resonance order of the first resonance structure E1 and the resonance order of the second resonance structure E2. It is realized by. Other than the configuration in which the resonance order of the first resonance structure E 1 and the resonance order of the second resonance structure E 2 are different, the same as the display device 10 according to the first embodiment.
  • the configuration in which the resonance order of the first resonance structure E 1 and the resonance order of the second resonance structure E 2 are different is the first resonance structure E shown in the first embodiment. It may be used in combination with a configuration in which the resonance order of 1 and the resonance order of the second resonance structure E 2 are different.
  • FIG. 6 is a cross-sectional view showing a configuration example of the display device 10 according to the second embodiment, in the case where the resonance order of the second resonance structure E 2 is larger than the resonance order of the first resonance structure E 1 .
  • An example (for example, when the resonance order of the first resonance structure E 1 is 1 and the resonance order of the second resonance structure E 2 is 2) is shown.
  • the thickness We2 of the portion corresponding to the second region Sp is thicker than the thickness We1 of the portion corresponding to the first region Sc (We2 is larger than We1). Is formed like this.
  • the first electrode 15 is formed in a shape in which the portion corresponding to the second region Sp is bulged toward the first surface side from the portion corresponding to the first region Sc.
  • the optical distance satisfying the resonance condition of the second resonance structure E 2 is the resonance of the first resonance structure E 1 . It is longer than the optical distance that satisfies the order.
  • U be the thickness of the portion of the insulating layer 12 corresponding to the second region Sp.
  • U is smaller than the case where the thickness of the first electrode 15 is aligned between the portion corresponding to the first region and the portion corresponding to the second region.
  • We2 is large (U is relatively small and We2 is relatively large).
  • U becomes smaller and We2 becomes larger, so that the optical distance of the portion corresponding to the second region can be lengthened. ..
  • the optical distance in the second resonance structure E2 satisfies the resonance condition. Is getting smaller and We2 is getting bigger. That is, the portion of the first electrode 15 corresponding to the second region Sp is larger than the portion corresponding to the first region Sc so that the optical distance in the second resonance structure E 2 satisfies the resonance condition. It is formed in a shape bulging toward the surface side of 1.
  • the thickness We2 of the portion of the first electrode 15 corresponding to the second region Sp is made thicker than the thickness We1 of the portion corresponding to the first region, leakage of carriers (holes, etc.) is reduced.
  • the electric field of the organic EL element 100 (the electric field formed between the first electrode 15 and the second electrode 18) can be controlled. Therefore, according to the display device 10 according to the second embodiment, it is possible to reduce the light emission in the second region Sp and suppress the color shift between the first region Sc and the second region Sp. can.
  • [2-3 Modification example of display device] (Modification 1)
  • the resonance order of the second resonance structure E 2 is larger than the resonance order of the first resonance structure E 1 .
  • the resonance order of the first resonance structure E 1 may be larger than the resonance order of the second resonance structure E 2 (modification example 1). .. That is, the resonance order of the second resonance structure E 2 may be smaller than the resonance order of the first resonance structure E 1 .
  • the resonance order of the first resonance structure E 1 may be 2, and the resonance order of the second resonance structure E 2 may be 1.
  • the thickness We1 of the portion corresponding to the first region Sc is thinner than the thickness We2 of the portion corresponding to the second region Sp. It is preferable that the electrode is formed in such a state.
  • the portion corresponding to the second region Sp is recessed on the first surface side from the portion corresponding to the first region Sc, and corresponds to the second region Sp. The shape is such that a step is formed at the boundary between the portion to be formed and the portion corresponding to the first region Sc.
  • the optical distance L 2 satisfying the resonance condition in the second resonance structure E 2 is the first resonance structure E 1 . It is shorter than the optical distance L 1 that satisfies the resonance order of.
  • the optical distance in the second resonance structure E2 satisfies the resonance condition. Is relatively large, and We2 is relatively small. That is, the thickness We2 of the portion corresponding to the second region Sp of the first electrode 15 is the first so that the optical distances in the second resonance structure E 2 and the first resonance structure E 1 satisfy the resonance condition. The thickness of the portion corresponding to the region Sc is thinner than We1. At this time, the thickness U of the insulating layer 12 is relatively thick.
  • Modification 2 In the first modification of the display device 10 according to the second embodiment, an example is shown in which the resonance order of the first resonance structure E 1 is larger than the resonance order of the second resonance structure E 2 .
  • the first electrode 15 corresponds to the second region Sp by denting the portion corresponding to the second region Sp on the second surface side from the portion corresponding to the first region Sc.
  • the shape is such that a step is formed at the boundary between the portion and the portion corresponding to the first region Sc.
  • the display device 10 according to the first modification of the second embodiment is not limited to this. That is, as shown in FIG. 8, the first electrode 15 is in a state in which the portion corresponding to the second region Sp is recessed on the second surface side from the portion corresponding to the first region Sc.
  • the first electrode 15 has a shape in which a step is formed at the boundary between the portion corresponding to the second region Sp and the portion corresponding to the first region Sc. Further, a part of the portion of the first electrode 15 corresponding to the first region Sc is located below the first surface of the interlayer film 14.
  • reference numeral P indicates a portion of the first electrode 15 located below the first surface of the interlayer film 14.
  • the optical distance L 1 satisfying the resonance condition in the first resonance structure E 1 is the second resonance structure E 2 . It is longer than the optical distance L 2 that satisfies the resonance order of.
  • the refractive index of the first electrode 15 is larger than the refractive index of the interlayer film 14, the optical distance can be increased as the portion P of the first electrode 15 becomes larger. Therefore, a partial P is formed on the first electrode 15 so as to satisfy the optical distance L 1 satisfying the resonance condition in the first resonance structure E 1 and the optical distance L 2 satisfying the resonance order of the second resonance structure E 2 . Resonance.
  • the display device 10 according to the third embodiment of the present disclosure will be described.
  • the display device 10 according to the third embodiment has the resonator structure 102 as in the first embodiment and the second embodiment, and the resonance order of the first resonance structure E1 is added to the resonator structure 102.
  • the second resonance structure E2 are provided with a configuration in which the resonance order is different.
  • the configuration in which the resonance order of the first resonance structure E 1 and the resonance order of the second resonance structure E 2 are different is such that the thickness of the insulating layer 12 in the portion corresponding to the second region Sp is set.
  • the third embodiment is the same as the display device 10 according to the first embodiment, except for the configuration in which the resonance order of the first resonance structure E 1 and the resonance order of the second resonance structure E 2 are different.
  • the configurations in which the resonance order of the first resonance structure E 1 and the resonance order of the second resonance structure E 2 are different are described in the first embodiment and the second embodiment. It may be used in combination with one or both of the configurations in which the resonance order of the first resonance structure E1 and the resonance order of the second resonance structure E2 are different.
  • the thickness of the portion of the reflector 13 corresponding to the first region Sc and the thickness of the portion corresponding to the second region Sp may be the same.
  • the thickness of the portion of the reflector 13 corresponding to the first region Sc and the thickness of the portion corresponding to the second region Sp may be different.
  • the thickness of the portion of the first electrode 15 corresponding to the first region Sc and the thickness of the portion corresponding to the second region Sp may be different.
  • the thickness of the insulating layer 12 in the portion corresponding to the second region Sp can be specified as follows.
  • the resonance order of the second resonance structure E 2 is larger than the resonance order of the first resonance structure E 1
  • the resonance order of the first resonance structure E 1 is 1 and the resonance of the second resonance structure E 2 is performed.
  • the case where the order is 2 can be mentioned.
  • the optical distance L 1 in the first resonance structure E 1 and the optical distance L 2 in the second resonance structure E 2 are determined according to the order and the resonance order of the second resonance structure E 2 .
  • the optical distance L 2 is longer than the optical distance L 1 .
  • the values of L 1 and L 2 are determined.
  • the thickness of each layer forming the resonator structure 102 is determined based on the refractive index of each layer forming the resonator structure 102, and the thickness of each layer required to realize the optical distance L1 in the first resonance structure E1 is determined.
  • the thickness is specified, and the value of the product of the refractive index and the thickness of the insulating layer 12 is specified.
  • the value of the product of the refractive index and the thickness of the insulating layer 12 required to realize the optical distance L 2 in the second resonance structure E 2 is specified. Based on this value, the thickness of the insulating layer 12 is determined according to the refractive index of the insulating layer 12. In this way, in the resonator structure 102, by setting the thickness of the insulating layer 12 to a predetermined value, the resonance order of the first resonance structure and the resonance order of the second resonance structure are made different while satisfying the resonance conditions. Can be realized.
  • the display device 10 according to the fourth embodiment of the present disclosure will be described.
  • the display device 10 according to the fourth embodiment has the resonator structure 102 as in the first to third embodiments, and the resonance order of the first resonance structure E1 is attached to the resonator structure 102.
  • the second resonance structure E2 are provided with a configuration in which the resonance order is different.
  • the configuration in which the resonance order of the first resonance structure E 1 and the resonance order of the second resonance structure E 2 are different determines the refractive index of the insulating layer 12 in the portion corresponding to the second region Sp. It is realized by setting the value according to the resonance order in the portion corresponding to the second region Sp and the resonance order in the first region Sc.
  • the fourth embodiment is the same as the display device 10 according to the first embodiment, except for the configuration in which the resonance order of the first resonance structure E 1 and the resonance order of the second resonance structure E 2 are different.
  • the configuration in which the resonance order of the first resonance structure E 1 and the resonance order of the second resonance structure E 2 are different is described in the first to third embodiments. It may be used in combination with one or more of the configurations in which the resonance order of the first resonance structure E1 and the resonance order of the second resonance structure E2 are different from each other.
  • the thickness of the portion of the reflector 13 corresponding to the first region Sc and the thickness of the portion corresponding to the second region Sp may be the same.
  • the thickness of the portion of the reflector 13 corresponding to the first region Sc and the thickness of the portion corresponding to the second region Sp may be different.
  • the thickness of the portion of the first electrode 15 corresponding to the first region Sc and the thickness of the portion corresponding to the second region Sp may be different.
  • a method of specifying the refractive index of the insulating layer 12 will be described for the display device 10 according to the fourth embodiment.
  • the resonance order of the first resonance structure E1 and the resonance order of the second resonance structure E2 are obtained from the above-mentioned resonance condition equations 1 and 2 shown in the description of the first embodiment.
  • the optical distance L 1 in the first resonance structure E 1 and the optical distance L 2 in the second resonance structure E 2 are determined accordingly.
  • the thickness of each layer forming the resonator structure 102 is determined based on the values of L 1 and L 2 and the refractive index of each layer forming the resonator structure 102, and the optical distance L 2 in the second resonance structure E 2 is determined.
  • the value of the product of the refractive index and the thickness of the insulating layer 12 required for realization is specified.
  • the combination of the refractive index of the insulating layer 12 and the thickness of the insulating layer 12 is specified based on the value of the product of the refractive index and the thickness of the insulating layer 12.
  • the combination of the refractive index value and the thickness value of the insulating layer 12 is a combination corresponding to the resonance order in the portion corresponding to the second region Sp and the resonance order in the portion corresponding to the first region Sc. That is, a state is realized in which the resonance order of the first resonance structure E 1 and the resonance order of the second resonance structure E 2 are different depending on the combination of the refractive index of the insulating layer 12 and the thickness of the insulating layer 12.
  • the refractive index of the insulating layer 12 is determined according to the thickness of the insulating layer 12. In this way, in the resonator structure 102, by setting the refractive index of the insulating layer 12 to a predetermined value, the resonance order of the first resonance structure and the second resonance order while satisfying the above-mentioned equations 1 and 2 of the resonance conditions are satisfied. It is possible to realize a state in which the resonance order of the resonance structure is different.
  • the insulating layer 12 in the first case is formed by forming a layer having a refractive index higher than that of the insulating layer 12 in the second case. Can be done. By forming a layer having a refractive index lower than the refractive index of the insulating layer 12 in the first case as the insulating layer 12 in the second case, the insulating layer 12 in the second case can be formed.
  • the resonance order of the first resonance structure E 1 and the resonance order of the second resonance structure E 2 are made different in both the first case and the second case.
  • the insulating layer 12 can be formed so as to realize the state.
  • the display device 10 according to the fifth embodiment of the present disclosure will be described.
  • the display device 10 according to the fifth embodiment has the resonator structure 102 as in the first embodiment, and the resonator structure 102 has the resonance order of the first resonance structure E1 and the second resonance structure E. It is provided with a configuration in which the resonance order of 2 is different.
  • the configuration in which the refractive index of the first resonance structure E 1 and the resonance order of the second resonance structure E 2 are different is set in the first region Sc of the interlayer film 14 as shown in FIG.
  • the refractive index of the corresponding portion (first film portion 140A) and the refractive index of the portion corresponding to the second region Sp (second film portion 140B) are the resonance order of the first resonance structure E1 and the second resonance structure. It is realized by setting different values according to the resonance order of E 2 . Other than the configuration in which the resonance order of the first resonance structure E 1 and the resonance order of the second resonance structure E 2 are different, the same as the display device 10 according to the first embodiment.
  • FIG. 10 is a cross-sectional view showing a configuration example of the display device 10 according to the second embodiment.
  • the configuration in which the resonance order of the first resonance structure E 1 and the resonance order of the second resonance structure E 2 are different is changed from the first embodiment to the fourth embodiment. It may be used in combination with any one or more of the configurations in which the resonance order of the first resonance structure E1 and the resonance order of the second resonance structure E2 shown are different.
  • a method for specifying the refractive index of the first film portion 140A and the refractive index of the second film portion 140B will be described for the display device 10 according to the fifth embodiment.
  • the resonance order and the second resonance of the first resonance structure E1 are obtained from the equations 1 and 2 of the resonance conditions shown in the description of the first embodiment.
  • the optical distance L1 in the first resonance structure E1 and the optical distance L2 in the second resonance structure E2 are determined according to the resonance order of the structure E2.
  • the thickness of each layer forming the resonator structure 102 is determined based on the values of L 1 and L 2 and the refractive index of each layer forming the resonator structure 102.
  • the value of the product of the refractive index and the thickness of the first film portion 140A required to realize the optical distance L 1 in the first resonance structure E 1 is specified. Further, the value of the product of the refractive index and the thickness of the second film portion 140B required to realize the optical distance L 2 in the second resonance structure E 2 is specified. Based on these values, the refractive index of the first film portion 140A is determined according to the thickness of the first film portion 140A, and the refractive index of the second film portion 140B is determined according to the thickness of the second film portion 140B. It is decided.
  • the resonator structure 102 by setting the refractive index of the first film portion 140A and the refractive index of the second film portion 140B to predetermined values, the above-mentioned equations 1 and 2 of the resonance conditions are satisfied. However, it is possible to realize a state in which the resonance order of the first resonance structure and the resonance order of the second resonance structure are different.
  • the resonance order of the second resonance structure E 2 in the first case is larger than the resonance order of the second resonance structure E 2 in the second case
  • L 2 Q is larger than L 2 R. Therefore, as the second film portion 140B in the first case, a layer having a refractive index higher than that of the second film portion 140B in the second case (high refractive index layer) is formed.
  • the second film portion 140B in the first case can be formed.
  • the second film portion 140B in the second case is formed by forming a layer having a refractive index lower than the refractive index of the second film portion 140B in the first case (low refractive index layer).
  • the second membrane portion 140B in the case can be formed.
  • the first film portion 140A forms a layer (low refractive index layer) having a refractive index lower than that of the first film portion 140A in the second case, and in the second case. Then, a layer having a refractive index higher than the refractive index of the first film portion 140A in the first case (high refractive index layer) is formed.
  • the interlayer film 14 resonates between the resonance order of the first resonance structure and the resonance of the second resonance structure.
  • the first film portion 140A and the second film portion 140B can be provided so as to realize a state in which the order is different.
  • the first film portion in the interlayer film 14 is used as a method of forming the first film portion 140A and the second film portion 140B into a low refractive index layer or a high refractive index layer.
  • a method of adjusting their composition and density, a method of adjusting their physical structure, and the like can be exemplified.
  • the method for adjusting the physical structure include a method of forming a crystallized structure for the first film portion 140A and the second film portion 140B, and a method of forming an amorphous structure.
  • the method of forming a crystallized structure and the method of forming an amorphous structure in the first film portion 140A and the second film portion 140B can be realized by adjusting the state of the first surface of the reflector 13. ..
  • the interlayer film 14A is formed on the first surface of the drive substrate 11 in which the drive circuit is formed on the substrate 11A.
  • a film 30 of a material for forming a reflector 13 is formed on the interlayer film 14A.
  • the coating film 30 can be formed by using etching or the like.
  • a resist 31 is formed on the film 30 in a region corresponding to a portion corresponding to the first region Sc of the reflector 13 (FIG. 11B), and dry etching is performed (first dry etching).
  • first dry etching the thickness of the exposed portion (non-resist portion) of the coating film 30 is set to the thickness of the portion corresponding to the second region Sp of the reflector 13 (FIG. 11C). This thickness is determined according to the optical distance L2 that satisfies the resonance condition required for the portion of the resonator structure 102 corresponding to the second region Sp.
  • the resist 31 is removed (FIG. 11D), the resist 32 is further formed in the region corresponding to the portion forming the reflector 13 (FIG. 11E), and dry etching is performed (second dry etching) (FIG. 11F). .. Then, the resist 32 is removed. As a result, the reflector 13 is formed on the interlayer film 14A (FIG. 11G).
  • the process after the reflector 13 is formed can be carried out, for example, as follows.
  • the interlayer film 14B is formed so as to cover the reflector 13. As a result, the interlayer film 14 is formed.
  • Examples of the method for forming the interlayer films 14A and 14B include coating methods such as a vacuum vapor deposition method, a spin coating method, and a die coating method.
  • the first electrode 15 is formed on the interlayer film 14, and the insulating layer 12 is further laminated.
  • a plurality of first electrodes 15 are formed according to the arrangement of the sub-pixels 101, and an opening 120 is formed in the insulating layer 12 according to the pattern of the sub-pixels 101.
  • a sputtering method, a CVD (Chemical Vapor Deposition), or an ALD (Atomic Layer Deposition) method can be used.
  • An organic EL layer 17 is formed on the first electrode 15 and the insulating layer 12.
  • the organic EL layer 17 has a laminated structure in which a hole transport layer, a light emitting layer, and an electron transport layer are laminated in this order, for example, the electron transport layer, the light emitting layer, and the hole transport layer are formed respectively.
  • the layers are stacked sequentially. Examples of the method for forming these layers include a coating method such as a vacuum vapor deposition method, a spin coating method, and a die coating method.
  • a second electrode 18 and a protective layer 19 are formed on the organic EL layer 17.
  • the second electrode 18 and the protective layer 19 can be formed by appropriately using a previously known method or the like.
  • the color filter layer 103 may be formed on the protective layer 19.
  • the filled resin layer 104 may be formed on the protective layer 19.
  • the facing substrate 105 may be arranged on the packed resin layer 104. The formation of the color filter layer 103 and the filling resin layer 104 and the arrangement of the facing substrate 105 can be formed by appropriately using a previously known method or the like. In this way, the display device 10 is formed.
  • the manufacturing method of the display device 10 is not limited to the above-described embodiment, and may be the following method (second embodiment of the manufacturing method).
  • the interlayer film 14A is formed on the first surface of the drive substrate 11 in which the drive circuit is formed on the substrate 11A.
  • a film 30 of the material forming the reflector 13 is formed on the interlayer film 14A.
  • the material aluminum or the like is preferably used as in the first embodiment of the manufacturing method.
  • a resist 31 is formed on the film 30 in a region corresponding to a portion corresponding to the first region Sc of the reflector 13 and dry etching is performed (first dry etching) (FIG. 12A). In this first dry etching, the outer portion of the coating film 30 corresponding to the first region Sc of the reflector 13 is removed, and the portion corresponding to the first region Sc of the reflector 13 is left. ..
  • the resist 31 is removed, and a film (additional film 33) of the material forming the reflector 13 is further formed on the film 30 and the interlayer film 14A (FIG. 12B).
  • the material for forming the additional coating 33 the same material as the material for forming the coating 30 can be used. However, this is not limited to the case where the material forming the additional coating 33 is the same as the material forming the coating 30, and the material forming the additional coating 33 is different from the material forming the coating 30. May be.
  • the coating 30 may be formed of aluminum (Al) and the additional coating 33 may be formed of silver (Ag).
  • a resist 34 is formed on the additional coating 33 in a region corresponding to the portion forming the reflector 13 (FIG. 12C), and dry etching is performed (second dry etching) (FIG. 12D). Then the resist 34 is removed. As a result, the reflector 13 is formed on the interlayer film 14A (FIG. 12E).
  • the thickness of the coating film 30 and the thickness of the additional coating film 33 are determined according to the thickness of the portion of the reflector 13 corresponding to the first region Sc and the second region Sp.
  • the step after the reflector 13 is formed may be carried out in the same manner as the step after the reflector 13 described in the first embodiment of the above manufacturing method. In this way, the display device 10 can be manufactured.
  • the display device 10 may be provided in various electronic devices.
  • high resolution is required such as an electronic viewfinder of a video camera or a single-lens reflex camera or a head-mounted display, and it is preferable to prepare for a magnified viewfinder used near the eyes.
  • FIG. 13A is a front view showing an example of the appearance of the digital still camera 310.
  • FIG. 13B is a rear view showing an example of the appearance of the digital still camera 310.
  • This digital still camera 310 is a single-lens reflex type with interchangeable lenses, and has an interchangeable shooting lens unit (interchangeable lens) 312 in the center of the front of the camera body (camera body) 311 and on the left side of the front. It has a grip portion 313 for the photographer to grip.
  • interchangeable shooting lens unit interchangeable lens
  • a monitor 314 is provided at a position shifted to the left from the center of the back of the camera body 311.
  • An electronic viewfinder (eyepiece window) 315 is provided on the upper part of the monitor 314. By looking into the electronic viewfinder 315, the photographer can visually recognize the optical image of the subject guided from the photographing lens unit 312 and determine the composition.
  • the electronic viewfinder 315 any one of the display devices 10 according to the above-described embodiment and modification can be used.
  • FIG. 14 is a perspective view showing an example of the appearance of the head-mounted display 320.
  • the head-mounted display 320 has, for example, ear hooks 322 for being worn on the user's head on both sides of the eyeglass-shaped display unit 321.
  • the display unit 321 any one of the display devices 10 according to the above-described embodiment and modification can be used.
  • FIG. 15 is a perspective view showing an example of the appearance of the television device 330.
  • the television device 330 has, for example, a video display screen unit 331 including a front panel 332 and a filter glass 333, and the video display screen unit 331 is a display device 10 according to the above-described embodiment and modification. It is composed of any of.
  • the display device As described above, the display device according to the first to fifth embodiments of the present disclosure and each modification, and the manufacturing method of the display device (the first embodiment of the manufacturing method and the second embodiment of the manufacturing method).
  • the present disclosure is limited to the display device, the manufacturing method of the display device, and the application example. It is not a thing, and various modifications based on the technical idea of the present disclosure are possible.
  • the display device according to the above-mentioned first to fifth embodiments and each modification, the manufacturing method of the display device, and the configurations, methods, processes, shapes, materials, numerical values, and the like mentioned in the application examples are to the last. It is merely an example, and different configurations, methods, processes, shapes, materials, numerical values, and the like may be used as needed.
  • the display device, the manufacturing method of the display device, and the configuration, method, process, shape, material, numerical value, and the like of the above-mentioned first to fifth embodiments and each modification are the gist of the present disclosure. Can be combined with each other as long as they do not deviate from.
  • the display device according to the above-mentioned first to fifth embodiments and each modification, the manufacturing method of the display device, and the materials exemplified in the application example may be used alone or in combination of two. The above can be used in combination.
  • the present disclosure may also adopt the following configuration.
  • (1) A plurality of first electrodes arranged two-dimensionally, The second electrode arranged on the first surface side of the first electrode and the second electrode An electroluminescence layer arranged between the first electrode and the second electrode, A reflector facing the second surface of the first electrode and The interlayer film covering the reflector and An insulating layer provided between the adjacent first electrodes and having a plurality of openings is provided. Each of the openings is provided on the first surface of each of the first electrodes.
  • the reflector, the interlayer film, the first electrode, the electroluminescence layer, and the second electrode form a resonator structure that resonates the emitted light from the electroluminescence layer.
  • the resonance order of the portion corresponding to the first region and the resonance order of the portion corresponding to the second region are different.
  • the resonator structure satisfies the following formula 7 and the following formula 8. Moreover, any combination of the following formula 9 and the following formula 10, or the following formula 11 and the following formula 12 is satisfied.
  • L 1 is the optical distance between the reflector and the second electrode in the portion corresponding to the first region
  • L 2 is.
  • is the peak wavelength of the spectrum of light corresponding to the predetermined color type
  • is the above.
  • m 1 is an integer that becomes the resonance order in the portion corresponding to the first region
  • m 2 is the second.
  • An integer that is the resonance order in the portion corresponding to the region is shown.) (3) The value of the thickness of the reflector differs between the portion corresponding to the first region and the portion corresponding to the second region. The display device according to (1) or (2) above. (4) The value of the thickness of the reflector is smaller in the portion corresponding to the second region than in the portion corresponding to the first region. The display device according to (1) or (2) above. (5) The separation distance from the first electrode to the reflector differs between the portion corresponding to the first region and the portion corresponding to the second region. The display device according to any one of (1) to (4) above. (6) The value of the thickness of the first electrode is different between the portion corresponding to the first region and the portion corresponding to the second region.
  • the display device according to any one of (1) to (5) above.
  • the value of the thickness of the first electrode is larger in the portion corresponding to the second region than in the portion corresponding to the first region.
  • the display device according to any one of (1) to (5) above.
  • the value of the thickness of the insulating layer is a value corresponding to the resonance order in the portion corresponding to the second region and the resonance order in the portion corresponding to the first region.
  • the refractive index of the insulating layer is a value corresponding to the resonance order in the portion corresponding to the second region and the resonance order in the portion corresponding to the first region.
  • the display device according to any one of (1) to (7) above.
  • the combination of the refractive index value and the thickness value of the insulating layer is a combination corresponding to the resonance order in the portion corresponding to the second region and the resonance order in the portion corresponding to the first region.
  • the refractive index of the interlayer film is different between the portion corresponding to the first region and the portion corresponding to the second region.
  • the first electrode is arranged in each of the plurality of sub-pixels.
  • the resonator structure resonates the light corresponding to the plurality of color types among the emitted light from the electroluminescence layer.
  • the plurality of color types are red, blue and green.
  • the display device according to any one of (1) to (13) above is provided. Electronics.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

