WO2022124347A1 - 表面修飾されてなる、金属がドープされた多孔質シリカ - Google Patents

表面修飾されてなる、金属がドープされた多孔質シリカ Download PDF

Info

Publication number
WO2022124347A1
WO2022124347A1 PCT/JP2021/045186 JP2021045186W WO2022124347A1 WO 2022124347 A1 WO2022124347 A1 WO 2022124347A1 JP 2021045186 W JP2021045186 W JP 2021045186W WO 2022124347 A1 WO2022124347 A1 WO 2022124347A1
Authority
WO
WIPO (PCT)
Prior art keywords
doped
metal
copper
vinylpyrrolidone
porous silica
Prior art date
Application number
PCT/JP2021/045186
Other languages
English (en)
French (fr)
Inventor
和彰 大橋
真梨子 木村
大輔 生田目
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to CN202180083230.7A priority Critical patent/CN116547239A/zh
Priority to JP2022568317A priority patent/JPWO2022124347A1/ja
Priority to KR1020237020402A priority patent/KR20230107671A/ko
Priority to EP21903446.9A priority patent/EP4261188A1/en
Priority to US18/265,184 priority patent/US20240018007A1/en
Publication of WO2022124347A1 publication Critical patent/WO2022124347A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/04Preparations for permanent waving or straightening the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/817Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions or derivatives of such polymers, e.g. vinylimidazol, vinylcaprolactame, allylamines (Polyquaternium 6)
    • A61K8/8176Homopolymers of N-vinyl-pyrrolidones. Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • A61L9/014Deodorant compositions containing sorbent material, e.g. activated carbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q15/00Anti-perspirants or body deodorants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/327Polymers obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3289Coatings involving more than one layer of same or different nature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Definitions

