WO2022112081A1 - Procede d'hydrodesulfuration de finition en presence d'un catalyseur sur support meso-macroporeux - Google Patents

Procede d'hydrodesulfuration de finition en presence d'un catalyseur sur support meso-macroporeux Download PDF

Info

Publication number
WO2022112081A1
WO2022112081A1 PCT/EP2021/082069 EP2021082069W WO2022112081A1 WO 2022112081 A1 WO2022112081 A1 WO 2022112081A1 EP 2021082069 W EP2021082069 W EP 2021082069W WO 2022112081 A1 WO2022112081 A1 WO 2022112081A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
support
catalyst
equal
less
Prior art date
Application number
PCT/EP2021/082069
Other languages
English (en)
Inventor
Philibert Leflaive
Etienne Girard
Antoine Fecant
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to KR1020237017336A priority Critical patent/KR20230113298A/ko
Priority to EP21810365.3A priority patent/EP4251717A1/fr
Priority to JP2023532275A priority patent/JP2023550823A/ja
Priority to AU2021388768A priority patent/AU2021388768A1/en
Priority to CN202180079690.2A priority patent/CN116568395A/zh
Priority to US18/036,544 priority patent/US20240010931A1/en
Priority to MX2023005247A priority patent/MX2023005247A/es
Publication of WO2022112081A1 publication Critical patent/WO2022112081A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • B01J35/50
    • B01J35/613
    • B01J35/615
    • B01J35/635
    • B01J35/638
    • B01J35/647
    • B01J35/651
    • B01J35/653
    • B01J35/657
    • B01J35/69
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the present invention relates to the field of hydrotreating gasoline cuts, in particular gasoline cuts from fluidized bed catalytic cracking units. More particularly, the present invention relates to the implementation of a catalyst in a process for the production of gasoline with a low sulfur content.
  • the invention applies most particularly to the treatment of gasoline cuts containing olefins and sulfur, such as gasolines resulting from catalytic cracking, for which it is sought to reduce the content of sulfur compounds, without hydrogenating the olefins and the aromatics.
  • the specifications for automotive fuels provide for a sharp reduction in the sulfur content in these fuels, and in particular in gasolines. This reduction is intended to limit, in particular, the sulfur and nitrogen oxide content in automobile exhaust gases.
  • the specifications currently in force in Europe since 2009 for gasoline fuels set a maximum sulfur content of 10 ppm by weight (parts per million). Such specifications are also in force in other countries such as the United States and China, for example, where the same maximum sulfur content has been required since January 2017. To achieve these specifications, it is necessary to treat gasoline with desulfurization processes.
  • the main sources of sulfur in gasoline bases are so-called cracked gasolines, and mainly the gasoline fraction resulting from a catalytic cracking process of a residue from the atmospheric or vacuum distillation of a crude oil.
  • the fraction of gasoline resulting from catalytic cracking which represents on average 40% of the gasoline bases, in fact contributes for more than 90% to the contribution of sulfur in gasolines. Consequently, the production of low-sulphur gasolines requires a stage of desulphurization of catalytic cracking gasolines.
  • the other sources of gasolines which may contain sulfur mention should also be made of gasolines from coking, from visbreaking or, to a lesser extent, gasolines resulting from atmospheric distillation or gasolines from steam cracking.
  • gasoline cuts consists in specifically treating these sulfur-rich gasolines by desulphurization processes in the presence of hydrogen. This is referred to as hydrodesulphurization (HDS) processes.
  • hydrodesulphurization these gasoline cuts and more particularly the gasolines resulting from the FCC contain a significant part of unsaturated compounds in the form of mono-olefins (about 20 to 50% by weight) which contribute to a good octane number, diolefins (0.5 to 5% by weight) and aromatics.
  • unsaturated compounds are unstable and react during the hydrodesulfurization treatment.
  • Diolefins form gums by polymerization during hydrodesulfurization treatments.
  • Recombinant mercaptan content can be reduced by catalytic hydrodesulphurization, but this leads to the hydrogenation of a significant portion of the mono-olefins present in gasoline, which then leads to a sharp decrease in the index of gasoline octane as well as an overconsumption of hydrogen. It is also known that the loss of octane linked to the hydrogenation of mono-olefins during the hydrodesulphurization step is greater the lower the sulfur content targeted, that is to say that one seeks to eliminate in depth the sulfur compounds present in the load.
  • the first stage also called the stage of selective HDS
  • the first stage generally aims to carry out a deep desulphurization of the gasoline. with minimal olefin saturation (and no aromatic loss) leading to maximum octane retention.
  • the catalyst used is generally a CoMo type catalyst.
  • new sulfur compounds are formed by recombination of H2S from desulfurization and olefins: recombination mercaptans.
  • the second step generally has the role of minimizing the quantity of recombinant mercaptans.
  • the temperature is usually higher in the second stage in order to thermodynamically promote the elimination of mercaptans.
  • a furnace is therefore placed between the two reactors in order to be able to raise the temperature of the second reactor to a temperature higher than that of the first.
  • the catalyst used in the finishing process must be particularly selective so as not to induce olefin saturation (and no aromatic loss) leading to a loss in octane. It must therefore make it possible to reduce the total sulfur and mercaptan contents of hydrocarbon cuts, preferably gasoline cuts, to very low contents, while minimizing the decrease in the octane number.
  • the catalyst used is nickel-based.
  • Document US6,589,908 discloses a method for preparing a catalyst support, which does not contain macroporosity and has a bimodal porous structure in the mesoporosity such that the two modes of porosity are separated by 1 to 20 nm.
  • the support can be used in numerous catalytic applications, and in particular in hydrotreating, in particular in hydrodenitrogenation.
  • US 5,266,300 discloses a method for preparing a porous alumina support for use as a hydrodesulphurization or hydrodemetallization catalyst support, said support comprising a total pore volume between 0.65 to 1.30 cm 3 / g, said porous support comprising two populations of macropores, of which approximately 2 to 20% by volume relative to the total pore volume is in the form of macropores having a diameter of between 10,000 Angstroms and 100,000 Angstroms (1000 and 10000 nm), about 5-30% by volume of the total pore volume is in the form of macropores having a diameter between 1,000 Angstroms and 10,000 Angstroms (100 and 1000 nm), and about 50-93% by volume relative to the total pore volume is in the form of mesopores having a pore diameter between 30 Angstroms and 1000 Angstroms (3-100 nm).
  • Documents CN 108855197, CN 104248987 and CN 104248985 disclose catalysts for various catalytic applications (propane dehydrogenation, esterification) whose support has a tri-modal pore distribution, the populations of mesopores being centered on three peaks respectively between 2 and 4 nm, 5 and 15 nm and 10 and 40 nm.
  • the document US7,790,130 discloses an alumina for the capture of halides comprising a tri-modal porosity of which 40 to 49% by volume relative to the total pore volume of the support is in the form of pores having a diameter between 15 and 50 nm .
  • one of the objectives of the present invention is to provide a hydrodesulphurization process, and in particular a finishing step of a two-stage hydrodesulphurization process, in the presence of a supported catalyst having performance for the reduction of the content of total sulfur and of mercaptans of hydrocarbon cuts, at least as good, or even better, than the methods known from the state of the art, while minimizing the reduction in the octane number.
  • a catalyst comprising an active phase based on at least one metal from group VIII, said active phase not comprising any element from group VI B, on a mesoporous and macroporous support, having both a bimodal mesoporous porosity, with a high mesoporous volume coupled with a determined macroporous volume, has improved catalytic performances, in terms of catalytic activity and in terms of selectivity when it is implemented in a process for the treatment of a hydrocarbon feed containing sulfur, partially desulfurized from a preliminary stage of catalytic hydrodesulfurization. This results in a better conversion of the charge under identical operating conditions than those used in the prior art.
  • the present invention relates to a method for treating a partially desulphurized sulfur-containing hydrocarbon feed resulting from a preliminary stage of catalytic hydrodesulphurization, said process being carried out at a temperature of between 200°C and 400°C, a pressure of between between 0.2 and 5 MPa, at an hourly volume rate, defined as the volume flow rate of inlet feed per volume of catalyst used, between 0.1 h 1 and 20 h 1 , in the presence of a catalyst comprising a phase active phase comprising at least one metal from group VIII, said active phase not comprising any metal from group VI B, and a mesoporous and macroporous alumina support comprising a bimodal distribution of mesopores and in which:
  • the volume of mesopores with a diameter greater than or equal to 2 nm and less than 18 nm corresponds between 10 and 30% by volume of the total pore volume of said support;
  • the volume of mesopores with a diameter greater than or equal to 18 nm and less than 50 nm corresponds between 30 and 50% by volume of the total pore volume of said support;
  • the volume of macropores with a diameter greater than or equal to 50 nm and less than 8000 nm corresponds between 30 and 50% by volume of the total pore volume of said support.
  • said support comprises a specific surface of between 50 and 210 m 2 /g.
  • said support comprises a total pore volume of between 0.7 and 1.3 mL/g.
  • the volume of mesopores with a diameter greater than or equal to 2 nm and less than 18 nm corresponds between 15 and 25% by volume of the total pore volume of said support.
  • the volume of mesopores with a diameter greater than or equal to 18 nm and less than 50 nm corresponds between 35 and 45% by volume of the total pore volume of said support.
  • the volume of the macropores with a diameter greater than or equal to 50 nm and less than 8000 nm corresponds between 35 to 50% by volume of the total porous volume of said support.
  • the metal content of group VIII of said catalyst, expressed as group VIII element, is between 5 and 65% by weight relative to the total weight of said catalyst.
  • the Group VIII metal is nickel.
  • the porous distribution of the mesopores with a diameter greater than or equal to 2 nm and less than 18 nm is centered on a range of values comprised between 10.5 and 14.5 nm.
  • the porous distribution of the mesopores with a diameter greater than or equal to 18 nm and less than 50 nm is centered on a range of values comprised between 22 and 28 nm.
  • said support comprises a specific surface of between 70 and 180 m 2 /g.
  • said support is in the form of balls with a diameter of between 2 and 4 mm.
  • said support when said support is in the form of beads, said support is obtained according to the following steps: s1) dehydration of an aluminum hydroxide or an aluminum oxyhydroxide at a temperature between 400°C and 1200°C, preferably between 600°C and 900°C, for a time of between 0.1 second and 5 seconds, preferably between 0.1 second and 4 seconds, to obtain an alumina powder ; s2) shaping of said alumina powder obtained in step s1) in the form of balls; s3) heat treatment of the alumina balls obtained in step s2) at a temperature greater than or equal to 200° C.; s4) hydrothermal treatment of the alumina balls obtained at the end of step s3) by impregnation with water or an aqueous solution, then residence in an autoclave at a temperature between 100° C. and 300° C.; s5) calcining the alumina balls obtained at the end of step s4) at a temperature between 500°C and 820°C.
  • said partially desulfurized hydrocarbon feed contains less than 100 ppm by weight of sulfur.
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • the BET specific surface is measured by physisorption with nitrogen according to standard ASTM D3663-03, method described in the work Rouquerol F.; Rouquerol J.; Singh K. “Adsorption by Powders & Porous Solids: Principle, methodology and applications”, Academy Press, 1999.
  • micropores are understood to mean pores whose diameter is less than 2 nm, that is to say 0.002 ⁇ m; by mesopores pores whose diameter is greater than 2 nm, ie 0.002 pm and less than 50 nm, ie 0.05 pm and by macropores pores whose diameter is greater than or equal to 50 nm , i.e. 0.05 ⁇ m.
  • total pore volume of the alumina or of the catalyst means the volume measured by intrusion with a mercury porosimeter according to the ASTM D4284-83 standard at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne/cm and a contact angle of 140°.
  • the wetting angle was taken as equal to 140° by following the recommendations of the book “Engineering techniques, analysis and characterization treatise”, p.1050-5, written by Jean Charpin and Bernard Rasneur.
  • the value of the total pore volume in ml/g given in the following text corresponds to the value of the total mercury volume (total pore volume measured by intrusion with a mercury porosimeter) in ml/g measured on the sample minus the mercury volume value in ml/g measured on the same sample for a pressure corresponding to 30 psi (approximately 0.2 MPa).
  • the volume of macropores and mesopores is measured by mercury intrusion porosimetry according to ASTM D4284-83 at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne/cm and a contact angle of 140°.
  • the value from which the mercury fills all the intergranular voids is fixed at 0.2 MPa, and it is considered that beyond that the mercury penetrates into the pores of the sample.
  • the macropore volume of the catalyst is defined as being the cumulative volume of mercury introduced at a pressure of between 0.2 MPa and 30 MPa, corresponding to the volume contained in the pores with an apparent diameter greater than 50 nm.
  • the mesoporous volume of the catalyst is defined as being the cumulative volume of mercury introduced at a pressure of between 30 MPa and 400 MPa, corresponding to the volume contained in the pores with an apparent diameter of between 2 and 50 nm.
  • the pore modes correspond to the inflection points of the function represented.
  • the group VIII element and phosphorus contents are measured by X-ray fluorescence.
  • a process is carried out for treating a hydrocarbon feedstock containing sulfur and partially desulphurized, resulting from a preliminary stage of catalytic hydrodesulphurization, in which said feedstock to be treated is brought into contact with a so-called finishing catalyst.
  • the hydrodesulfurization step known as finishing (or “polishing" according to the Anglo-Saxon terminology), is mainly implemented to decompose at least in part the recombination mercaptans into olefins and H2S, but it also makes it possible to hydrodesulphurize the more refractory sulfur compounds whereas the first hydrodesulphurization stage is mainly implemented to transform a large part of the sulfur compounds into H2S.
  • the remaining sulfur compounds are essentially refractory sulfur compounds and the recombination mercaptans resulting from the addition of the H2S formed.
  • the finishing hydrodesulfurization process is generally carried out at a temperature between 280°C and 400°C, preferably between 300°C and 380°C, more preferably between 310°C and 370°C.
  • the temperature of this finishing stage is generally at least 5° C., preferably at least 10° C. and very preferably at least 30° C. higher than the temperature of the first hydrodesulphurization stage.
