WO2022127548A1 - 一种纤维素纳米晶负载海藻酸钠吸附剂及其富集废水中有机磷的应用 - Google Patents

一种纤维素纳米晶负载海藻酸钠吸附剂及其富集废水中有机磷的应用 Download PDF

Info

Publication number
WO2022127548A1
WO2022127548A1 PCT/CN2021/133060 CN2021133060W WO2022127548A1 WO 2022127548 A1 WO2022127548 A1 WO 2022127548A1 CN 2021133060 W CN2021133060 W CN 2021133060W WO 2022127548 A1 WO2022127548 A1 WO 2022127548A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium alginate
sludge
cellulose
cellulose nanocrystals
cellulose nanocrystal
Prior art date
Application number
PCT/CN2021/133060
Other languages
English (en)
French (fr)
Inventor
王硕
刘奇欣
沈斐
李激
王勇
衣雪松
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to US17/845,048 priority Critical patent/US11577220B2/en
Publication of WO2022127548A1 publication Critical patent/WO2022127548A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/3212Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • C02F11/145Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances using calcium compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry

Definitions

  • the invention relates to a cellulose nanocrystal-loaded sodium alginate adsorbent and its application for enriching organic phosphorus in wastewater, and belongs to the technical field of environmental engineering.
  • waste paper is used as papermaking raw material for paper production, so a large amount of papermaking deinking sludge will be produced.
  • Paper deinking sludge has high inorganic ash content and is easy to dewater, and because it contains a large amount of cellulose substances, it is generally used as an auxiliary fuel for municipal sludge incineration. This will not only increase the difficulty of sludge incineration and disposal, but also cause waste of papermaking deinking sludge resources. Therefore, it is necessary to utilize papermaking deinking sludge as a resource according to the properties and components of papermaking deinking sludge. .
  • Nanocellulose retains the crystalline structure of natural cellulose, with a length of generally 500-800 nm and a diameter of generally 5-8 nm. It has good mechanical strength and high thermal stability.
  • Cellulose nanocrystals are a kind of nanocellulose. It is generally accepted that the diameter D of cellulose nanocrystals is in the range of 2-4 nm, the length L is in the range of 100-400 nm and the L/D range is in the range of 80-100. If the impurities of paper deinking sludge are removed and the cellulose substances in it are prepared into cellulose nanocrystals, the application range of paper deinking sludge will be effectively improved and its added value will be enhanced.
  • Papermaking deinking sludge is generally only used as an auxiliary fuel for municipal sludge incineration for incineration and disposal, and the resource utilization effect is poor, making it in a state of inefficient utilization under the background of sludge resource utilization.
  • the invention Based on the properties of papermaking deinking sludge, the invention breaks through the technical limitations of dehydrating papermaking deinking sludge and preparing cellulose nanocrystals through an oxidation system, and applies the coupled alginate to the field of resource utilization of organic phosphorus enrichment in printing and dyeing wastewater .
  • the present invention provides a method for preparing a sodium alginate adsorbent loaded with cellulose nanocrystals.
  • the method comprises loading the cellulose nanocrystals in sodium alginate; the preparation process of the cellulose nanocrystals includes the following steps:
  • step (1) gained mud-water mixed solution, mixing, then membrane filtration and separation, collecting the sludge trapped on the filter membrane;
  • step (3) The sludge obtained in step (2) is treated by thermal drying, and the water content of the sludge is not more than 30% and then crushed;
  • step (4) adding a terminating oxidizing agent to the mixed system obtained in step (4) until the pH of the reaction system does not change, and terminating the reaction; solid-liquid separation, and collecting the solid to obtain cellulose nanocrystals.
  • the preparation method of the cellulose nanocrystal-loaded sodium alginate adsorbent comprises the following steps:
