WO2021254271A1 - 基于多通道技术的走航监测系统及工作方法 - Google Patents

基于多通道技术的走航监测系统及工作方法 Download PDF

Info

Publication number
WO2021254271A1
WO2021254271A1 PCT/CN2021/099737 CN2021099737W WO2021254271A1 WO 2021254271 A1 WO2021254271 A1 WO 2021254271A1 CN 2021099737 W CN2021099737 W CN 2021099737W WO 2021254271 A1 WO2021254271 A1 WO 2021254271A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
monitoring system
enrichment
navigation monitoring
switching module
Prior art date
Application number
PCT/CN2021/099737
Other languages
English (en)
French (fr)
Inventor
娄建秋
吕天峰
马乔
段炼
刘立鹏
韩双来
Original Assignee
杭州谱育科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202021096590.XU external-priority patent/CN212540226U/zh
Priority claimed from CN202010539488.0A external-priority patent/CN111796018A/zh
Application filed by 杭州谱育科技发展有限公司 filed Critical 杭州谱育科技发展有限公司
Publication of WO2021254271A1 publication Critical patent/WO2021254271A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes

Definitions

  • the invention relates to mobile monitoring, in particular to a navigation monitoring system and working method based on multi-channel technology.
  • Volatile organic compounds have become an important component of environmental air pollution in cities and key industrial areas.
  • mass spectrometry can quickly carry out large-area pollution source investigations by navigating to obtain the temporal and spatial distribution of volatile organic compounds in the air.
  • the current mass spectrometer navigation monitoring equipment on the market uses soft ionization technologies such as chemical ionization sources, single-photon ion sources, and proton transfer reaction ion sources, combined with mass spectrometry to analyze volatile organic compounds.
  • soft ionization technologies such as chemical ionization sources, single-photon ion sources, and proton transfer reaction ion sources, combined with mass spectrometry to analyze volatile organic compounds.
  • using single-channel mass spectrometry technology can only perform semi-qualitative and semi-quantitative analysis based on the mass and intensity of molecular ions, and it is impossible to distinguish substances with the same molecular weight, which can easily cause misjudgments.
  • the present invention provides a navigation monitoring system based on multi-channel technology that quantitatively analyzes, accurately, and distinguishes substances with the same molecular weight.
  • a navigation monitoring system based on multi-channel technology includes a mobile tool and a detection device; the navigation monitoring system based on multi-channel technology also includes:
  • a plurality of channels the input ends of the plurality of channels are respectively adapted to communicate with the object to be tested, and the output ends are adapted to communicate with the detection device;
  • An enrichment device the enrichment device is arranged in at least one of the plurality of channels, and the analyte enters the detection device without being enriched in one channel;
  • a separation device which is used to separate different fluids
  • a gas inlet which communicates with a channel and is located upstream of the enrichment device
  • the gas outlet is connected to the channel between the enrichment device and the separation device.
  • the object of the present invention is also to provide a working method according to the above navigation monitoring system.
  • the object of the present invention is achieved through the following technical solutions:
  • the working method includes the following steps:
  • the moving tool moves to the detection area as needed
  • the second switching module is switched, the outside air enters the direct sampling channel through the second switching module, and the mass detection device outputs the detection result;
  • the third switching module is switched, the carrier gas enters the enrichment device through the third switching module, and the enriched substance is carried by the carrier gas through the first switching module, enters the separation device for separation, and finally enters the mass spectrometry detection device for analysis.
  • the present invention has the following beneficial effects:
  • the multi-channel (two or more) channel navigation monitoring system with direct injection (no need for enrichment) and enrichment + separation injection can realize rapid detection of VOCs, etc., and can solve traditional mass spectrometry navigation monitoring instruments at the same time Unable to distinguish the problem of substances with the same molecular weight;
  • the direct sampling channel analyzes the pollutants in the air in real time. When the pollutant waiting to be measured exceeds the threshold, it is linked with the enrichment + separation channel to ensure that the target VOCs waiting to be measured are collected in time and no omissions;
  • Fig. 1 is a schematic structural diagram of a navigation monitoring system based on multi-channel technology according to an embodiment of the present invention.
  • Fig. 1 schematically shows the structure diagram of a navigation monitoring system based on multi-channel technology according to an embodiment of the present invention.
  • the navigation monitoring system based on multi-channel technology includes:
  • Mobile tools and detection devices can be vehicles, such as vans, and detection devices can be mass spectrometry devices, such as a combination of ion sources, mass analyzers and detectors;
  • Multiple channels such as two or more channels
  • the input ends of the multiple channels are respectively adapted to communicate with the object to be tested
  • the output ends are adapted to communicate with the detection device
  • the output ends of the multiple channels are connected to the only one One detection device, or each channel has a detection device, or some channels share one detection device;
  • An enrichment device the enrichment device is arranged in at least one of the plurality of channels, and the analyte enters the detection device without being enriched (direct injection) in one channel;
  • a separation device such as a chromatographic column, which is used to separate different fluids
  • a gas inlet which communicates with a channel and is located upstream of the enrichment device, so that gas such as carrier gas enters the enrichment device through the gas inlet;
  • the gas outlet is connected to the channel between the enrichment device and the separation device, so that when sampling, the analyte enters the enrichment device for enrichment, and then exits the channel from the gas outlet.
  • the navigation monitoring system further includes:
  • the delivery pump is arranged downstream of the gas outlet.
  • the navigation monitoring system further includes:
  • the first switching module such as a three-way valve, is used to enable the output end of the enrichment device to selectively communicate with the delivery pump and the separation device.
  • the navigation monitoring system further includes:
  • the second switching module such as a three-way valve, is used to enable the object to be tested to selectively communicate with any channel.
  • the navigation monitoring system further includes:
  • the third switching module, the second switching module is used to enable the enrichment device to selectively connect the carrier gas and the object to be tested.
  • the navigation monitoring system further includes:
  • the comparator is used to compare the output result of the detection device corresponding to the non-enriched channel with the threshold, so that when the output result exceeds the threshold, switch to the enriched channel: sample injection enrichment-desorption-detection.
  • two channels are used: a direct injection channel and an enrichment channel; the second switching module uses a three-way solenoid valve, and the two outlets are connected to two channels respectively;
  • the enrichment device adopts an enrichment tube, and the separation device on the enrichment channel adopts a chromatographic column; the two channels respectively have a mass spectrometry detection device, specifically a combination of an ion source, a mass analyzer and a detector; a comparator circuit is used for comparison The output result and threshold value of the detection device corresponding to the unenriched channel (direct injection channel);
  • the first switching module adopts a three-way solenoid valve, the inlet is connected to the outlet of the enrichment device, and the two outlets are respectively connected to the separation device and the sampling pump;
  • the three-switching module adopts a three-way solenoid valve, one inlet is suitable for communicating with carrier gas, the other inlet is connected with the outlet of the second switching module, and the outlet is connected with the inlet of the enrichment device;
  • the mobile tool moves to the detection area as needed;
  • the second switching module is switched, the outside air enters the direct sampling channel through the second switching module, and the mass detection device outputs the detection result;
  • the comparator compares the threshold with the output result, and if the output result exceeds the threshold, the second switching module switches to the enrichment channel;
  • the third switching module is switched, the carrier gas enters the enrichment device through the third switching module, and the enriched substance is carried by the carrier gas through the first switching module, enters the separation device for separation, and finally enters the mass spectrometry detection device for analysis.
  • the difference from the second embodiment is:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

