WO2022112078A1 - Procede d'hydrodesulfuration en presence d'un catalyseur sur support meso-macroporeux - Google Patents

Procede d'hydrodesulfuration en presence d'un catalyseur sur support meso-macroporeux Download PDF

Info

Publication number
WO2022112078A1
WO2022112078A1 PCT/EP2021/082066 EP2021082066W WO2022112078A1 WO 2022112078 A1 WO2022112078 A1 WO 2022112078A1 EP 2021082066 W EP2021082066 W EP 2021082066W WO 2022112078 A1 WO2022112078 A1 WO 2022112078A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
catalyst
support
equal
less
Prior art date
Application number
PCT/EP2021/082066
Other languages
English (en)
Inventor
Philibert Leflaive
Etienne Girard
Antoine Fecant
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to JP2023532271A priority Critical patent/JP2023550820A/ja
Priority to EP21807139.7A priority patent/EP4251715A1/fr
Priority to AU2021387713A priority patent/AU2021387713A1/en
Priority to US18/036,540 priority patent/US20230415131A1/en
Priority to KR1020237017333A priority patent/KR20230115292A/ko
Priority to CN202180079711.0A priority patent/CN116547070A/zh
Priority to MX2023005253A priority patent/MX2023005253A/es
Publication of WO2022112078A1 publication Critical patent/WO2022112078A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/653500-1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/695Pore distribution polymodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the present invention relates to the field of the hydrotreating of gasoline cuts, in particular gasoline cuts from fluidized bed catalytic cracking units. More particularly, the present invention relates to the use of a catalyst in a process for the hydrodesulfurization of an olefinic gasoline cut containing sulfur, such as gasolines resulting from catalytic cracking, for which it is sought to reduce the content of compounds sulfur, without hydrogenating olefins and aromatics.
  • Petroleum refining and petrochemicals are now subject to new constraints. Indeed, all countries are gradually adopting strict sulfur specifications, the objective being to achieve, for example, 10 ppm (weight) of sulfur in commercial gasoline in Europe and Japan.
  • the problem of reducing sulfur content essentially focuses on gasolines obtained by cracking, whether catalytic (FCC Fluid Catalytic Cracking according to Anglo-Saxon terminology) or non-catalytic (coking, visbreaking, steam cracking), the main precursors of sulfur in gasoline pools.
  • a solution, well known to those skilled in the art, for reducing the sulfur content consists in carrying out a hydrotreatment (or hydrodesulphurization) of the hydrocarbon cuts (and in particular gasolines from catalytic cracking) in the presence of hydrogen and a heterogeneous catalyst.
  • this process has the major drawback of causing a very significant drop in the octane number if the catalyst used is not selective enough. This decrease in the octane number is in particular linked to the hydrogenation of the olefins present in this type of gasoline concomitantly with the hydrodesulphurization.
  • the hydrodesulphurization of gasolines must therefore make it possible to respond to a double antagonistic constraint: to ensure deep hydrodesulphurization of gasolines and to limit the hydrogenation of the unsaturated compounds present.
  • hydrodesulphurization catalysts which comprise an active metal phase containing cobalt/molybdenum and a support based on high temperature alumina (i.e. say calcined at a temperature above 800° C.) and containing less than 50% by weight of gamma, eta and chi alumina, and with a specific surface area of between 40 and 200 m 2 /g.
  • the catalysts are obtained by dry impregnation of an aqueous solution containing cobalt, molybdenum and at least one additive in the form of an organic compound.
  • Document EP 1892039 describes selective hydrodesulphurization catalysts comprising at least one support, at least one element from group VIII, at least one element from group VIB and phosphorus in which the support can consist essentially of at least one transition alumina , that is to say that it comprises at least 51% by weight of transition alumina, said support possibly having a specific surface of less than 135 m 2 /g.
  • porous distribution of the catalyst supports can have a beneficial impact on the catalytic performances, in particular the fact of having multimodal porosities.
  • Document CN109894122 discloses a process for the hydrodesulphurization of a catalytic cracking gasoline (FCC) in the presence of a catalyst comprising an active phase based on cobalt and molybdenum, alkaline dopants, and a mesoporous and macroporous alumina support.
  • FCC catalytic cracking gasoline
  • the support used comprises a monomodal distribution of mesopores and a monomodal distribution of macropores.
  • Document CN109420504 discloses a process for the hydrodesulfurization of a catalytic cracking gasoline (FCC) in the presence of a catalyst comprising an active phase based on cobalt and molybdenum, and a mesoporous and macroporous alumina support, in which the volume of pores with a diameter of between 60 and 200 nm represents between 1 and 80% of the total pore volume of the support, and the volume of pores with a diameter of between 5 and 50 nm represents between 20 and 70% of the total pore volume of the support.
  • the support used comprises a monomodal distribution of mesopores and a monomodal distribution of macropores.
  • one of the objectives of the present invention is to propose a process for the hydrodesulphurization of an olefinic gasoline cut containing sulfur, in the presence of a supported catalyst having performances in activity and in selectivity, at least as good, or even better than the methods known from the state of the art.
  • the subject of the present invention is a process for the hydrodesulphurization of an olefinic gasoline cut containing sulfur in which said gasoline cut is brought into contact with hydrogen and a catalyst, said hydrodesulphurization process being carried out at a temperature between 200 and 400°C, a total pressure of between 1 and 3 MPa, an hourly volume velocity, defined as being the volume flow rate of charge relative to the volume of the catalyst, of between 1 and 10 h -1 , and a volume ratio hydrogen/ gasoline cut between 100 and 600 Nl/l, said catalyst comprising at least one metal from group VIB, at least one metal from group VIII, and a macroporous and mesoporous alumina support comprising a bimodal distribution of mesopores, and in which:
  • the volume of mesopores with a diameter greater than or equal to 2 nm and less than 18 nm corresponds between 10 and 30% by volume of the total pore volume of said support;
  • the volume of mesopores with a diameter greater than or equal to 18 nm and less than 50 nm corresponds between 30 and 50% by volume of the total pore volume of said support;
  • the volume of macropores with a diameter greater than or equal to 50 nm and less than 8000 nm corresponds between 30 to 50% by volume of the total pore volume of said support.
  • a catalyst based on at least one metal from group VIB, at least one metal from group VIII, on a mesoporous and macroporous support, having both a mesoporous bimodal, with a high mesoporous volume coupled to a determined macroporous volume makes it possible to improve the catalytic performance of said process, in terms of catalytic activity and in terms of selectivity. This results in better feed conversion under identical operating conditions than those used in the prior art. Indeed, without being linked to any scientific theory, the use of such a catalyst in a gasoline hydrodesulphurization process improves the phenomena of internal diffusion of the reactants and of the products by the presence of populations of different sizes of mesopores.
  • the combined presence of macroporosity is particularly judicious when the feed to be treated contains a significant quantity of reactive olefins (unsaturated compounds), in particular diolefins, which is the case of gasolines, which can give rise to the formation of gums and thus blocking the porosity of the catalyst without the presence of macroporosity.
  • reactive olefins unsaturated compounds
  • diolefins which is the case of gasolines
  • said support comprises a specific surface of between 50 and 210 m 2 /g.
  • said support comprises a total pore volume of between 0.7 and 1.3 mL/g.
  • the volume of mesopores with a diameter greater than or equal to 2 nm and less than 18 nm corresponds between 15 and 25% by volume of the total pore volume of said support.
  • the volume of mesopores with a diameter greater than or equal to 18 nm and less than 50 nm corresponds between 35 and 45% by volume of the total pore volume of said support.
  • the volume of the macropores with a diameter greater than or equal to 50 nm and less than 8000 nm corresponds between 35 to 50% by volume of the total porous volume of said support.
  • the metal content of group VIB of said catalyst, expressed in oxide form, is between 1 and 30% by weight relative to the total weight of the catalyst.
  • the group VIII metal content of said catalyst is between 0.5 and 10% by weight relative to the total weight of said catalyst.
  • the Group VIII metal is cobalt. In one or more embodiments, the Group VIB metal is molybdenum.
  • said catalyst further comprises phosphorus, the phosphorus content, expressed in P2O5 form, is between 0.1 and 10% by weight relative to the total weight of said catalyst.
  • the porous distribution of the mesopores with a diameter greater than or equal to 2 nm and less than 18 nm is centered on a range of values comprised between 10.5 and 14.5 nm.
  • the porous distribution of the mesopores with a diameter greater than or equal to 18 nm and less than 50 nm is centered on a range of values comprised between 22 and 28 nm.
  • the gasoline is a catalytic cracked gasoline.
  • the support is in the form of balls with a diameter of between 2 and 4 mm.
  • said support in the form of beads is obtained according to the following steps: s1) dehydration of an aluminum hydroxide or an aluminum oxyhydroxide at a temperature between 400°C and 1200°C , preferably between 600° C.
  • alumina powder for a time of between 0.1 second and 5 seconds, preferably between 0.1 second and 4 seconds, to obtain an alumina powder; s2) shaping said alumina powder obtained in step s1) in the form of balls; s3) heat treatment of the alumina balls obtained in step s2) at a temperature greater than or equal to 200° C.; s4) hydrothermal treatment of the alumina balls obtained at the end of step s3) by impregnation with water or an aqueous solution, then residence in an autoclave at a temperature between 100° C. and 300° C.; s5) calcining the alumina balls obtained at the end of step s4) at a temperature between 500°C and 820°C.
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • the BET specific surface is measured by physisorption with nitrogen according to standard ASTM D3663-03, method described in the work Rouquerol F.; Rouquerol J.; Singh K. “Adsorption by Powders & Porous Solids: Principle, methodology and applications”, Academy Press, 1999.
  • micropores are understood to mean pores whose diameter is less than 2 nm, that is to say 0.002 ⁇ m; by mesopores pores whose diameter is greater than 2 nm, ie 0.002 pm and less than 50 nm, ie 0.05 pm and by macropores pores whose diameter is greater than or equal to 50 nm , i.e. 0.05 ⁇ m.
  • total pore volume of the alumina or of the catalyst means the volume measured by intrusion with a mercury porosimeter according to the ASTM D4284-83 standard at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne/cm and a contact angle of 140°.
  • the wetting angle was taken as equal to 140° by following the recommendations of the book “Engineering techniques, analysis and characterization treatise”, p.1050-5, written by Jean Charpin and Bernard Rasneur.
  • the value of the total pore volume in ml/g given in the following text corresponds to the value of the total mercury volume (total pore volume measured by intrusion with a mercury porosimeter) in ml/g measured on the sample minus the mercury volume value in ml/g measured on the same sample for a pressure corresponding to 30 psi (approximately 0.2 MPa).
  • the volume of macropores and mesopores is measured by mercury intrusion porosimetry according to ASTM D4284-83 at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne/cm and a contact angle of 140°.
  • the value from which the mercury fills all the intergranular voids is fixed at 0.2 MPa, and it is considered that beyond that the mercury penetrates into the pores of the sample.
  • the macropore volume of the catalyst is defined as being the cumulative volume of mercury introduced at a pressure of between 0.2 MPa and 30 MPa, corresponding to the volume contained in the pores with an apparent diameter greater than 50 nm.
  • the mesoporous volume of the catalyst is defined as being the cumulative volume of mercury introduced at a pressure of between 30 MPa and 400 MPa, corresponding to the volume contained in the pores with an apparent diameter of between 2 and 50 nm.
  • the pore modes correspond to the inflection points of the function represented.
  • the catalyst used in the context of the hydrodesulfurization process according to the invention comprises an active phase comprising, preferably consisting of, at least one metal from group VIB, at least one metal from group VIII and optionally phosphorus.
  • the group VIB metal present in the active phase of the catalyst is preferably chosen from molybdenum and tungsten, more preferably molybdenum.
  • the group VIII metal present in the active phase of the catalyst is preferably chosen from cobalt, nickel and the mixture of these two elements, more preferably cobalt.
  • the total content of group VIII metal is generally between 0.5 and 10% by weight, expressed in the oxide form of the group VIII metal relative to the total weight of the catalyst, preferably between 1 and 10% by weight, preferably between 1 and 7% by weight, very preferably between 1 and 6% by weight and even more preferably between 1.5 and 5% by weight relative to the total weight of the catalyst.
  • the metal is cobalt or nickel, the metal content is expressed as CoO or NiO respectively.
  • the group VIB metal content is generally between 1 and 30% by weight, expressed in the oxide form of the group VIB metal relative to the total weight of the catalyst, preferably between 3 and 20% by weight, preferably between 5 and 18 % by weight, very preferably between 7 and 14% by weight relative to the total weight of the catalyst.
  • the metal is molybdenum or tungsten
  • the metal content is expressed in MO0 3 OR W0 3 respectively.
  • the phosphorus content when it is present in the catalyst, is between 0.1 and 10% by weight of P2O5 relative to the total weight of catalyst, preferably between 0.5 and 5% by weight of P2O5 relative to the weight total catalyst, and even more preferably between 1 and 3% by weight of P2O5 relative to the total weight of catalyst.