  • the process is generally implemented at an hourly volume rate (which is defined as the volume flow rate of inlet feed per volume of catalyst used) of between 1 h -1 and 10 h 1 , preferably between 1 h -1 and 8 h 1 .
  • the process is generally implemented with a hydrogen flow rate such that the ratio between the hydrogen flow rate expressed in normal m 3 per hour (Nm 3 /h) and the feed flow rate to be treated expressed in m 3 per hour at standard conditions is between 10 Nm 3 /m 3 and 4000 Nm 3 /m 3 , preferably between 50 Nm 3 /m 3 and 1000 Nm 3 /m 3 .
  • the process is generally implemented at a pressure of between 0.5 MPa and 5 MPa, preferably between 1 MPa and 3 MPa.
  • the hydrocarbon feedstock containing sulfur and partially desulphurized is preferably a gasoline containing olefinic compounds, preferably a gasoline cut resulting from a catalytic cracking process.
  • the treated hydrocarbon charge generally has a boiling point below 350°C, preferably below 300°C and very preferably below 250°C.
  • the hydrocarbon charge contains less than 100 ppm by weight of sulfur, in particular from organic compounds, and preferably less than 50 ppm by weight of sulfur, in particular from organic compounds, in particular in the form of recombinant mercaptans and sulfur compounds. refractories.
  • the charge to be treated undergoes a partial desulfurization treatment before said finishing step.
  • This preliminary treatment consists in bringing the hydrocarbon feed containing sulfur into contact with hydrogen, in one or more hydrodesulphurization reactors in series, containing one or more catalysts suitable for carrying out the hydrodesulphurization.
  • the operating pressure of this step is generally between 0.5 MPa and 5 MPa, and very preferably between 1 MPa and 3 MPa, and the temperature is generally between 200° C. and 400° C. , and very preferably between 220°C and 380°C.
  • the quantity of catalyst used in each reactor is generally such that the ratio between the flow rate of gasoline to be treated, expressed in m 3 per hour at standard conditions, per m 3 of catalyst is between 0.5 h 1 and 8: 1 p.m., and very preferably between 1: 1 a.m. and 10: 1 a.m.
  • the hydrogen flow rate is generally such that the ratio between the hydrogen flow rate expressed in normal m 3 per hour (Nm 3 /h) and the flow rate to be treated expressed in m 3 per hour at standard conditions is comprised between 50 Nm 3 /hm 3 and 1000 Nm 3 /m 3 , preferably between 70 Nm 3 /m 3 and 800 Nm 3 /m 3 .
  • this step will be implemented with the aim of carrying out hydrodesulphurization selectively, that is to say with a hydrogenation rate of the mono-olefins of less than 80% by weight, preferably less than 70% weight and very preferably less than 60% weight.
  • the degree of desulfurization achieved during this hydrodesulfurization step is generally greater than 50% and preferably greater than 70%, such that the hydrocarbon fraction used in the finishing process contains less than 100 ppm by weight of sulfur and preferably less than 50 ppmw sulfur.
  • any hydrodesulfurization catalyst can be used in the preliminary hydrodesulfurization step.
  • catalysts are used which exhibit a high selectivity with respect to hydrodesulfurization reactions relative to the hydrogenation reactions of olefins.
  • Such catalysts comprise at least one amorphous mineral support and porous, a Group VI metal B, a Group VIII metal.
  • the group VI B metal is preferably molybdenum or tungsten and the group VIII metal is preferably nickel or cobalt.
  • the support is generally selected from the group consisting of aluminas, silica, silica-aluminas, silicon carbide, titanium oxides alone or mixed with alumina or silica alumina, magnesium oxides alone or as a mixture with alumina or silica alumina.
  • the support is selected from the group consisting of aluminas, silica and silica-aluminas.
  • the hydrodesulphurization catalyst used in the additional hydrodesulphurization stage or stages has the following characteristics:
  • group VI B elements the content of group VI B elements is between 1 and 20% by weight of oxides of group VI B elements relative to the total weight of the catalyst;
  • the content of group VIII elements is between 0.1 and 20% by weight of oxides of group VIII elements relative to the total weight of the catalyst;
  • the molar ratio (elements of group VIII/elements of group VI B) is between 0.1 and 0.8.
  • a very preferred hydrodesulfurization catalyst comprises cobalt and molybdenum and has the characteristics mentioned above.
  • the hydrodesulphurization catalyst may comprise phosphorus.
  • the phosphorus content is preferably between 0.1 and 10% by weight of P2O5 relative to the total weight of catalyst and the phosphorus to group VI B elements molar ratio is greater than or equal to 0.25, preferably greater than or equal to 0.27.
  • the effluent can undergo a stage of separation of hydrogen and H 2 S by any method known to those skilled in the art (separation drum, stabilization column, etc. .).
  • the active phase of the catalyst used in the context of the process according to the invention comprises, preferably consists of, an active phase based on at least one metal from group VIII, said active phase not comprising any metal from group VI B .
  • the Group VIII metal is nickel.
  • the active phase of at least one group VIII metal is in sulphide form.
  • the group VIII metal nickel
  • the compounds most present are NiS in hexagonal or rhombohedral form or else N1 3 S 2 .
  • the phase diagram of nickel sulfide exhibits a large number of sulfur-rich and nickel-rich phases at low temperatures.
  • NiS is also known to exist in two main phases, namely hexagonal Ga-NiS, which is stable at high temperatures, and the rhombohedral b-NiS which is stable at low temperatures.
  • hexagonal Ga-NiS which is stable at high temperatures
  • rhombohedral b-NiS which is stable at low temperatures.
  • the group VIII content is preferably between 5 and 65% by weight relative to the total weight of the catalyst, preferably between 8 and 55% by weight, even more preferably between 12 and 40 % by weight, and particularly preferably between 12 and 34% by weight.
  • the catalyst generally comprises a specific surface of between 50 and 200 m 2 /g, preferably between 60 and 170 m 2 /g and preferably between 70 and 130 m 2 /g.
  • the pore volume of the catalyst is generally between 0.5 mL/g and 1.3 mL/g, preferably between 0.6 mL/g and 1.1 mL/g.
  • the alumina support of the catalyst used in the context of the hydrodesulfurization process according to the invention is a macroporous and mesoporous alumina support comprising a bimodal distribution of mesopores in which:
  • the volume of mesopores with a diameter greater than or equal to 2 nm and less than 18 nm corresponds between 10 and 30% by volume of the total pore volume of said support;
  • the volume of mesopores with a diameter greater than or equal to 18 nm and less than 50 nm corresponds between 30 and 50% by volume of the total pore volume of said support;
  • the volume of macropores with a diameter greater than or equal to 50 nm and less than 8000 nm corresponds between 30 and 50% by volume of the total pore volume of said support.
  • the volume of the mesopores of the support with a diameter greater than or equal to 2 nm and less than 18 nm corresponds to between 15 and 25% by volume of the total porous volume of said support.
  • the volume of the mesopores of the support with a diameter greater than or equal to 18 nm and less than 50 nm corresponds to between 35 and 45% by volume of the total porous volume of said support.
  • the volume of the macropores of the support with a diameter greater than or equal to 50 nm and less than 8000 nm corresponds between 35 to 50% by volume of the total porous volume of said support.
  • the porous distribution of the mesopores with a diameter greater than or equal to 2 nm and less than 18 nm is centered on a range of values comprised between 10.5 and 14.5 nm, preferably between 12 and 13 nm.
  • the porous distribution of the mesopores with a diameter greater than or equal to 18 nm and less than 50 nm is centered on a range of values comprised between 22 and 28 nm, preferably between 23 and 27 nm.
  • the support generally comprises a specific surface of between 50 and 210 m 2 /g, preferably between 70 and 180 m 2 /g, and even more preferably between 70 and 160 m 2 /g.
  • the porous volume of the support is generally between 0.7 mL/g and 1.3 mL/g, preferably between 0.8 mL/g and 1.2 mL/g.
  • the support is in the form of balls with a diameter of between 0.8 and 10 mm, preferentially between 1 and 5 mm, and more preferentially between 2 and 4 mm.
  • alumina support of the catalyst used in the context of the treatment process according to the invention can be synthesized by any method known to those skilled in the art.
  • the alumina support used according to the invention is in the form of beads.
  • the preparation of the support comprises the following steps: s1) dehydration of an aluminum hydroxide or an aluminum oxyhydroxide at a temperature between 400° C. and 1200° C., preferably between 600° C.
  • alumina powder for a period of between 0.1 second and 5 seconds, preferably between 0.1 second and 4 seconds, to obtain an alumina powder; s2) shaping said alumina powder obtained in step s1) in the form of balls; s3) heat treatment of the alumina balls obtained in step s2) at a temperature greater than or equal to 200° C.; s4) hydrothermal treatment of the alumina beads obtained at the end of step s3) by impregnation with water or a preferably acidic aqueous solution, then soaking in an autoclave at a temperature between 100°C and 300°C, preferably between 150°C and 250°C; s5) calcining the alumina balls obtained at the end of step s4) at a temperature between 500°C and 820°C.
  • Steps s1) to s5) are described in detail below.
  • step s1) dehydration of an aluminum hydroxide or an aluminum oxyhydroxide is carried out at a temperature between 400° C. and 1200° C., preferably between 600° C. and 900° C., for a period of between 0.1 second and 5 seconds, preferably between 0.1 second and 4 seconds, to obtain an alumina powder.
  • the aluminum hydroxide can be chosen from hydrargillite, gibbsite or bayerite.
  • the aluminum oxyhydroxide can be chosen from boehmite or diaspore.
  • step s1) is carried out using hydrargillite.
  • step s1) is carried out in the presence of a current of hot gas, such as dry air or humid air, allowing the evaporated water to be eliminated and carried away quickly.
  • a current of hot gas such as dry air or humid air
  • the active alumina powder obtained after the dehydration of the aluminum hydroxide or oxyhydroxide is ground to a particle size of between 10 to 200 ⁇ m.
  • the active alumina powder obtained after the dehydration of aluminum hydroxide or oxyhydroxide is washed with water or an acidic aqueous solution.
  • any mineral or organic acid may be used, preferably nitric acid, hydrochloric acid, perchloric or sulfuric acid for mineral acids, and a carboxylic acid (formic, acetic or malonic acid), a sulphonic acid (para-toluene sulphonic acid) or a sulfuric ester (lauryl sulphate) for organic acids.
  • step s2) the said alumina powder obtained at the end of step s1) is shaped.
  • the shaping of said alumina powder is carried out so as to obtain balls, called granulation, is generally carried out by means of rotating technology such as a rotating bezel or a rotating drum.
  • This type of process makes it possible to obtain balls of controlled diameter and pore distributions, these dimensions and these distributions being, in general, created during the agglomeration step.
  • the porosity can be created by various means, such as the choice of the particle size of the alumina powder or the agglomeration of several alumina powders of different particle sizes.
  • Another method consists in mixing with the alumina powder, before or during the agglomeration step, one or more compounds, called porogens, which disappear on heating and thus create porosity in the balls.
  • pore-forming compounds used, by way of example, of wood flour, charcoal, activated carbon, carbon black, sulfur, tars, plastic materials or emulsions of plastic materials such as polyvinyl chloride, polyvinyl alcohols, naphthalene or the like.
  • the amount of pore-forming compounds added is determined by the volume desired to obtain beads with a raw filling density of between 500 and 1100 kg/m 3 , preferably between 700 and 950 kg/m 3 , and with a diameter of between 0.8 and 10 mm, preferably between 1 and 5 mm, and ink more preferably between 2 and 4 mm.
  • a selection by sieving of the balls obtained can be carried out according to the desired particle size.
  • a heat treatment is carried out on the alumina powder shaped in the form of beads obtained at the end of step s2) at a temperature greater than or equal to 200° C., preferably between between 200°C and 1200°C, preferably between 300°C and 900°C, very preferably between 400°C and 750°C, for a period generally between 1 and 24 hours, preferably between 1 and 6 hours .
  • the beads obtained at this intermediate step comprise a specific surface between 50 and 420 m 2 /g, preferably between 60 and 350 m 2 /g, and even more preferably between 80 and 300 m 2 /g.
  • step s4) the alumina balls obtained at the end of step s3) undergo a hydrothermal treatment by impregnation with water or a preferably acidic aqueous solution, then stay in an autoclave at a temperature between between 100°C and 300°C, preferably between 150°C and 250°C.
  • the hydrothermal treatment is generally carried out at a temperature of 100° C. to 300° C., preferentially from 150° C. to 250° C., for a duration greater than 45 minutes, preferentially from 1 to 24 hours, very preferentially from 1.5 to 12 hours.
  • the hydrothermal treatment is generally carried out using an aqueous acid solution comprising one or more mineral and/or organic acids, preferably nitric acid, hydrochloric acid, perchloric acid, sulfuric acid, weak whose solution has a pH lower than 4 such as acetic acid or formic acid.
  • said acidic aqueous solution also comprises one or more compounds which can release anions capable of combining with aluminum ions, preferably compounds comprising a nitrate ion (such as aluminum nitrate), chloride, sulfate, perchlorate, chloroacetate, trichloroacetate, bromoacetate, dibromoacetate, and the anions of general formula: R-COO like formates and acetates.
  • a nitrate ion such as aluminum nitrate
  • chloride sulfate, perchlorate, chloroacetate, trichloroacetate, bromoacetate, dibromoacetate, and the anions of general formula: R-COO like formates and acetates.
  • the alumina balls obtained at the end of step s4) undergo calcination at a temperature of between 500° C. and 820° C., preferably between 550° C. and 750° C., and for a period generally between 1 hour and 24 hours, preferably between 1 hour and 6 hours.
  • the alumina balls obtained comprise a specific surface between 50 and 210 m 2 /g, preferably between 70 and 180 m 2 /g, and even more preferably between 70 and 160 m 2 /g .
  • the catalyst used in the context of the hydrodesulfurization process according to the invention can be obtained by a preparation process comprising at least the following steps: a) the alumina support is brought into contact with at least one metal salt in solution comprising at least one Group VIII metal; b) a step of drying the solid obtained at the end of step a) is carried out at a temperature below 200° C. to obtain a dried catalyst precursor; c) optionally, the dried catalyst precursor obtained at the end of step b) is calcined at a temperature greater than or equal to 200° C. and less than or equal to 1100° C.
  • a calcined catalyst precursor under an inert atmosphere or under an atmosphere containing oxygen to obtain a calcined catalyst precursor; d) optionally, the catalyst precursor obtained at the end of stage b), or optionally at the end of stage c), is reduced to obtain a reduced catalyst precursor, e) optionally, the catalyst precursor obtained at the end of stage b), or optionally at the end of stage c) or d).
