WO2021197845A1 - Procede de preparation d'un catalyseur de palladium comprenant un support prepare a partir d'un materiau aluminique et un polyol - Google Patents

Procede de preparation d'un catalyseur de palladium comprenant un support prepare a partir d'un materiau aluminique et un polyol Download PDF

Info

Publication number
WO2021197845A1
WO2021197845A1 PCT/EP2021/056764 EP2021056764W WO2021197845A1 WO 2021197845 A1 WO2021197845 A1 WO 2021197845A1 EP 2021056764 W EP2021056764 W EP 2021056764W WO 2021197845 A1 WO2021197845 A1 WO 2021197845A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
polyol
weight
carried out
crystalline aluminum
Prior art date
Application number
PCT/EP2021/056764
Other languages
English (en)
Inventor
Amandine Cabiac
Etienne GIREL
Alexandra Chaumonnot
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Publication of WO2021197845A1 publication Critical patent/WO2021197845A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • C10G45/40Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0202Alcohols or phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • C07C5/05Partial hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds

Definitions

  • the present invention relates to a supported metal catalyst based on palladium intended particularly for the hydrogenation of unsaturated hydrocarbons, and more particularly, the selective hydrogenation of polyunsaturated compounds.
  • the selective hydrogenation process makes it possible to transform the polyunsaturated compounds of petroleum fractions by converting the most unsaturated compounds to the corresponding alkenes, avoiding total saturation and therefore the formation of the corresponding alkanes.
  • Selective hydrogenation catalysts are often based on palladium, in the form of small metal particles deposited on a support which may be a refractory oxide. The palladium content, their interaction with the support condition their dispersion and their electronic properties which are among the criteria which have an importance on the activity and the selectivity of the catalysts.
  • patent FR3061196 discloses the use of a catalyst comprising an alumina support and an active phase of nickel, the catalyst being prepared by a process comprising a step of bringing the active phase into contact. and a step of bringing into contact with a solution comprising an organic compound containing at least one alcohol function.
  • the addition of the organic compound is carried out by impregnation, dry or in excess of the support, said impregnation can be carried out before, after or at the same time as the step of impregnating the support with the precursor of the active phase of nickel.
  • polyols are used as a solvent for preparing a catalyst of the Pd0 / Al 2 O 3 type .
  • L. Simplicio et al. describe a method for preparing a catalyst comprising 3% by weight of palladium relative to the total weight of the catalyst, measured in oxide form, on an alumina support, in which the precursor of palladium, acetylacetonate, is dissolved in ethylene glycol before its impregnation on the alumina support.
  • This method of preparation called “polyol process” is known to those skilled in the art to make it possible to achieve large metal dispersions.
  • the polyol only acts as a solvent and a reducing agent.
  • the Applicant has surprisingly discovered that it is possible to obtain an improvement in the catalytic properties, in particular in terms of activity and selectivity, of a selective hydrogenation catalyst based on palladium, via a particular preparation process. of said catalyst produced under specific conditions and by involving a specific family of polyols in the process for preparing the catalyst.
  • the present invention relates to a particular process for the preparation of a catalyst making it possible to obtain performance that is at least as good, or even better, in terms of activity and selectivity, in the context of reactions for the selective hydrogenation of polyunsaturated compounds.
  • this particularly high selectivity of the catalysts obtained according to the preparation process of the present invention is due to the addition of polyol-type compounds to the catalyst support during the preparation phase of the catalyst.
  • catalyst which induces a different distribution of the palladium on particular sites of the support, and contributing to an improvement of the properties compared to the catalysts usually used.
  • the present invention relates to a process for preparing a catalyst comprising an active phase of palladium and a support based on a crystalline aluminum material, said process comprising the following steps: a) contacting, with stirring, a solution comprising at least one polyol with a crystalline aluminum solid at a temperature between 50 and 300 ° C, and at a pressure corresponding at least to autogenous pressure, the polyol concentration in said solution being between 2 and 100 g / L , the mass ratio between the polyol and the crystalline aluminum solid being between 0.1 and 2 weight / weight, to obtain a suspension; b) the suspension obtained at the end of step a) is filtered, followed by at least one step of washing the solid obtained; c) the solid obtained at the end of step b) is dried at a temperature between 25 ° C and 150 ° C to obtain the support; d) the support obtained at the end of step c) is brought into contact with a precursor of the active phase of palladium in order to obtain a catalyst precursor
  • said polyol contains at least three vicinal hydroxyl groups excluding terminal hydroxyl groups.
  • the polyol is selected from xylitol, sorbitol, dulcitol.
  • the polyol content brought into contact in step a) with the crystalline aluminum support is between 0.05 and 15% by weight relative to the total weight of the crystalline aluminum material.
  • said crystalline aluminum material comprises a specific surface area of between 2 and 600 m 2 / g.
  • the palladium content, expressed in oxide form is between 0.01 and 15% by weight relative to the total weight of the catalyst.
  • the process further comprises a step f) in which the catalyst obtained at the end of step e) is calcined at a temperature greater than 150 ° C. and less than or equal to 600 ° C.
  • the polyol concentration in said solution is between 5 and 50 g / L.
  • the polyol / aluminum solid mass ratio in said suspension is between 0.3 and 1.
  • said autogenous pressure is between 0.2 and 10 MPa.
  • step d) of bringing into contact is carried out by ion exchange.
  • the crystalline aluminum solid comprises a specific surface area of between 5 and 300 m 2 / g.
  • Another object according to the invention relates to a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule, such as diolefins and / or acetylenics and / or alkenyl aromatics, contained in a charge of hydrocarbons having a final boiling point less than or equal to 300 ° C, which process being carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a hydrogen / (polyunsaturated compounds) molar ratio to be hydrogenated) between 0.1 and 10 and at an hourly volume speed of between 0.1 and 200 h 1 when the process is carried out in the liquid phase, or at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0 , 5 and 1000 and at an hourly volume speed between 100 and 40,000 h 1 when the process is carried out in the gas phase, in the presence of a catalyst obtained according to the preparation process according to the invention
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • micropores are understood to mean pores whose diameter is less than 2 nm, ie 0.002 ⁇ m; by mesopores the pores whose diameter is greater than 2 nm, i.e. 0.002 ⁇ m and less than 50 nm, i.e. 0.05 ⁇ m and by macropores the pores whose diameter is greater than 50 nm, c ie 0.05 ⁇ m.
  • the total pore volume is measured by mercury porosimetry according to standard ASTM D4284-92 with a wetting angle of 140 °, for example using an Autopore III TM model device from the Microméritics TM brand.
  • the BET specific surface is measured by physisorption with nitrogen according to standard ASTM D3663-03, method described in the work Rouquerol F .; Rouquerol J .; Singh K. “Adsorption by Powders & Porous Solids: Principle, methodology and applications”, Academy Press, 1999.
  • the content of metals in the active phase, in particular palladium, is measured by X-ray fluorescence.
  • the invention relates to a process for preparing a selective hydrogenation catalyst comprising, preferably consisting of, an active phase based on palladium and a support comprising a crystalline aluminum solid, said process comprising the following steps: a) in contact, with stirring, a solution comprising at least one polyol with a crystalline aluminum solid at a temperature between 50 and 300 ° C, and at a pressure corresponding at least to the autogenous pressure, advantageously between 0.2 and 10 MPa , the polyol concentration in said solution being between 2 and 100 g / L, the mass ratio between the polyol and the crystalline aluminum solid being between 0.1 and 2 weight / weight, to obtain a suspension; b) the suspension obtained at the end of step a) is filtered, followed by at least one step of washing the solid obtained; c) the solid obtained at the end of step b) is dried at a temperature between 25 ° C and 150 ° C to obtain the support; d) the support obtained at the end of step c) is brought into
  • Steps a) to f) of the preparation process according to the invention are described in detail below.
  • the process for preparing the catalyst according to the invention comprises a step of introducing the polyol on a crystalline aluminum support.
  • crystalline aluminum material any aluminum compound belonging to the family of transition aluminas as well as alpha alumina (or corundum) and their derivatives which result from the dehydration of precursor aluminum materials of aluminum trihydroxide type (gibbsite, bayerite, norstandite, doyleite) or oxy (hydroxy) of aluminum (boehmite, diaspore), that is to say part of the following non-exhaustive list: gamma aluminas, delta, theta, eta, rho, chi, kappa.
  • the crystalline aluminum material is chosen from alpha, delta, teta and gamma alumina. Very preferably, gamma alumina is chosen.
  • transition aluminas and alpha alumina any transition alumina or alpha alumina which would contain one or more additional elements, such as for example beta alumina which is stabilized by alkali ions.
  • the crystalline aluminum material can advantageously undergo a set of treatments before the impregnation step, such as calcinations, or steam treatments making it possible to vary the texture properties of the support.
  • the crystalline aluminum material can advantageously be in the form of powder or extrudates. If the crystalline aluminum material is shaped, it can be in the form of balls, cylindrical extrudates, trilobic extrudates, pellets or any type of shaping known to those skilled in the art suitable for the purpose. envisaged application. Even more advantageously, said crystalline aluminum material is in the form of balls.
  • the diameter of the balls is advantageously between 1 mm and 10 mm, preferably between 2 and 8 mm.
  • the specific surface of the crystalline aluminum material is advantageously between 2 and 600 m 2 / g, preferably between 2 and 400 m 2 / g, and very preferably between 2 and 300 m 2 / g, and even more so preferred between 5 and 300 m 2 / g.
  • the pore volume of the crystalline aluminum material is advantageously between 0.1 and 1.5 ml / g, preferably between 0.2 and 1.4 ml / g, and very preferably between 0.3 and 1.3 ml / g.
  • Step a) of bringing into contact is carried out with stirring, and under hydrothermal conditions, that is to say that the bringing into contact is carried out in an autoclave with stirring, the whole of the reaction medium then being brought to a temperature.
  • temperature between 50 and 300 ° C, preferably between 100 and 250 ° C, and even more preferably between 140 and 210 ° C, the pressure corresponding at least to the autogenous pressure with stirring associated with the chosen temperature, said pressure autogenous being advantageously between 0.2 and 10 MPa, preferably between 0.2 and 6 MPa.
  • This contacting step differs from conventional impregnation techniques, such as dry or excess impregnation, making it possible to obtain a final support with particular textural properties giving the catalyst better activity and better selectivity in hydrogenation. selective with respect to catalysts prepared conventionally, that is to say by incorporating an organic additive by the impregnation technique.