  • the present invention relates to surface-modified, metal-doped porous silica.
  • porous silica is used in various fields as an adsorbent, a humidity control agent, a catalyst carrier, and the like.
  • various attempts have been made to enhance the functionality of porous silica, and as one of the research results, the present inventors have made porous silica doped with a metal such as copper against sulfur-containing odor. It is reported in Patent Document 1 that it exhibits an excellent deodorizing effect.
  • the metal-doped porous silica reported by the present inventors in Patent Document 1 is, for example, after a perming treatment performed using a sulfur-containing substance such as cysteamine, L-cysteine, or thioglycolic acid as a reducing agent. It is expected to be used as a material for deodorizing sulfur-containing odors remaining in hair, but in order to fully exert its effect, how to use metal-doped porous silica as a perm treatment agent. It is important to mix and maintain stable dispersion. Further, the fact that the metal-doped porous silica needs to be stably dispersed and maintained when blended is the same even when the blended article is an article other than the perm treatment agent.
  • a sulfur-containing substance such as cysteamine, L-cysteine, or thioglycolic acid
  • an object of the present invention is to provide a metal-doped porous silica that can be blended in an article such as cosmetics exemplified as a perm treatment agent and stably dispersed and maintained.
  • polyquaternium-10 hydroxyethyl cellulose glycidyltrimethylammonium chloride 4
  • Polyquaternium classic ammonium salt
  • polyquaternium-11 quaternary ammonium salt of vinylpyrrolidone and diethyl sulfate, a copolymer of dimethylaminoethyl methacrylate
  • cationic polymers such as amodimethicone, and polyvinylpyrrolidone, which is a nonionic polymer.
  • the metal-doped porous silica When the metal-doped porous silica is added as it is to the aqueous solution or the aqueous dispersion, the metal-doped porous silica is not stably dispersed and maintained, and a precipitate is formed. It was found that the porous silica doped with vinyl can be suppressed by surface modification with a polymer containing a vinylpyrrolidone unit.
  • the metal-doped porous silica of the present invention made based on the above findings is surface-modified with a polymer containing a vinylpyrrolidone unit.
  • the metal-doped porous silica according to claim 2 is the metal-doped porous silica according to claim 1, wherein the metal doped with the porous silica is copper, aluminum, zirconium, cobalt, or the like. It is at least one selected from the group consisting of manganese and iron.
  • the metal-doped porous silica according to claim 3 is the metal-doped porous silica according to claim 2, wherein the metal doped with the porous silica is copper and / or aluminum.
  • the polymer containing the vinylpyrrolidone unit in the metal-doped porous silica according to claim 1 is other than the vinylpyrrolidone unit and vinylpyrrolidone. It is a copolymer of units. Further, in the metal-doped porous silica according to claim 5, the copolymer of the vinylpyrrolidone unit and the unit other than vinylpyrrolidone is the vinylpyrrolidone in the metal-doped porous silica according to claim 4. It is a copolymer of dimethylaminoethyl methacrylate.
  • the metal-doped porous silica according to claim 6 is the metal-doped porous silica according to claim 1, wherein the polymer containing a vinylpyrrolidone unit is polyvinylpyrrolidone.
  • the method for producing metal-doped porous silica which is surface-treated with a polymer containing a vinylpyrrolidone unit of the present invention, disperses metal-doped porous silica as described in claim 7.
  • the slurry formed by suspending it in a medium is housed in a processing container together with a polymer containing a vinylpyrrolidone unit and balls (media) used in a ball mill (may further contain a dispersion medium), and the processing container containing these is housed.
  • the slurry of the present invention is obtained by suspending a metal-doped porous silica surface-modified with a polymer containing a vinylpyrrolidone unit in a dispersion medium.
  • the present invention comprises polyquaternium-10 and polyquaternium-11 of metal-doped porous silica surface-modified with the polymer containing the vinylpyrrolidone unit according to claim 1. , Amodimethicone, polyvinylpyrrolidone, the use for deodorizing an article by blending it into an article containing at least one selected from the group.
  • a metal-doped porous silica that can be blended in an article such as cosmetics exemplified as a perm treatment agent and stably dispersed and maintained.
  • the metal-doped porous silica of the present invention is surface-modified with a polymer containing a vinylpyrrolidone unit.
  • the metal-doped porous silica may be, for example, those described by the present inventors in Japanese Patent Application Laid-Open No. 2020-15640.
  • the "metal-doped porous silica” means porous silica in which a metal is chemically bonded and incorporated in an inorganic network composed of siloxane bonds constituting the porous silica. Specifically, it is as follows.
  • Examples of the metal doped in the porous silica include copper, aluminum, zirconium, cobalt, manganese, and iron. These may be used alone or in combination of two or more.
  • the content of the metal in the metal-doped porous silica (the total amount of each when two or more kinds of metals are used in combination) is, for example, 0.01 to 10 wt%, preferably 0.1 to 5 wt%. .. If the metal content in the metal-doped porous silica is less than 0.01 wt%, a sufficient deodorizing effect may not be obtained, while the metal-doped amount of metal-doped porous silica may not be obtained. May be difficult to manufacture.
  • the content ratio between the metals may be, for example, 0.1 to 2 times the content of the other metal with respect to the content of one metal.
  • porous silica examples include mesoporous silica in which pores (mesopores) having a diameter of 2 to 50 nm are regularly arranged.
  • the specific surface area of the porous silica is preferably, for example, 500 to 2000 m 2 / g in that durability can be maintained.
  • the metal-doped mesoporous silica can be produced, for example, according to the following method known per se described in JP-A-2020-15640.
  • Step 1 First, the surfactant and the raw material for doping the metal with mesoporous silica are dissolved in a solvent and stirred at, for example, 30 to 200 ° C. for 0.5 to 10 hours to form micelles in the surfactant.
  • the amount of the surfactant dissolved in the solvent is, for example, 10 to 400 mmol / L, preferably 50 to 150 mmol / L.
  • the amount of the surfactant dissolved in the solvent is, for example, 0.01 to 5.0 mol, preferably 0.05 to 1.0 mol, with respect to 1 mol of the silica raw material added in step 2 described later.
  • any of a cationic surfactant, anionic surfactant, and nonionic surfactant may be used, but a cationic surfactant such as an alkylammonium salt is preferable. ..
  • the alkylammonium salt preferably has an alkyl group having 8 or more carbon atoms, and more preferably one having an alkyl group having 12 to 18 carbon atoms in view of industrial availability.
  • alkylammonium salt examples include hexadecyltrimethylammonium chloride, cetyltrimethylammonium bromide, stearyltrimethylammonium bromide, cetyltrimethylammonium chloride, stearyltrimethylammonium chloride, dodecyltrimethylammonium bromide, octadecyltrimethylammonium bromide, and dodecyltrimethylammonium chloride.
  • Examples thereof include octadecyltrimethylammonium chloride, didodecyldimethylammonium bromide, ditetradecyldimethylammonium bromide, didodecyldimethylammonium chloride, and ditetradecyldimethylammonium chloride.
  • the surfactant may be used alone or in combination of two or more.
  • the amount of the raw material dissolved in the solvent for doping the metal into mesoporous silica is determined with respect to 1 mol of the silica raw material added in step 2 described later. For example, it is 0.001 to 0.5 mol, preferably 0.01 to 0.1 mol.
  • a raw material for doping mesoporous silica with a metal for example, metal nitrate, sulfate, chloride, or oxychloride can be used.
  • metal nitrate, sulfate, chloride, or oxychloride can be used.
  • copper it is preferable to use copper nitrate or copper chloride.
  • aluminum it is preferable to use aluminum chloride.
  • doping zirconium it is preferable to use zirconium oxychloride.
  • doping cobalt it is preferable to use cobalt nitrate.
  • manganese is doped, it is preferable to use manganese chloride.
  • doping iron it is preferable to use iron chloride.
  • the raw material for doping the metal may be used alone or in combination of two or more.
  • the solvent for example, water can be used.
  • the solvent may be a mixed solvent of water and a water-soluble organic solvent such as methanol, ethanol, polyhydric alcohols such as diethylene glycol and glycerin.
  • Step 2 the silica raw material is dissolved in the solution obtained in step 1 in which the surfactant forms micelles, for example, at room temperature, and the mixture is stirred until uniform to accumulate the silica raw material on the surface of the surfactant micelles. ..
  • the amount of the silica raw material dissolved in the solution is, for example, 0.2 to 1.8 mol / L.
  • water or a mixed solvent of water and a water-soluble organic solvent is used as the solvent, it is, for example, 0.001 to 0.05 mol with respect to 1 mol of water.
  • the silica raw material is not particularly limited as long as it forms an inorganic network composed of siloxane bonds constituting mesoporous silica by dehydration condensation.
  • Specific examples of the silica raw material include tetraalkoxysilanes such as tetraethoxysilane, tetramethoxysilane, and tetra-n-butoxysilane, and sodium silicate. It is preferably tetraalkoxysilane, more preferably tetraethoxysilane.
  • the silica raw material may be used alone or in combination of two or more.
  • Step 3 the silica raw material accumulated on the surface of the micelle of the surfactant is dehydrated and condensed to form an inorganic network composed of siloxane bonds constituting mesoporous silica, and the metal is chemically bonded and incorporated into the inorganic network. ..
  • the dehydration condensation of the silica raw material can be carried out, for example, by adding a basic aqueous solution to the system to raise the pH and then stirring at room temperature for 1 hour or more.
  • the basic aqueous solution is preferably added so that the pH becomes 8 to 14 immediately after the addition, and more preferably 9 to 11.
  • the basic aqueous solution examples include a sodium hydroxide aqueous solution, a sodium carbonate aqueous solution, and an ammonia water, and a sodium hydroxide aqueous solution is preferable.
  • the basic aqueous solution may be used alone or in combination of two or more.
  • the dehydration condensation of the silica raw material can also be carried out by adding an acidic aqueous solution such as a hydrochloric acid aqueous solution to the system to lower the pH and then stirring the mixture.
  • Step 4 Finally, the surfactant micelles, which consisted of the siloxane bonds constituting the mesoporous silica obtained in step 3 and formed an inorganic network on the surface in which the metal was chemically bonded and incorporated, were filtered and recovered as a precipitate. Then, for example, the mixture is dried at 30 to 70 ° C. for 10 to 48 hours and then fired at 400 to 600 ° C. for 1 to 10 hours to obtain mesoporous silica doped with the target metal.
  • the metal-doped mesoporous silica thus obtained is pulverized with a mixer or a mill as necessary, and the desired particle size (for example, a median diameter of 0.01 to 100 ⁇ m can be stably dispersed and maintained in the perm treatment agent. It may be preferable in that it is easy to make it.
  • the addition of the raw material for doping the mesoporous silica into the system is not limited to the mode in which the raw material is dissolved in the solvent together with the surfactant in the above step 1, and the silica raw material in the step 3 is dehydrated and condensed. As long as the formation of the inorganic network composed of the siloxane bonds constituting the mesoporous silica is completed, it may be dissolved in the solution in the steps 2 and 3.
  • the present invention is a polymer containing a vinylpyrrolidone unit that is used to surface-modify the metal-doped porous silica.
  • the polymer containing a vinylpyrrolidone unit may be, for example, a copolymer of a vinylpyrrolidone unit and a unit other than vinylpyrrolidone, and specific examples thereof include a copolymer of vinylpyrrolidone and dimethylaminoethyl methacrylate, vinylpyrrolidone.
  • methylvinylimidazolinium chloride copolymer vinylpyrrolidone and dimethylaminopropylamide methacrylate copolymer, vinylpyrrolidone and quaternized imidazoline copolymer, vinylpyrrolidone and vinylcaprolactum and methylvinylimidazolium methylsulfate.
  • examples thereof include a polymer of a salt.
  • the quaternary ammonium salts of these copolymers are already used as cosmetic raw materials under the cosmetic labeling names of polyquaternium-11, polyquaternium-16, polyquaternium-28, polyquaternium-44, and polyquaternium-46, respectively. It is convenient in.
  • a copolymer of a vinylpyrrolidone unit and a unit other than vinylpyrrolidone a copolymer of vinylpyrrolidone and vinyl acetate, a copolymer of vinylpyrrolidone and eicosen, a copolymer of vinylpyrrolidone and hexadecene, and vinylpyrrolidone and styrene.
  • Copolymers, a copolymer of vinylpyrrolidone and dimethylaminoethyl methacrylate, a copolymer of vinylpyrrolidone, vinylcaprolactum and dimethylaminoethyl methacrylate and the like can also be used.
  • the polymer containing the vinylpyrrolidone unit may be polyvinylpyrrolidone.
  • Polyvinylpyrrolidone is also convenient in that it has already been used as a raw material for cosmetics.
  • the suitable molecular weight of the polymer containing the vinylpyrrolidone unit is, for example, in the range of 5000 to 5000000 depending on the type thereof. ..
  • the molecular weight thereof is preferably in the range of 100,000 to 1200,000, and in the case of polyvinylpyrrolidone, the molecular weight thereof is 40,000 to 160,000.
  • the range is suitable.
  • the suitable glass transition temperature (Tg) of the polymer containing the vinylpyrrolidone unit is, for example, in the range of 120 to 200 ° C. depending on the type thereof.
  • the method of surface-modifying the metal-doped porous silica with a polymer containing a vinylpyrrolidone unit is not particularly limited, and the metal-doped porous silica and a weight containing a vinylpyrrolidone unit are not particularly limited.
  • the coalescence may be carried out by mixing and stirring after adjusting the temperature as necessary, but a preferred method is to suspend a metal-doped porous silica in a dispersion medium.
  • a polymer containing a vinylpyrrolidone unit and balls (media) used in a ball mill are housed in a processing container (and a dispersion medium may be further stored), and the processing container containing these is placed on a ball mill stand and rotated.
  • a method of surface-treating the porous silica doped with a metal can be mentioned.
  • a metal-doped porous silica surface-modified with a polymer containing a vinylpyrrolidone unit is prepared by using a cationic polymer such as polyquaternium-10, polyquaternium-11, or amodimethicone, or a nonionic polymer. It can be easily obtained in a form contained in a slurry having excellent dispersibility with respect to a perma treatment agent containing a polymer such as polyvinylpyrrolidone.
  • the ball milling time is, for example, 1 to 50 hours, preferably 6 to 30 hours.
  • water can be used as the dispersion medium in the slurry formed by suspending the metal-doped porous silica in the dispersion medium, or as the dispersion medium which may be further contained in the treatment container.
  • the water used as the dispersion medium may contain a water-soluble organic solvent such as a polyhydric alcohol such as methanol, ethanol, diethylene glycol or glycerin, but the water content is preferably 50 wt% or more.
  • the pH of the dispersion medium is, for example, 5 to 11, preferably 6 to 9.
  • the metal doped in the porous silica may be dissolved, while when the pH of the dispersion medium is higher than 11, the porous silica may be dissolved. Further, if the pH of the dispersion medium is too acidic or too alkaline, the properties of the perm treatment agent may be adversely affected.
  • the amount of the polymer containing the metal-doped porous silica and the vinylpyrrolidone unit to be used is preferably 0.1 times or more the weight of the latter with respect to the weight of the former. If the weight of the polymer containing the vinylpyrrolidone unit is too small with respect to the weight of the metal-doped porous silica, the effect of surface-modifying the former with the latter cannot be sufficiently obtained, and the perm treatment agent. There is a risk that the dispersibility for the product will decrease. By increasing the weight of the polymer containing the vinylpyrrolidone unit to 0.5 times the weight of the metal-doped porous silica, almost all or all of the latter can be attached to the former, and the former can be attached to the latter.
