WO2022112079A1 - Procede d'hydrogenation selective d'une essence en presence d'un catalyseur sur support meso-macroporeux - Google Patents

Procede d'hydrogenation selective d'une essence en presence d'un catalyseur sur support meso-macroporeux Download PDF

Info

Publication number
WO2022112079A1
WO2022112079A1 PCT/EP2021/082067 EP2021082067W WO2022112079A1 WO 2022112079 A1 WO2022112079 A1 WO 2022112079A1 EP 2021082067 W EP2021082067 W EP 2021082067W WO 2022112079 A1 WO2022112079 A1 WO 2022112079A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
catalyst
support
equal
less
Prior art date
Application number
PCT/EP2021/082067
Other languages
English (en)
Inventor
Philibert Leflaive
Etienne Girard
Antoine Fecant
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to KR1020237017907A priority Critical patent/KR20230115295A/ko
Priority to AU2021386151A priority patent/AU2021386151A1/en
Priority to US18/036,772 priority patent/US20230405573A1/en
Priority to MX2023005249A priority patent/MX2023005249A/es
Priority to EP21806764.3A priority patent/EP4251713A1/fr
Priority to CN202180079686.6A priority patent/CN116669851A/zh
Priority to JP2023532273A priority patent/JP2023550821A/ja
Publication of WO2022112079A1 publication Critical patent/WO2022112079A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • C10G45/36Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/38Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metals, or compounds thereof
    • B01J35/653
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • B01J35/613
    • B01J35/615
    • B01J35/635
    • B01J35/638
    • B01J35/647
    • B01J35/651
    • B01J35/66
    • B01J35/69
    • B01J35/695
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the present invention relates to the field of hydrotreating gasoline cuts, in particular gasoline cuts from fluidized bed catalytic cracking units. More particularly, the present invention relates to the use of a catalyst in a process for the selective hydrogenation of a gasoline and for the weighting down of light mercaptans, and a process making it possible to jointly carry out the selective hydrogenation of polyunsaturated compounds into compounds monounsaturates contained in gasoline, as well as the weighting of light sulfur compounds by reaction with unsaturated compounds.
  • conversion gasolines and more particularly those originating from catalytic cracking, which can represent 30 to 50% of the gasoline pool, have high olefin and sulfur contents.
  • FCC gasoline Fluid Catalytic Cracking
  • the process according to the invention is applicable to any gasoline cut containing a certain proportion of diolefins, and which may also contain some lighter compounds belonging to the C3 and C4 cuts.
  • the gasolines from cracking units are generally rich in olefins and sulfur, but also in diolefins, the content of which, for gasolines from catalytic cracking, can be up to 5% by weight.
  • Diolefins are unstable compounds which can easily polymerize and must generally be removed before any treatment of these gasolines, such as hydrodesulphurization treatments intended to meet the specifications on the sulfur content in gasolines.
  • this hydrogenation must be selective to the diolefins and limit the hydrogenation of the olefins in order to limit the consumption of hydrogen as well as the loss of octane of the gasoline.
  • the diene compounds present in the filler to be treated are unstable and tend to form gums by polymerization.
  • This gum formation leads to progressive deactivation of the hydrodesulphurization catalyst located downstream or progressive clogging of the hydrodesulphurization reactor.
  • catalysts which limit the formation of polymers i.e. catalysts with low acidity or whose porosity is optimized to facilitate the continuous extraction of polymers or precursors of gums by the hydrocarbons in the feed, to ensure maximum cycle time for the catalyst.
  • Document US 6,589,908 discloses a method for preparing a catalyst support, which does not contain macroporosity and has a bimodal porous structure in the mesoporosity such that the two modes of porosity are separated by 1 to 20 nm.
  • the support can be used in numerous catalytic applications, and in particular in hydrotreating, in particular in hydrodenitrogenation.