  • the contact can be carried out under an oxidizing (air), neutral (inert gas: nitrogen, argon, etc.) or reducing atmosphere, that is to say composed partially or totally of hydrogen.
  • oxidizing air
  • neutral inert gas: nitrogen, argon, etc.
  • reducing atmosphere that is to say composed partially or totally of hydrogen.
  • Said polyol preferably contains at least 3 carbon atoms and even more preferably at least 5 carbon atoms.
  • said polyol also has at least three vicinal hydroxyl groups (excluding terminal hydroxyl groups) and even more preferably has vicinal hydroxyl groups in threo configuration.
  • the polyol is chosen from xylitol, sorbitol, dulcitol.
  • the solution containing the polyol is advantageously aqueous. It can be neutral, acidic or basic and preferably neutral.
  • the pH of the solution can be ensured by the addition of compounds making it possible to regulate the pH, so as to lead to an acidic, basic or neutral solution. These compounds may belong to the following non-exhaustive list: nitric acid, hydrochloric acid, sulfuric acid, carboxylic acids, ammonia, tetraethylammonium hydroxide, urea.
  • the efficiency of the deposition of the polyol on the crystalline aluminum material is ensured by precise control of the quantity of polyol introduced, the latter being essentially characterized by the mass concentration of polyol in the mixture (expressed in g / L) and by the ratio polyol / crystalline aluminum solid mass.
  • the mass concentration of polyol in the mixture is between 2 and 100 g / L, preferably between 5 and 50 g / L and more preferably between 10 and 35 g / L.
  • the polyol / aluminum solid mass ratio in said suspension is between 0.1 and 2, preferably between 0.3 and 1 and more preferably between 0.3 and 0.6.
  • the polyol content brought into contact with the crystalline aluminum material is advantageously between 0.05 and 15% by weight relative to the total weight of said material, preferably between 0.1 and 9% by weight and even more preferably between 0, 15 and 7% by weight.
  • Step b) Filtration / Lavaae The process for preparing the catalyst comprises a step b) of filtering the suspension obtained at the end of step a), followed by at least one step of washing the solid obtained. Said filtration step is carried out according to methods known to those skilled in the art. Said filtration step is advantageously followed by at least one washing step with water and preferably one to three washing steps, with an amount of water at least equal to the amount of precipitate filtered.
  • the solid recovered is dried at a temperature between 25 and 150 ° C, preferably between 60 ° C and 140 ° C, for a period of preferably between 0.5 to 24 hours, preferably for a period of 0.5 to 12 hours and even more preferably for a period of 0.5 to 11 hours. Longer durations are not excluded, but do not necessarily bring improvement.
  • the drying step can be carried out by any technique known to those skilled in the art. It is advantageously carried out under an inert atmosphere or under an atmosphere containing oxygen or under a mixture of inert gas and oxygen. It is advantageously carried out at atmospheric pressure or at reduced pressure. Preferably, this step is carried out at atmospheric pressure and in the presence of air or nitrogen.
  • step d) of bringing into contact is carried out by ion exchange, which consists of suspending, with stirring, the support obtained at the end of step c) in a solution comprising the precursor of active phase of palladium, followed by separation of the reaction mixture by centrifugation and rinsing with water.
  • the deposition of palladium advantageously involves a precursor of said metal.
  • a precursor of said metal can be oxide, carbide, sulfide, chloride, fluoride, iodide, bromide, nitrate, sulfate, carbonate, oxalate, acetate, phosphate, perchlorate or hydroxide of said metal.
  • Said precursor can also be an organometallic derivative.
  • the precursors are chosen from carbonates, organometallic complexes, metal salts such as for example metal chlorides and metal nitrates.
  • the palladium content (measured in oxide form) is advantageously between 0.01 and 15% by weight and preferably between 0.015 and 10% by weight relative to the total weight of said catalyst.
  • the catalyst prepared according to the invention may advantageously comprise at least one or more metals belonging to columns 4 to 14 of the periodic table according to the IUPAC classification or to the family of internal transition metals, namely lanthanides and actinides.
  • the at least one metal is advantageously chosen from the following non-exhaustive list: Cu, Ag, Au, Zn, Ge, Ga, In, Sn and Pb taken alone or as a mixture.
  • the at least one metal is chosen from the group consisting of Cu, Ag, Au and mixtures thereof.
  • the total metal content belonging to columns 4 to 14 of the periodic table according to the IUPAC classification or to the family of internal transition metals is advantageously between 0.05% and 10% by weight and preferably between 0.05 and 8% by weight (measured in oxide form) relative to the total mass of said catalyst.
  • said metal is chosen from Re, Ru, Rh, Ir, Pt, Ag and Au and their mixtures
  • the content of metal, or of each metal if there is more than one is advantageously between 0.01% and 15 % by weight (measured in oxide form) and preferably between 0.01 and 10% by weight relative to the total mass of said catalyst.
  • the catalyst prepared according to the invention can advantageously comprise at least one or more metals belonging to columns 1 and 2 of the periodic table according to the IUPAC classification.
  • the at least one metal is advantageously chosen from the list following non-exhaustive: Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba taken alone or as a mixture.
  • the at least one metal is chosen from the group consisting of Na, K, Ca, Ba Mg, and mixtures thereof.
  • the total metal content belonging to columns 1 and 2 of the periodic table according to the IUPAC classification from the following non-exhaustive list: Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba taken alone or is advantageously between 0.01% and 10% by weight of metal element, and preferably between 0.02 and 8% by weight relative to the total mass of said catalyst.
  • Step e) of drying is advantageously carried out at a temperature below 200 ° C, preferably between 15 and 180 ° C, more preferably between 30 and 160 ° C, even more preferably between 50 and 150 ° C, and even more preferably between 70 and 140 ° C, for a period typically of between 0.5 to 12 hours, and even more preferably for a period of 0.5 to 5 hours. Longer durations are not excluded, but do not necessarily bring improvement.
  • the drying step can be carried out by any technique known to those skilled in the art. It is advantageously carried out under an inert atmosphere or under an atmosphere containing oxygen or under a mixture of inert gas and oxygen. It is advantageously carried out at atmospheric pressure or at reduced pressure. Preferably, this step is carried out at atmospheric pressure and in the presence of air or nitrogen.
  • Calcination step f) can be carried out at a temperature between 200 ° C and 600 ° C, preferably between 350 ° C and 550 ° C, for a period typically between 0.5 to 24 hours, preferably for a period of 0.5 to 12 hours, and even more preferably for a period of 0.5 to 10 hours, preferably under an inert atmosphere or under an oxygen-containing atmosphere. Longer durations are not excluded, but do not necessarily bring improvement.
  • step f) When step f) is carried out, and depending on the operating conditions used, at least some or all of the polyol may no longer be found in the final catalyst. However, the polyol has left an imprint on the catalyst support, giving the improvement of the catalytic properties of the catalyst obtained according to the preparation process according to the invention. Reducing treatment
  • At least one reducing treatment step is advantageously carried out in the presence of a reducing gas after steps e) or f) of so as to obtain a catalyst comprising palladium at least partially in metallic form.
  • This treatment makes it possible to activate said catalyst and to form metal particles, in particular palladium in the zero valent state.
  • Said reducing treatment can be carried out in-situ or ex-situ, that is to say after or before loading the catalyst into the hydrogenation reactor.
  • the reducing gas is preferably hydrogen.
  • the hydrogen can be used pure or as a mixture (for example a mixture of hydrogen / nitrogen, or hydrogen / argon, or hydrogen / methane). In the case where the hydrogen is used as a mixture, all the proportions can be envisaged.
  • Said reducing treatment is carried out at a temperature between 50 and 500 ° C, preferably between 100 and 450 ° C.
  • the duration of the reducing treatment is generally between 2 and 40 hours, preferably between 3 and 30 hours.
  • the temperature rise to the desired reduction temperature is generally slow, for example set between 0.1 and 10 ° C / min, preferably between 0.3 and 7 ° C / min.
  • the hydrogen flow rate, expressed in L / hour / gram of catalyst is between 0.01 and 100 L / hour / gram of catalyst, preferably between 0.05 and 10 L / hour / gram of catalyst, again more preferably between 0.1 and 5 L / hour / gram of catalyst.
  • the reduction step can also be carried out in the liquid phase in the presence of a reducing agent, such as hydrides of metal salts, alkali metal borohydrides, and in particular sodium tetrahydruroborate, hydrazine, formic acid, or even formaldehyde.
  • a reducing agent such as hydrides of metal salts, alkali metal borohydrides, and in particular sodium tetrahydruroborate, hydrazine, formic acid, or even formaldehyde.
  • the molar ratio between the reducing agent and the metal to be reduced is between 1 and 500, preferably between 1 and 250 and very preferably between 1 and 150.
  • the reduction temperature is between 20 and 100 ° C and preferably between 20 and 90 ° C.
  • the duration of the reduction step is between 0.1 and 10 h and preferably between 0.2 and 8 hours.
  • a subject of the present invention is also a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule, such as diolefins and / or acetylenics and / or alkenylaromatics, also called styrenics, contained in a charge of 'hydrocarbons having a final boiling point less than or equal to 300 ° C, which process being carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a hydrogen / molar ratio (polyunsaturated compounds to be hydrogenated) between 0.1 and 10 and at an hourly volume speed of between 0.1 and 200 h 1 when the process is carried out in the liquid phase, or at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio between 0.5 and 1000 and at an hourly volume speed between 100 and 40,000 h 1 when the process is carried out in the gas phase, in the presence of a catalyst obtained by
  • Monounsaturated organic compounds such as ethylene and propylene, for example, are the source of the manufacture of polymers, plastics and other value-added chemicals. These compounds are obtained from natural gas, naphtha or gas oil which have been treated by steam cracking or catalytic cracking processes.
  • Selective hydrogenation is the main treatment developed to specifically remove unwanted polyunsaturated compounds from these hydrocarbon feeds. It allows the conversion of polyunsaturated compounds to the corresponding alkenes or aromatics while avoiding their total saturation and therefore the formation of the corresponding alkanes or naphthenes. In the case of steam cracking gasolines used as feed, the selective hydrogenation also makes it possible to selectively hydrogenate the alkenylaromatics into aromatics while avoiding the hydrogenation of the aromatic rings.
  • the hydrocarbon feed treated in the selective hydrogenation process has a final boiling point of 300 ° C or less and contains at least 2 carbon atoms per molecule and comprises at least one polyunsaturated compound.
  • polyunsaturated compounds means compounds comprising at least one acetylenic function and / or at least one diene function and / or at least one alkenylaromatic function.
