WO2022126796A1 - 多功能气相色谱质谱分析装置和分析方法 - Google Patents

多功能气相色谱质谱分析装置和分析方法 Download PDF

Info

Publication number
WO2022126796A1
WO2022126796A1 PCT/CN2020/142322 CN2020142322W WO2022126796A1 WO 2022126796 A1 WO2022126796 A1 WO 2022126796A1 CN 2020142322 W CN2020142322 W CN 2020142322W WO 2022126796 A1 WO2022126796 A1 WO 2022126796A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
interface
port
tube
gas
Prior art date
Application number
PCT/CN2020/142322
Other languages
English (en)
French (fr)
Inventor
吴曼曼
乔佳
王甫华
陈家新
封荣贵
侯志辉
杨惠锋
Original Assignee
广州禾信仪器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州禾信仪器股份有限公司 filed Critical 广州禾信仪器股份有限公司
Publication of WO2022126796A1 publication Critical patent/WO2022126796A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • G01N2030/125Preparation by evaporation pyrolising

Definitions

  • the invention relates to the technical field of chromatography analysis, in particular to a multifunctional gas chromatography mass spectrometry analysis device and an analysis method.
  • gas chromatographic analysis devices are based on the system composed of different substances in stationary phase and mobile phase, that is, the chromatographic column has different distribution coefficients to separate the components of the sample gas to be tested, and then use a mass spectrometer detector to separate each component.
  • the chromatographic peaks of the constituent gases are converted into electrical signals, which are converted into voltage or current output by electronic amplifiers.
  • the rapid on-site emergency monitoring methods for various environmental volatile and semi-volatile organic compounds such as gases and liquids generally use gas chromatography, gas chromatography mass spectrometry or single mass spectrometry.
  • the detection methods and types of analytical targets are relatively simple. The two detection methods require two independent instruments, which are extremely expensive and complicated to operate.
  • a multifunctional gas chromatography mass spectrometry analysis device the multifunctional gas chromatography mass spectrometry analysis device comprises: a first injection pipe, and the air inlet end of the first injection pipe is used for introducing sample gas;
  • a multi-port valve the multi-port valve is provided with a first port, a second port, a third port, a fourth port, a fifth port, a sixth port, a seventh port and an eighth port, and the multi-port valve operates in The first working state and the second working state; when the multi-port valve operates in the first working state, the first interface and the second interface are connected through a pipeline, and the third interface and the fourth interface are connected The interfaces are communicated through pipelines, the fifth interface is communicated with the sixth interface through pipelines, and the seventh interface is communicated with the eighth interface through pipelines; when the multi-port valve operates in the second working state , the first interface is communicated with the eighth interface through a pipeline, the second interface is communicated with the third interface through a pipeline,
  • the sixth interface is communicated with the seventh interface through a pipeline; the seventh interface is connected with the eighth interface through a communication pipe; the first carrier gas pipe, the second carrier gas pipe, the first pipeline, and the second pipeline , the third pipeline, the fourth pipeline, the fifth pipeline, the sixth pipeline, the liquid sampling module, the pre-concentration trapping tube, the thermal desorption part, the first gas path control part, the gas pump and the chromatographic analysis column.
  • a mass spectrometer detector is provided with a first injection port, a second injection port and a suction outlet communicated with the second injection port; the gas outlet end of the first carrier gas pipe, the The gas outlet ends of a sample injection tube are all connected to the first interface; both ends of the first pipeline are respectively connected to the second interface and the fifth interface, respectively, and the pre-concentration trapping tube is arranged at On the first pipeline, the thermal desorption member is used to perform heating and desorption treatment on the pre-concentration trapping tube; the gas outlet end of the second carrier gas tube is communicated with the third interface; the second One end of the pipeline is communicated with the fourth interface, the other end of the second pipeline is communicated with the air inlet of the liquid sampling module, and one end of the third pipeline is connected with the liquid sampling The air outlet of the module is communicated, the other end of the third pipeline is communicated with the first injection port, and the chromatographic analysis column is arranged on the third pipeline; the first gas path control part controls The sixth interface is
  • the above-mentioned multifunctional gas chromatography mass spectrometry analysis device detects the sample to be tested, it can be used in the gas chromatography detection mode and also in the single mass spectrometry detection mode, with powerful functions and convenient use.
  • the above-mentioned multifunctional gas chromatography-mass spectrometry apparatus because the mass spectrometer is provided with a first injection port, a second injection port, and a suction outlet communicating with the second injection port, and includes a multi-port valve and an integral pipe.
  • the circuit connection structure can realize the integrated organic combination of the gas chromatography detection mode and the single mass spectrometry detection mode, and the device structure is relatively simple.
  • the first air path control member is a first 2/3-way valve
  • a first port of the first 2/3-way valve is in communication with the sixth interface
  • the first The second port of the 2/3-way valve communicates with the fourth pipeline
  • the third port of the first 2/3-way valve communicates with the fifth pipeline.
  • the multifunctional gas chromatography-mass spectrometry device further comprises a second injection tube, and the second injection tube communicates with the first interface.
  • the multifunctional gas chromatography-mass spectrometry apparatus further includes the multifunctional gas chromatography-mass spectrometry apparatus further comprising a second gas path control member, and the second gas path control member is used to control the first gas path control member.
  • An interface communicates with the first sampling tube or the second sampling tube.
  • the multifunctional gas chromatography-mass spectrometry device further includes a third gas path control part, and the third gas path control part is used to control the first interface and the first injection tube or The first carrier gas pipes are communicated.
  • the multifunctional gas chromatography-mass spectrometry device further comprises a restrictor disposed on the first carrier gas pipe, or the first carrier gas pipe is a restrictor pipe; the second carrier gas pipe is provided with a restrictor. There is the first pressure controller.
  • the multifunctional gas chromatography-mass spectrometry device further comprises a carrier gas manifold and a first distribution member, and the carrier gas manifold is connected to the first carrier gas tube, the first distribution member respectively through the first distribution member
  • the second carrier gas pipes are communicated with each other, and the carrier gas main pipe is used for connecting the carrier gas source.
  • the multifunctional gas chromatography-mass spectrometry device further comprises a quantitative tube arranged in parallel with the pre-concentration trapping tube, and is used to control the access of the quantitative tube or the pre-concentration trapping tube to the control assembly of the first line.
  • control assembly includes two fourth two-position three-way valves respectively located on both sides of the pre-concentration trapping pipe; the first port of the fourth two-position three-way valve and the second The port is arranged on the first pipeline, one end of the quantitative pipe is communicated with the third port of one of the fourth two-position three-way valve, and the other end of the quantitative pipe is connected with the other fourth two-position three-way valve. The third port of the three-way valve is communicated.
  • the liquid sampling module includes a body provided with a chamber, and the body is provided with a liquid sampling end, a septum purging pipeline and a shunt pipeline communicating with the chamber.
  • a portable gas chromatography mass spectrometry analysis method adopts the multifunctional gas chromatography mass spectrometry analysis device, comprising the following steps:
  • Step S10 Concentrate and capture the sample to be tested, so that the multi-port valve is switched to operate in the first working state, the air pump is turned on, and the first air circuit control part controls the fifth pipeline to be connected with the sixth interface, and the suction of the air pump is performed.
  • the sample gas is discharged through the first sampling tube, the first interface, the second interface, the first pipeline, the fifth interface, the sixth interface and the fifth pipeline.
  • the sample to be tested in the sample gas is captured and collected by the pre-concentration trap tube on the first pipeline;
  • Step S20 control the air pump to stop working and enter the thermal desorption step, make the multi-port valve operate in the second working state, and perform heating and desorption treatment on the pre-concentration trapping tube through the thermal desorption member, so that the pre-concentration trapping tube is heated and desorbed.
  • the sample is vaporized, and the carrier gas introduced from the first carrier gas pipe synchronously flows through the third interface, the second interface, the first pipeline, the fifth interface, the fourth interface, the second pipeline, and the inlet of the liquid sampling module.
  • the air port, the air outlet of the liquid sampling module, the third pipeline, and the chromatographic analysis column enter the mass spectrometer detector, and the carrier gas introduced into the first carrier gas pipe carries the vaporized sample to be tested when it enters the pre-concentration trapping pipe. into the chromatographic analysis column together;
  • step S30 the backflushing detection step is performed when the desorption time of the sample to be tested in the pre-concentration trap tube in the thermal desorption step reaches a preset time, so that the multi-port valve is switched to operate in the first working state, and the first sample injection tube is stopped
  • the first gas path control part controls the fifth pipeline to communicate with the sixth interface, and the carrier gas in the second carrier gas pipeline flows through the third interface, the fourth interface, the second pipeline, the liquid sampling module, and the third interface in turn.
  • the second carrier gas pushes the sample to be tested in the second pipeline, third pipeline and chromatographic analysis column forward into the mass spectrometer detector for detection;
  • the carrier gas in a carrier gas tube flows through the first interface, the second interface, the first pipeline, the fifth interface, the sixth interface and the fifth pipeline in sequence, so that the residual samples or impurities in the pre-concentration trap tube are discharged to the outside. external emissions.
  • the above-mentioned multifunctional gas chromatography mass spectrometry analysis device detects the sample to be tested, it can be used in the gas chromatography detection mode and also in the single mass spectrometry detection mode, with powerful functions and convenient use.
  • FIG. 1 is a schematic structural diagram of a multi-port valve of a multifunctional gas chromatography-mass spectrometry device operating in a first working state according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of the multi-port valve of the multifunctional gas chromatography-mass spectrometry apparatus according to an embodiment of the present invention operating in a second working state;
  • FIG. 3 is a schematic structural diagram of the multi-port valve of the multifunctional gas chromatography-mass spectrometry apparatus according to another embodiment of the present invention running in a first working state;
  • Fig. 4 is a schematic structural diagram of the multi-port valve of the multifunctional gas chromatography mass spectrometry apparatus according to another embodiment of the present invention running in a second working state.
  • FIG. 1 shows a schematic structural diagram of the multi-port valve 20 of the multifunctional gas chromatography-mass spectrometry apparatus operating in the first working state according to an embodiment of the present invention
  • An embodiment of the present invention provides a multifunctional gas chromatography-mass spectrometry analysis device.
  • the multifunctional gas chromatography-mass spectrometry analysis device includes: a first sample injection pipe 11, a multi-port valve 20, a first carrier gas pipe 31, a second carrier gas pipe 32, The first pipeline 41, the second pipeline 42, the third pipeline 43, the fourth pipeline 44, the fifth pipeline 45, the sixth pipeline 46, the liquid sampling module 50, the preconcentration trapping tube 61, the heat The desorption part, the first gas path control part 71 , the air pump 81 , the chromatographic analysis column 82 and the mass spectrometer detector 83 .
  • the gas inlet end of the first sampling tube 11 is used for introducing sample gas.
  • the multi-port valve 20 is provided with a first port A1, a second port A2, a third port A3, a fourth port A4, a fifth port A5, a sixth port A6, a seventh port A7 and an eighth port A8.
  • the multi-port valve 20 Running in the first working state and the second working state.
  • the first port A1 and the second port A2 are connected through a pipeline
  • the third interface A3 and the fourth interface A4 are connected through a pipeline
  • the fifth interface A5 and the sixth interface are connected through a pipeline Connected
  • the seventh port A7 and the eighth port A8 are communicated through the pipeline
  • the multi-way valve 20 operates in the second working state
  • the first interface A1 and the eighth interface A8 are communicated through the pipeline
  • the second interface A2 The three ports A3 are communicated with each other through pipes
  • the fourth port A4 is communicated with the fifth port A5 through pipes
  • the sixth port A6 is communicated with the seventh port A7 through pipes.
  • the seventh port A7 is connected to the eighth port A8 through the communication pipe 21 .
  • the mass spectrometer detector 83 is provided with a first injection port, a second injection port, and a suction outlet communicating with the second injection port.