  • the porous support is brought into contact with a metal salt in solution comprising at least one group VIII metal.
  • the bringing into contact of said porous support and of the metal salt in solution can be done by any method known to those skilled in the art.
  • said step a) is carried out by dry impregnation, which consists in bringing the porous support into contact with a volume of said solution between 0.25 and 1.5 times the porous volume of the support.
  • Said solution containing at least one metal salt comprising at least one group VIII metal can be aqueous or organic, preferably aqueous.
  • At least one metal salt comprising at least one metal belonging to group VIII is provided.
  • the metal is nickel.
  • the metal salt is hydrated.
  • the metal salt is a hydrated nitrate salt.
  • the metal salt is nickel nitrate hexahydrate (Ni(NC>3)2.6H 2 0).
  • a step of drying the solid obtained at the end of step a) is carried out at a temperature below 200° C. to obtain a dried catalyst precursor.
  • the drying is carried out at a temperature between 50 and 180°C, preferably between 70 and 150°C, very preferably between 75 and 130°C.
  • the drying step is preferably carried out for a period typically between 10 minutes and 24 hours. Longer durations are not excluded, but do not necessarily bring improvement.
  • the drying step can be carried out by any technique known to those skilled in the art. It is advantageously carried out at atmospheric pressure or at reduced pressure. Preferably, this step is carried out at atmospheric pressure. It is advantageously carried out using air or any other hot gas. Preferably, the gas used is either air or an inert gas such as argon or nitrogen. Very preferably, the drying is carried out in the presence of nitrogen and/or air.
  • Step c) (optional step)
  • step c) the solid obtained at the end of step b) undergoes a calcination treatment at a temperature greater than or equal to 200° C. and less than or equal to 1100° C., preferably between 250° C. C and 650° C., and very preferably between 300° C. and 500° C., under an inert atmosphere (nitrogen for example) or under an atmosphere containing oxygen (air for example).
  • the duration of this heat treatment is generally less than 16 hours, preferably less than 5 hours.
  • the group VIII element is in the oxide form and the solid no longer contains or contains very few counterions and water of crystallization initially present in the metal salt.
  • the calcination step can be carried out by any technique known to those skilled in the art. It is advantageously carried out in a traversed bed or in a fluidized bed using air or any other hot gas.
  • a calcined catalyst precursor is obtained.
  • At least one step of reducing treatment is optionally carried out in the presence of a reducing gas after step b), optionally after step c), so as to obtain a catalyst comprising at least one metal of group VIII at least partially in metallic form.
  • This treatment makes it possible to form metallic particles, in particular of group VIII in the zero valent state.
  • the reducing gas is preferably hydrogen.
  • the hydrogen can be used pure or in a mixture (for example a hydrogen/nitrogen, hydrogen/argon, hydrogen/methane mixture). In the case where the hydrogen is used as a mixture, all the proportions are possible.
  • Said reducing treatment is preferably carried out at a temperature of between 120 and 500°C, preferably between 150 and 450°C.
  • the duration of the reducing treatment is generally between 2 and 40 hours, preferably between 3 and 30 hours.
  • the rise in temperature up to the desired reduction temperature is generally slow, for example fixed between 0.1 and 10° C./min, preferably between 0.3 and 7° C./min.
  • a reduced catalyst precursor is obtained.
  • the product obtained (catalyst precursor, dried, calcined or reduced) is advantageously sulfurized so as to form the group VIII sulphide.
  • This sulfurization is carried out by methods well known to those skilled in the art, and advantageously under a super-reductive atmosphere in the presence of hydrogen and hydrogen sulphide.
  • Sulfurization is carried out by injecting onto the catalyst a stream containing H 2 S and hydrogen, or else a sulfur compound capable of decomposing into H 2 S in the presence of the catalyst and hydrogen.
  • Polysulphides such as dimethyldisulphide are precursors of H 2 S commonly used to sulphide the catalyst.
  • the temperature is adjusted so that the H 2 S reacts with group VIII to form group VIII sulfide.
  • This sulfurization can be carried out in situ or ex situ (inside or outside the reactor of the finishing process).
  • it is carried out ex-situ.
  • it is carried out at temperatures between 200 and 600°C and more preferably between 250 and 500°C.
  • Group VIII should preferably be substantially sulfurized.
  • the operating conditions of the sulfurization in particular the nature of the sulfurizing agent, the H 2 S/hydrogen ratio, the temperature and the duration of the sulfurization will preferably be adapted according to the product obtained after step b) or after the optional steps c) or d), so as to obtain a good sulphidation of the metal of group VIII, that is to say that the metal of group VIII is largely and preferably entirely sulphurized.
  • the degree of sulfurization of the metals constituting the active phase of said catalyst is advantageously at least equal to 60%, preferably at least equal to 80%.
  • the sulfur content in the sulphide material is measured by elemental analysis according to ASTM D5373.
  • a metal is considered to be sulfurized when the overall sulfurization rate defined by the molar ratio between the sulfur (S) present on said catalyst and said metal is at least equal to 60% of the theoretical molar ratio corresponding to the total sulfurization of the metal(s) considered.
  • the overall sulfurization rate is defined by the following equation:
  • (S/metal)catai y sor is the molar ratio between the sulfur (S) and the metal present on the catalyst;
  • Example 1 Catalyst A (according to the invention)
  • Support S1 of catalyst A is prepared by dehydration of hydrargillite ( EMPLURA® , MerckTM) in order to obtain an alumina powder.
  • the temperature is set at 800° C. and the contact time of the material to be dehydrated with a flow of dry air is 1 second.
  • the alumina powder obtained is ground to a particle size between 10 and 200 ⁇ m and then washed three times with a volume of distilled water equal to twice the volume of the powder used.
  • Said alumina powder is shaped in the presence of carbon black (N990 Thermax ® ) with a plate granulator (GRELBEXTM P30) equipped with a conical cylindrical bowl at an angle of 30° and a rotation speed at 40 revolutions per minute so as to obtain balls with a diameter mainly comprised between 2 and 4 mm after sieving the solid.
  • the quantity of carbon black is adjusted to obtain a raw filling density of the objects of 800 kg/m 3 .
  • Said balls undergo a heat treatment in air at 720° C. so as to give them a specific surface area of 200 m 2 /g.
  • a hydrothermal treatment is applied to said balls by impregnation of the porous volume with an aqueous solution of nitric acid (0.1 N, MerckTM).
  • the hydrothermal treatment is carried out at a temperature of 200° C. for 6.5 hours, in a rotating basket autoclave.
  • the balls thus obtained undergo a final calcination treatment in air at 650° C. for 2 hours.
  • the support S1 has a specific surface of 141 m 2 /g, a total pore volume of 0.97 mL/g as well as the following pore distribution given by mercury porosimetry:
  • - a volume of macropores with a diameter greater than or equal to 50 nm and less than 8000 nm of 0.39 ml_/g, corresponding to 40% of the total pore volume.
  • Support S1 has a water uptake volume of 0.95 mL/g.
  • the impregnation solution is prepared by diluting 8.24 grams of nickel nitrate (Ni(NC> 3 ) 2 .6H 2 O, 99.5%, MerckTM) in 37.2 mL of distilled water. After dry impregnation of 40 grams of support and a maturation step for 12 hours in an atmosphere saturated with humidity, the solid is dried for 12 hours at 120°C. A catalyst precursor is obtained.
  • a second impregnation step is carried out with a solution prepared by diluting 22.64 grams of nickel nitrate (Ni(NC> 3 ) 2 .6H 2 0, 99.5%, MerckTM) in 33.7 mL of 'distilled water.
  • the solid After dry impregnation of the catalyst precursor and a maturation step for 12 hours in an atmosphere saturated with humidity, the solid is dried for 12 hours at 120°C. The solid is then calcined in air at 450° C. for 2 hours. The calcined catalyst thus obtained is denoted A.
  • Catalyst A has a total pore volume of 0.88 mL/g and a specific surface of 118 m 2 /g.
  • Example 2 Non-compliant catalyst B (monomodal macroporous and large mesoporous catalyst)
  • Support S2 of catalyst B is prepared by dehydration of hydrargillite ( EMPLURA® , MerckTM) in order to obtain an active alumina powder.
  • the temperature is set at 800° C. and the contact time of the material to be dehydrated with a flow of dry air is 1 second.
  • the active alumina powder obtained is ground to a particle size of between 10 and 200 ⁇ m and then washed three times with a volume of distilled water equal to twice the volume of the powder used.
  • Said active alumina powder is shaped with a plate granulator (GRELBEXTM P30) equipped with a conical cylindrical bowl at an angle of 30° and a rotation speed of 40 revolutions per minute so as to obtain balls with a diameter mostly between 2 and 4 mm (after sieving the solid) and a raw filling density of the objects of 780 kg/m 3 .
  • Said balls undergo a heat treatment in air at 700° C. so as to give them a specific surface area of 250 m 2 /g.
  • a hydrothermal treatment is applied to said balls by impregnation of the porous volume with an aqueous solution of nitric acid (0.1 N, MerckTM). The hydrothermal treatment is carried out at a temperature of 200° C.
  • the support S2 has a specific surface of 71 m 2 /g, a total porous volume of 0.56 mL/g as well as the following porous distribution given by mercury porosimetry:
  • Support S2 has a water uptake volume of 0.54 mL/g.
  • the impregnation solution is prepared by dissolving 8.24 grams of nickel nitrate hexahydrate (Sigma-AldrichTM, purity 3 98.5%) in 21.1 mL of distilled water. After dry impregnation of 40 grams of support and a maturation step for 12 hours in an atmosphere saturated with humidity, the solid is dried for 12 hours at 120°C. A catalyst precursor is obtained. A second impregnation step is carried out on the catalyst precursor with a solution prepared by diluting 22.64 grams of nickel nitrate (Ni(NC> 3 ) 2 .6H 2 O, 99.5%, MerckTM) in 18.1 mL of distilled water.
  • Ni(NC> 3 ) 2 .6H 2 O 99.5%, MerckTM
  • a commercial support S3 (SA52124, UniSpheres® NorPro TM ) is provided in the form of beads with a diameter of between 2 and 4 mm.
  • the S3 support has a specific surface area of 8 m 2 /g, a total pore volume of 0.33 mL/g as well as the following pore distribution given by mercury porosimetry:
  • - a volume of macropores with a diameter greater than or equal to 50 nm and less than 8000 nm of 0.33 mL/g, corresponding to 100% of the total pore volume.
  • Support S3 has a water uptake volume of 0.47 mL/g.
  • the impregnation solution is prepared by dissolving 8.24 grams of nickel nitrate hexahydrate (Sigma-AldrichTM, purity 3 98.5%) in 18.4 mL of distilled water. After dry impregnation of 40 grams of support and a maturation step for 12 hours in an atmosphere saturated with humidity, the solid is dried for 12 hours at 120°C. A catalyst precursor is obtained.
  • a second impregnation step is carried out with a solution prepared by diluting 22.64 grams of nickel nitrate (Ni(N0 3 ) 2 , 6H 2 O, 99.5%, MerckTM) in 15.8 mL of distilled water.
  • Catalyst C has a total pore volume of 0.28 mL/g and a specific surface of 7 m 2 /g.
  • Example 4 Non-compliant catalyst D (monomodal mesoporous catalyst)
  • a commercial support S4 (SA6578, NorProTM) is supplied as a 5 mm diameter extrudate.
  • the S4 support has a specific surface of 175 m 2 /g, a total pore volume of 0.82 mL/g as well as the following pore distribution given by mercury porosimetry:
  • - a volume of mesopores with a diameter greater than or equal to 2 nm and less than or equal to 20 nm, whose pore distribution is centered on 13 nm, of 0.82 mL/g corresponding to 100% of the total pore volume.
  • the S4 support has a water uptake volume of 0.81 mL/g.
  • the impregnation solution is prepared by dissolving 8.24 grams of nickel nitrate hexahydrate (Sigma-AldrichTM, purity 3 98.5%) in 31.7 mL of distilled water. After dry impregnation of 40 grams of support and a maturation step for 12 hours under an atmosphere saturated with humidity, the solid is dried for 12 hours at 120°C. A catalyst precursor is obtained.
  • a second impregnation step is carried out with a solution prepared by diluting 22.64 grams of nickel nitrate (Ni(N0 3 ) 2 , 6H 2 O, 99.5%, MerckTM) in 27.2 ml of distilled water.
  • Catalyst D has a total pore volume of 0.67 mL/g and a specific surface of 142 m 2 /g.
  • Example 5 Non-compliant catalyst E (monomodal macroporous and small mesoporous catalyst)
  • a commercial support S5 (SA6176, NorProTM) is supplied in the form of an extrudate of 1.6 mm in diameter.
  • the S5 support has a specific surface of 250 m 2 /g, a total pore volume of 1.05 mL/g as well as the following pore distribution given by mercury porosimetry:
  • - a volume of macropores with a diameter greater than or equal to 50 nm and less than 8000 nm of 0.37 ml_/g, corresponding to 35% of the total pore volume.
  • the S5 support has a water uptake volume of 1.02 mL/g.
  • the impregnation solution is prepared by dissolving 8.24 grams of nickel nitrate hexahydrate (Sigma-AldrichTM, purity 3 98.5%) in 39.9 mL of distilled water. After dry impregnation of 40 grams of support and a maturation step for 12 hours in an atmosphere saturated with humidity, the solid is dried for 12 hours at 120°C. A catalyst precursor is obtained.
  • a second impregnation step is carried out with a solution prepared by diluting 22.64 grams of nickel nitrate (Ni(N0 3 ) 2 , 6H 2 O, 99.5%, MerckTM) in 34.2 mL of distilled water.
  • Catalyst E has a total pore volume of 0.87 mL/g and a specific surface of 205 m 2 /g.
  • Example 6 Evaluation of the performance of the catalysts implemented in a finishing reactor of a desulfurization process.
  • the evaluation of the catalytic performance of solids A (compliant) and B to E (non-compliant) is carried out using a representative model charge of a partially desulphurized catalytic cracking gasoline resulting from a preliminary hydrodesulphurization step.
  • catalyst containing 10% by weight of 2,3-dimethylbut-2-ene and 70 ppmS (including 42 ppmS of hexanethiol-1 and 28 ppmS of 3-methylthiophene).
  • the solvent used is heptane.
  • the catalyst Prior to the finishing reaction, the catalyst is sulfurized in-situ at 350° C. for 2 hours under a flow of hydrogen containing 15% mol of h 2 S at atmospheric pressure. Samples are taken at different time intervals and are analyzed by gas phase chromatography in order to observe the disappearance of the reagents and the formation of the products.
  • the catalytic performances of the catalysts are evaluated in terms of conversion of 3-methylthiophene and hexanethiol-1.
  • the conversions of 3-methylthiophene observed with catalyst A are greater than those observed with comparative catalysts B and C, the conversions into hexanethiol-1 and 2,3-dimethylbut-2-ene being moreover substantially equivalent.
  • Catalyst A is therefore more selective than comparative catalysts D and E.
  • This behavior of the catalyst according to the invention is particularly interesting in the case of an implementation in a process for the hydrodesulphurization of gasoline containing olefins for which it is sought to ensure deep desulphurization and to limit as much as possible the loss of octane due to the hydrogenation of olefins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Nanotechnology (AREA)