  • the effect of surface modification can be sufficiently obtained with.
  • the weight of the polymer containing the vinylpyrrolidone unit exceeds 0.5 times the weight of the metal-doped porous silica, the amount of the latter, which is contained in the slurry and does not adhere to the former, increases. If the latter is already used as a raw material for cosmetics, there is no particular problem.
  • the upper limit of the weight of the polymer containing the vinylpyrrolidone unit to the weight of the metal-doped porous silica is preferably doubled.
  • a slurry containing a large amount of a polymer containing a free vinylpyrrolidone unit has a high viscosity and is difficult to handle, and addition of such a slurry to a perm treatment agent may affect the composition of the perm treatment agent. ..
  • the content of the metal-doped porous silica surface-modified with the polymer containing the vinylpyrrolidone unit in the slurry is, for example, 0.1 to 10 wt% for ease of handling of the slurry. It is preferable in such a point.
  • the balls used in the ball mill are 1 to 5 times the total weight of the metal-doped porous silica, the polymer containing the vinylpyrrolidone unit, and the dispersion medium. It is preferable to use the number.
  • the perm treatment agent containing the metal-doped porous silica surface-modified with a polymer containing a vinylpyrrolidone unit may be for straight perm treatment or for permanent wave treatment. It may be a thing. Further, the perming agent containing the metal-doped porous silica surface-modified with a polymer containing a vinylpyrrolidone unit contains a reducing agent such as systemamine, L-cysteine, and thioglycolic acid. It may be one agent, a second agent containing an oxidizing agent such as hydrogen peroxide solution or bromate, or an intermediate treatment agent or a post-treatment agent containing neither a reducing agent nor an oxidizing agent. May be.
  • the dosage form of the perm treatment agent containing the metal-doped porous silica surface-modified with a polymer containing a vinylpyrrolidone unit may be, for example, liquid or creamy. good.
  • the amount of the metal-doped porous silica surface-modified with the polymer containing the vinylpyrrolidone unit to the perm treatment agent is preferably 0.01 to 5 wt%, preferably 0.02 to 0.5 wt%. % Is more preferable. If the amount of the metal-doped porous silica surface-modified with the polymer containing the vinylpyrrolidone unit to the perming agent is too small, the metal-doped porous silica is used after the perm treatment.
  • the deodorizing effect of hair may be reduced.
  • the amount of the metal-doped porous silica surface-modified with the polymer containing the vinylpyrrolidone unit to be added to the perm treatment agent is too large, the texture of the hair after the perm treatment is deteriorated. There is a risk that it will take time and effort to wash it off.
  • the formulation of the metal-doped porous silica, which is surface-modified with a polymer containing a vinylpyrrolidone unit, into a perma treatment agent is, for example, surface-modified with a polymer containing a vinylpyrrolidone unit.
  • a slurry obtained by suspending the metal-doped porous silica in a dispersion medium may be added at any time in the step of producing the perm treatment agent.
  • porous silica doped with a metal having antibacterial and antiviral effects such as copper can be expected to exert antibacterial and antiviral effects in addition to deodorant effect. Therefore, articles that can be blended with porous silica doped with a metal such as copper, which is surface-modified with a polymer containing a vinylpyrrolidone unit, include liquids and gels for hand disinfection, laundry detergents, and laundry detergents. It may be a fabric softener for washing, a cleaner or a cleaning agent (for toilet seats, bathrooms, windows, etc.), waxes (for floors, walls, etc.), and the like.
  • porous silica doped with metals such as copper which is surface-modified with a polymer containing vinylpyrrolidone units, is a textile product, non-woven fabric product, leather product, building material, wood, paint, adhesive, plastic, etc. It can also be added to articles such as films, ceramics, paper, pulp, metal processing oils, water treatment agents, stationery, toys, containers, caps, pouring tools, spouts, etc. to impart antibacterial and antiviral properties.
  • the method of blending the porous silica doped with a metal such as copper, which is surface-modified with a polymer containing a vinylpyrrolidone unit, into such an article is a method of blending a known inorganic antibacterial agent or an inorganic antiviral agent. It may be the same.
  • Production Reference Example 1 Production of mesoporous silica doped with copper and aluminum Hexadecyltrimethylammonium chloride as a surfactant, copper chloride as a raw material for doping copper with mesoporous silica, and aluminum with mesoporous silica
  • copper chloride as a raw material for doping copper with mesoporous silica
  • Aluminum chloride as a raw material for silica was dissolved in water as a solvent, stirred at 100 ° C. for 1 hour, cooled to room temperature, and then tetraethoxysilane as a raw material for silica was further dissolved and stirred until uniform. ..
  • Hexadecyltrimethylammonium chloride as a surfactant copper chloride as a raw material for doping copper with mesoporous silica, aluminum chloride as a raw material for doping aluminum with mesoporous silica, and water as a solvent, respectively.
  • the amount used was as follows with respect to 1 mol of tetraethoxysilane as a silica raw material.
  • Hexadecyltrimethylammonium chloride 0.225 mol Copper chloride: 0.0204 mol Aluminum chloride: 0.0482 mol Water: 125 mol Further, in order to prepare a sodium hydroxide aqueous solution as a basic aqueous solution, 0.195 mol of sodium hydroxide was used with respect to 1 mol of tetraethoxysilane as a silica raw material.
  • the copper-aluminum-doped mesoporous silica obtained by the above method had a specific surface area of 1100 m 2 / g and a pore diameter of about 2.5 nm (using BELSORP MAX II type manufactured by Microtrac Bell). Measure the adsorption isotherm of nitrogen gas at the liquid nitrogen temperature by the multipoint method and calculate by BJH calculation). In addition, about 50 mg of mesoporous silica doped with copper and aluminum is accurately weighed and dissolved in 4 mL of hydrochloric acid, and then the concentration of copper and aluminum in the hydrochloric acid solution is measured by an inductively coupled plasma emission spectroscopic analyzer (Thermo Scientific).
  • the copper content was 2.09 wt%.
  • the aluminum content was 2.00 wt%.
  • the fact that the mesoporous silica was doped with copper and aluminum was confirmed by an X-ray photoelectron spectrometer (K-Alpha Surface Analysis manufactured by Thermo Scientific) and a transmission electron microscope (JEM2010 manufactured by JEOL).
  • Production Reference Example 2 Production of a slurry containing mesoporous silica doped with copper and aluminum In a 250 mL iboy PP wide-mouthed bottle, 11 g of mesoporous silica doped with copper and aluminum, 99 g of water, and 2 mm ⁇ produced in Reference Example 1 220 g of alumina balls were placed, placed on a ball mill stand at room temperature, and treated at a rotation speed of 180 rpm for 8 hours. Then, the alumina balls were removed, and the content of copper-aluminum-doped mesoporous silica having a median diameter of about 0.5 ⁇ m was removed. Obtained a slurry of 10 wt% (measurement of median diameter by laser diffraction type particle size distribution measuring device (SALD-3100 manufactured by Shimadzu Corporation) (hereinafter the same)).
  • SALD-3100 laser diffraction type particle size distribution measuring device
  • Production Example 1 Production of a slurry formed by suspending mesoporous silica doped with copper and aluminum, which is surface-modified with a polymer containing a vinylpyrrolidone unit, in a dispersion medium (Part 1).
  • a dispersion medium Part 1
  • H. C. 11 g of polymer 1N (M) (containing 20 wt% of polyquaternium-11 having a molecular weight of 500,000, Tg: 126 ° C.), 44 g of water, 220 g of 2 mm ⁇ alumina balls were placed, placed on a ball mill stand at room temperature, and rotated at 90 rpm for 24 hours.
  • alumina balls are removed, and a copper-aluminum-doped mesoporous silica (median diameter: about 0.5 ⁇ m), which is surface-modified with a polymer of vinylpyrrolidone and dimethylaminoethyl methacrylate, is uniform.
  • the content of mesoporous silica doped with copper and aluminum was 5 wt%, and the content of the polymer of vinylpyrrolidone and dimethylaminoethyl methacrylate was 2 wt%) was obtained.
  • Production Example 2 Production of a slurry formed by suspending mesoporous silica doped with copper and aluminum, which is surface-modified with a polymer containing a vinylpyrrolidone unit, in a dispersion medium (Part 2).
  • Part 2 a dispersion medium
  • 55 g of the slurry obtained in Production Reference Example 2 22 g of a 10 wt% aqueous solution of polyvinylpyrrolidone K90 (polyvinylpyrrolidone whose molecular weight and Tg are not disclosed) manufactured by Fujifilm Wako Junyaku Co., Ltd., 33 g of water, and 2 mm ⁇ .
  • Copper and aluminum-doped mesoporous silica (copper-aluminum-doped mesoporous silica) containing 220 g of alumina balls, placed on a ball mill stand at room temperature and treated at a rotation speed of 90 rpm for 24 hours, and then the alumina balls are removed and surface-modified with polyvinylpyrrolidone.
  • a slurry (content of mesoporous silica doped with copper and aluminum was 5 wt% and content of polyvinylpyrrolidone was 2 wt%) was obtained in which median diameter (median diameter: about 0.5 ⁇ m) was uniformly dispersed.
  • Production Example 3 Production of a slurry formed by suspending mesoporous silica doped with copper and aluminum, which is surface-modified with a polymer containing a vinylpyrrolidone unit, in a dispersion medium (Part 3).
  • Production Example 2 except that polyvinylpyrrolidone K30 (polyvinylpyrrolidone whose molecular weight and Tg are not disclosed) of Fujifilm Wako Junyaku Co., Ltd. is used instead of the polyvinylpyrrolidone K90 of Fujifilm Wako Junyaku Co., Ltd. used in Production Example 2.
  • a slurry (copper and aluminum-doped mesoporous silica content) in which copper and aluminum-doped mesoporous silica (median diameter: about 0.5 ⁇ m) uniformly dispersed, which is surface-modified with polyvinylpyrrolidone, is dispersed.
  • copper and aluminum-doped mesoporous silica (median diameter: about 0.5 ⁇ m) uniformly dispersed, which is surface-modified with polyvinylpyrrolidone, is dispersed.
  • Production Example 4 Production of a slurry prepared by suspending mesoporous silica doped with copper and aluminum, which is surface-modified with a polymer containing a vinylpyrrolidone unit, in a dispersion medium (Part 4).
  • the surface is surface-modified with polyvinylpyrrolidone in the same manner as in Production Example 2 except that 11 g of a 10 wt% aqueous solution of polyvinylpyrrolidone K90 from Fujifilm Wako Pure Chemical Industries, Ltd. and 44 g of water are placed in a 250 mL Iboy PP wide-mouthed bottle.
  • Copper and aluminum-doped mesoporous silica (median diameter: about 0.5 ⁇ m) uniformly dispersed slurry (copper and aluminum-doped mesoporous silica content is 5 wt%, polyvinylpyrrolidone content is 1 wt%). Obtained.
  • Production Example 5 Production of a slurry obtained by suspending mesoporous silica doped with copper and aluminum, which is surface-modified with a polymer containing a vinylpyrrolidone unit, in a dispersion medium (No. 5).
  • the surface is surface-modified with polyvinylpyrrolidone in the same manner as in Production Example 2 except that the 10 wt% aqueous solution of polyvinylpyrrolidone K90 of Fujifilm Wako Pure Chemical Industries, Ltd. is 44 g and 11 g of water in a 250 mL Iboy PP wide-mouthed bottle.
  • Copper and aluminum-doped mesoporous silica (median diameter: about 0.5 ⁇ m) uniformly dispersed slurry (copper and aluminum-doped mesoporous silica content is 5 wt%, polyvinylpyrrolidone content is 4 wt%). Obtained.
  • Production Example 6 Production of a slurry formed by suspending mesoporous silica doped with copper and aluminum, which is surface-modified with a polymer containing a vinylpyrrolidone unit, in a dispersion medium (No. 6). H. of Osaka Organic Chemical Industry Co., Ltd. used in Production Example 1. C. Instead of polymer 1N (M), H.H. C. Surface-modified with a copolymer of vinylpyrrolidone and dimethylaminoethyl methacrylate in the same manner as in Production Example 1 except that polymer 1NS (containing 20 wt% of polyquaternium-11 having a molecular weight of 500,000, Tg: 126 ° C.) is used.
  • polymer 1NS containing 20 wt% of polyquaternium-11 having a molecular weight of 500,000, Tg: 126 ° C.
  • a slurry in which copper and aluminum-doped mesoporous silica (median diameter: about 0.5 ⁇ m) is uniformly dispersed (the content of copper and aluminum-doped mesoporous silica is 5 wt%, vinylpyrrolidone and dimethylaminoethyl methacrylate). The content of the copolymer of 2 wt%) was obtained.
  • Production Example 7 Production of a slurry prepared by suspending mesoporous silica doped with copper and aluminum, which is surface-modified with a polymer containing a vinylpyrrolidone unit, in a dispersion medium (No. 7). H. of Osaka Organic Chemical Industry Co., Ltd. used in Production Example 1. C. Instead of polymer 1N (M), H.H. C. Surface-modified with a copolymer of vinylpyrrolidone and dimethylaminoethyl methacrylate in the same manner as in Production Example 1 except that 2 L of polymer (containing 20 wt% of polyquaternium-11 having a molecular weight of 200,000, Tg: 126 ° C.) is used.
  • 2 L of polymer containing 20 wt% of polyquaternium-11 having a molecular weight of 200,000, Tg: 126 ° C.
  • a slurry in which copper and aluminum-doped mesoporous silica (median diameter: about 0.5 ⁇ m) is uniformly dispersed (the content of copper and aluminum-doped mesoporous silica is 5 wt%, vinylpyrrolidone and dimethylaminoethyl methacrylate). The content of the copolymer of 2 wt%) was obtained.
  • Production Example 8 Production of a slurry prepared by suspending mesoporous silica doped with copper and aluminum, which is surface-modified with a polymer containing a vinylpyrrolidone unit, in a dispersion medium (No. 8). H. of Osaka Organic Chemical Industry Co., Ltd. used in Production Example 1. C. Instead of polymer 1N (M), H.H. C. Surface-modified with a copolymer of vinylpyrrolidone and dimethylaminoethyl methacrylate in the same manner as in Production Example 1 except that the polymer 3M (containing 20 wt% of polyquaternium-11 having a molecular weight of 300,000, Tg: 126 ° C.) is used.
  • M polymer 1N
  • C Surface-modified with a copolymer of vinylpyrrolidone and dimethylaminoethyl methacrylate in the same manner as in Production Example 1 except that the polymer 3M (containing 20 wt% of poly
  • a slurry in which copper and aluminum-doped mesoporous silica (median diameter: about 0.5 ⁇ m) is uniformly dispersed (the content of copper and aluminum-doped mesoporous silica is 5 wt%, vinylpyrrolidone and dimethylaminoethyl methacrylate). The content of the copolymer of 2 wt%) was obtained.
  • Production Example 9 Production of a slurry prepared by suspending mesoporous silica doped with copper and aluminum, which is surface-modified with a polymer containing a vinylpyrrolidone unit, in a dispersion medium (No. 9). H. of Osaka Organic Chemical Industry Co., Ltd. used in Production Example 1. C. Instead of polymer 1N (M), H.H. C. Surface-modified with a copolymer of vinylpyrrolidone and dimethylaminoethyl methacrylate in the same manner as in Production Example 1 except that polymer 5 (containing 20 wt% of polyquaternium-11 having a molecular weight of 150,000, Tg: 126 ° C.) is used.
  • polymer 5 containing 20 wt% of polyquaternium-11 having a molecular weight of 150,000, Tg: 126 ° C.
  • a slurry in which copper and aluminum-doped mesoporous silica (median diameter: about 0.5 ⁇ m) is uniformly dispersed (the content of copper and aluminum-doped mesoporous silica is 5 wt%, vinylpyrrolidone and dimethylaminoethyl methacrylate). The content of the copolymer of 2 wt%) was obtained.
  • Production Example 10 Production of a slurry obtained by suspending mesoporous silica doped with copper and aluminum, which is surface-modified with a polymer containing a vinylpyrrolidone unit, in a dispersion medium (No. 10). H. of Osaka Organic Chemical Industry Co., Ltd. used in Production Example 1. C. Instead of polymer 1N (M), H.H. C. Surface-modified with a copolymer of vinylpyrrolidone and dimethylaminoethyl methacrylate in the same manner as in Production Example 1 except that the polymer 5W (containing 20 wt% of polyquaternium-11 having a molecular weight of 300,000, Tg: 126 ° C.) is used.
  • M polymer 1N
  • C Surface-modified with a copolymer of vinylpyrrolidone and dimethylaminoethyl methacrylate in the same manner as in Production Example 1 except that the polymer 5W (containing 20 wt% of poly