  • the gas outlet end of the first carrier gas tube 31 and the gas outlet end of the first sample injection tube 11 are both communicated with the first interface A1.
  • the two ends of the first pipeline 41 are respectively connected to the second interface A2 and the fifth interface A5.
  • the pre-concentration trapping tube 61 is arranged on the first pipeline 41, and the thermal desorption element is used for the pre-concentration trapping tube 61. Heating desorption treatment.
  • the gas outlet end of the second carrier gas pipe 32 is communicated with the third port A3.
  • One end of the second pipeline 42 is connected to the fourth interface A4 , the other end of the second pipeline 42 is connected to the air inlet 56 of the liquid sampling module 50 , and one end of the third pipeline 43 is connected to the liquid sampling module 50
  • the gas outlet 57 of the third pipeline 43 is connected with the first injection port, and the other end of the third pipeline 43 is connected with the first injection port.
  • the chromatographic analysis column 82 is arranged on the third pipeline 43.
  • the first gas path control member 71 controls the sixth interface A6 to communicate with one end of the fourth pipeline 44 or one end of the fifth pipeline 45, the other end of the fourth pipeline 44 is communicated with the second injection port, and the sixth One end of the pipeline 46 is communicated with the suction outlet, and the other end of the fifth pipeline 45 and the other end of the sixth pipeline 46 are connected to the air pump 81 in parallel.
  • the above-mentioned multifunctional gas chromatography mass spectrometry analysis device detects the sample to be tested, it can be used in the gas chromatography detection mode and also in the single mass spectrometry detection mode, with powerful functions and convenient use.
  • the above-mentioned multifunctional gas chromatography-mass spectrometry apparatus since the mass spectrometer detector 83 is provided with a first injection port, a second injection port, and a suction outlet communicating with the second injection port, and includes a multi-port valve 20 and a suction port.
  • the overall pipeline connection structure can realize the integrated organic combination of the gas chromatography detection mode and the single mass spectrometry detection mode, and the device structure is relatively simple.
  • the multi-port valve 20 is switched to operate in the first working state, the air pump 81 is turned on, and the first air path control member 71 controls the fifth pipeline 45 and the sixth interface A6 is connected.
  • the sample gas passes through the first sampling tube 11, the first interface A1, the second interface A2, the first pipeline 41, the fifth interface A5, the sixth interface
  • the interface A6 and the fifth pipeline 45 are discharged to the outside.
  • the pre-concentration trap tube 61 on the first pipeline 41 captures and collects the sample to be tested in the sample gas, so that the sample to be tested is concentrated.
  • the air pump 81 stops working.
  • the carrier gas in the second carrier gas pipe 32 can pass through the third interface A3, the fourth interface A4, the second pipeline 42, the air inlet 56 of the liquid sampling module 50, and the outlet of the liquid sampling module 50 in sequence.
  • the gas port 57, the third pipeline 43, and the chromatographic analysis column 82 enter the mass spectrometer detector 83, so that the carrier gas source can not be shut down.
  • the multi-port valve 20 is operated in the second working state, and the pre-concentration trap tube 61 is heated and desorbed by the thermal desorption element, so that the pre-concentration trap tube 61 is heated and desorbed.
  • the sample to be tested in the tube 61 is vaporized, and the carrier gas introduced by the first carrier gas tube 31 flows through the third interface A3, the second interface A2, the first pipeline 41, the fifth interface A5, and the fourth interface A4 in sequence.
  • the second pipeline 42, the air inlet 56 of the liquid sampling module 50, the air outlet 57 of the liquid sampling module 50, the third pipeline 43, and the chromatographic analysis column 82 enter the mass spectrometer detector 83, and the first carrier gas pipeline
  • the carrier gas introduced in 31 enters the pre-concentration trap tube 61, it carries the vaporized sample to be tested and enters the chromatographic analysis column 82 together.
  • the device 83 sequentially performs detection processing on the separated objects.
  • the fourth pipeline 44 and the fifth pipeline 45 are controlled by the first gas path control member 71 to be disconnected from the sixth interface A6, so as to prevent the sample gas in the first sampling pipe 11 from passing through The sixth port A6 flows to the fourth pipeline 44 and the fifth pipeline 45 .
  • the multi-port valve 20 is switched to operate in the first working state, and the first sample injection
  • the pipe 11 stops sampling
  • the first gas path control member 71 controls the fifth pipe 45 to communicate with the sixth port A6, and the carrier gas in the second carrier gas pipe 32 flows through the third port A3, the fourth port A4, the second port A6 in turn
  • the pipeline 42, the liquid sampling module 50, the third pipeline 43, the chromatographic analysis column 82 and the mass spectrometer detector 83 move the sample to be tested in the second pipeline 42, the third pipeline 43 and the chromatographic analysis column 82 forward It is pushed into the mass spectrometer detector 83 for detection;
  • the carrier gas in the first carrier gas pipe 31 flows through the first port A1, the second port A2, the first pipeline 41, the fifth port A5, the sixth port A6 and the first port A1 in turn.
  • the five pipelines 45 are discharged to the outside, so that the sample to be tested in the pre-concentration trapping tube 61 is discharged to the outside, which plays a cleaning role. It can be seen that the chromatographic analysis column 82 can ensure a better detection effect of the sample to be tested. When the chromatographic analysis column 82 is working, it can also perform backflushing detection and cleaning on the pre-concentration trapping tube 61 and its connecting pipe, and the backflushing process Synchronizing with the analysis process can shorten the analysis cycle and increase the work efficiency.
  • the multi-way valve 20 is operated in the second working state, the carrier gas source is closed, the first gas path control member 71 controls the fourth pipeline 44 to communicate with the sixth interface A6, the air pump 81 works, and the air pump 81 Under the action of the suction force, the sample gas in the first sampling tube 11 flows through the first interface A1, the eighth interface A8, the seventh interface A7, the sixth interface A6 and the fourth pipeline 44 in sequence and enters the second inlet.
  • the sample port when the sample gas comes to the second sample inlet, under the action of the negative pressure of the mass spectrometer detector 83, the sample gas will pass through the permeable membrane of the mass spectrometer detector 83 (specifically, for example, polydimethylsiloxane). ) enters the mass spectrometer 83 to perform detection operation.
  • the multi-way valve 20 is switched to operate in the first working state, and the fourth pipeline 44 and the fifth pipeline 45 are controlled by the first gas path control member 71 to be disconnected from the sixth interface A6, so that The introduction of carrier gas or other sample gas into the mass spectrometer detector 83 is avoided.
  • the sample liquid enters the chamber of the liquid sampling module 50 through the sampling end of the liquid sampling module 50, and the liquid sampling module 50 can vaporize the sample liquid entering the chamber, and the carrier gas flows through the second carrier gas pipe in turn. 32.
  • the third interface A3, the fourth interface A4, the second pipeline 42, the chamber of the liquid sampling module 50, the third pipeline 43, the chromatographic analysis and mass spectrometry detector 83, are chromatographically separated by the chromatographic analysis column 82, And the relevant detection processing is performed through the mass spectrometer detector 83 .
  • the pre-concentration tube is heated to 200 °C at a heating rate of 20 °C/s to rapidly heat and gasify the sample to be tested.
  • the device for heating the capture tube 61 such as a heating wire wound on the outer wall of the pre-concentration capture tube 61, or an electric heating wire placed on the inner wall of the pre-concentration capture tube 61, or using a semiconductor to transfer the generated heat to the pre-concentration capture tube
  • the pipe 61 and the like are not specifically limited here.
  • the air pump 81 can be any pump body that can provide suction power to pump the gas in the sample injection tube into the pre-concentration trap tube 61 , which is not limited herein.
  • the air pump 81 can be a micro-diaphragm pump, which is small in size and light in weight, and is easy to carry.
  • the chromatographic analysis column 82 is, for example, a low-heat-capacity chromatographic column with a model of DB-5, whose length, inner diameter, and film thickness are respectively 15 m ⁇ 0.25 mm ⁇ 0.25 ⁇ m.
  • the carrier gas is, for example, helium.
  • the first gas path control member 71 is a first two-position three-way valve.
  • the first port of the first two-position three-way valve is communicated with the sixth port A6, the second port of the first two-position three-way valve is communicated with the fourth pipeline 44, and the third port of the first two-position three-way valve It communicates with the fifth pipeline 45 .
  • the sixth port A6 can be communicated with the fourth pipeline 44 and disconnected from the fifth pipeline 45 at the same time;
  • the sixth port A6 can be communicated with the fifth pipeline 45 and disconnected from the fourth pipeline 44 at the same time;
  • the sixth interface A6 can be disconnected from the fourth pipeline 44 and the fifth pipeline 45 .
  • this embodiment is not limited to using the above-mentioned first two-position three-way valve.
  • a three-way pipe can be used to connect one end of the fourth pipeline 44 and one end of the fifth pipeline 45 to the sixth interface A6.
  • the on-off valve set on the fourth pipeline 44 and the on-off valve set on the fifth pipeline 45 replace the first two-position three-way valve.
  • the multifunctional gas chromatography-mass spectrometry apparatus further includes a second sampling tube 12 .
  • the second sampling tube 12 communicates with the first interface A1.
  • the sample gas can be fed into the pre-concentration trapping of the first pipeline 41 through the first interface A1 and the second interface A2 in turn through the first sampling tube 11, or the sample gas can be
  • the second sampling tube 12 sends the sample gas into the pre-concentration and trapping of the first pipeline 41 through the first interface A1 and the second interface A2 in sequence.
  • the first sampling tube 11 is mainly responsible for the sampling of the ambient air sample or the external standard sample
  • the second sampling tube 12 is mainly responsible for the sampling of the internal standard sample.
  • the first sampling tube 11 may be used for sampling, or a larger number of sampling tubes may be adopted, which is not limited herein.
  • the multifunctional gas chromatography-mass spectrometry apparatus further includes a second gas path control member 72 .
  • the second gas path control member 72 is used to control the communication between the first interface A1 and the first sampling tube 11 or the second sampling tube 12 .
  • the second gas path control member 72 is a second two-position three-way valve disposed between the second sampling tube 12 and the first interface A1.
  • the first port and the second port of the second two-position three-way valve are arranged on the first sampling tube 11 , and the third port of the second two-position three-way valve is communicated with the gas outlet end of the second sampling tube 12 .
  • the second two-position three-way valve is similar to the first two-position three-way valve, and the second sampling tube 12 does not need to be directly connected to the first interface A1, but is The third port of the 2/2/3-way valve is connected to the first interface A1 through the second 2/3-way valve, so that the second 2/3-way valve can control whether the second sampling tube 12 is connected to the first interface A1 It is also possible to control whether the sample gas in the first sampling tube 11 enters the first interface A1 or not. In this way, when the sample gas of the first sampling tube 11 needs to enter the first interface A1, the first port of the second 2/3-way valve is communicated with the second port, and the control unit of the second 2/3-way valve is connected with the second port.
  • the third port is cut off, so that the first sampling tube 11 is communicated with the first interface A1, and the second sampling tube 12 is disconnected; when it is necessary to make the sample gas of the second sampling tube 12 enter the first interface A1, control the The second port of the second 2/3-way valve is communicated with the third port, and the first port of the second 2/3-way valve is controlled to be cut off, so that the second sampling tube 12 is communicated with the first interface A1, and the first inlet Sample tube 11 is disconnected.
  • first sampling tube 11 corresponds to the second two-position three-way valve.
  • the part is divided into two pipe sections, one of which is connected with the first port of the second 2/3-way valve, and the other pipe section is connected with the second port of the second 2/3-way valve.
  • the multifunctional gas chromatography-mass spectrometry apparatus further includes a third gas path control component 73 .
  • the third gas path control member 73 is used to control the communication between the first interface A1 and the first sample injection tube 11 or the first carrier gas tube 31 .
  • the third gas path control member 73 is a third two-position three-way valve disposed between the first carrier gas pipe 31 and the first port A1.
  • the first port and the second port of the third 2/3-way valve are arranged on the first sampling tube 11 , and the third port of the third 2/3-way valve communicates with the gas outlet end of the first carrier gas tube 31 .
  • the third two-position three-way valve is similar to the second two-position three-way valve, and the first carrier gas pipe 31 does not need to be directly connected to the first interface A1, but is The third port of the two-position three-way valve is connected to the first port A1 through the third two-position three-way valve, so that the third two-position three-way valve can control whether the first carrier gas pipe 31 is communicated with the first port A1, It can also control whether the sample gas in the first sampling tube 11 enters the first interface A1.