Abstract

Procédé de traitement d'une charge hydrocarbonée contenant du soufre, partiellement désulfurée issue d'une étape préliminaire d'hydrodésulfuration, en présence d'un catalyseur comprenant une phase active comprenant un métal du groupe VIII et un support d'alumine mésoporeux et macroporeux comprenant une distribution bimodale de mésopores et dans lequel : - le volume des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 10 et 30% en volume du volume poreux total dudit support; - le volume des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 30 et 50% en volume du volume poreux total dudit support; - le volume des macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 30 et 50% en volume du volume poreux total dudit support.

Description

PROCEDE D’HYDRODESULFURATION DE FINITION EN PRESENCE D’UN CATALYSEUR SUR SUPPORT MESO-MACROPOREUX
Domaine technique
La présente invention se rapporte au domaine de l'hydrotraitement des coupes essences, notamment des coupes essences issues des unités de craquage catalytique en lit fluidisé. Plus particulièrement, la présente invention concerne la mise en œuvre d’un catalyseur dans un procédé de production d’essence à basse teneur en soufre. L'invention s'applique tout particulièrement au traitement des coupes essences contenant des oléfines et du soufre, telles que les essences issues du craquage catalytique, pour lesquelles on cherche à diminuer la teneur en composés soufrés, sans hydrogéner les oléfines et les aromatiques.
Etat de la technique
Les spécifications sur les carburants automobiles prévoient une forte diminution de la teneur en soufre dans ces carburants, et notamment dans les essences. Cette diminution est destinée à limiter, notamment, la teneur en oxyde de soufre et d'azote dans les gaz d'échappement d'automobiles. Les spécifications actuellement en vigueur en Europe depuis 2009 pour les carburants essences fixent une teneur maximum de 10 ppm poids (parties par millions) de soufre. De telles spécifications sont également en vigueur dans d’autres pays tels que par exemple les Etats-Unis et la Chine où la même teneur maximale en soufre est requise depuis Janvier 2017. Pour atteindre ces spécifications, il est nécessaire de traiter les essences par des procédés de désulfuration.
Les sources principales de soufre dans les bases pour essences sont les essences dites de craquage, et principalement, la fraction d'essence issue d'un procédé de craquage catalytique d'un résidu de la distillation atmosphérique ou sous vide d'un pétrole brut. La fraction d'essence issue du craquage catalytique, qui représente en moyenne 40 % des bases essence, contribue en effet pour plus de 90% à l'apport de soufre dans les essences. Par conséquent, la production d'essences peu soufrées nécessite une étape de désulfuration des essences de craquage catalytique. Parmi les autres sources d'essences pouvant contenir du soufre, citons également les essences de cokéfaction, de viscoréduction ou, dans une moindre mesure, les essences issues de la distillation atmosphérique ou les essences de vapocraquage.
L'élimination du soufre dans les coupes essences consiste à traiter spécifiquement ces essences riches en soufre par des procédés de désulfuration en présence d’hydrogène. On parle alors de procédés d'hydrodésulfuration (HDS). Cependant, ces coupes essences et plus particulièrement les essences issues du FCC contiennent une part importante de composés insaturés sous forme de mono-oléfines (environ 20 à 50% poids) qui contribuent à un bon indice d'octane, de dioléfines (0,5 à 5% poids) et d'aromatiques. Ces composés insaturés sont instables et réagissent au cours du traitement d'hydrodésulfuration. Les dioléfines forment des gommes par polymérisation lors des traitements d'hydrodésulfuration. Cette formation de gommes entraîne une désactivation progressive des catalyseurs d'hydrodésulfuration ou un bouchage progressif du réacteur. En conséquence, les dioléfines doivent être éliminées par hydrogénation avant tout traitement de ces essences. Les procédés de traitement traditionnels désulfurent les essences de manière non sélective en hydrogénant une grande partie des mono-oléfines, ce qui engendre une forte perte en indice d'octane et une forte consommation d’hydrogène. Les procédés d'hydrodésulfuration les plus récents permettent de désulfurer les essences de craquage riches en mono-oléfines, tout en limitant l’hydrogénation des mono-oléfines et par conséquent la perte d’octane. De tels procédés sont par exemples décrits dans les documents EP-A-1077247 et EP-A-1174485.
Toutefois, dans le cas où l’on doit désulfurer les essences de craquage de manière très profonde, une partie des oléfines présentes dans les essences de craquage est hydrogénée d’une part et se recombine avec l’hhS pour former des mercaptans d’autres part. Cette famille de composé, de formule chimique R-SH où R est un groupement alkyle, sont généralement appelés mercaptans de recombinaison, et représentent généralement entre 20% poids et 80 % poids du soufre résiduel dans les essences désulfurées. La réduction de la teneur en mercaptans de recombinaison peut être réalisée par hydrodésulfuration catalytique, mais cela entraîne l’hydrogénation d’une partie importante des mono-oléfines présentes dans l’essence, ce qui entraîne alors une forte diminution de l’indice d’octane de l’essence ainsi qu’une surconsommation d’hydrogène. Il est par ailleurs connu que la perte d’octane liée à l’hydrogénation des mono-oléfines lors de l’étape d’hydrodésulfuration est d’autant plus grande que la teneur en soufre visée est basse, c’est-à-dire que l’on cherche à éliminer en profondeur les composés soufrés présents dans la charge.
Il est ainsi possible de traiter l’essence par un enchaînement de deux réacteurs tel que décrit dans le document EP1077247, la première étape, aussi appelée l’étape d’HDS sélective, a généralement pour but de réaliser une désulfuration profonde de l’essence avec un minimum de saturation des oléfines (et pas de perte aromatique) conduisant à une rétention maximale en octane. Le catalyseur mis en œuvre est généralement un catalyseur de type CoMo. Lors de cette étape, des nouveaux composés soufrés sont formés par recombinaison de l’H2S issu de la désulfuration et des oléfines : les mercaptans de recombinaison.
La deuxième étape a généralement pour rôle de minimiser la quantité des mercaptans de recombinaison. La température est généralement plus élevée dans la deuxième étape afin de favoriser thermodynamiquement l’élimination des mercaptans. En pratique, un four est donc placé entre les deux réacteurs afin de pouvoir élever la température du second réacteur à une température supérieure à celle du premier.
Le catalyseur utilisé dans le procédé de finition soit être particulièrement sélectif afin de ne pas induire de saturation des oléfines (et pas de perte aromatique) conduisant à une perte en octane. Il doit donc permettre de réduire les teneurs en soufre total et en mercaptans de coupes hydrocarbonées, de préférence de coupes essences, à de très faibles teneurs, en minimisant la diminution de l’indice d'octane. Usuellement, le catalyseur employé est à base de nickel.
Par ailleurs, il est connu de l’art antérieur que la répartition poreuse des supports de catalyseur peut avoir un impact bénéfique sur les performances catalytiques.
Le document US6,589,908 divulgue un procédé de préparation d’un support de catalyseur, lequel ne contient pas de macroporosité et présente une structure poreuse bimodale dans la mésoporosité telle que les deux modes de porosité soient séparés de 1 à 20 nm. Le support est utilisable dans de nombreuses applications catalytiques, et notamment en hydrotraitement, notamment en hydrodénitrogénation.
Le document US 5,266,300 divulgue une méthode de préparation d’un support poreux d’alumine pour son utilisation en tant que support de catalyseur d’hydrodésulfuration ou d’hydrodemetallation, ledit support comprenant un volume poreux total entre 0,65 à 1,30 cm3/g, ledit support poreux comprenant deux populations de macropores, dont environ 2 à 20% en volume par rapport au volume poreux total se présente sous la forme de macropores ayant un diamètre compris entre 10 000 Angstroms et 100 000 Angstroms (1000 et 10000 nm), environ 5 à 30% en volume par rapport au volume poreux total se présente sous la forme de macropores ayant un diamètre compris entre 1 000 Angstroms et 10 000 Angstroms (100 et 1000 nm), et environ 50 à 93% en volume par rapport au volume poreux total se présente sous la forme de mésopores ayant un diamètre de pores compris entre 30 Angstroms et 1000 Angstroms (3-100 nm).
Les documents CN 108855197, CN 104248987 et CN 104248985 divulgue des catalyseurs pour différentes applications catalytiques (déshydrogénation du propane, estérification) dont le support présente une distribution de pores tri modale, les populations de mésopores étant centrées sur trois pics respectivement compris entre 2 et 4 nm, 5 et 15 nm et 10 et 40 nm. Le document US7,790,130 divulgue une alumine pour la captation d’halogénures comprenant une porosité tri modale dont 40 à 49% en volume par rapport au volume poreux total du support se présente sous la forme de pores ayant un diamètre compris entre 15 et 50 nm.
Cependant, aucun des documents de l’art antérieur ne décrit la mise en œuvre d’un procédé de traitement de charge hydrocarbonée contenant du soufre, partiellement désulfurée issue d’une étape préliminaire d’hydrodésulfuration catalytique en présence d’un catalyseur comprenant un support présentant à la fois une porosité mésoporeuse bimodale, avec un fort volume mésoporeux couplé à un volume macroporeux spécifique.
Dans ce contexte, un des objectifs de la présente invention est de proposer un procédé d’hydrodésulfuration, et en particulier une étape de finition d’un procédé en deux étapes d’hydrodésulfuration, en présence d’un catalyseur supporté présentant des performances pour la réduction de la teneur en soufre total et en mercaptans de coupes hydrocarbonées, au moins aussi bonnes, voire meilleures, que les procédés connus de l’état de la technique, tout en minimisant la diminution de l'indice d'octane.
La demanderesse a découvert que l’utilisation d’un catalyseur comprenant une phase active à base d’au moins un métal du groupe VIII, ladite phase active ne comprenant pas d’élément du groupe VI B, sur un support mésoporeux et macroporeux, présentant à la fois une porosité mésoporeuse bimodale, avec un fort volume mésoporeux couplé à un volume macroporeux déterminé présente des performances catalytiques améliorées, en terme d’activité catalytique et en terme de sélectivité lorsqu’il est mis en œuvre dans un procédé de traitement d’une charge hydrocarbonée contenant du soufre, partiellement désulfurée issue d’une étape préliminaire d’hydrodésulfuration catalytique. Il en résulte une meilleure conversion de la charge dans des conditions opératoires identiques que celles utilisées dans l’art antérieur.
En effet, sans être liée à une quelconque théorie scientifique, le recours d’un tel catalyseur dans un procédé de traitement de charge hydrocarbonée contenant du soufre, partiellement désulfurée issue d’une étape préliminaire d’hydrodésulfuration catalytique, améliore les phénomènes de diffusion interne des réactifs et des produits par la présence de populations de tailles différentes de mésopores. De plus, la présence conjuguée de macroporosité est particulièrement judicieuse lorsque la charge à traiter contient une quantité significative d’oléfines (composés insaturés) réactives, notamment de dioléfines, ce qui est le cas des essences, pouvant donner lieu à la formation de gommes et ainsi boucher la porosité du catalyseur sans présence de macroporosité. Objets de l’invention
La présente invention concerne un procédé de traitement d’une charge hydrocarbonée contenant du soufre, partiellement désulfurée issue d’une étape préliminaire d’hydrodésulfuration catalytique, ledit procédé étant réalisé à une température comprise entre 200°C et 400°C, une pression comprise entre 0,2 et 5 MPa, à une vitesse volumique horaire, définie comme le débit volumique de charge en entrée par volume de catalyseur utilisé, comprise entre 0,1 h 1 et 20 h 1, en présence d’un catalyseur comprenant une phase active comprenant au moins un métal du groupe VIII, ladite phase active ne comprenant pas de métal du groupe VI B, et un support d’alumine mésoporeux et macroporeux comprenant une distribution bimodale de mésopores et dans lequel :
- le volume des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 10 et 30% en volume du volume poreux total dudit support ;
- le volume des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 30 et 50% en volume du volume poreux total dudit support ;
- le volume des macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 30 et 50% en volume du volume poreux total dudit support.
Selon un ou plusieurs modes de réalisation, ledit support comprend une surface spécifique comprise entre 50 et 210 m2/g.
Selon un ou plusieurs modes de réalisation, ledit support comprend un volume poreux total compris entre 0,7 et 1,3 mL/g.
Selon un ou plusieurs modes de réalisation, le volume des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 15 et 25% en volume du volume poreux total dudit support.
Selon un ou plusieurs modes de réalisation, le volume des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 35 et 45% en volume du volume poreux total dudit support.
Selon un ou plusieurs modes de réalisation, le volume des macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 35 à 50% en volume du volume poreux total dudit support.
Selon un ou plusieurs modes de réalisation, la teneur en métal du groupe VIII dudit catalyseur, exprimée en élément groupe VIII, est comprise entre 5 et 65% en poids par rapport au poids total dudit catalyseur. Selon un ou plusieurs modes de réalisation, le métal du groupe VIII est le nickel.
Selon un ou plusieurs modes de réalisation, la distribution poreuse des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm est centrée sur une plage de valeur comprise entre 10,5 et 14,5 nm.
Selon un ou plusieurs modes de réalisation, la distribution poreuse des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm est centrée sur une plage de valeur comprise entre 22 et 28 nm.
Selon un ou plusieurs modes de réalisation, ledit support comprend une surface spécifique comprise entre 70 et 180 m2/g.
Selon un ou plusieurs modes de réalisation, ledit support se présente sous la forme de billes de diamètre compris entre 2 et 4 mm.