  • a slurry in which copper and aluminum-doped mesoporous silica (median diameter: about 0.5 ⁇ m) is uniformly dispersed (the content of copper and aluminum-doped mesoporous silica is 5 wt%, vinylpyrrolidone and dimethylaminoethyl methacrylate). The content of the copolymer of 2 wt%) was obtained.
  • Production Example 11 Production of a slurry obtained by suspending mesoporous silica doped with copper and aluminum, which is surface-modified with a polymer containing a vinylpyrrolidone unit, in a dispersion medium (No. 11). Except for the use of BASF Japan's rubiscol K90 (polyvinylpyrrolidone having a molecular weight of 12000000, Tg: not disclosed) in place of the polyvinylpyrrolidone K90 of Fujifilm Wako Junyaku Co., Ltd. used in Production Example 2, the same as Production Example 2.
  • BASF Japan's rubiscol K90 polyvinylpyrrolidone having a molecular weight of 12000000, Tg: not disclosed
  • a slurry (copper and aluminum-doped mesoporous silica) surface-modified with polyvinylpyrrolidone and uniformly dispersed with copper and aluminum-doped mesoporous silica (median diameter: about 0.5 ⁇ m) is contained.
  • the content of polyvinylpyrrolidone was 2 wt% at 5 wt%).
  • Production Example 12 Production of a slurry obtained by suspending mesoporous silica doped with copper and aluminum, which is surface-modified with a polymer containing a vinylpyrrolidone unit, in a dispersion medium (Part 12). Except for using Creacus K-90 (polyvinylpyrrolidone having a molecular weight of 12000000, Tg: not disclosed) of Daiichi Kogyo Seiyaku Co., Ltd. instead of the polyvinylpyrrolidone K90 of Fujifilm Wako Pure Chemical Industries, Ltd. used in Production Example 2.
  • Creacus K-90 polyvinylpyrrolidone having a molecular weight of 12000000, Tg: not disclosed
  • Creacus K-90 polyvinylpyrrolidone having a molecular weight of 12000000, Tg: not disclosed
  • Creacus K-90 polyvinylpyrrolidone having a molecular weight of 12000000, Tg
  • a slurry (copper and aluminum-doped mesoporous) in which copper and aluminum-doped mesoporous silica (median diameter: about 0.5 ⁇ m), which is surface-modified with polyvinylpyrrolidone, is uniformly dispersed.
  • the silica content was 5 wt% and the polyvinylpyrrolidone content was 2 wt%).
  • Production Example 13 Production of a slurry obtained by suspending mesoporous silica doped with copper and aluminum, which is surface-modified with a polymer containing a vinylpyrrolidone unit, in a dispersion medium (No. 13).
  • Production Example 2 except that PVP K-90 (polyvinylpyrrolidone having a molecular weight of 900,000, Tg: not disclosed) of Ashland Co., Ltd. is used instead of the polyvinylpyrrolidone K90 of Fujifilm Wako Pure Chemical Industries Co., Ltd. used in Production Example 2.
  • a slurry (copper and aluminum-doped mesoporous silica content) in which copper and aluminum-doped mesoporous silica (median diameter: about 0.5 ⁇ m) uniformly dispersed, which is surface-modified with polyvinylpyrrolidone, is dispersed.
  • copper and aluminum-doped mesoporous silica (median diameter: about 0.5 ⁇ m) uniformly dispersed, which is surface-modified with polyvinylpyrrolidone, is dispersed.
  • Production Example 14 Production of a slurry obtained by suspending mesoporous silica doped with copper and aluminum, which is surface-modified with a polymer containing a vinylpyrrolidone unit, in a dispersion medium (No. 14). H. of Osaka Organic Chemical Industry Co., Ltd. used in Production Example 1. C. Production Example 1 except that an Ashland copolymer 845 (containing 20 wt% of a copolymer of vinylpyrrolidone having a molecular weight of 1,000,000 and dimethylaminoethyl methacrylate, Tg: 172 ° C.) is used instead of the polymer 1N (M).
  • Ashland copolymer 845 containing 20 wt% of a copolymer of vinylpyrrolidone having a molecular weight of 1,000,000 and dimethylaminoethyl methacrylate, Tg: 172 ° C.
  • the content of mesoporous silica doped with aluminum was 5 wt%, and the content of the copolymer of vinylpyrrolidone and dimethylaminoethyl methacrylate was 2 wt%).
  • Production Example 15 Production of a slurry made by suspending mesoporous silica doped with copper and aluminum in a dispersion medium At room temperature, 50 g of water is added to 50 g of the slurry obtained in Production Reference Example 2 to obtain copper and aluminum. A slurry in which the doped mesoporous silica (median diameter: about 0.5 ⁇ m) was uniformly dispersed (the content of the mesoporous silica doped with copper and aluminum was 5 wt%) was obtained.
  • Production Example 16 Production of a slurry obtained by suspending copper-aluminum-doped mesoporous silica surface-modified with dodecylamine in a dispersion medium A 250 mL Iboy PP wide-mouthed bottle was obtained in Production Reference Example 2. Add 50 g of slurry, 1 g of dodecylamine hydrochloride of Tokyo Kasei Kogyo Co., Ltd., and 49 g of water, shake well at room temperature, stir, and surface-modify with dodecylamine, mesoporous silica (median diameter) doped with copper and aluminum.
  • Production Example 17 Production of a slurry prepared by suspending a copper-aluminum-doped mesoporous silica surface-modified with a mixture of a high-molecular-weight block copolymer and TWEEN®-20 in a dispersion medium 250 mL Iboy PP wide-mouthed bottle, 50 g of slurry obtained in Production Reference Example 2, 0.25 g of DISPERBYK-190 (containing 40 wt% of high molecular weight block copolymer) of Big Chemie Japan, TWEEN of Fujifilm Wako Junyaku Co., Ltd.
  • Production Example 18 Production Example 2 of production of a slurry obtained by suspending mesoporous silica doped with copper and aluminum, which is surface-modified with a silicone polymer (amodimethicone) whose terminal is modified with an amino group, in a dispersion medium.
  • a silicone polymer amodimethicone
  • DOWNIL FZ-4671 containing 31.7 wt% amodimethicone
  • Dow Toray Co., Ltd. was diluted with water to prepare amodimethicone.
  • Table 1 summarizes the slurries produced in Production Examples 1 to 18.
  • Reference Example 1 Analysis of copper-aluminum-doped mesoporous silica contained in the slurry produced in Production Examples 2, 4 and 5, which is surface-modified with polyvinylpyrrolidone. Each of these was suction-filtered with a filter paper having a diameter of 70 mm, and the copper-aluminum-doped mesoporous silica surface-modified with polyvinylpyrrolidone was recovered on the filter paper. The recovered mesoporous silica surface-modified with polyvinylpyrrolidone and doped with copper and aluminum was dried at 100 ° C. for about 1 hour without washing with water, cooled, and then weighed about 8 mg and 5 ° C./min.
  • the mass change when the temperature was raised from 40 ° C. to 600 ° C. and held at 600 ° C. for 1 hour was measured using a thermal analyzer (STA7220 manufactured by Hitachi High-Tech Science Co., Ltd.). Up to 100 ° C, the water contained in the copper-aluminum-doped mesoporous silica surface-modified with polyvinylpyrrolidone evaporates, and from 100 ° C, the polyvinylpyrrolidone adhered to the copper-aluminum-doped mesoporous silica.
  • Test Example 1 Evaluation of dispersibility of polyquaternium-10 in an aqueous solution (evaluation method) 0.5 mL of each of the slurries produced in Production Examples 2 and 15 and 1.5 mL of water were added to 8 mL of a 1.25 wt% aqueous solution of Polyquaternium-10 (manufactured by Sigma Aldrich) in a glass container at room temperature. After stirring well for 10 seconds and allowing to stand for 60 minutes, visually observe the appearance of the mixed solution. If the mesoporous silica doped with copper and aluminum is stably dispersed and maintained, ⁇ , the dispersion is not maintained. If a precipitate was formed in the area, it was evaluated as x.
  • Test Example 2 Evaluation of dispersibility of polyquaternium-11 in an aqueous solution (evaluation method) 0.5 mL of each of the slurries produced in Production Examples 1 to 17 and 1.5 mL of water were added to a 1.25 wt% aqueous solution of polyquaternium-11 in a glass container (HC Polymer 1N manufactured by Osaka Organic Chemical Industry Co., Ltd.). (Prepared using (M)) Add to 8 mL, shake well for 10 seconds at room temperature, stir, and allow to stand for 60 minutes. When the dispersion was stably maintained, it was evaluated as ⁇ , and when the dispersion was not maintained and the precipitate was formed, it was evaluated as ⁇ .
  • Test Example 3 Evaluation of dispersibility of amodimethicone in an aqueous dispersion (evaluation method) Prepare 0.5 mL of each of the slurry produced in Production Examples 1 to 17 and 1.5 mL of water using a 1.25 wt% aqueous solution of amodimethicone (DOWSIL FZ-4671 manufactured by Dow Toray Co., Ltd.) in a glass container. ) In addition to 8 mL, the appearance of the mixed solution after stirring at room temperature by shaking well for 10 seconds and then allowing to stand for 60 minutes is visually observed, and the mesoporous silica doped with copper and aluminum is stably dispersed and maintained. The case was evaluated as ⁇ , and the case where the precipitate was formed without maintaining the dispersion was evaluated as ⁇ .
  • DOWSIL FZ-4671 manufactured by Dow Toray Co., Ltd.
  • Test Example 4 Evaluation of dispersibility of polyvinylpyrrolidone in an aqueous solution (evaluation method) 0.5 mL each of the slurry produced in Production Examples 2 and 15 and 1.5 mL of water were added to a 1.25% wt aqueous solution of polyvinylpyrrolidone in a glass container (prepared using BASF Japan's Rubiscol K90).
  • a glass container prepared using BASF Japan's Rubiscol K90.
  • Test Example 5 Evaluation of adsorption action on cysteamine (evaluation method) 1.8 mL of water was added to a centrifuge tube containing 0.1 mL of each of the slurries produced in Production Examples 1 to 17, and the mixture was shaken well at room temperature to form a uniform dispersion, and then the concentration was 5.86 wt%. Further, 0.1 mL of cysteamine aqueous solution was added, and the mixture was shaken well for 30 seconds, and then the centrifugation treatment was performed for 90 seconds.
  • the supernatant was taken out from the centrifuge tube, the absorbance at 235 nm was measured, and the cysteamine concentration of the supernatant was obtained from the concentration of the cysteamine aqueous solution and the calibration curve of the absorbance, and ((0.293 wt% -cysteamine concentration of the supernatant) / 0. From the formula of .293 wt%) ⁇ 100, the adsorption rate (%) for each cysteamine of the slurry produced in Production Examples 1 to 17 was calculated.
  • the absorbance was measured using a Corona Absorption Grating Microplate Reader SH-1000 manufactured by Corona Electric Co., Ltd.
  • Reference Example 2 Zeta potential of the slurry produced in Production Examples 1 to 17
  • the zeta potential, particle size, and molecular weight measurement system (ELSZ-2000ZS) of Otsuka Electronics Co., Ltd. was used for measurement.
  • the results are shown in Table 3.
  • the larger the absolute value of the zeta potential the larger the electrostatic repulsive force and the higher the dispersion stability.
  • the slurry produced in Production Example 15 is a slurry in which mesoporous silica doped with copper and aluminum is uniformly dispersed, but the absolute value of its zeta potential is 30 mV or more.
  • a slurry in which mesoporous silica doped with copper and aluminum is uniformly dispersed can be added to an aqueous solution of a cationic polymer such as polyquaternium-10, polyquaternium-11, or amodimethicone or an aqueous dispersion.
  • a cationic polymer such as polyquaternium-10, polyquaternium-11, or amodimethicone or an aqueous dispersion.
  • the negatively charged mesoporous silica doped with copper and aluminum and the cationic polymer cause charge cancellation, and as a result, they are cross-linked by adsorption, etc., and aggregate and collect.
  • the agglomeration causes precipitation.
  • the absolute value of any zeta potential is smaller than the absolute value of the zeta potential of the slurry produced in Production Example 15, and the electrostatic repulsive force is small. Nevertheless, it is considered that the high dispersion stability in the slurry is due to the repulsive force due to the high steric hindrance of the polymer containing the vinylpyrrolidone unit present on the surface of the mesoporous silica doped with copper and aluminum.
  • the dispersion stability can be maintained. It is considered to be contributing.
  • the reason why the slurry produced in Production Examples 16 and 17 cannot maintain the dispersion stability after being blended in an aqueous solution of a cationic polymer or an aqueous dispersion is that the surface modifier used contains a vinylpyrrolidone unit. It is considered that this is because it has a chemical structure that does not bring about a repulsive force due to high steric hindrance like a polymer.
  • Application Example 1 Production of a perma treatment agent containing a metal-doped porous silica surface-modified with a polymer containing a vinylpyrrolidone unit Vinylpyrrolidone and dimethylaminoethyl methacrylate obtained in Production Example 1
  • a copper- and aluminum-doped mesoporous silica-containing slurry, which is surface-modified with the above polymer, is added to a commercially available perma treatment agent (second agent) containing at least polyquaternium-11, and stirred well at room temperature.
  • a perma treatment agent having a content of 0.5 wt% in which mesoporous silica doped with copper and aluminum, which is surface-modified with a polymer of vinylpyrrolidone and dimethylaminoethyl methacrylate, is uniformly dispersed is produced.
  • mesoporous silica doped with copper and aluminum which is surface-modified with a polymer of vinylpyrrolidone and dimethylaminoethyl methacrylate, is uniformly dispersed is produced.
  • Application Example 2 Production of a shampoo agent containing a metal-doped porous silica surface-modified with a polymer containing a vinylpyrrolidone unit.
  • Surface-modified with polyvinylpyrrolidone obtained in Production Example 2.
  • Copper and aluminum, which are surface-modified with polyvinylpyrrolidone, are obtained by adding a slurry containing mesoporous silica doped with copper and aluminum to a commercially available shampoo containing at least polyquaternium-10 and stirring well at room temperature. It was possible to produce a shampoo having a content of 0.5 wt% in which the doped mesoporous silica was uniformly dispersed.
  • Application Example 3 Production of a hair treatment agent containing a metal-doped porous silica surface-modified with a polymer containing a vinylpyrrolidone unit. Surface-modified with polyvinylpyrrolidone obtained in Production Example 2. Copper and aluminum are surface-modified with polyvinylpyrrolidone by adding a slurry containing mesoporous silica doped with copper and aluminum to a commercially available hair treatment agent containing at least amodimethicone and stirring well at room temperature. It was possible to produce a hair treatment agent having a content of 0.5 wt% in which mesoporous silica doped with copper was uniformly dispersed.
  • Application Example 4 Production of a hair styling agent containing a metal-doped porous silica surface-modified with a polymer containing a vinylpyrrolidone unit.
  • Copper and aluminum are surface-modified with polyvinylpyrrolidone by adding a slurry containing mesoporous silica doped with copper and aluminum to a commercially available hair styling agent containing at least polyvinylpyrrolidone and stirring well at room temperature. It was possible to produce a hair styling agent having a content of 0.5 wt% in which mesoporous silica doped with copper was uniformly dispersed.
  • Application Example 5 Production of Toilet Seat Cleaner Containing Metal-doped Porous Silica, Surface-Modified with a Polymer Containing a Vinylpyrrolidone Unit, Surface-modified with Polyvinylpyrrolidone Obtained in Production Example 2. Copper and aluminum are surface-modified with polyvinylpyrrolidone by adding a slurry containing mesoporous silica doped with copper and aluminum to a commercially available toilet seat cleaner containing at least polyquaternium-55 and stirring well at room temperature. It was possible to produce a toilet seat cleaner having a content of 0.5 wt% in which the doped mesoporous silica was uniformly dispersed.
  • Application Example 6 Production of an alcohol hand gel containing a metal-doped porous silica surface-modified with a polymer containing a vinylpyrrolidone unit. Surface-modified with polyvinylpyrrolidone obtained in Production Example 13. Copper and aluminum are surface-modified with polyvinylpyrrolidone by adding a slurry containing mesoporous silica doped with copper and aluminum to a commercially available alcohol hand gel containing at least carbomer and stirring well at room temperature. It was possible to produce an alcohol hand gel having a content of 0.5 wt% in which the doped mesoporous silica was uniformly dispersed.
  • the present invention can be used industrially in that it can provide a metal-doped porous silica that can be blended into an article such as cosmetics exemplified as a perm treatment agent and stably dispersed and maintained. Has sex.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Dispersion Chemistry (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Cosmetics (AREA)
  • Silicon Compounds (AREA)