  • step (2) dispersing sodium alginate in a slightly acidic medium, slowly adding the dehydrated filtrate obtained after membrane filtration in step (2), and mixing to obtain a corresponding sodium alginate dispersion; dispersing the cellulose nanocrystals in the slightly acidic medium In the medium, mix well to obtain a cellulose nanocrystal dispersion;
  • the process of obtaining the dewatered filtrate in step (a) includes: adding flocculant and slaked lime to the mud-water mixture obtained in step (1) of the preparation process of cellulose nanocrystals, and mixing them evenly , and then membrane filtration separation, after the filter membrane intercepts the sludge, the filtrate is obtained by separation and collection, which is the dehydration filtrate.
  • the mass ratio of the sodium alginate and cellulose nanocrystals is 2:0.2
  • the concentration of the sodium alginate dispersion is 10 g/L; the concentration of cellulose nanocrystals is 1 g/L.
  • the drying temperature is 170-220°C.
  • the papermaking deinking sludge mixed solution in step (1) is taken from a paper mill in Jiaxing; 500 mL is taken for experiments.
  • the buffer solution in the step (1) is a phosphate buffer with a pH of 6.5-7.5.
  • the flocculant in the step (2) is selected from AlCl 3 and FeCl 3 .
  • the mass fraction of the flocculant relative to the dry weight of the solid sludge in the step (2) is 5-10%.
  • the preferred range of AlCl 3 is 5%-9%; the preferred range of FeCl 3 is 3%-7%. Further, 8% AlCl 3 or 5% FeCl 3 is optimal.
  • the mass fraction of slaked lime relative to the dry weight of solid sludge in the step (2) is 10%-25%; preferably 20%.
  • the mixing method in the step (2) is: stirring for 2 minutes at a rotating speed of 300 r/min, and then stirring at a rotating speed of 50 r/min under stirring for 10min.
  • the membrane filtration in the step (2) refers to filtering through the membrane by means of suction filtration.
  • the sludge is retained on the filter membrane by means of suction filtration, and the dewatered filtrate is used for later use.
  • the temperature of thermal drying in the step (3) is 170-220°C; preferably 200°C.
  • the amount of 2,2,6,6-tetramethylpiperidine oxide radical added to the sludge in the step (4) is 80mg.
  • the mass of sodium bromide and 2,2,6,6-tetramethylpiperidine oxide radical in the step (4) is 80:80.
  • the terminating oxidant in the step (4) is NaClO.
  • the addition method of the terminating oxidant NaClO in the step (4) is to use 5.0 mmol/L NaClO solution dropwise into the mixing system.
  • the solid-liquid separation method in step (4) includes microwave separation and centrifugal precipitation.
  • the preparation method of the cellulose nanocrystals specifically includes the following steps:
  • the preparation method of the cellulose nanocrystal-loaded sodium alginate adsorbent specifically includes the following steps:
  • step (2) under the slightly acidic condition provided by acetic acid, put 2g sodium alginate into it, slowly add the dehydration filtrate 50mL obtained in step (2), and make the calcium ion in the sodium alginate and the dehydration filtrate fully under stirring conditions Mix and make it uniformly dispersed to obtain a sodium alginate dispersion; dissolve 0.2 g of cellulose nanocrystals in acetic acid, and mix well to obtain a cellulose nanocrystal dispersion;
  • the present invention utilizes the above method to provide a sodium alginate adsorbent loaded with cellulose nanocrystals.
  • the invention also provides the application of the above-mentioned cellulose nanocrystal-loaded sodium alginate adsorbent in removing organic phosphorus in water.
  • the invention provides a method for preparing cellulose nanocrystals by using papermaking deinking sludge to obtain an alginate-cellulose nanocrystal adsorbent and enriching organic phosphorus in wastewater, which belongs to the technical field of environmental engineering.
  • the papermaking deinking sludge is prepared into cellulose nanocrystals through the technology of chemical conditioning-drying and crushing-chemical oxidation-microwave screening, and is loaded on alginate under weakly acidic conditions, so that it has the ability to enrich wastewater The ability of organophosphorus.
  • the content of organic phosphorus in wastewater can be significantly reduced, the total phosphorus in effluent can be reduced, and the discharge of sewage treatment can be ensured; the enriched organic phosphorus can be recovered by incineration.