  • the catalyst generally comprises a specific surface of between 50 and 200 m 2 /g, preferably between 60 and 170 m 2 /g and preferably between 70 and 130 m 2 /g.
  • the pore volume of the catalyst is generally between 0.5 mL/g and 1.3 mL/g, preferably between 0.6 mL/g and 1.1 mL/g.
  • the alumina support of the catalyst used in the context of the hydrodesulfurization process according to the invention is a macroporous and mesoporous alumina support comprising a bimodal distribution of mesopores in which:
  • the volume of mesopores with a diameter greater than or equal to 2 nm and less than 18 nm corresponds between 10 and 30% by volume of the total pore volume of said support;
  • the volume of mesopores with a diameter greater than or equal to 18 nm and less than 50 nm corresponds between 30 and 50% by volume of the total pore volume of said support;
  • the volume of macropores with a diameter greater than or equal to 50 nm and less than 8000 nm corresponds between 30 to 50% by volume of the total pore volume of said support.
  • the volume of the mesopores of the support with a diameter greater than or equal to 2 nm and less than 18 nm corresponds to between 15 and 25% by volume of the total porous volume of said support.
  • the volume of the mesopores of the support with a diameter greater than or equal to 18 nm and less than 50 nm corresponds to between 35 and 45% by volume of the total porous volume of said support.
  • the volume of the macropores of the support with a diameter greater than or equal to 50 nm and less than 8000 nm corresponds between 35 to 50% by volume of the total porous volume of said support.
  • the porous distribution of the mesopores with a diameter greater than or equal to 2 nm and less than 18 nm is centered on a range of values comprised between 10.5 and 14.5 nm, preferably between 12 and 13 nm. In one embodiment according to the invention, the porous distribution of the mesopores with a diameter greater than or equal to 18 nm and less than 50 nm is centered on a range of values comprised between 22 and 28 nm, preferably between 23 and 27 nm.
  • the support generally comprises a specific surface of between 50 and 210 m 2 /g, preferably between 70 and 180 m 2 /g, and even more preferably between 70 and 160 m 2 /g.
  • the pore volume of the support is generally between 0.7 mL/g and 1.3 mL/g, preferably between 0.8 mL/g and 1.2 mL/g.
  • the support is in the form of balls with a diameter of between 0.8 and 10 mm, preferentially between 1 and 5 mm, and more preferentially between 2 and 4 mm.
  • alumina support of the catalyst used in the context of the hydrodesulphurization process according to the invention can be synthesized by any method known to those skilled in the art.
  • the alumina support used according to the invention is in the form of beads.
  • the preparation of the support comprises the following steps: s1) dehydration of an aluminum hydroxide or an aluminum oxyhydroxide at a temperature between 400° C. and 1200° C., preferably between 600° C.
  • alumina powder for a period of between 0.1 second and 5 seconds, preferably between 0.1 second and 4 seconds, to obtain an alumina powder; s2) shaping of said alumina powder obtained in step s1) in the form of balls; s3) heat treatment of the beads obtained in step s2) at a temperature greater than or equal to 200° C.; s4) hydrothermal treatment of said alumina balls obtained at the end of step s3) by impregnation with water or a preferentially acidic aqueous solution, then residence in an autoclave at a temperature between 100° C. and 300° C. C, preferably between 150°C and 250°C; s5) calcining the alumina balls obtained at the end of step s4) at a temperature between 500°C and 820°C.
  • Steps s1) to s5) are described in detail below.
  • dehydration of an aluminum hydroxide or an aluminum oxyhydroxide is carried out at a temperature between 400° C. and 1200° C., preferably between 600° C. and 900° C., for a period of between 0.1 second and 5 seconds, preferably between 0.1 second and 4 seconds, to obtain an alumina powder.
  • the aluminum hydroxide can be chosen from hydrargillite, gibbsite or bayerite.
  • the aluminum oxyhydroxide can be chosen from boehmite or diaspore.
  • step s1) is carried out using hydrargillite.
  • step s1) is carried out in the presence of a current of hot gas, such as dry air or humid air, allowing the evaporated water to be eliminated and carried away quickly.
  • a current of hot gas such as dry air or humid air
  • the active alumina powder obtained after the dehydration of the aluminum hydroxide or oxyhydroxide is ground to a particle size of between 10 to 200 ⁇ m.
  • the active alumina powder obtained after the dehydration of aluminum hydroxide or oxyhydroxide is washed with water or an acidic aqueous solution.
  • any mineral or organic acid may be used, preferably nitric acid, hydrochloric acid, perchloric or sulfuric acid for mineral acids, and a carboxylic acid (formic, acetic or malonic acid), a sulphonic acid (para-toluene sulphonic acid) or a sulfuric ester (lauryl sulphate) for organic acids.
  • step s2) the said alumina powder obtained at the end of step s1) is shaped.
  • the shaping of said alumina powder is carried out so as to obtain balls, called granulation, is generally carried out by means of rotating technology such as a rotating bezel or a rotating drum.
  • This type of process makes it possible to obtain balls of controlled diameter and pore distributions, these dimensions and these distributions being, in general, created during the agglomeration step.
  • the porosity can be created by various means, such as the choice of the particle size of the alumina powder or the agglomeration of several alumina powders of different particle sizes. Another method consists in mixing with the alumina powder, before or during the agglomeration step, one or more compounds, called porogens, which disappear on heating and thus create porosity in the balls.
  • pore-forming compounds used mention may be made, by way of example, of wood flour, charcoal, activated carbon, black carbon, sulfur, tars, plastics or emulsions of plastics such as polyvinyl chloride, polyvinyl alcohols, naphthalene or the like.
  • the quantity of pore-forming compounds added is determined by the volume desired to obtain beads with a raw filling density of between 500 and 1100 kg/m 3 , preferably between 700 and 950 kg/m 3 , and with a diameter of between 0.8 and 10 mm, preferably between 1 and 5 mm, and ink more preferably between 2 and 4 mm.
  • a selection by sieving of the balls obtained can be carried out according to the desired particle size.
  • a heat treatment is carried out on the alumina powder shaped in the form of beads obtained at the end of step s2) at a temperature greater than or equal to 200° C., preferably between between 200° C. and 1200° C., preferably between 300 and 900° C., very preferably between 400° C. and 750° C., for a duration generally comprised between 1 and 24 hours, preferably between 1 and 6 hours.
  • the beads obtained at this intermediate step comprise a specific surface between 50 and 420 m 2 /g, preferably between 60 and 350 m 2 /g, and even more preferably between 80 and 300 m 2 /g.
  • step s4) the alumina balls obtained at the end of step s3) undergo a hydrothermal treatment by impregnation with water or a preferably acidic aqueous solution, then stay in an autoclave at a temperature between between 100°C and 300°C, preferably between 150°C and 250°C.
  • the hydrothermal treatment is generally carried out at a temperature of 100° C. to 300° C., preferentially from 150° C. to 250° C., for a duration greater than 45 minutes, preferentially from 1 to 24 hours, very preferentially from 1.5 to 12 hours.
  • the hydrothermal treatment is generally carried out using an aqueous acid solution comprising one or more mineral and/or organic acids, preferably nitric acid, hydrochloric acid, perchloric acid, sulfuric acid, weak whose solution has a pH lower than 4 such as acetic acid or formic acid.
  • said acidic aqueous solution also comprises one or more compounds capable of releasing anions capable of combining with aluminum ions, preferably compounds comprising a nitrate ion (such as aluminum nitrate), chloride, sulphate, perchlorate, chloroacetate, trichloroacetate, bromoacetate, dibromoacetate, and anions of general formula: R-COO such as formates and acetates.
  • a nitrate ion such as aluminum nitrate
  • chloride sulphate, perchlorate, chloroacetate, trichloroacetate, bromoacetate, dibromoacetate, and anions of general formula: R-COO such as formates and acetates.
  • the alumina balls obtained comprise a specific surface between 50 and 210 m 2 /g, preferably between 70 and 180 m 2 /g, and even more preferably between 70 and 160 m 2 /g .
  • the catalyst used in the context of the hydrodesulphurization process according to the invention can be prepared by means of any technique known to those skilled in the art, and in particular by impregnation of the elements of groups VIII and VIB, optionally phosphorus, on the support. selected.
  • each co-impregnation step is preferably followed by an intermediate drying step generally at a temperature below 200° C., advantageously between 50 and 180° C. C, preferably between 60 and 150°C, very preferably between 75 and 140°C.
  • the impregnation solution is preferably an aqueous solution.
  • the aqueous impregnation solution when it contains cobalt, molybdenum and phosphorus is prepared under pH conditions favoring the formation of heteropolyanions in solution.
  • the pH of such an aqueous solution is between 1 and 5.
  • the catalyst precursor is prepared by carrying out the successive depositions and in any order of a component of a group VIB metal, of a component of a group VIII metal and optionally phosphorus on said support.
  • the deposits can be made by dry impregnation, by excess impregnation or else by precipitation-deposition according to methods well known to those skilled in the art.
  • the deposition of the components of the metals of groups VIB and VIII and optionally phosphorus can be carried out by several impregnations with an intermediate drying step between two successive impregnations generally at a temperature below 200°C, advantageously between 50 and 180°C, preferably between 60 and 150°C, very preferably between 75 and 140°C.
  • the solvent which enters into the composition of the impregnation solutions is chosen so as to solubilize the metal precursors of the active phase, such as water or a solvent organic (for example an alcohol).
  • the sources of molybdenum use may be made of oxides and hydroxides, molybdic acids and their salts, in particular ammonium salts such as ammonium molybdate, ammonium heptamolybdate, phosphomolybdic acid (H3PM012O40), and their salts, and optionally silicomolybdic acid (HUSiMo ⁇ O ⁇ ) and its salts.
  • the sources of molybdenum can also be any heteropolycompound of Keggin, lacunary Keggin, substituted Keggin, Dawson, Anderson, Strandberg type, for example.
  • molybdenum trioxide and the heteropolycompounds of Keggin, lacunary Keggin, substituted Keggin and Strandberg type are used.
  • the tungsten precursors which can be used are also well known to those skilled in the art.
  • oxides and hydroxides tungstic acids and their salts, in particular ammonium salts such as ammonium tungstate, ammonium metatungstate, phosphotungstic acid and their salts, and optionally silicotungstic acid (H 4 SiWi 04o) and its salts.
  • the tungsten sources can also be any heteropolycompound of Keggin, lacunary Keggin, substituted Keggin, Dawson type, for example.
  • ammonium oxides and salts are used, such as ammonium metatungstate or heteropolyanions of Keggin, lacunary Keggin or substituted Keggin type.
  • cobalt precursors which can be used are advantageously chosen from oxides, hydroxides, hydroxycarbonates, carbonates and nitrates, for example. Cobalt hydroxide and cobalt carbonate are preferably used.
  • the nickel precursors which can be used are advantageously chosen from oxides, hydroxides, hydroxycarbonates, carbonates and nitrates, for example. Nickel hydroxide and nickel hydroxycarbonate are preferably used.
  • the phosphorus can advantageously be introduced into the catalyst at various stages of its preparation and in various ways.
  • the phosphorus can be introduced during the shaping of said alumina support, or preferably after this shaping. He can be advantageously introduced alone or as a mixture with at least one of the metals of group VIB and VIII.
  • the phosphorus is preferably introduced as a mixture with the precursors of the metals of group VIB and of group VIII, in whole or in part on the shaped alumina support, by dry impregnation of said alumina support using of a solution containing the metal precursors and the phosphorus precursor.
  • the preferred source of phosphorus is orthophosphoric acid H 3 P0 4 , but its salts and esters such as ammonium phosphates or mixtures thereof are also suitable.
  • the phosphorus may also be introduced together with the group VIB element(s) in the form of, for example, heteropolyanions of Keggin, lacunary Keggin, substituted Keggin or of the Strandberg type.
  • the precursor of the catalyst is subjected to a drying step carried out by any technique known to those skilled in the art. . It is advantageously carried out at atmospheric pressure or at reduced pressure. Preferably, this step is carried out at atmospheric pressure. This step is carried out at a temperature below 200°C, preferably between 50 and 180°C, preferably between 60°C and 150°C and very preferably between 75°C and 140°C.
  • the drying step is advantageously carried out in a traversed bed using air or any other hot gas.
  • the gas used is either air or an inert gas such as argon or nitrogen.
  • the drying is carried out in a traversed bed in the presence of air.
  • this drying step lasts between 30 minutes and 24 hours, and preferably between 1 hour and 12 hours.
  • a dried catalyst is obtained which can be used as a hydrotreating catalyst after an activation phase (sulphidation step).
  • the dried catalyst can be subjected to a subsequent calcination step, for example in air, at a temperature greater than or equal to 200°C.
  • the calcination is generally carried out at a temperature less than or equal to 600°C, and preferably between 200°C and 600°C, and in a particularly preferred manner between 250°C and 500°C.
  • the calcining time is generally between 0.5 hour and 16 hours, preferably between 1 hour and 5 hours. It is generally carried out under air. Calcination transforms the precursors of group VIB and VIII metals into oxides.
  • a sulfurization step activation phase
  • This activation phase is carried out by methods well known to those skilled in the art, and advantageously under a sulfo-reducing atmosphere in the presence of hydrogen and hydrogen sulfide.
  • the hydrogen sulfide can be used directly or generated by a sulfide agent (such as dimethyl disulfide).
