WO2022118610A1 - 負極及び亜鉛二次電池 - Google Patents
負極及び亜鉛二次電池 Download PDFInfo
- Publication number
- WO2022118610A1 WO2022118610A1 PCT/JP2021/040993 JP2021040993W WO2022118610A1 WO 2022118610 A1 WO2022118610 A1 WO 2022118610A1 JP 2021040993 W JP2021040993 W JP 2021040993W WO 2022118610 A1 WO2022118610 A1 WO 2022118610A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- secondary battery
- particles
- absorbing polymer
- weight
- Prior art date
Links
- 239000011701 zinc Substances 0.000 title claims abstract description 77
- 229910052725 zinc Inorganic materials 0.000 title claims abstract description 45
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 229920000642 polymer Polymers 0.000 claims abstract description 68
- 239000002245 particle Substances 0.000 claims abstract description 66
- 239000007773 negative electrode material Substances 0.000 claims abstract description 18
- 239000007787 solid Substances 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 27
- 229920005989 resin Polymers 0.000 claims description 17
- 239000011347 resin Substances 0.000 claims description 17
- -1 hydroxide ions Chemical class 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 12
- 239000002250 absorbent Substances 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 7
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 7
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 claims description 6
- 229920000233 poly(alkylene oxides) Polymers 0.000 claims description 6
- 229910052797 bismuth Inorganic materials 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 4
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 4
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 claims description 3
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 claims description 3
- OSOVKCSKTAIGGF-UHFFFAOYSA-N [Ni].OOO Chemical compound [Ni].OOO OSOVKCSKTAIGGF-UHFFFAOYSA-N 0.000 claims description 2
- 239000003792 electrolyte Substances 0.000 claims description 2
- 229910000483 nickel oxide hydroxide Inorganic materials 0.000 claims description 2
- 229920002554 vinyl polymer Polymers 0.000 claims 1
- 238000007599 discharging Methods 0.000 abstract description 11
- 230000006866 deterioration Effects 0.000 abstract description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 44
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 30
- 238000006243 chemical reaction Methods 0.000 description 21
- 239000011787 zinc oxide Substances 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 210000004027 cell Anatomy 0.000 description 12
- 239000008151 electrolyte solution Substances 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 description 6
- 210000001787 dendrite Anatomy 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000004660 morphological change Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000011149 active material Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 239000004584 polyacrylic acid Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 125000001033 ether group Chemical group 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 208000035404 Autolysis Diseases 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010057248 Cell death Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- DUCFBDUJLLKKPR-UHFFFAOYSA-N [O--].[Zn++].[Ag+] Chemical compound [O--].[Zn++].[Ag+] DUCFBDUJLLKKPR-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 229920005614 potassium polyacrylate Polymers 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 230000028043 self proteolysis Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 description 1
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 1
- 229940007718 zinc hydroxide Drugs 0.000 description 1
- SZKTYYIADWRVSA-UHFFFAOYSA-N zinc manganese(2+) oxygen(2-) Chemical compound [O--].[O--].[Mn++].[Zn++] SZKTYYIADWRVSA-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/244—Zinc electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
- H01M10/26—Selection of materials as electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
- H01M10/28—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
- H01M10/30—Nickel accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/08—Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/32—Nickel oxide or hydroxide electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
- H01M50/434—Ceramics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/451—Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0002—Aqueous electrolytes
- H01M2300/0014—Alkaline electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a negative electrode and a zinc secondary battery.
- Patent Document 1 International Publication No. 2013/118561 discloses that an LDH separator is provided between a positive electrode and a negative electrode in a nickel-zinc secondary battery.
- Patent Document 2 International Publication No. 2016/076047 discloses a separator structure including an LDH separator fitted or bonded to a resin outer frame, and the LDH separator is gas impermeable and has a gas impermeable property. / Or it is disclosed that it has a high degree of density enough to have water impermeableness.
- Patent Document 3 International Publication No. 2016/067884 discloses various methods for forming an LDH dense film on the surface of a porous substrate to obtain a composite material.
- a starting material that can give a starting point for LDH crystal growth is uniformly adhered to the porous base material, and the porous base material is subjected to hydrothermal treatment in an aqueous raw material solution to form an LDH dense film on the surface of the porous base material. It includes a step of forming the water.
- Patent Document 4 International Publication No. 2020/049902 describes ZnO particles, (i) metal Zn particles having a predetermined particle size, (ii) a predetermined metal element, and (iii) a hydroxyl group.