  • the papermaking deinking sludge is used to prepare high value-added products, which broadens its application scope and has high feasibility.
  • the alginate-cellulose nanocrystals provided by the invention are used as adsorbents and mixed with 50 ml of printing and dyeing wastewater, and the equilibrium adsorption capacity of tris(2-carboxyethyl)phosphine (TCEP) reaches 35.7 mg/g, and the enrichment rate exceeds 35.7 mg/g. 85%.
  • TCEP tris(2-carboxyethyl)phosphine
  • the prepared alginate-cellulose nanocrystals can continue to adsorb TCEP after regeneration by ozone oxidation. After eight regenerations, the equilibrium adsorption capacity is still higher than 30.0 mg/g, which meets the requirements of recycling.
  • Figure 1 shows the equilibrium adsorption capacity and enrichment rate results of different adsorbents for TCEP.
  • Example 1 Dewatering and drying of papermaking deinking sludge
  • Example 4 The effect of alginate-cellulose nanocrystals on enriching organic phosphorus in printing and dyeing wastewater
  • alginate-cellulose nanocrystals were made into adsorbents and mixed with 50 mL of printing and dyeing wastewater (50 mL of printing and dyeing wastewater was treated with 2.2 g of adsorbent), and it was found that alginate-cellulose nanocrystals had good organophosphorus enrichment effect.
  • the equilibrium adsorption capacity of TCEP reaches 35.7 mg/g, and the enrichment rate exceeds 85%, which effectively reduces the contribution of TCEP to the total phosphorus in the effluent and ensures that the effluent discharge meets the standard.
  • alginate-cellulose nanocrystals Under the oxidation of ozone, alginate-cellulose nanocrystals can be regenerated and continue to adsorb TCEP, and the equilibrium adsorption capacity is still higher than 30.0 mg/g, which meets the requirements of recycling. Therefore, it is determined that the cellulose nanocrystals prepared above have a good organophosphorus enrichment effect, which opens up a new way for the resource utilization of papermaking deinking sludge.
  • the oxidant concentration is finally determined by the mean diameter D, mean length L and L/D.
  • the oxidant concentration is finally determined by the mean diameter D, mean length L and L/D.
  • the concentration of NaClO was higher than 10 mmol/L, the oxidation system could successfully prepare cellulose nanocrystals.
  • the final concentration of NaClO was determined to be 10 mmol/L.
  • Both ultrasonic and microwave methods can separate substances from the matrix.
  • the characteristics of cellulose nanocrystals under different energy densities were investigated, and the most suitable separation method of cellulose nanocrystals was determined. It can be seen from Table 2 that when the ultrasonic method is used to separate cellulose nanocrystals, the standard cellulose nanocrystals cannot be prepared under the condition of energy density of 1100 J/mL. With the increase of energy density, cellulose nanocrystals can be formed smoothly.
  • the microwave method is used to separate cellulose nanocrystals, the average diameter, average length and L/D of cellulose nanocrystals can meet the standards of cellulose nanocrystals. Combined with the principle of optimal energy consumption, the microwave method with an energy density of 1000J/ml is selected. The isolation of cellulose nanocrystals was performed.
  • Comparative Example 3 The enrichment effect of organophosphorus when cellulose nanocrystals are loaded on different matrices
  • alginate-cellulose nanocrystals additional calcium ions
  • alginate-cellulose nanocrystals additional pollutants
  • Mud dewatering filtrate the enrichment effect of chitosan-cellulose nanocrystals and zeolite sodium alginate-cellulose nanocrystals on organophosphorus. Because CaO is added to the papermaking deinking sludge for sludge conditioning, the sludge dewatering filtrate has a relatively high concentration of calcium ions.
  • alginate prepared from sludge dewatering filtrate to form alginate-cellulose nanocrystals.
  • Organophosphorus adsorbent for printing and dyeing wastewater.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Sludge (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种纤维素纳米晶负载海藻酸钠吸附剂及其富集废水中有机磷的应用,属于环境工程技术领域。本发明通过药剂调理-干化破碎-化学氧化-微波筛分技术将造纸脱墨污泥制备为纤维素纳米晶,并在弱酸性条件下将其负载于海藻酸盐上使其具备富集废水中有机磷的能力。运用此方法,可以显著降低废水中有机磷的含量,降低出水总磷,保证污水处理达标排放;富集的有机磷可以通过焚烧的方式进行磷的资源化回收。同时,将造纸脱墨污泥进行高附加值产物制备,拓宽了其应用范围,具有较高的可行性。