  • the hydrotreating process consists of bringing the olefinic gasoline cut containing sulfur into contact with a catalyst as described above and hydrogen under the following conditions:
  • VVH hourly volume velocity
  • the method according to the invention makes it possible to treat any type of olefinic gasoline cut containing sulfur, such as for example a cut from a coking unit (coking according to the Anglo-Saxon terminology), visbreaking (visbreaking according to the Anglo-Saxon terminology), steam cracking (steam cracking according to the Anglo-Saxon terminology) or catalytic cracking (FCC, Fluid Catalytic Cracking according to the Anglo-Saxon terminology).
  • This gasoline may optionally be composed of a significant fraction of gasoline from other production processes such as atmospheric distillation (gasoline from direct distillation (or straight run gasoline according to Anglo-Saxon terminology) or from conversion (gasoline from coking or steam cracking)
  • Said feed preferably consists of a gasoline cut from a catalytic cracking unit.
  • the feed is advantageously a gasoline cut containing sulfur compounds and olefins and has a boiling point of between 30 and less than 250°C, preferably between 35°C and 240°C, and preferably between 40°C and 220°C.
  • the sulfur content of gasoline cuts produced by catalytic cracking (FCC) depends on the sulfur content of the FCC-treated feedstock, the presence or not of a pretreatment of the FCC feedstock, as well as the end point of the chopped off.
  • the sulfur contents of an entire gasoline cut, in particular those originating from the FCC are greater than 100 ppm by weight and most of the time greater than 500 ppm by weight.
  • the sulfur contents are often higher than 1000 ppm by weight, they can even in certain cases reach values of the order of 4000 to 5000 ppm by weight.
  • gasolines from catalytic cracking units contain, on average, between 0.5% and 5% by weight of diolefins, between 20% and 50% by weight of olefins, between 10 ppm and 0.5% weight of sulfur of which generally less than 300 ppm of mercaptans.
  • Mercaptans are generally concentrated in the light fractions of gasoline and more specifically in the fraction whose boiling point is below 120°C.
  • sulfur compounds present in gasoline can also comprise heterocyclic sulfur compounds, such as for example thiophenes, alkylthiophenes or benzothiophenes.
  • heterocyclic sulfur compounds unlike mercaptans, cannot be eliminated by extractive processes. These sulfur compounds are therefore removed by hydrotreating, which leads to their transformation into hydrocarbons and FiS.
  • the gasoline treated by the process according to the invention is a heavy gasoline (or FICN for Fleavy Cracked Naphtha according to the Anglo-Saxon terminology) resulting from a distillation step aimed at separating a large cut from the gasoline resulting a cracking process (or FRCN for Full Range Cracked Naphtha according to the Anglo-Saxon terminology) into a light gasoline (LCN for Light Cracked Naphtha according to the Anglo-Saxon terminology) and a heavy gasoline FICN.
  • the cut point of light gasoline and heavy gasoline is determined in order to limit the sulfur content of light gasoline and to allow its use in the gasoline pool preferably without additional post-treatment.
  • the large FRCN cut is subjected to a selective hydrogenation step before the distillation step.
  • Example 1 Catalyst A (according to the invention)
  • Support S1 of catalyst A is prepared by dehydration of hydrargillite ( EMPLURA® , Merck) in order to obtain an alumina powder.
  • the temperature is set at 800° C. and the contact time of the material to be dehydrated with a flow of dry air is 1 second.
  • the powder of alumina obtained is ground to a particle size of between 10 and 200 ⁇ m and then washed three times with a volume of distilled water equal to twice the volume of the powder used.
  • Said alumina powder is shaped in the presence of carbon black (N990 Thermax ® ) with a plate granulator (GRELBEX P30) equipped with a conical cylindrical bowl at an angle of 30° and a rotation speed of 40 revolutions per minute so as to obtain balls with a diameter mostly comprised between 2 and 4 mm after sieving the solid.
  • the quantity of carbon black is adjusted to obtain a raw filling density of the objects of 800 kg/m 3 .
  • Said balls undergo a heat treatment in air at 720° C. so as to give them a specific surface area of 200 m 2 /g.
  • a hydrothermal treatment is applied to said balls by impregnation of the porous volume with an aqueous solution of nitric acid (0.1 N, Merck).
  • the hydrothermal treatment is carried out at a temperature of 200° C. for 6.5 hours, in a rotating basket autoclave.
  • the balls thus obtained undergo a final calcination treatment in air at 650° C. for 2 hours.
  • Support S1 has a specific surface of 141 m 2 /g, a total pore volume of 0.97 mL/g as well as the following pore distribution given by mercury porosimetry:
  • - a volume of macropores with a diameter greater than or equal to 50 nm and less than 8000 nm of 0.39 mL/g, corresponding to 40% of the total pore volume.
  • Support S1 has a water uptake volume of 0.95 mL/g.
  • the impregnation solution is prepared by heating at 90°C for 3 hours 1.15 grams of molybdenum oxide (MOO3 >99.5%, Merck), 0.28 grams of cobalt hydroxide (CO(OH ) 95%, Merck), and 0.26 grams of phosphoric acid (H3PO4 at 85% by weight in water, Merck) in 9.3 mL of distilled water. After dry impregnation of 10 grams of support and a maturation step for 12 hours in an atmosphere saturated with humidity, the solid is dried for 12 hours at 120°C. The solid is then calcined in air at 450° C. for 2 hours.
  • Catalyst A obtained contains 1.9% by weight of CoO, 10% by weight of MOO3 and 1.4% by weight of P2O5 relative to the total weight of the catalyst.
  • Catalyst A has a total pore volume of 0.88 mL/g and a specific surface of 118 m 2 /g.
  • Catalyst B is obtained by dry impregnation of the alumina support S1 with an aqueous solution prepared from 1.35 grams of ammonium heptamolybdate ((NH 4 ) 6 Mq 7 q 24.4H 0 99.98 %, Merck), 1.38 grams of cobalt nitrate (Co(N0 3 ) 2 .6H 2 0 98%, Merck) in 9.4 mL of distilled water. After dry impregnation of 10 grams of support and a maturation step for 12 hours in an atmosphere saturated with humidity, the solid is dried for 12 hours at 120°C. The solid is then calcined in air at 450° C. for 2 hours.
  • aqueous solution prepared from 1.35 grams of ammonium heptamolybdate ((NH 4 ) 6 Mq 7 q 24.4H 0 99.98 %, Merck), 1.38 grams of cobalt nitrate (Co(N0 3 ) 2 .6H 2 0
  • Catalyst B obtained contains 3.1% by weight of CoO and 9.6% by weight of Mo0 3 relative to the total weight of the catalyst.
  • Catalyst B has a total pore volume of 0.89 mL/g and a specific surface of 124 m 2 /g.
  • Example 3 Non-conforming catalyst C (monomodal macroporous and large mesoporous catalyst)
  • Support S2 of catalyst C is prepared by dehydration of hydrargillite ( EMPLURA® , Merck) in order to obtain an active alumina powder.
  • the temperature is set at 800° C. and the contact time of the material to be dehydrated with a flow of dry air is 1 second.
  • the active alumina powder obtained is ground to a particle size of between 10 and 200 ⁇ m and is then washed three times with a volume of distilled water equal to twice the volume of the powder used.
  • Said active alumina powder is shaped with a plate granulator (GRELBEX P30) equipped with a conical cylindrical bowl at an angle of 30° and a rotation speed of 40 revolutions per minute so as to obtain balls with a diameter mainly between 2 and 4 mm (after sieving the solid) and a raw filling density of the objects of 780 kg/m 3 .
  • Said balls undergo a heat treatment in air at 700° C. so as to give them a specific surface area of 250 m 2 /g.
  • a hydrothermal treatment is applied to said balls by impregnation of the porous volume with an aqueous solution of nitric acid (0.1 N, Merck). The hydrothermal treatment is carried out at a temperature of 200° C.
  • the support S2 has a specific surface of 71 m 2 /g, a total porous volume of 0.56 mL/g as well as the following porous distribution given by mercury porosimetry:
  • the impregnation solution is prepared by heating at 90°C for 3 hours 1.15 grams of molybdenum oxide (MOO3 >99.5%, Merck), 0.28 grams of cobalt hydroxide (CO(OH ) 95%, Merck), and 0.26 grams of phosphoric acid (H3PO4 at 85% by weight in water, Merck) in 5.2 mL of distilled water.
  • MOO3 >99.5%, Merck molybdenum oxide
  • CO(OH ) 95% 0.26 grams
  • H3PO4 phosphoric acid
  • Catalyst C contains 1.9% by weight of CoO, 10% by weight of MOO3 and 1.4% by weight of P 2 0 relative to the total weight of the catalyst.
  • Catalyst C has a total pore volume of 0.47 mL/g and a specific surface of 62 m 2 /g.
  • a commercial support S3 (SA52124, UniSpheres® NorPro) is provided in the form of beads with a diameter of between 2 and 4 mm.
  • the S3 support has a specific surface area of 8 m 2 /g, a total pore volume of 0.33 mL/g as well as the following pore distribution given by mercury porosimetry:
  • - a volume of macropores with a diameter greater than or equal to 50 nm and less than 8000 nm of 0.33 mL/g, corresponding to 100% of the total pore volume.
  • Support S3 has a water uptake volume of 0.37 mL/g.
  • the impregnation solution is prepared by heating at 90°C for 3 hours 1.15 grams of molybdenum oxide (MOO3 >99.5%, Merck), 0.28 grams of cobalt hydroxide (CO(OH ) 2 95%, Merck), and 0.26 grams of phosphoric acid (H 3 P0 4 at 85% by weight in water, Merck) in 3.5 mL of distilled water. After dry impregnation of 10 grams of support and a maturation step for 12 hours in an atmosphere saturated with humidity, the solid is dried for 12 hours at 120°C. At the end of the two impregnation steps, the solid is then calcined in air at 450° C. for 2 hours.
  • Catalyst D obtained contains 1.9% by weight of CoO, 10% by weight of MOO3 and 1.4% by weight of P 2 Os relative to the total weight of the catalyst.
  • Catalyst D has a total pore volume of 0.21 mL/g and a specific surface of 5 m 2 /g.
  • a commercial support S4 (SA6578, NorPro) is supplied in the form of an extrudate of 5 mm in diameter.
  • the S4 support has a specific surface of 175 m 2 /g, a total pore volume of 0.82 mL/g as well as the following pore distribution given by mercury porosimetry: - a volume of mesopores with a diameter greater than or equal to 2 nm and less than or equal to 20 nm, whose pore distribution is centered on 13 nm, of 0.82 mL/g corresponding to 100% of the total pore volume.
  • the S4 support has a water uptake volume of 0.81 mL/g.
  • the impregnation solution is prepared by heating at 90° C. for 3 hours 1.15 grams of molybdenum oxide (Mo0 3 >99.5%, Merck), 0.28 grams of cobalt hydroxide (CO( OH) 2 95%, Merck), and 0.26 grams of phosphoric acid (H 3 P0 4 85% by weight in water, Merck) in 7.9 mL of distilled water. After dry impregnation of 10 grams of support and a maturation step for 12 hours in an atmosphere saturated with humidity, the solid is dried for 12 hours at 120°C. The solid is then calcined in air at 450° C. for 2 hours.
  • the catalyst E obtained contains 1.9% by weight of CoO, 10% by weight of Mo0 3 and 1.4% by weight of P2O5 relative to the total weight of the catalyst.
  • Catalyst E has a total pore volume of 0.74 mL/g and a specific surface of 136 m 2 /g.
  • Example 6 Non-compliant catalyst F (monomodal macroporous and small mesoporous catalyst)
  • a commercial support S5 (SA6176, NorPro) is supplied in the form of an extrudate 1.6 mm in diameter.
  • the S5 support has a specific surface of 250 m 2 /g, a total pore volume of 1.05 mL/g as well as the following porous distribution given by mercury porosimetry:
  • - a volume of macropores with a diameter greater than or equal to 50 nm and less than 8000 nm of 0.37 mL/g, corresponding to 35% of the total pore volume.
  • the S5 support has a water uptake volume of 1.02 mL/g.
  • the impregnation solution is prepared by heating at 90° C. for 3 hours 1.15 grams of molybdenum oxide (Mo0 3 >99.5%, Merck), 0.28 grams of cobalt hydroxide (CO( OH) 2 95%, Merck), and 0.26 grams of phosphoric acid (H 3 P0 4 at 85% by weight in water, Merck) in 10.0 mL of distilled water. After dry impregnation of 10 grams of support and a maturation step for 12 hours in an atmosphere saturated with humidity, the solid is dried for 12 hours at 120°C. The solid is then calcined in air at 450° C. for 2 hours.
  • the catalyst F obtained contains 1.9% by weight of CoO, 10% by weight of Mo0 3 and 1.4% by weight of P 2 Os relative to the total weight of the catalyst.
  • Catalyst F has a total pore volume of 0.87 mL/g and a specific surface of 211 m 2 /g. implemented in a hydrodesulfurization reactor
  • a representative model charge of a catalytic cracked gasoline (FCC) containing 10% by weight of 2,3-dimethylbut-2-ene and 0.33% by weight of 3-methylthiophene (i.e. 1000 ppm by weight of sulfur in the charge) is used for the evaluation of the catalytic performances of the various catalysts.
  • the solvent used is heptane.
  • VVFI volume flow rate of charge/volume of catalyst
  • Fl/charge volume ratio 300 N l/l
  • Each of the catalysts is successively placed in said reactor. Samples are taken at different time intervals and are analyzed by gas phase chromatography in order to observe the disappearance of the reagents and the formation of the products.
  • the catalytic performances of the catalysts are evaluated in terms of catalytic activity and selectivity.
  • the hydrodesulfurization activity (FIDS) is expressed from the rate constant for the FIDS reaction of 3-methylthiophene (kFIDS), normalized by the volume of catalyst introduced and assuming first-order kinetics with respect to the sulfur compound.
  • the olefin hydrogenation activity (FlydO) is expressed from the rate constant of the hydrogenation reaction of 2,3-dimethylbut-2-ene, normalized by the volume of catalyst introduced and assuming a kinetics of order 1 with respect to the olefin.
  • Catalyst selectivity is expressed by the normalized rate constant ratio kFIDS/kFIydO.
  • the kFIDS/kFIydO ratio will be higher the more selective the catalyst.
  • the values obtained are normalized by taking catalyst A as reference (relative FIDS activity and relative selectivity equal to 100). The performances are therefore the relative FIDS activity and the relative selectivity. Table 1
  • the catalysts according to the invention exhibit better performance in terms of activity and selectivity and therefore underlines the importance of the porosity ranges of the catalyst supports on the performance in a gasoline hydrodesulphurization process.
  • This improvement The selectivity of the catalysts is particularly interesting in the case of an implementation in a process for the hydrodesulfurization of gasoline containing olefins for which it is sought to limit as much as possible the loss of octane due to the hydrogenation of the olefins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Nanotechnology (AREA)