Abstract

本発明の課題は、パーマ処理剤に例示される化粧品などの物品に配合して安定に分散維持させることができる、金属がドープされた多孔質シリカを提供することである。その解決手段としての本発明の金属がドープされた多孔質シリカは、ビニルピロリドンユニットを含有する重合体で表面修飾されてなる。ビニルピロリドンユニットを含有する重合体の具体例としては、ビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体やポリビニルピロリドンなどが挙げられる。

Description

表面修飾されてなる、金属がドープされた多孔質シリカ
 本発明は、表面修飾されてなる、金属がドープされた多孔質シリカに関する。
 多孔質シリカは、吸着剤、調湿剤、触媒担体などとして、各種の分野で利用されていることは周知の通りである。近年、多孔質シリカの機能性を高めるための様々な試みがなされており、本発明者らも、研究成果の1つとして、銅などの金属がドープされた多孔質シリカが、硫黄含有臭気に対する優れた消臭効果を発揮することを特許文献1において報告している。
 本発明者らが特許文献1において報告した、金属がドープされた多孔質シリカは、例えば、システアミン、L-システイン、チオグリコール酸などの硫黄含有物質を還元剤として用いて行われるパーマ施術の後に、毛髪に残存する硫黄含有臭気を消臭するための素材としての利用が期待されるが、その効果を遺憾なく発揮させるためには、金属がドープされた多孔質シリカを、パーマ処理剤にいかに配合して安定に分散維持させるかが肝要である。また、金属がドープされた多孔質シリカが、配合した際に安定に分散維持する必要があることは、配合する物品がパーマ処理剤以外の物品においても同様である。
特開2020-15640号公報
 そこで本発明は、パーマ処理剤に例示される化粧品などの物品に配合して安定に分散維持させることができる、金属がドープされた多孔質シリカを提供することを目的とする。
 本発明者らは、上記の点に鑑みて鋭意検討を行った結果、パーマ処理剤に例示される化粧品などの成分として汎用されている、ポリクオタニウム-10(ヒドロキシエチルセルロースの塩化グリシジルトリメチルアンモニウムとの4級アンモニウム塩)、ポリクオタニウム-11(ビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体の硫酸ジエチルとの4級アンモニウム塩)、アモジメチコンといったカチオン性高分子や、ノニオン系高分子であるポリビニルピロリドンの、水溶液乃至水分散液に、金属がドープされた多孔質シリカをそのまま加えると、金属がドープされた多孔質シリカが安定に分散維持されずに沈殿が生成すること、この沈殿の生成は、金属がドープされた多孔質シリカを、ビニルピロリドンユニットを含有する重合体で表面修飾することによって抑制することができることを見出した。
 上記の知見に基づいてなされた本発明の金属がドープされた多孔質シリカは、請求項1記載の通り、ビニルピロリドンユニットを含有する重合体で表面修飾されてなる。
 また、請求項2記載の金属がドープされた多孔質シリカは、請求項1記載の金属がドープされた多孔質シリカにおいて、多孔質シリカにドープされる金属が、銅、アルミニウム、ジルコニウム、コバルト、マンガン、鉄からなる群から選択される少なくとも一種である。
 また、請求項3記載の金属がドープされた多孔質シリカは、請求項2記載の金属がドープされた多孔質シリカにおいて、多孔質シリカにドープされる金属が、銅および/またはアルミニウムである。
 また、請求項4記載の金属がドープされた多孔質シリカは、請求項1記載の金属がドープされた多孔質シリカにおいて、ビニルピロリドンユニットを含有する重合体が、ビニルピロリドンユニットとビニルピロリドン以外のユニットの共重合体である。
 また、請求項5記載の金属がドープされた多孔質シリカは、請求項4記載の金属がドープされた多孔質シリカにおいて、ビニルピロリドンユニットとビニルピロリドン以外のユニットの共重合体が、ビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体である。
 また、請求項6記載の金属がドープされた多孔質シリカは、請求項1記載の金属がドープされた多孔質シリカにおいて、ビニルピロリドンユニットを含有する重合体が、ポリビニルピロリドンである。
 また、本発明のビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカの製造方法は、請求項7記載の通り、金属がドープされた多孔質シリカを分散媒に懸濁させてなるスラリーを、ビニルピロリドンユニットを含有する重合体およびボールミルに用いるボール(メディア)とともに処理容器に収容し(さらに分散媒を収容してもよい)、これらを収容した処理容器をボールミル架台に載せて回転させることにより、金属がドープされた多孔質シリカを表面処理する工程を含む。
 また、本発明のスラリーは、請求項8記載の通り、ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカを、分散媒に懸濁させてなる。
 また、本発明は、請求項9記載の通り、請求項1記載のビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカの、ポリクオタニウム-10、ポリクオタニウム-11、アモジメチコン、ポリビニルピロリドンからなる群から選択される少なくとも一種を含む物品に配合することによる、物品に対する消臭のための使用である。
 本発明によれば、パーマ処理剤に例示される化粧品などの物品に配合して安定に分散維持させることができる、金属がドープされた多孔質シリカを提供することができる。
 本発明の金属がドープされた多孔質シリカは、ビニルピロリドンユニットを含有する重合体で表面修飾されてなる。
 本発明において、金属がドープされた多孔質シリカは、例えば本発明者らが特開2020-15640号公報に記載したものであってよい。ここで、「金属がドープされた多孔質シリカ」とは、多孔質シリカを構成するシロキサン結合からなる無機ネットワーク中に金属が化学結合して組み込まれている多孔質シリカを意味する。具体的には、次の通りである。
 多孔質シリカにドープされる金属としては、例えば、銅、アルミニウム、ジルコニウム、コバルト、マンガン、鉄が挙げられる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 金属がドープされた多孔質シリカ中の金属の含量(2種以上の金属を組み合わせて用いる場合はそれぞれの合計量)は、例えば0.01~10wt%、好ましくは0.1~5wt%である。金属がドープされた多孔質シリカ中の金属の含量が0.01wt%を下回ると、十分な消臭効果が得られない恐れがある一方、10wt%を超える量の金属がドープされた多孔質シリカは、製造が困難な恐れがある。2種以上の金属を組み合わせて用いる場合、金属間の含量比率は、例えば1つの金属の含量に対してその他の金属の含量が0.1~2倍であってよい。
 多孔質シリカとしては、例えば直径2~50nmの細孔(メソ孔)が規則的に配列したメソポーラスシリカが挙げられる。
 多孔質シリカの比表面積は、例えば500~2000m/gであることが、耐久性を維持することができる点において好ましい。
 金属がドープされたメソポーラスシリカの製造は、例えば特開2020-15640号公報に記載した自体公知の以下の方法に従って行うことができる。
(工程1)
 まず、界面活性剤と、金属をメソポーラスシリカにドープするための原料を、溶媒に溶解し、例えば30~200℃で0.5~10時間攪拌することで、界面活性剤にミセルを形成させる。
 界面活性剤の溶媒への溶解量は、例えば10~400mmol/L、好ましくは50~150mmol/Lである。或いは、界面活性剤の溶媒への溶解量は、後述する工程2において添加するシリカ原料1molに対し、例えば0.01~5.0mol、好ましくは0.05~1.0molである。
 界面活性剤としては、陽イオン性界面活性剤、陰イオン性界面活性剤、非イオン性界面活性剤の何れを用いてもよいが、好ましくはアルキルアンモニウム塩などの陽イオン性界面活性剤である。アルキルアンモニウム塩は、炭素数が8以上のアルキル基を有するものが好ましく、工業的な入手の容易さに鑑みると、炭素数が12~18のアルキル基を有するものがより好ましい。アルキルアンモニウム塩の具体例としては、ヘキサデシルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムブロマイド、ステアリルトリメチルアンモニウムブロマイド、セチルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、ドデシルトリメチルアンモニウムブロマイド、オクタデシルトリメチルアンモニウムブロマイド、ドデシルトリメチルアンモニウムクロライド、オクタデシルトリメチルアンモニウムクロライド、ジドデシルジメチルアンモニウムブロマイド、ジテトラデシルジメチルアンモニウムブロマイド、ジドデシルジメチルアンモニウムクロライド、ジテトラデシルジメチルアンモニウムクロライドが挙げられる。界面活性剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 金属をメソポーラスシリカにドープするための原料の溶媒への溶解量(2種以上の金属を組み合わせて用いる場合はそれぞれの原料の合計量)は、後述する工程2において添加するシリカ原料1molに対し、例えば0.001~0.5mol、好ましくは0.01~0.1molである。
 金属をメソポーラスシリカにドープするための原料としては、例えば金属の硝酸塩、硫酸塩、塩化物、オキシ塩化物を用いることができる。銅をドープする場合は硝酸銅や塩化銅を用いることが好ましい。アルミニウムをドープする場合は塩化アルミニウムを用いることが好ましい。ジルコニウムをドープする場合はオキシ塩化ジルコニウムを用いることが好ましい。コバルトをドープする場合は硝酸コバルトを用いることが好ましい。マンガンをドープする場合は塩化マンガンを用いることが好ましい。鉄をドープする場合は塩化鉄を用いることが好ましい。金属をドープするための原料は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 溶媒としては、例えば水を用いることができる。溶媒は、水と、メタノール、エタノール、ジエチレングリコールやグリセリンなどの多価アルコールをはじめとする水溶性有機溶媒の混合溶媒であってよい。
(工程2)
 次に、工程1において得た、界面活性剤がミセルを形成する溶液に、シリカ原料を例えば室温で溶解し、均一になるまで攪拌して、界面活性剤のミセルの表面にシリカ原料を集積させる。シリカ原料の溶液への溶解量は、例えば0.2~1.8mol/Lである。或いは、溶媒として水や水と水溶性有機溶媒の混合溶媒を用いる場合、水1molに対し、例えば0.001~0.05molである。
 シリカ原料は、脱水縮合することでメソポーラスシリカを構成するシロキサン結合からなる無機ネットワークを形成するものであれば特に限定されない。シリカ原料の具体例としては、テトラエトキシシラン、テトラメトキシシラン、テトラ-n-ブトキシシランなどのテトラアルコキシシランや、ケイ酸ナトリウムが挙げられる。好ましくはテトラアルコキシシランであり、より好ましくはテトラエトキシシランである。シリカ原料は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(工程3)
 次に、界面活性剤のミセルの表面に集積させたシリカ原料を脱水縮合させて、メソポーラスシリカを構成するシロキサン結合からなる無機ネットワークを形成させるとともに、無機ネットワーク中に金属を化学結合させて組み込ませる。シリカ原料の脱水縮合は、例えば、系内に塩基性水溶液を添加してpHを上げた後、室温で1時間以上攪拌することで行わせることができる。塩基性水溶液は、pHが添加直後に8~14となるように添加することが好ましく、9~11となるように添加することがより好ましい。塩基性水溶液の具体例としては、水酸化ナトリウム水溶液、炭酸ナトリウム水溶液、アンモニア水が挙げられるが、好ましくは水酸化ナトリウム水溶液である。塩基性水溶液は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、シリカ原料の脱水縮合は、系内に塩酸水溶液などの酸性水溶液を添加してpHを下げた後、攪拌することで行わせることもできる。
(工程4)
 最後に、工程3において得た、メソポーラスシリカを構成するシロキサン結合からなり、金属が化学結合して組み込まれた無機ネットワークを表面に形成させた界面活性剤のミセルを、沈殿物として濾過して回収し、例えば、30~70℃で10~48時間乾燥した後、400~600℃で1~10時間焼成することで、目的とする金属がドープされたメソポーラスシリカを得る。こうして得た金属がドープされたメソポーラスシリカは、必要に応じてミキサーやミルで粉砕し、所望する粒径(例えばメディアン径を0.01~100μmとすることがパーマ処理剤中に安定に分散維持させることが容易である点において好ましい)を有するようにしてもよい。
 なお、金属をメソポーラスシリカにドープするための原料の系内への添加は、上記の工程1において界面活性剤とともに溶媒に溶解する態様に限定されず、工程3におけるシリカ原料が脱水縮合することによるメソポーラスシリカを構成するシロキサン結合からなる無機ネットワークの形成が完結するまでであれば、工程2や工程3において溶液に溶解する態様であってもよい。
 本発明において、金属がドープされた多孔質シリカを表面修飾するために用いるのは、ビニルピロリドンユニットを含有する重合体である。ビニルピロリドンユニットを含有する重合体は、例えばビニルピロリドンユニットとビニルピロリドン以外のユニットの共重合体であってよく、その具体例としては、ビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体、ビニルピロリドンと塩化メチルビニルイミダゾリニウムの共重合体、ビニルピロリドンとメタクリル酸ジメチルアミノプロピルアミドの共重合体、ビニルピロリドンと4級化イミダゾリンの共重合体、ビニルピロリドンとビニルカプロラクタムとメチルビニルイミダゾリウムメチル硫酸塩の共重合体などが挙げられる。これらの共重合体は、その4級アンモニウム塩が、それぞれ、ポリクオタニウム-11、ポリクオタニウム-16、ポリクオタニウム-28、ポリクオタニウム-44、ポリクオタニウム-46の化粧品表示名称で、既に化粧品原料として用いられている点において都合がよい。また、ビニルピロリドンユニットとビニルピロリドン以外のユニットの共重合体として、ビニルピロリドンと酢酸ビニルの共重合体、ビニルピロリドンとエイコセンの共重合体、ビニルピロリドンとヘキサデセンの共重合体、ビニルピロリドンとスチレンの共重合体、ビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体、ビニルピロリドンとビニルカプロラクタムとメタクリル酸ジメチルアミノエチルの共重合体などを用いることもできる。これらも、既に化粧品原料として用いられている点において都合がよい。ビニルピロリドンユニットを含有する重合体は、ポリビニルピロリドンでもよい。ポリビニルピロリドンもまた、既に化粧品原料として用いられている点において都合がよい。金属がドープされた多孔質シリカへの付着性や表面修飾の容易性などに鑑みれば、ビニルピロリドンユニットを含有する重合体の好適な分子量は、その種類に応じて例えば5000~5000000の範囲である。ビニルピロリドンユニットを含有する重合体が、ビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体の場合、その分子量は100000~1200000の範囲が好適であり、ポリビニルピロリドンの場合、その分子量は40000~1600000の範囲が好適である。また、ビニルピロリドンユニットを含有する重合体の好適なガラス転移温度(Tg)は、その種類に応じて例えば120~200℃の範囲である。
 金属がドープされた多孔質シリカを、ビニルピロリドンユニットを含有する重合体で表面修飾する方法は、特段限定されるものではなく、金属がドープされた多孔質シリカと、ビニルピロリドンユニットを含有する重合体を、必要に応じて温度を調節した上で混合して攪拌することで行えばよいが、好適な方法としては、金属がドープされた多孔質シリカを分散媒に懸濁させてなるスラリーを、ビニルピロリドンユニットを含有する重合体およびボールミルに用いるボール(メディア)とともに処理容器に収容し(さらに分散媒を収容してもよい)、これらを収容した処理容器をボールミル架台に載せて回転させることにより(回転数は例えば15~500rpmの範囲で採用される)、金属がドープされた多孔質シリカを表面処理する方法が挙げられる。この方法によれば、ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカを、ポリクオタニウム-10、ポリクオタニウム-11、アモジメチコンといったカチオン性高分子や、ノニオン系高分子であるポリビニルピロリドンなどを含むパーマ処理剤に対して優れた分散性を有するスラリーに含まれる形態で、容易に得ることができる。ボールミルする時間は、例えば1~50時間、好ましくは6~30時間である。金属がドープされた多孔質シリカを分散媒に懸濁させてなるスラリーにおける分散媒や、処理容器にさらに収容してもよい分散媒としては、例えば水を用いることができる。分散媒として用いる水は、メタノール、エタノール、ジエチレングリコールやグリセリンなどの多価アルコールをはじめとする水溶性有機溶媒を含んでいてもよいが、水の含量は50wt%以上であることが好ましい。分散媒のpHは、例えば5~11、好ましくは6~9である。分散媒のpHが5を下回ると、多孔質シリカにドープされた金属が溶解する恐れがある一方、分散媒のpHが11を上回ると、多孔質シリカが溶解する恐れがある。また、分散媒のpHが酸性過ぎたりアルカリ性過ぎたりすると、パーマ処理剤の性状に悪影響を及ぼす恐れがある。
 用いる、金属がドープされた多孔質シリカと、ビニルピロリドンユニットを含有する重合体の量は、前者の重量に対して後者の重量を0.1倍以上とすることが好ましい。金属がドープされた多孔質シリカの重量に対してビニルピロリドンユニットを含有する重合体の重量が少なすぎると、前者を後者で表面修飾することの効果を十分に得ることができず、パーマ処理剤に対する分散性が低下する恐れがある。金属がドープされた多孔質シリカの重量に対するビニルピロリドンユニットを含有する重合体の重量を0.5倍までとすることで、後者のほぼ全量乃至全量を前者に付着させることができ、前者を後者で表面修飾することの効果を十分に得ることができる。金属がドープされた多孔質シリカの重量に対するビニルピロリドンユニットを含有する重合体の重量が0.5倍を超えると、スラリーに含まれる前者に付着しなかった遊離の後者の量が多くなるが、後者が既に化粧品原料として用いられているものであれば、特段の問題はない。しかしながら、金属がドープされた多孔質シリカの重量に対するビニルピロリドンユニットを含有する重合体の重量の上限は2倍とすることが好ましい。遊離のビニルピロリドンユニットを含有する重合体を多量に含むスラリーは、高粘度であって取り扱いにくいことに加え、こうしたスラリーをパーマ処理剤に添加すると、パーマ処理剤の組成に影響を及ぼす恐れがある。なお、ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカの、スラリー中の含量は、例えば0.1~10wt%とすることが、スラリーの取り扱いやすさなどの点において好ましい。ボールミルに用いるボール(例えば1~5mmφのアルミナボールやジルコニアボール)は、金属がドープされた多孔質シリカ、ビニルピロリドンユニットを含有する重合体、分散媒の合計重量の1~5倍の重量となる個数を用いることが好ましい。
 ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカを、配合するパーマ処理剤は、ストレートパーマ処理用のものであってもよいし、パーマネントウェーブ処理用のものであってもよい。また、ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカを、配合するパーマ処理剤は、システアミン、L-システイン、チオグリコール酸などの還元剤を含む第1剤であってもよいし、過酸化水素水や臭素酸塩などの酸化剤を含む第2剤であってもよいし、還元剤も酸化剤も含まない中間処理剤や後処理剤であってもよい。ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカを、配合するパーマ処理剤の剤型は、例えば液状であってもよいし、クリーム状であってもよい。ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカの、パーマ処理剤への配合量は、0.01~5wt%が好ましく、0.02~0.5wt%がより好ましい。ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカの、パーマ処理剤への配合量が少なすぎると、金属がドープされた多孔質シリカによるパーマ施術後の毛髪の消臭効果が低下する恐れがある。一方、ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカの、パーマ処理剤への配合量が多すぎると、パーマ施術後の毛髪の質感に低下を招くといった恐れや、洗い流す際に手間がかかるといった恐れがある。ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカの、パーマ処理剤への配合は、例えば、ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカを、分散媒に懸濁させてなるスラリーを、パーマ処理剤を製造する工程のいずれかの時点で加えることで行えばよい。
 なお、上記においては、ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカを配合することができる物品として、パーマ処理剤を例にとって説明したが、ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカを配合することができる物品は、各種の化粧品、例えば、スキンケア化粧品(洗浄用化粧品、整肌用化粧品、保護用化粧品、美白化粧品、紫外線防止化粧品など)、メークアップ化粧品(ベースメークアップ化粧品、ポイントメークアップ化粧品など)、ヘアケア化粧品(洗髪用化粧品、整髪剤、染毛剤、脱色剤など)、ボディケア化粧品(身体洗浄用化粧品、浴用剤など)、フレグランス化粧品の他、育毛剤や制汗剤や歯磨剤などの医薬部外品をはじめとする、金属がドープされた多孔質シリカが消臭効果を発揮し得るあらゆる物品であってよい。
 また、銅などの抗菌作用や抗ウイルス作用を有する金属がドープされた多孔質シリカは、消臭効果に加えて抗菌効果や抗ウイルス効果を発揮することが期待できる。従って、ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、銅などの金属がドープされた多孔質シリカを配合することができる物品は、手指消毒用の液剤やジェル剤、洗濯用洗剤、洗濯用柔軟剤、クリーナーや洗浄剤(便座用、浴室用、窓用など)、ワックス(床用、壁用など)などであってもよい。さらに、ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、銅などの金属がドープされた多孔質シリカは、繊維製品、不織布製品、皮革製品、建材、木材、塗料、接着剤、プラスチック、フィルム、セラミックス、紙、パルプ、金属加工油、水処理剤、文房具、玩具、容器、キャップ、注出具、スパウトなどの物品に、抗菌性や抗ウイルス性を付与するために配合することもできる。ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、銅などの金属がドープされた多孔質シリカの、こうした物品への配合方法は、公知の無機抗菌剤や無機抗ウイルス剤の配合方法と同じであってよい。
 以下、本発明を実施例によって詳細に説明するが、本発明は以下の記載に限定して解釈されるものではない。
製造参考例1:銅とアルミニウムがドープされたメソポーラスシリカの製造
 界面活性剤としてのヘキサデシルトリメチルアンモニウムクロライド、銅をメソポーラスシリカにドープするための原料としての塩化銅、アルミニウムをメソポーラスシリカにドープするための原料としての塩化アルミニウムを、溶媒としての水に溶解し、100℃で1時間攪拌した後、室温まで冷却してから、シリカ原料としてのテトラエトキシシランをさらに溶解して均一になるまで攪拌した。次いで、反応液に、塩基性水溶液としての水酸化ナトリウム水溶液を、添加直後のpHが9となるように添加し、室温で20時間攪拌した。生成した沈殿物を濾過して回収し、50℃で24時間乾燥した後、570℃で5時間焼成することで、目的とする銅とアルミニウムがドープされたメソポーラスシリカをごくわずかに青みがかった白色粉末として得た。
 なお、界面活性剤としてのヘキサデシルトリメチルアンモニウムクロライド、銅をメソポーラスシリカにドープするための原料としての塩化銅、アルミニウムをメソポーラスシリカにドープするための原料としての塩化アルミニウム、溶媒としての水のそれぞれの使用量は、シリカ原料としてのテトラエトキシシラン1molに対し、以下の通りとした。
  ヘキサデシルトリメチルアンモニウムクロライド:0.225mol
  塩化銅:0.0204mol
  塩化アルミニウム:0.0482mol
  水:125mol
 また、塩基性水溶液としての水酸化ナトリウム水溶液を調製するために、水酸化ナトリウムを、シリカ原料としてのテトラエトキシシラン1molに対し、0.195mol用いた。
 以上の方法で得た銅とアルミニウムがドープされたメソポーラスシリカは、比表面積が1100m/g、細孔の直径が約2.5nmであった(マイクロトラックベル社製BELSORP MAX II型を用いて多点法で液体窒素温度にて窒素ガスの吸着等温線を測定しBJH計算により算出)。また、銅とアルミニウムがドープされたメソポーラスシリカ約50mgを精確に量り取り、4mLの塩酸に溶解した後、塩酸溶液中の銅とアルミニウムの濃度を、誘導結合プラズマ発光分光分析装置(Thermo Scientific社製ICP-OES)を用いて測定し、測定結果に基づいて、銅とアルミニウムがドープされたメソポーラスシリカ中の銅の含量とアルミニウムの含量を算出したところ、銅の含量は2.09wt%であり、アルミニウムの含量は2.00wt%であった。メソポーラスシリカに銅とアルミニウムがドープされていることは、X線光電子分光装置(Thermo Scientific社製K-Alpha Surface Analysis)と透過型電子顕微鏡(JEOL社製JEM2010)で確認した。
製造参考例2:銅とアルミニウムがドープされたメソポーラスシリカを含むスラリーの製造
 250mLのアイボーイPP広口びんに、製造参考例1で製造した銅とアルミニウムがドープされたメソポーラスシリカ11g、水99g、2mmφのアルミナボール220gを入れ、室温で、ボールミル架台に載せて回転数180rpmで8時間処理した後、アルミナボールを除去して、メディアン径が約0.5μmの銅とアルミニウムがドープされたメソポーラスシリカの含量が10wt%のスラリーを得た(メディアン径の測定はレーザー回折式粒度分布測定装置(島津製作所社製SALD-3100)による(以下同じ))。
製造例1:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを、分散媒に懸濁させてなるスラリーの製造(その1)
 250mLのアイボーイPP広口びんに、製造参考例2で得たスラリー55g、大阪有機化学工業社のH.C.ポリマー1N(M)(分子量が500000のポリクオタニウム-11を20wt%含有、Tg:126℃)11g、水44g、2mmφのアルミナボール220gを入れ、室温で、ボールミル架台に載せて回転数90rpmで24時間処理した後、アルミナボールを除去して、ビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカ(メディアン径:約0.5μm)が均一に分散したスラリー(銅とアルミニウムがドープされたメソポーラスシリカの含量は5wt%でビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体の含量は2wt%)を得た。
製造例2:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを、分散媒に懸濁させてなるスラリーの製造(その2)
 250mLのアイボーイPP広口びんに、製造参考例2で得たスラリー55g、富士フイルム和光純薬社のポリビニルピロリドンK90(分子量とTgが非開示のポリビニルピロリドン)の10wt%水溶液22g、水33g、2mmφのアルミナボール220gを入れ、室温で、ボールミル架台に載せて回転数90rpmで24時間処理した後、アルミナボールを除去して、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカ(メディアン径:約0.5μm)が均一に分散したスラリー(銅とアルミニウムがドープされたメソポーラスシリカの含量は5wt%でポリビニルピロリドンの含量は2wt%)を得た。
製造例3:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを、分散媒に懸濁させてなるスラリーの製造(その3)
 製造例2において用いた、富士フイルム和光純薬社のポリビニルピロリドンK90のかわりに、富士フイルム和光純薬社のポリビニルピロリドンK30(分子量とTgが非開示のポリビニルピロリドン)を用いること以外は製造例2と同様にして、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカ(メディアン径:約0.5μm)が均一に分散したスラリー(銅とアルミニウムがドープされたメソポーラスシリカの含量は5wt%でポリビニルピロリドンの含量は2wt%)を得た。
製造例4:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを、分散媒に懸濁させてなるスラリーの製造(その4)
 250mLのアイボーイPP広口びんに入れる、富士フイルム和光純薬社のポリビニルピロリドンK90の10wt%水溶液を11g、水を44gとすること以外は製造例2と同様にして、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカ(メディアン径:約0.5μm)が均一に分散したスラリー(銅とアルミニウムがドープされたメソポーラスシリカの含量は5wt%でポリビニルピロリドンの含量は1wt%)を得た。
製造例5:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを、分散媒に懸濁させてなるスラリーの製造(その5)
 250mLのアイボーイPP広口びんに入れる、富士フイルム和光純薬社のポリビニルピロリドンK90の10wt%水溶液を44g、水を11gとすること以外は製造例2と同様にして、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカ(メディアン径:約0.5μm)が均一に分散したスラリー(銅とアルミニウムがドープされたメソポーラスシリカの含量は5wt%でポリビニルピロリドンの含量は4wt%)を得た。
製造例6:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを、分散媒に懸濁させてなるスラリーの製造(その6)
 製造例1において用いた、大阪有機化学工業社のH.C.ポリマー1N(M)のかわりに、大阪有機化学工業社のH.C.ポリマー1NS(分子量が500000のポリクオタニウム-11を20wt%含有、Tg:126℃)を用いること以外は製造例1と同様にして、ビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカ(メディアン径:約0.5μm)が均一に分散したスラリー(銅とアルミニウムがドープされたメソポーラスシリカの含量は5wt%でビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体の含量は2wt%)を得た。
製造例7:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを、分散媒に懸濁させてなるスラリーの製造(その7)
 製造例1において用いた、大阪有機化学工業社のH.C.ポリマー1N(M)のかわりに、大阪有機化学工業社のH.C.ポリマー2L(分子量が200000のポリクオタニウム-11を20wt%含有、Tg:126℃)を用いること以外は製造例1と同様にして、ビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカ(メディアン径:約0.5μm)が均一に分散したスラリー(銅とアルミニウムがドープされたメソポーラスシリカの含量は5wt%でビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体の含量は2wt%)を得た。
製造例8:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを、分散媒に懸濁させてなるスラリーの製造(その8)
 製造例1において用いた、大阪有機化学工業社のH.C.ポリマー1N(M)のかわりに、大阪有機化学工業社のH.C.ポリマー3M(分子量が300000のポリクオタニウム-11を20wt%含有、Tg:126℃)を用いること以外は製造例1と同様にして、ビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカ(メディアン径:約0.5μm)が均一に分散したスラリー(銅とアルミニウムがドープされたメソポーラスシリカの含量は5wt%でビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体の含量は2wt%)を得た。
製造例9:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを、分散媒に懸濁させてなるスラリーの製造(その9)
 製造例1において用いた、大阪有機化学工業社のH.C.ポリマー1N(M)のかわりに、大阪有機化学工業社のH.C.ポリマー5(分子量が150000のポリクオタニウム-11を20wt%含有、Tg:126℃)を用いること以外は製造例1と同様にして、ビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカ(メディアン径:約0.5μm)が均一に分散したスラリー(銅とアルミニウムがドープされたメソポーラスシリカの含量は5wt%でビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体の含量は2wt%)を得た。
製造例10:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを、分散媒に懸濁させてなるスラリーの製造(その10)
 製造例1において用いた、大阪有機化学工業社のH.C.ポリマー1N(M)のかわりに、大阪有機化学工業社のH.C.ポリマー5W(分子量が300000のポリクオタニウム-11を20wt%含有、Tg:126℃)を用いること以外は製造例1と同様にして、ビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカ(メディアン径:約0.5μm)が均一に分散したスラリー(銅とアルミニウムがドープされたメソポーラスシリカの含量は5wt%でビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体の含量は2wt%)を得た。
製造例11:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを、分散媒に懸濁させてなるスラリーの製造(その11)
 製造例2において用いた、富士フイルム和光純薬社のポリビニルピロリドンK90のかわりに、BASFジャパン社のルビスコールK90(分子量が1200000のポリビニルピロリドン、Tg:非開示)を用いること以外は製造例2と同様にして、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカ(メディアン径:約0.5μm)が均一に分散したスラリー(銅とアルミニウムがドープされたメソポーラスシリカの含量は5wt%でポリビニルピロリドンの含量は2wt%)を得た。
製造例12:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを、分散媒に懸濁させてなるスラリーの製造(その12)
 製造例2において用いた、富士フイルム和光純薬社のポリビニルピロリドンK90のかわりに、第一工業製薬社のクリージャスK-90(分子量が1200000のポリビニルピロリドン、Tg:非開示)を用いること以外は製造例2と同様にして、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカ(メディアン径:約0.5μm)が均一に分散したスラリー(銅とアルミニウムがドープされたメソポーラスシリカの含量は5wt%でポリビニルピロリドンの含量は2wt%)を得た。
製造例13:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを、分散媒に懸濁させてなるスラリーの製造(その13)
 製造例2において用いた、富士フイルム和光純薬社のポリビニルピロリドンK90のかわりに、アシュランド社のPVP K-90(分子量が900000のポリビニルピロリドン、Tg:非開示)を用いること以外は製造例2と同様にして、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカ(メディアン径:約0.5μm)が均一に分散したスラリー(銅とアルミニウムがドープされたメソポーラスシリカの含量は5wt%でポリビニルピロリドンの含量は2wt%)を得た。