色純度に優れた表示装置及び電子機器を提供する。 表示装置が、2次元的に配置された複数の第1の電極と、前記第1の電極の第1の面側に配置された第2の電極と、前記第1の電極と前記第2の電極の間に配置されたエレクトロルミネッセンス層と、前記第1の電極の第2の面に向かい合う反射板と、前記反射板を覆う層間膜と、隣接する前記第1の電極間に設けられ複数の開口部を有する絶縁層と、を備え、それぞれの前記開口部は、それぞれの前記第1の電極の前記第1の面上に設けられており、前記反射板、前記層間膜、前記第1の電極、前記エレクトロルミネッセンス層及び前記第2の電極が、前記エレクトロルミネッセンス層からの出射光を共振する共振器構造を形成しており、平面視上、前記開口部に対応した領域を第1の領域とし、前記第1の電極に対応した領域のうち前記第1の領域の外側に対応した領域を第2の領域とした場合に、前記共振器構造では、前記第1の領域に対応する部分の共振次数と前記第2の領域に対応する部分の共振次数とが異なっている。

Description

表示装置及び電子機器
 本開示は、表示装置及びそれを用いた電子機器に関する。
 エレクトロルミネッセンス層を備えた表示装置(以下、単に表示装置と呼ぶ)における光取出し効率を向上させる技術として、例えば特許文献1に示されるように、反射板と層間膜と2次元的に複数配置された複数の透明電極とエレクトロルミネッセンス層と半透過電極とをこの順に備えた共振器構造が知られている。共振器構造では、エレクトロルミネッセンス層からの出射光が共振される。
特開2014-235959号公報
 共振器構造を有する表示装置では、サブ画素で取り出したい光の色とは異なる色の光がサブ画素の周縁部分で取り出されてしまう問題を抑制することが要請されている。したがって、共振器構造を有する表示装置では、色純度の向上の点で改善の余地がある。
 本開示は、上述した点に鑑みてなされたものであり、色純度に優れた表示装置及び電子機器の提供を目的の一つとする。
 本開示は、例えば、(1)2次元的に配置された複数の第1の電極と、
 前記第1の電極の第1の面側に配置された第2の電極と、
 前記第1の電極と前記第2の電極の間に配置されたエレクトロルミネッセンス層と、
 前記第1の電極の第2の面に向かい合う反射板と、
 前記反射板を覆う層間膜と、
 隣接する前記第1の電極間に設けられ複数の開口部を有する絶縁層と、を備え、
 それぞれの前記開口部は、それぞれの前記第1の電極の前記第1の面上に設けられており、
 前記反射板、前記層間膜、前記第1の電極、前記エレクトロルミネッセンス層及び前記第2の電極が、前記エレクトロルミネッセンス層からの出射光を共振する共振器構造を形成しており、
 平面視上、前記開口部に対応した領域を第1の領域とし、前記第1の電極に対応した領域のうち前記第1の領域の外側に対応した領域を第2の領域とした場合に、前記共振器構造では、前記第1の領域に対応する部分の共振次数と前記第2の領域に対応する部分の共振次数とが異なっている、
 表示装置である。
 また、本開示は、(2)例えば、上記(1)記載の表示装置を備えた電子機器であってもよい。
図1は、表示装置の一実施例を説明するための断面図である。 図2Aは、表示装置の実施例の一つを説明するための平面図である。図2Bは、図2Aにおける破線で囲まれた領域XSの部分を拡大した部分拡大平面図である。 図3は、第1の実施形態にかかる表示装置を説明するための断面図である。 図4A、図4Bは、表示装置のサブ画素のレイアウトの例を示す平面図である。 図5は、第1の実施形態にかかる表示装置の変形例の一実施例を説明するための断面図である。 図6は、第2の実施形態にかかる表示装置の一実施例を説明するための断面図である。 図7は、第2の実施形態にかかる表示装置の変形例の一実施例を説明するための断面図である。 図8は、第2の実施形態にかかる表示装置の変形例の一実施例を説明するための断面図である。 図9は、第3の実施形態と第4の実施形態にかかる表示装置の一実施例を説明するための断面図である。 図10は、第5の実施形態にかかる表示装置の一実施例を説明するための断面図である。 図11A、図11B、図11C、図11D、図11E、図11F及び図11Gは、表示装置の製造方法の一実施例を説明するための断面図である。 図12A、図12B、図12C、図12D及び図12Eは、表示装置の製造方法の一実施例を説明するための断面図である。 図13A、図13Bは、表示装置を用いた電子機器の一実施例を説明するための図である。 図14は、表示装置を用いた電子機器の一実施例を説明するための図である。 図15は、表示装置を用いた電子機器の一実施例を説明するための図である。
 以下、本開示にかかる一実施例等について図面を参照しながら説明する。なお、説明は以下の順序で行う。本明細書及び図面において、実質的に同一の機能構成を有する構成については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
1.第1の実施形態
2.第2の実施形態
3.第3の実施形態
4.第4の実施形態
5.第5の実施形態
6.製造方法
7.電子機器
 以下の説明は本開示の好適な具体例であり、本開示の内容は、これらの実施の形態等に限定されるものではない。また、以下の説明において、説明の便宜を考慮して前後、左右、上下等の方向を示すが、本開示の内容はこれらの方向に限定されるものではない。図1、図2の例では、Z軸方向を上下方向(上側が+Z方向、下側が-Z方向)、X軸方向を前後方向(前側が+X方向、後ろ側が-X方向)、Y軸方向を左右方向(右側が+Y方向、左側が-Y方向)であるものとし、これに基づき説明を行う。これは、図3から図12についても同様である。図1等の各図に示す各層の大きさや厚みの相対的な大小比率は便宜上の記載であり、実際の大小比率を限定するものではない。これらの方向に関する定めや大小比率については、図2から図12の各図についても同様である。
[1 第1の実施形態]
[1-1 表示装置の構成]
 図1、図3は、本開示の一実施例である表示装置10の一構成例を示す断面図である。表示装置10は、駆動基板11と、複数の反射板13と、層間膜14と、複数の第1の電極15と、エレクトロルミネッセンス層と、第2の電極18と、保護層19とを備え、隣接する第1の電極15間に配置された絶縁層12を有する。以下では、エレクトロルミネッセンス層が有機EL層17である場合を例として説明を続ける。図3は、図1の一つのサブ画素の部分を抜き出した断面図である。
 表示装置10は、トップエミッション方式の表示装置である。表示装置10は、駆動基板11が表示装置10の裏面側に位置し、駆動基板11から有機EL層17に向かう方向(+Z方向)が表示装置10の表面側(表示面10A側)方向となっている。以下の説明において、表示装置10を構成する各層において、表示装置10の表示面10A側となる面を第1の面(上面)といい、表示装置10の裏面側となる面を第2の面(下面)という。
(有機EL素子)
 表示装置10では、駆動基板11上に形成された反射板13と、層間膜14と、第1の電極15と、有機EL層17と、第2の電極18は、有機EL素子100を形成する。表示装置10には、画素のレイアウトに対応して複数の有機EL素子100が形成される。有機EL素子100のレイアウトは、特に限定されない。図2Aの例では複数の有機EL素子100は、所定の2方向(図2AではX軸方向及びY軸方向)に二次元的に配列したレイアウトとなっている。図2Aは、表示装置10の表示面10Aの一実施例を説明するための平面図である。図2Aにおいて、符号10Bは、表示面10Aを取り囲む非表示部である。
(画素の構成)
 図2Bに示す表示装置10の例では、1つの画素が、複数の色種に対応した複数のサブ画素の組み合わせで形成されている。この例では、複数の色種として赤色、青色、緑色の3色が定められ、サブ画素として、サブ画素101R、サブ画素101G、サブ画素101Bの3種が設けられる。サブ画素101R、サブ画素101G、サブ画素101Bは、それぞれ赤色のサブ画素、青色のサブ画素、緑色のサブ画素であり、それぞれ赤色、青色、緑色の表示を行う。図2A、図2B等に示す表示装置10の例では、サブ画素101R、サブ画素101G、サブ画素101Bに対応して、有機EL素子100R、有機EL素子100G、有機EL素子100Bが設けられている。ただし、図2A、図2B等の例は、一例であり、表示装置10を、複数の色種に対応した複数のサブ画素を有する場合に限定するものではない。色種は1種類でもよいし、画素がサブ画素を有することなく形成されてもよい。また、赤色、緑色、青色の各色種に対応する光(それぞれ赤色光、緑色光、青色光)は、それぞれ610nmから650nmの範囲、510nmから590nmの範囲、440nmから480nmの波長範囲に主波長を有する光として定めることができる。
 サブ画素101R、101G、101Bのレイアウトは、図1や図2Bの例では、ストライプ状のレイアウトであるが、この例に限定されない。サブ画素101R、101G、101Bのレイアウトは、例えば、図4Aに示すようなデルタ状のレイアウトでもよいし、図4Bに示すような正方配置でもよい。サブ画素101R、101G、101Bの形状も特に限定されない。
 以下の説明では、サブ画素101R、101G、101Bを特に区別しない場合、サブ画素101という語が使用される。有機EL素子100R、100G、100Bを特に区別しない場合、有機EL素子100という語が使用される。また、図面について、図3の例では、1つのサブ画素101と有機EL素子100の部分を抽出して図示しているが、図1、図2A、図2Bの例に示すように、サブ画素101が複数である場合、例えば、複数のサブ画素101R、101G、101Bが存在する場合には、複数のサブ画素101R、101G、101Bに対応する複数の有機EL素子100R、100G、100Bそれぞれについて、同様の構成を採用することができる。
 上記有機EL素子の構成及び上記画素の構成は、後述する第2の実施形態から第5の実施形態及びそれらにおける各変形例並びに製造方法の例についても同様である。第2の実施形態から第5の実施形態及びそれらにおける各変形例並びに製造方法についても表示装置10は、1つの画素が、複数の色種に対応した複数のサブ画素の組み合わせで形成されてよいし、色種は1種類でもよいし、画素がサブ画素を有することなく形成されてもよい。
(駆動基板)
 駆動基板11は、基板11Aに複数の有機EL素子100を駆動する各種回路を設けている。各種回路としては、有機EL素子100の駆動を制御する駆動回路、複数の有機EL素子100に電力を供給する電源回路(いずれも図示せず)を例示することができる。
 基板11Aは、例えば、水分および酸素の透過性が低いガラスまたは樹脂で構成されていてもよく、トランジスタ等の形成が容易な半導体で形成されてもよい。具体的には、基板11Aは、ガラス基板、半導体基板または樹脂基板等であってもよい。ガラス基板は、例えば、高歪点ガラス、ソーダガラス、ホウケイ酸ガラス、フォルステライト、鉛ガラスまたは石英ガラス等を含む。半導体基板は、例えば、アモルファスシリコン、多結晶シリコンまたは単結晶シリコン等を含む。樹脂基板は、例えば、ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルフェノール、ポリエーテルスルホン、ポリイミド、ポリカーボネート、ポリエチレンテレフタラートおよびポリエチレンナフタレート等からなる群より選ばれる少なくとも1種を含む。
 駆動基板11の第1の面には、有機EL素子100と基板11Aに設けられた各種回路とを接続するための複数のコンタクトプラグ(図示せず)が設けられる。
(共振器構造)
 表示装置10には、共振器構造102が形成されている。共振器構造102は、キャビティ構造であり、後述する有機EL層17からの出射光を共振する構造である。表示装置10において、共振器構造102は、有機EL素子100に形成されており、反射板13、層間膜14、第1の電極15、有機EL層17及び第2の電極18が、共振器構造102を形成している。有機EL層17からの出射光を共振するとは、出射光に含まれる特定波長の光を共振することを示す。
 図1から図3に示す表示装置10の例では、有機EL層17は、白色光を出射光としており、共振器構造102は、白色光に含まれる特定波長の光を共振する。このとき、有機EL層17からの白色光のうち所定波長の光が強調される。そして、有機EL素子100の第2の電極18側から、所定波長の光を強調した状態で、外部に向けて光が放出される。なお、所定波長の光は、予め定められ色種に対応する光であり、サブ画素101に応じて定められる色種に対応する光を示す。図1から図3の例では、表示装置10は、サブ画素101R、101G、101Bを有し、それぞれのサブ画素101R、101G、101Bに応じて有機EL素子100R、100G、100Bを有している。それぞれの有機EL素子100R、100G、100Bには、それぞれ共振器構造102R、102G、102Bが形成される。共振器構造102Rでは、有機EL層17からの出射光のうち赤色光が共振する。有機EL素子100Rの第2の電極18からは、赤色光を強調した状態で、外部に向けて光が放出される。共振器構造102G、102Bについては、それぞれ有機EL層17からの出射光のうち緑色光、青色光が共振する。有機EL素子100G、100Bの第2の電極18からは、緑色光、青色光を強調した状態で、外部に向けて光が放出される。なお、本明細書において、共振器構造102R、102G、102Bを特に区別しない場合、共振器構造102という語が使用される。
(光路長設定)
 有機EL層17からの出射光の共振は、第2の電極18と反射板13との間での反射で実現される。第2の電極18と反射板13との間の光路長(光学的距離と呼ぶことがある)は、予め定めた色種の光に応じて設定される。予め定めた色種は、サブ画素101で発光させたい色種である。例えば、サブ画素101Rに形成される共振器構造102Rでは、反射板13と第2の電極18との間の光路長は、赤色光の共振を生じるように設定される。サブ画素101G、101Bに形成される共振器構造102G、102Bについては、反射板13と第2の電極18との間の光路長は、それぞれ緑色光、青色光の共振を生じるように設定される。
(第1の領域と第2の領域)
 表示装置10の平面視上、後述する開口部120に対応した領域を第1の領域Scとし、第1の電極15に対応した領域のうち第1の領域Scの外側に対応した領域を第2の領域Spとした場合に、表示装置10における共振器構造102においては、第1の領域Scと第2の領域Spに対応する部分いずれについても、有機EL層17からの出射光を共振する構造が形成される。
 以下では、説明の便宜上、共振器構造102のうち第1の領域Scに対応する部分を第1共振構造E(図3では両矢印で示す範囲にて示す)と呼ぶ。また、共振器構造102のうち第2の領域Spに対応する部分を第2共振構造E(図3では両矢印で示す範囲にて示す)と呼ぶ。これら第1共振構造E、第2共振構造Eは、サブ画素101R、101G、101Gそれぞれに第1共振構造ER、EG、EB、第2共振構造ER、EG、EB、が形成されている。第1共振構造ER、EG、EBを区別しない場合には、第1共振構造Eとし、第2共振構造ER、EG、EBを区別しない場合には、第2共振構造Eとする。なお、第2の領域Spを示す「第1の電極15に対応した領域のうち第1の領域Scの外側に対応した領域」とは、表示装置10の平面視上、開口部120の外周縁部分に対応する領域であり、絶縁層12と第1の電極15が重なる領域である。
 第1共振構造E及び第2共振構造Eの形成は、それぞれについて第2の電極18と反射板13との間の光路長(光学的距離)を、予め定めた色種の光に応じて設定することで実現することができる。