Abstract

Procédé d'hydrodésulfuration d'une coupe essence oléfinique contenant du soufre dans lequel on met en contact ladite coupe essence, de l'hydrogène et un catalyseur comprenant un métal du groupe VIB, un métal du groupe VIII, et un support d'alumine mésoporeux et macroporeux comprenant une distribution bimodale de mésopores et dans lequel : - le volume des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 10 et 30% en volume du volume poreux total dudit support; - le volume des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 30 et 50% en volume du volume poreux total dudit support; - le volume des macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 30 à 50% en volume du volume poreux total dudit support.

Description

PROCEDE D’HYDRODESULFURATION EN PRESENCE D’UN CATALYSEUR SUR
SUPPORT MESO-MACROPOREUX
Domaine technique
La présente invention se rapport au domaine de l’hydrotraitement des coupes essences, notamment des coupes essences issues des unités de craquage catalytique en lit fluidisé. Plus particulièrement, la présente invention concerne la mise en oeuvre d’un catalyseur dans un procédé d’hydrodésulfuration d’une coupe essence oléfinique contenant du soufre, telles que les essences issues du craquage catalytique, pour lesquelles on cherche à diminuer la teneur en composés soufrés, sans hydrogéner les oléfines et les aromatiques.
Etat de la technique
Le raffinage pétrolier ainsi que la pétrochimie sont maintenant soumis à de nouvelles contraintes. En effet, tous les pays adoptent progressivement des spécifications sévères en soufre, l'objectif étant d'atteindre par exemple 10 ppm (poids) de soufre dans les essences commerciales en Europe et au Japon. Le problème de réduction des teneurs en soufre se concentre essentiellement sur les essences obtenues par craquage, qu'il soit catalytique (FCC Fluid Catalytic Cracking selon la terminologie anglo-saxonne) ou non catalytique (cokéfaction, viscoréduction, vapocraquage), principaux précurseurs de soufre dans les pools essence.
Une solution, bien connue de l'homme du métier, pour réduire la teneur en soufre consiste à effectuer un hydrotraitement (ou hydrodésulfuration) des coupes hydrocarbonées (et notamment des essences de craquage catalytique) en présence d'hydrogène et d'un catalyseur hétérogène. Cependant ce procédé présente l'inconvénient majeur d'entrainer une chute très importante de l'indice d'octane si le catalyseur mis en oeuvre n'est pas assez sélectif. Cette diminution de l'indice d'octane est notamment liée à l'hydrogénation des oléfines présentes dans ce type d'essence de manière concomitante à l'hydrodésulfuration. Contrairement à d’autres procédés d’hydrotraitement, l’hydrodésulfuration des essences doit donc permettre de répondre à une double contrainte antagoniste : assurer une hydrodésulfuration profonde des essences et limiter l’hydrogénation des composés insaturés présents.
Une voie pour répondre à cette double problématique consiste à employer des catalyseurs d'hydrodésulfuration à la fois actifs en hydrodésulfuration mais également très sélectifs en hydrodésulfuration par rapport à la réaction d'hydrogénation des oléfines. Ainsi on connaît dans l'état de la technique le document US 2009/321320 qui divulgue des catalyseurs d'hydrodésulfuration qui comprennent une phase métallique active au cobalt/molybdène et un support à base d'alumine haute température (c'est-à-dire calcinée à une température supérieure à 800°C) et contenant moins de 50 % poids en alumine gamma, eta et chi, et de surface spécifique comprise entre 40 et 200 m2/g. Les catalyseurs sont obtenus par imprégnation à sec d'une solution aqueuse contenant du cobalt, du molybdène et au moins un additif sous forme d’un composé organique.
Le document EP 1892039 décrit des catalyseurs d'hydrodésulfuration sélectifs comprenant au moins un support, au moins un élément du groupe VIII, au moins un élément du groupe VIB et du phosphore dans lequel le support peut être essentiellement constitué par au moins une alumine de transition, c’est-à-dire qu’il comprend au moins 51 % poids d’alumine de transition, ledit support pouvant avoir une surface spécifique inférieure à 135 m2/g.
D’autre part, il est connu de l’art antérieur que la répartition poreuse des supports de catalyseur peut avoir un impact bénéfique sur les performances catalytiques, notamment le fait de disposer de porosités multimodales.
Le document CN109894122 divulgue un procédé d’hydrodésulfuration d’une essence de craquage catalytique (FCC) en présence d’un catalyseur comprenant une phase active à base de cobalt et de molybdène, des dopants alcalins, et un support d’alumine mésoporeux et macroporeux, de surface spécifique compris entre 260 et 290 m2/g, un volume poreux total compris entre 0,8 et 2,2 ml/g, des pores de diamètre compris entre 10 et 200 nm, dans lequel le volume des pores de diamètre compris entre 10 et 50 nm représente entre 10 et 50% du volume poreux total du support, et le volume des pores de diamètre compris entre 50 et 200 nm représente entre 50 et 90% du volume poreux total du support. Le support utilisé comprend une distribution monomodale de mésopores et une distribution monomodale de macropores.
Le document CN109420504 divulgue un procédé d’hydrodésulfuration d’une essence de craquage catalytique (FCC) en présence d’un catalyseur comprenant une phase active à base de cobalt et de molybdène, et un support d’alumine mésoporeux et macroporeux, dans lequel le volume des pores de diamètre compris entre 60 et 200 nm représente entre 1 et 80% du volume poreux total du support, et le volume des pores de diamètre compris entre 5 et 50 nm représente entre 20 et 70% du volume poreux total du support. Le support utilisé comprend une distribution monomodale de mésopores et une distribution monomodale de macropores. Le document US6,589,908 divulgue un procédé de préparation d’un support de catalyseur, lequel ne contient pas de macroporosité et présente une structure poreuse bimodale dans la mésoporosité telle que les deux modes de porosité soient séparés de 1 à 20 nm.
Il existe donc encore aujourd'hui un vif intérêt chez les raffineurs pour des catalyseurs d'hydrodésulfuration notamment de coupes essences qui présentent des performances catalytiques améliorées, notamment en termes d'activité catalytique en hydrodésulfuration et/ou de sélectivité et qui ainsi une fois mis en oeuvre permettent de produire une essence à basse teneur en soufre sans réduction sévère de l'indice d'octane.
Dans ce contexte, un des objectifs de la présente invention est de proposer un procédé d’hydrodésulfuration d’une coupe essence oléfinique contenant du soufre, en présence d’un catalyseur supporté présentant des performances en activité et en sélectivité, au moins aussi bonnes, voire meilleures, que les procédés connus de l’état de la technique.
Objets de l’invention
La présente invention a pour objet un procédé d’hydrodésulfuration d’une coupe essence oléfinique contenant du soufre dans lequel on met en contact ladite coupe essence, de l’hydrogène et un catalyseur, ledit procédé d’hydrodésulfuration étant effectué à une température comprise entre 200 et 400°C, une pression totale comprise entre 1 et 3 MPa, une vitesse volumique horaire, définie comme étant le débit volumique de charge rapporté au volume du catalyseur, compris entre 1 et 10 h-1, et un rapport volumique hydrogène/coupe essence compris entre 100 et 600 Nl/I, ledit catalyseur comprenant au moins un métal du groupe VIB, au moins un métal du groupe VIII, et un support d’alumine macroporeux et mésoporeux comprenant une distribution bimodale de mésopores, et dans lequel :
- le volume des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 10 et 30% en volume du volume poreux total dudit support ;
- le volume des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 30 et 50% en volume du volume poreux total dudit support ;
- le volume des macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 30 à 50% en volume du volume poreux total dudit support.
La demanderesse a découvert de manière surprenante que l’utilisation d’un catalyseur à base d’au moins un métal du groupe VIB, d’au moins un métal du groupe VIII, sur un support mésoporeux et macroporeux, présentant à la fois une porosité mésoporeuse bimodale, avec un fort volume mésoporeux couplé à un volume macroporeux déterminé permet d’améliorer les performances catalytiques dudit procédé, en termes d’activité catalytique et en termes de sélectivité. Il en résulte une meilleure conversion de la charge dans des conditions opératoires identiques que celles utilisées dans l’art antérieur. En effet, sans être liée à une quelconque théorie scientifique, le recours d’un tel catalyseur dans un procédé d’hydrodésulfuration d’essence améliore les phénomènes de diffusion interne des réactifs et des produits par la présence de populations de tailles différentes de mésopores. De plus, la présence conjuguée de macroporosité est particulièrement judicieuse lorsque la charge à traiter contient une quantité significative d’oléfines (composés insaturés) réactives, notamment de dioléfines, ce qui est le cas des essences, pouvant donner lieu à la formation de gommes et ainsi boucher la porosité du catalyseur sans présence de macroporosité. L’optimisation des gammes de porosité des catalyseurs constitue donc un élément déterminant sur les performances dans un procédé d’hydrodésulfuration d’essence.
Selon un ou plusieurs modes de réalisation, ledit support comprend une surface spécifique comprise entre 50 et 210 m2/g.
Selon un ou plusieurs modes de réalisation, ledit support comprend un volume poreux total compris entre 0,7 et 1 ,3 mL/g.
Selon un ou plusieurs modes de réalisation, le volume des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 15 et 25% en volume du volume poreux total dudit support.
Selon un ou plusieurs modes de réalisation, le volume des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 35 et 45% en volume du volume poreux total dudit support.
Selon un ou plusieurs modes de réalisation, le volume des macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 35 à 50% en volume du volume poreux total dudit support.
Selon un ou plusieurs modes de réalisation, la teneur en métal du groupe VIB dudit catalyseur, exprimée sous forme oxyde, est comprise entre 1 et 30% en poids par rapport au poids total du catalyseur.
Selon un ou plusieurs modes de réalisation, la teneur en métal du groupe VIII dudit catalyseur, exprimée sous forme oxyde, est comprise entre 0,5 et 10% en poids par rapport au poids total dudit catalyseur.
Selon un ou plusieurs modes de réalisation, le métal du groupe VIII est le cobalt. Selon un ou plusieurs modes de réalisation, le métal du groupe VIB est le molybdène.
Selon un ou plusieurs modes de réalisation, ledit catalyseur comprend en outre du phosphore, la teneur en phosphore, exprimée sous forme P2O5, est comprise entre 0,1 et 10% en poids par rapport au poids total dudit catalyseur.
Selon un ou plusieurs modes de réalisation, la distribution poreuse des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm est centrée sur une plage de valeur comprise entre 10,5 et 14,5 nm.
Selon un ou plusieurs modes de réalisation, la distribution poreuse des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm est centrée sur une plage de valeur comprise entre 22 et 28 nm.
Selon un ou plusieurs modes de réalisation, l’essence est une essence de craquage catalytique.
Selon un ou plusieurs modes de réalisation, le support se présente sous la forme de billes de diamètre compris entre 2 et 4 mm.
Selon un ou plusieurs modes de réalisation, ledit support sous forme de billes est obtenu selon étapes suivantes : s1) déshydratation d’un hydroxyde d’aluminium ou d’un oxyhydroxyde d’aluminium à une température comprise entre 400°C et 1200°C, de préférence entre 600°C et 900°C, pendant une durée comprise entre 0,1 seconde et 5 secondes, de préférence entre 0,1 seconde et 4 secondes, pour obtenir une poudre d’alumine ; s2) mise en forme de ladite poudre d’alumine obtenue à l’étape s1) sous forme de billes ; s3) traitement thermique des billes d’alumine obtenues à l’étape s2) à une température supérieure ou égale à 200°C ; s4) traitement hydrothermal des billes d’alumine obtenues à l’issue de l’étape s3) par imprégnation avec de l'eau ou une solution aqueuse, puis séjour dans un autoclave à une température comprise entre 100°C et 300°C ; s5) calcination des billes d’alumine obtenues à l’issue de l’étape s4) à une température comprise entre 500°C et 820°C. Description détaillée de l’invention
1. Définitions
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81ème édition, 2000-2001). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC.
La surface spécifique BET est mesurée par physisorption à l'azote selon la norme ASTM D3663-03, méthode décrite dans l'ouvrage Rouquerol F.; Rouquerol J.; Singh K. « Adsorption by Powders & Porous Solids: Principle, methodology and applications », Academie Press, 1999.