製造例14:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを、分散媒に懸濁させてなるスラリーの製造(その14)
 製造例1において用いた、大阪有機化学工業社のH.C.ポリマー1N(M)のかわりに、アシュランド社のコポリマー845(分子量が1000000のビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体を20wt%含有、Tg:172℃)を用いること以外は製造例1と同様にして、ビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカ(メディアン径:約0.5μm)が均一に分散したスラリー(銅とアルミニウムがドープされたメソポーラスシリカの含量は5wt%でビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体の含量は2wt%)を得た。
製造例15:銅とアルミニウムがドープされたメソポーラスシリカを、分散媒に懸濁させてなるスラリーの製造
 室温で、製造参考例2で得たスラリー50gに水50gを添加して、銅とアルミニウムがドープされたメソポーラスシリカ(メディアン径:約0.5μm)が均一に分散したスラリー(銅とアルミニウムがドープされたメソポーラスシリカの含量は5wt%)を得た。
製造例16:ドデシルアミンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを、分散媒に懸濁させてなるスラリーの製造
 250mLのアイボーイPP広口びんに、製造参考例2で得たスラリー50g、東京化成工業社のドデシルアミン塩酸塩1g、水49gを入れ、室温で、よく振って攪拌して、ドデシルアミンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカ(メディアン径:約0.5μm)が均一に分散したスラリー(銅とアルミニウムがドープされたメソポーラスシリカの含量は5wt%でドデシルアミンの含量は1wt%)を得た。
製造例17:高分子量ブロック共重合物とTWEEN(登録商標)-20の混合物で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを、分散媒に懸濁させてなるスラリーの製造
 250mLのアイボーイPP広口びんに、製造参考例2で得たスラリー50g、ビックケミー・ジャパン社のDISPERBYK-190(高分子量ブロック共重合物を40wt%含有)0.25g、富士フイルム和光純薬社のTWEEN(登録商標)-20を0.25g、水49.5gを入れ、室温で、よく振って攪拌して、高分子量ブロック共重合物とTWEEN(登録商標)-20の混合物で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカ(メディアン径:約0.5μm)が均一に分散したスラリー(銅とアルミニウムがドープされたメソポーラスシリカの含量は5wt%で高分子量ブロック共重合物の含量は0.10wt%でTWEEN(登録商標)-20の含量は0.25wt%)を得た。
製造例18:末端をアミノ基で修飾したシリコーン重合体(アモジメチコン)で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを、分散媒に懸濁させてなるスラリーの製造
 製造例2において用いた、富士フイルム和光純薬社のポリビニルピロリドンK90の10wt%水溶液のかわりに、ダウ・東レ社のDOWSIL FZ-4671(アモジメチコンを31.7wt%含有)を水で希釈して調製したアモジメチコンの10wt%水溶液を用いること以外は製造例2と同様にして、アモジメチコンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカ(メディアン径:約0.5μm)が均一に分散したスラリー(銅とアルミニウムがドープされたメソポーラスシリカの含量は5wt%でアモジメチコンの含量は2wt%)を得ようとしたが、紫色のべたついた泡状の粘液がびんの内壁やアルミナボールの表面にへばり付いてしまい、得ることができなかった。この原因としては、アモジメチコンが有する複数のアミノ基が、銅とアルミニウムがドープされたメソポーラスシリカの粒子の架橋を引き起こし、凝集して集塊化したからと考えられた。
 製造例1~18で製造したスラリーを表1にまとめる。
Figure JPOXMLDOC01-appb-T000001
参考例1:製造例2,4,5で製造したスラリーに含まれる、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカの分析
 製造例2,4,5で製造したスラリーのそれぞれを、φ70mmの濾紙で吸引濾過し、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを、濾紙上に回収した。回収した、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを、水洗いすることなく100℃で1時間程度乾燥し、冷却した後、約8mgを量り取り、5℃/minの昇温速度で40℃から600℃まで昇温し、600℃で1時間保持した際の質量変化を、熱分析装置(日立ハイテクサイエンス社製STA7220)を用いて測定した。100℃までは、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカに含まれる水が蒸発し、100℃からは、銅とアルミニウムがドープされたメソポーラスシリカに付着したポリビニルピロリドンが消失すると見做し、((A-B)/A)×100(A:昇温前重量-100℃までの減少重量、B:昇温後重量)の計算式から、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカの重量におけるポリビニルピロリドンの重量の割合(実測値:%)を算出した。また、スラリーを製造するために用いた、銅とアルミニウムがドープされたメソポーラスシリカの重量とポリビニルピロリドンの重量から、両者の合計重量に対するポリビニルピロリドンの重量の割合(計算値:%)を算出した。実測値と計算値を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、製造例4と製造例2で製造したスラリーにおいては、ポリビニルピロリドンの割合が実測値と計算値でほぼ同じであることから、スラリーを製造するために用いた、銅とアルミニウムがドープされたメソポーラスシリカの重量に対するポリビニルピロリドンの重量が、少なくとも0.4倍までは、全てのポリビニルピロリドンが銅とアルミニウムがドープされたメソポーラスシリカに付着することがわかった。これに対し、製造例5で製造したスラリーにおいては、実測値が計算値よりも小さいことから、スラリーを製造するために用いた全てのポリビニルピロリドンが銅とアルミニウムがドープされたメソポーラスシリカに付着せず、遊離のポリビニルピロリドンがスラリーに含まれることがわかった。
試験例1:ポリクオタニウム-10の水溶液に対する分散性の評価
(評価方法)
 製造例2,15で製造したスラリーのそれぞれ0.5mLと、水1.5mLを、ガラス製容器に入れたポリクオタニウム-10(シグマアルドリッチ社製)の1.25wt%水溶液8mLに加え、室温で、10秒間よく振ることで攪拌してから60分間静置した後の混合液の外観を目視し、銅とアルミニウムがドープされたメソポーラスシリカが安定に分散維持されている場合は○、分散維持されずに沈殿が生成している場合は×で評価した。
(評価結果)
 結果を表3に示す。表3から明らかなように、混合液の外観の目視による評価において、製造例2で製造したスラリーを用いた場合は○、製造例15で製造したスラリーを用いた場合は×であった。よって、銅とアルミニウムがドープされたメソポーラスシリカを、ポリビニルピロリドンで表面修飾してポリクオタニウム-10の水溶液に配合すると、銅とアルミニウムがドープされたメソポーラスシリカが安定に分散維持されることがわかった。
試験例2:ポリクオタニウム-11の水溶液に対する分散性の評価
(評価方法)
 製造例1~17で製造したスラリーのそれぞれ0.5mLと、水1.5mLを、ガラス製容器に入れたポリクオタニウム-11の1.25wt%水溶液(大阪有機化学工業社のH.C.ポリマー1N(M)を用いて調製)8mLに加え、室温で、10秒間よく振ることで攪拌してから60分間静置した後の混合液の外観を目視し、銅とアルミニウムがドープされたメソポーラスシリカが安定に分散維持されている場合は○、分散維持されずに沈殿が生成している場合は×で評価した。
(評価結果)
 結果を表3に示す。表3から明らかなように、混合液の外観の目視による評価において、製造例1~14で製造したスラリーを用いた場合は全て○、製造例15~17で製造したスラリーを用いた場合は全て×であった。よって、銅とアルミニウムがドープされたメソポーラスシリカを、ビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体やポリビニルピロリドンで表面修飾してポリクオタニウム-11の水溶液に配合すると、銅とアルミニウムがドープされたメソポーラスシリカが安定に分散維持されることがわかった。
試験例3:アモジメチコンの水分散液に対する分散性の評価
(評価方法)
 製造例1~17で製造したスラリーのそれぞれ0.5mLと、水1.5mLを、ガラス製容器に入れたアモジメチコンの1.25wt%水溶液(ダウ・東レ社のDOWSIL FZ-4671を用いて調製)8mLに加え、室温で、10秒間よく振ることで攪拌してから60分間静置した後の混合液の外観を目視し、銅とアルミニウムがドープされたメソポーラスシリカが安定に分散維持されている場合は○、分散維持されずに沈殿が生成している場合は×で評価した。
(評価結果)
 結果を表3に示す。表3から明らかなように、混合液の外観の目視による評価において、製造例1~14で製造したスラリーを用いた場合は全て○、製造例15~17で製造したスラリーを用いた場合は全て×であった。よって、銅とアルミニウムがドープされたメソポーラスシリカを、ビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体やポリビニルピロリドンで表面修飾してアモジメチコンの水分散液に配合すると、銅とアルミニウムがドープされたメソポーラスシリカが安定に分散維持されることがわかった。
試験例4:ポリビニルピロリドンの水溶液に対する分散性の評価
(評価方法)
 製造例2,15で製造したスラリーのそれぞれ0.5mLと、水1.5mLを、ガラス製容器に入れたポリビニルピロリドンの1.25%wt水溶液(BASFジャパン社のルビスコールK90を用いて調製)8mLに加え、室温で、10秒間よく振ることで攪拌してから60分間静置した後の混合液の外観を目視し、銅とアルミニウムがドープされたメソポーラスシリカが安定に分散維持されている場合は○、分散維持されずに沈殿が生成している場合は×で評価した。
(評価結果)
 結果を表3に示す。表3から明らかなように、混合液の外観の目視による評価において、製造例2で製造したスラリーを用いた場合は○、製造例15で製造したスラリーを用いた場合は×であった。よって、銅とアルミニウムがドープされたメソポーラスシリカを、ポリビニルピロリドンで表面修飾してポリビニルピロリドンの水溶液に配合すると、銅とアルミニウムがドープされたメソポーラスシリカが安定に分散維持されることがわかった。
試験例5:システアミンに対する吸着作用の評価
(評価方法)
 製造例1~17で製造したスラリーのそれぞれ0.1mLを入れた遠沈管チューブに、水1.8mLを加え、室温で、よく振って均一な分散液とした後、濃度が5.86wt%のシステアミン水溶液0.1mLをさらに加え、30秒間よく振ってから、遠心分離処理を90秒間行った。その後、遠沈管チューブから上澄みを取り出してその235nmにおける吸光度を測定し、システアミン水溶液の濃度と吸光度の検量線から、上澄みのシステアミン濃度を求め、((0.293wt%-上澄みのシステアミン濃度)/0.293wt%)×100の計算式から、製造例1~17で製造したスラリーのそれぞれのシステアミンに対する吸着率(%)を算出した。なお、吸光度の測定は、コロナ電気社のコロナ吸光グレーティングマイクロプレートリーダSH-1000を用いて行った。
(評価結果)
 結果を表3に示す。表3から明らかなように、製造例1~17で製造したスラリーのいずれもが、システアミンに対する高い吸着率を有しており、銅とアルミニウムがドープされたメソポーラスシリカを、表面修飾剤で表面修飾したことによるシステアミンに対する吸着率の低下は認められなかった。
参考例2:製造例1~17で製造したスラリーのゼータ電位
 大塚電子社のゼータ電位・粒径・分子量測定システム(ELSZ-2000ZS)で測定した。結果を表3に示す。一般に、ゼータ電位の絶対値が大きいほど静電反発力が大きく分散安定性が高い。事実、製造例15で製造したスラリーは、銅とアルミニウムがドープされたメソポーラスシリカが均一に分散したスラリーであるが、そのゼータ電位の絶対値は30mV以上である。しかしながら、こうして銅とアルミニウムがドープされたメソポーラスシリカが均一に分散したスラリーであっても、ポリクオタニウム-10、ポリクオタニウム-11、アモジメチコンといったカチオン性高分子の水溶液や水分散液に配合されると、負の電荷を帯びている銅とアルミニウムがドープされたメソポーラスシリカと、カチオン性高分子の間で、電荷の打ち消し合いが起こり、その結果、両者が吸着することなどによって架橋され、凝集して集塊化することで沈殿が生じる。これに対し、製造例1~14で製造したスラリーは、いずれのゼータ電位の絶対値も、製造例15で製造したスラリーのゼータ電位の絶対値に比較して小さく、静電反発力が小さいにもかかわらず、スラリー中で分散安定性が高いのは、銅とアルミニウムがドープされたメソポーラスシリカの表面に存在するビニルピロリドンユニットを含有する重合体が有する高い立体障害性による反発力に起因すると考えられ、この反発力が、カチオン性高分子の水溶液や水分散液に配合された後においても、カチオン性高分子と凝集して集塊化することを阻害することで、分散安定性の維持に寄与していると考えられる。製造例16,17で製造したスラリーが、カチオン性高分子の水溶液や水分散液に配合された後に分散安定性を維持することができないのは、用いた表面修飾剤が、ビニルピロリドンユニットを含有する重合体のように高い立体障害性による反発力をもたらさない化学構造であるからと考えられる。製造例15で製造したスラリーを、ノニオン系高分子であるポリビニルピロリドンの水溶液に配合すると、沈殿が生じる理由は、上記のような電荷の打ち消し合いによるのではないと考えられ、必ずしも明確ではない。しかしながら、製造例2で製造したスラリーを配合すると沈殿が生じないのは、やはり、銅とアルミニウムがドープされたメソポーラスシリカの表面に存在するポリビニルピロリドンが有する高い立体障害性による反発力に起因すると考えられる。
Figure JPOXMLDOC01-appb-T000003
応用例1:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカを配合したパーマ処理剤の製造
 製造例1で得た、ビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを含むスラリーを、市販のポリクオタニウム-11を少なくとも含むパーマ処理剤(第2剤)に添加し、室温で、よく攪拌することで、ビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体で表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカが均一に分散したその含量が0.5wt%のパーマ処理剤を製造することができた。
応用例2:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカを配合したシャンプー剤の製造
 製造例2で得た、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを含むスラリーを、市販のポリクオタニウム-10を少なくとも含むシャンプー剤に添加し、室温で、よく攪拌することで、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカが均一に分散したその含量が0.5wt%のシャンプー剤を製造することができた。
応用例3:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカを配合したヘアトリートメント剤の製造
 製造例2で得た、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを含むスラリーを、市販のアモジメチコンを少なくとも含むヘアトリートメント剤に添加し、室温で、よく攪拌することで、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカが均一に分散したその含量が0.5wt%のヘアトリートメント剤を製造することができた。
応用例4:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカを配合したヘアスタイリング剤の製造
 製造例2で得た、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを含むスラリーを、市販のポリビニルピロリドンを少なくとも含むヘアスタイリング剤に添加し、室温で、よく攪拌することで、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカが均一に分散したその含量が0.5wt%のヘアスタイリング剤を製造することができた。
応用例5:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカを配合した便座クリーナーの製造
 製造例2で得た、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを含むスラリーを、市販のポリクオタニウム-55を少なくとも含む便座クリーナーに添加し、室温で、よく攪拌することで、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカが均一に分散したその含量が0.5wt%の便座クリーナーを製造することができた。
応用例6:ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカを配合したアルコールハンドジェルの製造
 製造例13で得た、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカを含むスラリーを、市販のカルボマーを少なくとも含むアルコールハンドジェルに添加し、室温で、よく攪拌することで、ポリビニルピロリドンで表面修飾されてなる、銅とアルミニウムがドープされたメソポーラスシリカが均一に分散したその含量が0.5wt%のアルコールハンドジェルを製造することができた。
 本発明は、パーマ処理剤に例示される化粧品などの物品に配合して安定に分散維持させることができる、金属がドープされた多孔質シリカを提供することができる点において、産業上の利用可能性を有する。