  • the first port of the third two-position three-way valve is communicated with the second port, and the control valve of the third two-position three-way valve is connected with the second port.
  • the third port is cut off, so that the first sample injection tube 11 is communicated with the first interface A1, and the first carrier gas tube 31 is disconnected; when it is necessary to make the carrier gas of the first carrier gas tube 31 enter the first interface A1, control the third
  • the second port of the 2/3-way valve is communicated with the third port, and the first port of the third 2/3-way valve is controlled to be cut off, so that the first carrier gas pipe 31 is communicated with the first interface A1, and the first sample injection pipe 11 disconnect.
  • the multifunctional gas chromatography-mass spectrometry apparatus further includes a flow restrictor 33 disposed on the first carrier gas tube 31 , or the first carrier gas tube 31 is a flow restrictor tube.
  • the flow restrictor 33 can limit the flow rate of the carrier gas in the first carrier gas pipe 31 , reduce the amount of the carrier gas input to the first carrier gas pipe 31 , and save the amount of the carrier gas.
  • the first carrier gas pipe 31 with a smaller diameter can also be selected as the restrictor pipe.
  • the pipe diameter of the first carrier gas pipe 31 is 0.1mm, 0.125mm, 0.15m, 0.2mm, etc. The specific size can be based on the actual situation to set, which is not limited here.
  • the second carrier gas pipe 32 is provided with a first pressure controller 34 .
  • the pressure of the carrier gas output from the first carrier gas pipe 31 to the third port A3 can be controlled by the first pressure controller 34 , so that the air pressures on the first carrier gas pipe 31 and the second carrier gas pipe 32 meet the preset requirements.
  • the first pressure controller 34 is, for example, an electronic pressure controller.
  • the multifunctional gas chromatography-mass spectrometry apparatus further includes a carrier gas manifold 35 and a first split member 36 .
  • the carrier gas main pipe 35 is respectively communicated with the first carrier gas pipe 31 and the second carrier gas pipe 32 through the first split member 36 , and the carrier gas main pipe 35 is used for connecting the carrier gas source.
  • the first diverting member 36 is, for example, a diverting three-way valve.
  • the fifth pipeline 45 and the sixth pipeline 46 are connected to the air pump 81 through a second diverting member 84 , which is specifically, for example, a diverting three-way valve.
  • the multi-port valve 20 is, for example, a pneumatic multi-port valve 20, and the pneumatic multi-port valve 20 is connected with a control air pipe.
  • the multi-port valve 20 can be adjusted to the first working state, and the air source of the control air pipe is cut off. When open, the multi-port valve 20 returns to the second working state.
  • the multi-port valve 20 is not limited to using a pneumatic multi-port valve 20, and other types of multi-port valves 20 can also be used, for example, controlled by motor drive, or controlled by manual rotation, and so on.
  • the carrier gas main pipe 35 is also connected to the control gas pipe through the second diverter 84, and the control gas pipe is provided with an electric control valve, which is controlled by the electric control valve Whether the gas pipe is in communication with the carrier gas main pipe 35 is controlled, so as to control the working state of the multi-port valve 20 .
  • the multifunctional gas chromatography mass spectrometry device also includes a quantitative tube 62 arranged in parallel with the pre-concentration trapping tube 61, and a control for controlling the quantitative tube 62 or the pre-concentration trapping tube 61 to be connected to the first pipeline 41. components.
  • the pre-concentration capture tube 61 is controlled to be connected to the first pipeline 41 by the control component, and the quantitative tube 62 will not be connected to the first pipeline 41 at this time, so that The sample gas that needs to be captured can enter the pre-concentration capture tube 61 to be captured.
  • the control component controls the quantitative tube 62 to be connected to the first pipeline 41, and at this time, the pre-concentration capture tube 61 is used. It will not be connected to the first pipeline 41, and the sample gas that does not need to be captured can directly enter the quantitative tube 62 for collection, and be synchronously brought in by the carrier gas of the first carrier gas tube 31 in the subsequent steps.
  • the separation operation is performed in the chromatography column 82, and the detection process is performed in the mass spectrometer detector 83.
  • the quantitative tube 62 is, for example, a passivation metal tube, and the passivation metal tube has a low adsorption capacity for the sample to be measured in the sample gas.
  • the specific length and inner diameter of the quantitative tube 62 are set according to requirements, which are related to the fixed sample amount, and will not be repeated here.
  • the pre-concentration trap tube is made of a quartz glass tube or a passivated metal tube with an outer diameter of 2mm-3.5mm, a length of 6cm-10cm, and an inner diameter of 1mm-2mm.
  • the quantitative tube 62 is made of a passivated metal tube with an outer diameter of 2 mm-3.5 mm, an inner diameter of 0.75 mm to 1 mm, and a length of 40 cm to 60 cm.
  • control assembly includes two fourth two-position three-way valves 74 respectively located on both sides of the pre-concentration collecting pipe 61 .
  • the first port and the second port of the fourth two-position three-way valve 74 are arranged on the first pipeline 41, and one end of the quantitative pipe 62 is communicated with the third port of one of the fourth two-position three-way valve 74, and the quantitative The other end of the pipe 62 communicates with the third port of the other fourth 2/3-way valve 74 .
  • the structure of the fourth two-position three-way valve 74 is similar to that of the first two-position three-way valve, and the fourth two-position three-way valve 74 is connected to the first pipeline 41 in a similar manner, which will not be described in detail.
  • the liquid sampling module 50 includes a body 51 with a chamber, and the body 51 is provided with a liquid sampling end 52 communicating with the chamber, a septum purging pipeline 53 and a shunt pipeline 54 .
  • the body 51 is also provided with a heating mechanism, and the heating mechanism heats the body 51, and the heating temperature is specifically controlled at 200°C to 300°C, so that the temperature of the liquid sample entering the chamber from the liquid sampling end 52 increases. After vaporization, the vaporized liquid sample is discharged from the gas outlet 57 together with the carrier gas entering from the gas inlet 56 and enters the third pipeline 43 .
  • the septum purge line 53 can discharge the dirt and the like generated in the chamber to the outside, and the shunt line 54 can divert a part of the carrier gas to the outside to discharge, thereby reducing the entry into the third line 43
  • the sample flow rate of the predetermined flow range in the chamber is realized, and the sample enters the third pipeline 43 along with the carrier gas in one pass.
  • a second pressure controller 55 is provided on the branch pipe 54 .
  • a thermal insulation layer and a heating element are arranged on the pre-concentration collecting pipe 61 .
  • the thermal insulation layer is nano-felt with a thickness of 5mm-10mm, or high-silica cotton.
  • the heating temperature of the heating element is controlled at, for example, 100° C. to 150° C., so that the sample to be tested in the pre-concentration trapping tube can be desorbed.
  • the heating element is not limited to a heating wire, but can also be any device capable of heating the pre-concentration trapping tube 61, such as a heating wire built into the pre-concentration trapping tube 61, or for using a semiconductor to generate The heat is transferred to the pre-concentration collecting pipe 61 and so on, which is not specifically limited here.
  • first pipeline 41 , the second pipeline 42 and the third pipeline 43 are, for example, inertized metal pipes.
  • first pipeline 41 , the second pipeline 42 and the third pipeline 43 can also be provided with a thermal insulation layer or a heating element.
  • the multi-port valve 20 is an eight-port valve with eight ports.
  • the multi-port valve 20 is not limited to be an eight-port valve, and the multi-port valve 20 may also be, for example, a ten-port valve, a twelve-port valve, a fourteen-port valve, etc., which is not limited herein.
  • FIG. 3 shows a schematic structural diagram of the multi-port valve 20 of the multifunctional gas chromatography mass spectrometry apparatus according to another embodiment of the present invention running in the first working state
  • FIG. 4 shows A schematic structural diagram of the multi-port valve 20 of the multifunctional gas chromatography-mass spectrometry apparatus according to another embodiment of the present invention is shown running in the second working state. Comparing FIG. 3 with FIG. 4 and FIG. 1 and FIG. 2 , the difference is that the multi-port valve 20 illustrated in FIG. 3 and FIG. 4 is specifically a ten-port valve.
  • the ten-way valve not only has the first port A1 to the eighth port A8, but also has the ninth port A9 and the tenth port A10, and the ninth port A9 and the tenth port A10 are in the seventh port A7 and the eighth port. Between A8, a blocking member is used to block, so that both the ninth port A9 and the tenth port A10 are in a cut-off state.
  • a portable gas chromatography-mass spectrometry method using the multifunctional gas chromatography-mass spectrometry apparatus of any of the foregoing embodiments, includes the following steps:
  • Step S10 enter the step of concentrating and capturing the sample to be tested, referring to FIG. 1 , so that the multi-port valve 20 is switched to operate in the first working state, the air pump 81 is turned on, and the first air path control member 71 controls the fifth pipeline 45 and The sixth interface A6 is connected.
  • the sample gas passes through the first sampling tube 11, the first interface A1, the second interface A2, the first pipeline 41, and the fifth interface A5 , the sixth interface A6, and the fifth pipeline 45 are discharged to the outside.
  • the pre-concentration trap tube 61 on the first pipeline 41 captures and collects the sample to be measured in the sample gas, so that the sample to be tested is collected.
  • the sample to be tested is concentrated in the pre-concentration trap tube 61, and other gases are pumped out by the air pump 81 through the suction tube. After the pre-concentration trap tube 61 captures a certain amount of the sample to be tested, the air pump 81 stops working.
  • the carrier gas in the second carrier gas pipe 32 can pass through the third interface A3, the fourth interface A4, the second pipeline 42, the air inlet 56 of the liquid sampling module 50, and the outlet of the liquid sampling module 50 in sequence.
  • the gas port 57, the third pipeline 43, and the chromatographic analysis column 82 enter the mass spectrometer detector 83, so that the carrier gas source can not be shut down.
  • Step S20 the thermal desorption step, after the air pump 81 stops working, referring to FIG. 2, the multi-port valve 20 is operated in the second working state, and the pre-concentration trap tube 61 is heated and desorbed by the thermal desorption element, so that the The sample to be tested in the concentration and trapping tube 61 is vaporized, and the carrier gas introduced by the first carrier gas tube 31 flows through the third interface A3, the second interface A2, the first pipeline 41, the fifth interface A5, the first The four ports A4, the second pipeline 42, the air inlet 56 of the liquid sampling module 50, the air outlet 57 of the liquid sampling module 50, the third pipeline 43, and the chromatographic analysis column 82 enter the mass spectrometer detector 83, and the first
  • the carrier gas introduced by the carrier gas pipe 31 enters the pre-concentration trap tube 61, it carries the vaporized sample to be tested and enters the chromatographic analysis column 82, and the chromatographic analysis column 82 performs the temperature rise operation so that the vaporized sample to be tested is
  • the fourth pipeline 44 and the fifth pipeline 45 are controlled by the first gas path control member 71 to be disconnected from the sixth interface A6, so as to prevent the sample gas in the first sampling pipe 11 from passing through The sixth port A6 flows to the fourth pipeline 44 and the fifth pipeline 45 .
  • Step S30 the backflushing detection step, after the desorption of the sample to be tested in the pre-concentration trap tube 61 in the thermal desorption step is completed, referring to FIG. 1 again, the multi-port valve 20 is switched to operate in the first working state, Once the sample injection tube 11 stops the sample injection, the first gas path control member 71 controls the fifth pipeline 45 to communicate with the sixth interface A6, and the carrier gas in the second carrier gas tube 32 flows through the third interface A3 and the fourth interface A4 in turn.
  • the chromatographic analysis column 82 can ensure a better detection effect of the sample to be tested.
  • the chromatographic analysis column 82 When the chromatographic analysis column 82 is working, it can also perform backflushing detection and cleaning on the pre-concentration trapping tube 61 and its connecting pipe, and the backflushing process Synchronizing with the analysis process can shorten the analysis cycle and increase the work efficiency.
  • the above-mentioned multifunctional gas chromatography mass spectrometry analysis device detects the sample to be tested, it can be used in the gas chromatography detection mode and also in the single mass spectrometry detection mode, with powerful functions and convenient use.
  • the above-mentioned multifunctional gas chromatography-mass spectrometry apparatus since the mass spectrometer detector 83 is provided with a first injection port, a second injection port, and a suction outlet communicating with the second injection port, and includes a multi-port valve 20 and a suction port.
  • the overall pipeline connection structure can realize the integrated organic combination of the gas chromatography detection mode and the single mass spectrometry detection mode, and the device structure is relatively simple.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • a first feature "on” or “under” a second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明涉及一种多功能气相色谱质谱分析装置和分析方法,多功能气相色谱质谱分析装置包括第一进样管、多通阀、第一载气管、第二载气管、第一管路、第二管路、第三管路、第四管路、第五管路、第六管路、液体进样模块、预浓缩捕集管、热解吸件、第一气路控制件、气泵与色谱分析柱与质谱检测器。可以用于气相色谱检测模式,还可以用于单质谱检测模式,功能强大,使用方便。此外,上述的多功能气相色谱质谱分析装置,由于质谱设有第一进样口、第二进样口及与第二进样口连通的抽吸出口,以及包括多通阀及整体管路连接结构,能实现气相色谱检测模式和单质谱检测模式的一体化有机结合,同时装置结构相对简单。