提供一种基于多通道技术的走航监测系统及工作方法,走航监测系统包括移动工具、检测装置、多个通道、富集装置、分离装置、气体进口和气体出口;多个通道的输入端分别适于连通待测物,输出端适于连通检测装置;富集装置设置在多个通道中的至少一个内,待测物在一个通道中未经富集地进入检测装置;分离装置用于分离不同流体;气体进口连通通道,且处于富集装置的上游;气体出口连通富集装置和分离装置间的通道。走航监测系统具有检测精度高、可移动等优点。

Description

基于多通道技术的走航监测系统及工作方法
相关申请的交叉引用
本申请要求杭州谱育科技发展有限公司于2020年06月14日提交的、发明名称为“基于多通道技术的走航监测系统及工作方法”的、中国专利申请号“202010539488.0”和“202021096590.X”的优先权。
技术领域
本发明涉及移动监测,特别涉及基于多通道技术的走航监测系统及工作方法。
背景技术
挥发性有机物已成为城市及重点工业区域环境空气污染的重要组成。质谱作为一种能分析环境空气中痕量挥发性有机物的设备,可通过走航方式快速开展大区域污染源排查,获取空气中挥发性有机物的时空分布。
当前市面上的质谱走航监测设备,采用化学电离源、单光子离子源、质子转移反应离子源等软电离技术,结合质谱对挥发性有机物进行分析。但,采用单通道质谱技术,只能依据分子离子的质量数和强度进行半定性和半定量分析,对于分子量相同的物质无法区分,极易造成误判。
发明内容
为解决上述现有技术方案中的不足,本发明提供了一种定量分析、准确、区分分子量相同物质的基于多通道技术的走航监测系统。
本发明的目的是通过以下技术方案实现的:
基于多通道技术的走航监测系统,所述走航监测系统包括移动工具和检测装置;所述基于多通道技术的走航监测系统还包括:
多个通道,所述多个通道的输入端分别适于连通待测物,输出端适于连通所述检测装置;
富集装置,所述富集装置设置在所述多个通道中的至少一个内,待测物在一个通道中未经富集地进入所述检测装置;
分离装置,所述分离装置用于分离不同流体;
气体进口,所述气体进口连通通道,且处于所述富集装置的上游;
气体出口,所述气体出口连通所述富集装置和分离装置间的通道。
本发明的目的还在于提供了根据上述走航监测系统的工作方法,该发明目的是通过以下技术方案得以实现的:
根据上述的基于多通道技术的走航监测系统的工作方法,所述工作方法包括以下步骤:
移动工具根据需要地移动到检测区域;
第二切换模块切换,外界空气通过第二切换模块进入直接进样通道,质谱检测装置输出检测结果;
比较阈值和输出结果,若输出结果超过阈值,则第二切换模块切换到富集通道;
外界空气通过第二切换模块进入富集通道,进入富集装置内富集,之后通过去取样泵排出通道;
切换第三切换模块,载气通过第三切换模块进入富集装置内,富集物在载气携带下穿过第一切换模块,进入分离装置内分离,最后进入质谱检测装置内分析。
与现有技术相比,本发明具有的有益效果为:
1.采用直接进样(无需富集)和富集+分离进样的多(二个或更多)通道走航监测系统,可实现VOCs等的快速检测,同时能解决传统质谱走航监测仪器无法区分分子量相同物质的问题;
2.直接进样通道实时分析空气中的污染物,当污染物等待测物超过阈值时,和富集+分离通道实现联动,确保目标VOCs等待测物及时采集、无遗漏;
3.配合移动工具(如监测车)“边走边测”的特点,实现VOCs等待测物快速检测和精确定性、定量分析。
附图说明
参照附图,本发明的公开内容将变得更易理解。本领域技术人员容易理解的是:这些附图仅仅用于举例说明本发明的技术方案,而并非意在对本发明的保护范围构成限制。图中:
图1是根据本发明实施例的基于多通道技术的走航监测系统的结构简图。
具体实施方式