Dans la présente description, on entend, selon la convention IUPAC, par micropores les pores dont le diamètre est inférieur à 2 nm, c'est à dire 0,002 pm; par mésopores les pores dont le diamètre est supérieur à 2 nm, c'est à dire 0,002 pm et inférieur à 50 nm, c'est à dire 0,05 pm et par macropores les pores dont le diamètre est supérieur ou égal à 50 nm, c'est à dire 0,05 pm.
Dans l’exposé qui suit de l’invention, on entend par volume poreux total de l'alumine ou du catalyseur, le volume mesuré par intrusion au porosimètre à mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar (400 MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°. L'angle de mouillage a été pris égal à 140° en suivant les recommandations de l'ouvrage « Techniques de l'ingénieur, traité analyse et caractérisation », p.1050-5, écrits par Jean Charpin et Bernard Rasneur.
Afin d'obtenir une meilleure précision, la valeur du volume poreux total en ml/g donnée dans le texte qui suit correspond à la valeur du volume mercure total (volume poreux total mesuré par intrusion au porosimètre à mercure) en ml/g mesurée sur l'échantillon moins la valeur du volume mercure en ml/g mesurée sur le même échantillon pour une pression correspondant à 30 psi (environ 0,2 MPa).
Le volume des macropores et des mésopores est mesuré par porosimétrie par intrusion de mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar (400 MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°.
On fixe à 0,2 MPa la valeur à partir de laquelle le mercure remplit tous les vides intergranulaires, et on considère qu'au-delà le mercure pénètre dans les pores de l'échantillon. Le volume macroporeux du catalyseur est défini comme étant le volume cumulé de mercure introduit à une pression comprise entre 0,2 MPa et 30 MPa, correspondant au volume contenu dans les pores de diamètre apparent supérieur à 50 nm.
Le volume mésoporeux du catalyseur est défini comme étant le volume cumulé de mercure introduit à une pression comprise entre 30 MPa et 400 MPa, correspondant au volume contenu dans les pores de diamètre apparent compris entre 2 et 50 nm.
Lorsque le volume incrémental des pores mesuré par porosimétrie mercure est tracé en fonction du diamètre des pores, les modes de porosités correspondent aux points d’inflexion de la fonction représentée.
Les teneurs en éléments métalliques (métal du groupe VIII, métal du groupe VIB) et en phosphore sont mesurées par fluorescence X.
2. Description
Catalyseur
Le catalyseur utilisé dans le cadre du procédé d’hydrodésulfuration selon l’invention comprend une phase active comprenant, de préférence constitué de, au moins un métal du groupe VIB, d’au moins un métal du groupe VIII et éventuellement du phosphore.
Le métal du groupe VIB présent dans la phase active du catalyseur est préférentiellement choisi parmi le molybdène et le tungstène, plus préférentiellement le molybdène. Le métal du groupe VIII présent dans la phase active du catalyseur est préférentiellement choisi parmi le cobalt, le nickel et le mélange de ces deux éléments, plus préférentiellement le cobalt.
La teneur totale en métal du groupe VIII est généralement comprise entre 0,5 et 10% poids exprimée sous forme oxyde du métal du groupe VIII par rapport au poids total du catalyseur, de préférence comprise entre 1 et 10% poids, de préférence comprise entre 1 et 7% poids, de manière très préférée comprise entre 1 et 6% poids et de manière encore plus préférée comprise entre 1 ,5 et 5% poids par rapport au poids total du catalyseur. Lorsque le métal est le cobalt ou le nickel, la teneur en métal s’exprime en CoO ou NiO respectivement.
La teneur en métal du groupe VIB est généralement comprise entre 1 et 30% poids exprimée sous forme oxyde du métal du groupe VIB par rapport au poids total du catalyseur, de préférence comprise entre 3 et 20% poids, de préférence comprise entre 5 et 18% poids, de manière très préférée comprise entre 7 et 14% poids par rapport au poids total du catalyseur. Lorsque le métal est le molybdène ou le tungstène, la teneur en métal s’exprime en MO03 OU W03 respectivement. La teneur en phosphore, lorsqu’il est présent dans le catalyseur, est comprise entre 0,1 et 10% poids de P2O5 par rapport au poids total de catalyseur, de préférence entre 0,5 et 5% poids de P2O5 par rapport au poids total de catalyseur, et encore plus préférentiellement entre 1 et 3% poids de P2O5 par rapport au poids total de catalyseur.
Le catalyseur comprend généralement une surface spécifique comprise entre 50 et 200 m2/g, de préférence comprise entre 60 et 170 m2/g et de préférence comprise entre 70 et 130 m2/g .
Le volume poreux du catalyseur est généralement compris entre 0,5 mL/g et 1 ,3 mL/g, de préférence compris entre 0,6 mL/g et 1 ,1 mL/g.
Support d’alumine
Le support d’alumine du catalyseur utilisé dans le cadre du procédé d’hydrodésulfuration selon l’invention est un support d’alumine macroporeux et mésoporeux comprenant une distribution bimodale de mésopores dans lequel :
- le volume des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 10 et 30% en volume du volume poreux total dudit support ;
- le volume des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 30 et 50% en volume du volume poreux total dudit support ;
- le volume des macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 30 à 50% en volume du volume poreux total dudit support.
De préférence, le volume des mésopores du support de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 15 et 25% en volume du volume poreux total dudit support.
De préférence, le volume des mésopores du support de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 35 et 45% en volume du volume poreux total dudit support.
De préférence, le volume des macropores du support de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 35 à 50% en volume du volume poreux total dudit support.
Dans un mode de réalisation selon l’invention, la distribution poreuse des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm est centrée sur une plage de valeur comprise entre 10,5 et 14,5 nm, de préférence entre 12 et 13 nm. Dans un mode de réalisation selon l’invention, la distribution poreuse des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm est centrée sur une plage de valeur comprise entre 22 et 28 nm, de préférence entre 23 et 27 nm.
Le support comprend généralement une surface spécifique comprise entre 50 et 210 m2/g, de préférence entre 70 et 180 m2/g, et encore plus préférentiellement entre 70 et 160 m2/g.
Le volume poreux du support est compris généralement entre 0,7 mL/g et 1 ,3 mL/g, de préférence compris entre 0,8 mL/g et 1 ,2 mL/g.
Avantageusement, le support se présente sous la forme de billes de diamètre compris entre 0,8 et 10 mm, préférentiellement entre 1 et 5 mm, et plus préférentiellement entre 2 et 4 mm.
Figure imgf000010_0001
Le support d’alumine du catalyseur utilisé dans le cadre du procédé d’hydrodésulfuration selon l’invention peut être synthétisé par toute méthode connue de l’homme du métier.
Selon un mode préféré le support d’alumine utilisé selon l'invention se présente sous forme de billes. Selon ce mode préféré la préparation du support comprend les étapes suivantes : s1) déshydratation d’un hydroxyde d’aluminium ou d’un oxyhydroxyde d’aluminium à une température comprise entre 400°C et 1200°C, de préférence entre 600°C et 900°C, pendant une durée comprise entre 0,1 seconde et 5 secondes, de préférence entre 0,1 seconde et 4 secondes, pour obtenir une poudre d’alumine ; s2) mise en forme de ladite poudre d’alumine obtenue à l’étape s1) sous forme de billes ; s3) traitement thermique des billes obtenues à l’étape s2) à une température supérieure ou égale à 200°C ; s4) traitement hydrothermal desdites billes d’alumine obtenues à l’issue de l’étape s3) par imprégnation avec de l'eau ou une solution aqueuse préférentiellement acide, puis séjour dans un autoclave à une température comprise entre 100°C et 300°C, de préférence entre 150°C et 250°C ; s5) calcination des billes d’alumine obtenues à l’issue de l’étape s4) à une température comprise entre 500°C et 820°C.
Les étapes s1) à s5) sont décrites en détail ci-après. Selon l’étape s1), on réalise une déshydratation d’un hydroxyde d’aluminium ou d’un oxyhydroxyde d’aluminium à une température comprise entre 400°C et 1200°C, de préférence entre 600°C et 900°C, pendant une durée comprise entre 0,1 seconde et 5 secondes, de préférence entre 0,1 seconde et 4 secondes, pour obtenir une poudre d’alumine. L’hydroxyde d’aluminium peut être choisi parmi l’hydrargillite, la gibbsite ou la bayerite. L’oxyhydroxyde d’aluminium peut être choisi parmi la boehmite ou le diaspore.
De préférence, l’étape s1) est réalisée en utilisant de l’hydrargillite.
Généralement, l’étape s1) est réalisée en présence d’un courant de gaz chaud, tel que de l’air sec ou de l’air humide, permettant d’éliminer et d’entraîner rapidement l’eau évaporée.
Généralement, la poudre d'alumine active obtenue après la déshydratation de l'hydroxyde ou oxyhydroxyde d'aluminium est broyée dans une granulométrie comprise entre 10 à 200 pm.
Généralement, la poudre d'alumine active obtenue après la déshydratation de l'hydroxyde ou de l'oxyhydroxyde d'aluminium est lavée avec de l'eau ou une solution aqueuse acide. Lorsque que l’étape de lavage est réalisée avec une solution aqueuse acide, tout acide minéral ou organique pourra être utilisé, de manière préféré l’acide nitrique, l'acide chlorhydrique, l'acide perchlorique ou sulfurique pour les acides minéraux, et un acide carboxylique (l’acide formique, acétique ou malonique), un acide sulfonique (acide paratoluènesulfonique) ou un ester sulfurique (sulfate de lauryle) pour les acides organiques.
Selon l’étape s2), on réalise la mise en forme de ladite poudre d'alumine obtenue à l’issue de l’étape s1).
La mise en forme de ladite poudre d'alumine est réalisée de manière à obtenir des billes, nommée granulation, est généralement réalisée au moyen d'une technologie tournante comme un drageoir tournant ou un tambour tournant. Ce type de procédé permet d'obtenir des billes de diamètre et de répartitions de pores contrôlées, ces dimensions et ces répartitions étant, en général, créées pendant l'étape d'agglomération.
La porosité peut être créée par différents moyens, comme le choix de la granulométrie de la poudre d'alumine ou l'agglomération de plusieurs poudres d'alumine de différentes granulométries. Une autre méthode consiste à mélanger à la poudre d'alumine, avant ou pendant l'étape d'agglomération, un ou des composés, appelés porogènes, disparaissant par chauffage et créant ainsi une porosité dans les billes. Comme composés porogènes utilisés, on peut citer, à titre d'exemple, la farine de bois, le charbon de bois, le charbon actif, le noir de carbone, le soufre, des goudrons, des matières plastiques ou émulsions de matières plastiques telles que le polychlorure de vinyle, des alcools polyvinyliques, la naphtaline ou analogues. La quantité de composés porogènes ajoutés est déterminée par le volume désiré pour obtenir des billes de densité de remplissage en cru comprise entre 500 et 1100 kg/m3, préférentiellement entre 700 et 950 kg/m3, et de diamètre compris entre 0,8 et 10 mm, préférentiellement entre 1 et 5 mm, et encre plus préférentiellement entre 2 et 4 mm. Une sélection par tamisage des billes obtenues peut être réalisée selon la granulométrie souhaitée.
Selon l’étape s3), on réalise un traitement thermique de la poudre d’alumine mise en forme sous forme de billes obtenue à l’issue de l’étape s2) à une température supérieure ou égale à 200°C, de préférence comprise entre 200°C et 1200 °C, préférentiellement entre 300 et 900°C, de manière très préférée entre 400°C et 750°C, pendant une durée comprise généralement entre 1 et 24 heures, de préférence entre 1 et 6 heures. Les billes obtenues à cette étape intermédiaire comprennent une surface spécifique entre 50 et 420 m2/g, de préférence entre 60 et 350 m2/g, et encore plus préférentiellement entre 80 et 300 m2/g.
Selon l’étape s4), les billes d’alumine obtenues à l’issue de l’étape s3) subissent un traitement hydrothermal par imprégnation avec de l'eau ou une solution aqueuse préférentiellement acide, puis séjour dans un autoclave à une température comprise entre 100°C et 300°C, de préférence entre 150°C et 250°C.
Le traitement hydrothermal est généralement conduit à une température de 100 °C à 300°C, préférentiellement de 150°C à 250°C, pendant une durée supérieure à 45 minutes, préférentiellement de 1 à 24 heures, très préférentiellement de 1 ,5 à 12 heures. Le traitement hydrothermal est généralement effectué à l'aide d'une solution aqueuse acide comprenant un ou plusieurs acides minéraux et/ou organiques de préférence l'acide nitrique, l'acide chlorhydrique, l'acide perchlorique, l'acide sulfurique, les acides faibles dont la solution a un pH inférieur à 4 comme l'acide acétique ou l'acide formique. Généralement, ladite solution aqueuse acide comprend également un ou plusieurs composés pouvant libérer des anions capables de se combiner avec les ions aluminium, de préférence les composés comprenant un ion nitrate (comme le nitrate d'aluminium), chlorure, sulfate, perchlorate, chloroacétate, trichloroacétate, bromoacétate, dibromoacétate, et les anions de formule générale : R-COO comme les formiates et les acétates. Selon l’étape s5), les billes d’alumine obtenues à l’issue de l’étape s4) subissent une calcination à une température comprise entre 500°C et 820°C, préférentiellement entre 550°C et 750°C, et pendant une durée comprise généralement entre 1 et 24 heures, de préférence entre 1 et 6 heures. A l’issue de cette étape, les billes d’alumine obtenues comprennent une surface spécifique entre 50 et 210 m2/g, de préférence entre 70 et 180 m2/g, et encore plus préférentiellement entre 70 et 160 m2/g.