(共振次数)
 表示装置10では、第1の領域Scに対応する部分と第2の領域Spに対応する部分のいずれにも共振器構造102が形成されており、さらに共振器構造102では、第1の領域Scに対応する部分での共振次数と第2の領域Spに対応する部分での共振次数とが異なっている。すなわち、表示装置10は、共振器構造102における第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせている。図3に示す例では、共振器構造102に、第1の領域Scに対応する部分での第2の電極18と反射板13との間の光路長を第1共振構造Eの共振次数に応じた値とする構成、及び、第2の領域Spに対応する部分での第2の電極18と反射板13との間の光路長を第2共振構造Eの共振次数に応じた値とする構成が形成されることで実現することができる。
(共振条件)
 共振器構造102では、第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成が、共振条件を満たすことが好適である。共振条件とは、下記の数式1及び下記の数式2を満たしており、且つ、下記の数式3及び下記の数式4の組み合わせ、又は下記の数式5及び下記の数式6の組み合わせのいずれかの組み合わせを満たしていることを示す。
 2L/λ+φ/2π=m ・・・(数式1)
 2L/λ+φ/2π=m ・・・(数式2)
 m≧2 ・・・(数式3)
 m=m±1 ・・・(数式4)
 m=1 ・・・(数式5)
 m=2 ・・・(数式6)
 ただし、上記数式1から上記数式6の各数式において、Lは、第1の領域Scに対応する部分における反射板13と第2の電極18との間の光学的距離[nm]、Lは、第2の領域Spに対応する部分における反射板13と第2の電極18との間の光学的距離[nm]、λは、予め定められた色種に対応する光のスペクトルのピーク波長[nm]、φは、反射板13及び第2の電極18での光の反射により生じる位相シフトの大きさ[rad](radian)、mは、第1の領域Scに対応する部分における共振次数となる整数、mは、第2の領域Spに対応する部分における共振次数となる整数を示す。予め定められた色種に対応する光は、外部に取り出したい光に対応する。
 光学的距離Lは、第1の領域Scに対応する部分を形成し且つ反射板13と第2の電極18と間に形成された各層の厚みと屈折率との積の総和を示す。例えば、第1の領域Scに対応する部分を形成し且つ反射板13と第2の電極18と間に形成された各層(例えば、層間膜14のうち反射板13と第1の電極15の間に介在する部分、第1の電極15、有機EL層17を形成する層)の厚み[nm]を、d1、d2、d3・・・、d(kは、第1の領域Scに対応する部分を形成する層の数(整数))とし、それぞれの層に対応する屈折率をn1、n2、n3・・・、nとする場合に、Lは、d1×n1+d2×n2+d3×n3+・・・+d×nで算出される値である。光学的距離Lは、第1共振構造Eの光学的距離に対応する。
 光学的距離Lは、第2の領域Spに対応する部分を形成し且つ反射板13と第2の電極18と間に形成された層の厚みと屈折率との積の総和を示す。例えば、第2の領域Spに対応する部分を形成し且つ反射板13と第2の電極18と間に形成された各層(例えば、層間膜14のうち反射板13と第1の電極15の間に介在する部分、第1の電極15、有機EL層17を形成する層)の厚み[nm]を、d1、d2、d3・・・、d(kは、第2の領域Spに対応する部分を形成する層の数(整数))とし、それぞれの層に対応する屈折率をn1、n2、n3・・・、nとする場合に、Lは、d1×n1+d2×n2+d3×n3+・・・+d×nで算出される値である。光学的距離Lは、第2共振構造Eの光学的距離に対応する。
 位相シフトφは、反射板13での光の反射により生じる位相シフトをΔφ、第2の電極18での光の反射により生じる位相シフトの大きさをΔφとした場合に、Δφ+Δφで算出される値である。
 Δφは、反射板13の屈折率、反射板13の吸収係数、及び反射板13に接する層間膜14の屈折率等を用いて特定することができる。Δφは、反射板13の屈折率、反射板13の吸収係数、及び反射板13に接する層間膜14の屈折率等を用いて特定することができる。位相シフトの特定方法は、例えば、Principles of Opics, Max Born and Emil Wolf, 1974(PERGAMON PRESS)等の記載を参照することができる。
(第1共振構造の共振次数と第2共振構造の共振次数を異ならせる構成)
 第1の実施形態にかかる表示装置10において、第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成(共振次数を不等化する構成)は、例えば、図3の例に示すように、反射板13のうち第1の領域Scに対応する部分の厚み(Wr1)と反射板13のうち第2の領域Spに対応する部分の厚み(Wr2)を、第1共振構造Eの共振次数と第2共振構造Eの共振次数に応じて互いに異なった値とすることで実現される。このとき、第1の領域Scに対応する部分における第1の電極15から反射板13までの離間距離が、第1共振構造Eの共振次数に対応した光学的距離に基づき定められた距離となる。第2の領域Spに対応する部分における第1の電極15から反射板13までの離間距離が、第2共振構造Eの共振次数に対応した光学的距離に基づき定められた距離となる。図1から図3の例では、共振器構造102R、102G、102Bそれぞれについて、個別に第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成が採用される。ただし、共振器構造102R、102G、102Bの一部について第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成が採用されてもよい。
 なお、図1から図3の例は、第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成が、層間膜14の膜厚みを第1の領域に対応する部分と第2の領域に対応する部分でそれぞれの部分の共振次数に応じた値とされることで実現されることをも示している。すなわち、図3に示す例では、第1の領域Scに対応する部分において、層間膜14のうち反射板13の第1の面から層間膜14の第1の面(層間膜14Bの第1の面)までの厚みをAとし、第2の領域Spに対応する部分において層間膜14のうち反射板13の第1の面から層間膜14の第1の面(層間膜14Bの第1の面)までの厚みをAとした場合に、第1の領域Scに対応する部分における第1の電極15から反射板13までの離間距離がAに対応し、第2の領域Spに対応する部分における第1の電極15から反射板13までの離間距離が、Aに対応する。したがってAとAがそれぞれ第1共振構造Eの共振次数に対応した光学的距離と第2共振構造Eの共振次数に対応した光学的距離に基づき定められた距離となっている。図1、図3の例では、第1の電極15から反射板13までの離間距離に対応したAとAが互いに異なる値となっている。なお、厚みA1、については、図1に示すように、サブ画素101R、101G,101Bごとに厚み(AR、AR、AG、AG、AB、AB)が定められる。
 図3の表示装置10の例に示す共振器構造102は、第2共振構造Eの共振次数が、第1共振構造Eの共振次数よりも大きい場合を示している。このような場合としては、例えば、第1共振構造Eの共振次数mが1であり、第2共振構造Eの共振次数mが2である場合が挙げられる。この場合、上記共振条件の数式1、数式2からφ、λの値の条件に応じて第1共振構造Eの共振次数と第2共振構造Eの共振次数に応じた光学的距離Lと光学的距離Lを定めることができる。また、この場合、光学的距離Lが光学的距離Lよりも長くなる。そして定められたLとLを満たすように反射板13の形状を定めることができる。図3の例に示す表示装置10においては、反射板13は、第1の面側に段差(厚み差)が形成されている。すなわち反射板13の厚みのうち第1の領域Scに対応する部分の厚みWr1よりも第2の領域Spに対応する部分の厚みWr2が小さい。これに伴い、光学的距離Lと光学的距離Lが満たされるように、反射板13の第1の面の位置は、第1の領域Scに対応する部分よりも第2の領域Spに対応する部分のほうが第2の電極18から遠い位置となっている。
 光学的距離Lと光学的距離Lの具体的な値は、有機EL素子100を形成する各層の厚み((d1、d2、・・・d)、(d1、d2、・・・、d))、屈折率((n1、n2、・・・、n)、(n1、n2、・・・、n))、φ、λなどの条件に応じて特定することができる。各層は以下のように構成されている。
(第1の電極)
 駆動基板11の第1の面側には、複数の第1の電極15が設けられている。複数の第1の電極15は、サブ画素101のレイアウトに対応して2次元的に配置されている。複数の第1の電極15は、後述する層間膜14の第1の面上に形成されている。
 図1から図3の例では、第1の電極15は、アノードとなっている。第1の電極15と第2の電極18に電圧が加えられると、第1の電極15から有機EL層17にホール(正孔)が注入される。第1の電極15は、有機EL素子100の発光効率を向上させる観点からは、仕事関数が高く、且つ透過率の高い材料で形成されていることが好ましい。第1の電極15は透明電極であることが好適である。透明電極は、特に限定されず、例えば、透明導電性酸化物(TCO:Transparent Conductive Oxide)を含む。透明導電性酸化物としては、インジウム系透明導電性酸化物、錫系透明導電性酸化物、亜鉛系透明導電性酸化物等を例示することができる。透明電極には、これらの例示した各種の透明導電性酸化物が複数種類含まれてよい。
 インジウム系透明導電性酸化物は、インジウムを含む透明導電性酸化物を示しており、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、及び酸化インジウムガリウム(IFO)等の化合物群を例示することができる。錫系透明導電性酸化物は、錫を含む透明導電性酸化物を示しており、酸化錫、アンチモンドープ酸化錫(ATO)、及びフッ素ドープ酸化錫(FTO)等の化合物群を例示することができる。亜鉛系透明導電性酸化物は、亜鉛を含む透明導電性酸化物を示しており、酸化亜鉛、アルミニウムドープ酸化亜鉛(AZO)、及びホウ素ドープ酸化亜鉛等の化合物群を例示することができる。表示装置10の駆動電圧を低電圧化する観点では、第1の電極15は、透明電極としてITOで形成された電極を用いられることが好ましい。
(絶縁層)
 隣り合う第1の電極15の間には、開口部120を有する絶縁層12が形成されている。絶縁層12は、後述する層間膜14の面上と第1の電極15の第1の面上に形成される。絶縁層12の開口部120は、表示装置10の平面視上、第1の電極15の形成された位置に形成されている。開口部120は、サブ画素101の配置パターンに応じたパターンで形成されており、開口部120の1つの区画がサブ画素101の単位区画を定義する。開口部120は、図1から図3の例に示すように、それぞれの第1の電極15の第1の面上に設けられている。開口部120が第1の電極15の第1の面上に形成されているとは、絶縁層12は第1の電極15の側端面と上面(第1の面)の外縁部を覆い、第1の電極15の上面側に乗り上げるように形成されることを示す。なお、表示装置10の平面視上とは、上下方向を視線方向とした場合を示すものとする。また絶縁層12は、隣り合う第1の電極15を電気的に分離する層である。絶縁層12は、特に限定されず、ポリイミド系樹脂等の有機絶縁膜で形成されてもよいし、窒化シリコン等の無機絶縁膜で形成されてもよい。
(有機EL層)
 表示装置10において、有機EL層17は、図1、図3に示すように、第1の電極15と後述する第2の電極18の間に配置される。有機EL層17は、第1の電極15と絶縁層12の上を覆っている。図1の表示装置10の例では、有機EL層17は、全画素及び全サブ画素に共通の有機EL層となっている。
 有機EL層17は、少なくとも発光層を含む。発光層は有機発光材料で形成される。発光層では、第1の電極15および第2の電極18の各々から注入された正孔と電子との結合が生じ、光が発生する。この発生した光が、有機EL層17からの出射光となる。
 有機EL層17は、第1の電極15から第2の電極18に向かって(下から上に向かって)、正孔輸送層と発光層と電子輸送層をこの順に積層した構造を有してもよい。有機EL層17がこのような構造を有することで、発光効率をより一層上昇させることができる。さらに有機EL層17は、第1の電極15から第2の電極18に向かって、正孔注入層、正孔輸送層、発光層電子、注入層、および電子輸送層をこの順に積層した構造を有していてもよい。
 有機EL層17からの出射光は、図1から図3の例では、様々な波長の光を成分として含む点で白色光であることが好ましいが、このことは、有機EL層17からの出射光の色を特に規制するものではない。
 また、図1から図3の例では、有機EL層17は、全てのサブ画素101に共通の層となっているが、表示装置10は、これに限定されない。表示装置10は、サブ画素101ごとに有機EL層17が形成されてもよいし、サブ画素101の色種ごとに有機EL層17が形成されてもよい。例えば、サブ画素101R、101G、101Bごとに有機EL素子100R、100G、100Bが形成されている場合に、有機EL層17が有機EL素子100R、100G、100Bそれぞれに対応して赤色に発光する有機EL層、緑色に発光する有機EL層、青色に発光する有機EL層が互いに区分された状態で形成されてもよい。ただし、この場合でも、絶縁層12と開口部120が形成される。
(第2の電極)
 表示装置10において、第2の電極18が第1の電極15の第1の面側に配置されている。図1から図3の表示装置10の例では、第2の電極18は、全てのサブ画素101に共通の層となっているが、表示装置10は、これに限定されない。表示装置10は、有機EL層17と同様に、サブ画素101ごとに第2の電極18が形成されてもよいし、サブ画素101の色種ごとに第2の電極18が形成されてもよい。
 図1から図3の例では、第2の電極18は、カソードとなっている。第1の電極15と第2の電極18に電圧が加えられると、第2の電極18から有機EL層17に電子が注入される。第2の電極18は、有機EL層17から生じた出射光を反射させることができ、且つ共振器構造102で共振した光を透過させることができるものであることが好ましい。この観点から、第2の電極18は、半透過電極であることが好ましい。半透過電極は、光を反射させる性質と光を透過する性質を併せ持つ電極を示す。第2の電極18は、有機EL素子100の発光効率を向上させる観点からは、仕事関数が低い層で形成されていることが好ましい。
 第2の電極18は、例えば、金属層と金属酸化物層の一方の単層膜又は多層膜で形成されてよいし、金属層と金属酸化物層との積層膜で形成されてもよい。第2の電極18が金属層と金属酸化物層との積層膜で形成されている場合、仕事関数が低い層を有機EL層に対面させる観点では、金属層が有機EL層17に向けられていることが好ましい。金属層としては、例えば、マグネシウム(Mg)、アルミニウム(Al)、銀(Ag)、カルシウム(Ca)およびナトリウム(Na)等からなる金属群より選ばれた少なくとも1種類の金属元素を含むことが好適である。金属層は、上記金属群から選ばれた金属元素を構成元素として含む合金でもよい。金属酸化物としては、ITO、IZO、ZnOなどを例示することができる。
(反射板)