Description

多功能气相色谱质谱分析装置和分析方法 技术领域
本发明涉及色谱分析技术领域,特别是涉及一种多功能气相色谱质谱分析装置和分析方法。
背景技术
传统地,气相色谱分析装置是基于不同物质在固定相和流动相所构成的体系,即色谱柱中具有不同的分配系数而将被测样气各组成分离开来,然后用质谱检测器将各组成气体的色谱峰转变成电信号,经电子放大器转换成电压或电流输出。针对气体及液体等各类环境挥发性、半挥发性有机物的现场快速应急监测方式一般采用气相色谱法、气相色谱质谱法或者单质谱法,检测方式和分析目标物种类相对较为单一,若要实现两种检测方式,则需要有两台独立的仪器,成本极高,操作及其复杂。
发明内容
基于此,有必要克服现有技术的缺陷,提供一种多功能气相色谱质谱分析装置和分析方法,它能实现气相色谱检测模式和单质谱检测模式的一体化有机结合,功能强大,同时装置结构相对简单,使用方便。
其技术方案如下:一种多功能气相色谱质谱分析装置,所述多功能气相色谱质谱分析装置包括:第一进样管,所述第一进样管的进气端用于通入样品气体;多通阀,所述多通阀设有第一接口、第二接口、第三接口、第四接口、第五接口、第六接口、第七接口与第八接口,所述多通阀运行于第一工作状态与 第二工作状态;当所述多通阀运行于第一工作状态时,所述第一接口与所述第二接口通过管道相连通,所述第三接口与所述第四接口通过管道相连通,所述第五接口与所述六接口通过管道相连通,所述第七接口与所述第八接口通过管道相连通;当所述多通阀运行于第二工作状态时,所述第一接口与所述第八接口通过管道相连通,所述第二接口与所述第三接口通过管道相连通,所述第四接口与所述第五接口通过管道相连通,所述第六接口与所述第七接口通过管道相连通;所述第七接口与所述第八接口通过连通管相连;第一载气管、第二载气管、第一管路、第二管路、第三管路、第四管路、第五管路、第六管路、液体进样模块、预浓缩捕集管、热解吸件、第一气路控制件、气泵与色谱分析柱与质谱检测器;所述质谱检测器设有第一进样口、第二进样口及与所述第二进样口连通的抽吸出口;所述第一载气管的出气端、所述第一进样管的出气端均与所述第一接口相连通;所述第一管路的两端分别对应连接所述第二接口与所述第五接口,所述预浓缩捕集管设置于所述第一管路上,所述热解吸件用于对所述预浓缩捕集管进行加热解吸处理;所述第二载气管的出气端与所述第三接口相连通;所述第二管路的一端与所述第四接口相连通,所述第二管路的另一端与所述液体进样模块的进气口相连通,所述第三管路的一端与所述液体进样模块的出气口相连通,所述第三管路的另一端与所述第一进样口相连通,所述色谱分析柱设于所述第三管路上;所述第一气路控制件控制所述第六接口与所述第四管路的一端或第五管路的一端相连通,所述第四管路的另一端与所述第二进样口相连通,所述第六管路的一端与所述抽吸出口相连通,所述第五管路的另一端、所述第六管路的另一端并联连接至所述气泵。
上述的多功能气相色谱质谱分析装置在对待测样品进行检测时,可以用于气相色谱检测模式,还可以用于单质谱检测模式,功能强大,使用方便。此外, 上述的多功能气相色谱质谱分析装置,由于质谱设有第一进样口、第二进样口及与所述第二进样口连通的抽吸出口,以及包括多通阀及整体管路连接结构,能实现气相色谱检测模式和单质谱检测模式的一体化有机结合,同时装置结构相对简单。
在其中一个实施例中,所述第一气路控制件为第一二位三通阀,所述第一二位三通阀的第一端口与所述第六接口相连通,所述第一二位三通阀的第二端口与所述第四管路相连通,所述第一二位三通阀的第三端口与所述第五管路相连通。
在其中一个实施例中,所述多功能气相色谱质谱分析装置还包括第二进样管,所述第二进样管与所述第一接口连通。
在其中一个实施例中,所述多功能气相色谱质谱分析装置还包括所述多功能气相色谱质谱分析装置还包括第二气路控制件,所述第二气路控制件用于控制所述第一接口与所述第一进样管或所述第二进样管相连通。
在其中一个实施例中,所述多功能气相色谱质谱分析装置还包括第三气路控制件,所述第三气路控制件用于控制所述第一接口与所述第一进样管或所述第一载气管相连通。
在其中一个实施例中,所述多功能气相色谱质谱分析装置还包括设置于第一载气管上的限流器,或者所述第一载气管为限流管;所述第二载气管上设有第一压力控制器。
在其中一个实施例中,所述多功能气相色谱质谱分析装置还包括载气总管与第一分流件,所述载气总管通过所述第一分流件分别与所述第一载气管、所述第二载气管相连通,所述载气总管用于连接载气源。
在其中一个实施例中,所述多功能气相色谱质谱分析装置还包括与所述预 浓缩捕集管并联设置的定量管,以及用于控制所述定量管或所述预浓缩捕集管接入到第一管路的控制组件。
在其中一个实施例中,所述控制组件包括分别位于所述预浓缩捕集管两侧的两个第四二位三通阀;所述第四二位三通阀的第一端口与第二端口设置于第一管路上,所述定量管的其中一端与其中一个所述第四二位三通阀的第三端口相连通,所述定量管的另一端与另一个所述第四二位三通阀的第三端口相连通。
在其中一个实施例中,所述液体进样模块包括设有腔室的本体,所述本体上设有与所述腔室连通的液体进样端、隔垫吹扫管路及分流管路。
一种便携式气相色谱质谱分析方法,采用了所述的多功能气相色谱质谱分析装置,包括如下步骤:
步骤S10、对待测样品进行浓缩捕集步骤,使得多通阀切换运行于第一工作状态,开启气泵,第一气路控制件控制第五管路与第六接口相连通,在气泵的抽吸力作用下,样品气体经过第一进样管、第一接口、第二接口、第一管路、第五接口、第六接口、第五管路向外排,样品气体流经第一管路时,由第一管路上的预浓缩捕集管捕获收集样品气体中的待测样品;
步骤S20、控制气泵停止工作并进入热解吸步骤,使多通阀运行于第二工作状态,通过热解吸件对预浓缩捕集管进行加热解吸处理,使得预浓缩捕集管内的待测样品气化,同步由第一载气管通入的载气依次流经第三接口、第二接口、第一管路、第五接口、第四接口、第二管路、液体进样模块的进气口、液体进样模块的出气口、第三管路、色谱分析柱进入到质谱检测器中,第一载气管通入的载气进入到预浓缩捕集管时携带气化的待测样品一起进入到色谱分析柱;
步骤S30、待热解吸步骤中的预浓缩捕集管内的待测样品解吸时间达到预设时间时进行反吹检测步骤,使得多通阀切换运行于第一工作状态,第一进样管 停止进样,第一气路控制件控制第五管路与第六接口连通,第二载气管内的载气依次流经第三接口、第四接口、第二管路、液体进样模块、第三管路、色谱分析柱及质谱检测器,第二载气将第二管路、第三管路及色谱分析柱内的待测样品往前推动进入到质谱检测器中进行检测;此外,第一载气管内的载气依次流经第一接口、第二接口、第一管路、第五接口、第六接口及第五管路向外排,使得预浓缩捕集管内的残留样品或杂质向外排放。
上述的多功能气相色谱质谱分析装置在对待测样品进行检测时,可以用于气相色谱检测模式,还可以用于单质谱检测模式,功能强大,使用方便。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例所述的多功能气相色谱质谱分析装置的多通阀运行于第一工作状态结构示意图;
图2为本发明一实施例所述的多功能气相色谱质谱分析装置的多通阀运行于第二工作状态结构示意图;
图3为本发明另一实施例所述的多功能气相色谱质谱分析装置的多通阀运行于第一工作状态结构示意图;
图4为本发明另一实施例所述的多功能气相色谱质谱分析装置的多通阀运 行于第二工作状态结构示意图。
11、第一进样管;12、第二进样管;20、多通阀;A1、第一接口;A2、第二接口;A3、第三接口;A4、第四接口;A5、第五接口;A6、第六接口;A7、第七接口;A8、第八接口;A9、第九接口;A10、第十接口;21、连通管;31、第一载气管;32、第二载气管;33、限流器;34、第一压力控制器;35、载气总管;36、第一分流件;41、第一管路;42、第二管路;43、第三管路;44、第四管路;45、第五管路;46、第六管路;50、液体进样模块;51、本体;52、液体进样端;53、隔垫吹扫管路;54、分流管路;55、第二压力控制器;56、进气口;57、出气口;61、预浓缩捕集管;62、定量管;71、第一气路控制件;72、第二气路控制件;73、第三气路控制件;74、第四二位三通阀;81、气泵;82、色谱分析柱;83、质谱检测器;84、第二分流件。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
参阅图1与图2,图1示出了本发明一实施例多功能气相色谱质谱分析装置的多通阀20运行于第一工作状态结构示意图,图2示出了本发明一实施例多功能气相色谱质谱分析装置的多通阀20运行于第二工作状态结构示意图。本发明一实施例提供的一种多功能气相色谱质谱分析装置,多功能气相色谱质谱分析装置包括:第一进样管11、多通阀20、第一载气管31、第二载气管32、第 一管路41、第二管路42、第三管路43、第四管路44、第五管路45、第六管路46、液体进样模块50、预浓缩捕集管61、热解吸件、第一气路控制件71、气泵81与色谱分析柱82与质谱检测器83。
第一进样管11的进气端用于通入样品气体。多通阀20设有第一接口A1、第二接口A2、第三接口A3、第四接口A4、第五接口A5、第六接口A6、第七接口A7与第八接口A8,多通阀20运行于第一工作状态与第二工作状态。当多通阀20运行于第一工作状态时,第一接口A1与第二接口A2通过管道相连通,第三接口A3与第四接口A4通过管道相连通,第五接口A5与六接口通过管道相连通,第七接口A7与第八接口A8通过管道相连通;当多通阀20运行于第二工作状态时,第一接口A1与第八接口A8通过管道相连通,第二接口A2与第三接口A3通过管道相连通,第四接口A4与第五接口A5通过管道相连通,第六接口A6与第七接口A7通过管道相连通。第七接口A7与第八接口A8通过连通管21相连。质谱检测器83设有第一进样口、第二进样口及与第二进样口连通的抽吸出口。第一载气管31的出气端、第一进样管11的出气端均与第一接口A1相连通。第一管路41的两端分别对应连接第二接口A2与第五接口A5,预浓缩捕集管61设置于第一管路41上,热解吸件用于对预浓缩捕集管61进行加热解吸处理。第二载气管32的出气端与第三接口A3相连通。第二管路42的一端与第四接口A4相连通,第二管路42的另一端与液体进样模块50的进气口56相连通,第三管路43的一端与液体进样模块50的出气口57相连通,第三管路43的另一端与第一进样口相连通,色谱分析柱82设于第三管路43上。第一气路控制件71控制第六接口A6与第四管路44的一端或第五管路45的一端相连通,第四管路44的另一端与第二进样口相连通,第六管路46的一端与抽吸出口相连通,第五管路45的另一端、第六管路46的另一端并联连接至气泵81。