- Patent Document 5 Japanese Patent No. 6190101 describes negative electrode active materials such as metals Zn and ZnO, polymers such as aromatic group-containing polymers, ether group-containing polymers and hydroxyl group-containing polymers, and B, Ba and Bi. , Br, Ca, Cd, Ce, Cl, F, Ga, Hg, In, La, Mn and the like, the negative electrode mixture is disclosed, and the shape of the electrode active material is disclosed. It is described that it is suitable for forming a storage battery that exhibits battery performance such as high cycle characteristics, rate characteristics, and Coulomb efficiency while suppressing morphological changes, dissolution, corrosion, and immobility formation of electrode active materials such as change and dendrite. There is.
- the present inventors suppress deterioration of the negative electrode due to repeated charging and discharging in a zinc secondary battery. It was found that the durability can be improved and the cycle life can be extended.
- an object of the present invention is to provide a negative electrode capable of suppressing deterioration of the negative electrode due to repeated charging and discharging to improve durability and thereby prolonging the cycle life.
- it is a negative electrode used in a zinc secondary battery.
- ZnO particles and negative electrode active materials containing Zn particles, Nonionic water-absorbing polymer and
- the content of the ZnO particles is 100 parts by weight, a negative electrode containing 0.01 to 6.0 parts by weight of the nonionic water-absorbing polymer as a solid content is provided.
- Example 1 Comparative Example
- Example 5 In the evaluation cell of Example 5 containing a nonionic water-absorbing polymer, it is an image obtained by observing a cross section of a negative electrode in a discharge end state in which the capacity retention rate has deteriorated to 50% by repeating a charge / discharge cycle by SEM.
- Example 1 Comparative Example
- Example 1 Comparative Example
- the cross section of the negative electrode in the discharge end state deteriorated to a capacity retention rate of 45% by repeating the charge / discharge cycle is observed by SEM.
- the negative electrode of the present invention is a negative electrode used in a zinc secondary battery.
- the negative electrode contains a negative electrode active material and a nonionic water-absorbing polymer.
- the negative electrode active material includes ZnO particles and Zn particles.
- this negative electrode contains 0.01 to 6.0 parts by weight of a nonionic water-absorbing polymer in terms of solid content when the content of ZnO particles is 100 parts by weight.
- the negative electrode changes its shape, increasing resistance due to blockage of pores, decreasing charging active material due to accumulation of isolated zinc, etc. As a result, there is a problem that charging / discharging becomes difficult.
- Such a problem can be effectively suppressed or solved by adding a nonionic water-absorbing polymer to the negative electrode.
- the mechanism is not clear, but it is considered that the nonionic water-absorbing polymer has a property that the liquid-absorbing property changes according to the fluctuation of pH. For example, it is presumed that the nonionic water-absorbing polymer has the property that the water-absorbing ability decreases as the pH increases and water is released, so that the following phenomena occur.
- FIGS. 1A and 1B The microscopic structure of the negative electrode 10 is conceptually shown in FIGS. 1A and 1B.
- the negative electrode 10 is drawn in a state of being immersed in the electrolytic solution 18 including the negative electrode active material 12 provided on the current collector 16 and the nonionic water-absorbing polymer 14 covering the negative electrode active material 12.
- the reaction at the negative electrode 10 proceeds based on ZnO + H 2 O + 2e ⁇ ⁇ Zn + 2OH ⁇ , but as OH ⁇ increases, that is, the pH rises, nonionic water absorption occurs.
- the liquid absorption capacity of the polymer 14 is reduced, and the retained water is released to the negative electrode active material 12 to assist the charging reaction.
- the nonionic water-absorbing polymer 14 conveniently supplies water to the charging reaction in which water is consumed, so that the charging reaction is continued.
- the discharge reaction as shown in FIG. 1B, the reaction proceeds based on Zn + 2OH ⁇ ⁇ ZnO + H 2 O + 2e ⁇ , but as the OH ⁇ decreases, that is, the pH decreases, the nonionic water-absorbing polymer 14 absorbs the water-absorbing polymer 14. The liquid capacity is increased, and the discharge reaction is assisted by absorbing the water generated by the negative electrode active material 12. That is, the nonionic water-absorbing polymer 14 conveniently absorbs water with respect to the discharge reaction in which water is generated, so that the discharge reaction is continued.
- the nonionic water-absorbing polymer 14 absorbs or releases water due to the pH fluctuation during the charge / discharge reaction, so that the reaction inside the negative electrode 10 continues and becomes uniform, and as a result, the negative electrode 10 accompanying repeated charge / discharge reactions. It is considered that the deterioration of the battery is suppressed and the durability is improved, thereby extending the cycle life.
- the reaction inside the negative electrode 10 cannot be continued, the battery reaction will proceed intensively only in the place where the electrolytic solution 18 is abundant (for example, only in the vicinity thereof when the non-woven fabric is provided), and the negative electrode active material. It is considered that 12 is used unevenly, which causes a decrease in capacity.