Figure imgf000013_0001
Le catalyseur utilisé dans le cadre du procédé d’hydrodésulfuration selon l’invention peut être préparé au moyen de toute technique connue de l'homme du métier, et notamment par imprégnation des éléments des groupes VIII et VIB, éventuellement le phosphore, sur le support sélectionné.
Selon un premier mode de mise en oeuvre, on procède au dépôt desdits composants des métaux du groupe VIB, du groupe VIII et du phosphore sur ledit support, par une ou plusieurs étapes de co-imprégnations, c'est-à-dire que lesdits composants des métaux du groupe VIB, du groupe VIII et du phosphore sont introduits simultanément dans ledit support. La ou les étapes de co-imprégnation est (sont) effectuée(s) préférentiellement par imprégnation à sec ou par imprégnation en excès de solution. Lorsque ce premier mode comprend la mise en oeuvre de plusieurs étapes de co-imprégnation, chaque étape de co imprégnation est de préférence suivie d’une étape de séchage intermédiaire généralement à une température inférieure à 200°C, avantageusement comprise entre 50 et 180°C, de préférence entre 60 et 150°C, de manière très préférée entre 75 et 140°C.
Selon un mode de réalisation préféré par co-imprégnation, la solution d’imprégnation est de préférence une solution aqueuse. De préférence, la solution aqueuse d'imprégnation lorsqu'elle contient du cobalt, du molybdène et du phosphore est préparée dans des conditions de pH favorisant la formation d'hétéropolyanions en solution. Par exemple le pH d'une telle solution aqueuse est compris entre 1 et 5.
Selon un deuxième mode de mise en oeuvre, le précurseur de catalyseur est préparé en procédant aux dépôts successifs et dans un ordre indifférent d'un composant d’un métal du groupe VIB, d'un composant d’un métal du groupe VIII et optionnellement du phosphore sur ledit support. Les dépôts peuvent être réalisés par imprégnation à sec, par imprégnation en excès ou encore par dépôt-précipitation selon des méthodes bien connues de l'Homme du métier. Dans ce second mode de réalisation, le dépôt des composants des métaux des groupes VIB et VIII et optionnellement du phosphore peut être effectué par plusieurs imprégnations avec une étape de séchage intermédiaire entre deux imprégnations successives généralement à une température inférieure à 200°C, avantageusement comprise entre 50 et 180°C, de préférence entre 60 et 150°C, de manière très préférée entre 75 et 140°C.
Quel que soit le mode de dépôt des métaux et du phosphore mis en oeuvre, le solvant qui entre dans la composition des solutions d'imprégnation est choisi de manière à solubiliser les précurseurs métalliques de la phase active, telle que l'eau ou un solvant organique (par exemple un alcool).
A titre d'exemple, parmi les sources de molybdène, on peut utiliser les oxydes et hydroxydes, les acides molybdiques et leurs sels en particulier les sels d'ammonium tels que le molybdate d'ammonium, l'heptamolybdate d'ammonium, l'acide phosphomolybdique (H3PM012O40), et leurs sels, et éventuellement l'acide silicomolybdique (HUSiMo^O^) et ses sels. Les sources de molybdène peuvent être également tout hétéropolycomposé de type Keggin, Keggin lacunaire, Keggin substitué, Dawson, Anderson, Strandberg, par exemple. On utilise de préférence le trioxyde de molybdène et les hétéropolycomposés de type Keggin, Keggin lacunaire, Keggin substitué et Strandberg.
Les précurseurs de tungstène qui peuvent être utilisés sont également bien connus de l'homme du métier. Par exemple, parmi les sources de tungstène, on peut utiliser les oxydes et hydroxydes, les acides tungstiques et leurs sels en particulier les sels d'ammonium tels que le tungstate d'ammonium, le métatungstate d'ammonium, l'acide phosphotungstique et leurs sels, et éventuellement l'acide silicotungstique (H4SiWi 04o) et ses sels. Les sources de tungstène peuvent également être tout hétéropolycomposé de type Keggin, Keggin lacunaire, Keggin substitué, Dawson, par exemple. On utilise de préférence les oxydes et les sels d'ammonium tel que le métatungstate d'ammonium ou les hétéropolyanions de type Keggin, Keggin lacunaire ou Keggin substitué.
Les précurseurs de cobalt qui peuvent être utilisés sont avantageusement choisis parmi les oxydes, les hydroxydes, les hydroxycarbonates, les carbonates et les nitrates, par exemple. L'hydroxyde de cobalt et le carbonate de cobalt sont utilisés de manière préférée.
Les précurseurs de nickel qui peuvent être utilisés sont avantageusement choisis parmi les oxydes, les hydroxydes, les hydroxycarbonates, les carbonates et les nitrates, par exemple. L'hydroxyde de nickel et l'hydroxycarbonate de nickel sont utilisés de manière préférée.
Le phosphore peut avantageusement être introduit dans le catalyseur à divers stades de sa préparation et de diverses manières. Le phosphore peut être introduit lors de la mise en forme dudit support d'alumine, ou de préférence après cette mise en forme. Il peut être avantageusement introduit seul ou en mélange avec l'un au moins des métaux du groupe VIB et VIII. Le phosphore est de préférence introduit en mélange avec les précurseurs des métaux du groupe VIB et du groupe VIII, en totalité ou en partie sur le support d'alumine mis en forme, par une imprégnation à sec dudit support d'alumine à l’aide d’une solution contenant les précurseurs des métaux et le précurseur du phosphore. La source de phosphore préférée est l'acide orthophosphorique H3P04, mais ses sels et esters comme les phosphates d'ammonium ou leurs mélanges conviennent également. Le phosphore peut également être introduit en même temps que le(s) élément(s) du groupe VIB sous la forme, par exemple, d'hétéropolyanions de Keggin, Keggin lacunaire, Keggin substitué ou de type Strandberg.
A l'issue de ou des étapes de mise en contact des métaux du groupe VIII, du groupe VIB et du phosphore avec le support, le précurseur du catalyseur est soumis à une étape de séchage effectuée par toute technique connue de l'Homme du métier. Elle est avantageusement effectuée à pression atmosphérique ou à pression réduite. De manière préférée, cette étape est réalisée à pression atmosphérique. Cette étape est effectuée à une température inférieure à 200°C, de préférence comprise entre 50 et 180°C, de préférence comprise entre 60°C et 150°C et de manière très préférée comprise entre 75°C et 140°C.
L'étape de séchage est avantageusement effectuée en lit traversé en utilisant de l'air ou tout autre gaz chaud. De manière préférée, lorsque le séchage est effectué en lit traversé, le gaz utilisé est soit l'air, soit un gaz inerte comme l'argon ou l'azote. De manière très préférée, le séchage est réalisé en lit traversé en présence d'air.
De préférence, cette étape de séchage a une durée comprise entre 30 minutes et 24 heures, et de préférence comprise entre 1 heure et 12 heures.
A l’issue de l’étape de l’étape de séchage, on obtient un catalyseur séché qui peut être utilisé comme catalyseur d’hydrotraitement après une phase d’activation (étape de sulfuration).
Selon une variante, le catalyseur séché peut être soumis à une étape de calcination ultérieure, par exemple sous air, à une température supérieure ou égale à 200°C. La calcination est généralement effectuée à une température inférieure ou égale à 600°C, et de préférence comprise entre 200°C et 600°C, et de manière particulièrement préférée comprise entre 250°C et 500°C. La durée de calcination est généralement comprise entre 0,5 heure et 16 heures, de préférence entre 1 heure et 5 heures. Elle s'effectue généralement sous air. La calcination permet de transformer les précurseurs des métaux du groupe VIB et VIII en oxydes. Avant son utilisation en tant que catalyseur d'hydrotraitement, il est avantageux de soumettre le catalyseur séché ou optionnellement calciné à une étape de sulfuration (phase d'activation). Cette phase d’activation s’effectue par les méthodes bien connues de l'homme de l'art, et avantageusement sous une atmosphère sulfo-réductrice en présence d’hydrogène et d’hydrogène sulfuré. L’hydrogène sulfuré peut être utilisé directement ou généré par un agent sulfure (tel que le diméthyldisulfure).
Procédé d’hydrodésulfuration d’essence
Le procédé d'hydrotraitement consiste à mettre en contact la coupe essence oléfinique contenant du soufre avec un catalyseur tel que décrit ci-avant et de l'hydrogène dans les conditions suivantes :
- une température comprise entre 200°C et 400°C, de préférence comprise entre 230°C et 330°C ;
- à une pression totale comprise entre 1 et 3 MPa, de préférence comprise entre 1 ,5 et 2,5 MPa ;
- une vitesse volumique horaire (V.V.H.), définie comme étant le débit volumique de charge rapporté au volume de catalyseur, comprise entre 1 et 10 h-1, de préférence comprise entre 2 et 6 h-1 ;
- un rapport volumique hydrogène/charge essence compris entre 100 et 600 N l/l, de préférence compris entre 200 et 400 N l/l.
Ainsi, le procédé selon l'invention permet de traiter tout type de coupe essence oléfinique contenant du soufre, telle que par exemple une coupe issue d’une unité de cokéfaction (coking selon la terminologie anglo-saxonne), de viscoréduction (visbreaking selon la terminologie anglo-saxonne), de vapocraquage (steam cracking selon la terminologie anglo- saxonne) ou de craquage catalytique (FCC, Fluid Catalytic Cracking selon la terminologie anglo-saxonne). Cette essence peut éventuellement être composée d’une fraction significative d’essence provenant d’autres procédés de production telle que la distillation atmosphérique (essence issue d'une distillation directe (ou essence straight run selon la terminologie anglo-saxonne) ou de procédés de conversion (essence de cokéfaction ou de vapocraquage). Ladite charge est de préférence constituée d’une coupe essence issue d’une unité de craquage catalytique.
La charge est avantageusement une coupe essence contenant des composés soufrés et des oléfines et a une température d’ébullition comprise entre 30 et inférieure à 250°C, de préférence entre 35°C et 240°C, et de manière préférée entre 40°C et 220°C. La teneur en soufre des coupes essences produites par craquage catalytique (FCC) dépend de la teneur en soufre de la charge traitée par le FCC, de la présence ou non d’un prétraitement de la charge du FCC, ainsi que du point final de la coupe. Généralement, les teneurs en soufre de l'intégralité d’une coupe essence, notamment celles provenant du FCC, sont supérieures à 100 ppm en poids et la plupart du temps supérieures à 500 ppm en poids. Pour des essences ayant des points finaux supérieurs à 200°C, les teneurs en soufre sont souvent supérieures à 1000 ppm en poids, elles peuvent même dans certains cas atteindre des valeurs de l'ordre de 4000 à 5000 ppm en poids.
Par ailleurs les essences issues d'unités de craquage catalytique (FCC) contiennent, en moyenne, entre 0,5% et 5% poids de dioléfines, entre 20% et 50% poids d'oléfines, entre 10 ppm et 0,5% poids de soufre dont généralement moins de 300 ppm de mercaptans. Les mercaptans se concentrent généralement dans les fractions légères de l'essence et plus précisément dans la fraction dont la température d'ébullition est inférieure à 120°C.
Il est à noter que les composés soufrés présents dans l'essence peuvent également comprendre des composés soufrés hétérocycliques, tels que par exemple les thiophènes, les alkylthiophènes ou des benzothiophènes. Ces composés hétérocycliques, contrairement aux mercaptans, ne peuvent pas être éliminés par les procédés extractifs. Ces composés soufrés sont par conséquent éliminés par un hydrotraitement, qui conduit à leur transformation en hydrocarbures et en Fi S.
De préférence, l’essence traitée par le procédé selon l’invention est une essence lourde (ou FICN pour Fleavy Cracked Naphtha selon la terminologie anglo-saxonne) issue d’une étape de distillation visant à séparer une coupe large de l’essence issue d’un procédé de craquage (ou FRCN pour Full Range Cracked Naphtha selon la terminologie anglo-saxonne) en une essence légère (LCN pour Light Cracked Naphtha selon la terminologie anglo-saxonne) et une essence lourde FICN. Le point de coupe de l’essence légère et de l’essence lourde est déterminé afin de limiter la teneur en soufre de l’essence légère et de permettre son utilisation dans le pool essence de préférence sans post traitement supplémentaire. De façon avantageuse, la coupe large FRCN est soumise à une étape d’hydrogénation sélective avant l’étape de distillation.
Exemples
Exemple 1 : Catalyseur A (selon l’invention)