Description

一种纤维素纳米晶负载海藻酸钠吸附剂及其富集废水中有机磷的应用 技术领域
本发明涉及一种纤维素纳米晶负载海藻酸钠吸附剂及其富集废水中有机磷的应用,属于环境工程技术领域。
背景技术
在资源优势利用的背景下,废纸被作为造纸原料进行纸张的生产,因此会产生大量的造纸脱墨污泥。造纸脱墨污泥无机灰分含量较高,易于脱水,同时因其含有大量纤维素类物质,使其一般被用于作为市政污泥焚烧的辅助燃料。这样做不仅会增加污泥焚烧处置的难度,也会造成造纸脱墨污泥的资源浪费,因此,十分必要依据造纸脱墨污泥的性质与组分,对造纸脱墨污泥进行资源化利用。纳米纤维素保留了天然纤维素的结晶结构,长度一般为500-800nm,直径一般为5-8nm,具有良好的机械强度和高热稳定性。纤维素纳米晶是纳米纤维素的一种,目前普遍认定纤维素纳米晶的直径D范围在2-4nm,长度L范围在100-400nm和L/D范围在80-100。如果通过去除造纸脱墨污泥的杂质并将其中的纤维素类物质制备成纤维素纳米晶,将有效地提高造纸脱墨污泥的应用范围并提升其附加值。造纸脱墨污泥的脱水和干化后污泥氧化体系的选择是制备纤维素纳米晶的最重要步骤,确定最适宜的原料纤维素的获得方法以及纤维素纳米晶的制备方法,将有效解除造纸脱墨污泥只能作为焚烧辅料的制约。此外,我国印染行业发达,每年都会产生大量印染废水,其中以三(2-羧乙基)膦(TCEP)为代表的硫醇类着色剂因其溶解性好,稳定性高而难以去除,会显著增加印染废水处理厂的运行难度和运行成本。由于工业废水进入污水处理厂的比例日益提高,大量有机磷在污水处理厂进水中被检测到。通过纤维素纳米晶对海藻酸盐的负载,有望解决印染废水中由于溶解性有机磷浓度较高而引发的出水总磷超标的问题。同时,将富集的有机磷通过纤维素纳米晶进行回收,不仅可以缓解磷匮乏的危机,也将促进造纸脱墨污泥资源化利用技术和工艺的发展。
发明内容
技术问题:
造纸脱墨污泥一般仅作为市政污泥焚烧的辅助燃料进行焚烧处置,资源化利用效果较差,使其在污泥资源化利用的大背景下处于低效利用的状态。本发明基于造纸脱墨污泥的性质,突破造纸脱墨污泥脱水和通过氧化体系制备纤维素纳米晶的技术限制,将其耦合海藻酸盐应 用于印染废水有机磷富集的资源化利用领域。
技术方案:
本发明提供了一种制备纤维素纳米晶负载海藻酸钠吸附剂的方法,所述方法是将纤维素纳米晶负载于海藻酸钠中;所述纤维素纳米晶的制备过程包括如下步骤:
(1)取用造纸脱墨污泥混合液进行固液分离,收集固体污泥,然后利用缓冲溶液稀释固体污泥,获得泥水混合液;
(2)向步骤(1)所得泥水混合液中加入絮凝剂和熟石灰,混匀,然后膜过滤分离,收集截留于滤膜上的污泥;
(3)采用热干化的方式处理步骤(2)所得污泥,至污泥的含水率不超过30%后进行破碎处理;
(4)用缓冲溶液润洗破碎后的污泥,然后加入2,2,6,6-四甲基哌啶氧化物自由基和溴化钠,混匀,形成混合体系;
(5)向步骤(4)所得混合体系中加入终止氧化剂,至反应体系的pH不发生变化,终止反应;固液分离、收集固体,即得纤维素纳米晶。
在本发明的一种实施方式中,所述纤维素纳米晶负载海藻酸钠吸附剂的制备方法包括如下步骤:
(a)将海藻酸钠分散于微酸性介质中,缓慢加入步骤(2)中膜过滤后得到的脱水滤液,混匀,获得相应的海藻酸钠分散液;将纤维素纳米晶分散于微酸性介质中,混匀,获得纤维素纳米晶分散液;
(b)然后将纤维素纳米晶分散液缓慢滴加至海藻酸钠分散液中,获得的海藻酸钠-纤维素纳米晶混合液,浓缩干燥,即得纤维素纳米晶负载海藻酸钠吸附剂。
在本发明的一种实施方式中,步骤(a)中所述脱水滤液的获取过程包括:向纤维素纳米晶的制备过程步骤(1)所得的泥水混合液中加入絮凝剂和熟石灰,混匀,然后膜过滤分离,滤膜截留污泥后,分离收集得到滤液,即为脱水滤液。
在本发明的一种实施方式中,所述海藻酸钠和纤维素纳米晶的质量比为2:0.2
在本发明的一种实施方式中,微酸性介质为pH=3.8-4.6的醋酸溶液。
在本发明的一种实施方式中,海藻酸钠分散液浓度为10g/L;纤维素纳米晶浓度为1g/L。
在本发明的一种实施方式中,干燥的温度为170-220℃。
在本发明的一种实施方式中,在纤维素纳米晶的制备过程中,所述步骤(1)中造纸脱墨污泥混合液取自嘉兴某造纸厂;取用500mL进行实验。
在本发明的一种实施方式中,在纤维素纳米晶的制备过程中,所述步骤(1)中缓冲溶液 选用pH为6.5-7.5的磷酸盐缓冲液。
在本发明的一种实施方式中,在纤维素纳米晶的制备过程中,所述步骤(2)中絮凝剂选自AlCl 3、FeCl 3
在本发明的一种实施方式中,在纤维素纳米晶的制备过程中,所述步骤(2)中絮凝剂相对固体污泥干重的质量分数为5-10%。其中,AlCl 3的优选范围是5%-9%;FeCl 3的优选范围是3%-7%。进一步以8%的AlCl 3或者5%的FeCl 3为最优。