- the above-mentioned advantageous effect according to the present invention is a peculiar effect due to the selection of the nonionic water-absorbing polymer 14.
- an ionic absorbent polymer for example, polyacrylic acid or potassium polyacrylate
- the above-mentioned effects cannot be obtained, but rather the cycle characteristics are deteriorated.
- the negative electrode active material 12 contains Zn particles and ZnO particles.
- the Zn particles are typically metallic Zn particles, but particles of a Zn alloy or a Zn compound may be used.
- metal Zn particles metal Zn particles generally used for zinc secondary batteries can be used, but it is more preferable to use metal Zn particles smaller than the metal Zn particles from the viewpoint of prolonging the cycle life of the battery.
- the average particle size D50 of the metal Zn particles is preferably 5 to 200 ⁇ m, more preferably 50 to 200 ⁇ m, and further preferably 70 to 160 ⁇ m.
- the preferable content of Zn particles in the negative electrode 10 is preferably 1.0 to 87.5 parts by weight, more preferably 3.0 to 70.0, when the content of ZnO particles is 100 parts by weight.
- the ZnO particles are not particularly limited as long as they use commercially available zinc oxide powder used in a zinc secondary battery or zinc oxide powder obtained by using them as a starting material and growing the particles by a solid phase reaction or the like.
- the average particle size D50 of the ZnO particles is preferably 0.1 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m, and even more preferably 0.1 to 5 ⁇ m. In the present specification, the average particle size D50 means a particle size in which the integrated volume from the small particle size side becomes 50% in the particle size distribution obtained by the laser diffraction / scattering method.
- the negative electrode 10 preferably further contains one or more metal elements selected from In and Bi. These metal elements can suppress the generation of undesired hydrogen gas due to the self-discharge of the negative electrode 10. These metal elements may be contained in the negative electrode 10 in any form such as metals, oxides, hydroxides, and other compounds, but are preferably contained in the form of oxides or hydroxides, more preferably. Is included in the form of oxide particles. Examples of the oxide of the metal element include In 2 O 3 and Bi 2 O 3 . Examples of the hydroxide of the metal element include In (OH) 3 , Bi (OH) 3 , and the like.
- the content of ZnO particles is 100 parts by weight
- the content of In is 0 to 2 parts by weight in terms of oxide
- the content of Bi is 0 to 6 in terms of oxide. It is preferably parts by weight, more preferably In content is 0 to 1.5 parts by weight in terms of oxide, and Bi content is 0 to 4.5 parts by weight in terms of oxide. ..
- In and / or Bi are contained in the negative electrode 10 in the form of an oxide or hydroxide, it is not necessary that all of In and / or Bi are in the form of an oxide or hydroxide, and some of them are metal. Alternatively, it may be contained in the negative electrode in another form such as another compound.
- the metal element may be doped in the metal Zn particles as a trace element.
- the In concentration in the metal Zn particles is preferably 50 to 2000 wt ppm, more preferably 200 to 1500 ppm by weight
- the Bi concentration in the metal Zn particles is preferably 50 to 2000 ppm by weight, more preferably 100 to 1300 wt ppm. Weight ppm.
- the nonionic water-absorbing polymer 14 can be any commercially available nonionic water-absorbing polymer, but as described above, it is preferable that the nonionic water-absorbing polymer has a property that the liquid-absorbing property changes according to the fluctuation of pH.
- FIG. 2 shows an example of the relationship between the amount of water absorbed and the amount of KOH collected per 1 cm3 of such a nonionic water-absorbing polymer and the KOH concentration. As shown in FIG. 2, the amount of water absorbed changes due to a change in the KOH concentration (that is, a change in pH) in the electrolytic solution, but the amount of KOH collected does not change significantly, but only water due to the pH change. It is preferable in that it can absorb or release.
- nonionic water-absorbent polymer 14 examples include polyalkylene oxide-based water-absorbent resin, polyvinylacetamide-based water-absorbent resin, polyvinyl alcohol (PVA resin), and polyvinyl butyral (PVB resin), and more preferably. It is a polyalkylene oxide-based water-absorbent resin. As the polyalkylene oxide-based water-absorbent resin, commercially available ones can be used.
- the nonionic water-absorbing polymer may contain at least one selected from hydrophilic ether groups, hydroxyl groups, amide groups, and acetamide groups.
- the nonionic water-absorbing polymer may exist as particles in the negative electrode or may cover the active material.
- a method of adding the nonionic water-absorbing polymer in a slurry form or a method of heating and melting the nonionic water-absorbing polymer at the time of production can be considered.