上述的多功能气相色谱质谱分析装置在对待测样品进行检测时,可以用于气相色谱检测模式,还可以用于单质谱检测模式,功能强大,使用方便。此外,上述的多功能气相色谱质谱分析装置,由于质谱检测器83设有第一进样口、第二进样口及与第二进样口连通的抽吸出口,以及包括多通阀20及整体管路连接结构,能实现气相色谱检测模式和单质谱检测模式的一体化有机结合,同时装置结构相对简单。
具体而言,当用于气相色谱检测模式时,包括如下步骤:
进入到对待测样品进行浓缩捕集的步骤,参阅图1,使得多通阀20切换运行于第一工作状态,开启气泵81,第一气路控制件71控制第五管路45与第六接口A6相连通,此时,在气泵81的抽吸力作用下,样品气体经过第一进样管11、第一接口A1、第二接口A2、第一管路41、第五接口A5、第六接口A6、第五管路45向外排,流经第一管路41时,由第一管路41上的预浓缩捕集管61捕获收集样品气体中的待测样品,使得待测样品集中于预浓缩捕集管61中,其它气体则由气泵81通过抽吸管向外抽排,在预浓缩捕集管61捕集到一定量的待测样品后,气泵81停止工作。与此同时,第二载气管32内的载气可以依次通过第三接口A3、第四接口A4、第二管路42、液体进样模块50的进气口56、液体进样模块50的出气口57、第三管路43、色谱分析柱82进入到质谱检测器83中,如此载气气源可以不停机。
热解吸步骤,在气泵81停止工作后,参阅图2,使多通阀20运行于第二工作状态,通过热解吸件对预浓缩捕集管61进行加热解吸处理,使得预浓缩捕集管61内的待测样品气化,并由第一载气管31通入的载气依次流经第三接口A3、第二接口A2、第一管路41、第五接口A5、第四接口A4、第二管路42、液体进样模块50的进气口56、液体进样模块50的出气口57、第三管路43、色谱分析 柱82进入到质谱检测器83中,第一载气管31通入的载气进入到预浓缩捕集管61时携带气化的待测样品一起进入到色谱分析柱82,色谱分析柱82进行升温工作使得气化的待测样品进行色谱分离,质谱检测器83对分离的目标物依次进行检测处理。在热解吸步骤中,由第一气路控制件71控制第四管路44与第五管路45均和第六接口A6相断开,使得避免第一进样管11内的样品气体通过第六接口A6流向第四管路44、第五管路45。
反吹检测步骤,待热解吸步骤中的预浓缩捕集管61内的待测样品均解吸完毕后,再参阅图1,使得多通阀20切换运行于第一工作状态,第一进样管11停止进样,第一气路控制件71控制第五管路45与第六接口A6连通,第二载气管32内的载气依次流经第三接口A3、第四接口A4、第二管路42、液体进样模块50、第三管路43、色谱分析柱82及质谱检测器83,将第二管路42、第三管路43及色谱分析柱82内的待测样品往前推动进入到质谱检测器83中进行检测;第一载气管31内的载气依次流经第一接口A1、第二接口A2、第一管路41、第五接口A5、第六接口A6及第五管路45向外排,使得预浓缩捕集管61内的待测样品向外排放,起到清洁作用。如此可见,可以保障色谱分析柱82对待测样品的较好的检测效果,在色谱分析柱82工作的同时还能对预浓缩捕集管61及其连接管进行反吹检测及清洗,反吹流程和分析流程同步进行可缩短分析周期,工作效率较高。
此外,当用于单质谱检测模式时,包括如下步骤:
参阅图2,使多通阀20运行于第二工作状态,载气气源关闭,第一气路控制件71控制第四管路44与第六接口A6相连通,气泵81工作,在气泵81的抽吸力作用下,第一进样管11内的样品气体依次流经第一接口A1、第八接口A8、第七接口A7、第六接口A6及第四管路44进入到第二进样口中,当样品气体来 到第二进样口处后,在质谱检测器83的负压作用下,样品气体会穿过质谱检测器83的渗透膜(具体例如为聚二甲基硅氧烷)进入到质谱检测器83内进行检测动作。
另外,当用于液体进样色谱检测模式时,包括如下步骤:
再参阅图1,使得多通阀20切换运行于第一工作状态,以及由第一气路控制件71控制第四管路44与第五管路45均与第六接口A6相断开,使得避免载气或者其它样品气体进入到质谱检测器83中。样品液体通过液体进样模块50的进样端进入到液体进样模块50的腔室内,液体进样模块50能使得进入到腔室内的样品液体气化,同时载气依次流经第二载气管32、第三接口A3、第四接口A4、第二管路42、液体进样模块50的腔室、第三管路43、色谱分析及质谱检测器83,由色谱分析柱82进行色谱分离,以及经过质谱检测器83进行相关检测处理。
需要说明的是,热解吸件工作时例如以20℃/s的升温速率对预浓缩管进行加热至200℃使待测样品进行快速加热气化,热解吸件可以是任何能够对预浓缩捕集管61进行加热的器件,例如缠绕于预浓缩捕集管61外壁的电热丝,或者置于预浓缩捕集管61内壁的电热丝,或者采用半导体将产生的热量传递给预浓缩捕集管61等等,在此不进行具体限定。此外,气泵81可以是任何能够提供抽吸动力将进样管内的气体抽吸到预浓缩捕集管61内的泵体,在此不进行限定。具体而言,气泵81可以选用微型隔膜泵,体积较小,重量较轻,便于进行携带。另外,色谱分析柱82例如采用型号为DB-5规格尺寸长度、内径、膜厚分别为15m×0.25mm×0.25μm的低热容色谱柱,当然也可以采用其它类型的色谱分析柱82,在此不进行限定。色谱分析柱82采用一般的程序升温模式进行色谱分离工作。本实施例中,载气具体例如为氦气。
请再参阅图1与图2,进一步地,第一气路控制件71为第一二位三通阀。第一二位三通阀的第一端口与第六接口A6相连通,第一二位三通阀的第二端口与第四管路44相连通,第一二位三通阀的第三端口与第五管路45相连通。如此,当第一二位三通阀通过其第一端口与第二端口相连通时,便能实现第六接口A6与第四管路44相连通,同时与第五管路45相断开;当第一二位三通阀通过其第一端口与第三端口相连通时,便能实现第六接口A6与第五管路45相连通,同时与第四管路44相断开;当第一二位三通阀控制第一端口截止时,便能实现第六接口A6与第四管路44、第五管路45均断开。
可以理解的是,本实施例中不限于采用上述的第一二位三通阀,例如可以采用三通管将第四管路44一端、第五管路45一端均连接于第六接口A6上,并在第四管路44上设置的开关阀、以及在第五管路45上设置的开关阀来代替第一二位三通阀。
请参阅图1与图2,在一个实施例中,多功能气相色谱质谱分析装置还包括第二进样管12。第二进样管12与第一接口A1连通。如此,在进行捕集工作时,既可以通过第一进样管11将样品气体依次通过第一接口A1、第二接口A2送入到第一管路41的预浓缩捕集内,又可以采用第二进样管12将样品气体依次通过第一接口A1、第二接口A2送入到第一管路41的预浓缩捕集内。实际工作时,第一进样管11主要是负责环境空气样品或者外标样品的进样,第二进样管12主要是内标样品的进样。当然,也可以只是采用第一进样管11进行进样,或者采用更多数量的进样管,在此不进行限定。
请再参阅图1与图2,在一个实施例中,多功能气相色谱质谱分析装置还包括第二气路控制件72。第二气路控制件72用于控制第一接口A1与第一进样管11或第二进样管12相连通。具体而言,第二气路控制件72为设置于第二进样 管12与第一接口A1之间的第二二位三通阀。第二二位三通阀的第一端口和第二端口设于第一进样管11上,第二二位三通阀的第三端口与第二进样管12的出气端相连通。如此,第二二位三通阀类似于第一二位三通阀,第二进样管12并不需要直接与第一接口A1相连,而是与设置于第一进样管11上的第二二位三通阀的第三端口相连通,通过第二二位三通阀连接到第一接口A1,这样第二二位三通阀能控制第二进样管12是否与第一接口A1连通,也能控制第一进样管11内的样品气体是否进入到第一接口A1中。这样当需要使得第一进样管11的样品气体进入到第一接口A1中时,第二二位三通阀的第一端口与第二端口相连通,以及控制第二二位三通阀的第三端口截止,使得第一进样管11与第一接口A1连通,第二进样管12断开;当需要使得第二进样管12的样品气体进入到第一接口A1中时,控制第二二位三通阀的第二端口与第三端口相连通,以及控制第二二位三通阀的第一端口截止,使得第二进样管12与第一接口A1连通,第一进样管11断开。
需要说明的是,第二二位三通阀的第一端口和第二端口设于第一进样管11上指的是,将第一进样管11对应于第二二位三通阀的部位分为两个管段,其中一个管段与第二二位三通阀的第一端口相连,另一个管段与第二二位三通阀的第二端口相连。
请再参阅图1与图2,在一个实施例中,多功能气相色谱质谱分析装置还包括第三气路控制件73。第三气路控制件73用于控制第一接口A1与第一进样管11或第一载气管31相连通。具体而言,第三气路控制件73为设置于第一载气管31与第一接口A1之间的第三二位三通阀。第三二位三通阀的第一端口和第二端口设于第一进样管11上,第三二位三通阀的第三端口与第一载气管31的出气端相连通。如此,第三二位三通阀类似于第二二位三通阀,第一载气管31 并不需要直接与第一接口A1相连,而是与设置于第一进样管11上的第三二位三通阀的第三端口相连通,通过第三二位三通阀连接到第一接口A1,这样第三二位三通阀能控制第一载气管31是否与第一接口A1连通,也能控制第一进样管11内的样品气体是否进入到第一接口A1中。这样当需要使得第一进样管11的样品气体进入到第一接口A1中时,第三二位三通阀的第一端口与第二端口相连通,以及控制第三二位三通阀的第三端口截止,使得第一进样管11与第一接口A1连通,第一载气管31断开;当需要使得第一载气管31的载气进入到第一接口A1中时,控制第三二位三通阀的第二端口与第三端口相连通,以及控制第三二位三通阀的第一端口截止,使得第一载气管31与第一接口A1连通,第一进样管11断开。