在本发明的一种实施方式中,在纤维素纳米晶的制备过程中,所述步骤(2)中熟石灰相对固体污泥干重的质量分数为10%-25%;优选20%。
在本发明的一种实施方式中,在纤维素纳米晶的制备过程中,所述步骤(2)中混匀的方式为:在转速为300r/min下搅拌2min,然后在转速为50r/min下搅拌10min。
在本发明的一种实施方式中,在纤维素纳米晶的制备过程中,所述步骤(2)中膜过滤是指采用抽滤的方式进行滤膜过滤。步骤(2)中利用抽滤的方式将污泥截留于滤膜之上,并且脱水滤液备用。
在本发明的一种实施方式中,在纤维素纳米晶的制备过程中,所述步骤(3)中热干化的温度为170-220℃;优选200℃。
在本发明的一种实施方式中,在纤维素纳米晶的制备过程中,所述步骤(4)中2,2,6,6-四甲基哌啶氧化物自由基相对污泥的添加量为80mg。
在本发明的一种实施方式中,在纤维素纳米晶的制备过程中,所述步骤(4)中溴化钠与2,2,6,6-四甲基哌啶氧化物自由基的质量比为80:80。
在本发明的一种实施方式中,在纤维素纳米晶的制备过程中,所述步骤(4)中终止氧化剂为NaClO。
在本发明的一种实施方式中,在纤维素纳米晶的制备过程中,所述步骤(4)中终止氧化剂NaClO的加入方式为使用5.0mmol/L的NaClO溶液滴加到混合体系中。
在本发明的一种实施方式中,在纤维素纳米晶的制备过程中,所述步骤(4)中固液分离的方式包括微波分离和离心沉淀。
在本发明的一种实施方式中,所述纤维素纳米晶的制备方法具体包括如下步骤:
(1)取500ml造纸脱墨污泥混合液,经离心后用pH为7.0的磷酸盐缓冲液稀释至500ml,此步骤重复3次;
(2)分别向500ml泥水混合液中添加为污泥干重5%的AlCl 3和为污泥干重20%的熟石灰,经过2min快速搅拌(转速为300r/min)和10min慢速搅拌(转速为50r/min)后,利用抽滤的方式将污泥截留于滤膜之上,脱水滤液备用;
(3)采取热干化的方式在200℃将污泥含水率降低至30%,污泥经破碎后备用;
(4)选用pH为7.0的磷酸盐缓冲液润洗破碎后的污泥,使混合液体积达到100ml,在中速搅拌(转速为150r/min)的条件下,加入0.2mmol的2,2,6,6-四甲基哌啶氧化物自由基(TEPMO)80mg和5.0mmol的NaBr 80mg;
(5)待TEPMO和NaBr完全溶解后,缓慢滴加10.0mmol/L的NaClO溶液至反应体系pH不再发生变化后,用微过量无水乙醇终止反应;经微波分离和离心沉淀后即得到纤维素纳米晶。
在本发明的一种实施方式中,所述纤维素纳米晶负载海藻酸钠吸附剂的制备方法具体包括如下步骤:
(a)在醋酸提供的微酸性条件下,将2g海藻酸钠投入其中,缓慢加入步骤(2)中得到的脱水滤液50mL,并在搅拌条件下使海藻酸钠与脱水滤液中的钙离子充分混合,并使其呈均匀分散状态,获得海藻酸钠分散液;将纤维素纳米晶0.2g溶于醋酸,混匀,获得纤维素纳米晶分散液;
(b)将纤维素纳米晶分散液缓慢加入到海藻酸钠分散液中,得到的海藻酸盐-纤维素纳米晶混合液,之后放入烘箱中低温烘干24h,平衡水分后,即得纤维素纳米晶负载海藻酸钠吸附,备用。
本发明利用上述方法提供一种纤维素纳米晶负载海藻酸钠吸附剂。
本发明还提供了上述纤维素纳米晶负载海藻酸钠吸附剂在去除水中有机磷方面的应用。
有益效果:
本发明提供了一种利用造纸脱墨污泥制备纤维素纳米晶进而获得海藻酸盐-纤维素纳米晶吸附剂,富集废水中有机磷的方法,属于环境工程技术领域。本发明通过药剂调理-干化破碎-化学氧化-微波筛分技术将造纸脱墨污泥制备为纤维素纳米晶,并在弱酸性条件下将其负载于海藻酸盐上使其具备富集废水中有机磷的能力。运用此方法,可以显著降低废水中有机磷的含量,降低出水总磷,保证污水处理达标排放;富集的有机磷可以通过焚烧的方式进行磷的资源化回收。同时,将造纸脱墨污泥进行高附加值产物制备,拓宽了其应用范围,具有较高的可行性。
本发明提供的海藻酸盐-纤维素纳米晶作为吸附剂,与50ml印染废水混合,其对三(2-羧乙基)膦(TCEP)的平衡吸附量达到35.7mg/g,富集率超过85%。同时,制备得到的海藻酸盐-纤维素纳米晶经臭氧氧化再生后,可继续吸附TCEP,经八次再生后,平衡吸附量仍高于30.0mg/g,满足循环利用的要求。
附图说明
图1为不同吸附剂对TCEP的平衡吸附量和富集率结果。
具体实施方式
根据权利要求所包含的内容举例说明
实施例1:造纸脱墨污泥的脱水与干化