图1和以下说明描述了本发明的可选实施方式以教导本领域技术人员如何实施和再现本发明。为了教导本发明技术方案,已简化或省略了一些常规方面。本领域技术人员应该理解源自这些实施方式的变型或替换将在本发明的范围内。本领域技术人员应该理解下述特征能够以各种方式组合以形成本发明的多个变型。由此,本发明并不局限于下述可选实 施方式,而仅由权利要求和它们的等同物限定。
实施例1:
图1示意性地给出了本发明实施例的基于多通道技术的走航监测系统的结构简图,如图1所示,所述基于多通道技术的走航监测系统包括:
移动工具和检测装置;移动工具可采用车辆,如厢式货车,检测装置可采用质谱分析装置,如离子源、质量分析器和检测器的组合;
多个通道,如二个或更多个通道,所述多个通道的输入端分别适于连通待测物,输出端适于连通所述检测装置,如多个通道的输出端连接仅有的一个检测装置,或者各个通道分别具有检测装置,或者部分通道共用一个检测装置;
富集装置,所述富集装置设置在所述多个通道中的至少一个内,待测物在一个通道中未经富集(直接进样)地进入所述检测装置;
分离装置,如色谱柱,所述分离装置用于分离不同流体;
气体进口,所述气体进口连通通道,且处于所述富集装置的上游,使得载气等气体通过气体进口进入富集装置内;
气体出口,所述气体出口连通所述富集装置和分离装置间的通道,使得在进样时,待测物进入富集装置内富集,之后从气体出口排出通道。
为了实现待测物的富集,进一步地,所述走航监测系统还包括:
输送泵,所述输送泵设置在所述气体出口的下游。
为了实现富集和解吸,进一步地,所述走航监测系统还包括:
第一切换模块,如三通阀,所述第一切换模块用于使所述富集装置的输出端选择性地连通所述输送泵和分离装置。
为了使待测物选择性地进入通道内,进一步地,所述走航监测系统还包括:
第二切换模块,如三通阀,所述第二切换模块用于使所述待测物选择性地连通任一通道。
为了使待测物和载气选择性地进入富集装置内,实现进样和解吸,进一步地,所述走航监测系统还包括:
第三切换模块,所述第二切换模块用于使所述富集装置选择性地连通载气和待测物。
为了实现了多个通道的切换,进一步地,所述走航监测系统还包括:
比较器,所述比较器用于比较未富集通道对应的检测装置的输出结果和阈值,使得当输出结果超过阈值时,切换到富集通道:进样富集—解吸—检测。
实施例2:
根据本发明实施例1的基于多通道技术的走航监测系统在大气VOCs走航监测中的应 用例。
在该应用例中,如图1所示,采用二个通道:直接进样通道和富集通道;第二切换模块采用三通电磁阀,二个出口分别连通二个通道;富集通道上的富集装置采用富集管,富集通道上的分离装置采用色谱柱;二个通道分别具有质谱检测装置,具体为离子源、质量分析器和检测器的组合;采用比较器电路,用于比较未富集通道(直接进样通道)对应的检测装置的输出结果和阈值;第一切换模块采用三通电磁阀,进口连通富集装置的出口,二个出口分别连通分离装置和取样泵;第三切换模块采用三通电磁阀,一个进口适于连通载气,另一个进口连通第二切换模块的出口,出口连通富集装置的进口;风向风速仪和GPS模块设置在所述移动工具上。
本实施例的走航监测系统的工作方法包括以下步骤:
移动工具根据需要地移动到检测区域;
第二切换模块切换,外界空气通过第二切换模块进入直接进样通道,质谱检测装置输出检测结果;
比较器比较阈值和输出结果,若输出结果超过阈值,则第二切换模块切换到富集通道;
外界空气通过第二切换模块进入富集通道,进入富集装置内富集,之后通过去取样泵排出通道;
切换第三切换模块,载气通过第三切换模块进入富集装置内,富集物在载气携带下穿过第一切换模块,进入分离装置内分离,最后进入质谱检测装置内分析。
实施例3:
根据本发明实施例1的基于多通道技术的走航监测系统的应用例,与实施例2不同的是:
具有并联的三个通道,包括一个直接进样通道,二个富集通道;三个通道共用仅有的一个质谱检测装置。