  • the feed is selected from the group consisting of a C2 steam cracking cut, a C2-C3 steam cracking cut, a C3 steam cracking cut, a C4 steam cracking cut, a C5 steam cracking cut and a steam cracking gasoline also called pyrolysis gasoline or C5 + cut.
  • the C2 steam cracking cut advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following composition: between 40 and 95% by weight of ethylene, approximately 20% by weight of hydrogen, of the order of 0.1 to 5% by weight of acetylene, the remainder being essentially ethane and methane.
  • C2 cuts between 0.1 and 1% by weight of C3 compounds can also be present.
  • the C3 steam cracking cut advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following average composition: of the order of 90% by weight of propylene, of the order of 1 to 8% by weight of propadiene and methyl acetylene, the remainder being essentially propane. In some C3 cuts, between 0.1 and 2% by weight of C2 compounds and C4 compounds can also be present.
  • a C2 - C3 cut can also be advantageously used for carrying out the selective hydrogenation process according to the invention. It has for example the following composition: of the order of 0.1 to 5% by weight of acetylene, of the order of 0.1 to 3% by weight of propadiene and methylacetylene, of the order of 30% by weight ethylene, of the order of 5% by weight of propylene, of the order of 15% by weight of hydrogen, the remainder being essentially methane, ethane and propane.
  • This charge can also contain between 0.1 and 2% by weight of C4 compounds.
  • the C4 steam cracking cut advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following average composition by weight: 1% by weight of butane, 46.5% by weight of butene, 51% by weight of butadiene, 1.3% by weight of vinylacetylene and 0.2% by weight of butyne. In some C4 cuts, between 0.1 and 2% by weight of C3 compounds and C5 compounds can also be present.
  • the C5 steam cracking cut advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following composition: 21% by weight of pentanes, 45% by weight of pentenes, 34% by weight of pentadienes.
  • the gasoline of steam cracking or gasoline of pyrolysis corresponds to a hydrocarbon cut whose boiling point is generally between 0 and 300 ° C, of preferably between 10 and 250 ° C.
  • the polyunsaturated hydrocarbons to be hydrogenated present in said steam cracking gasoline are in particular diolefinic compounds (butadiene, isoprene, cyclopentadiene, etc.), styrene compounds (styrene, alpha-methylstyrene, etc.) and indene compounds (indene, etc.) ).
  • Steam cracking gasoline generally comprises the C5-C12 cut with traces of C3, C4, C13, C14, C15 (for example between 0.1 and 3% by weight for each of these cuts).
  • a charge formed from pyrolysis gasoline generally has the following composition: 5 to 30% by weight of saturated compounds (paraffins and naphthenes), 40 to 80% by weight of aromatic compounds, 5 to 20% by weight of mono-olefins, 5 to 40% by weight of diolefins, 1 to 20% by weight of alkenylaromatic compounds, all of the compounds forming 100%. It also contains from 0 to 1000 ppm by weight of sulfur, preferably from 0 to 500 ppm by weight of sulfur.
  • the polyunsaturated hydrocarbon feed treated in accordance with the selective hydrogenation process according to the invention is a C2 steam cracking cut, or a C2-C3 steam cracking cut, or a steam cracked gasoline.
  • the selective hydrogenation process according to the invention aims to eliminate said polyunsaturated hydrocarbons present in said feedstock to be hydrogenated without hydrogenating the monounsaturated hydrocarbons.
  • the selective hydrogenation process aims to selectively hydrogenate acetylene.
  • the selective hydrogenation process aims to selectively hydrogenate propadiene and methylacetylene.
  • the aim is to eliminate the butadiene, vinylacetylene (VAC) and butyne
  • the aim is to eliminate the pentadienes.
  • the selective hydrogenation process aims to selectively hydrogenate said polyunsaturated hydrocarbons present in said feed to be treated so that the diolefin compounds are partially hydrogenated to mono-olefins and the styrenic and indene compounds are partially hydrogenated to the corresponding aromatic compounds while avoiding the hydrogenation of the aromatic rings.
  • the technological implementation of the selective hydrogenation process is for example carried out by injection, in an ascending or descending current, of the feed of polyunsaturated hydrocarbons and of hydrogen into at least one fixed bed reactor.
  • Said reactor may be of the isothermal type or of the adiabatic type. An adiabatic reactor is preferred.
  • the polyunsaturated hydrocarbon feed can advantageously be diluted by one or more re-injections of the effluent, coming from said reactor where the selective hydrogenation reaction takes place, at various points of the reactor, located between the inlet and the outlet of the reactor. reactor in order to limit the temperature gradient in the reactor.
  • the technological implementation of the selective hydrogenation process according to the invention can also be advantageously carried out by implanting at least said supported catalyst in a reactive distillation column or in reactors - exchangers or in a slurry type reactor. .
  • the hydrogen stream can be introduced at the same time as the feed to be hydrogenated and / or at one or more different points of the reactor.
  • the selective hydrogenation of the C2, C2-C3, C3, C4, C5 and C5 + cuts from steam cracking can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase for the C3, C4, C5 and C5 + cuts and in the carbonated for cuts C2 and C2-C3.
  • a liquid phase reaction lowers the energy cost and increases the cycle time of the catalyst.
  • the selective hydrogenation of a hydrocarbon feed containing polyunsaturated compounds containing at least 2 carbon atoms per molecule and having a final boiling point less than or equal to 300 ° C is carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.1 and 10 and at an hourly volume speed VVH (defined as the ratio of the volume flow rate of feed to the volume of the catalyst) between 0.1 and 200 h 1 for a process carried out in the liquid phase, or at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1000 and at an hourly volume speed VVH of between 100 and 40,000 h 1 for a process carried out in the gas phase.
  • VVH defined as the ratio of the volume flow rate of feed to the volume of the catalyst
  • the molar ratio (hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally included. between 0.5 and 10, preferably between 0.7 and 5.0 and even more preferably between 1.0 and 2.0, the temperature is between 0 and 200 ° C, preferably between 20 and 200 ° C and even more preferably between 30 and 180 ° C, the hourly volume speed (VVH) is generally between 0.5 and 100 h 1 , from preferably between 1 and 50 h 1 and the pressure is generally between 0.3 and 8.0 MPa, preferably between 1.0 and 7.0 MPa and even more preferably between 1.5 and 4.0 MPa.
  • a selective hydrogenation process is carried out in which the feed is a steam cracking gasoline comprising polyunsaturated compounds, the hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio is between 0.7 and 5.0, the temperature is between 20 and 200 ° C, the hourly volume speed (VVH) is generally between 1 and 50 h 1 and the pressure is between 1.0 and 7.0 MPa.
  • the feed is a steam cracking gasoline comprising polyunsaturated compounds
  • the hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio is between 0.7 and 5.0
  • the temperature is between 20 and 200 ° C
  • the hourly volume speed (VVH) is generally between 1 and 50 h 1
  • the pressure is between 1.0 and 7.0 MPa.
  • a selective hydrogenation process is carried out in which the feed is a steam cracked gasoline comprising polyunsaturated compounds, the hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio is between 1.0 and 2.0, the temperature is between 30 and 180 ° C, the hourly volume speed (VVH) is generally between 1 and 50 h 1 and the pressure is between 1.5 and 4.0 MPa.
  • the feed is a steam cracked gasoline comprising polyunsaturated compounds
  • the hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio is between 1.0 and 2.0
  • the temperature is between 30 and 180 ° C
  • the hourly volume speed (VVH) is generally between 1 and 50 h 1
  • the pressure is between 1.5 and 4.0 MPa.
  • the hydrogen flow rate is adjusted in order to have enough of it to theoretically hydrogenate all the polyunsaturated compounds and to maintain an excess of hydrogen at the reactor outlet.
  • the molar ratio ( hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally between 0.5 and 1000, preferably between 0.7 and 800, the temperature is between 0 and 300 ° C, preferably between 15 and 280 ° C, the speed hourly volume (VVH) is generally between 100 and 40,000 h 1 , preferably between 500 and 30,000 h 1 and the pressure is generally between 0.1 and 6.0 MPa, preferably between 0.2 and 5.0 MPa .
  • the S1 g-alumina support is prepared by calcination at 600 ° C. in air of PURAL SB3® commercial boehmite powder.
  • the catalyst precursor C1 is dried for 12 hours in a ventilated oven at 110 ° C.
  • Catalyst C1 contains 0.035% by weight of Pd (measured in oxide form) relative to the total weight of the catalyst.
  • the C2 catalyst precursor is dried for 12 hours in a ventilated oven at 110 ° C.
  • Catalyst C2 contains 0.035% by weight of Pd (measured in oxide form) relative to the total weight of the catalyst and 3.3% by weight of sorbitol relative to the total weight of catalyst.
  • the process for preparing catalyst C1 ’ is identical to the process described in Example 1 but includes an additional calcination step in air at 450 ° C for two hours after the drying step.
  • Catalyst C1 ′ contains 0.035% by weight of Pd (measured in oxide form) relative to the total weight of the catalyst.
  • Catalyst C2 ′ contains 0.035% by weight of Pd (measured in oxide form) relative to the total weight of the catalyst.
  • Example 5 Use of catalysts C1, C2, C1 'and C2' for the selective hydrogenation of butadiene
  • This example relates to the conversion of butadiene for the selective production of butene.
  • the catalytic test is carried out in a closed 100 ml reactor at 20 ° C. under a pressure of 1 MPa. 2 grams of catalyst C1, C2, C1 ’and C2’ with a particle size of 63-100 mhi are reduced at 150 ° C in a reactor passed through under a flow of hydrogen of 1 N L / h / g catalyst for 5 hours. Then, the catalyst is suspended in a charge comprising 10% by weight of butadiene and 90% by weight of heptane relative to the total weight of the charge. Stirring is maintained at 1400 rpm. The hydrogen pressure is maintained at 1 MPa. The activity and selectivity are measured by the consumption of hydrogen and by periodic analysis via samples of the reaction medium analyzed by gas chromatography.
  • the activity is defined according to the following formula: 0.001 with
  • DH 2 molar consumption of H 2 during the period At.
  • Catalyst C2 according to the invention is active and selective for the conversion of butadiene to butene.
  • the catalytic performance is superior to that of a C1 catalyst prepared on a support not containing sorbitol.
  • the addition of a calcination step in air at 450 ° C for two hours before the reduction lowers the activities of the catalysts CT and C2 ’.
  • the catalyst C2 ’in accordance with the invention remains more active and more selective than the non-compliant CT catalyst subjected to the same operating conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne un procédé de préparation d'un catalyseur comprenant du palladium et un support à base d'un matériau aluminique cristallin comprenant les étapes suivantes : a) on met en contact, sous agitation, une solution comprenant au moins un polyol avec un solide aluminique cristallin à une température comprise entre 50 et 300°C, et à une pression correspondant au moins à la pression autogène, b) on filtre et on lave la suspension obtenue à l'issue de l'étape a) c) on sèche le solide obtenu à l'issue de l'étape b) pour obtenir le support; d) on met en contact le support obtenu à l'issue de l'étape c) avec un précurseur de la phase active de palladium pour obtenir un précurseur de catalyseur; e) on sèche le précurseur de catalyseur obtenu à l'issue de l'étape d) à une température comprise entre comprise entre 50 et 150°C pour obtenir le catalyseur.