从造纸废水处理现场(嘉兴某造纸厂)脱墨废水处理工艺段获取10L造纸脱墨污泥混合液,在均匀搅拌的前提下取出泥水混合液500mL(设置6个平行样),经离心后用pH为7.0的磷酸盐缓冲液重复稀释3次,最后定容至500mL。取出3组平行样,经抽滤后将截留于滤膜上的污泥样本置于烘箱中,在105℃条件下烘干4h,进而计算出造纸脱墨污泥的干重。取出另外3组平行样,依次向500mL泥水混合液中添加为污泥干重5%的AlCl 3和为污泥干重20%的熟石灰,经过2min快速搅拌(转速为300r/min)和10min慢速搅拌(转速为50r/min)后,利用抽滤的方式将污泥截留于滤膜之上,脱水滤液备用。采取热干化的方式在200℃条件下将污泥含水率降低至30%,污泥经破碎后备用。
实施例2:造纸脱墨干化污泥的氧化和纤维素纳米晶的分离
选取平行样中经破碎的造纸脱墨干化污泥,用pH为7.0的磷酸盐缓冲液润洗破碎后的污泥,使混合液体积达到100ml,在转速为150r/min的条件下持续搅拌,依次加入0.2mmol的2,2,6,6-四甲基哌啶氧化物自由基(TEPMO)80mg和5.0mmol的NaBr 80mg,待TEPMO和NaBr完全溶解后,缓慢滴加10.0mmo/L的NaClO溶液至反应体系pH不再发生变化,之后用微过量无水乙醇终止反应,最后经微波分离和离心沉淀分离得到纤维素纳米晶。
实施例3:海藻酸盐-纤维素纳米晶体系的建立
在醋酸提供的微酸性条件下,将2g海藻酸钠投入100mL醋酸溶液中(pH=4.5),缓慢加入造纸脱墨污泥的脱水滤液50mL,并在搅拌条件下使海藻酸钠与脱水滤液中的钙离子充分混合,并使其呈均匀分散状态,形成海藻酸盐-醋酸混合液。将制备得到的纤维素纳米晶0.2g溶于50mL醋酸溶液中(pH=4.5)中,经搅拌混匀后缓慢加入海藻酸盐-醋酸混合液中,之后将得到的海藻酸盐-纤维素纳米晶混合液放入烘箱中低温(75℃)烘干24h,平衡水分后备用。
实施例4:海藻酸盐-纤维素纳米晶在印染废水中富集有机磷的效果
将获得的海藻酸盐-纤维素纳米晶制成吸附剂,与50mL印染废水混合(利用2.2g吸附剂处理50mL印染废水),发现海藻酸盐-纤维素纳米晶具有良好的有机磷富集效果,其对TCEP的平衡吸附量达到35.7mg/g,富集率超过85%,有效降低了TCEP对出水总磷的贡献,保证出水达标排放。在臭氧的氧化作用下,海藻酸盐-纤维素纳米晶可以实现再生,继续吸附TCEP,平衡吸附量仍高于30.0mg/g,满足循环利用的要求。因此,确定上述制备获得的纤维素纳米晶具备良好的有机磷富集效果,为造纸脱墨污泥的资源化利用拓展了新的途径。
对比例1:氧化体系中终止氧化剂浓度的确定
不符合条件的不能成为纤维素纳米晶,更无法用于富集有机磷。通过平均直径D,平均长度L和L/D,最终确定氧化剂的浓度。如表1所示,当选用NaClO作为终止氧化剂时,相对较低浓度的NaClO均无法获得纤维素纳米晶。当NaClO浓度高于10mmol/L时,氧化体系均可成功制备纤维素纳米晶,在考虑制备成本的前提下,最终确定NaClO的浓度为10mmol/L。
表1 NaClO终止氧化剂对纤维素纳米晶制备的影响
Figure PCTCN2021133060-appb-000001
对比例2:纤维素纳米晶的分离
超声法和微波法都可以将物质从基质中得到分离,考察了在不同能量密度条件下纤维素纳米晶的特征,进而确定最适宜的纤维素纳米晶分离方法。由表2可知,当采用超声法进行纤维素纳米晶分离时,能量密度为1100J/mL的条件下无法制备符合标准的纤维素纳米晶,随着能量密度增加,纤维素纳米晶可以顺利生成。当采用微波法进行纤维素纳米晶分离时,其平均直径,平均长度和L/D均能符合纤维素纳米晶的标准,结合能耗最优的原则,选用能量密度为1000J/ml的微波法进行纤维素纳米晶的分离。
表2不同分离方法条件下纤维素纳米晶特征
Figure PCTCN2021133060-appb-000002
Figure PCTCN2021133060-appb-000003
对比例3:纤维素纳米晶负载于不同基质时有机磷的富集效果
为考察基于纤维素纳米晶的吸附剂对印染废水中有机磷TCEP的富集效果,分别设置了海藻酸盐-纤维素纳米晶(外加钙离子),海藻酸盐-纤维素纳米晶(外加污泥脱水滤液),壳聚糖-纤维素纳米晶和沸石海藻酸钠-纤维素纳米晶对有机磷的富集效果。造纸脱墨污泥中因为加入了CaO进行污泥调理,因此污泥脱水滤液中具有相对浓度较高的钙离子。如表3所示,当选择壳聚糖-纤维素纳米晶和沸石海藻酸钠-纤维素纳米晶对TCEP进行富集时,其平衡吸附量和富集率均低于以海藻酸盐为基质的吸附剂。当通过外加钙离子制备海藻酸盐溶液时,虽然其初始平衡吸附量和富集率高于以污泥脱水滤液制备的海藻酸盐溶液,但是在经过八次再生后,二者对TCEP的平衡吸附量和富集率基本一致,因此在考虑运行简便和成本最优化的前提下,选择以污泥脱水滤液制备的海藻酸盐,进而形成海藻酸盐-纤维素纳米晶是更为有效且经济的印染废水有机磷吸附剂。
表3纤维素纳米晶吸附剂对有机磷的富集效果
Figure PCTCN2021133060-appb-000004