 反射板13は、第1の電極15の第2の面側に向かい合うように設けられている。反射板13は、第1の電極15ごとに設けられており、すなわちサブ画素101ごとに設けられる。また、反射板13は、第1の電極15を介して有機EL層17に向かい合う。反射板13は、有機EL層17からの出射光を反射する。
 反射板13は、光反射性を有する面を形成ができれば特に限定されるものではないが、光反射性を高める観点からは、金属を含んだ層(反射層)で形成されていることが好ましい。金属としては、例えば、銀(Ag)、銀合金、アルミニウム(Al)、アルミニウム合金(Al)、白金(Pt)、金(Au)、クロム(Cr)、タングステン(W)などを挙げることができる。
 反射板13は、反射層で形成されてもよいが、下地層上に反射層を形成した積層構造を有してもよい。この場合、反射板13は、反射層の形成面を第1の面としている。下地層としては、チタン(Ti)又はチタン系化合物を含む層で形成されていることが好ましい。チタン系化合物の例としては、窒化チタン(TiN)や酸化チタン等を挙げることができる。反射板13が、このような下地層上に反射層を形成した積層構造を有することで、反射層の結晶配向性を向上させることができ、反射率を向上することができる。
 第1の実施形態にかかる表示装置10においては、反射板13のうち、第1の領域Scに対応する部分の厚みWr1と、第2の領域Spに対応する部分の厚みWr2が異なっている。反射板13の厚み(Wr1、Wr2)は、共振器構造102における第1共振構造Eの共振次数と第2共振構造Eの共振次数に応じて定められる。また、反射板13の厚み(Wr1、Wr2)に応じて反射板13の形状を定めることができる。
 図1から図3の表示装置10の例には、第1共振構造Eの共振次数が第2共振構造Eの共振次数よりも小さい場合の一例(例えば、第1の共振構造の共振次数が1で、第2共振構造Eの共振次数が2の場合)が示されている。上記した共振条件を示す数式1及び数式2に基づけば、第1の領域Scと第2の領域Spで同色の光を共振させようとする条件下では、共振次数が大きいほど共振条件を満たすための光学的距離が長くなる。この観点から、図1から図3の例では、反射板13の厚み及び形状が、第2の領域Spに対応する部分の第1の面側の位置が第1の領域Scに対応する部分の第1の面側の位置よりも、第1の電極15の第2の面から遠い方向となるように定められる。
(層間膜)
 層間膜14は、第1の電極15の第2の面側に配置されており、反射板13の第1の面側を覆っている。図1から図3の例では、層間膜14内に反射板13が埋設されている。より具体的には、層間膜14は、2つの層(層間膜14Aと層間膜14B)で構成されており、層間膜14A上に反射板13が配置され、反射板13を覆うように層間膜14Bが形成されている。層間膜14は、駆動基板11の第1の面上を被覆する。層間膜14は、反射板13と第2の電極18との間の光学的距離を調整する光学調整層として機能する。反射板13と第2の電極18との間の光学的距離の調整は、層間膜14の第1の面と反射板13の第1の面との距離を定めることで実現することができる。
 例えば、図1の例では、有機EL素子100Rの第1の領域Scに対応する部分について、共振器構造102Rが第1共振構造Eにおいて赤色光を共振する光学的距離LRを有するように、層間膜14の第1の面と反射板13の第1の面(第1の面のうち第1の領域Scに対応する領域)との距離(厚みAR)が定められる。さらに、有機EL素子100Rの第2の領域Spに対応する部分についても、共振器構造102Rが第2共振構造Eにおいて赤色光を共振する光学的距離LRを有するように、層間膜14の第1の面と反射板13の第1の面(第1の面のうち第2の領域Spに対応する領域)との距離(厚みAR)が定められる。有機EL素子100G、100Bのそれぞれについても、第1の領域Scに対応する部分についての層間膜14の第1の面と反射板13の第1の面との距離(厚みAG、AB)、及び、第2の領域Spに対応する部分についての層間膜14の第1の面と反射板13の第1の面との距離(厚みAG、AB)が定められる。
 そして図1の例の表示装置10では、有機EL素子100R、100G、100Bに対応して、これらの距離(厚みAR、AG、AB、AR、AG、AB)の条件を満たすように反射板13の形状(厚み)が定められており、さらに、これらの距離の条件を満たすように、層間膜14における反射板13の位置が定められている。図1では、層間膜14は、層間膜14Aの第1の面が平坦面となっており、層間膜14Bの第1の面から反射板13の位置までの深さが上記した距離の条件に応じた距離となっている。なお、この例は一例であり、層間膜14Bの第1の面が平坦面となり、層間膜14Aの第1の面に凹凸をつけて層間膜14Bの第1の面から反射板13の位置までの深さが上記した距離の条件に応じた距離とされてもよい。
(保護層)
 第2の電極18の上には、保護層19が形成されている。保護層19は、絶縁材料で形成される。絶縁材料としては、例えば、熱硬化性樹脂などを用いることができる。そのほかにも、絶縁材料としては、SiO、SiON、AlO、TiO等でもよい。この場合、保護層19として、SiO、SiON等を含むCVD膜や、AlO、TiO、SiO等を含むALD膜等を例示することができる。
(カラーフィルタ層)
 保護層19の上には、カラーフィルタ層103が設けられていてもよい。カラーフィルタ層103は、カラーフィルタ層103は、サブ画素101に応じて設けられてよい。例えば、図1に示す表示装置10にカラーフィルタ層103が設けられる場合には、サブ画素101R、101G、101Bに応じたカラーフィルタ層103R、103G、103Bが設けられる。表示装置10にカラーフィルタ層103が設けられていることで、色純度をより一層向上させることができる。
(充填樹脂層)
 また、カラーフィルタ層103の上に充填樹脂層104が形成されていてもよい。充填樹脂層104は、カラーフィルタ層103を保護する機能を有することができ、またカラーフィルタ層103の第1の面側を平坦化することができる。充填樹脂層104は、保護層19と後述の対向基板105を接着する接着層としての機能を有することができる。充填樹脂層104は、紫外線硬化型樹脂や熱硬化型樹脂等を例示することができる。
(対向基板)
 対向基板105は、充填樹脂層104上に、駆動基板11に対向させた状態で設けられている。対向基板105は、充填樹脂層104とともに有機EL素子100を封止する。対向基板105は、ガラス等の材料により構成されることが好ましい。
[1-2 作用効果]
 有機EL層を有する表示装置では、第1の電極の第1の面に絶縁層の開口部から露出した領域と絶縁層で被覆された領域を有し、且つ、これらの領域を覆うように有機EL層が形成されている場合、絶縁層の開口部から絶縁層で被覆された領域に向けて横方向にキャリア(ホール等)がリークすることがある。この場合、開口部だけでなく絶縁層における開口部の周縁の領域でも有機EL層の発光が生じる可能性がある。
 このような有機EL層を有する表示装置では、有機EL層からの出射光を共振させる共振器構造が設けられることで光取り出し効率を高める技術が提案されている。表示装置に共振器構造が形成されている場合、開口部に対応した第1の領域に対応する部分で出射光が共振するだけでなく、第1の領域の外側の第2の領域に対応する部分でも出射光が共振することがある。表示装置において、第2の領域に対応する部分では第1の領域に対応する部分と異なり、第1の電極上に絶縁層が形成されている。この場合、第1の領域に対応する部分での反射板と第2の電極と間の光学的距離と、第2の領域に対応する部分での反射板と第2の電極と間の光学的距離との間に違いが生じ、第1の領域と第2の領域とで異なる色が発光してしまうこと(色ずれ)がある。そこで、有機EL層を有する表示装置では、共振器構造が設けられ且つ第1の領域と第2の領域が形成されている場合においても、第1の領域と第2の領域との色ずれを抑制することが要請されている。
 第1の実施形態にかかる表示装置10においては、共振器構造102は、第1の領域Scに対応する部分の共振次数と第2の領域Spに対応する部分の共振次数とが異なっている。このとき、共振器構造102では、第1の領域Scに対応する部分と第2の領域Spに対応する部分との間で共振次数を互いに異にした状態で同色の光が共振する。したがって、表示装置10によれば、第1の領域Scと第2の領域Spとの色ずれを抑制することができる。
 また、第1の実施形態にかかる表示装置10においては、第1の領域Scに対応する部分と第2の領域Spに対応する部分で、共振次数が互いに異なっているため、第1の領域Scに対応する部分と第2の領域Spに対応する部分での加工マージンを確保できる。例えば、青色のサブ画素101Bを設けた表示装置10に共振器構造102Bが設けられた場合、第1の領域Scに対応する部分の共振次数と第2の領域Spに対応する部分の共振次数を揃えた設計を実現するためには、通常、反射板13のうち第2の領域Spに対応する部分を第1の電極15側に位置させた設計が必要となることがある。しかしながら、このような設計は、第1の電極15と反射板13の間の距離が短いために困難を伴う。この点、第1の実施形態にかかる表示装置10においては、第1の領域Scに対応する部分と第2の領域Spに対応する部分で、共振次数が互いに異なっているため、第2の領域Spに対応する部分について第1の電極15と反射板13の間の距離を十分に確保できるように設計することができるようになり、第2の領域Spに対応する部分について実現容易性に優れた設計を行うことができる。
[1-3 表示装置の変形例]
 上記で詳述した図1から図3の表示装置10の例では、第2共振構造Eの共振次数のほうが第1の共振構造の共振次数よりも大きい場合の一例が示されていた。表示装置10では、図5に示すように、第1共振構造Eの共振次数のほうが第2共振構造Eの共振次数よりも大きくてもよい。例えば、第1共振構造Eの共振次数が2で、第2共振構造Eの共振次数が1であってもよい。
 この場合、表示装置10では、同色の光を共振させる条件下では、上記した共振条件を示す数式1及び数式2に基づけば、共振次数が大きい第1共振構造Eの方が、第2共振構造Eよりも共振条件を満たすための光学的距離が長くなる。この点を考慮して、表示装置10では、図5に示すように、反射板13は、第1の領域Scに対応する部分の第1の面側の位置が第2の領域Spに対応する部分の第1の面側の位置よりも、第1の電極15から遠い方向となるように形成されることが好ましい。そこで図5に示す例では、反射板13は、第2の領域Spに対応する部分の厚みの値が第1の領域Scに対応する部分の厚みの値よりも大きくなっている。
 このような変形例にかかる表示装置10によれば、共振器構造102にて、第1の領域Scに対応する部分と第2の領域Spに対応する部分との間で共振次数を互いに異にした状態で同色の光が共振するため、第1の領域Scと第2の領域Spとの色ずれを抑制することができる。
[2 第2の実施形態]
[2-1 表示装置の構成]
 本開示の第2の実施形態にかかる表示装置10について説明する。第2の実施形態にかかる表示装置10は、第1の実施形態と同様に、共振器構造102を有し、その共振器構造102に第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成を備える。第2の実施形態では、第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成は、図6に示すように、第1の電極15のうち第1の領域Scに対応する部分の厚みWe1と第2の領域Spに対応する部分の厚みWe2を第1共振構造Eの共振次数と第2共振構造Eの共振次数に応じて互いに異なった値とされることで実現される。第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成の他については、第1の実施形態にかかる表示装置10と同様である。
 第2の実施形態にかかる表示装置10においては、第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成は、第1の実施形態で示す第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成と併用されてもよい。
 図6は、第2の実施形態にかかる表示装置10の一構成例を示す断面図であり、第2共振構造Eの共振次数のほうが第1共振構造Eの共振次数よりも大きい場合の一例(例えば、第1共振構造Eの共振次数が1で、第2共振構造Eの共振次数が2の場合)が示されている。図6の例では、第1の電極15は、第2の領域Spに対応する部分の厚みWe2が第1の領域Scに対応する部分の厚みWe1よりも、厚くなる(We2がWe1より大きい)ように形成される。第1の電極15は、第2の領域Spに対応する部分を第1の領域Scに対応する部分よりも第1の面側に膨出させた形状に形成されている。
 第2共振構造Eの共振次数が第1共振構造Eの共振次数よりも大きい場合には、第2共振構造Eでの共振条件を満たす光学的距離が第1共振構造Eの共振次数を満たす光学的距離よりも長くなる。
 絶縁層12における第2の領域Spに対応する部分の厚みをUとする。図6の例に示す表示装置10では、第1の電極15の厚みを第1の領域に対応する部分と第2の領域に対応する部分とで揃えた場合に比べて、Uが小さくなっており、We2が大きくなっている(Uが相対的に小さくなり、We2が相対的に大きくなる)。第1の電極15の屈折率が絶縁層12の屈折率よりも大きい場合、Uが小さくなり、We2が大きくなることで、第2の領域に対応する部分の光学的距離を長くすることができる。
 第1の電極15の屈折率が絶縁層12の屈折率よりも大きい場合、図6の例に示す表示装置10では、第2共振構造Eでの光学的距離が共振条件を満たすようにUが小さくなっており、We2が大きくなっている。すなわち、第2共振構造Eでの光学的距離が共振条件を満たすように、第1の電極15の第2の領域Spに対応する部分が、第1の領域Scに対応する部分よりも第1の面側に膨出させた形状に形成される。
[2-2 作用効果]
 第2の実施形態にかかる表示装置10によれば、第1の実施形態にかかる表示装置と同様に、第1の領域Scと第2の領域Spとの色ずれを抑制することができる。
 また、第1の電極15における第2の領域Spに対応する部分の厚みWe2が第1の領域に対応する部分の厚みWe1よりも厚くされていることで、キャリア(ホール等)のリークが減るように有機EL素子100の電界(第1の電極15と第2の電極18との間に形成される電界)をコントロールすることができるようになる。したがって、第2の実施形態にかかる表示装置10によれば、第2の領域Spでの発光を減じることができ、第1の領域Scと第2の領域Spとの色ずれを抑制することができる。
[2-3 表示装置の変形例]
(変形例1)
 上記で詳述した図6の表示装置10の例では、第2共振構造Eの共振次数が第1共振構造Eの共振次数よりも大きい場合の一例が示されている。第2の実施形態にかかる表示装置10では、図7に示すように、第1共振構造Eの共振次数のほうが第2共振構造Eの共振次数よりも大きくてもよい(変形例1)。すなわち、第2共振構造Eの共振次数のほうが第1共振構造Eの共振次数よりも小さくてもよい。例えば、第1共振構造Eの共振次数が2で、第2共振構造Eの共振次数が1であってもよい。第2の実施形態の変形例1にかかる表示装置10によれば、第1の領域Scと第2の領域Spとの色ずれを抑制することができる。