Description

PROCEDE DE PREPARATION D’UN CATALYSEUR DE PALLADIUM COMPRENANT UN SUPPORT PREPARE A PARTIR D’UN MATERIAU ALUMINIQUE ET UN POLYOL
Domaine technique
La présente invention concerne un catalyseur métallique supporté à base de palladium destiné particulièrement à l’hydrogénation des hydrocarbures insaturés, et plus particulièrement, l’hydrogénation sélective de composés polyinsaturés.
Etat de la technique
Le procédé d’hydrogénation sélective permet de transformer les composés polyinsaturés des coupes pétrolières par conversion des composés les plus insaturés vers les alcènes correspondants en évitant la saturation totale et donc la formation des alcanes correspondants. Les catalyseurs d'hydrogénation sélective sont souvent à base de palladium, sous forme de petites particules métalliques déposées sur un support qui peut être un oxyde réfractaire. La teneur en palladium, leur interaction avec le support conditionnent leur dispersion et leur propriétés électroniques qui font partie des critères qui ont une importance sur l'activité et la sélectivité des catalyseurs.
L’amélioration des performances catalytiques conduit à développer des nouvelles voies de préparation de catalyseurs métalliques. Il est ainsi reporté dans la littérature de nouvelles voies de préparation de catalyseurs qui utilisent l’ajout d’additif organique pour modifier les propriétés du catalyseur.
Par exemple, dans le domaines de hydrogénations sélectives, le brevet FR3061196 divulgue l’utilisation d’un catalyseur comprenant un support alumine et une phase active de nickel, le catalyseur étant préparé par un procédé comprenant une étape de mise en contact de la phase active et une étape de mise en contact avec un solution comprenant un composé organique contenant au moins une fonction alcool. L’ajout du composé organique est réalisée par imprégnation, à sec ou en excès du support, ladite imprégnation pouvant être réalisée avant, après ou en même temps que l’étape d’imprégnation du support avec le précurseur de la phase active de nickel.
Par ailleurs, certains polyols sont utilisés comme solvant de préparation de catalyseur de type Pd0/Al203. Ainsi, L. Simplicio et al. (Applied Catalysis B: Environmental 63 (2006) 9-14) décrivent une méthode de préparation d’un catalyseur comprenant 3 % en poids de palladium par rapport au poids total du catalyseur, mesuré sous forme oxyde, sur un support d’alumine, dans lequel le précurseur de palladium, l’acétylacétonate, est dissous dans de l’éthylène glycol avant son imprégnation sur le support d’alumine. Cette méthode de préparation, appelée « procédé polyol » est connue par l’Homme du métier pour permettre d’atteindre de grandes dispersions métalliques. Cependant, dans cette méthode, le polyol joue uniquement le rôle de solvant et de réducteur.
La Demanderesse a découvert de manière surprenante qu’il est possible d’obtenir une amélioration des propriétés catalytiques, notamment en terme d’activité et de sélectivité, d’un catalyseur d’hydrogénation sélective à base de palladium, via un procédé de préparation particulier dudit catalyseur réalisé dans des conditions particulières et en faisant intervenir une famille spécifique de polyols dans le procédé de préparation du catalyseur.
Objets de l’invention
La présente invention concerne un procédé de préparation particulier d’un catalyseur permettant l’obtention de performances au moins aussi bonnes, voire meilleures, en terme d’activité et de sélectivité, dans le cadre des réactions d’hydrogénation sélective de composés polyinsaturés. Sans vouloir être lié à une quelconque théorie, il semble que cette sélectivité particulièrement élevée des catalyseurs obtenus selon le procédé de préparation de la présente invention est due à l’ajout de composés de type polyol au support du catalyseur lors de la phase de préparation du catalyseur, ce qui induit une répartition différente du palladium sur des sites particuliers du support, et contribuant à une amélioration des propriétés par rapport aux catalyseurs utilisés habituellement.
La présente invention a pour objet un procédé de préparation d’un catalyseur comprenant une phase active de palladium et un support à base d’un matériau aluminique cristallin, ledit procédé comprenant les étapes suivantes : a) on met en contact, sous agitation, une solution comprenant au moins un polyol avec un solide aluminique cristallin à une température comprise entre 50 et 300°C, et à une pression correspondant au moins à la pression autogène, la concentration en polyol dans ladite solution étant comprise entre 2 et 100 g/L, le ratio massique entre le polyol et le solide aluminique cristallin étant compris entre 0,1 et 2 poids/poids, pour obtenir une suspension ; b) on filtre la suspension obtenue à l'issue de l'étape a), suivie d'au moins une étape de lavage du solide obtenu ; c) on sèche le solide obtenu à l’issue de l’étape b) à une température comprise entre 25°C et 150°C pour obtenir le support ; d) on met en contact le support obtenu à l’issue de l’étape c) avec un précurseur de la phase active de palladium pour obtenir un précurseur de catalyseur ; e) on sèche le précurseur de catalyseur obtenu à l’issue de l’étape d) à une température comprise entre comprise entre 50 et 150°C pour obtenir le catalyseur. De préférence, ledit polyol contient au moins 3 atomes de carbone.
De préférence, ledit polyol contient au moins trois groupements hydroxyles vicinaux hors groupements hydroxyles terminaux.
De préférence, le polyol est sélectionné parmi le xylitol, le sorbitol, le dulcitol.
Dans un mode de réalisation selon l’invention, la teneur en polyol mise en contact à l’étape a) avec le support aluminique cristallin est comprise entre 0,05 et 15% poids par rapport au poids total du matériau aluminique cristallin.
De préférence, ledit matériau aluminique cristallin comprend une surface spécifique comprise entre 2 et 600 m2/g.
De préférence, la teneur en palladium, exprimée sous forme oxyde, est comprise entre 0,01 et 15% en poids par rapport au poids total du catalyseur.
Dans un mode de réalisation selon l’invention, le procédé comprend en outre une étape f) dans laquelle on calcine le catalyseur obtenu à l’issue de l’étape e) à une température supérieure à 150°C et inférieure ou égale à 600°C.
De préférence, la concentration en polyol dans ladite solution est comprise 5 et 50 g/L.
De préférence, le ratio massique polyol/solide aluminique dans ladite suspension est compris entre 0,3 et 1.
De préférence, ladite pression autogène est comprise entre 0,2 et 10 MPa.
De préférence, l’étape d) de mise en contact est réalisée par échanges ioniques.
De préférence, le solide aluminique cristallin comprend une surface spécifique compris entre 5 et 300 m2/g.
Un autre objet selon l’invention concerne un procédé d’hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h 1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h 1 lorsque le procédé est réalisé en phase gazeuse, en présence d’un catalyseur obtenu selon le procédé de préparation selon l’invention. Description détaillée de l’invention
1. Définitions
Dans la suite, les groupes d'éléments chimiques peuvent être donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81ème édition, 2000-2001). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC.
Dans la présente description, on entend, selon la convention IUPAC, par micropores les pores dont le diamètre est inférieur à 2 nm, c'est à dire 0,002 pm; par mésopores les pores dont le diamètre est supérieur à 2 nm, c'est à dire 0,002 pm et inférieur à 50 nm, c'est à dire 0,05 pm et par macropores les pores dont le diamètre est supérieur à 50 nm, c'est à dire 0,05 pm.
Le volume poreux total est mesuré par porosimétrie au mercure selon la norme ASTM D4284-92 avec un angle de mouillage de 140°, par exemple au moyen d'un appareil modèle Autopore III™ de la marque Microméritics™.
La surface spécifique BET est mesurée par physisorption à l'azote selon la norme ASTM D3663-03, méthode décrite dans l'ouvrage Rouquerol F.; Rouquerol J.; Singh K. « Adsorption by Powders & Porous Solids: Principle, methodology and applications », Academie Press, 1999.
La teneur des métaux de la phase active, en particulier le palladium, est mesurée par fluorescence X.
2. Procédé de préparation du catalyseur
L’invention concerne un procédé de préparation d’un catalyseur d’hydrogénation sélective comprenant, de préférence constitué de, une phase active à base de palladium et un support comprenant un solide aluminique cristallin, ledit procédé comprenant les étapes suivantes : a) on met en contact, sous agitation, une solution comprenant au moins un polyol avec un solide aluminique cristallin à une température comprise entre 50 et 300°C, et à une pression correspondant au moins à la pression autogène, avantageusement comprise entre 0,2 et 10 MPa, la concentration en polyol dans ladite solution étant comprise entre 2 et 100 g/L, le ratio massique entre le polyol et le solide aluminique cristallin étant compris entre 0,1 et 2 poids/poids, pour obtenir une suspension ; b) on filtre la suspension obtenue à l'issue de l'étape a), suivie d'au moins une étape de lavage du solide obtenu ; c) on sèche le solide obtenu à l’issue de l’étape b) à une température comprise entre 25°C et 150°C pour obtenir le support ; d) on met en contact le support obtenu à l’issue de l’étape c) avec un précurseur de la phase active de palladium pour obtenir un précurseur de catalyseur ; e) on sèche le précurseur de catalyseur obtenu à l’issue de l’étape d) à une température inférieure à 200°C pour obtenir le catalyseur ; f) optionnellement, on calcine le catalyseur obtenu à l’issue de l’étape e) à une température comprise entre 200°C et 600°C.
Les étapes a) à f) du procédé de préparation selon l’invention sont décrites en détail ci- après.
Etape a) : Mise en contact Le procédé de préparation du catalyseur selon l’invention comprend une étape d’introduction du polyol sur un support aluminique cristallin.