Selon un ou plusieurs modes de réalisation, lorsque ledit support se présente sous forme de billes, ledit support est obtenu selon les étapes suivantes : s1) déshydratation d’un hydroxyde d’aluminium ou d’un oxyhydroxyde d’aluminium à une température comprise entre 400°C et 1200°C, de préférence entre 600°C et 900°C, pendant une durée comprise entre 0,1 seconde et 5 secondes, de préférence entre 0,1 seconde et 4 secondes, pour obtenir une poudre d’alumine ; s2) mise en forme de ladite poudre d’alumine obtenue à l’étape s1) sous forme de billes ; s3) traitement thermique des billes d’alumine obtenues à l’étape s2) à une température supérieure ou égale à 200°C ; s4) traitement hydrothermal des billes d’alumine obtenues à l’issue de l’étape s3) par imprégnation avec de l'eau ou une solution aqueuse, puis séjour dans un autoclave à une température comprise entre 100°C et 300°C ; s5) calcination des billes d’alumine obtenues à l’issue de l’étape s4) à une température comprise entre 500°C et 820°C.
Selon un ou plusieurs modes de réalisation, ladite charge hydrocarbonée partiellement désulfurée contient moins de 100 ppm poids de soufre.
Description détaillée de l’invention
1. Définitions
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81ème édition, 2000-2001). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC. La surface spécifique BET est mesurée par physisorption à l'azote selon la norme ASTM D3663-03, méthode décrite dans l'ouvrage Rouquerol F.; Rouquerol J.; Singh K. « Adsorption by Powders & Porous Solids: Principle, methodology and applications », Academie Press, 1999.
Dans la présente description, on entend, selon la convention IUPAC, par micropores les pores dont le diamètre est inférieur à 2 nm, c'est à dire 0,002 pm; par mésopores les pores dont le diamètre est supérieur à 2 nm, c'est à dire 0,002 pm et inférieur à 50 nm, c'est à dire 0,05 pm et par macropores les pores dont le diamètre est supérieur ou égal à 50 nm, c'est à dire 0,05 pm.
Dans l’exposé qui suit de l’invention, on entend par volume poreux total de l'alumine ou du catalyseur, le volume mesuré par intrusion au porosimètre à mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar (400 MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°. L'angle de mouillage a été pris égal à 140° en suivant les recommandations de l'ouvrage « Techniques de l'ingénieur, traité analyse et caractérisation », p.1050-5, écrits par Jean Charpin et Bernard Rasneur.
Afin d'obtenir une meilleure précision, la valeur du volume poreux total en ml/g donnée dans le texte qui suit correspond à la valeur du volume mercure total (volume poreux total mesuré par intrusion au porosimètre à mercure) en ml/g mesurée sur l'échantillon moins la valeur du volume mercure en ml/g mesurée sur le même échantillon pour une pression correspondant à 30 psi (environ 0,2 MPa).
Le volume des macropores et des mésopores est mesuré par porosimétrie par intrusion de mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar (400 MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°.
On fixe à 0,2 MPa la valeur à partir de laquelle le mercure remplit tous les vides intergranulaires, et on considère qu'au-delà le mercure pénètre dans les pores de l'échantillon.
Le volume macroporeux du catalyseur est défini comme étant le volume cumulé de mercure introduit à une pression comprise entre 0,2 MPa et 30 MPa, correspondant au volume contenu dans les pores de diamètre apparent supérieur à 50 nm. Le volume mésoporeux du catalyseur est défini comme étant le volume cumulé de mercure introduit à une pression comprise entre 30 MPa et 400 MPa, correspondant au volume contenu dans les pores de diamètre apparent compris entre 2 et 50 nm.
Lorsque le volume incrémental des pores mesuré par porosimétrie mercure est tracé en fonction du diamètre des pores, les modes de porosités correspondent aux points d’inflexion de la fonction représentée.
Les teneurs en élément du groupe VIII et en phosphore sont mesurées par fluorescence X.
2. Description
Procédé d’hydrodésulfuration de finition
Selon l’invention, on réalise un procédé de traitement d’une charge hydrocarbonée contenant du soufre et partiellement désulfurée, issue d’une étape préliminaire d’hydrodésulfuration catalytique, dans laquelle ladite charge à traiter est mise en contact avec un catalyseur dit de finition. L’étape d’hydrodésulfuration, dite de finition (ou « polishing » selon la terminologie anglo-saxonne), est principalement mise en œuvre pour décomposer au moins en partie les mercaptans de recombinaison en oléfines et en H2S, mais elle permet également d’hydrodésulfurer les composés soufrés plus réfractaires alors que la première étape d’hydrodésulfuration est principalement mise en œuvre pour transformer une grande partie des composés soufrés en H2S. Les composés soufrés restants sont essentiellement des composés soufrés réfractaires et les mercaptans de recombinaison issus de l’addition de l’H2S formé.
Le procédé d’hydrodésulfuration de finition est généralement mis en œuvre à une température comprise entre 280°C et 400°C, de préférence entre 300°C et 380°C, de manière préférée entre 310°C et 370°C. La température de cette étape de finition est généralement supérieure d’au moins 5°C, de préférence d’au moins 10°C et de façon très préférée d’au moins 30°C à la température de la première étape d’hydrodésulfuration.
Le procédé est généralement mis en œuvre à une vitesse volumique horaire (qui est définie comme le débit volumique de charge en entrée par volume de catalyseur utilisé) comprise entre 1 h-1 et 10 h 1, de préférence entre 1 h-1 et 8 h 1.
Le procédé est généralement mis en œuvre avec un débit d’hydrogène tel que le rapport entre le débit d’hydrogène exprimé en normaux m3 par heure (Nm3/h) et le débit de charge à traiter exprimé en m3 par heure aux conditions standards est compris entre 10 Nm3/m3 et 4000 Nm3/m3, de préférence entre 50 Nm3/m3 et 1000 Nm3/m3. Le procédé est généralement mis en œuvre à une pression comprise entre 0,5 MPa et 5 MPa, de préférence entre 1 MPa et 3 MPa.
La charge hydrocarbonée contenant du soufre et partiellement désulfurée est de préférence une essence contenant des composés oléfiniques, de préférence une coupe essence issue d’un procédé de craquage catalytique. La charge hydrocarbonée traitée présente généralement une température d’ébullition inférieure à 350°C, de préférence inférieure à 300°C et de façon très préférée inférieure à 250°C. De manière préférée, la charge hydrocarbonée contient moins de 100 ppm poids de soufre notamment issus de composés organiques et de façon préférée moins de 50 ppm poids de soufre notamment issus de composés organiques, en particulier sous la forme de mercaptans de recombinaison et de composés soufrés réfractaires.
La charge à traiter subit un traitement de désulfuration partiel avant ladite l’étape de finition. Ce traitement préliminaire consiste à mettre en contact la charge hydrocarbonée contenant du soufre en contact avec de l’hydrogène, dans un ou plusieurs réacteurs d’hydrodésulfuration en série, contenant un ou plusieurs catalyseurs adaptés pour réaliser l’hydrodésulfuration. De manière préférée, la pression d’opération de cette étape est généralement comprise entre 0,5 MPa et 5 MPa, et de manière très préférée entre 1 MPa et 3 MPa, et la température est généralement comprise entre 200°C et 400°C, et de manière très préférée entre 220°C et 380°C. De manière préférée, la quantité de catalyseur mise en œuvre dans chaque réacteur est généralement telle que le rapport entre le débit d’essence à traiter exprimé en m3 par heure aux conditions standards, par m3 de catalyseur est compris entre 0,5 h 1 et 20 h 1, et de manière très préférée entre 1 h1 et 10 h 1. De manière préférée, le débit d’hydrogène est généralement tel que le rapport entre le débit d’hydrogène exprimé en normaux m3 par heure (Nm3/h) et le débit à traiter exprimé en m3 par heure aux conditions standards est compris entre 50 Nm3/hm3 et 1000 Nm3/m3, de manière préférée entre 70 Nm3/m3 et 800 Nm3/m3. De manière préférée, cette étape sera mise en œuvre dans le but de réaliser une hydrodésulfuration de façon sélective, c’est-à-dire avec un taux d’hydrogénation des mono-oléfines inférieur à 80% poids, de préférence inférieur à 70% poids et de façon très préférée inférieur à 60% poids.
Le taux de désulfuration atteint au cours de cette étape d’hydrodésulfuration est généralement supérieur à 50 % et de préférence supérieur à 70 %, de tel manière que la fraction hydrocarbonée mise en œuvre dans le procédé de finition contienne moins de 100 ppm poids de soufre et de façon préférée moins de 50 ppm poids de soufre.
Tout catalyseur d’hydrodésulfuration peut être utilisé dans l’étape préliminaire d'hydrodésulfuration. De préférence, on utilise des catalyseurs présentant une sélectivité élevée vis-à-vis des réactions d’hydrodésulfuration par rapport aux réactions d'hydrogénation des oléfines. De tels catalyseurs comprennent au moins un support minéral amorphe et poreux, un métal du groupe VI B, un métal du groupe VIII. Le métal du groupe VI B est préférentiellement le molybdène ou le tungstène et le métal du groupe VIII est préférentiellement le nickel ou le cobalt. Le support est généralement sélectionné dans le groupe constitué par les alumines, la silice, les silice-alumines, le carbure de silicium, les oxydes de titane seuls ou en mélange avec de l'alumine ou de la silice alumine, les oxydes de magnésium seuls ou en mélange avec de l'alumine ou de la silice alumine. De préférence, le support est sélectionné dans le groupe constitué par les alumines, la silice et les silice-alumines. De préférence le catalyseur d'hydrodésulfuration utilisé dans le ou les étapes complémentaires d'hydrodésulfuration présente les caractéristiques suivantes :
- la teneur en éléments du groupe VI B est comprise entre 1 et 20 % poids d'oxydes d'éléments du groupe VI B par rapport au poids total du catalyseur ;
- la teneur en éléments du groupe VIII est comprise entre 0,1 et 20 % poids d'oxydes d'éléments du groupe VIII par rapport au poids total du catalyseur ;
- le rapport molaire (éléments du groupe VIII / éléments du groupe VI B) est compris entre 0,1 et 0,8.
Un catalyseur d'hydrodésulfuration très préféré comprend du cobalt et du molybdène et a les caractéristiques mentionnées ci-dessus. Par ailleurs le catalyseur d'hydrodésulfuration peut comprendre du phosphore. Dans ce cas, la teneur en phosphore est de préférence comprise entre 0,1 et 10% poids de P2O5 par rapport au poids total de catalyseur et le rapport molaire phosphore sur éléments du groupe VI B est supérieur ou égal à 0,25, de préférence supérieur ou égal à 0,27.
En fin d’étape d’hydrodésulfuration, l’effluent peut subir une étape de séparation de l’hydrogène et de l’H2S par toute méthode connue de l’homme du métier (ballon de séparation, colonne de stabilisation, ...).
Catalyseur
La phase active du catalyseur utilisée dans le cadre du procédé selon l’invention comprend, de préférence est constitué de, une phase active à base d’au moins un métal du groupe VIII, ladite phase active ne comprenant pas de métal du groupe VI B.
De manière préférée, le métal du groupe VIII est le nickel.
De préférence, la phase active d’au moins un métal du groupe VIII se présente sous forme sulfurée. La phase active d’au moins un métal du groupe VIII se présentant sous forme sulfurée désigne dans la présente demande les composés chimiques de type MxSy, ou M est un métal du groupe VIII avec 0,5 £ x/y £ 2, de préférence x = 1 et y = 1 ou encore x= 3 et y = 2. Lorsque le métal du groupe VIII est le nickel, les composés les plus présents sont le NiS sous forme hexagonale ou rhomboédrique ou encore le N13S2. Lorsque le métal du groupe VIII est le nickel, le diagramme de phase du sulfure de nickel présente un grand nombre de phases riches en soufre et riches en nickel à basse température. Différentes phases et stœchiométries de sulfure de nickel sont donc possible, allant des composés riches en nickel tels que N13S2, Ni6Ss, N17S6, NigSs et NiS aux composés riches en soufre comme N13S4 et N1S2. A noter que le NiS est également connu pour exister en deux phases principales, à savoir Ga-NiS hexagonal, stable à des températures élevées, et le b-NiS rhomboédrique stable à basse température. L’existence de ces nombreuses phases rend complexe la synthèse du sulfure de nickel sous forme d’une phase unique, les produits étant donc souvent des mélanges de deux ou plusieurs phases.
La teneur en groupe VIII, exprimée en élément groupe VIII, est de préférence comprise entre 5 et 65 % poids par rapport au poids total du catalyseur, de préférence comprise entre 8 et 55 % poids, de manière encore plus préférée comprise entre 12 et 40 % poids, et de manière particulièrement préférée comprise entre 12 et 34 % poids.
Le catalyseur comprend généralement une surface spécifique comprise entre 50 et 200 m2/g, de préférence comprise entre 60 et 170 m2/g et de préférence comprise entre 70 et 130 m2/g .
Le volume poreux du catalyseur est généralement compris entre 0,5 mL/g et 1,3 mL/g, de préférence compris entre 0,6 mL/g et 1,1 mL/g.
Figure imgf000012_0001
Le support d’alumine du catalyseur utilisé dans le cadre du procédé d’hydrodésulfuration selon l’invention est un support d’alumine macroporeux et mésoporeux comprenant une distribution bimodale de mésopores dans lequel :
- le volume des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 10 et 30% en volume du volume poreux total dudit support ;
- le volume des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 30 et 50% en volume du volume poreux total dudit support ;
- le volume des macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 30 et 50% en volume du volume poreux total dudit support.
De préférence, le volume des mésopores du support de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 15 et 25% en volume du volume poreux total dudit support. De préférence, le volume des mésopores du support de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 35 et 45% en volume du volume poreux total dudit support.
De préférence, le volume des macropores du support de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 35 à 50% en volume du volume poreux total dudit support.
Dans un mode de réalisation selon l’invention, la distribution poreuse des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm est centrée sur une plage de valeur comprise entre 10,5 et 14,5 nm, de préférence entre 12 et 13 nm.
Dans un mode de réalisation selon l’invention, la distribution poreuse des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm est centrée sur une plage de valeur comprise entre 22 et 28 nm, de préférence entre 23 et 27 nm.