Claims (9)

  1.  ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカ。
  2.  多孔質シリカにドープされる金属が、銅、アルミニウム、ジルコニウム、コバルト、マンガン、鉄からなる群から選択される少なくとも一種である、請求項1記載の金属がドープされた多孔質シリカ。
  3.  多孔質シリカにドープされる金属が、銅および/またはアルミニウムである、請求項2記載の金属がドープされた多孔質シリカ。
  4.  ビニルピロリドンユニットを含有する重合体が、ビニルピロリドンユニットとビニルピロリドン以外のユニットの共重合体である、請求項1記載の金属がドープされた多孔質シリカ。
  5.  ビニルピロリドンユニットとビニルピロリドン以外のユニットの共重合体が、ビニルピロリドンとメタクリル酸ジメチルアミノエチルの共重合体である、請求項4記載の金属がドープされた多孔質シリカ。
  6.  ビニルピロリドンユニットを含有する重合体が、ポリビニルピロリドンである、請求項1記載の金属がドープされた多孔質シリカ。
  7.  金属がドープされた多孔質シリカを分散媒に懸濁させてなるスラリーを、ビニルピロリドンユニットを含有する重合体およびボールミルに用いるボール(メディア)とともに処理容器に収容し(さらに分散媒を収容してもよい)、これらを収容した処理容器をボールミル架台に載せて回転させることにより、金属がドープされた多孔質シリカを表面処理する工程を含む、ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカの製造方法。
  8.  ビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカを、分散媒に懸濁させてなるスラリー。
  9.  請求項1記載のビニルピロリドンユニットを含有する重合体で表面修飾されてなる、金属がドープされた多孔質シリカの、ポリクオタニウム-10、ポリクオタニウム-11、アモジメチコン、ポリビニルピロリドンからなる群から選択される少なくとも一種を含む物品に配合することによる、物品に対する消臭のための使用。
PCT/JP2021/045186 2020-12-09 2021-12-08 表面修飾されてなる、金属がドープされた多孔質シリカ WO2022124347A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180083230.7A CN116547239A (zh) 2020-12-09 2021-12-08 经过表面改性的金属掺杂多孔二氧化硅
JP2022568317A JPWO2022124347A1 (ja) 2020-12-09 2021-12-08
KR1020237020402A KR20230107671A (ko) 2020-12-09 2021-12-08 표면 수식되어 이루어진, 금속이 도프된 다공질 실리카
EP21903446.9A EP4261188A1 (en) 2020-12-09 2021-12-08 Surface-modified and metal-doped porous silica
US18/265,184 US20240018007A1 (en) 2020-12-09 2021-12-08 Surface-modified and metal-doped porous silica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-204555 2020-12-09
JP2020204555 2020-12-09

Publications (1)

Publication Number Publication Date
WO2022124347A1 true WO2022124347A1 (ja) 2022-06-16

Family

ID=81973349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045186 WO2022124347A1 (ja) 2020-12-09 2021-12-08 表面修飾されてなる、金属がドープされた多孔質シリカ

Country Status (6)

Country Link
US (1) US20240018007A1 (ja)
EP (1) EP4261188A1 (ja)
JP (1) JPWO2022124347A1 (ja)
KR (1) KR20230107671A (ja)
CN (1) CN116547239A (ja)
WO (1) WO2022124347A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367694A (en) * 1976-11-29 1978-06-16 Japan Atom Energy Res Inst Surface modifying method for inorganic porous material
JP2000514052A (ja) * 1996-07-01 2000-10-24 ハンス・シュヴァルツコプフ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディットゲゼルシャフト ケラチン繊維を処理するためのヒドロゲル形成剤および配合物の使用
JP2005281644A (ja) * 2004-03-31 2005-10-13 Catalysts & Chem Ind Co Ltd 樹脂添加剤、その製造方法および熱可塑性樹脂フィルム
JP2009544605A (ja) * 2006-07-21 2009-12-17 ザ プロクター アンド ギャンブル カンパニー パーマネント整髪用方法及び組成物
JP2014518914A (ja) * 2011-05-11 2014-08-07 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ 自己分散性ナノ粒子
JP2020015640A (ja) 2018-07-25 2020-01-30 東洋製罐グループホールディングス株式会社 多孔質シリカ、消臭剤、及び消臭剤の製造方法
JP2020014656A (ja) * 2018-07-25 2020-01-30 東洋製罐グループホールディングス株式会社 パーマ処理毛髪用消臭剤組成物、消臭剤組成物の製造方法、及び毛髪の消臭方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367694A (en) * 1976-11-29 1978-06-16 Japan Atom Energy Res Inst Surface modifying method for inorganic porous material
JP2000514052A (ja) * 1996-07-01 2000-10-24 ハンス・シュヴァルツコプフ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディットゲゼルシャフト ケラチン繊維を処理するためのヒドロゲル形成剤および配合物の使用
JP2005281644A (ja) * 2004-03-31 2005-10-13 Catalysts & Chem Ind Co Ltd 樹脂添加剤、その製造方法および熱可塑性樹脂フィルム
JP2009544605A (ja) * 2006-07-21 2009-12-17 ザ プロクター アンド ギャンブル カンパニー パーマネント整髪用方法及び組成物
JP2014518914A (ja) * 2011-05-11 2014-08-07 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ 自己分散性ナノ粒子
JP2020015640A (ja) 2018-07-25 2020-01-30 東洋製罐グループホールディングス株式会社 多孔質シリカ、消臭剤、及び消臭剤の製造方法
JP2020014656A (ja) * 2018-07-25 2020-01-30 東洋製罐グループホールディングス株式会社 パーマ処理毛髪用消臭剤組成物、消臭剤組成物の製造方法、及び毛髪の消臭方法

Also Published As

Publication number Publication date
KR20230107671A (ko) 2023-07-17
EP4261188A1 (en) 2023-10-18
US20240018007A1 (en) 2024-01-18
JPWO2022124347A1 (ja) 2022-06-16
CN116547239A (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
JP6659019B2 (ja) マイクロカプセル及びその製造方法
CA2152532A1 (en) Process for the preparation of organophilic metal oxide particles
JP6966861B2 (ja) 顔料混合物
JP2005523315A (ja) パーソナルケア製品のためのポリマー性臭気吸収成分
JP2007217201A (ja) 多孔質マグネシアとその製造方法
US20180289600A1 (en) Silicon oxide-coated zinc oxide and method for preparing same, composition containing silicon oxide-coated zinc oxide, and cosmetic material
WO2022124347A1 (ja) 表面修飾されてなる、金属がドープされた多孔質シリカ
JP2020014656A (ja) パーマ処理毛髪用消臭剤組成物、消臭剤組成物の製造方法、及び毛髪の消臭方法
WO2018025610A1 (ja) 酸化亜鉛含有複合粒子、紫外線遮蔽用組成物、及び化粧料
JP5908846B2 (ja) 所望の程度の隠蔽性を有する膜を形成するための組成物、並びにそれを製造及び使用する方法
JP5592644B2 (ja) 複合シリカ粒子
EP3981381A1 (en) Particle-containing composition
KR101578466B1 (ko) 나노크기를 가지는 구상의 다공성 산화아연 분체, 그의 제조방법 및 그를 함유한 색조화장료 조성물
WO2021132728A1 (ja) マイクロカプセルの製造方法
JP2022017506A (ja) 隠蔽膜を形成するための組成物並びにそれを製造及び使用する方法
JP5419338B2 (ja) 着色アルミナ・シリカ粒子、その製造方法および該粒子を配合してなる化粧料
WO2013161553A1 (ja) 表面修飾無機酸化物微粒子、及び該微粒子を含有するサンスクリーン化粧料
JP2022091736A (ja) 毛髪処理剤
WO2020246557A1 (ja) 大気有害物質の付着抑制方法
WO2014123111A1 (ja) 表面修飾無機酸化物微粒子の製造方法
JP2023180156A (ja) 抗ウイルス性エアゾール組成物、塗膜、および、物品
JP2020200249A (ja) 大気有害物質付着抑制剤
JP2013515774A5 (ja)
JP2014201527A (ja) 表面修飾無機酸化物微粒子分散組成物、及び水系化粧料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022568317

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18265184

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180083230.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237020402

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021903446

Country of ref document: EP

Effective date: 20230710