Par matériau aluminique cristallin, on entend tout composé aluminique faisant partie de la famille des alumines de transition ainsi que l’alumine alpha (ou corindon) et leurs dérivés qui résultent de la déshydratation des matériaux aluminiques précurseurs de type trihydroxyde d’aluminium (gibbsite, bayérite, norstandite, doyléite) ou oxy(hydroxy)de d’aluminium (boehmite, diaspore), c’est-à-dire faisant partie de la liste non exhaustive suivante : alumines gamma, delta, thêta, êta, rho, chi, kappa. De manière préférée le matériau aluminique cristallin est choisi parmi l’alumine alpha, delta, téta, gamma. De manière très préférée on choisit l’alumine gamma.
Par solides dérivés des alumines de transition et de l’alumine alpha, on entend toute alumine de transition ou alumine alpha qui comporterait un ou plusieurs éléments additionnel(s), comme par exemple l’alumine beta qui est stabilisée par des ions alcalins.
Le matériau aluminique cristallin peut avantageusement subir un ensemble de traitements avant l'étape d'imprégnation, tel que des calcinations, ou des traitements à la vapeur permettant de faire varier les propriétés de texture du support.
Le matériau aluminique cristallin peut être avantageusement sous la forme de poudre ou d’extrudés. Si le matériau aluminique cristallin est mis en forme, il peut être sous la forme de billes, d’extrudés cylindriques, d’extrudés trilobiques, de pastilles ou de toute type de mise en forme connue de l’homme du métier adaptée à l’application envisagée. De manière encore plus avantageuse, ledit matériau aluminique cristallin se présente sous forme de billes. Le diamètre des billes est avantageusement compris entre 1 mm et 10 mm, de préférence entre 2 et 8 mm.
La surface spécifique du matériau aluminique cristallin est avantageusement comprise entre 2 et 600 m2/g, de manière préférée entre 2 et 400 m2/g, et de manière très préférée entre 2 et 300 m2/g, et de manière encore plus préférée entre 5 et 300 m2/g. Le volume poreux du matériau aluminique cristallin est avantageusement compris entre 0,1 et 1,5 ml/g, de manière préférée entre 0,2 et 1,4 ml/g, et de manière très préférée entre 0,3 et 1,3 ml/g.
L’étape a) de mise en contact est réalisée sous agitation, et en conditions hydrothermales, c'est-à-dire que la mise en contact est réalisée dans un autoclave sous agitation, l’ensemble du milieu réactionnel étant alors porté à une température comprise entre 50 et 300°C, de préférence entre 100 et 250°C, et de façon encore plus préférée entre 140 et 210°C, la pression correspondant au minimum à la pression autogène sous agitation associée à la température choisie, ladite pression autogène étant avantageusement comprise entre 0,2 et 10 MPa, de préférence entre 0,2 et 6 MPa. La mise en contact d’un mélange comprenant au moins un polyol avec un solide aluminique cristallin résulte en l’obtention d’une suspension. Cette étape de mise en contact se démarque des techniques d’imprégnations classiques, telles que l’imprégnation à sec ou en excès, permettant d’obtenir un support final avec des propriétés texturales particulières conférant au catalyseur une meilleure activité et une meilleure sélectivité en hydrogénation sélective par rapport à des catalyseurs préparés classiquement, c’est-à-dire en incorporant un additif organique par la technique d’imprégnation.
La mise en contact peut être réalisée sous atmosphère oxydante (air), neutre (gaz inerte : diazote, argon, ...) ou réductrice, c’est-à-dire composée partiellement ou totalement de dihydrogène.
Ledit polyol contient de préférence au moins 3 atomes de carbone et de façon encore plus préférée au moins 5 atomes de carbone. De préférence, ledit polyol présente également au moins trois groupements hydroxyles vicinaux (hors groupements hydroxyles terminaux) et de façon encore plus préférée présente des groupements hydroxyles vicinaux en configuration thréo.
De préférence, le polyol est choisi parmi le xylitol, le sorbitol, le dulcitol.
La solution contenant le polyol est avantageusement aqueuse. Elle peut être neutre, acide ou basique et de préférence neutre. Le pH de la solution peut être assuré par l’ajout de composés permettant de réguler le pH, de manière à conduire à une solution acide, basique ou neutre. Ces composés peuvent appartenir à la liste non exhaustive suivante : acide nitrique, acide chlorhydrique, acide sulfurique, acides carboxyliques, ammoniaque, hydroxyde de tétraéthylammonium, urée. L’efficacité du dépôt du polyol sur le matériau aluminique cristallin est assurée par un contrôle précis de la quantité de polyol introduit, cette dernière étant essentiellement caractérisée par la concentration massique en polyol dans le mélange (exprimée en g/L) et par le rapport massique polyol/solide aluminique cristallin. Ainsi, la concentration massique en polyol dans le mélange est comprise entre 2 et 100 g/L, de préférence entre 5 et 50 g/L et de façon plus préférée entre 10 et 35 g/L. De même, le rapport massique polyol/solide aluminique dans ladite suspension est compris entre 0,1 et 2, de préférence entre 0,3 et 1 et de façon plus préférée entre 0,3 et 0,6.
La teneur en polyol mis en contact avec le matériau aluminique cristallin est avantageusement comprise entre 0,05 et 15% poids par rapport au poids total dudit matériau, de préférence entre 0,1 et 9% poids et de façon encore plus préférée entre 0,15 et 7% poids.
Etape b) Filtration / Lavaae Le procédé de préparation du catalyseur comprend une étape b) de filtration de la suspension obtenue à l'issue de l'étape a), suivie d'au moins une étape de lavage du solide obtenu. Ladite étape de filtration est réalisée selon les méthodes connues de l'Homme du métier. Ladite étape de filtration est avantageusement suivie d'au moins une étape de lavage à l'eau et de préférence d’une à trois étapes de lavage, avec une quantité d'eau au minimum égale à la quantité de précipité filtré.
Etape c) Séchape
A l'issue de l'étape b), le solide récupéré est séché à une température comprise entre 25 et 150°C, de préférence entre 60°C et 140°C, pendant une durée comprise de préférence entre 0,5 à 24 heures, de façon préférée pendant une durée de 0,5 à 12 heures et de façon encore plus préférée pendant une durée de 0,5 à 11 heures. Des durées plus longues ne sont pas exclues, mais n’apportent pas nécessairement d’amélioration.
L’étape de séchage peut être effectuée par toute technique connue de l’Homme du métier. Elle est avantageusement effectuée sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène ou sous un mélange de gaz inerte et d’oxygène. Elle est avantageusement effectuée à pression atmosphérique ou à pression réduite. De manière préférée, cette étape est réalisée à pression atmosphérique et en présence d’air ou d’azote.
Figure imgf000008_0001
L’introduction du précurseur de la phase active à base de palladium peut être réalisée par toutes les techniques connues de l'Homme du métier telles que un(e) ou plusieurs imprégnation(s) à sec, imprégnation(s) en excès, échange(s) ionique(s), dépôt(s) en phase vapeur de précurseur. De préférence, l’étape d) de mise en contact est réalisée par échange ionique, laquelle consiste en la mise en suspension, sous agitation, du support obtenu à l’issue de l’étape c) dans une solution comprenant le précurseur de la phase active de palladium, suivie d’une séparation du mélange réactionnel par centrifugation et d’un rinçage à l’eau.
Le dépôt du palladium fait avantageusement intervenir un précurseur dudit métal. Par exemple, il peut s'agir de l’oxyde, du carbure, du sulfure, du chlorure, du fluorure, de l’iodure, du bromure, du nitrate, du sulfate, du carbonate, de l’oxalate, de l’acétate, du phosphate, du perchlorate ou de l’hydroxyde dudit métal. Ledit précurseur peut également être un dérivé organo-métallique. De préférence, les précurseurs sont choisis parmi les carbonates, les complexes organo-métalliques, les sels de métaux comme par exemple les chlorures métalliques et les nitrates métalliques.
De préférence, la teneur en palladium (mesurée sous forme oxyde) est avantageusement comprise entre 0,01 et 15% poids et de manière préférée entre 0,015 et 10% poids par rapport au poids total dudit catalyseur.
Le catalyseur préparé selon l’invention peut comprendre avantageusement au moins un ou plusieurs métaux appartenant aux colonnes 4 à 14 du tableau périodique selon la classification de l’IUPAC ou à la famille des métaux de transition interne, à savoir lanthanides et actinides. Le au moins un métal est avantageusement choisi parmi la liste non exhaustive suivante : Cu, Ag, Au, Zn, Ge, Ga, In, Sn et Pb pris seuls ou en mélange. De manière préférée, le au moins un métal est choisi dans le groupe constitué par Cu, Ag, Au et leurs mélanges.
De préférence, la teneur totale en métal appartenant aux colonnes 4 à 14 du tableau périodique selon la classification de l’IUPAC ou à la famille des métaux de transition interne est avantageusement comprise entre 0,05% et 10% poids et de manière préférée entre 0,05 et 8% poids (mesurée sous forme oxyde) par rapport à la masse totale dudit catalyseur. Lorsque ledit métal est choisi parmi Re, Ru, Rh, Ir, Pt, Ag et Au et leurs mélanges, la teneur en métal, ou en chaque métal s’il y en a plusieurs, est avantageusement comprise entre 0,01% et 15% poids (mesurée sous forme oxyde) et de manière préférée entre 0,01 et 10% poids par rapport à la masse totale dudit catalyseur.
Le catalyseur préparé selon l’invention peut comprendre avantageusement au moins un ou plusieurs métaux appartenant aux colonnes 1 et 2 du tableau périodique selon la classification de l’IUPAC. Le au moins un métal est avantageusement choisi parmi la liste non exhaustive suivante : Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba pris seuls ou en mélange. De manière préférée, le au moins un métal est choisi dans le groupe constitué par Na, K, Ca, Ba Mg, et leurs mélanges.