 この場合、表示装置10では、図7に示すように、第1の電極15は、第1の領域Scに対応する部分の厚みWe1を第2の領域Spに対応する部分の厚みWe2よりも薄くした状態にて形成されることが好ましい。図7において示される第1の電極15は、第2の領域Spに対応する部分を第1の領域Scに対応する部分よりも第1の面側を凹ませて、第2の領域Spに対応する部分と第1の領域Scに対応する部分の境界に段差を形成した形状となっている。
 第2共振構造Eの共振次数が第1共振構造Eの共振次数よりも小さい場合には、第2共振構造Eでの共振条件を満たす光学的距離Lが第1共振構造Eの共振次数を満たす光学的距離Lよりも短くなる。
 第1の電極15の屈折率が絶縁層12の屈折率よりも大きい場合、第2の領域Spに対応する部分においては、Uが相対的に大きくなり、We2が相対的に小さくなることで、第2の領域に対応する部分の光学的距離を短くすることができる。なお、U及びWe2について相対的に大きい及び相対的に小さいとは、第1の電極15の厚みを第1の領域に対応する部分と第2の領域に対応する部分とで揃えた場合と本変形例1の場合とを対比した際の大小比較を示す。
 第1の電極15の屈折率が絶縁層12の屈折率よりも大きい場合、図7の例に示す表示装置10では、第2共振構造Eでの光学的距離が共振条件を満たすようにUが相対的に大きくなっており、We2が相対的に小さくなっている。すなわち、第2共振構造E及び第1共振構造Eでの光学的距離が共振条件を満たすように、第1の電極15の第2の領域Spに対応する部分の厚みWe2が、第1の領域Scに対応する部分の厚みWe1よりも薄くなっている。このとき、絶縁層12の厚みUが相対的に厚くなっている。
(変形例2)
 第2の実施形態にかかる表示装置10の変形例1では、第1共振構造Eの共振次数のほうが第2共振構造Eの共振次数よりも大きい場合の一例が示されている。その一例では、第1の電極15は、第2の領域Spに対応する部分を第1の領域Scに対応する部分よりも第2の面側を凹ませて、第2の領域Spに対応する部分と第1の領域Scに対応する部分の境界に段差を形成した形状となっている。第2の実施形態の変形例1にかかる表示装置10はこれに限定されない。すなわち、第1の電極15は、図8に示すように、第2の領域Spに対応する部分を第1の領域Scに対応する部分よりも第2の面側を凹ませた状態とされてよい(変形例2)。この図8に示す例では、第1の電極15は、第2の領域Spに対応する部分と第1の領域Scに対応する部分の境界に段差を形成した形状となっている。さらに、第1の電極15の第1の領域Scに対応する部分の一部分が、層間膜14の第1の面よりも下側に位置する状態となる。図8において、符号Pが、第1の電極15において層間膜14の第1の面よりも下側に位置する部分を示す。
 第1共振構造Eの共振次数が第2共振構造Eの共振次数よりも大きい場合には、第1共振構造Eでの共振条件を満たす光学的距離Lが第2共振構造Eの共振次数を満たす光学的距離Lよりも長くなる。第1の電極15の屈折率が層間膜14の屈折率よりも大きい場合、第1の電極15の部分Pが大きくなるほど光学的距離を長くすることができる。そこで、第1共振構造Eでの共振条件を満たす光学的距離Lと第2共振構造Eの共振次数を満たす光学的距離L満たすように第1の電極15に部分Pが形成される。
[3 第3の実施形態]
[3-1 表示装置の構成]
 本開示の第3の実施形態にかかる表示装置10について説明する。第3の実施形態にかかる表示装置10は、第1の実施形態や第2の実施形態と同様に、共振器構造102を有し、その共振器構造102に第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成を備える。第3の実施形態では、第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成は、第2の領域Spに対応する部分における絶縁層12の厚みを、第2の領域Spに対応する部分における共振次数と第1の領域Scにおける共振次数に応じた値とすることで実現される。第3の実施形態では、第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成の他については、第1の実施形態にかかる表示装置10と同様である。
 第3の実施形態にかかる表示装置10においては、第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成は、第1の実施形態及び第2の実施形態で示す第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成のうちの1つ又は両方と併用されてもよい。第3の実施形態においては、図9に示すように反射板13における第1の領域Scに対応する部分の厚みと第2の領域Spに対応する部分の厚みが揃っていてもよいし、図1や図3に示すように反射板13における第1の領域Scに対応する部分の厚みと第2の領域Spに対応する部分の厚みが異なっていてもよい。また、図5に示すように第1の電極15における第1の領域Scに対応する部分の厚みと第2の領域Spに対応する部分の厚みが異なっていてもよい。
 第3の実施形態にかかる表示装置10について絶縁層12の厚みの特定方法を説明する。第2共振構造Eの共振次数が第1共振構造Eの共振次数よりも大きい場合を例として第2の領域Spに対応する部分における絶縁層12の厚みは、次のように特定できる。なお、第2共振構造Eの共振次数が第1共振構造Eの共振次数よりも大きい場合の一例として、第1共振構造Eの共振次数が1で、第2共振構造Eの共振次数が2である場合を挙げることができる。
 第1の実施形態の説明に示す上記共振条件の数式1、数式2から、第1共振構造Eと第2共振構造Eにおいてのφ、λの条件、及び第1共振構造Eの共振次数と第2共振構造Eの共振次数に応じて、第1共振構造Eにおける光学的距離Lと第2共振構造Eにおける光学的距離Lが定められる。第2共振構造Eの共振次数が第1共振構造Eの共振次数よりも大きい場合、光学的距離Lよりも光学的距離Lのほうが長い。例えば第1の領域Scに対応する部分と第2の領域Spに対応する部分とで絶縁層12の他の各層の屈折率と厚みが同一である場合に、L、Lの値と、共振器構造102を形成する各層の屈折率に基づき、共振器構造102を形成する各層の厚みが定められ、第1共振構造Eにおける光学的距離Lを実現するために要請される各層の厚みが特定され、また絶縁層12の屈折率と厚みの積の値が特定される。すなわち、第2共振構造Eにおける光学的距離Lを実現するために要請される絶縁層12の屈折率と厚みの積の値が特定される。この値に基づき絶縁層12の屈折率に応じて絶縁層12の厚みが定められる。このように、共振器構造102において、絶縁層12の厚みを所定の値に定めることで、共振条件を満たしながら第1の共振構造の共振次数と第2の共振構造の共振次数を異ならせる状態を実現することができる。
[3-2 作用効果]
 第3の実施形態にかかる表示装置10によれば、第1の実施形態にかかる表示装置と同様に、第1の領域Scと第2の領域Spとの色ずれを抑制することができる。
[4 第4の実施形態]
[4-1 表示装置の構成]
 本開示の第4の実施形態にかかる表示装置10について説明する。第4の実施形態にかかる表示装置10は、第1の実施形態から第3の実施形態と同様に、共振器構造102を有し、その共振器構造102に第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成を備える。第4の実施形態では、第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成は、第2の領域Spに対応する部分における絶縁層12の屈折率を、第2の領域Spに対応する部分における共振次数と第1の領域Scにおける共振次数に応じた値とすることで実現される。第4の実施形態では、第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成の他については、第1の実施形態にかかる表示装置10と同様である。
 第4の実施形態にかかる表示装置10においては、第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成は、第1の実施形態から第3の実施形態で示す第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成の1つ以上と併用されてもよい。第4の実施形態においては、図9に示すように反射板13における第1の領域Scに対応する部分の厚みと第2の領域Spに対応する部分の厚みが揃っていてもよいし、図1や図3に示すように反射板13における第1の領域Scに対応する部分の厚みと第2の領域Spに対応する部分の厚みが異なっていてもよい。また、図5に示すように第1の電極15における第1の領域Scに対応する部分の厚みと第2の領域Spに対応する部分の厚みが異なっていてもよい。
 第4の実施形態にかかる表示装置10について絶縁層12の屈折率の特定方法を説明する。第3の実施形態でも説明したように、第1の実施形態の説明に示す上記共振条件の数式1、数式2から、第1共振構造Eの共振次数と第2共振構造Eの共振次数に応じて、第1共振構造Eにおける光学的距離Lと第2共振構造Eにおける光学的距離Lが定められる。L、Lの値と、共振器構造102を形成する各層の屈折率に基づき、共振器構造102を形成する各層の厚みが定められ、第2共振構造Eにおける光学的距離Lを実現するために要請される絶縁層12の屈折率と厚みの積の値が特定される。絶縁層12の厚みが規定されていない場合には、その絶縁層12の屈折率と厚みの積の値に基づき、絶縁層12の屈折率と絶縁層12の厚みの組み合わせが特定される。絶縁層12の屈折率の値と厚みの値の組み合わせは、第2の領域Spに対応する部分における共振次数と第1の領域Scに対応する部分における共振次数に応じた組み合わせとなっている。すなわち、絶縁層12の屈折率と絶縁層12の厚みの組み合わせに応じて第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる状態が実現される。
 また、絶縁層12の厚みが規定されている場合には、その絶縁層12の厚みに応じて絶縁層12の屈折率が定められる。このように、共振器構造102において、絶縁層12の屈折率を所定の値に定めることで、上記した共振条件の数式1、数式2を満たしながら第1の共振構造の共振次数と第2の共振構造の共振次数を異ならせる状態を実現することができる。
 第4の実施形態にかかる表示装置10について、第2共振構造Eの共振次数が第1共振構造Eの共振次数よりも大きい場合(第1の場合)(例えば、第1の共振構造の共振次数が1で、第2の共振構造の共振次数が2である場合等)での、第2共振構造Eにおける光学的距離LをLQとする。第4の実施形態にかかる表示装置10について、第2共振構造Eの共振次数が第1共振構造Eの共振次数よりも小さい場合(第2の場合)(例えば、第1の共振構造の共振次数が2で、第2の共振構造の共振次数が1である場合等)での、第2共振構造における光学的距離LをLRとする。第1の場合における第2共振構造の共振次数が第2の場合における第2共振構造Eの共振次数よりも大きい場合には、LQのほうがLRよりも大きくなる。このため、第1の場合における絶縁層12として、第2の場合における絶縁層12の屈折率よりも高い屈折率を有する層を形成することで、第1の場合における絶縁層12を形成することができる。第2の場合における絶縁層12として、第1の場合における絶縁層12の屈折率よりも低い屈折率を有する層を形成することで、第2の場合における絶縁層12を形成することができる。このように、第4の実施形態にかかる表示装置10について、第1の場合、第2の場合いずれについても第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる状態を実現するように絶縁層12を形成することができる。
[4-2 作用効果]
 第4の実施形態にかかる表示装置10によれば、第1の実施形態にかかる表示装置と同様に、第1の領域Scと第2の領域Spとの色ずれを抑制することができる。
[5 第5の実施形態]
[5-1 表示装置の構成]
 本開示の第5の実施形態にかかる表示装置10について説明する。第5の実施形態にかかる表示装置10は、第1の実施形態と同様に、共振器構造102を有し、その共振器構造102に第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成を備える。第5の実施形態では、第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成は、図10に示すように、層間膜14のうち第1の領域Scに対応する部分(第1の膜部分140A)の屈折率と第2の領域Spに対応する部分(第2の膜部分140B)の屈折率を第1共振構造Eの共振次数と第2共振構造Eの共振次数に応じて異なった値とされることで実現される。第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成の他については、第1の実施形態にかかる表示装置10と同様である。図10は、第2の実施形態にかかる表示装置10の一構成例を示す断面図である。
 第5の実施形態にかかる表示装置10においては、第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成は、第1の実施形態から第4の実施形態に示される第1共振構造Eの共振次数と第2共振構造Eの共振次数を異ならせる構成のいずれか1つ以上と併用されてもよい。
 第5の実施形態にかかる表示装置10について第1の膜部分140Aの屈折率と第2の膜部分140Bの屈折率の特定方法を説明する。第3の実施形態及び第4の実施形態でも説明したように、第1の実施形態の説明に示す上記共振条件の数式1、数式2から、第1共振構造Eの共振次数と第2共振構造Eの共振次数に応じて、第1共振構造Eにおける光学的距離Lと第2共振構造Eにおける光学的距離Lが定められる。L、Lの値と、共振器構造102を形成する各層の屈折率に基づき、共振器構造102を形成する各層の厚みが定められる。このとき、第1共振構造Eにおける光学的距離Lを実現するために要請される第1の膜部分140Aの屈折率と厚みの積の値が特定される。さらに第2共振構造Eにおける光学的距離Lを実現するために要請される第2の膜部分140Bの屈折率と厚みの積の値が特定される。これらの値に基づき第1の膜部分140Aの厚みに応じて第1の膜部分140Aの屈折率が定められ、第2の膜部分140Bの厚みに応じて第2の膜部分140Bの屈折率が定められる。このように、共振器構造102において、第1の膜部分140Aの屈折率と第2の膜部分140Bの屈折率を所定の値に定めることで、上記した共振条件の数式1、数式2を満たしながら第1の共振構造の共振次数と第2の共振構造の共振次数を異ならせる状態を実現することができる。
 第5の実施形態にかかる表示装置10について、第2共振構造Eの共振次数が第1共振構造Eの共振次数よりも大きい場合(第1の場合)(例えば、第1の共振構造の共振次数が1で、第2の共振構造の共振次数が2である場合等)での、第2共振構造Eにおける光学的距離LをLQとする。第5の実施形態にかかる表示装置10について、第2共振構造Eの共振次数が第1共振構造Eの共振次数よりも小さい場合(第2の場合)(例えば、第1の共振構造の共振次数が2で、第2の共振構造の共振次数が1である場合等)での、第2共振構造Eにおける光学的距離LをLRとする。第1の場合における第2共振構造Eの共振次数が第2の場合における第2共振構造Eの共振次数よりも大きい場合には、LQのほうがLRよりも大きくなる。このため、第1の場合における第2の膜部分140Bとして、第2の場合における第2の膜部分140Bの屈折率よりも高い屈折率を有する層(高屈折率層)を形成することで、第1の場合における第2の膜部分140Bを形成することができる。第2の場合における第2の膜部分140Bとして、第1の場合における第2の膜部分140Bの屈折率よりも低い屈折率を有する層(低屈折率層)を形成することで、第2の場合における第2の膜部分140Bを形成することができる。第1の膜部分140Aは、第1の場合では、第2の場合における第1の膜部分140Aの屈折率よりも低い屈折率を有する層(低屈折率層)を形成し、第2の場合では、第1の場合における第1の膜部分140Aの屈折率よりも高い屈折率を有する層(高屈折率層)を形成する。このように、第4の実施形態にかかる表示装置10について、第1の場合、第2の場合いずれについても、層間膜14が、第1の共振構造の共振次数と第2の共振構造の共振次数を異ならせる状態を実現するように第1の膜部分140Aと第2の膜部分140Bを備えることができる。