Claims (10)

  1. 基于多通道技术的走航监测系统,所述走航监测系统包括移动工具和检测装置;其特征在于:所述基于多通道技术的走航监测系统还包括:
    多个通道,所述多个通道的输入端分别适于连通待测物,输出端适于连通所述检测装置;
    富集装置,所述富集装置设置在所述多个通道中的至少一个内,待测物在一个通道中未经富集地进入所述检测装置;
    分离装置,所述分离装置用于分离不同流体;
    气体进口,所述气体进口连通通道,且处于所述富集装置的上游;
    气体出口,所述气体出口连通所述富集装置和分离装置间的通道。
  2. 根据权利要求1所述的基于多通道技术的走航监测系统,其特征在于:所述走航监测系统还包括:
    输送泵,所述输送泵设置在所述气体出口的下游。
  3. 根据权利要求2所述的基于多通道技术的走航监测系统,其特征在于:所述走航监测系统还包括:
    第一切换模块,所述第一切换模块用于使所述富集装置的输出端选择性地连通所述输送泵和分离装置。
  4. 根据权利要求1所述的基于多通道技术的走航监测系统,其特征在于:所述走航监测系统还包括:
    第二切换模块,所述第二切换模块用于使所述待测物选择性地连通任一通道。
  5. 根据权利要求1所述的基于多通道技术的走航监测系统,其特征在于:所述走航监测系统还包括:
    第三切换模块,所述第二切换模块用于使所述富集装置选择性地连通载气和待测物。
  6. 根据权利要求1所述的基于多通道技术的走航监测系统,其特征在于:所述富集装置采用富集管,所述分离装置采用色谱柱。
  7. 根据权利要求1所述的基于多通道技术的走航监测系统,其特征在于:所述检测装置为离子源、质量分析器和检测器的组合;仅有的一个检测装置与所述多个通道的输出端连接,或者在每个通道均设置检测装置。
  8. 根据权利要求1所述的基于多通道技术的走航监测系统,其特征在于:所述走航监测系统还包括:
    比较器,所述比较器用于比较未富集通道对应的检测装置的输出结果和阈值。
  9. 根据权利要求1所述的基于多通道技术的走航监测系统,其特征在于:所述走航监 测系统还包括:
    风向风速仪和GPS模块,所述风向风速仪和GPS模块设置在所述移动工具上。
  10. 根据权利要求1-9任一所述的基于多通道技术的走航监测系统的工作方法,所述工作方法包括以下步骤:
    移动工具根据需要地移动到检测区域;
    第二切换模块切换,外界空气通过第二切换模块进入直接进样通道,质谱检测装置输出检测结果;
    比较阈值和输出结果,若输出结果超过阈值,则第二切换模块切换到富集通道;
    外界空气通过第二切换模块进入富集通道,进入富集装置内富集,之后通过去取样泵排出通道;
    切换第三切换模块,载气通过第三切换模块进入富集装置内,富集物在载气携带下穿过第一切换模块,进入分离装置内分离,最后进入质谱检测装置内分析。
PCT/CN2021/099737 2020-06-14 2021-06-11 基于多通道技术的走航监测系统及工作方法 WO2021254271A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202021096590.XU CN212540226U (zh) 2020-06-14 2020-06-14 基于多通道技术的走航监测系统
CN202010539488.0A CN111796018A (zh) 2020-06-14 2020-06-14 基于多通道技术的走航监测系统及工作方法
CN202010539488.0 2020-06-14
CN202021096590.X 2020-06-14