Le support comprend généralement une surface spécifique comprise entre 50 et 210 m2/g, de préférence entre 70 et 180 m2/g, et encore plus préférentiellement entre 70 et 160 m2/g.
Le volume poreux du support est compris généralement entre 0,7 mL/g et 1,3 mL/g, de préférence compris entre 0,8 mL/g et 1,2 mL/g.
Avantageusement, le support se présente sous la forme de billes de diamètre compris entre 0,8 et 10 mm, préférentiellement entre 1 et 5 mm, et plus préférentiellement entre 2 et 4 mm.
Figure imgf000013_0001
Le support d’alumine du catalyseur utilisé dans le cadre du procédé de traitement selon l’invention peut être synthétisé par toute méthode connue de l’homme du métier.
Selon un mode préféré le support d’alumine utilisé selon l'invention se présente sous forme de billes. Selon ce mode préféré la préparation du support comprend les étapes suivantes : s1) déshydratation d’un hydroxyde d’aluminium ou d’un oxyhydroxyde d’aluminium à une température comprise entre 400°C et 1200°C, de préférence entre 600°C et 900°C, pendant une durée comprise entre 0,1 seconde et 5 secondes, de préférence entre 0,1 seconde et 4 secondes, pour obtenir une poudre d’alumine ; s2) mise en forme de ladite poudre d’alumine obtenue à l’étape s1) sous forme de billes ; s3) traitement thermique des billes d’alumine obtenues à l’étape s2) à une température supérieure ou égale à 200°C ; s4) traitement hydrothermal des billes d’alumine obtenues à l’issue de l’étape s3) par imprégnation avec de l'eau ou une solution aqueuse préférentiellement acide, puis séjour dans un autoclave à une température comprise entre 100°C et 300°C,de préférence entre 150°C et 250°C ; s5) calcination des billes d’alumine obtenues à l’issue de l’étape s4) à une température comprise entre 500°C et 820°C.
Les étapes s1) à s5) sont décrites en détail ci-après.
Etape s1)
Selon l’étape s1), on réalise une déshydratation d’un hydroxyde d’aluminium ou d’un oxyhydroxyde d’aluminium à une température comprise entre 400°C et 1200°C, de préférence entre 600°C et 900°C, pendant une durée comprise entre 0,1 seconde et 5 secondes, de préférence entre 0,1 seconde et 4 secondes, pour obtenir une poudre d’alumine. L’hydroxyde d’aluminium peut être choisi parmi l’hydrargillite, la gibbsite ou la bayerite. L’oxyhydroxyde d’aluminium peut être choisi parmi la boehmite ou le diaspore.
De préférence, l’étape s1) est réalisée en utilisant de l’hydrargillite.
Généralement, l’étape s1) est réalisée en présence d’un courant de gaz chaud, tel que de l’air sec ou de l’air humide, permettant d’éliminer et d’entraîner rapidement l’eau évaporée.
Généralement, la poudre d'alumine active obtenue après la déshydratation de l'hydroxyde ou oxyhydroxyde d'aluminium est broyée dans une granulométrie comprise entre 10 à 200 pm.
Généralement, la poudre d'alumine active obtenue après la déshydratation de l'hydroxyde ou de l'oxyhydroxyde d'aluminium est lavée avec de l'eau ou une solution aqueuse acide. Lorsque que l’étape de lavage est réalisée avec une solution aqueuse acide, tout acide minéral ou organique pourra être utilisé, de manière préféré l’acide nitrique, l'acide chlorhydrique, l'acide perchlorique ou sulfurique pour les acides minéraux, et un acide carboxylique (l’acide formique, acétique ou malonique), un acide sulfonique (acide paratoluènesulfonique) ou un ester sulfurique (sulfate de lauryle) pour les acides organiques.
Etape s2)
Selon l’étape s2), on réalise la mise en forme de ladite poudre d'alumine obtenue à l’issue de l’étape s1).
La mise en forme de ladite poudre d'alumine est réalisée de manière à obtenir des billes, nommée granulation, est généralement réalisée au moyen d'une technologie tournante comme un drageoir tournant ou un tambour tournant. Ce type de procédé permet d'obtenir des billes de diamètre et de répartitions de pores contrôlées, ces dimensions et ces répartitions étant, en général, créées pendant l'étape d'agglomération. La porosité peut être créée par différents moyens, comme le choix de la granulométrie de la poudre d'alumine ou l'agglomération de plusieurs poudres d'alumine de différentes granulométries. Une autre méthode consiste à mélanger à la poudre d'alumine, avant ou pendant l'étape d'agglomération, un ou des composés, appelés porogènes, disparaissant par chauffage et créant ainsi une porosité dans les billes. Comme composés porogènes utilisés, on peut citer, à titre d'exemple, la farine de bois, le charbon de bois, le charbon actif, le noir de carbone, le soufre, des goudrons, des matières plastiques ou émulsions de matières plastiques telles que le polychlorure de vinyle, des alcools polyvinyliques, la naphtaline ou analogues. La quantité de composés porogènes ajoutés est déterminée par le volume désiré pour obtenir des billes de densité de remplissage en cru comprise entre 500 et 1100 kg/m3, préférentiellement entre 700 et 950 kg/m3, et de diamètre compris entre 0,8 et 10 mm, préférentiellement entre 1 et 5 mm, et encre plus préférentiellement entre 2 et 4 mm. Une sélection par tamisage des billes obtenues peut être réalisée selon la granulométrie souhaitée.
Etape s3)
Selon l’étape s3), on réalise un traitement thermique de la poudre d’alumine mise en forme sous forme de billes obtenue à l’issue de l’étape s2) à une température supérieure ou égale à 200°C, de préférence comprise entre 200°C et 1200 °C, préférentiellement entre 300°C et 900°C, de manière très préférée entre 400°C et 750°C, pendant une durée comprise généralement entre 1 et 24 heures, de préférence entre 1 et 6 heures. Les billes obtenues à cette étape intermédiaire comprennent une surface spécifique entre 50 et 420 m2/g, de préférence entre 60 et 350 m2/g, et encore plus préférentiellement entre 80 et 300 m2/g.
Selon l’étape s4), les billes d’alumine obtenues à l’issue de l’étape s3) subissent un traitement hydrothermal par imprégnation avec de l'eau ou une solution aqueuse préférentiellement acide, puis séjour dans un autoclave à une température comprise entre 100°C et 300°C,de préférence entre 150°C et 250°C.
Le traitement hydrothermal est généralement conduit à une température de 100 °C à 300°C, préférentiellement de 150°C à 250°C, pendant une durée supérieure à 45 minutes, préférentiellement de 1 à 24 heures, très préférentiellement de 1,5 à 12 heures. Le traitement hydrothermal est généralement effectué à l'aide d'une solution aqueuse acide comprenant un ou plusieurs acides minéraux et/ou organiques de préférence l'acide nitrique, l'acide chlorhydrique, l'acide perchlorique, l'acide sulfurique, les acides faibles dont la solution a un pH inférieur à 4 comme l'acide acétique ou l'acide formique. Généralement, ladite solution aqueuse acide comprend également un ou plusieurs composés pouvant libérer des anions capables de se combiner avec les ions aluminium, de préférence les composés comprenant un ion nitrate (comme le nitrate d'aluminium), chlorure, sulfate, perchlorate, chloroacétate, trichloroacétate, bromoacétate, dibromoacétate, et les anions de formule générale : R-COO comme les formiates et les acétates.
Selon l’étape s5), les billes d’alumine obtenues à l’issue de l’étape s4) subissent une calcination à une température comprise entre 500°C et 820°C, préférentiellement entre 550°C et 750°C, et pendant une durée comprise généralement entre 1 heure et 24 heures, de préférence entre 1 heure et 6 heures. A l’issue de cette étape, les billes d’alumine obtenues comprennent une surface spécifique entre 50 et 210 m2/g, de préférence entre 70 et 180 m2/g, et encore plus préférentiellement entre 70 et 160 m2/g.
Procédé de préparation du catalyseur
Le catalyseur utilisé dans le cadre du procédé d’hydrodésulfuration selon l’invention peut être obtenu par un procédé de préparation comprenant au moins les étapes suivantes : a) on met en contact le support d’alumine avec au moins un sel métallique en solution comprenant au moins un métal du groupe VIII ; b) on réalise une étape de séchage du solide obtenu à l’issue l’étape a) à une température inférieure à 200°C pour obtenir un précurseur de catalyseur séché ; c) optionnellement, on calcine le précurseur de catalyseur séché obtenu à l’issue de l’étape b), à une température supérieure ou égale à 200°C et inférieure ou égale à 1100°C sous atmosphère inerte ou sous atmosphère contenant de l’oxygène pour obtenir un précurseur de catalyseur calciné ; d) optionnellement, on réduit le précurseur de catalyseur obtenu à l’issue de l’étape b), ou éventuellement à l’issue de l’étape c), pour obtenir un précurseur de catalyseur réduit, e) optionnellement, on sulfure le précurseur de catalyseur obtenu à l’issue de l’étape b), ou éventuellement à l’issue de l’étape c) ou d).
Les étapes du procédé de préparation du catalyseur sont décrites en détail ci-après.
Etape a)
Selon l’étape a), on met en contact le support poreux avec un sel métallique en solution comprenant au moins un métal du groupe VIII. Selon l’étape a), la mise en contact dudit support poreux et du sel métallique en solution peut se faire par toute méthode connue de l’Homme du métier. De manière préférée ladite étape a) est réalisée par imprégnation à sec, laquelle consiste à mettre en contact le support poreux avec un volume de ladite solution compris entre 0,25 et 1,5 fois le volume poreux du support. Ladite solution contenant au moins un sel métallique comprenant au moins un métal du groupe VIII peut être aqueuse ou organique, de préférence aqueuse.
Selon l’étape a), on fournit au moins un sel métallique comprenant au moins un métal appartenant au groupe VIII. De manière préférée le métal est le nickel. De manière préférée le sel métallique est hydraté. De manière préférée, le sel métallique est un sel de nitrate hydraté. De manière préférée, le sel métallique est le nitrate de nickel hexahydraté (Ni(NC>3)2, 6H20).
Etape b)
Selon l’étape b), on réalise une étape de séchage du solide obtenu à l’issue de l’étape a) à une température inférieure à 200°C pour obtenir un précurseur de catalyseur séché. De préférence, le séchage est réalisé à une température comprise entre 50 et 180°C, de préférence entre 70 et 150°C, de manière très préférée entre 75 et 130°C. L’étape de séchage est préférentiellement réalisée pendant une durée typiquement comprise entre 10 minutes et 24 heures. Des durées plus longues ne sont pas exclues, mais n’apportent pas nécessairement d’amélioration.
L’étape de séchage peut être effectuée par toute technique connue de l’Homme du métier. Elle est avantageusement effectuée à pression atmosphérique ou à pression réduite. De manière préférée, cette étape est réalisée à pression atmosphérique. Elle est avantageusement effectuée en utilisant de l'air ou tout autre gaz chaud. De manière préférée, le gaz utilisé est soit l'air, soit un gaz inerte comme l'argon ou l'azote. De manière très préférée, le séchage est réalisé en présence d'azote et/ou d’air.
Etape c) (étape optionnelle)
Selon l’étape c), le solide obtenu à l’issue de l’étape b) subit un traitement de calcination à une température supérieure ou égale à 200°C et inférieure ou égale à 1100°C, de préférence comprise entre 250°C et 650°C, et de manière très préférée entre 300°C et 500°C, sous atmosphère inerte (azote par exemple) ou sous une atmosphère contenant de l’oxygène (air par exemple). La durée de ce traitement thermique est généralement inférieure à 16 heures, de préférence inférieure à 5 heures. Après ce traitement, l’élément du groupe VIII se trouve sous forme oxyde et le solide ne contient plus ou très peu de contre-ions et d’eau de cristallisation présents initialement dans le sel métallique. L’étape de calcination peut être effectuée par toute technique connue de l’Homme du métier. Elle est avantageusement effectuée en lit traversé ou en lit fluidisé en utilisant de l'air ou tout autre gaz chaud. On obtient un précurseur de catalyseur calciné. Etape d) (étape optionnelle)
Préalablement à la sulfuration du catalyseur, on effectue optionnellement au moins une étape de traitement réducteur en présence d’un gaz réducteur après l’étape b), éventuellement après l’étape c), de manière à obtenir un catalyseur comprenant au moins un métal du groupe VIII au moins partiellement sous forme métallique. Ce traitement permet de former des particules métalliques, en particulier du groupe VIII à l'état zéro valent. Le gaz réducteur est de préférence l'hydrogène. L'hydrogène peut être utilisé pur ou en mélange (par exemple un mélange hydrogène/azote, hydrogène/argon, hydrogène/méthane). Dans le cas où l'hydrogène est utilisé en mélange, toutes les proportions sont envisageables.
Ledit traitement réducteur est préférentiellement réalisé à une température comprise entre 120 et 500°C, de préférence entre 150 et 450°C. La durée du traitement réducteur est généralement comprise entre 2 et 40 heures, de préférence entre 3 et 30 heures. La montée en température jusqu'à la température de réduction désirée est généralement lente, par exemple fixée entre 0,1 et 10°C/min, de préférence entre 0,3 et 7°C/min. On obtient un précurseur de catalyseur réduit.
Après l’étape b) ou après les étapes optionnelles c) ou d), le produit obtenu (précurseur de catalyseur, séché, calciné ou réduit) est avantageusement sulfuré de manière à former le sulfure de groupe VIII. Cette sulfuration s’effectue par les méthodes bien connues de l'homme de l'art, et avantageusement sous une atmosphère su Ifo- réductrice en présence d’hydrogène et d’hydrogène sulfuré. La sulfuration est réalisée en injectant sur le catalyseur un flux contenant de l'H2S et de l'hydrogène, ou bien un composé soufré susceptible de se décomposer en H2S en présence du catalyseur et de l'hydrogène. Les polysulfures tel que le diméthyldisulfure sont des précurseurs d'H2S couramment utilisés pour sulfurer le catalyseur. La température est ajustée afin que l'H2S réagisse avec le groupe VIII pour former du sulfure de groupe VIII. Cette sulfuration peut être réalisée in situ ou ex situ (en dedans ou en dehors du réacteur du procédé de finition). Avantageusement elle est effectuée ex-situ. Généralement elle est effectuée à des températures comprises entre 200 et 600°C et plus préférentiellement entre 250 et 500°C. Pour être actif, le groupe VIII doit de préférence être substantiellement sulfuré. Les conditions opératoires de la sulfuration, notamment la nature de l’agent sulfurant, le ratio H2S/hydrogène, la température et la durée de la sulfuration seront de préférence adaptés en fonction du produit obtenu après l’étape b) ou après les étapes optionnelles c) ou d), de manière à obtenir une bonne sulfuration du métal du groupe VIII, c'est-à-dire que le métal du groupe VIII est en grande partie et de préférence entièrement sulfuré. Le taux de sulfuration des métaux constituants la phase active dudit catalyseur est avantageusement au moins égal à 60%, de préférence au moins égal à 80%. La teneur en soufre dans le matériau sulfuré est mesurée par analyse élémentaire selon ASTM D5373. Un métal est considéré comme sulfuré lorsque le taux de sulfuration global défini par le rapport molaire entre le soufre (S) présent sur ledit catalyseur et ledit métal est au moins égal à 60% du rapport molaire théorique correspondant à la sulfuration totale du(des) métal(aux) considéré(s). Le taux de sulfuration global est défini par l’équation suivante :