  • Document US 5,266,300 discloses a method for preparing a porous alumina support for use as a hydrodesulphurization or hydrodemetallization catalyst support, said support comprising a total pore volume of between 0.65 and 1.30 cm 3 / g, said porous support comprising two populations of macropores, of which approximately 2 to 20% by volume relative to the total pore volume is in the form of macropores having a diameter of between 10,000 Angstroms and 100,000 Angstroms (1000 and 10000 nm), about 5-30% by volume of the total pore volume is in the form of macropores having a diameter between 1,000 Angstroms and 10,000 Angstroms (100 and 1000 nm), and about 50-93% by volume relative to the total pore volume is in the form of mesopores having a pore diameter between 30 Angstroms and 1000 Angstroms (3-100 nm).
  • the documents CN108855197, CN104248987 and CN104248985 disclose catalysts for various catalytic applications (propane dehydrogenation, esterification) whose support has a tri-modal pore distribution, the mesopore populations being centered on three peaks respectively between 2 and 4 nm, 5 and 15nm and 10 and 40nm.
  • US7,790,130 discloses an alumina for the capture of halides comprising a tri-modal porosity of which 40 to 49% by volume relative to the total pore volume of the support is in the form of pores having a diameter between 15 and 50 nm .
  • documents FR 2,895,414 and FR 2,895,415 disclose a process for the selective hydrogenation of polyunsaturated compounds by a catalyst having a macroporosity whose volume is between 10 and 40% of the total pore volume.
  • one of the objectives of the present invention is to propose a process making it possible to jointly carry out the selective hydrogenation of polyunsaturated compounds and more particularly diolefins, as well as the weighting of light sulfur compounds and more particularly mercaptans, in the presence of a supported catalyst exhibiting performance in terms of activity and selectivity, at least as good, or even better, than the known processes of the state of the art.
  • the applicant has discovered that the use of a catalyst based on at least one group VIB metal, at least one group VIII metal, on a mesoporous and macroporous support, having both a bimodal mesoporous porosity, with a high mesoporous volume coupled with a determined macroporous volume has better activity and selectivity at least as good, or even better, in the hydrogenation of diolefins while allowing better conversion of light sulfur compounds compared to the catalysts disclosed in the prior art .
  • the use of such a catalyst in a process for the selective hydrogenation of gasoline improves the phenomena of diffusion internal reactants and products by the presence of populations of different sizes of mesopores.
  • the combined presence of macroporosity is particularly judicious when the feed to be treated contains a significant quantity of reactive olefins (unsaturated compounds), in particular diolefins, which is the case of gasolines, which can give rise to the formation of gums and thus blocking the porosity of the catalyst without the presence of macroporosity.
  • the subject of the present invention is a process for the selective hydrogenation of a gasoline comprising polyunsaturated compounds and light sulfur compounds, in which process the gasoline, hydrogen is brought into contact with a catalyst, at a temperature of between 80 °C and 220°C, with a liquid space velocity between 1 h -1 and 10 Ir 1 and a pressure between 0.5 and 5 MPa, and with a molar ratio between hydrogen and diolefins to be hydrogenated greater than 1 and less than 100 mol/mol, said catalyst comprising at least one metal from group VIB, at least one metal from group VIII, and a mesoporous and macroporous alumina support comprising a bimodal distribution of mesopores and in which:
  • the volume of mesopores with a diameter greater than or equal to 2 nm and less than 18 nm corresponds between 10 and 30% by volume of the total pore volume of said support;
  • the volume of mesopores with a diameter greater than or equal to 18 nm and less than 50 nm corresponds between 30 and 50% by volume of the total pore volume of said support;
  • the volume of macropores with a diameter greater than or equal to 50 nm and less than 8000 nm corresponds between 30 to 50% by volume of the total pore volume of said support.
  • said support comprises a specific surface of between 50 and 210 m 2 /g.
  • said support comprises a total pore volume of between 0.7 and 1.3 mL/g.
  • the volume of mesopores with a diameter greater than or equal to 2 nm and less than 18 nm corresponds between 15 and 25% by volume of the total pore volume of said support.