De préférence, la teneur totale en métal appartenant aux colonnes 1 et 2 du tableau périodique selon la classification de l’IUPAC parmi la liste non exhaustive suivante : Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba pris seuls ou en est avantageusement comprise entre 0,01% et 10% poids en élément métal, et de manière préférée entre 0,02 et 8% poids par rapport à la masse totale dudit catalyseur.
Figure imgf000010_0001
L’étape e) de séchage est réalisée avantageusement à une température inférieure à 200°C, de préférence comprise entre 15 et 180°C, plus préférentiellement entre 30 et 160°C, encore plus préférentiellement entre 50 et 150°C, et de manière encore plus préférentielle entre 70 et 140°C, pendant une durée typiquement comprise entre 0,5 à 12 heures, et de façon encore plus préférée pendant une durée de 0,5 à 5 heures. Des durées plus longues ne sont pas exclues, mais n’apportent pas nécessairement d’amélioration.
L’étape de séchage peut être effectuée par toute technique connue de l’Homme du métier. Elle est avantageusement effectuée sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène ou sous un mélange de gaz inerte et d’oxygène. Elle est avantageusement effectuée à pression atmosphérique ou à pression réduite. De manière préférée, cette étape est réalisée à pression atmosphérique et en présence d’air ou d’azote.
Figure imgf000010_0002
L’étape f) de calcination peut être réalisée à une température comprise entre 200°C et 600°C, de préférence entre 350°C et 550°C, pendant une durée typiquement comprise entre 0,5 à 24 heures, de façon préférée pendant une durée de 0,5 à 12 heures, et de façon encore plus préférée pendant une durée de 0,5 à 10 heures, de préférence sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène. Des durées plus longues ne sont pas exclues, mais n’apportent pas nécessairement d’amélioration.
Lorsque l’étape f) est réalisée, et selon les conditions opératoires utilisées, il se peut qu’au moins une partie ou la totalité de polyol ne se trouve plus dans le catalyseur final. Cependant, le polyol a laissé une empreinte sur le support du catalyseur, conférant l’amélioration des propriétés catalytiques du catalyseur obtenu selon le procédé de préparation selon l’invention. Traitement réducteur
Préalablement à l’utilisation du catalyseur dans le réacteur catalytique et la mise en œuvre d’un procédé d'hydrogénation, on effectue avantageusement au moins une étape de traitement réducteur en présence d’un gaz réducteur après les étapes e) ou f) de manière à obtenir un catalyseur comprenant du palladium au moins partiellement sous forme métallique.
Ce traitement permet d'activer ledit catalyseur et de former des particules métalliques, en particulier du palladium à l'état zéro valent. Ledit traitement réducteur peut être réalisé in-situ ou ex-situ c'est-à-dire après ou avant le chargement du catalyseur dans le réacteur d'hydrogénation.
Lorsque, l’étape de réduction est réalisée en phase gazeuse, le gaz réducteur est de préférence l'hydrogène. L'hydrogène peut être utilisé pur ou en mélange (par exemple un mélange hydrogène / azote, ou hydrogène / argon, ou hydrogène / méthane). Dans le cas où l'hydrogène est utilisé en mélange, toutes les proportions sont envisageables. Ledit traitement réducteur est réalisé à une température comprise entre 50 et 500°C, de préférence entre 100 et 450°C. La durée du traitement réducteur est généralement comprise entre 2 et 40 heures, de préférence entre 3 et 30 heures. La montée en température jusqu'à la température de réduction désirée est généralement lente, par exemple fixée entre 0,1 et 10°C/min, de préférence entre 0,3 et 7°C/min. Le débit d'hydrogène, exprimé en L/heure/gramme de catalyseur est compris entre 0,01 et 100 L/heure/gramme de catalyseur, de préférence entre 0,05 et 10 L/heure/gramme de catalyseur, de façon encore plus préférée entre 0,1 et 5 L/heure/gramme de catalyseur.
L’étape de réduction peut également être réalisée en phase liquide en présence d’un agent réducteur, tels que les hydrures de sels de métaux, les borohydrures alcalins, et en particulier le tétrahydruroborate de sodium, l’hydrazine, l’acide formique, ou encore le formaldéhyde. Le rapport molaire entre l’agent réducteur et le métal à réduire est compris entre 1 et 500, de manière préférée entre 1 et 250 et de manière très préférée entre 1 et 150. La température de réduction est comprise entre 20 et 100°C et de manière préférée entre 20 et 90°C. La durée de l’étape de réduction est comprise entre 0,1 et 10 h et de manière préférée entre 0,2 et 8 heures. Procédé d’hydrogénation sélective
La présente invention a également pour objet un procédé d’hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, aussi appelés styréniques, contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/( composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h 1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h 1 lorsque le procédé est réalisé en phase gazeuse, en présence d’un catalyseur obtenu par le procédé de préparation tel que décrit ci- avant dans la description.
Les composés organiques mono-insaturés tels que par exemple l’éthylène et le propylène, sont à la source de la fabrication de polymères, de matières plastiques et d'autres produits chimiques à valeur ajoutée. Ces composés sont obtenus à partir du gaz naturel, du naphta ou du gazole qui ont été traités par des procédés de vapocraquage ou de craquage catalytique. Ces procédés sont opérés à haute température et produisent, en plus des composés mono-insaturés recherchés, des composés organiques polyinsaturés tels que l'acétylène, le propadiène et le méthylacétylène (ou propyne), le 1-2-butadiène et le 1-3- butadiène, le vinylacétylène et l'éthylacétylène, et d’autres composés polyinsaturés dont le point d’ébullition correspond à la coupe C5+ (composés hydrocarbonés ayant au moins 5 atomes de carbone), en particulier des composés dioléfiniques ou styréniques ou indéniques. Ces composés polyinsaturés sont très réactifs et conduisent à des réactions parasites dans les unités de polymérisation. Il est donc nécessaire de les éliminer avant de valoriser ces coupes.
L'hydrogénation sélective est le principal traitement développé pour éliminer spécifiquement les composés polyinsaturés indésirables de ces charges d'hydrocarbures. Elle permet la conversion des composés polyinsaturés vers les alcènes ou aromatiques correspondants en évitant leur saturation totale et donc la formation des alcanes ou naphtènes correspondants. Dans le cas d'essences de vapocraquage utilisées comme charge, l'hydrogénation sélective permet également d'hydrogéner sélectivement les alcénylaromatiques en aromatiques en évitant l’hydrogénation des noyaux aromatiques. La charge d'hydrocarbures traitée dans le procédé d’hydrogénation sélective a un point d'ébullition final inférieur ou égal à 300°C et contient au moins 2 atomes de carbone par molécule et comprend au moins un composé polyinsaturé. On entend par « composés polyinsaturés » des composés comportant au moins une fonction acétylénique et/ou au moins une fonction diénique et/ou au moins une fonction alcénylaromatique.
Plus particulièrement, la charge est sélectionnée dans le groupe constitué par une coupe C2 de vapocraquage, une coupe C2-C3 de vapocraquage, une coupe C3 de vapocraquage, une coupe C4 de vapocraquage, une coupe C5 de vapocraquage et une essence de vapocraquage encore appelée essence de pyrolyse ou coupe C5+.
La coupe C2 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : entre 40 et 95 % poids d'éthylène, environ 20 % poids d’hydrogène, de l'ordre de 0,1 à 5 % poids d'acétylène, le reste étant essentiellement de l'éthane et du méthane. Dans certaines coupes C2 de vapocraquage, entre 0,1 et 1 % poids de composés en C3 peut aussi être présent.
La coupe C3 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition moyenne suivante : de l’ordre de 90 % poids de propylène, de l’ordre de 1 à 8 % poids de propadiène et de méthyl acétylène, le reste étant essentiellement du propane. Dans certaines coupes C3, entre 0,1 et 2 % poids de composés en C2 et de composés en C4 peut aussi être présent.
Une coupe C2 - C3 peut aussi être avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention. Elle présente par exemple la composition suivante : de l'ordre de 0,1 à 5 % poids d'acétylène, de l’ordre de 0,1 à 3 % poids de propadiène et de méthylacétylène, de l’ordre de 30 % poids d'éthylène, de l’ordre de 5 % poids de propylène, de l’ordre de 15 % en poids d’hydrogène, le reste étant essentiellement du méthane, de l’éthane et du propane. Cette charge peut aussi contenir entre 0,1 et 2 % poids de composés en C4.
La coupe C4 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition massique moyenne suivante : 1 % poids de butane, 46,5 % poids de butène, 51 % poids de butadiène, 1 ,3 % poids de vinylacétylène et 0,2 % poids de butyne. Dans certaines coupes C4, entre 0,1 et 2 % poids de composés en C3 et de composés en C5 peut aussi être présent. La coupe C5 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : 21 % poids de pentanes, 45 % poids de pentènes, 34 % poids de pentadiènes.
L'essence de vapocraquage ou essence de pyrolyse, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, correspond à une coupe hydrocarbonée dont la température d'ébullition est généralement comprise entre 0 et 300°C, de préférence entre 10 et 250°C. Les hydrocarbures polyinsaturés à hydrogéner présents dans ladite essence de vapocraquage sont en particulier des composés dioléfiniques (butadiène, isoprène, cyclopentadiène...), des composés styréniques (styrène, alpha- méthylstyrène...) et des composés indéniques (indène...). L'essence de vapocraquage comprend généralement la coupe C5-C12 avec des traces de C3, C4, C13, C14, C15 (par exemple entre 0,1 et 3% poids pour chacune de ces coupes). Par exemple, une charge formée d'essence de pyrolyse a généralement une composition suivante: 5 à 30 % poids de composés saturés (paraffines et naphtènes), 40 à 80 % poids de composés aromatiques, 5 à 20 % poids de mono-oléfines, 5 à 40 % poids de dioléfines, 1 à 20 % poids de composés alcénylaromatiques, l'ensemble des composés formant 100 %. Elle contient également de 0 à 1000 ppm poids de soufre, de préférence de 0 à 500 ppm poids de soufre.