Claims (10)

  1. 一种制备纤维素纳米晶负载海藻酸钠吸附剂的方法,其特征在于,所述方法是将纤维素纳米晶负载于海藻酸钠中;
    所述纤维素纳米晶的制备过程包括如下步骤:
    (1)取用造纸脱墨污泥混合液进行固液分离,收集固体污泥,然后利用缓冲溶液稀释固体污泥,获得泥水混合液;
    (2)向步骤(1)所得泥水混合液中加入絮凝剂和熟石灰,混匀,然后膜过滤分离,收集截留于滤膜上的污泥;
    (3)采用热干化的方式处理步骤(2)所得污泥,至污泥的含水率不超过30%后进行破碎处理;
    (4)用缓冲溶液润洗破碎后的污泥,然后加入2,2,6,6-四甲基哌啶氧化物自由基和溴化钠,混匀,形成混合体系;
    (5)向步骤(4)所得混合体系中加入终止氧化剂,至反应体系的pH不发生变化,终止反应;固液分离、收集固体,即得纤维素纳米晶。
  2. 根据权利要求1所述的方法,其特征在于,所述纤维素纳米晶负载海藻酸钠吸附剂的制备方法包括如下步骤:
    (a)将海藻酸钠分散于微酸性介质中,缓慢加入步骤(2)中膜过滤后得到的脱水滤液,混匀,获得相应的海藻酸钠分散液;将纤维素纳米晶分散于微酸性介质中,混匀,获得纤维素纳米晶分散液;
    (b)然后将纤维素纳米晶分散液缓慢滴加至海藻酸钠分散液中,获得的海藻酸钠-纤维素纳米晶混合液,浓缩干燥,即得纤维素纳米晶负载海藻酸钠吸附剂。
  3. 根据权利要求1所述的方法,其特征在于,所述海藻酸钠和纤维素纳米晶的质量比为2:0.2。
  4. 根据权利要求2所述的方法,其特征在于,微酸性介质为pH=3.8-4.6的醋酸溶液。
  5. 根据权利要求2所述的方法,其特征在于,海藻酸钠分散液浓度为10g/L;纤维素纳米晶浓度为1g/L。
  6. 根据权利要求1所述的方法,其特征在于,在纤维素纳米晶的制备过程中,所述步骤(5)中终止氧化剂为NaClO。
  7. 根据权利要求1所述的方法,其特征在于,在纤维素纳米晶的制备过程中,所述步骤(2)中絮凝剂相对固体污泥干重的质量分数为5-10%。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,在纤维素纳米晶的制备过程中,所述步骤(2)中熟石灰相对固体污泥干重的质量分数为10%-25%。
  9. 权利要求1-8任一项所述的方法制备得到的一种纤维素纳米晶负载海藻酸钠吸附剂。
  10. 权利要求9所述的纤维素纳米晶负载海藻酸钠吸附剂在去除废水中有机磷方面的应用。
PCT/CN2021/133060 2020-12-14 2021-11-25 一种纤维素纳米晶负载海藻酸钠吸附剂及其富集废水中有机磷的应用 WO2022127548A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/845,048 US11577220B2 (en) 2020-12-14 2022-06-21 Cellulose nanocrystal-supported sodium alginate adsorbent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011470643.4 2020-12-14
CN202011470643.4A CN112495349B (zh) 2020-12-14 2020-12-14 一种纤维素纳米晶负载海藻酸钠吸附剂及其富集废水中有机磷的应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/845,048 Continuation US11577220B2 (en) 2020-12-14 2022-06-21 Cellulose nanocrystal-supported sodium alginate adsorbent

Publications (1)

Publication Number Publication Date
WO2022127548A1 true WO2022127548A1 (zh) 2022-06-23

Family

ID=74973147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133060 WO2022127548A1 (zh) 2020-12-14 2021-11-25 一种纤维素纳米晶负载海藻酸钠吸附剂及其富集废水中有机磷的应用

Country Status (3)