- the melting point of the nonionic water-absorbing polymer is preferably 45 ° C. to 350 ° C., more preferably 45 ° C. to 200 ° C., and even more preferably 50 ° C. to 100 ° C.
- the content of the nonionic water-absorbing polymer 14 in the negative electrode 10 is preferably 0.01 to 6.0 parts by weight, more preferably 0, when the content of ZnO particles is 100 parts by weight. It is 01 to 5.5 parts by weight, more preferably 0.05 to 5.0 parts by weight, and particularly preferably 0.07 to 4.0 parts by weight. Further, the nonionic water-absorbing polymer 14 is preferably in the form of particles. In this case, the particle size of the nonionic water-absorbing polymer 14 is preferably 10 to 200 ⁇ m, more preferably 15 to 180 ⁇ m, still more preferably 20 to 160 ⁇ m, and particularly preferably 30 to 150 ⁇ m. It is not necessary that all the particles of the nonionic water-absorbing polymer 14 are within the above numerical range, and the average particle size D50 may be within the above numerical range.
- the negative electrode 10 may further contain a conductive auxiliary agent.
- conductive auxiliaries include carbon, metal powders (tin, lead, copper, cobalt, etc.), and precious metal pastes.
- the negative electrode 10 may further contain a binder resin (not shown).
- a binder resin (not shown).
- Various known binders can be used as the binder resin, and preferred examples thereof include polyvinyl alcohol (PVA) and polytetrafluoroethylene (PTFE). It is particularly preferable to use both PVA and PTFE in combination as a binder.
- the negative electrode 10 is preferably a sheet-shaped press-molded body. By doing so, it is possible to prevent the negative electrode active material 12 from falling off and improve the electrode density, and it is possible to more effectively suppress the morphological change of the negative electrode 10.
- a binder may be added to the negative electrode material and kneaded, and the obtained kneaded product may be press-molded by a roll press or the like to form a sheet.
- the negative electrode 10 is provided with a current collector 16.
- Preferred examples of the current collector 16 include copper punching metal and copper expanded metal.
- a mixture containing Zn particles, ZnO particles, solder, and optionally a binder resin (for example, polytetrafluoroethylene particles) is applied onto a copper punching metal or a copper expanded metal to apply a negative electrode 10 / current collector 16.
- a negative electrode plate made of the above can be preferably manufactured. At that time, it is also preferable to press the negative electrode plate (that is, the negative electrode 10 / current collector 16) after drying to prevent the negative electrode active material 12 from falling off and to improve the electrode density.
- the sheet-shaped press-molded body as described above may be pressure-bonded to the current collector 16 such as copper expanded metal.
- the negative electrode 10 of the present invention is preferably applied to a zinc secondary battery. Therefore, according to a preferred embodiment of the present invention, a zinc rechargeable battery including a positive electrode (not shown), a negative electrode 10, a separator for separating the positive electrode and the negative electrode 10 so as to be conductive with hydroxide ions, and an electrolytic solution 18. The next battery is provided.
- the zinc secondary battery of the present invention is not particularly limited as long as it is a secondary battery using the above-mentioned negative electrode 10 and using an electrolytic solution 18 (typically an alkali metal hydroxide aqueous solution).
- the positive electrode contains nickel hydroxide and / or nickel oxyhydroxide, whereby the zinc secondary battery forms a nickel-zinc secondary battery.
- the positive electrode may be an air electrode, whereby the zinc secondary battery may be a zinc air secondary battery.
- the separator is preferably a layered double hydroxide (LDH) separator. That is, as described above, LDH separators are known in the fields of nickel-zinc secondary batteries and air-zinc secondary batteries (see Patent Documents 1 to 3), and the LDH separators can be used as the zinc secondary batteries of the present invention. Can also be preferably used.
- the LDH separator can prevent the penetration of zinc dendrites while selectively allowing hydroxide ions to permeate. Combined with the effect of adopting the negative electrode of the present invention, the durability of the zinc secondary battery can be further improved.
- the LDH separator is a separator containing a layered compound hydroxide (LDH) and / or an LDH-like compound (hereinafter collectively referred to as a hydroxide ion conductive layered compound), and is exclusively a hydroxide.
- Ion conduction It is defined as one that selectively passes hydroxide ions by utilizing the hydroxide ion conductivity of the layered compound.
- the "LDH-like compound” is a hydroxide and / or oxide having a layered crystal structure similar to LDH, although it may not be called LDH, and can be said to be an equivalent of LDH.
- LDH can be interpreted as including LDH-like compounds as well as LDH.
- the LDH separator may be a composite with a porous substrate as disclosed in Patent Documents 1 to 3.
- the porous substrate may be composed of any of a ceramic material, a metal material, and a polymer material, but it is particularly preferable that the porous substrate is composed of a polymer material.