在一个实施例中,多功能气相色谱质谱分析装置还包括设置于第一载气管31上的限流器33,或者第一载气管31为限流管。如此,限流器33能限制第一载气管31的载气流量,能减小第一载气管31上输入的载气量,节约载气量。或者,也可以选用管径较小的第一载气管31作为限流管,例如第一载气管31的管径为0.1mm、0.125mm、0.15m、0.2mm等等,具体大小可以根据实际情况来设置,在此不进行限定。
可选地,第二载气管32上设有第一压力控制器34。如此,通过第一压力控制器34可以控制第一载气管31输出到第三接口A3的载气压力大小,使得第一载气管31、第二载气管32上的气压大小符合预设要求。具体而言,第一压力控制器34例如为电子压力控制器。
在一个实施例中,多功能气相色谱质谱分析装置还包括载气总管35与第一分流件36。载气总管35通过第一分流件36分别与第一载气管31、第二载气管32相连通,载气总管35用于连接载气源。具体而言,第一分流件36例如为分 流三通阀。
类似地,第五管路45与第六管路46通过第二分流件84连接到气泵81,第二分流件84具体例如为分流三通阀。
更进一步地,多通阀20例如为气动式多通阀20,气动式多通阀20接有控制气管,控制气管通气时能调整多通阀20到第一工作状态,控制气管的气源断开时多通阀20回复到第二工作状态。当然,多通阀20也不限于采用气动式多通阀20,也可以采用其它类型的多通阀20,例如通过电机驱动控制,或者通过手动旋转控制等等。
当多通阀20选用气动式多通阀20时,本实施例中,载气总管35通过第二分流件84还与控制气管相连,控制气管上设有电控阀,由电控阀来控制控制气管是否与载气总管35连通,从而控制多通阀20的工作状态。
进一步地,多功能气相色谱质谱分析装置还包括与预浓缩捕集管61并联设置的定量管62,以及用于控制定量管62或预浓缩捕集管61接入到第一管路41的控制组件。如此,对于需要进行捕集操作的样品气体,则由控制组件控制预浓缩捕集管61接入到第一管路41,此时定量管62不会接入到第一管路41中,这样需要进行捕集操作的样品气体便可以进入到预浓缩捕集管61中进行捕集动作。反之,对于不需要进行捕集操作的样品气体,例如待测样品浓度较高的样品气体,则由控制组件控制定量管62接入到第一管路41中,此时预浓缩捕集管61不会接入到第一管路41中,不需要进行捕集操作的样品气体直接进入到定量管62中进行收集即可,并在后续步骤中由第一载气管31的载气同步带入到色谱分析柱82中进行分离操作,以及进入到质谱检测器83中进行检测处理。具体而言,定量管62例如采用钝化金属管,钝化金属管对样品气体中的待测样品吸附能力低。定量管62的具体长度、内径大小根据需求进行设置,与定样量 相关,在此不进行赘述。
可选地,预浓缩捕集管采用外径2mm-3.5mm,长度6cm~10cm,内径1mm~2mm的石英玻璃管或钝化金属管制作而成。此外,定量管62采用外径2mm-3.5mm,内径0.75mm~1mm,长度40cm~60cm的钝化金属管制作而成。
进一步地,控制组件包括分别位于预浓缩捕集管61两侧的两个第四二位三通阀74。第四二位三通阀74的第一端口与第二端口设置于第一管路41上,定量管62的其中一端与其中一个第四二位三通阀74的第三端口相连通,定量管62的另一端与另一个第四二位三通阀74的第三端口相连通。如此,通过控制第四二位三通阀74的第一端口与第二端口接入到第一管路41,以及控制第四二位三通阀74的第三端口截止,便可以实现将预浓缩捕集管61接入到第一管路41上,此时定量管62两端封闭,并没有接入到第一管路41;通过控制第四二位三通阀74的第一端口与第三端口相通,以及控制第四二位三通阀74的第二端口截止,便可以实现将定量管62接入到第一管路41上,预浓缩捕集管61两端断开并不会接入到第一管路41上。
需要说明的是,第四二位三通阀74的结构类似于第一二位三通阀,第四二位三通阀74接入第一管路41方式类似,不进行具体赘述。
在一个实施例中,液体进样模块50包括设有腔室的本体51,本体51上设有与腔室连通的液体进样端52、隔垫吹扫管路53及分流管路54。
进一步地,本体51上还设有加热机构,加热机构对本体51进行加热处理,加热温度具体例如控制在200℃至300℃,使得从液体进样端52进入到腔室内的液体样品温度升高气化,气化后的液体样品随同从进气口56进入的载气一起从出气口57向外排放,并进入到第三管路43中。此外,隔垫吹扫管路53能将腔室内产生的污物等向外排放出去,分流管路54由于能将一部分载气向外分流 排出,从而能减小进入到第三管路43中的样品流量大小,实现腔室内预设流量范围的样品随着载气一通进入到第三管路43中。具体而言,为了控制分流管路54上的气流外排量,在分流管路54上例如设置有第二压力控制器55。
进一步地,在预浓缩捕集管61上设置有保温层与加热件。
保温层为厚度为5mm~10mm的纳米毡,或者为高硅氧棉。具体而言,加热件的加热温度例如控制在100℃~150℃,能对预浓缩捕集管内的待测样品解吸处理。
可选地,加热件不限于是电热丝,还可以是任何能够对预浓缩捕集管61进行加热的器件,例如为内置于预浓缩捕集管61内部的电热丝,或者为采用半导体将产生的热量传递给预浓缩捕集管61等等,在此不进行具体限定。
具体而言,第一管路41、第二管路42及第三管路43均例如选用惰性化处理的金属管。此外,也可以在第一管路41、第二管路42及第三管路43上设置保温层或者设置加热件。
在一个具体的实施例中,请参阅图1或图2,多通阀20为具有八个接口的八通阀。可选地,多通阀20不限于为八通阀,多通阀20还可以例如是十通阀、十二通阀、十四通阀等等,在此不进行限定。
作为一个示例,请参阅图3与图4,图3示出了本发明另一实施例所述的多功能气相色谱质谱分析装置的多通阀20运行于第一工作状态结构示意图;图4示出了本发明另一实施例所述的多功能气相色谱质谱分析装置的多通阀20运行于第二工作状态结构示意图。图3与图4与图1和图2相比,区别在于,在图3与图4中示意出的多通阀20具体为十通阀。十通阀不止是有第一接口A1至第八接口A8,十通阀还设有第九接口A9与第十接口A10,第九接口A9与第十接口A10处于第七接口A7与第八接口A8之间,并均采用堵塞件堵住,使得第九 接口A9与第十接口A10均处于截止状态。
在一个实施例中,一种便携式气相色谱质谱分析方法,采用了上述任一实施例多功能气相色谱质谱分析装置,包括如下步骤:
步骤S10、进入到对待测样品进行浓缩捕集的步骤,参阅图1,使得多通阀20切换运行于第一工作状态,开启气泵81,第一气路控制件71控制第五管路45与第六接口A6相连通,此时,在气泵81的抽吸力作用下,样品气体经过第一进样管11、第一接口A1、第二接口A2、第一管路41、第五接口A5、第六接口A6、第五管路45向外排,流经第一管路41时,由第一管路41上的预浓缩捕集管61捕获收集样品气体中的待测样品,使得待测样品集中于预浓缩捕集管61中,其它气体则由气泵81通过抽吸管向外抽排,在预浓缩捕集管61捕集到一定量的待测样品后,气泵81停止工作。与此同时,第二载气管32内的载气可以依次通过第三接口A3、第四接口A4、第二管路42、液体进样模块50的进气口56、液体进样模块50的出气口57、第三管路43、色谱分析柱82进入到质谱检测器83中,如此载气气源可以不停机。
步骤S20、热解吸步骤,在气泵81停止工作后,参阅图2,使多通阀20运行于第二工作状态,通过热解吸件对预浓缩捕集管61进行加热解吸处理,使得预浓缩捕集管61内的待测样品气化,并由第一载气管31通入的载气依次流经第三接口A3、第二接口A2、第一管路41、第五接口A5、第四接口A4、第二管路42、液体进样模块50的进气口56、液体进样模块50的出气口57、第三管路43、色谱分析柱82进入到质谱检测器83中,第一载气管31通入的载气进入到预浓缩捕集管61时携带气化的待测样品一起进入到色谱分析柱82,色谱分析柱82进行升温工作使得气化的待测样品进行色谱分离,质谱检测器83对分离的目标物依次进行检测处理。在热解吸步骤中,由第一气路控制件71控制第四管路 44与第五管路45均和第六接口A6相断开,使得避免第一进样管11内的样品气体通过第六接口A6流向第四管路44、第五管路45。
步骤S30、反吹检测步骤,待热解吸步骤中的预浓缩捕集管61内的待测样品均解吸完毕后,再参阅图1,使得多通阀20切换运行于第一工作状态,第一进样管11停止进样,第一气路控制件71控制第五管路45与第六接口A6连通,第二载气管32内的载气依次流经第三接口A3、第四接口A4、第二管路42、液体进样模块50、第三管路43、色谱分析柱82及质谱检测器83,将第二管路42、第三管路43及色谱分析柱82内的待测样品往前推动进入到质谱检测器83中进行检测;第一载气管31内的载气依次流经第一接口A1、第二接口A2、第一管路41、第五接口A5、第六接口A6及第五管路45向外排,使得预浓缩捕集管61内的待测样品向外排放,起到清洁作用。如此可见,可以保障色谱分析柱82对待测样品的较好的检测效果,在色谱分析柱82工作的同时还能对预浓缩捕集管61及其连接管进行反吹检测及清洗,反吹流程和分析流程同步进行可缩短分析周期,工作效率较高。
上述的多功能气相色谱质谱分析装置在对待测样品进行检测时,可以用于气相色谱检测模式,还可以用于单质谱检测模式,功能强大,使用方便。此外,上述的多功能气相色谱质谱分析装置,由于质谱检测器83设有第一进样口、第二进样口及与第二进样口连通的抽吸出口,以及包括多通阀20及整体管路连接结构,能实现气相色谱检测模式和单质谱检测模式的一体化有机结合,同时装置结构相对简单。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或 “下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。