Country Link
US (1) US11577220B2 (zh)
CN (1) CN112495349B (zh)
WO (1) WO2022127548A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112495349B (zh) * 2020-12-14 2021-12-03 江南大学 一种纤维素纳米晶负载海藻酸钠吸附剂及其富集废水中有机磷的应用
CN115487779B (zh) * 2022-06-01 2023-07-28 同济大学 一种二价铁离子/纤维素纳米晶体/海藻酸钠复合材料的制备方法及对四环素的吸附应用
CN116143227B (zh) * 2023-04-19 2023-07-14 新乡学院 一种吸附-超滤联用处理低浓度重金属污染废水的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101020718A (zh) * 2006-05-15 2007-08-22 北京盖雅环境科技有限公司 以造纸污泥为原料生产羧甲基纤维素钠的方法
CN101155957A (zh) * 2005-03-10 2008-04-02 瑞弗尔·阿哈伦 从污水污泥回收利用纤维的方法及其装置
CN112495349A (zh) * 2020-12-14 2021-03-16 江南大学 一种纤维素纳米晶负载海藻酸钠吸附剂及其富集废水中有机磷的应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012119229A1 (en) * 2011-03-08 2012-09-13 The Royal Institution For The Advancement Of Learning/Mcgill University Highly charge group-modified cellulose fibers which can be made into cellulose nanostructures or super-absorbing cellulosic materials and method of making them
CN103590282B (zh) * 2012-08-14 2015-12-02 金东纸业(江苏)股份有限公司 涂料及应用该涂料的涂布纸
CN105713100A (zh) * 2016-03-16 2016-06-29 东北林业大学 一种快速制备纤维素纳米晶的方法
CN108014760B (zh) * 2017-09-21 2020-06-16 浙江海洋大学 一种吸附铅离子的海藻酸钠/羧基化纳晶纤维素水凝胶微球
CN109505033A (zh) * 2018-12-21 2019-03-22 袁宝龙 纤维素纳米晶增强海藻酸复合纤维的制备方法
CN109972233A (zh) * 2019-02-19 2019-07-05 青岛大学 可生物降解的具有高强度高韧性的海藻酸纤维的制备方法
CN111440248B (zh) * 2020-03-02 2022-03-29 中科如米(北京)生态农业科技发展有限公司 一种木糖渣纤维素纳米晶及其复合水凝胶的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155957A (zh) * 2005-03-10 2008-04-02 瑞弗尔·阿哈伦 从污水污泥回收利用纤维的方法及其装置
US20090281302A1 (en) * 2005-03-10 2009-11-12 Applied Cleantech Inc. Method of Recycling Fibers From Sewage Sludge and Means Thereof
CN101020718A (zh) * 2006-05-15 2007-08-22 北京盖雅环境科技有限公司 以造纸污泥为原料生产羧甲基纤维素钠的方法
CN112495349A (zh) * 2020-12-14 2021-03-16 江南大学 一种纤维素纳米晶负载海藻酸钠吸附剂及其富集废水中有机磷的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAI LEI: "Preparation And Investigation of TEMPO-Oxidized Cellulose Nanofibers And Their Composite Films", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 1 May 2015 (2015-05-01), pages 1 - 92, XP055943700 *
HU ZHAO-HONG, OMER AHMED MOHAMED, OUYANG XIAO–KUN, YU DI: "Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution", INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, vol. 108, 1 March 2018 (2018-03-01), NL , pages 149 - 157, XP055943703, ISSN: 0141-8130, DOI: 10.1016/j.ijbiomac.2017.11.171 *
MA MINGSHUAI; LIU ZHONG; HUI LANFENG; SHANG ZHEN; YUAN SHAOYU; DAI LIN; LIU PENGTAO; LIU XINLIANG; NI YONGHAO: "Lignin-containing cellulose nanocrystals/sodium alginate beads as highly effective adsorbents for cationic organic dyes", INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, vol. 139, 2 August 2019 (2019-08-02), NL , pages 640 - 646, XP085923994, ISSN: 0141-8130, DOI: 10.1016/j.ijbiomac.2019.08.022 *

Also Published As

Publication number Publication date
CN112495349B (zh) 2021-12-03
US11577220B2 (en) 2023-02-14
US20220323932A1 (en) 2022-10-13
CN112495349A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2022127548A1 (zh) 一种纤维素纳米晶负载海藻酸钠吸附剂及其富集废水中有机磷的应用
JP6121589B2 (ja) 嫌気性処理方法
CN102745879B (zh) 一种用于烟气脱硫脱汞的污泥基吸附剂及其制备方法
WO2022193674A1 (zh) 一种处理罗丹明b废水的麦羟硅钠石/聚吡咯吸附材料及其制备方法与应用
CN104891774A (zh) 一种聚合氯化铝和超声联用技术对污泥处理的方法
CN103708704B (zh) 污泥深度脱水的预处理方法
Cydzik-Kwiatkowska et al. Efficient dewatering of polymer-rich aerobic granular sludge with cationic polymer containing hydrocarbons
CN103274578B (zh) 一种用于好氧颗粒污泥反应器的剩余污泥脱水的方法
CN112427008B (zh) 一种疏浚底泥活化吸附剂及其制备方法和应用
Wang et al. Settleability and dewaterability of sewage sludge with modified diatomite
CN112516970B (zh) 一种纤维素纳米晶负载壳聚糖吸附剂及在回收污水稀土元素中的应用
Luo et al. Effect of calcium ions on dewaterability of enzymatic-enhanced anaerobic digestion sludge
JP2683225B2 (ja) 活性炭の製造方法及び水処理用にその活性炭を使用する方法
CN104773802B (zh) 一种高吸附性能的复合絮凝剂气凝胶及其制备方法
CN115849654A (zh) 一种污泥脱水调理剂及其应用
RU2482074C1 (ru) Способ очистки сточной воды от мышьяка
CN112679621B (zh) 一种基于造纸脱墨污泥制备的纤维素纳米晶及在地下水铁锰去除中的应用
CN108499514A (zh) 一种基于给水厂铁铝泥的磷吸附剂及其制备方法
CN114804581A (zh) 一种联合强化污泥脱水的方法
CN112374724B (zh) 底泥脱水剂及脱水方法
CN100537442C (zh) 利用硅藻土提纯精土的中间产物制备污水处理剂的方法
CN107381883B (zh) 一种褐煤吸附前处理煤制油特征废水的方法
CN111732323A (zh) 一种快速干化复合淤泥脱水剂的制备方法
Shi et al. Experiment study on the effects of natural zeolite on sludge dewatering performance and nitrogen losses
CN109019751B (zh) 一种有机废液吸附处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905477

Country of ref document: EP

Kind code of ref document: A1