- the polymer porous substrate has 1) flexibility (hence, it is hard to break even if it is thin), 2) easy to increase the porosity, and 3) easy to increase the conductivity (thickness while increasing the porosity). It has the advantages of being easy to manufacture and handle) (because it can be made thinner).
- Particularly preferable polymer materials are polyolefins such as polypropylene and polyethylene, and most preferably polypropylene, because they are excellent in heat resistance, acid resistance and alkali resistance, and are low in cost.
- the porous substrate is composed of a polymer material
- the hydroxide ion conductive layered compound is incorporated over the entire thickness direction of the porous substrate (for example, most or almost all of the inside of the porous substrate). It is particularly preferable that the pores are filled with the hydroxide ion conductive layered compound).
- the thickness of the polymer porous substrate is preferably 5 to 200 ⁇ m, more preferably 5 to 100 ⁇ m, and even more preferably 5 to 30 ⁇ m.
- a microporous membrane as commercially available as a separator for a lithium battery can be preferably used.
- the electrolytic solution 18 preferably contains an aqueous alkali metal hydroxide solution.
- alkali metal hydroxide examples include potassium hydroxide, sodium hydroxide, lithium hydroxide, ammonium hydroxide and the like, but potassium hydroxide is more preferable.
- Zinc oxide, zinc hydroxide and the like may be added to the electrolytic solution in order to suppress autolysis of the zinc-containing material.
- Examples 1-50 Preparation of positive electrode A paste-type nickel hydroxide positive electrode (capacity density: about 700 mAh / cm 3 ) was prepared.
- Metallic Zn powder, polytetrafluoroethylene (PTFE), and optionally In 2 O 3 powder, Bi 2 O 3 powder and / or nonionic water-absorbing polymer are added to the ZnO powder according to the blending ratios shown in Tables 1 and 2. And kneaded with propylene glycol. At this time, in Examples 17-19, 21-23, 27-29, and 41-43, the nonionic water-absorbing polymer was dispersed in water and added in the form of a slurry. The obtained kneaded product was rolled by a roll press to obtain a negative electrode active material sheet. The negative electrode active material sheet was crimped to a tin-plated copper expanded metal to obtain a negative electrode.
- Example 5 containing the nonionic water-absorbing polymer
- the cross section of the negative electrode in the discharge end state immediately after the charge / discharge cycle was performed 40 times was observed by SEM, and the image shown in FIG. 3 was obtained.
- Example 1 Comparative Example
- the cross section of the negative electrode in the discharge end state immediately after the charge / discharge cycle was performed 40 times was observed by SEM and shown in FIG. The image was obtained.