De manière préférée, la charge d'hydrocarbures polyinsaturés traitée conformément au procédé d'hydrogénation sélective selon l'invention est une coupe C2 de vapocraquage, ou une coupe C2-C3 de vapocraquage, ou une essence de vapocraquage.
Le procédé d'hydrogénation sélective selon l'invention vise à éliminer lesdits hydrocarbures polyinsaturés présents dans ladite charge à hydrogéner sans hydrogéner les hydrocarbures monoinsaturés. Par exemple, lorsque ladite charge est une coupe C2, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement l'acétylène. Lorsque ladite charge est une coupe C3, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement le propadiène et le méthylacétylène. Dans le cas d'une coupe C4, on vise à éliminer le butadiène, le vinylacétylène (VAC) et le butyne, dans le cas d'une coupe C5, on vise à éliminer les pentadiènes. Lorsque ladite charge est une essence de vapocraquage, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement lesdits hydrocarbures polyinsaturés présents dans ladite charge à traiter de manière à ce que les composés dioléfiniques soient partiellement hydrogénés en mono-oléfines et que les composés styréniques et indéniques soient partiellement hydrogénés en composés aromatiques correspondants en évitant l’hydrogénation des noyaux aromatiques. La mise en œuvre technologique du procédé d’hydrogénation sélective est par exemple réalisée par injection, en courant ascendant ou descendant, de la charge d'hydrocarbures polyinsaturés et de l’hydrogène dans au moins un réacteur à lit fixe. Ledit réacteur peut être de type isotherme ou de type adiabatique. Un réacteur adiabatique est préféré. La charge d'hydrocarbures polyinsaturés peut avantageusement être diluée par une ou plusieurs ré injections) de l'effluent, issu dudit réacteur où se produit la réaction d'hydrogénation sélective, en divers points du réacteur, situés entre l'entrée et la sortie du réacteur afin de limiter le gradient de température dans le réacteur. La mise en œuvre technologique du procédé d’hydrogénation sélective selon l'invention peut également être avantageusement réalisée par l'implantation d’au moins dudit catalyseur supporté dans une colonne de distillation réactive ou dans des réacteurs - échangeurs ou dans un réacteur de type slurry. Le flux d'hydrogène peut être introduit en même temps que la charge à hydrogéner et/ou en un ou plusieurs points différents du réacteur.
L'hydrogénation sélective des coupes C2, C2-C3, C3, C4, C5 et C5+ de vapocraquage peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide pour les coupes C3, C4, C5 et C5+ et en phase gazeuse pour les coupes C2 et C2-C3. Une réaction en phase liquide permet d’abaisser le coût énergétique et d’augmenter la durée de cycle du catalyseur.
D'une manière générale, l'hydrogénation sélective d’une charge d'hydrocarbures contenant des composés polyinsaturés contenant au moins 2 atomes de carbone par molécule et ayant un point d'ébullition final inférieur ou égal à 300°C s'effectue à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire V.V.H. (définie comme le rapport du débit volumique de charge sur le volume du catalyseur) comprise entre 0,1 et 200 h 1 pour un procédé réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire V.V.H. comprise entre 100 et 40000 h 1 pour un procédé réalisé en phase gazeuse.
Dans un mode de réalisation selon l’invention, lorsqu’on effectue un procédé d'hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 10, de préférence entre 0,7 et 5,0 et de manière encore plus préférée entre 1,0 et 2,0, la température est comprise entre 0 et 200°C, de préférence entre 20 et 200°C et de manière encore plus préférée entre 30 et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 0,5 et 100 h 1, de préférence entre 1 et 50 h 1 et la pression est généralement comprise entre 0,3 et 8,0 MPa, de préférence entre 1 ,0 et 7,0 MPa et de manière encore plus préférée entre 1 ,5 et 4,0 MPa.
Plus préférentiellement, on effectue un procédé d’hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 0,7 et 5,0, la température est comprise entre 20 et 200 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 et 50 h 1 et la pression est comprise entre 1 ,0 et 7,0 MPa.
Encore plus préférentiellement, on effectue un procédé d’hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(com posés polyinsaturés à hydrogéner) est compris entre 1,0 et 2,0, la température est comprise entre 30 et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 et 50 h 1 et la pression est comprise entre 1,5 et 4,0 MPa.
Le débit d’hydrogène est ajusté afin d’en disposer en quantité suffisante pour hydrogéner théoriquement l’ensemble des composés polyinsaturés et de maintenir un excès d’hydrogène en sortie de réacteur.
Dans un autre mode de réalisation selon l’invention, lorsqu’on effectue un procédé d'hydrogénation sélective dans lequel la charge est une coupe C2 de vapocraquage et/ou une coupe C2-C3 de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 1000, de préférence entre 0,7 et 800, la température est comprise entre 0 et 300°C, de préférence entre 15 et 280 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 100 et 40000 h 1, de préférence entre 500 et 30000 h 1 et la pression est généralement comprise entre 0,1 et 6,0 MPa, de préférence entre 0,2 et 5,0 MPa.
Exemples
Figure imgf000016_0001
Le support S1 g-alumina est préparé par calcination à 600°C sous air de poudre de boehmite commerciale PURAL SB3®.
15 grammes de support S1 g-alumina de surface spécifique 220 m2/g et de volume poreux 0,54 mL/g sont mis en suspension dans 300 mL de solution aqueuse de Pd tétra-amine (N03)2Pd(NH3)4 de concentration 0,05 g/L. Le pH est maintenu au-dessus de 11,4. La suspension est agitée 3 heures puis le mélange est séparé par centrifugation et rincé avec de l’eau.
Le précurseur de catalyseur C1 est séché 12 heures dans une étuve ventilée à 110°C. Le catalyseur C1 contient 0,035 % en poids de Pd (mesuré sous forme oxyde) par rapport au poids total du catalyseur.
Figure imgf000017_0001
15 grammes de support S1 g-alumina de surface spécifique 220 m2/g et de volume poreux 0,54 mL/g sont mis en suspension dans 75 mL d’une solution aqueuse contenant du sorbitol à une concentration de 20 g/L dans un réacteur fermé de volume 150 mL muni d’une agitation mécanique. L’ensemble est maintenu à 200°C pendant une heure sous agitation de 500 tr/min et une pression de 1,4 MPa. Le milieu réactionnel est refroidi et le solide est séparé de la suspension par centrifugation. Le solide S2 g-alumina obtenu est séché 12 heures à 120°C dans un étuve.
15 grammes de support S2 g-alumina de surface spécifique 255 m2/g et de volume poreux 0,48 mL/g sont mis en suspension dans 300 mL de solution aqueuse de Pd tétra-amine (N03)2Pd(NH3)4 de concentration 0,05 g/L. Le pH est maintenu au-dessus de 11,4. La suspension est agitée 3 heures puis le mélange est séparé par centrifugation et rincé avec de l’eau.
Le précurseur de catalyseur C2 est séché 12 heures dans une étuve ventilée à 110°C.
Le catalyseur C2 contient 0,035 % en poids de Pd (mesuré sous forme oxyde) par rapport au poids total du catalyseur et 3,3% en poids de sorbitol par rapport au poids total de catalyseur.
Exemple 3 : Préparation du catalyseur C1’ (non conforme)
Le procédé de préparation du catalyseur C1’ est identique au procédé décrit dans l’exemple 1 mais comprend une étape supplémentaire de calcination sous air à 450°C pendant deux heures après l’étape de séchage.
Le catalyseur C1’ contient 0,035 % en poids de Pd (mesuré sous forme oxyde) par rapport au poids total du catalyseur.
Figure imgf000017_0002
Le procédé de préparation du catalyseur C2’ est identique au procédé décrit dans l’exemple
2 mais comprend une étape supplémentaire de calcination sous air à 450°C pendant deux heures après l’étape de séchage.
Le catalyseur C2’ contient 0,035 % en poids de Pd (mesuré sous forme oxyde) par rapport au poids total du catalyseur. Exemple 5 : Utilisation des catalyseurs C1, C2, C1’ et C2’ pour l’hydrogénation sélective du butadiène
Cet exemple concerne la conversion du butadiène pour la production sélective de butène. Le test catalytique est conduit dans un réacteur fermé de 100 mL à 20°C sous une pression de 1 MPa. 2 grammes de catalyseur C1, C2, C1’ et C2’ de granulométrie 63-100 mhi sont réduits à 150°C dans un réacteur traversé sous flux d’hydrogène de 1 N L/h/g catalyseur pendant 5 heures. Ensuite, le catalyseur est mis en suspension dans une charge comprenant 10% en poids de butadiène et 90% en poids de heptane par rapport au poids total de la charge. L’agitation est maintenue à 1400 tr/min. La pression en hydrogène est maintenue à 1 MPa. L’activité et la sélectivité sont mesurées par la consommation d’hydrogène et par l’analyse périodique via des prélèvements du milieu réactionnel analysés par chromatographie en phase gazeuse.
L’activité est définie selon la formule suivante : 0,001
Figure imgf000018_0001
avec
BD : butadiène ; mcat : masse de catalyseur en gramme ;
% Pd : teneur massique en Pd ; At = variation de temps en heure ;
DH2 = consommation molaire H2 pendant la durée At.
La sélectivité est définie selon la formule suivante : nEE
SBE ~ nBE + nBA avec
BE : butène ;
BA : butane
Les résultats obtenus sont résumés dans le Tableau 1 ci-après. Tableau 1
Figure imgf000019_0001
Le catalyseur C2 conforme à l’invention est actif et sélectif pour la conversion du butadiène en butène. Les performances catalytiques sont supérieures à celles d’un catalyseur C1 préparé sur un support ne contenant pas de sorbitol. Par ailleurs, on remarque que l’ajout d’une étape de calcination sous air à 450°C pendant deux heures avant la réduction baisse les activités des catalyseurs CT et C2’. Cependant, le catalyseur C2’ conforme à l’invention reste plus actif et plus sélectif que le catalyseur CT non conforme soumis aux mêmes conditions opératoires.