Claims (10)

  1. 一种多功能气相色谱质谱分析装置,其特征在于,所述多功能气相色谱质谱分析装置包括:
    第一进样管,所述第一进样管的进气端用于通入样品气体;
    多通阀,所述多通阀设有第一接口、第二接口、第三接口、第四接口、第五接口、第六接口、第七接口与第八接口,所述多通阀运行于第一工作状态与第二工作状态;当所述多通阀运行于第一工作状态时,所述第一接口与所述第二接口通过管道相连通,所述第三接口与所述第四接口通过管道相连通,所述第五接口与所述六接口通过管道相连通,所述第七接口与所述第八接口通过管道相连通;当所述多通阀运行于第二工作状态时,所述第一接口与所述第八接口通过管道相连通,所述第二接口与所述第三接口通过管道相连通,所述第四接口与所述第五接口通过管道相连通,所述第六接口与所述第七接口通过管道相连通;所述第七接口与所述第八接口通过连通管相连;
    第一载气管、第二载气管、第一管路、第二管路、第三管路、第四管路、第五管路、第六管路、液体进样模块、预浓缩捕集管、热解吸件、第一气路控制件、气泵与色谱分析柱与质谱检测器;所述质谱检测器设有第一进样口、第二进样口及与所述第二进样口连通的抽吸出口;所述第一载气管的出气端、所述第一进样管的出气端均与所述第一接口相连通;所述第一管路的两端分别对应连接所述第二接口与所述第五接口,所述预浓缩捕集管设置于所述第一管路上,所述热解吸件用于对所述预浓缩捕集管进行加热解吸处理;所述第二载气管的出气端与所述第三接口相连通;所述第二管路的一端与所述第四接口相连通,所述第二管路的另一端与所述液体进样模块的进气口相连通,所述第三管路的一端与所述液体进样模块的出气口相连通,所述第三管路的另一端与所述 第一进样口相连通,所述色谱分析柱设于所述第三管路上;所述第一气路控制件控制所述第六接口与所述第四管路的一端或第五管路的一端相连通,所述第四管路的另一端与所述第二进样口相连通,所述第六管路的一端与所述抽吸出口相连通,所述第五管路的另一端、所述第六管路的另一端并联连接至所述气泵。
  2. 根据权利要求1所述的多功能气相色谱质谱分析装置,其特征在于,所述第一气路控制件为第一二位三通阀,所述第一二位三通阀的第一端口与所述第六接口相连通,所述第一二位三通阀的第二端口与所述第四管路相连通,所述第一二位三通阀的第三端口与所述第五管路相连通。
  3. 根据权利要求1所述的多功能气相色谱质谱分析装置,其特征在于,所述多功能气相色谱质谱分析装置还包括第二进样管,所述第二进样管与所述第一接口连通。
  4. 根据权利要求3所述的多功能气相色谱质谱分析装置,其特征在于,所述多功能气相色谱质谱分析装置还包括第二气路控制件,所述第二气路控制件用于控制所述第一接口与所述第一进样管或所述第二进样管相连通。
  5. 根据权利要求1所述的多功能气相色谱质谱分析装置,其特征在于,所述多功能气相色谱质谱分析装置还包括第三气路控制件,所述第三气路控制件用于控制所述第一接口与所述第一进样管或所述第一载气管相连通。
  6. 根据权利要求1所述的多功能气相色谱质谱分析装置,其特征在于,所述多功能气相色谱质谱分析装置还包括设置于第一载气管上的限流器,或者所述第一载气管为限流管;所述第二载气管上设有第一压力控制器。
  7. 根据权利要求6所述的多功能气相色谱质谱分析装置,其特征在于,所述多功能气相色谱质谱分析装置还包括载气总管与第一分流件,所述载气总管 通过所述第一分流件分别与所述第一载气管、所述第二载气管相连通,所述载气总管用于连接载气源。
  8. 根据权利要求1所述的多功能气相色谱质谱分析装置,其特征在于,所述多功能气相色谱质谱分析装置还包括与所述预浓缩捕集管并联设置的定量管,以及用于控制所述定量管或所述预浓缩捕集管接入到第一管路的控制组件。
  9. 根据权利要求8所述的多功能气相色谱质谱分析装置,其特征在于,所述控制组件包括分别位于所述预浓缩捕集管两侧的两个第四二位三通阀;所述第四二位三通阀的第一端口与第二端口设置于第一管路上,所述定量管的其中一端与其中一个所述第四二位三通阀的第三端口相连通,所述定量管的另一端与另一个所述第四二位三通阀的第三端口相连通。
  10. 一种便携式气相色谱质谱分析方法,其特征在于,采用了如权利要求1至9任意一项所述的多功能气相色谱质谱分析装置,包括如下步骤:
    步骤S10、对待测样品进行浓缩捕集步骤,使得多通阀切换运行于第一工作状态,开启气泵,第一气路控制件控制第五管路与第六接口相连通,在气泵的抽吸力作用下,样品气体经过第一进样管、第一接口、第二接口、第一管路、第五接口、第六接口、第五管路向外排,样品气体流经第一管路时,由第一管路上的预浓缩捕集管捕获收集样品气体中的待测样品;
    步骤S20、控制气泵停止工作并进入热解吸步骤,使多通阀运行于第二工作状态,通过热解吸件对预浓缩捕集管进行加热解吸处理,使得预浓缩捕集管内的待测样品气化,同步由第一载气管通入的载气依次流经第三接口、第二接口、第一管路、第五接口、第四接口、第二管路、液体进样模块的进气口、液体进样模块的出气口、第三管路、色谱分析柱进入到质谱检测器中,第一载气管通入的载气进入到预浓缩捕集管时携带气化的待测样品一起进入到色谱分析柱;
    步骤S30、待热解吸步骤中的预浓缩捕集管内的待测样品解吸时间达到预设时间时进行反吹检测步骤,使得多通阀切换运行于第一工作状态,第一进样管停止进样,第一气路控制件控制第五管路与第六接口连通,第二载气管内的载气依次流经第三接口、第四接口、第二管路、液体进样模块、第三管路、色谱分析柱及质谱检测器,第二载气将第二管路、第三管路及色谱分析柱内的待测样品往前推动进入到质谱检测器中进行检测;此外,第一载气管内的载气依次流经第一接口、第二接口、第一管路、第五接口、第六接口及第五管路向外排,使得预浓缩捕集管内的残留样品或杂质向外排放。
PCT/CN2020/142322 2020-12-17 2020-12-31 多功能气相色谱质谱分析装置和分析方法 WO2022126796A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011502193.2A CN112595789B (zh) 2020-12-17 2020-12-17 多功能气相色谱质谱分析装置和分析方法
CN202011502193.2 2020-12-17