- FIG. 4 In the negative electrode of FIG. 4 to which the nonionic water-absorbing polymer was not added, many places where the metal Zn was unevenly distributed and isolated were observed inside the negative electrode.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
ZnO粒子及びZn粒子を含む負極活物質と、
ノニオン性吸水ポリマーと、
を含み、前記ZnO粒子の含有量を100重量部とした場合に、前記ノニオン性吸水ポリマーを固形分で0.01~6.0重量部含む、負極が提供される。
正極と、
前記負極と、
前記正極と前記負極とを水酸化物イオン伝導可能に隔離するセパレータと、
電解液と、
を含む、亜鉛二次電池が提供される。
本発明の負極10は亜鉛二次電池に適用されるのが好ましい。したがって、本発明の好ましい態様によれば、正極(図示せず)と、負極10と、正極と負極10とを水酸化物イオン伝導可能に隔離するセパレータと、電解液18とを含む、亜鉛二次電池が提供される。本発明の亜鉛二次電池は、上述した負極10を用い、かつ、電解液18(典型的にはアルカリ金属水酸化物水溶液)を用いた二次電池であれば特に限定されない。したがって、ニッケル亜鉛二次電池、酸化銀亜鉛二次電池、酸化マンガン亜鉛二次電池、亜鉛空気二次電池、その他各種のアルカリ亜鉛二次電池であることができる。例えば、正極が水酸化ニッケル及び/又はオキシ水酸化ニッケルを含み、それにより亜鉛二次電池がニッケル亜鉛二次電池をなすのが好ましい。あるいは、正極が空気極であり、それにより亜鉛二次電池が亜鉛空気二次電池をなしてもよい。
(1)正極の用意
ペースト式水酸化ニッケル正極(容量密度:約700mAh/cm3)を用意した。
以下に示される各種原料粉末を用意した。
・ZnO粉末(正同化学工業株式会社製、JIS規格1種グレード、平均粒径D50:0.2μm)
・金属Zn粉末(DOWAエレクトロニクス株式会社製、Bi及びInがドープされたもの、Bi:70重量ppm、In:200重量ppm、平均粒径D50:120μm)
・In2O3粉末(株式会社高純度化学研究所製、純度:99.99%)、平均粒径D50:1.0μmに調整
・Bi2O3粉末(株式会社高純度化学研究所製、純度:99.99%、平均粒径D50:1.0μmに調整)
・ノニオン性吸水ポリマー(ポリアルキレンオキサイド系吸水性樹脂、住友精化株式会社製、アクアコーク、グレード:TWB-P、製品形態:粉体、平均粒径D50:50μm又は130μm)
・イオン性吸水ポリマー(ポリアクリル酸、住友精化株式会社社製、AQUPEC HV)
・イオン性吸水ポリマー(ポリアクリル酸カリウム、シグマアルドリッチ社製、Poly partial potassium salt)
48%水酸化カリウム水溶液(関東化学株式会社製、特級)にイオン交換水を加えてKOH濃度を5.4mol%に調整した後、酸化亜鉛を0.42mol/L加熱攪拌により溶解させて、電解液を得た。
正極と負極の各々を不織布で包むとともに、電流取り出し端子を溶接した。こうして準備された正極及び負極を、LDHセパレータを介して対向させ、電流取り出し口が設けられたラミネートフィルムに挟んで、ラミネートフィルムの3辺を熱融着した。こうして得られた上部開放されたセル容器に電解液を加え、真空引き等により電解液を十分に正極及び負極に浸透させた。その後、ラミネートフィルムの残りの1辺も熱融着して、簡易密閉セルとした。
<サイクル特性>
充放電装置(東洋システム株式会社製、TOSCAT3100)を用いて、簡易密閉セルに対し、0.1C充電及び0.2C放電で化成を実施した。その後、1C充放電サイクルを実施した。同一条件で繰り返し充放電サイクルを実施し、試作電池の1サイクル目の放電容量の70%まで放電容量が低下するまでの充放電回数を記録し、これをサイクル特性を示す指標として採用した。結果は表1~3に示されるとおりであり、各種組成の負極について、ノニオン性吸水ポリマーの添加によりサイクル特性が改善することが確認された。また、表3に示される結果から、イオン性吸収ポリマーを添加した場合には、むしろサイクル特性は低下することが確認された。
ノニオン性吸水ポリマーを含む例5の評価セルにおいて、上記充放電サイクルを40回行った直後の放電末状態の負極の断面をSEMにより観察したところ、図3に示される画像が得られた。同様に、ノニオン性吸水ポリマーを含まない例1(比較例)の評価セルにおいて、上記充放電サイクルを40回行った直後の放電末状態の負極の断面をSEMにより観察したところ、図4に示される画像が得られた。ノニオン性吸水ポリマー添加を添加しなかった図4の負極では、負極の内部において金属Znが偏在して孤立化した箇所が多数観察された。これに対し、ノニオン性吸水ポリマー添加を添加した図3の負極では、負極の内部における金属Znの偏在が有意に抑制されて、負極内部での反応が均一化していることが観察され、これがサイクル特性の改善に寄与したものと考えられる。
ノニオン性吸水ポリマーを含む例5の評価セルにおいて、上記充放電サイクルを繰り返して容量維持率50%にまで劣化した放電末状態の負極の断面をSEMにより観察したところ、図5に示される画像が得られた。同様に、ノニオン性吸水ポリマーを含まない例1(比較例)の評価セルにおいて、上記充放電サイクルを繰り返して容量維持率45%にまで劣化した放電末状態の負極の断面をSEMにより観察したところ、図6に示される画像が得られた。ノニオン性吸水ポリマー添加を添加しなかった図6の負極では、図中白色で示される金属Znが不均一に蓄積されており、負極の形態変化(マクロシェイプチェンジ)が顕著に観察された。これに対し、ノニオン性吸水ポリマー添加を添加した図5の負極では、図中白色で示される金属Znが均一に蓄積されており、負極の形態変化(マクロシェイプチェンジ)が有意に抑制されて、全体的に均一に反応が進んだものと推測された。
Claims (15)
- 亜鉛二次電池に用いられる負極であって、
ZnO粒子及びZn粒子を含む負極活物質と、
ノニオン性吸水ポリマーと、
を含み、前記ZnO粒子の含有量を100重量部とした場合に、前記ノニオン性吸水ポリマーを固形分で0.01~6.0重量部含む、負極。 - 前記ノニオン性吸水ポリマーが、ポリアルキレンオキサイド系吸水性樹脂、ポリビニルアセトアミド系吸水性樹脂、ポリビニルアルコール(PVA樹脂)、及びポリビニルブチラール(PVB樹脂)からなる群から選択される少なくとも1種である、請求項1に記載の負極。
- 前記ノニオン性吸水ポリマーが、ポリアルキレンオキサイド系吸水性樹脂である、請求項1又は2に記載の負極。