Claims

REVENDICATIONS
1. Procédé de préparation d’un catalyseur comprenant une phase active de palladium et un support à base d’un matériau aluminique cristallin, ledit procédé comprenant les étapes suivantes : a) on met en contact, sous agitation, une solution comprenant au moins un polyol avec un solide aluminique cristallin à une température comprise entre 50 et 300°C, et à une pression correspondant au moins à la pression autogène, la concentration en polyol dans ladite solution étant comprise entre 2 et 100 g/L, le ratio massique entre le polyol et le solide aluminique cristallin étant compris entre 0,1 et 2 poids/poids, pour obtenir une suspension ; b) on filtre la suspension obtenue à l'issue de l'étape a), suivie d'au moins une étape de lavage du solide obtenu ; c) on sèche le solide obtenu à l’issue de l’étape b) à une température comprise entre 25°C et 150°C pour obtenir le support ; d) on met en contact le support obtenu à l’issue de l’étape c) avec un précurseur de la phase active de palladium pour obtenir un précurseur de catalyseur ; e) on sèche le précurseur de catalyseur obtenu à l’issue de l’étape d) à une température inférieure à 200°C pour obtenir le catalyseur.
2. Procédé selon la revendication 1 , caractérisé en ce que ledit polyol contient au moins 3 atomes de carbone.
3. Procédé selon l’une des revendications 1 ou 2, caractérisé en ce que ledit polyol contient au moins trois groupements hydroxyles vicinaux hors groupements hydroxyles terminaux.
4. Procédé selon l’une quelconque des revendications 1 à 3, caractérisé en ce que le polyol est sélectionné parmi le xylitol, le sorbitol, le dulcitol.
5. Procédé selon l’une quelconque des revendications 1 à 4, caractérisé en ce que la teneur en polyol mise en contact à l’étape a) avec le support aluminique cristallin est comprise entre 0,05 et 15% poids par rapport au poids total du matériau aluminique cristallin.
6. Procédé selon l’une quelconque des revendications 1 à 5, caractérisé en ce que ledit matériau aluminique cristallin comprend une surface spécifique comprise entre 2 et 600 m2/g.
7. Procédé selon l’une quelconque des revendications 1 à 6, caractérisé en ce que la teneur en palladium, exprimée sous forme oxyde, est comprise entre 0,01 et 15% en poids par rapport au poids total du catalyseur.
8. Procédé selon l’une quelconque des revendications 1 à 7, comprenant en outre une étape f) dans laquelle on calcine le catalyseur obtenu à l’issue de l’étape e) à une température comprise entre 200°C et 600°C.
9. Procédé selon l’une quelconque des revendications 1 à 8, dans lequel la concentration en polyol dans ladite solution est comprise 5 et 50 g/L.
10. Procédé selon l’une quelconque des revendications 1 à 9, dans lequel le ratio massique polyol/solide aluminique dans ladite suspension est compris entre 0,3 et 1.
11. Procédé selon l’une quelconque des revendications 1 à 10, dans lequel ladite pression autogène est comprise entre 0,2 et 10 MPa.
12. Procédé selon l’une quelconque des revendications 1 à 11, dans lequel l’étape d) de mise en contact est réalisée par échanges ioniques.
13. Procédé selon l’une quelconque des revendications 1 à 12, dans lequel le solide aluminique cristallin comprend une surface spécifique compris entre 5 et 300 m2/g.
14. Procédé d’hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h 1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h 1 lorsque le procédé est réalisé en phase gazeuse, en présence d’un catalyseur obtenu selon le procédé de préparation selon l’une quelconque des revendications 1 à 13.
PCT/EP2021/056764 2020-03-30 2021-03-17 Procede de preparation d'un catalyseur de palladium comprenant un support prepare a partir d'un materiau aluminique et un polyol WO2021197845A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2003144 2020-03-30
FR2003144A FR3108533B1 (fr) 2020-03-30 2020-03-30 Procede de preparation d’un catalyseur de palladium comprenant un support prepare a partir d’un materiau aluminique et un polyol

Publications (1)

Publication Number Publication Date
WO2021197845A1 true WO2021197845A1 (fr) 2021-10-07

Family

ID=71452428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/056764 WO2021197845A1 (fr) 2020-03-30 2021-03-17 Procede de preparation d'un catalyseur de palladium comprenant un support prepare a partir d'un materiau aluminique et un polyol

Country Status (2)

Country Link
FR (1) FR3108533B1 (fr)
WO (1) WO2021197845A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3332869A1 (fr) * 2016-11-29 2018-06-13 IFP Energies nouvelles Catalyseur d'hydrogenation selective de coupes c3 de vapocraquage et/ou de craquage catalytique
FR3061196A1 (fr) 2016-12-22 2018-06-29 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en œuvre un catalyseur a base de nickel prepare au moyen d'un additif comprenant une fonction alcool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3332869A1 (fr) * 2016-11-29 2018-06-13 IFP Energies nouvelles Catalyseur d'hydrogenation selective de coupes c3 de vapocraquage et/ou de craquage catalytique
FR3061196A1 (fr) 2016-12-22 2018-06-29 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en œuvre un catalyseur a base de nickel prepare au moyen d'un additif comprenant une fonction alcool

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AINSIL. SIMPLICIO ET AL., APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 63, 2006, pages 9 - 14
ROUQUEROL F.ROUQUEROL J.SINGH K: "Adsorption by Powders & Porous Solids: Principle, methodology and applications", 1999, ACADEMIC PRESS
SIMPLICIO L M T ET AL: "Methane combustion over PdO-alumina catalysts: The effect of palladium precursors", APPLIED CATALYSIS B: ENVIRONMENTAL, ELSEVIER, AMSTERDAM, NL, vol. 63, no. 1-2, 22 March 2006 (2006-03-22), pages 9 - 14, XP028000925, ISSN: 0926-3373, [retrieved on 20060322], DOI: 10.1016/J.APCATB.2005.08.009 *
WEI-LI QU ET AL: "Investigation on performance of Pd/Al 2 O 3 -C catalyst synthesized by microwave assisted polyol process for electrooxidation of formic acid", RSC ADVANCES, vol. 2, no. 1, 1 January 2012 (2012-01-01), GB, pages 344 - 350, XP055751874, ISSN: 2046-2069, DOI: 10.1039/C1RA00504A *
XIAOTONG LI ET AL: "Effect of Metal Dispersion on the Hydrogenation of 2-Amyl Anthraquinone over Pd/Al 2 O 3 Catalyst", JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 1 January 2016 (2016-01-01), São Paulo; BR, XP055751871, ISSN: 0103-5053, DOI: 10.5935/0103-5053.20160001 *

Also Published As

Publication number Publication date
FR3108533A1 (fr) 2021-10-01
FR3108533B1 (fr) 2022-03-11

Similar Documents

Publication Publication Date Title
EP3191221B1 (fr) Catalyseur mesoporeux a base de nickel et son utilisation en hydrogenation d'hydrocarbures
EP3154685B1 (fr) Catalyseur mesoporeux et macroporeux a base de nickel ayant un diametre median macroporeux compris entre 50 nm et 200 nm et son utilisation en hydrogenation d'hydrocarbures
EP2249963B1 (fr) Catalyseur d'hydrogenation selective et son procede de preparation
EP3154684B1 (fr) Catalyseur a base de nickel mesoporeux et macroporeux ayant un diametre median macroporeux superieur a 200 nm et son utilisation en hydrogenation d'hydrocarbures
EP3740309B1 (fr) Procede de preparation d'un catalyseur particulier d'hydrogenation selective et d'hydrogenation des aromatiques par malaxage
EP3154686A1 (fr) Catalyseur mesoporeux et macroporeux a base de nickel obtenu par comalaxage et ayant un diametre median macroporeux superieur a 300 nm et son utilisation en hydrogenation d'hydrocarbures
EP2474354B1 (fr) Nouveau procédé de preparation de catalyseurs à base de palladium et utilisation de ces catalyseurs en hydrogénation selective
WO2015055380A1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur contenant du cuivre et au moins un metal choisi parmi le nickel ou le cobalt
EP3781310B1 (fr) Procede de preparation d'un catalyseur bimetallique d'hydrogenation selective a base de nickel et de cuivre
WO2020148132A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation selective comprenant une etape de formation d'un alliage de ni-cu en post-impregnation
EP3911439A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation selective comprenant une etape de formation d'un alliage de ni-cu en pre-impregnation
EP4003588B1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute
EP4003591A1 (fr) Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre
FR2932701A1 (fr) Catalyseur d'hydrogenation selective et son procede de preparation
WO2018114398A1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur a base de nickel prepare au moyen d'un additif comprenant une fonction alcool
WO2021197845A1 (fr) Procede de preparation d'un catalyseur de palladium comprenant un support prepare a partir d'un materiau aluminique et un polyol
WO2021018603A1 (fr) Catalyseur comprenant une phase active de nickel soufre repartie en croute
FR3068983A1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur obtenu par impregnation comprenant un support specifique
WO2022090023A1 (fr) Catalyseur d'hydrogenation selective a base de palladium sur un support en oxyde de zinc
WO2019011566A1 (fr) Procede d'hydrogenation selective mettant en oeuvre un catalyseur obtenu par comalaxage comprenant un support specifique
FR3134016A1 (fr) Catalyseur a base de palladium et de fluor sur un support d’alumine
EP4157521A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute
WO2023186521A1 (fr) Catalyseur a base de palladium et de zinc sur un support d'alumine
FR3132647A1 (fr) Procede de preparation d’un catalyseur comprenant une phase active de palladium et de cuivre
FR3110867A1 (fr) Procede de preparation d’un catalyseur comprenant une phase active de nickel repartie en croute obtenu a partir de sels fondus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21711293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21711293

Country of ref document: EP

Kind code of ref document: A1