Publications (1)

Publication Number Publication Date
WO2021254271A1 true WO2021254271A1 (zh) 2021-12-23

Family

ID=79268474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099737 WO2021254271A1 (zh) 2020-06-14 2021-06-11 基于多通道技术的走航监测系统及工作方法

Country Status (1)

Country Link
WO (1) WO2021254271A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050211098A1 (en) * 2004-03-26 2005-09-29 Shimadzu Corporation Gas chromatograph mass spectrometer
WO2010100507A1 (en) * 2009-03-06 2010-09-10 Micromass Uk Limited A dual source mass spectrometry system
CN202003947U (zh) * 2010-11-30 2011-10-05 中国科学院大连化学物理研究所 一种毛细管和膜可切换进样的质谱进样装置
CN106872552A (zh) * 2015-12-11 2017-06-20 中国科学院大连化学物理研究所 一种用于在线质谱中全自动双路切换的吸附-热解吸进样装置
CN107290189A (zh) * 2016-03-31 2017-10-24 庞英明 一种便携式多模式采样器
CN109781969A (zh) * 2019-01-18 2019-05-21 清华大学深圳研究生院 一种呼出气样品前处理装置及处理方法
CN210866123U (zh) * 2019-12-11 2020-06-26 中国科学院大连化学物理研究所 一种三通道并联可切换的质谱进样装置
CN111796018A (zh) * 2020-06-14 2020-10-20 杭州谱育科技发展有限公司 基于多通道技术的走航监测系统及工作方法
CN112133623A (zh) * 2020-09-14 2020-12-25 聚光科技(杭州)股份有限公司 VOCs走航监测装置
CN212540226U (zh) * 2020-06-14 2021-02-12 杭州谱育科技发展有限公司 基于多通道技术的走航监测系统
CN112595789A (zh) * 2020-12-17 2021-04-02 广州禾信仪器股份有限公司 多功能气相色谱质谱分析装置和分析方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050211098A1 (en) * 2004-03-26 2005-09-29 Shimadzu Corporation Gas chromatograph mass spectrometer
WO2010100507A1 (en) * 2009-03-06 2010-09-10 Micromass Uk Limited A dual source mass spectrometry system
CN202003947U (zh) * 2010-11-30 2011-10-05 中国科学院大连化学物理研究所 一种毛细管和膜可切换进样的质谱进样装置
CN106872552A (zh) * 2015-12-11 2017-06-20 中国科学院大连化学物理研究所 一种用于在线质谱中全自动双路切换的吸附-热解吸进样装置
CN107290189A (zh) * 2016-03-31 2017-10-24 庞英明 一种便携式多模式采样器
CN109781969A (zh) * 2019-01-18 2019-05-21 清华大学深圳研究生院 一种呼出气样品前处理装置及处理方法
CN210866123U (zh) * 2019-12-11 2020-06-26 中国科学院大连化学物理研究所 一种三通道并联可切换的质谱进样装置
CN111796018A (zh) * 2020-06-14 2020-10-20 杭州谱育科技发展有限公司 基于多通道技术的走航监测系统及工作方法
CN212540226U (zh) * 2020-06-14 2021-02-12 杭州谱育科技发展有限公司 基于多通道技术的走航监测系统
CN112133623A (zh) * 2020-09-14 2020-12-25 聚光科技(杭州)股份有限公司 VOCs走航监测装置
CN112595789A (zh) * 2020-12-17 2021-04-02 广州禾信仪器股份有限公司 多功能气相色谱质谱分析装置和分析方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DU TIANJUN; HOU LUJIAN; LIU JIAN; SUN KAIZHENG; GENG YE: "On-the-fly monitoring of VOCs at the boundary of a petrochemical enterprise using time-of-flight mass spectrometry-GC-MS", 2019 CHINA ENVIRONMENTAL SCIENCE SOCIETY SCIENCE AND TECHNOLOGY ANNUAL CONFERENCE; 2019-08-23; XI'AN, SHAANXI, CHINA, vol. 3, 23 August 2019 (2019-08-23) - 23 August 2019 (2019-08-23), CN, pages 141 (2519) - 144 (2522), XP009533196 *
GUO XUEQI, YU MAOLI , FEI LEILEI, ZHANG YIQIANG, WU RENHAI , JIANG GUO , JIANG WEIQING , HAN YAOJUN , WANG XINKUI , ZHANG KAI: "VOCs Cruise Monitoring: Technical Method and Case Application", ECOLOGY AND ENVIRONMENTAL SCIENCES, vol. 29, no. 2, 18 February 2020 (2020-02-18), pages 311 - 318, XP055882627, ISSN: 1674-5906, DOI: 10.16258/j.cnki.1674-5906.2020.02.012 *
TAN DE-SHAO: "Prospect of VOCs-GC/MS Navigation Monitoring Technology Applied to Environmental Monitoring", ENERGY CONSERVATION & ENVIRONMENTAL PROTECTION, 15 August 2019 (2019-08-15), pages 98 - 99, XP055882642 *
TIANJUN DU, MINGMING LI, YU SUN, YE GENG, FENG ZHANG: "Determination of VOCs Based on TOFMS/GC–MS Cruise Monitoring", CHEMICAL ANALYSIS AND METERAGE, vol. 29, no. 5, 20 September 2020 (2020-09-20), pages 62 - 67, XP055882637, ISSN: 1008-6145, DOI: 10.3969/j.issn.1008-6145.2020.05.015 *