 第5の実施形態にかかる表示装置10について、第1の膜部分140Aや第2の膜部分140Bを低屈折率層や高屈折率層とする方法としては、層間膜14における第1の膜部分140Aや第2の膜部分140Bそれぞれについて、それらの組成や密度を調整する方法や、物理的構造を調整する方法等を例示することができる。物理的構造を調整する方法としては、例えば、第1の膜部分140Aや第2の膜部分140Bについて結晶化構造を形成する方法、アモルファス構造を形成する方法を挙げることができる。第1の膜部分140Aや第2の膜部分140Bに結晶化構造を形成する方法及びアモルファス構造を形成する方法は、反射板13の第1の面の状態を調整することで実現することができる。
[5-2 作用効果]
 第5の実施形態にかかる表示装置10によれば、第1の実施形態にかかる表示装置と同様に、第1の領域Scと第2の領域Spとの色ずれを抑制することができる。
 次に、本開示の一実施形態(第1の実施形態)に係る表示装置10の製造方法の一実施形態における一例について説明する。
[6 表示装置の製造方法]
[6-1 製造方法の第1実施形態]
 製造方法の第1実施形態においては、基板11Aに駆動回路を形成した駆動基板11の第1の面上に、層間膜14Aが形成される。
 図11Aに示すように、層間膜14Aの上に反射板13を形成する材料の被膜30を形成する。被膜30の材料としては、取り扱いの容易性と高い反射率の観点から、アルミニウム等が好ましく用いられる。被膜30は、エッチング等を用いることで形成することができる。被膜30上に、反射板13の第1の領域Scに対応した部分に相当する領域にレジスト31を形成し(図11B)、ドライエッチングを施す(第1のドライエッチング)。第1のドライエッチングでは、被膜30の露出部分(非レジスト部)の厚みが、反射板13の第2の領域Spに対応する部分の厚みとされる(図11C)。この厚みは、共振器構造102における第2の領域Spに対応する部分に要請される共振条件を満たす光学的距離Lに応じて定められる。
 次に、レジスト31を取り除き(図11D)、さらに反射板13を形成する部分に相当する領域にレジスト32を形成し(図11E)、ドライエッチングを施す(第2のドライエッチング)(図11F)。そしてレジスト32が取り除かれる。これにより層間膜14A上に反射板13が形成される(図11G)。反射板13が形成された後の工程については、例えば、次のように実施することができる。
 反射板13を覆うように層間膜14Bが形成される。これにより、層間膜14が形成される。層間膜14A、14Bの形成方法としては、例えば、真空蒸着法、スピンコート法、ダイコート法等のコーティング法等などの方法を挙げることができる。
 層間膜14の上に、第1の電極15が形成され、さらに絶縁層12が積層される。第1の電極15はサブ画素101の配列に応じて複数形成され、サブ画素101のパターンに応じて絶縁層12には開口部120が形成される。第1の電極15及び絶縁層12の形成は、例えば、スパッタリング法、CVD(Chemical Vapor Deposition)、又はALD(Atomic Layer Deposition)などの方法を用いることができる。
 第1の電極15および絶縁層12の上には、有機EL層17が形成される。有機EL層17が、例えば、正孔輸送層と発光層と電子輸送層をこの順に積層した積層構造を有している場合には、電子輸送層と発光層と正孔輸送層それぞれを形成する層が順次積層される。これらの層を形成する方法は、例えば、真空蒸着法、スピンコート法、ダイコート法等のコーティング法等を挙げることができる。
 有機EL層17の上に第2の電極18、保護層19が形成される。第2の電極18、保護層19は、従前より知られた方法等を適宜使用して形成することができる。
 保護層19の上にカラーフィルタ層103が形成されてもよい。保護層19の上に充填樹脂層104が形成されてよい。充填樹脂層104上には対向基板105が配置されてよい。カラーフィルタ層103と充填樹脂層104の形成及び対向基板105の配置は、従前より知られた方法等を適宜使用して形成することができる。こうして表示装置10が形成される。
 表示装置10の製造方法は、上記したような実施形態に限定されず、次のような方法でもよい(製造方法の第2実施形態)。
[6-2 製造方法の第2実施形態]
 上記製造方法の第1実施形態と同様にして、基板11Aに駆動回路を形成した駆動基板11の第1の面上に、層間膜14Aが形成される。
 層間膜14Aの上に反射板13を形成する材料の被膜30が形成される。このとき材料は、製造方法の第1実施形態と同様に、アルミニウム等が好ましく用いられる。被膜30上に、反射板13の第1の領域Scに対応した部分に相当する領域にレジスト31を形成し、ドライエッチングを施す(第1のドライエッチング)(図12A)。この第1のドライエッチングでは、被膜30のうち、反射板13の第1の領域Scに対応する部分の外側の部分が除かれ、反射板13の第1の領域Scに対応する部分が残される。次に、レジスト31を取り除き、さらに、被膜30と層間膜14Aの上に反射板13を形成する材料の被膜(追加被膜33)が形成される(図12B)。追加被膜33を形成する材料は、被膜30を形成する材料と同様のものを用いることができる。ただし、このことは、追加被膜33を形成する材料を、被膜30を形成する材料と同じとする場合に限定するものでなく、追加被膜33を形成する材料が、被膜30を形成する材料と異なっていてもよい。例えば、被膜30をアルミニウム(Al)で形成し、追加被膜33を銀(Ag)で形成してもよい。
 追加被膜33上において反射板13を形成する部分に相当する領域にレジスト34を形成し(図12C)、ドライエッチングを施す(第2のドライエッチング)(図12D)。そしてレジスト34が取り除かれる。これにより層間膜14A上に反射板13が形成される(図12E)。なお、被膜30の厚みと追加被膜33の厚みは、反射板13における第1の領域Scおよび第2の領域Spに対応する部分の厚みに応じて定められる。
 反射板13が形成された後の工程は、上記製造方法の第1の実施形態で説明した反射板13が形成された後の工程と同様に実施されてよい。こうして表示装置10を製造することができる。
[7 応用例]
(電子機器)
 上述の一実施形態に係る表示装置10は、種々の電子機器に備えられてもよい。特にビデオカメラや一眼レフカメラの電子ビューファインダまたはヘッドマウント型ディスプレイ等の高解像度が要求され、目の近くで拡大して使用されるものに備えられることが好ましい。
(具体例1)
 図13Aは、デジタルスチルカメラ310の外観の一例を示す正面図である。図13Bは、デジタルスチルカメラ310の外観の一例を示す背面図である。このデジタルスチルカメラ310は、レンズ交換式一眼レフレックスタイプのものであり、カメラ本体部(カメラボディ)311の正面略中央に交換式の撮影レンズユニット(交換レンズ)312を有し、正面左側に撮影者が把持するためのグリップ部313を有している。
 カメラ本体部311の背面中央から左側にずれた位置には、モニタ314が設けられている。モニタ314の上部には、電子ビューファインダ(接眼窓)315が設けられている。撮影者は、電子ビューファインダ315を覗くことによって、撮影レンズユニット312から導かれた被写体の光像を視認して構図決定を行うことが可能である。電子ビューファインダ315としては、上述の一実施形態および変形例に係る表示装置10のいずれかを用いることができる。
(具体例2)
 図14は、ヘッドマウントディスプレイ320の外観の一例を示す斜視図である。ヘッドマウントディスプレイ320は、例えば、眼鏡形の表示部321の両側に、使用者の頭部に装着するための耳掛け部322を有している。表示部321としては、上述の一実施形態および変形例に係る表示装置10のいずれかを用いることができる。
(具体例3)
 図15は、テレビジョン装置330の外観の一例を示す斜視図である。このテレビジョン装置330は、例えば、フロントパネル332およびフィルターガラス333を含む映像表示画面部331を有しており、この映像表示画面部331は、上述の一実施形態および変形例に係る表示装置10のいずれかにより構成される。
 以上、本開示の第1の実施形態から第5の実施形態及び各変形例にかかる表示装置、表示装置の製造方法(製造方法の第1の実施形態及び製造方法の第2の実施形態)、及び応用例について具体的に説明したが、本開示は、上述の第1の実施形態から第5の実施形態及び各変形例にかかる表示装置、表示装置の製造方法、及び応用例に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。
 例えば、上述の第1の実施形態から第5の実施形態及び各変形例にかかる表示装置、表示装置の製造方法、及び応用例において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。
 上述の第1の実施形態から第5の実施形態及び各変形例にかかる表示装置、表示装置の製造方法、及び応用例の構成、方法、工程、形状、材料および数値等は、本開示の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 上述の第1の実施形態から第5の実施形態及び各変形例にかかる表示装置、表示装置の製造方法、及び応用例に例示した材料は、特に断らない限り、1種を単独でまたは2種以上を組み合わせて用いることができる。
 また、本開示は以下の構成を採用することもできる。
(1)2次元的に配置された複数の第1の電極と、
 前記第1の電極の第1の面側に配置された第2の電極と、
 前記第1の電極と前記第2の電極の間に配置されたエレクトロルミネッセンス層と、
 前記第1の電極の第2の面に向かい合う反射板と、
 前記反射板を覆う層間膜と、
 隣接する前記第1の電極間に設けられ複数の開口部を有する絶縁層と、を備え、
 それぞれの前記開口部は、それぞれの前記第1の電極の前記第1の面上に設けられており、
 前記反射板、前記層間膜、前記第1の電極、前記エレクトロルミネッセンス層及び前記第2の電極が、前記エレクトロルミネッセンス層からの出射光を共振する共振器構造を形成しており、
 平面視上、前記開口部に対応した領域を第1の領域とし、前記第1の電極に対応した領域のうち前記第1の領域の外側に対応した領域を第2の領域とした場合に、前記共振器構造では、前記第1の領域に対応する部分の共振次数と前記第2の領域に対応する部分の共振次数とが異なっている、
 表示装置。
(2)前記共振器構造は、下記の数式7及び下記の数式8を満たしており、
 且つ、下記の数式9及び下記の数式10、又は下記の数式11及び下記の数式12のいずれかの組み合わせを満たしている、
(1)に記載の表示装置。
 2L/λ+φ/2π=m ・・・(数式7)
 2L/λ+φ/2π=m ・・・(数式8)
 m≧2 ・・・(数式9)
 m=m±1 ・・・(数式10)
 m=1 ・・・(数式11)
 m=2 ・・・(数式12)
(ただし、前記数式7から前記数式12の各数式において、Lは、前記第1の領域に対応する部分における前記反射板と前記第2の電極との間の光学的距離、Lは、前記第2の領域に対応する部分における前記反射板と前記第2の電極との間の光学的距離、λは、予め定められた色種に対応する光のスペクトルのピーク波長、φは、前記反射板及び前記第2の電極での光の反射により生じる位相シフトの大きさ、mは、前記第1の領域に対応する部分における前記共振次数となる整数、mは、前記第2の領域に対応する部分における前記共振次数となる整数を示す。)
(3)前記反射板の厚みの値が、前記第1の領域に対応する部分と前記第2の領域に対応する部分とで異なっている、
 上記(1)又は(2)に記載の表示装置。
(4)前記反射板の厚みの値が、前記第1の領域に対応する部分よりも前記第2の領域に対応する部分のほうが小さい、
 上記(1)又は(2)に記載の表示装置。
(5)前記第1の電極から前記反射板までの離間距離が、前記第1の領域に対応する部分と前記第2の領域に対応する部分とで異なっている、
 上記(1)から(4)のいずれか1つに記載の表示装置。
(6)前記第1の電極の厚みの値が、前記第1の領域に対応する部分と前記第2の領域に対応する部分とで異なっている、
 上記(1)から(5)のいずれか1つに記載の表示装置。
(7)前記第1の電極の厚みの値が、前記第1の領域に対応する部分よりも前記第2の領域に対応する部分のほうが大きい、
 上記(1)から(5)のいずれか1つに記載の表示装置。
(8)前記絶縁層の厚みの値が、前記第2の領域に対応する部分における共振次数と前記第1の領域に対応する部分における共振次数に応じた値となっている、
 上記(1)から(7)のいずれか1つに記載の表示装置。
(9)前記絶縁層の屈折率が、前記第2の領域に対応する部分における共振次数と前記第1の領域に対応する部分における共振次数に応じた値となっている、
 上記(1)から(7)のいずれか1つに記載の表示装置。
(10)前記絶縁層の屈折率の値と厚みの値の組み合わせが、前記第2の領域に対応する部分における共振次数と前記第1の領域に対応する部分における共振次数に応じた組み合わせとなっている、
 上記(1)から(7)のいずれか1つに記載の表示装置。
(11)前記層間膜の屈折率が、前記第1の領域に対応する部分と前記第2の領域に対応する部分とで異なっている、
 上記(1)から(10)のいずれか1つに記載の表示装置。
(12)複数の色種に対応した複数のサブ画素を有し、
 前記第1の電極は、前記複数のサブ画素のそれぞれに配置されており、
 前記共振器構造は、前記エレクトロルミネッセンス層からの前記出射光のうち前記複数の色種に応じた光を共振する、
 上記(1)から(11)のいずれか1つに記載の表示装置。
(13)前記複数の色種は、赤色、青色及び緑色である、
 上記(12)に記載の表示装置。
(14)上記(1)から(13)のいずれか1つに記載の表示装置を備えた、
 電子機器。
10   :表示装置
11   :駆動基板
11A  :基板
12   :絶縁層
13   :反射板
14   :層間膜
15   :第1の電極
17   :有機EL層
18   :第2の電極
19   :保護層
100  :有機EL素子
100B :有機EL素子
100G :有機EL素子
100R :有機EL素子
101  :サブ画素
101B :サブ画素
101G :サブ画素
101R :サブ画素
102  :共振器構造
102B :共振器構造
102G :共振器構造
102R :共振器構造
103  :カラーフィルタ層
103B :カラーフィルタ層
103G :カラーフィルタ層
103R :カラーフィルタ層
104  :充填樹脂層
105  :対向基板
120  :開口部
310  :デジタルスチルカメラ
320  :ヘッドマウントディスプレイ
330  :テレビジョン装置