Le support S1 du catalyseur A est préparé par déshydratation d'hydrargillite (EMPLURA®, Merck) afin d'obtenir une poudre d'alumine. La température est fixée à 800°C et le temps de contact du matériau à déshydrater avec un débit d’air sec est de 1 seconde. La poudre d'alumine obtenue est broyée dans une granulométrie comprise entre 10 à 200 pm puis est lavée trois fois avec un volume d'eau distillée égal à 2 fois le volume de la poudre mise en oeuvre. Ladite poudre d’alumine est mise en forme en présence de noir de carbone (N990 Thermax ®) avec un granulateur à plateau (GRELBEX P30) équipé d’un bol cylindrique de forme conique à un angle de 30° et une vitesse de rotation de 40 tours par minutes de manière à obtenir des billes d'un diamètre compris majoritairement entre 2 et 4 mm après tamisage du solide. La quantité de noir de carbone est ajustée pour obtenir une densité de remplissage en cru des objets de 800 kg/m3. Lesdites billes subissent un traitement thermique sous air à 720°C de manière à leur procurer une surface spécifique de 200 m2/g. Ensuite, on applique un traitement hydrothermal auxdites billes par imprégnation au volume poreux avec une solution aqueuse d’acide nitrique (0,1 N, Merck). Le traitement hydrothermal est conduit à une température de 200°C durant 6,5 heures, dans un autoclave à panier rotatif. Les billes ainsi obtenues subissent un dernier traitement de calcination sous air à 650°C pendant 2 heures. Le support S1 présente une surface spécifique de 141 m2/g, un volume poreux total de 0,97 mL/g ainsi que la répartition poreuse suivante donnée par porosimétrie au mercure :
- un volume de mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm, dont la distribution poreuse est centrée sur 13 nm, de 0,15 mL/g correspondant à 15% du volume poreux total ;
- un volume de mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm, dont la distribution poreuse est centrée sur 26 nm, de 0,43 mL/g correspondant à 44% du volume poreux total ;
- un volume de macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm de 0,39 mL/g, correspondant à 40% du volume poreux total.
Le support S1 présente un volume de reprise en eau de 0,95 mL/g. La solution d’imprégnation est préparée par chauffage à 90°C pendant 3 heures de 1 ,15 grammes d”oxyde de molybdène (M0O3 >99,5%, Merck), 0,28 grammes d'hydroxyde de cobalt (CO(OH) 95%, Merck), et de 0,26 grammes d'acide phosphorique (H3PO4 à 85% poids dans l’eau, Merck) dans 9,3 mL d’eau distillée. Après imprégnation à sec de 10 grammes de support et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. Le solide est ensuite calciné sous air à 450°C pendant 2 heures. Le catalyseur A obtenu contient 1 ,9% poids de CoO, 10% poids de M0O3 et 1 ,4% poids de P2O5 par rapport au poids total du catalyseur. Le catalyseur A possède un volume poreux total de 0,88 mL/g et une surface spécifique de 118 m2/g. : Catalyseur B (selon l’invention)
Le catalyseur B est obtenu par imprégnation à sec du support d’alumine S1 d’une solution aqueuse préparée à partir de 1 ,35 grammes d’heptamolybdate d’ammmonium ((NH4)6Mq7q24,4H 0 99,98%, Merck), de 1 ,38 grammes de nitrate de cobalt (Co(N03)2,6H20 98%, Merck) dans 9,4 mL d’eau distillée. Après imprégnation à sec de 10 grammes de support et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. Le solide est ensuite calciné sous air à 450°C pendant 2 heures. Le catalyseur B obtenu contient 3,1% poids de CoO et 9,6% poids de Mo03 par rapport au poids total du catalyseur. Le catalyseur B possède un volume poreux total de 0,89 mL/g et une surface spécifique de 124 m2/g.
Exemple 3 : Catalyseur C non conforme (Catalyseur macroporeux et grand mésoporeux monomodal)
Le support S2 du catalyseur C est préparé par déshydratation d'hydrargillite (EMPLURA ® , Merck) afin d'obtenir une poudre d'alumine active. La température est fixée à 800°C et le temps de contact du matériau à déshydrater avec un débit d’air sec est de 1 seconde. La poudre d'alumine active obtenue est broyée dans une granulométrie comprise entre 10 à 200 pm puis est lavée trois fois avec un volume d'eau distillée égal à 2 fois le volume de la poudre mise en oeuvre. Ladite poudre d’alumine active est mise en forme avec un granulateur à plateau (GRELBEX P30) équipé d’un bol cylindrique de forme conique à un angle de 30° et une vitesse de rotation de 40 tours par minutes de manière à obtenir des billes d'un diamètre compris majoritairement entre 2 et 4 mm (après tamisage du solide) et une densité de remplissage en cru des objets de 780 kg/m3. Lesdites billes subissent un traitement thermique sous air à 700°C de manière à leur procurer une surface spécifique de 250 m2/g. Ensuite, on applique un traitement hydrothermal auxdites billes par imprégnation au volume poreux avec une solution aqueuse d’acide nitrique (0,1 N, Merck). Le traitement hydrothermal est conduit à une température de 200°C durant 6,5 heures, dans un autoclave à panier rotatif. Les billes ainsi obtenues subissent un dernier traitement de calcination sous air à 950°C pendant 2 heures. Le support S2 présente une surface spécifique de 71 m2/g, un volume poreux total de 0,56 mL/g ainsi que la répartition poreuse suivante donnée par porosimétrie au mercure :
- un volume de mésopores de diamètre supérieur ou égal à 10 nm et inférieur à 50 nm, dont la distribution poreuse est centrée sur 20 nm, de 0,35 mL/g correspondant à 63% du volume poreux total ;
- un volume de macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm de 0,21 mL/g, correspondant à 38% du volume poreux total. Le support S2 présente un volume de reprise en eau de 0,54 mL/g. La solution d’imprégnation est préparée par chauffage à 90°C pendant 3 heures de 1 ,15 grammes d”oxyde de molybdène (M0O3 >99,5%, Merck), 0,28 grammes d'hydroxyde de cobalt (CO(OH) 95%, Merck), et de 0,26 grammes d'acide phosphorique (H3PO4 à 85%poids dans l’eau, Merck) dans 5,2 mL d’eau distillée. Après imprégnation à sec de 10 grammes de support et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. Le solide est ensuite calciné sous air à 450°C pendant 2 heures. Le catalyseur C obtenu contient 1 ,9% poids de CoO, 10% poids de M0O3 et 1 ,4% poids de P20 par rapport au poids total du catalyseur. Le catalyseur C possède un volume poreux total de 0,47 mL/g et une surface spécifique de 62 m2/g.
Figure imgf000020_0001
On fournit un support commercial S3 (SA52124, UniSpheres ® NorPro) sous forme de billes de diamètre compris entre 2 et 4 mm. Le support S3 présente une surface spécifique de 8 m2/g, un volume poreux total de 0,33 mL/g ainsi que la répartition poreuse suivante donnée par porosimétrie au mercure :
- un volume de macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm de 0,33 mL/g, correspondant à 100% du volume poreux total.
Le support S3 présente un volume de reprise en eau de 0,37 mL/g. La solution d’imprégnation est préparée par chauffage à 90°C pendant 3 heures de 1 ,15 grammes d”oxyde de molybdène (M0O3 >99,5%, Merck), 0,28 grammes d'hydroxyde de cobalt (CO(OH)2 95%, Merck), et de 0,26 grammes d'acide phosphorique (H3P04 à 85%poids dans l’eau, Merck) dans 3,5 mL d’eau distillée. Après imprégnation à sec de 10 grammes de support et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. A l’issue des deux étapes d’imprégnation, le solide est ensuite calciné sous air à 450°C pendant 2 heures. Le catalyseur D obtenu contient 1 ,9% poids de CoO, 10% poids de M0O3 et 1 ,4% poids de P2Os par rapport au poids total du catalyseur. Le catalyseur D possède un volume poreux total de 0,21 mL/g et une surface spécifique de 5 m2/g.
Figure imgf000020_0002
On fournit un support commercial S4 (SA6578, NorPro) sous forme d’extrudé de 5 mm de diamètre. Le support S4 présente une surface spécifique de 175 m2/g, un volume poreux total de 0,82 mL/g ainsi que la répartition poreuse suivante donnée par porosimétrie au mercure : - un volume de mésopores de diamètre supérieur ou égal à 2 nm et inférieur ou égal à 20 nm, dont la distribution poreuse est centrée sur 13 nm, de 0,82 mL/g correspondant à 100% du volume poreux total.
Le support S4 présente un volume de reprise en eau de 0,81 mL/g. La solution d’imprégnation est préparée par chauffage à 90°C pendant 3 heures de 1 ,15 grammes d”oxyde de molybdène (Mo03 >99,5%, Merck), 0,28 grammes d'hydroxyde de cobalt (CO(OH)2 95%, Merck), et de 0,26 grammes d'acide phosphorique (H3P04 85%poids dans l’eau, Merck) dans 7,9 mL d’eau distillée. Après imprégnation à sec de 10 grammes de support et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. Le solide est ensuite calciné sous air à 450°C pendant 2 heures. Le catalyseur E obtenu contient 1 ,9% poids de CoO, 10% poids de Mo03 et 1 ,4% poids de P2O5 par rapport au poids total du catalyseur. Le catalyseur E possède un volume poreux total de 0,74 mL/g et une surface spécifique de 136 m2/g.
Exemple 6 : Catalyseur F non-conforme (Catalyseur macroporeux et petit mésoporeux monomodal)
On fournit un support commercial S5 (SA6176, NorPro) sous forme d’extrudé de 1 ,6 mm de diamètre. Le support S5 présente une surface spécifique de 250 m2/g, un volume poreux total de 1 ,05 mL/g ainsi que la répartition poreuse suivante donnée par porosimétrie au mercure :
- un volume de mésopores de diamètre supérieur ou égal à 2 nm et inférieur ou égal à 20 nm, dont la distribution poreuse est centrée sur 7 nm, de 0,68 mL/g correspondant à 65% du volume poreux total ;
- un volume de macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm de 0,37 mL/g, correspondant à 35% du volume poreux total.
Le support S5 présente un volume de reprise en eau de 1 ,02 mL/g. La solution d’imprégnation est préparée par chauffage à 90°C pendant 3 heures de 1 ,15 grammes d”oxyde de molybdène (Mo03 >99,5%, Merck), 0,28 grammes d'hydroxyde de cobalt (CO(OH)2 95%, Merck), et de 0,26 grammes d'acide phosphorique (H3P04 à 85% poids dans l’eau, Merck) dans 10,0 mL d’eau distillée. Après imprégnation à sec de 10 grammes de support et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. Le solide est ensuite calciné sous air à 450°C pendant 2 heures. Le catalyseur F obtenu contient 1 ,9% poids de CoO, 10% poids de Mo03 et 1 ,4% poids de P2Os par rapport au poids total du catalyseur. Le catalyseur F possède un volume poreux total de 0,87 mL/g et une surface spécifique de 211 m2/g.
Figure imgf000022_0001
en œuvre dans un réacteur d’hydrodésulfuration
Dans cet exemple, les performances des catalyseurs A à F sont évaluées en hydrodésulfuration d’une essence de craquage catalytique.
Une charge modèle représentative d'une essence de craquage catalytique (FCC) contenant 10% poids de 2,3-diméthylbut-2-ène et 0,33% poids de 3-méthylthiophène (soit 1000 ppm pds de soufre dans la charge) est utilisée pour l'évaluation des performances catalytiques des différents catalyseurs. Le solvant utilisé est l'heptane.
La réaction d'hydrodésulfuration (FIDS) est opérée dans un réacteur à lit fixe traversé sous une pression totale de 1 ,5 MPa, à 210°C, à VVFI = 6 h-1 (VVFI = débit volumique de charge/volume de catalyseur), et un rapport volumique Fl /charge de 300 N l/l, en présence de 4 mL de catalyseur. Au préalable à la réaction d'FIDS, le catalyseur est sulfuré in-situ à 350°C pendant 2 heures sous un flux d'hydrogène contenant 15% mol d'FhS à pression atmosphérique.
Chacun des catalyseurs est placé successivement dans ledit réacteur. Des échantillons sont prélevés à différents intervalles de temps et sont analysés par chromatographie en phase gazeuse de façon à observer la disparition des réactifs et la formation des produits.
Les performances catalytiques des catalyseurs sont évaluées en termes d'activité catalytique et de la sélectivité. L'activité en hydrodésulfuration (FIDS) est exprimée à partir de la constante de vitesse pour la réaction d'FIDS du 3-méthylthiophène (kFIDS), normalisée par le volume de catalyseur introduit et en supposant une cinétique d'ordre 1 par rapport au composé soufré. L'activité en hydrogénation des oléfines (FlydO) est exprimée à partir de la constante de vitesse de la réaction d'hydrogénation du 2,3-diméthylbut-2-ène, normalisée par le volume de catalyseur introduit et en supposant une cinétique d'ordre 1 par rapport à l'oléfine.
La sélectivité du catalyseur est exprimée par le rapport normalisé des constantes de vitesse kFIDS/kFIydO. Le rapport kFIDS/kFIydO sera d'autant plus élevé que le catalyseur sera plus sélectif. Les valeurs obtenues sont normalisées en prenant le catalyseur A comme référence (activité FIDS relative et sélectivité relative égale à 100). Les performances sont donc l’activité FIDS relative et la sélectivité relative. Tableau 1
Figure imgf000023_0001
Il ressort donc que les catalyseurs selon l’invention présentent de meilleures performances en terme d’activité et de sélectivité et souligne donc l’importance des gammes de porosité des supports de catalyseurs sur les performances dans un procédé d’hydrodésulfuration d’essence Cette amélioration de sélectivité des catalyseurs est particulièrement intéressante dans le cas d'une mise en oeuvre dans un procédé d'hydrodésulfuration d'essence contenant des oléfines pour lequel on cherche à limiter autant que possible la perte d'octane due à l'hydrogénation des oléfines.