Similar Documents

Publication Publication Date Title
CN110187037B (zh) 环境空气中57种挥发性有机物含量的测定系统及方法
US7884320B2 (en) Ion mobility spectrometer with substance collector
EP1971856B1 (en) Ionization-based detection
CN104749264B (zh) 气相色谱仪与离子迁移谱仪联用设备
CN108072690B (zh) 一种离子迁移谱和离子阱质谱联用装置及分析方法
US20050063865A1 (en) Phased VII micro fluid analyzer having a modular structure
US20180284082A1 (en) High-speed gas sample analysis device using gas chromatography, and method thereof
US9389207B2 (en) Portable gas analyzer
CN114152695B (zh) 气体绝缘组合电气中混合气体组分含量的分析方法及其分析系统
CN111796018A (zh) 基于多通道技术的走航监测系统及工作方法
JP2008139130A (ja) リアルタイム分析装置及び方法
CN106373855A (zh) 一种快速分析气体或液体中有机污染物的质谱装置
CN104569233A (zh) 离子迁移谱仪系统
CN101915811B (zh) 一种用于分析高纯度非腐蚀性气体中杂质的通用装置和方法
Jian et al. Field investigations and dynamic measurements of process activity induced VOCs inside a semiconductor cleanroom
CN109856302B (zh) 一种用于苯系物的气体检测装置及其操作方法
CN212540226U (zh) 基于多通道技术的走航监测系统
WO2021254271A1 (zh) 基于多通道技术的走航监测系统及工作方法
CN105181851A (zh) 环境中氮氧化物的测定方法
CN201780285U (zh) 一种用于分析高纯度非腐蚀性气体中杂质的通用装置
Spinelle et al. Sensitivity of VOC sensors for air quality monitoring within the EURAMET key-VOC project
Kukui et al. Chemical ionisation mass spectrometer for measurements of OH and Peroxy radical concentrations in moderately polluted atmospheres
Bae et al. Development of a portable gas analyzer using a micro-Gas Chromatograph/Flame Ionization Detector (micro-GC/FID) for NASA's environmental missions
CN204479552U (zh) 环境在线监测系统
WO2019144923A1 (zh) 离子迁移谱仪的气路流量监控装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825565

Country of ref document: EP

Kind code of ref document: A1