Publications (1)

Publication Number Publication Date
WO2022126796A1 true WO2022126796A1 (zh) 2022-06-23

Family

ID=75199435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142322 WO2022126796A1 (zh) 2020-12-17 2020-12-31 多功能气相色谱质谱分析装置和分析方法

Country Status (2)

Country Link
CN (1) CN112595789B (zh)
WO (1) WO2022126796A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116953088A (zh) * 2023-09-20 2023-10-27 眉山麦克在线设备股份有限公司 一种色谱及连续分析模块联用系统及方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021254271A1 (zh) * 2020-06-14 2021-12-23 杭州谱育科技发展有限公司 基于多通道技术的走航监测系统及工作方法
CN114019038B (zh) * 2021-10-09 2024-01-02 长鑫存储技术有限公司 监测环境气体有机物的装置及方法
CN114563509A (zh) * 2022-02-21 2022-05-31 广东盈峰科技有限公司 空气中痕量有机物的富集系统和检测方法
CN115629155B (zh) * 2022-09-09 2023-10-31 华南理工大学 一种在线多基质内VOCs分析装置及方法
CN116399981A (zh) * 2023-06-05 2023-07-07 常州磐诺仪器有限公司 一种便携式超快速气相色谱仪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893529A (zh) * 2010-08-04 2010-11-24 北京天一世纪科技有限公司 用于污染源有机物自动监测的空气样品在线富集分离装置
CN102043022A (zh) * 2009-10-21 2011-05-04 中国石油化工股份有限公司 大气中还原性硫化物分析系统
CN106706831A (zh) * 2017-02-20 2017-05-24 国家海洋局第三海洋研究所 多用途在线气体制备和导入系统冷阱预富集装置
CN108414633A (zh) * 2018-02-12 2018-08-17 中国科学院地质与地球物理研究所 一种微量氮同位素的测定仪器及其应用
CN209559837U (zh) * 2019-01-14 2019-10-29 中国科学院南海海洋研究所 一种lc/ms和ms自动切换高通量连续进样装置
CN111279188A (zh) * 2017-10-25 2020-06-12 因泰科设备股份有限公司 用于与气相色谱法一起使用的样品预浓缩系统和方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122314A (ja) * 1994-10-21 1996-05-17 Shimadzu Corp ガスクロマトグラフ質量分析装置
US5661224A (en) * 1996-02-08 1997-08-26 H2M Labs, Inc. Method and apparatus for spiking atmospheric samples
US6902937B2 (en) * 2001-07-13 2005-06-07 Air Liquide America, L.P. Method for the determination of low-concentration anions in the presence of an excess of another anion
US20040014143A1 (en) * 2002-05-29 2004-01-22 Haskins William E. Method and apparatus for detecting and monitoring peptides, and peptides identified therewith
CN102175796B (zh) * 2011-01-24 2012-10-03 中国烟草总公司郑州烟草研究院 动态顶空-冷聚焦-gc-ms的烟草顶空成份分析方法
CN102818871B (zh) * 2012-05-29 2014-10-15 上海烟草集团有限责任公司 液相色谱-气相色谱/质谱在线联用接口装置及方法
DE102013112921A1 (de) * 2013-11-22 2015-05-28 IMSPEX DIAGNOSTICS Ltd. Verfahren zur Messung der menschlichen Ausatemluft mittels Gaschromatografie-Ionenmobilitätsspektrometrie
CN105319308B (zh) * 2014-07-07 2017-05-17 北京北分天普仪器技术有限公司 白酒各类组成的气相色谱/质谱分析装置和分析方法
US10775354B2 (en) * 2014-10-02 2020-09-15 Brigham Young University Autonomous ambient air sampling system for monitoring semi-volatile/non-volatile organic compounds
CN205506769U (zh) * 2016-03-29 2016-08-24 李勘 电子制冷三级冷冻大气预浓缩仪
CN109557225B (zh) * 2018-11-23 2019-10-18 中国科学院地质与地球物理研究所 一种碳、氧同位素测定方法及其系统
CN111896633B (zh) * 2019-05-05 2022-12-27 株式会社岛津制作所 分析系统
CN110108813B (zh) * 2019-05-23 2024-02-13 沈阳工业大学 检测全氟异丁腈和二氧化碳混合气体分解物的装置及方法
CN110333313B (zh) * 2019-07-30 2020-06-09 浙江富春江环保科技研究有限公司 一种烟气污染物在线交替浓缩释放的处理方法
CN211877889U (zh) * 2020-03-11 2020-11-06 宁波华仪宁创智能科技有限公司 色谱质谱联用装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102043022A (zh) * 2009-10-21 2011-05-04 中国石油化工股份有限公司 大气中还原性硫化物分析系统
CN101893529A (zh) * 2010-08-04 2010-11-24 北京天一世纪科技有限公司 用于污染源有机物自动监测的空气样品在线富集分离装置
CN106706831A (zh) * 2017-02-20 2017-05-24 国家海洋局第三海洋研究所 多用途在线气体制备和导入系统冷阱预富集装置
CN111279188A (zh) * 2017-10-25 2020-06-12 因泰科设备股份有限公司 用于与气相色谱法一起使用的样品预浓缩系统和方法
CN108414633A (zh) * 2018-02-12 2018-08-17 中国科学院地质与地球物理研究所 一种微量氮同位素的测定仪器及其应用
CN209559837U (zh) * 2019-01-14 2019-10-29 中国科学院南海海洋研究所 一种lc/ms和ms自动切换高通量连续进样装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116953088A (zh) * 2023-09-20 2023-10-27 眉山麦克在线设备股份有限公司 一种色谱及连续分析模块联用系统及方法
CN116953088B (zh) * 2023-09-20 2023-12-29 眉山麦克在线设备股份有限公司 一种色谱及连续分析模块联用系统及方法

Also Published As

Publication number Publication date
CN112595789A (zh) 2021-04-02
CN112595789B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2022126796A1 (zh) 多功能气相色谱质谱分析装置和分析方法
US11614431B2 (en) System, apparatus, and method for monitoring organic compounds in a gas environment
WO2022126795A1 (zh) 便携式气相色谱分析装置和分析方法
JP7100766B2 (ja) ガス濃縮サンプリングのための除水方法、試料導入方法及びそれらの装置
KR100515425B1 (ko) 실시간가스크로마토그래피질량분석극미량기체검출
JP2001501303A (ja) ガスクロマトグラフのための分析エンジン
CN108037217A (zh) 一种便携式气体分析仪及其操作方法
JPH04274728A (ja) ガス中の微量成分分析のための予濃縮方法および装置
CN115089993A (zh) 一种气体预浓缩设备及控制方法
CN109406691B (zh) 气体采样分离系统及气相色谱仪
CN115436545A (zh) 气体预浓缩仪
CN214750011U (zh) 便携式气相色谱分析装置
US20230068184A1 (en) Purification System for Nitrogen Gas and Xenon Gas in Water and Isotope Static Analysis Method Thereof
CN112730640B (zh) 便携式气相色谱分析装置和分析方法
CN108169401A (zh) 一种野外便携式气体检测装置及其操作方法
CN207764174U (zh) 一种便携式气体分析仪
CN219871183U (zh) 一种集成式快速气相色谱模块和便携式气质联用仪
Tian et al. High sensitivity three-stage microfabricated preconcentrator-focuser for micro gas chromatography
CN114019038B (zh) 监测环境气体有机物的装置及方法
KR20240034361A (ko) 가스 크로마토그래피 시스템 및 이를 이용하여 대상시료를 분석하는 방법
CN218726952U (zh) 一种走航质谱分析仪
CN215678237U (zh) 一种带有冷阱采集功能的在线热脱附仪
CN207764177U (zh) 一种野外便携式气体检测装置
CN209841796U (zh) 一种用于气体浓缩采样的除水装置及进样装置
KR100782207B1 (ko) 시료 전처리 방법 및 이를 이용한 전처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20965808

Country of ref document: EP

Kind code of ref document: A1