(S/élém©ill)catalyseur 0,0 X (S/éI©meüf)théQrique dans laquelle :
(S/métal)cataiyseur est le rapport molaire entre le soufre (S) et le métal présent sur le catalyseur ;
(S/métal)théorique est le rapport molaire entre le soufre et le métal correspondant à la sulfuration totale du métal en sulfure.
Ce rapport molaire théorique varie selon le métal considéré :
(S/Ni)théorique 1/1
L'invention est illustrée par les exemples qui suivent.
Exemples
Exemple 1 : Catalyseur A (selon l’invention)
Le support S1 du catalyseur A est préparé par déshydratation d'hydrargillite (EMPLURA®, Merck™) afin d'obtenir une poudre d'alumine. La température est fixée à 800°C et le temps de contact du matériau à déshydrater avec un débit d’air sec est de 1 seconde. La poudre d'alumine obtenue est broyée dans une granulométrie comprise entre 10 à 200 pm puis est lavée trois fois avec un volume d'eau distillée égal à 2 fois le volume de la poudre mise en œuvre. Ladite poudre d’alumine est mise en forme en présence de noir de carbone (N990 Thermax ®) avec un granulateur à plateau (GRELBEX™ P30) équipé d’un bol cylindrique de forme conique à un angle de 30° et une vitesse de rotation de 40 tours par minutes de manière à obtenir des billes d'un diamètre compris majoritairement entre 2 et 4 mm après tamisage du solide. La quantité de noir de carbone est ajustée pour obtenir une densité de remplissage en cru des objets de 800 kg/m3. Lesdites billes subissent un traitement thermique sous air à 720°C de manière à leur procurer une surface spécifique de 200 m2/g. Ensuite, on applique un traitement hydrothermal auxdites billes par imprégnation au volume poreux avec une solution aqueuse d’acide nitrique (0,1 N, Merck™). Le traitement hydrothermal est conduit à une température de 200°C durant 6,5 heures, dans un autoclave à panier rotatif. Les billes ainsi obtenues subissent un dernier traitement de calcination sous air à 650°C pendant 2 heures. Le support S1 présente une surface spécifique de 141 m2/g, un volume poreux total de 0,97 mL/g ainsi que la répartition poreuse suivante donnée par porosimétrie au mercure :
- un volume de mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm, dont la distribution poreuse est centrée sur 13 nm, de 0,15 mL/g correspondant à 15% du volume poreux total ;
- un volume de mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm, dont la distribution poreuse est centrée sur 26 nm, de 0,43 ml_/g correspondant à 44% du volume poreux total ;
- un volume de macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm de 0,39 ml_/g, correspondant à 40% du volume poreux total.
Le support S1 présente un volume de reprise en eau de 0,95 mL/g. La solution d’imprégnation est préparée par dilution de 8,24 grammes de nitrate de nickel (Ni(NC>3)2, 6H2O, 99,5%, Merck™) dans 37,2 mL d’eau distillée. Après imprégnation à sec de 40 grammes de support et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. On obtient un précurseur de catalyseur. Une deuxième étape d’imprégnation est réalisée avec une solution préparée par dilution de 22,64 grammes de nitrate de nickel (Ni(NC>3)2, 6H20, 99,5%, Merck™) dans 33,7 mL d’eau distillée. Après imprégnation à sec du précurseur de catalyseur et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. Le solide est ensuite calciné sous air à 450°C pendant 2 heures. Le catalyseur calciné ainsi obtenu est noté A. La composition finale en métaux du catalyseur exprimée sous forme d'oxydes et rapportée au poids du catalyseur sec est alors la suivante : NiO = 17,0 +/- 0,2 % poids par rapport au poids total du catalyseur (soit une teneur en élément Ni de 13,4% en poids). Le catalyseur A possède un volume poreux total de 0,88 mL/g et une surface spécifique de 118 m2/g.
Exemple 2 : Catalyseur B non conforme (Catalyseur macroporeux et grand mésoporeux monomodal)
Le support S2 du catalyseur B est préparé par déshydratation d'hydrargillite (EMPLURA ® , Merck™) afin d'obtenir une poudre d'alumine active. La température est fixée à 800°C et le temps de contact du matériau à déshydrater avec un débit d’air sec est de 1 seconde. La poudre d'alumine active obtenue est broyée dans une granulométrie comprise entre 10 à 200 pm puis est lavée trois fois avec un volume d'eau distillée égal à 2 fois le volume de la poudre mise en œuvre. Ladite poudre d’alumine active est mise en forme avec un granulateur à plateau (GRELBEX™ P30) équipé d’un bol cylindrique de forme conique à un angle de 30° et une vitesse de rotation de 40 tours par minutes de manière à obtenir des billes d'un diamètre compris majoritairement entre 2 et 4 mm (après tamisage du solide) et une densité de remplissage en cru des objets de 780 kg/m3. Lesdites billes subissent un traitement thermique sous air à 700°C de manière à leur procurer une surface spécifique de 250 m2/g. Ensuite, on applique un traitement hydrothermal auxdites billes par imprégnation au volume poreux avec une solution aqueuse d’acide nitrique (0,1 N, Merck™). Le traitement hydrothermal est conduit à une température de 200°C durant 6,5 heures, dans un autoclave à panier rotatif. Les billes ainsi obtenues subissent un dernier traitement de calcination sous air à 950°C pendant 2 heures. Le support S2 présente une surface spécifique de 71 m2/g, un volume poreux total de 0,56 mL/g ainsi que la répartition poreuse suivante donnée par porosimétrie au mercure :
- un volume de mésopores de diamètre supérieur ou égal à 10 nm et inférieur à 50 nm, dont la distribution poreuse est centrée sur 20 nm, de 0,35 mL/g correspondant à 63% du volume poreux total ;
- un volume de macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm de 0,21 mL/g, correspondant à 38% du volume poreux total.
Le support S2 présente un volume de reprise en eau de 0,54 mL/g. La solution d’imprégnation est préparée par dissolution de 8,24 grammes de nitrate de nickel hexahydraté (Sigma-Aldrich™, pureté ³ 98,5%) dans 21,1 mL d’eau distillée. Après imprégnation à sec de 40 grammes de support et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. On obtient un précurseur de catalyseur. Une deuxième étape d’imprégnation est réalisée sur le précurseur de catalyseur avec une solution préparée par dilution de 22,64 grammes de nitrate de nickel (Ni(NC>3)2, 6H2O, 99,5%, Merck™) dans 18,1 mL d’eau distillée. Le solide est ensuite calciné sous air à 450°C pendant 2 heures. Le catalyseur calciné ainsi obtenu est noté B. La composition finale en métaux du catalyseur exprimée sous forme d'oxydes et rapportée au poids du catalyseur sec est alors la suivante : NiO = 17,0 +/- 0,2 % poids (soit une teneur en élément Ni de 13,4% en poids). Le catalyseur B possède un volume poreux total de 0,46 mL/g et une surface spécifique de 56 m2/g. Exemple 3 : Catalyseur C non-conforme (Catalyseur macroporeux)
On fournit un support commercial S3 (SA52124, UniSpheres ® NorPro™) sous forme de billes de diamètre compris entre 2 et 4 mm. Le support S3 présente une surface spécifique de 8 m2/g, un volume poreux total de 0,33 mL/g ainsi que la répartition poreuse suivante donnée par porosimétrie au mercure :
- un volume de macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm de 0,33 mL/g, correspondant à 100% du volume poreux total.
Le support S3 présente un volume de reprise en eau de 0,47 mL/g. La solution d’imprégnation est préparée par dissolution de 8,24 grammes de nitrate de nickel hexahydraté (Sigma-Aldrich™, pureté ³ 98,5%) dans 18,4 mL d’eau distillée. Après imprégnation à sec de 40 grammes de support et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. On obtient un précurseur de catalyseur. Une deuxième étape d’imprégnation est réalisée avec une solution préparée par dilution de 22,64 grammes de nitrate de nickel (Ni(N03)2, 6H2O, 99,5%, Merck™) dans 15,8 mL d’eau distillée. Après imprégnation à sec de du précurseur de catalyseur et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. Le solide est ensuite calciné sous air à 450°C pendant 2 heures. Le catalyseur calciné ainsi obtenu est noté C. La composition finale en métaux du catalyseur exprimée sous forme d'oxydes et rapportée au poids du catalyseur sec est alors la suivante : NiO = 17,0 +/- 0,2 % poids (soit une teneur en élément Ni de 13,4% en poids). Le catalyseur C possède un volume poreux total de 0,28 mL/g et une surface spécifique de 7 m2/g.
Exemple 4 : Catalyseur D non-conforme (Catalyseur mésoporeux monomodal)
On fournit un support commercial S4 (SA6578, NorPro™) sous forme d’extrudé de 5 mm de diamètre. Le support S4 présente une surface spécifique de 175 m2/g, un volume poreux total de 0,82 mL/g ainsi que la répartition poreuse suivante donnée par porosimétrie au mercure :
- un volume de mésopores de diamètre supérieur ou égal à 2 nm et inférieur ou égal à 20 nm, dont la distribution poreuse est centrée sur 13 nm, de 0,82 mL/g correspondant à 100% du volume poreux total.
Le support S4 présente un volume de reprise en eau de 0,81 mL/g. La solution d’imprégnation est préparée par dissolution de 8,24 grammes de nitrate de nickel hexahydraté (Sigma-Aldrich™, pureté ³ 98,5%) dans 31,7 mL d’eau distillée. Après imprégnation à sec de 40 grammes de support et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. On obtient un précurseur de catalyseur. Une deuxième étape d’imprégnation est réalisée avec une solution préparée par dilution de 22,64 grammes de nitrate de nickel (Ni(N03)2, 6H2O, 99,5%, Merck™) dans 27,2 ml_ d’eau distillée. Après imprégnation à sec du précurseur de catalyseur et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. Le solide est ensuite calciné sous air à 450°C pendant 2 heures. Le catalyseur calciné ainsi obtenu est noté D. La composition finale en métaux du catalyseur exprimée sous forme d'oxydes et rapportée au poids du catalyseur sec est alors la suivante : NiO = 17,0 +/- 0,2 % poids (soit une teneur en élément Ni de 13,4% en poids). Le catalyseur D possède un volume poreux total de 0,67 mL/g et une surface spécifique de 142 m2/g.
Exemple 5 : Catalyseur E non-conforme (Catalyseur macroporeux et petit mésoporeux monomodal)
On fournit un support commercial S5 (SA6176, NorPro™) sous forme d’extrudé de 1,6 mm de diamètre. Le support S5 présente une surface spécifique de 250 m2/g, un volume poreux total de 1,05 mL/g ainsi que la répartition poreuse suivante donnée par porosimétrie au mercure :
- un volume de mésopores de diamètre supérieur ou égal à 2 nm et inférieur ou égal à 20 nm, dont la distribution poreuse est centrée sur 7 nm, de 0,68 mL/g correspondant à 65% du volume poreux total ;
- un volume de macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm de 0,37 ml_/g, correspondant à 35% du volume poreux total.
Le support S5 présente un volume de reprise en eau de 1,02 mL/g. La solution d’imprégnation est préparée par dissolution de 8,24 grammes de nitrate de nickel hexahydraté (Sigma-Aldrich™, pureté ³ 98,5%) dans 39,9 mL d’eau distillée. Après imprégnation à sec de 40 grammes de support et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. On obtient un précurseur de catalyseur. Une deuxième étape d’imprégnation est réalisée avec une solution préparée par dilution de 22,64 grammes de nitrate de nickel (Ni(N03)2, 6H2O, 99,5%, Merck™) dans 34,2 mL d’eau distillée. Après imprégnation à sec du précurseur de catalyseur et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. Le solide est ensuite calciné sous air à 450°C pendant 2 heures. Le catalyseur calciné ainsi obtenu est noté E. La composition finale en métaux du catalyseur exprimée sous forme d'oxydes et rapportée au poids du catalyseur sec est alors la suivante : NiO = 17,0 +/- 0,2 % poids (soit une teneur en élément Ni de 13,4% en poids). Le catalyseur E possède un volume poreux total de 0,87 mL/g et une surface spécifique de 205 m2/g.
Exemple 6 : Evaluation des performances des catalyseurs mis en œuyre dans un réacteur de finition d’un procédé de désulfurisation.
L’évaluation des performances catalytiques des solides A (conforme) et B à E (non conformes) est effectuée à l’aide d’une charge modèle représentative d'une essence de craquage catalytique partiellement désulfurée issue d’une étape préliminaire d’hydrodésulfuration catalytique, contenant 10% poids de 2,3-diméthylbut-2-ène et 70 ppmS (incluant 42 ppmS d’hexanethiol-1 et 28 ppmS de 3-méthylthiophène). Le solvant utilisé est l'heptane.
La réaction de finition est opérée dans un réacteur à lit fixe traversé sous une pression totale de 1,5 MPa, à 270°C, à WH = 6 h_1 (WH = débit volumique de charge/volume de catalyseur), et un rapport volumique hVcharge de 300 N l/l, en présence de 4 mL de catalyseur. Au préalable à la réaction de finition, le catalyseur est sulfuré in-situ à 350°C pendant 2 heures sous un flux d'hydrogène contenant 15% mol d'h^S à pression atmosphérique. Des échantillons sont prélevés à différents intervalles de temps et sont analysés par chromatographie en phase gazeuse de façon à observer la disparition des réactifs et la formation des produits. Les performances catalytiques des catalyseurs sont évaluées en termes de conversion du 3- méthylthiophène et de l’hexanethiol-1.
Figure imgf000024_0001
Les conversions du 3-méthylthiophène observées avec le catalyseur A sont supérieures à celles observées avec les catalyseurs comparatifs B et C, les conversions en hexanethiol-1 et 2,3-diméthylbut-2-ène étant sensiblement équivalentes par ailleurs.
Par comparaison avec les catalyseurs D et E, les conversions du 3-méthylthiophène et en hexanethiol-1 observées avec le catalyseur A sont équivalentes, les conversions en 2,3- diméthylbut-2-ène pour le catalyseur A étant significativement plus faibles par ailleurs. Le catalyseur A est donc plus sélectif que les catalyseurs comparatifs D et E.
Ce comportement du catalyseur selon l’invention est particulièrement intéressant dans le cas d'une mise en œuvre dans un procédé d'hydrodésulfuration d'essence contenant des oléfines pour lequel on cherche à assurer une désulfuration profonde et limiter autant que possible la perte d'octane due à l'hydrogénation des oléfines.