Claims

REVENDICATIONS
1. Procédé d’hydrodésulfuration d’une coupe essence oléfinique contenant du soufre dans lequel on met en contact ladite coupe essence, de l’hydrogène et un catalyseur, ledit procédé d’hydrodésulfuration étant effectué à une température comprise entre 200 et 400°C, une pression totale comprise entre 1 et 3 MPa, une vitesse volumique horaire, définie comme étant le débit volumique de charge rapporté au volume du catalyseur, compris entre 1 et 10 h 1, et un rapport volumique hydrogène/coupe essence compris entre 100 et 600 N l/l, ledit catalyseur comprenant au moins un métal du groupe VIB, au moins un métal du groupe VIII, et un support d’alumine mésoporeux et macroporeux comprenant une distribution bimodale de mésopores et dans lequel :
- le volume des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 10 et 30% en volume du volume poreux total dudit support ;
- le volume des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 30 et 50% en volume du volume poreux total dudit support ;
- le volume des macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 30 à 50% en volume du volume poreux total dudit support.
2. Procédé selon la revendication 1 , dans lequel ledit support comprend une surface spécifique comprise entre 50 et 210 m2/g.
3. Procédé selon l’une des revendications 1 ou 2, dans lequel ledit support comprend un volume poreux total compris entre 0,7 et 1 ,3 mL/g.
4. Procédé selon l’une quelconque des revendications 1 à 3, dans lequel le volume des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 15 et 25% en volume du volume poreux total dudit support.
5. Procédé selon l’une quelconque des revendications 1 à 4, dans lequel le volume des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 35 et 45% en volume du volume poreux total dudit support.
6. Procédé selon l’une quelconque des revendications 1 à 5, dans lequel le volume des macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 35 à 50% en volume du volume poreux total dudit support.
7. Procédé selon l’une quelconque des revendications 1 à 6, dans lequel la teneur en métal du groupe VIB dudit catalyseur, exprimée sous forme oxyde, est comprise entre 1 et 30% en poids par rapport au poids total du catalyseur.
8. Procédé selon l’une quelconque des revendications 1 à 7, dans lequel la teneur en métal du groupe VIII dudit catalyseur, exprimée sous forme oxyde, est comprise entre 0,5 et 10% en poids par rapport au poids total dudit catalyseur.
9. Procédé selon l’une quelconque des revendications 1 à 8, dans lequel le métal du groupe VIII est le cobalt.
10. Procédé selon l’une quelconque des revendications 1 à 9, dans lequel le métal du groupe VIB est le molybdène.
11. Procédé selon l’une quelconque des revendications 1 à 10, dans lequel ledit catalyseur comprend en outre du phosphore, la teneur en phosphore, exprimée sous forme P2O5, est comprise entre 0,1 et 10% en poids par rapport au poids total dudit catalyseur.
12. Procédé selon l’une quelconque des revendications 1 à 11 , dans lequel la distribution poreuse des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm est centrée sur une plage de valeur comprise entre 10,5 et 14,5 nm.
13. Procédé selon l’une quelconque des revendications 1 à 12, dans lequel la distribution poreuse des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm est centrée sur une plage de valeur comprise entre 22 et 28 nm.
14. Procédé selon l’une quelconque des revendications 1 à 13, dans lequel l’essence est une essence de craquage catalytique.
15. Procédé selon l’une quelconque des revendications 1 à 14, dans lequel le support se présente sous la forme de billes de diamètre compris entre 2 et 4 mm.
16. Procédé selon la revendication 15, dans lequel ledit support est obtenu selon les étapes suivantes : s1) déshydratation d’un hydroxyde d’aluminium ou d’un oxyhydroxyde d’aluminium à une température comprise entre 400°C et 1200°C, de préférence entre 600°C et 900°C, pendant une durée comprise entre 0,1 seconde et 5 secondes, de préférence entre 0,1 seconde et 4 secondes, pour obtenir une poudre d’alumine ; s2) mise en forme de ladite poudre d’alumine obtenue à l’étape s1) sous forme de billes ; s3) traitement thermique des billes d’alumine obtenues à l’étape s2) à une température supérieure ou égale à 200°C ; s4) traitement hydrothermal des billes d’alumine obtenues à l’issue de l’étape s3) par imprégnation avec de l'eau ou une solution aqueuse, puis séjour dans un autoclave à une température comprise entre 100°C et 300°C ; s5) calcination des billes d’alumine obtenues à l’issue de l’étape s4) à une température comprise entre 500°C et 820°C.
PCT/EP2021/082066 2020-11-27 2021-11-18 Procede d'hydrodesulfuration en presence d'un catalyseur sur support meso-macroporeux WO2022112078A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2023532271A JP2023550820A (ja) 2020-11-27 2021-11-18 メソ-マクロ多孔質担体上における触媒の存在下での水素化脱硫方法
EP21807139.7A EP4251715A1 (fr) 2020-11-27 2021-11-18 Procede d'hydrodesulfuration en presence d'un catalyseur sur support meso-macroporeux
AU2021387713A AU2021387713A1 (en) 2020-11-27 2021-11-18 Method for hydrodesulfurization in the presence of a catalyst on a mesoporous-macroporous substrate
US18/036,540 US20230415131A1 (en) 2020-11-27 2021-11-18 Method for hydrodesulfurization in the presence of a catalyst on a mesoporous-macroporous substrate
KR1020237017333A KR20230115292A (ko) 2020-11-27 2021-11-18 메조포러스-마크로포러스 기재상의 촉매 존재하에서의 수소화탈황 방법
CN202180079711.0A CN116547070A (zh) 2020-11-27 2021-11-18 在中孔-大孔基质上的催化剂的存在下的加氢脱硫方法
MX2023005253A MX2023005253A (es) 2020-11-27 2021-11-18 Proceso de hidrodesulfuracion en la presencia de un catalizador sobre un soporte meso-macroporoso.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2012317A FR3116829B1 (fr) 2020-11-27 2020-11-27 Procede d’hydrodesulfuration en presence d’un catalyseur sur support meso-macroporeux
FRFR2012317 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022112078A1 true WO2022112078A1 (fr) 2022-06-02

Family

ID=74347322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/082066 WO2022112078A1 (fr) 2020-11-27 2021-11-18 Procede d'hydrodesulfuration en presence d'un catalyseur sur support meso-macroporeux

Country Status (9)

Country Link
US (1) US20230415131A1 (fr)
EP (1) EP4251715A1 (fr)
JP (1) JP2023550820A (fr)
KR (1) KR20230115292A (fr)
CN (1) CN116547070A (fr)
AU (1) AU2021387713A1 (fr)
FR (1) FR3116829B1 (fr)
MX (1) MX2023005253A (fr)
WO (1) WO2022112078A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3116832B1 (fr) * 2020-11-27 2023-11-03 Ifp Energies Now Procede d’hydrodesulfuration de finition en presence d’un catalyseur sur support meso-macroporeux

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589908B1 (en) 2000-11-28 2003-07-08 Shell Oil Company Method of making alumina having bimodal pore structure, and catalysts made therefrom
EP1892039A1 (fr) 2006-07-28 2008-02-27 Ifp Procédé d'hydrodesulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur supporté comprenant des éléments des gropes VIII et VIB
CA2615225A1 (fr) * 2006-12-21 2008-06-21 Institut Francais Du Petrole Procede d'hydroconversion en phase slurry de charges hydrocarbonees lourdes et ou de charbon utilisant un catalyseur supporte
US20090321320A1 (en) 2006-01-17 2009-12-31 Jason Wu Selective Catalysts Having High Temperature Alumina Supports For Naphtha Hydrodesulfurization
US20150314282A1 (en) * 2014-05-01 2015-11-05 Shell Oil Company Catalyst and its use for the selective hydrodesulfurization of an olefin containing hydrocarbon feedstock
CN109420504A (zh) 2017-08-31 2019-03-05 中国石油天然气股份有限公司 一种催化裂化汽油加氢脱硫催化剂及制备方法
CN109894122A (zh) 2017-12-07 2019-06-18 中国石油天然气股份有限公司 一种fcc汽油加氢脱硫催化剂及其制备方法
US10562014B2 (en) * 2016-03-23 2020-02-18 Shell Oil Company High metals content hydrolysis catalyst for use in the catalytic reduction of sulfur contained in a gas stream, and a method of making and using such composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589908B1 (en) 2000-11-28 2003-07-08 Shell Oil Company Method of making alumina having bimodal pore structure, and catalysts made therefrom
US20090321320A1 (en) 2006-01-17 2009-12-31 Jason Wu Selective Catalysts Having High Temperature Alumina Supports For Naphtha Hydrodesulfurization
EP1892039A1 (fr) 2006-07-28 2008-02-27 Ifp Procédé d'hydrodesulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur supporté comprenant des éléments des gropes VIII et VIB
CA2615225A1 (fr) * 2006-12-21 2008-06-21 Institut Francais Du Petrole Procede d'hydroconversion en phase slurry de charges hydrocarbonees lourdes et ou de charbon utilisant un catalyseur supporte
US20150314282A1 (en) * 2014-05-01 2015-11-05 Shell Oil Company Catalyst and its use for the selective hydrodesulfurization of an olefin containing hydrocarbon feedstock
US10562014B2 (en) * 2016-03-23 2020-02-18 Shell Oil Company High metals content hydrolysis catalyst for use in the catalytic reduction of sulfur contained in a gas stream, and a method of making and using such composition
CN109420504A (zh) 2017-08-31 2019-03-05 中国石油天然气股份有限公司 一种催化裂化汽油加氢脱硫催化剂及制备方法
CN109894122A (zh) 2017-12-07 2019-06-18 中国石油天然气股份有限公司 一种fcc汽油加氢脱硫催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"CRC Handbook of Chemistry and Physics", 2000, CRC PRESS
JEAN CHARPINBERNARD RASNEUR, TECHNIQUES DE L'INGÉNIEUR, TRAITÉ ANALYSE ET CARACTÉRISATION, pages 1050 - 5
ROUQUEROL F.ROUQUEROL J.SINGH K.: "Adsorption by Powders & Porous Solids: Principle, methodology and applications", 1999, ACADEMIC PRESS

Also Published As

Publication number Publication date
MX2023005253A (es) 2023-05-23
JP2023550820A (ja) 2023-12-05
FR3116829B1 (fr) 2023-11-03
CN116547070A (zh) 2023-08-04
KR20230115292A (ko) 2023-08-02
AU2021387713A9 (en) 2024-09-12
FR3116829A1 (fr) 2022-06-03
AU2021387713A1 (en) 2023-06-22
US20230415131A1 (en) 2023-12-28
EP4251715A1 (fr) 2023-10-04

Similar Documents

Publication Publication Date Title
EP2962753B1 (fr) Catalyseur d'hydrotraitement à densité de molybdène élevée et méthode de préparation
EP2255873B1 (fr) Catalyseurs d'hydrodémétallation et d'hydrodésulfuration et mise en oeuvre dans un procédé d'enchaînement en formulation unique
WO2009109722A2 (fr) Catalyseur d'hydrogenation selective et son procede de preparation
WO2022112079A1 (fr) Procede d'hydrogenation selective d'une essence en presence d'un catalyseur sur support meso-macroporeux
WO2021018604A1 (fr) Catalyseur comprenant une phase active de nickel repartie en croute
EP3498370B1 (fr) Catalyseur d'hydrodesulfuration selective des essences de fcc
EP4251715A1 (fr) Procede d'hydrodesulfuration en presence d'un catalyseur sur support meso-macroporeux
WO2022112077A1 (fr) Procede d'hydrodesulfuration mettant en œuvre un catalyseur comprenant un support d'alumine flash
EP4326435A1 (fr) Catalyseur contenant du phosphore et du sodium et son utilisation dans un procede d'hydrodesulfuration
EP4251716A1 (fr) Procede de captation d'impuretes organometalliques en presence d'une masse de captation sur support meso-macroporeux
WO2022112081A1 (fr) Procede d'hydrodesulfuration de finition en presence d'un catalyseur sur support meso-macroporeux
FR3074496A1 (fr) Hydrotraitement de charges hydrocarbonees avec un catalyseur comprenant un materiau aluminique comprenant du carbone
WO2021018603A1 (fr) Catalyseur comprenant une phase active de nickel soufre repartie en croute
EP4122596A1 (fr) Catalyseur d hydrodésulfuration avec répartition en croûte de la phase active
WO2021224171A1 (fr) Catalyseur d'hydrogenation selective comprenant une repartition particuliere du nickel et du molybdene
WO2024115276A1 (fr) Catalyseur d'hydrodesulfuration de finition comprenant un metal du groupe vib, un metal du groupe viii et du phosphore sur support alumine alpha
WO2021197845A1 (fr) Procede de preparation d'un catalyseur de palladium comprenant un support prepare a partir d'un materiau aluminique et un polyol
WO2024115277A1 (fr) Procede d'hydrodesulfuration de finition des essences mettant en œuvre un catalyseur a base de metaux du groupe vib et viii et du phosphore sur support alumine a faible surface specifique
WO2014096627A1 (fr) Utilisation pour la deshydrogenation d'hydrocarbures d'un catalyseur a base d'oxyde de fer et son

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807139

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023006718

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 18036540

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202347035659

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2023532271

Country of ref document: JP

Ref document number: 202180079711.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021387713

Country of ref document: AU

Date of ref document: 20211118

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021807139

Country of ref document: EP

Effective date: 20230627

ENP Entry into the national phase

Ref document number: 112023006718

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230411

WWE Wipo information: entry into national phase

Ref document number: 523440919

Country of ref document: SA