- 前記ノニオン性吸水ポリマーが、10~200μmの粒径を有する粒子状である、請求項1~3のいずれか一項に記載の負極。
- 前記ノニオン性吸水ポリマーが、pHの変動に応じて吸液性が変化する特性を有する、請求項1~4のいずれか一項に記載の負極。
- 前記ZnO粒子の含有量を100重量部とした場合に、前記Zn粒子を1.0~87.5重量部含む、請求項1~5のいずれか一項に記載の負極。
- In及びBiから選択される1種以上の金属元素をさらに含む、請求項1~6のいずれか一項に記載の負極。
- 前記ZnO粒子の含有量を100重量部とした場合に、Inの含有量が酸化物換算で0~2重量部であり、かつ、Biの含有量が酸化物換算で0~6重量部である、請求項7に記載の負極。
- 前記金属元素が酸化物粒子の形態で含まれる、請求項1~8のいずれか一項に記載の負極。
- 前記負極がシート状のプレス成形体である、請求項1~9のいずれか一項に記載の負極。
- 正極と、
請求項1~10のいずれか一項に記載の負極と、
前記正極と前記負極とを水酸化物イオン伝導可能に隔離するセパレータと、
電解液と、
を含む、亜鉛二次電池。 - 前記セパレータが層状複水酸化物(LDH)セパレータである、請求項11に記載の亜鉛二次電池。
- 前記LDHセパレータが多孔質基材と複合化されている、請求項11又は12に記載の亜鉛二次電池。
- 前記正極が水酸化ニッケル及び/又はオキシ水酸化ニッケルを含み、それにより前記亜鉛二次電池がニッケル亜鉛二次電池をなす、請求項11~13のいずれか一項に記載の亜鉛二次電池。
- 前記正極が空気極であり、それにより前記亜鉛二次電池が亜鉛空気二次電池をなす、請求項11~13のいずれか一項に記載の亜鉛二次電池。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237012909A KR20230069210A (ko) | 2020-12-03 | 2021-11-08 | 부극 및 아연 이차 전지 |
JP2022566801A JPWO2022118610A1 (ja) | 2020-12-03 | 2021-11-08 | |
DE112021004583.0T DE112021004583T5 (de) | 2020-12-03 | 2021-11-08 | Negative elektrode und zink- sekundärbatterie |
CN202180069601.6A CN116349061A (zh) | 2020-12-03 | 2021-11-08 | 负极及锌二次电池 |
US18/194,677 US20230261204A1 (en) | 2020-12-03 | 2023-04-03 | Negative electrode and zinc secondary battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020201339 | 2020-12-03 | ||
JP2020-201339 | 2020-12-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/194,677 Continuation US20230261204A1 (en) | 2020-12-03 | 2023-04-03 | Negative electrode and zinc secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022118610A1 true WO2022118610A1 (ja) | 2022-06-09 |
Family
ID=81853669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/040993 WO2022118610A1 (ja) | 2020-12-03 | 2021-11-08 | 負極及び亜鉛二次電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230261204A1 (ja) |
JP (1) | JPWO2022118610A1 (ja) |
KR (1) | KR20230069210A (ja) |
CN (1) | CN116349061A (ja) |
DE (1) | DE112021004583T5 (ja) |
WO (1) | WO2022118610A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023181477A1 (ja) * | 2022-03-23 | 2023-09-28 | 日本碍子株式会社 | 負極及び亜鉛二次電池 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH076759A (ja) * | 1992-08-04 | 1995-01-10 | Seiko Instr Inc | アルカリ電池とその製造法およびアルカリ電池を用いた応用製品 |
JP2001216946A (ja) * | 2000-01-31 | 2001-08-10 | Sony Corp | 電 池 |
JP2003115323A (ja) * | 2001-10-04 | 2003-04-18 | Matsushita Electric Ind Co Ltd | アルカリ蓄電池 |
JP2007503100A (ja) * | 2003-08-18 | 2007-02-15 | パワージェニックス システムズ, インコーポレーテッド | ニッケル亜鉛電池の製造方法 |
JP2016173936A (ja) * | 2015-03-17 | 2016-09-29 | Fdkエナジー株式会社 | アルカリ電池 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6190101B2 (ja) | 2011-08-23 | 2017-08-30 | 株式会社日本触媒 | ゲル電解質又は負極合剤、及び、該ゲル電解質又は負極合剤を使用した電池 |
JP5861420B2 (ja) | 2011-12-05 | 2016-02-16 | 株式会社ニコン | 電子カメラ |
EP2814104B1 (en) | 2012-02-06 | 2018-09-26 | NGK Insulators, Ltd. | Zinc secondary cell |
JP2016076047A (ja) | 2014-10-04 | 2016-05-12 | ゲヒルン株式会社 | 商品推薦システム、商品推薦方法、商品推薦システム用プログラム |