Claims (14)

  1.  2次元的に配置された複数の第1の電極と、
     前記第1の電極の第1の面側に配置された第2の電極と、
     前記第1の電極と前記第2の電極の間に配置されたエレクトロルミネッセンス層と、
     前記第1の電極の第2の面に向かい合う反射板と、
     前記反射板を覆う層間膜と、
     隣接する前記第1の電極間に設けられ複数の開口部を有する絶縁層と、を備え、
     それぞれの前記開口部は、それぞれの前記第1の電極の前記第1の面上に設けられており、
     前記反射板、前記層間膜、前記第1の電極、前記エレクトロルミネッセンス層及び前記第2の電極が、前記エレクトロルミネッセンス層からの出射光を共振する共振器構造を形成しており、
     平面視上、前記開口部に対応した領域を第1の領域とし、前記第1の電極に対応した領域のうち前記第1の領域の外側に対応した領域を第2の領域とした場合に、前記共振器構造では、前記第1の領域に対応する部分の共振次数と前記第2の領域に対応する部分の共振次数とが異なっている、
     表示装置。
  2.  前記共振器構造は、下記の数式1及び下記の数式2を満たしており、
     且つ、下記の数式3及び下記の数式4、又は下記の数式5及び下記の数式6のいずれかの組み合わせを満たしている、
    請求項1に記載の表示装置。
     2L/λ+φ/2π=m ・・・(数式1)
     2L/λ+φ/2π=m ・・・(数式2)
     m≧2 ・・・(数式3)
     m=m±1 ・・・(数式4)
     m=1 ・・・(数式5)
     m=2 ・・・(数式6)
    (ただし、前記数式1から前記数式6の各数式において、Lは、前記第1の領域に対応する部分における前記反射板と前記第2の電極との間の光学的距離、Lは、前記第2の領域に対応する部分における前記反射板と前記第2の電極との間の前記光学的距離、λは、予め定められた色種に対応する光のスペクトルのピーク波長、φは、前記反射板及び前記第2の電極での光の反射により生じる位相シフトの大きさ、mは、前記第1の領域に対応する部分における前記共振次数となる整数、mは、前記第2の領域に対応する部分における前記共振次数となる整数を示す。)
  3.  前記反射板の厚みの値が、前記第1の領域に対応する部分と前記第2の領域に対応する部分とで異なっている、
     請求項1に記載の表示装置。
  4.  前記反射板の厚みの値が、前記第1の領域に対応する部分よりも前記第2の領域に対応する部分のほうが小さい、
     請求項1に記載の表示装置。
  5.  前記第1の電極から前記反射板までの離間距離が、前記第1の領域に対応する部分と前記第2の領域に対応する部分とで異なっている、
     請求項1に記載の表示装置。
  6.  前記第1の電極の厚みの値が、前記第1の領域に対応する部分と前記第2の領域に対応する部分とで異なっている、
     請求項1に記載の表示装置。
  7.  前記第1の電極の厚みの値が、前記第1の領域に対応する部分よりも前記第2の領域に対応する部分のほうが大きい、
     請求項1に記載の表示装置。
  8.  前記絶縁層の厚みの値が、前記第2の領域に対応する部分における共振次数と前記第1の領域に対応する部分における共振次数に応じた値となっている、
     請求項1に記載の表示装置。
  9.  前記絶縁層の屈折率が、前記第2の領域に対応する部分における共振次数と前記第1の領域に対応する部分における共振次数に応じた値となっている、
     請求項1に記載の表示装置。
  10. 前記絶縁層の屈折率の値と厚みの値の組み合わせが、前記第2の領域に対応する部分における共振次数と前記第1の領域に対応する部分における共振次数に応じた組み合わせとなっている、
     請求項1に記載の表示装置。
  11.  前記層間膜の屈折率が、前記第1の領域に対応する部分と前記第2の領域に対応する部分とで異なっている、
     請求項1に記載の表示装置。
  12.  複数の色種に対応した複数のサブ画素を有し、
     前記第1の電極は、前記複数のサブ画素のそれぞれに配置されており、
     前記共振器構造は、前記エレクトロルミネッセンス層からの前記出射光のうち前記複数の色種に応じた光を共振する、
     請求項1に記載の表示装置。
  13.  前記複数の色種は、赤色、青色及び緑色である、
     請求項12に記載の表示装置。
  14.  請求項1に記載の表示装置を備えた、
     電子機器。
PCT/JP2021/046059 2020-12-18 2021-12-14 表示装置及び電子機器 WO2022131255A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/256,948 US20240040908A1 (en) 2020-12-18 2021-12-14 Display apparatus and electronic device
CN202180083418.1A CN116601693A (zh) 2020-12-18 2021-12-14 显示装置及电子设备
JP2022570009A JPWO2022131255A1 (ja) 2020-12-18 2021-12-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020210481 2020-12-18
JP2020-210481 2020-12-18