Claims

REVENDICATIONS
1. Procédé de traitement d’une charge hydrocarbonée contenant du soufre, partiellement désulfurée issue d’une étape préliminaire d’hydrodésulfuration catalytique, ledit procédé étant réalisé à une température comprise entre 200°C et 400°C, une pression comprise entre 0,2 et 5 MPa, à une vitesse volumique horaire, définie comme le débit volumique de charge en entrée par volume de catalyseur utilisé, comprise entre 0,1 h 1 et 20 h 1, en présence d’un catalyseur comprenant une phase active comprenant au moins un métal du groupe VIII, ladite phase active ne comprenant pas de métal du groupe VI B, et un support d’alumine mésoporeux et macroporeux comprenant une distribution bimodale de mésopores et dans lequel :
- le volume des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 10 et 30% en volume du volume poreux total dudit support ;
- le volume des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 30 et 50% en volume du volume poreux total dudit support ;
- le volume des macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 30 et 50% en volume du volume poreux total dudit support.
2. Procédé selon la revendication 1, dans lequel ledit support comprend une surface spécifique comprise entre 50 et 210 m2/g.
3. Procédé selon l’une des revendications 1 ou 2, dans lequel ledit support comprend un volume poreux total compris entre 0,7 et 1,3 mL/g.
4. Procédé selon l’une quelconque des revendications 1 à 3, dans lequel le volume des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 15 et 25% en volume du volume poreux total dudit support.
5. Procédé selon l’une quelconque des revendications 1 à 4, dans lequel le volume des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 35 et 45% en volume du volume poreux total dudit support.
6. Procédé selon l’une quelconque des revendications 1 à 5, dans lequel le volume des macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 35 à 50% en volume du volume poreux total dudit support.
7. Procédé selon l’une quelconque des revendications 1 à 5, dans lequel la teneur en métal du groupe VIII dudit catalyseur, exprimée en élément groupe VIII, est comprise entre 5 et 65% en poids par rapport au poids total dudit catalyseur.
8. Procédé selon l’une quelconque des revendications 1 à 7, dans lequel le métal du groupe VIII est le nickel.
9. Procédé selon l’une quelconque des revendications 1 à 8, dans lequel la distribution poreuse des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm est centrée sur une plage de valeur comprise entre 10,5 et 14,5 nm.
10. Procédé selon l’une quelconque des revendications 1 à 9, dans lequel la distribution poreuse des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm est centrée sur une plage de valeur comprise entre 22 et 28 nm.
11. Procédé selon l’une quelconque des revendications 1 à 10, dans lequel ledit support comprend une surface spécifique comprise entre 70 et 180 m2/g.
12. Procédé selon l’une quelconque des revendications 1 à 11, dans lequel ledit support se présente sous la forme de billes de diamètre compris entre 2 et 4 mm.
13. Procédé selon la revendication 12, dans lequel ledit support est obtenu selon les étapes suivantes : s1) déshydratation d’un hydroxyde d’aluminium ou d’un oxyhydroxyde d’aluminium à une température comprise entre 400°C et 1200°C, de préférence entre 600°C et 900°C, pendant une durée comprise entre 0,1 seconde et 5 secondes, de préférence entre 0,1 seconde et 4 secondes, pour obtenir une poudre d’alumine ; s2) mise en forme de ladite poudre d’alumine obtenue à l’étape s1) sous forme de billes ; s3) traitement thermique des billes d’alumine obtenues à l’étape s2) à une température supérieure ou égale à 200°C ; s4) traitement hydrothermal des billes d’alumine obtenues à l’issue de l’étape s3) par imprégnation avec de l'eau ou une solution aqueuse, puis séjour dans un autoclave à une température comprise entre 100°C et 300°C ; s5) calcination des billes d’alumine obtenues à l’issue de l’étape s4) à une température comprise entre 500°C et 820°C.
14. Procédé selon l’une quelconque des revendications 1 à 13, dans lequel ladite charge hydrocarbonée partiellement désulfurée contient moins de 100 ppm poids de soufre.
PCT/EP2021/082069 2020-11-27 2021-11-18 Procede d'hydrodesulfuration de finition en presence d'un catalyseur sur support meso-macroporeux WO2022112081A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020237017336A KR20230113298A (ko) 2020-11-27 2021-11-18 메조-마크로포러스 지지체상에서 촉매의 존재하에 수소화탈황의 마무리를 수행하는 방법
EP21810365.3A EP4251717A1 (fr) 2020-11-27 2021-11-18 Procede d'hydrodesulfuration de finition en presence d'un catalyseur sur support meso-macroporeux
JP2023532275A JP2023550823A (ja) 2020-11-27 2021-11-18 メソ-マクロ多孔性担体上の触媒の存在中での仕上げ水素化脱硫の実施方法
AU2021388768A AU2021388768A1 (en) 2020-11-27 2021-11-18 Method for conducting finishing hydrodesulphurisation in the presence of a catalyst on a meso-macroporous support
CN202180079690.2A CN116568395A (zh) 2020-11-27 2021-11-18 在中孔-大孔载体上的催化剂存在下进行精制加氢脱硫的方法
US18/036,544 US20240010931A1 (en) 2020-11-27 2021-11-18 Method for conducting finishing hydrodesulphurisation in the presence of a catalyst on a meso-macroporous support
MX2023005247A MX2023005247A (es) 2020-11-27 2021-11-18 Proceso de acabado de hidrodesulfuracion en la presencia de un catalizador sobre un soporte meso-macroporoso.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2012321A FR3116832B1 (fr) 2020-11-27 2020-11-27 Procede d’hydrodesulfuration de finition en presence d’un catalyseur sur support meso-macroporeux
FRFR2012321 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022112081A1 true WO2022112081A1 (fr) 2022-06-02

Family

ID=74347325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/082069 WO2022112081A1 (fr) 2020-11-27 2021-11-18 Procede d'hydrodesulfuration de finition en presence d'un catalyseur sur support meso-macroporeux

Country Status (9)

Country Link
US (1) US20240010931A1 (fr)
EP (1) EP4251717A1 (fr)
JP (1) JP2023550823A (fr)
KR (1) KR20230113298A (fr)
CN (1) CN116568395A (fr)
AU (1) AU2021388768A1 (fr)
FR (1) FR3116832B1 (fr)
MX (1) MX2023005247A (fr)
WO (1) WO2022112081A1 (fr)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266300A (en) 1989-08-02 1993-11-30 Texaco Inc. Method of making porous alumina
FR2757084A1 (fr) * 1996-12-13 1998-06-19 Rhodia Chimie Sa Utilisation pour l'oxydation directe des composes soufres en soufre et/ou sulfates a basse temperature d'un catalyseur a base de molybdene
EP1077247A1 (fr) 1999-08-19 2001-02-21 Institut Francais Du Petrole Procédé de production d'essences à faible teneur en soufre
EP1174485A1 (fr) 2000-07-06 2002-01-23 Institut Francais Du Petrole Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S
US6589908B1 (en) 2000-11-28 2003-07-08 Shell Oil Company Method of making alumina having bimodal pore structure, and catalysts made therefrom
CA2615225A1 (fr) * 2006-12-21 2008-06-21 Institut Francais Du Petrole Procede d'hydroconversion en phase slurry de charges hydrocarbonees lourdes et ou de charbon utilisant un catalyseur supporte
US7790130B2 (en) 2007-08-31 2010-09-07 Uop Llc Wide mesoporous alumina composites having trimodal pore structure
CN104248985A (zh) 2013-06-28 2014-12-31 中国石油化工股份有限公司 球形蒙脱石介孔复合载体和负载型催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN104248987A (zh) 2013-06-28 2014-12-31 中国石油化工股份有限公司 球形蒙脱石介孔复合材料和负载型催化剂及其制备方法和应用以及乙酸乙酯的制备方法
US20150314282A1 (en) * 2014-05-01 2015-11-05 Shell Oil Company Catalyst and its use for the selective hydrodesulfurization of an olefin containing hydrocarbon feedstock
CN108855197A (zh) 2017-05-10 2018-11-23 中国石油化工股份有限公司 丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法
CN109894122A (zh) * 2017-12-07 2019-06-18 中国石油天然气股份有限公司 一种fcc汽油加氢脱硫催化剂及其制备方法
US10562014B2 (en) * 2016-03-23 2020-02-18 Shell Oil Company High metals content hydrolysis catalyst for use in the catalytic reduction of sulfur contained in a gas stream, and a method of making and using such composition

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266300A (en) 1989-08-02 1993-11-30 Texaco Inc. Method of making porous alumina
FR2757084A1 (fr) * 1996-12-13 1998-06-19 Rhodia Chimie Sa Utilisation pour l'oxydation directe des composes soufres en soufre et/ou sulfates a basse temperature d'un catalyseur a base de molybdene
EP1077247A1 (fr) 1999-08-19 2001-02-21 Institut Francais Du Petrole Procédé de production d'essences à faible teneur en soufre
EP1174485A1 (fr) 2000-07-06 2002-01-23 Institut Francais Du Petrole Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S
US6589908B1 (en) 2000-11-28 2003-07-08 Shell Oil Company Method of making alumina having bimodal pore structure, and catalysts made therefrom
CA2615225A1 (fr) * 2006-12-21 2008-06-21 Institut Francais Du Petrole Procede d'hydroconversion en phase slurry de charges hydrocarbonees lourdes et ou de charbon utilisant un catalyseur supporte
US7790130B2 (en) 2007-08-31 2010-09-07 Uop Llc Wide mesoporous alumina composites having trimodal pore structure
CN104248985A (zh) 2013-06-28 2014-12-31 中国石油化工股份有限公司 球形蒙脱石介孔复合载体和负载型催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN104248987A (zh) 2013-06-28 2014-12-31 中国石油化工股份有限公司 球形蒙脱石介孔复合材料和负载型催化剂及其制备方法和应用以及乙酸乙酯的制备方法
US20150314282A1 (en) * 2014-05-01 2015-11-05 Shell Oil Company Catalyst and its use for the selective hydrodesulfurization of an olefin containing hydrocarbon feedstock
US10562014B2 (en) * 2016-03-23 2020-02-18 Shell Oil Company High metals content hydrolysis catalyst for use in the catalytic reduction of sulfur contained in a gas stream, and a method of making and using such composition
CN108855197A (zh) 2017-05-10 2018-11-23 中国石油化工股份有限公司 丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法
CN109894122A (zh) * 2017-12-07 2019-06-18 中国石油天然气股份有限公司 一种fcc汽油加氢脱硫催化剂及其制备方法

Also Published As

Publication number Publication date
US20240010931A1 (en) 2024-01-11
FR3116832A1 (fr) 2022-06-03
CN116568395A (zh) 2023-08-08
FR3116832B1 (fr) 2023-11-03
KR20230113298A (ko) 2023-07-28
EP4251717A1 (fr) 2023-10-04
JP2023550823A (ja) 2023-12-05
MX2023005247A (es) 2023-05-23
AU2021388768A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
EP2962753B1 (fr) Catalyseur d'hydrotraitement à densité de molybdène élevée et méthode de préparation
EP3191221B1 (fr) Catalyseur mesoporeux a base de nickel et son utilisation en hydrogenation d'hydrocarbures
EP3154685B1 (fr) Catalyseur mesoporeux et macroporeux a base de nickel ayant un diametre median macroporeux compris entre 50 nm et 200 nm et son utilisation en hydrogenation d'hydrocarbures
EP3740309B1 (fr) Procede de preparation d'un catalyseur particulier d'hydrogenation selective et d'hydrogenation des aromatiques par malaxage
EP3154684B1 (fr) Catalyseur a base de nickel mesoporeux et macroporeux ayant un diametre median macroporeux superieur a 200 nm et son utilisation en hydrogenation d'hydrocarbures
EP3154686A1 (fr) Catalyseur mesoporeux et macroporeux a base de nickel obtenu par comalaxage et ayant un diametre median macroporeux superieur a 300 nm et son utilisation en hydrogenation d'hydrocarbures
WO2021122059A1 (fr) Masse de captation de mercaptans preparee par voie sels fondus
EP4251717A1 (fr) Procede d'hydrodesulfuration de finition en presence d'un catalyseur sur support meso-macroporeux
EP4251716A1 (fr) Procede de captation d'impuretes organometalliques en presence d'une masse de captation sur support meso-macroporeux
EP4251713A1 (fr) Procede d'hydrogenation selective d'une essence en presence d'un catalyseur sur support meso-macroporeux
EP4251715A1 (fr) Procede d'hydrodesulfuration en presence d'un catalyseur sur support meso-macroporeux
FR3104602A1 (fr) Procédé d’hydrodésulfuration de finition en présence d’un catalyseur obtenu par la voie sels fondus
EP4326435A1 (fr) Catalyseur contenant du phosphore et du sodium et son utilisation dans un procede d'hydrodesulfuration
EP4251714A1 (fr) Procede d'hydrodesulfuration mettant en oeuvre un catalyseur comprenant un support d'alumine flash
WO2021151731A1 (fr) Procede d'hydrodesulfuration de finition en presence d'un catalyseur obtenu par additivation
WO2023110728A1 (fr) Procédé de captation de mercaptans mettant en œuvre une masse de captation mésoporeuse
WO2023110730A1 (fr) Procede de captation de mercaptans mettant en œuvre une masse de captation macro et mesoporeuse
WO2023110732A1 (fr) Procede de captation de mercaptans avec selection de temperature et rapport en ni/nio specifique
FR3104460A1 (fr) Masse de captation d'impuretés organométalliques préparée par la voie sels fondus
WO2023117533A1 (fr) Procede de traitement d'une essence contenant des composes soufres comprenant une etape de dilution
WO2022112094A1 (fr) Procede d'hydrodesulfuration d'une coupe essence mettant en œuvre un catalyseur ayant une porosite bimodale particuliere
WO2023110733A1 (fr) Procede de captation de mercaptans mettant en œuvre une masse de captation ayant subi une etape de passivation au co2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21810365

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023006794

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 18036544

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023532275

Country of ref document: JP

Ref document number: 202180079690.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021388768

Country of ref document: AU

Date of ref document: 20211118

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021810365

Country of ref document: EP

Effective date: 20230627

ENP Entry into the national phase

Ref document number: 112023006794

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230412

WWE Wipo information: entry into national phase

Ref document number: 523440913

Country of ref document: SA