JP6615111B2 (ja) | 2014-10-28 | 2019-12-04 | 日本碍子株式会社 | 層状複水酸化物緻密膜の形成方法 |
EP3139437B1 (en) | 2014-11-13 | 2020-06-17 | NGK Insulators, Ltd. | Separator structure body for use in zinc secondary battery |
WO2020049902A1 (ja) | 2018-09-03 | 2020-03-12 | 日本碍子株式会社 | 負極及び亜鉛二次電池 |
-
2021
- 2021-11-08 DE DE112021004583.0T patent/DE112021004583T5/de active Pending
- 2021-11-08 WO PCT/JP2021/040993 patent/WO2022118610A1/ja active Application Filing
- 2021-11-08 CN CN202180069601.6A patent/CN116349061A/zh active Pending
- 2021-11-08 KR KR1020237012909A patent/KR20230069210A/ko unknown
- 2021-11-08 JP JP2022566801A patent/JPWO2022118610A1/ja active Pending
-
2023
- 2023-04-03 US US18/194,677 patent/US20230261204A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH076759A (ja) * | 1992-08-04 | 1995-01-10 | Seiko Instr Inc | アルカリ電池とその製造法およびアルカリ電池を用いた応用製品 |
JP2001216946A (ja) * | 2000-01-31 | 2001-08-10 | Sony Corp | 電 池 |
JP2003115323A (ja) * | 2001-10-04 | 2003-04-18 | Matsushita Electric Ind Co Ltd | アルカリ蓄電池 |
JP2007503100A (ja) * | 2003-08-18 | 2007-02-15 | パワージェニックス システムズ, インコーポレーテッド | ニッケル亜鉛電池の製造方法 |
JP2016173936A (ja) * | 2015-03-17 | 2016-09-29 | Fdkエナジー株式会社 | アルカリ電池 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023181477A1 (ja) * | 2022-03-23 | 2023-09-28 | 日本碍子株式会社 | 負極及び亜鉛二次電池 |
Also Published As
Publication number | Publication date |
---|---|
KR20230069210A (ko) | 2023-05-18 |
DE112021004583T5 (de) | 2023-06-15 |
CN116349061A (zh) | 2023-06-27 |
US20230261204A1 (en) | 2023-08-17 |
JPWO2022118610A1 (ja) | 2022-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6856823B2 (ja) | 負極及び亜鉛二次電池 | |
JP6532186B2 (ja) | 電極前駆体、電極、及び、二次電池 | |
JP6955111B2 (ja) | 亜鉛二次電池 | |
KR20150113124A (ko) | 전극 전구체, 전극 및 전지 | |
JP7007123B2 (ja) | 亜鉛二次電池用負極及び亜鉛二次電池 | |
JP2022550472A (ja) | イオン交換材料を含む電極アセンブリ | |
US20230261204A1 (en) | Negative electrode and zinc secondary battery | |
US20230261251A1 (en) | Negative electrode and zinc secondary battery | |
JP2016186895A (ja) | アニオン伝導性膜、電極及び電池 | |
JP6616565B2 (ja) | アニオン伝導性材料 | |
WO2012048074A1 (en) | Crimped electrochemical cells | |
JP7156868B2 (ja) | 負極及び亜鉛二次電池 | |
JP2021158028A (ja) | 亜鉛二次電池 | |
JP2019079701A (ja) | 亜鉛負極二次電池用セパレータの製造方法及び亜鉛負極二次電池用セパレータ | |
JP7564668B2 (ja) | 負極及び亜鉛二次電池 | |
WO2024014304A1 (ja) | 負極板及び亜鉛二次電池 | |
JP2023113974A (ja) | ニッケル亜鉛二次電池 | |
WO2024075350A1 (ja) | 負極板及び亜鉛二次電池 | |
JP7557613B2 (ja) | 負極及び亜鉛二次電池 | |
WO2023188496A1 (ja) | 負極及び亜鉛二次電池 | |
JP6716307B2 (ja) | 金属空気電池 | |
WO2024195254A1 (ja) | 負極及び亜鉛二次電池 | |
WO2023181477A1 (ja) | 負極及び亜鉛二次電池 | |
WO2024176531A1 (ja) | 亜鉛二次電池 | |
EP4131530A1 (en) | Flat battery and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21900365 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022566801 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20237012909 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21900365 Country of ref document: EP Kind code of ref document: A1 |