Publications (1)

Publication Number Publication Date
WO2022131255A1 true WO2022131255A1 (ja) 2022-06-23

Family

ID=82059181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046059 WO2022131255A1 (ja) 2020-12-18 2021-12-14 表示装置及び電子機器

Country Status (4)

Country Link
US (1) US20240040908A1 (ja)
JP (1) JPWO2022131255A1 (ja)
CN (1) CN116601693A (ja)
WO (1) WO2022131255A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185261A1 (ja) * 2023-03-09 2024-09-12 キヤノン株式会社 発光装置およびその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032327A (ja) * 2004-06-18 2006-02-02 Sanyo Electric Co Ltd エレクトロルミネッセンスパネル
JP2007234581A (ja) * 2006-02-03 2007-09-13 Sony Corp 表示素子および表示装置
JP2009231274A (ja) * 2008-02-27 2009-10-08 Canon Inc 有機発光素子及び表示装置
JP2013109996A (ja) * 2011-11-22 2013-06-06 Seiko Epson Corp 有機発光装置
JP2014022349A (ja) * 2012-07-24 2014-02-03 Seiko Epson Corp 発光装置、電子機器
JP2016170934A (ja) * 2015-03-12 2016-09-23 セイコーエプソン株式会社 有機発光装置、及び電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032327A (ja) * 2004-06-18 2006-02-02 Sanyo Electric Co Ltd エレクトロルミネッセンスパネル
JP2007234581A (ja) * 2006-02-03 2007-09-13 Sony Corp 表示素子および表示装置
JP2009231274A (ja) * 2008-02-27 2009-10-08 Canon Inc 有機発光素子及び表示装置
JP2013109996A (ja) * 2011-11-22 2013-06-06 Seiko Epson Corp 有機発光装置
JP2014022349A (ja) * 2012-07-24 2014-02-03 Seiko Epson Corp 発光装置、電子機器
JP2016170934A (ja) * 2015-03-12 2016-09-23 セイコーエプソン株式会社 有機発光装置、及び電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185261A1 (ja) * 2023-03-09 2024-09-12 キヤノン株式会社 発光装置およびその製造方法

Also Published As

Publication number Publication date
US20240040908A1 (en) 2024-02-01
JPWO2022131255A1 (ja) 2022-06-23
CN116601693A (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
JP2020109753A (ja) 透明表示装置
US20160021718A1 (en) Display unit, method of manufacturing the same, and electronic apparatus
JP2008059791A (ja) 有機el素子アレイ
JP7008058B2 (ja) 電界発光表示装置
JP7495401B2 (ja) 複数個の青色放射層を有するマルチモーダルマイクロキャビティoled
KR20090038637A (ko) 백색 유기 전계 발광소자 및 이를 이용한 컬러 디스플레이장치
KR102448066B1 (ko) 플렉서블 표시 장치
KR20150057485A (ko) 유기발광 디스플레이 장치
WO2022149554A1 (ja) 表示装置及び電子機器
WO2022124401A1 (ja) 表示装置および電子機器
WO2022131255A1 (ja) 表示装置及び電子機器
JP2012248453A (ja) 表示装置
CN110890476B (zh) 显示面板、显示装置
US7206112B2 (en) Image display device and manufacuring method
US20240180002A1 (en) Display device, electronic device, and method of manufacturing display device
WO2022138828A1 (ja) 表示装置および電子機器
WO2014049876A1 (ja) 有機el素子
JP2019200974A (ja) 表示装置およびその製造方法
WO2024009728A1 (ja) 表示装置及び電子機器
WO2023219169A1 (ja) 発光装置、電子機器、及び発光装置の製造方法
WO2024090153A1 (ja) 表示装置、電子機器及び表示装置の製造方法
US20240122042A1 (en) Display device and electronic device
WO2022239576A1 (ja) 表示装置及び電子機器
JP2011141965A (ja) 有機el素子および表示装置
US11315981B2 (en) Light-emitting device, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570009

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180083418.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18256948

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906617

Country of ref document: EP

Kind code of ref document: A1