  • the volume of mesopores with a diameter greater than or equal to 18 nm and less than 50 nm corresponds between 35 and 45% by volume of the total pore volume of said support.
  • the volume of the macropores with a diameter greater than or equal to 50 nm and less than 8000 nm corresponds between 35 to 50% by volume of the total porous volume of said support.
  • the metal content of group VIB of said catalyst, expressed in oxide form, is between 1 and 30% by weight relative to the total weight of the catalyst.
  • the group VIII metal content of said catalyst, expressed in oxide form, is between 1 and 20% by weight relative to the total weight of said catalyst.
  • the molar ratio between the group VIII metal and the group VIB metal is between 0.3 and 3 mol/mol.
  • the Group VIII metal is nickel.
  • the Group VIB metal is molybdenum.
  • the porous distribution of the mesopores with a diameter greater than or equal to 2 nm and less than 18 nm is centered on a range of values comprised between 10.5 and 14.5 nm.
  • the porous distribution of the mesopores with a diameter greater than or equal to 18 nm and less than 50 nm is centered on a range of values comprised between 22 and 28 nm.
  • the gasoline is a catalytic cracked gasoline.
  • the support is in the form of balls with a diameter of between 2 and 4 mm.
  • said support when the support is in the form of beads, said support is obtained according to the following steps: s1) dehydration of an aluminum hydroxide or an aluminum oxyhydroxide at a temperature between 400°C and 1200°C, preferably between 600°C and 900°C, for a time of between 0.1 second and 5 seconds, preferably between 0.1 second and 4 seconds, to obtain an alumina powder ; s2) shaping said alumina powder obtained in step s1) in the form of balls; s3) heat treatment of the alumina balls obtained in step s2) at a temperature greater than or equal to 200° C.; s4) hydrothermal treatment of the alumina balls obtained at the end of step s3) by impregnation with water or an aqueous solution, then residence in an autoclave at a temperature between 100° C. and 300° C.; s5) calcining the alumina balls obtained at the end of step s4) at a temperature between 500°C and 820°C.
  • said catalyst does not include phosphorus.
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • the BET specific surface is measured by physisorption with nitrogen according to standard ASTM D3663-03, method described in the work Rouquerol F.; Rouquerol J.; Singh K. “Adsorption by Powders & Porous Solids: Principle, methodology and applications”, Academy Press, 1999.
  • micropores are understood to mean pores whose diameter is less than 2 nm, that is to say 0.002 ⁇ m; by mesopores pores whose diameter is greater than 2 nm, ie 0.002 pm and less than 50 nm, ie 0.05 pm and by macropores pores whose diameter is greater than or equal to 50 nm , i.e. 0.05 ⁇ m.
  • total pore volume of the alumina or of the catalyst means the volume measured by intrusion with a mercury porosimeter according to the ASTM D4284-83 standard at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne/cm and a contact angle of 140°.
  • the wetting angle was taken as equal to 140° by following the recommendations of the book “Engineering techniques, analysis and characterization treatise”, p.1050-5, written by Jean Charpin and Bernard Rasneur.
  • the value of the total pore volume in ml/g given in the following text corresponds to the value of the total mercury volume (total pore volume measured by intrusion with a mercury porosimeter) in ml/g measured on the sample minus the mercury volume value in ml/g measured on the same sample for a pressure corresponding to 30 psi (approximately 0.2 MPa).
  • the volume of macropores and mesopores is measured by mercury intrusion porosimetry according to ASTM D4284-83 at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne/cm and a contact angle of 140°.
  • the value from which the mercury fills all the intergranular voids is fixed at 0.2 MPa, and it is considered that beyond that the mercury penetrates into the pores of the sample.
  • the macropore volume of the catalyst is defined as being the cumulative volume of mercury introduced at a pressure of between 0.2 MPa and 30 MPa, corresponding to the volume contained in the pores with an apparent diameter greater than 50 nm.
  • the mesoporous volume of the catalyst is defined as being the cumulative volume of mercury introduced at a pressure of between 30 MPa and 400 MPa, corresponding to the volume contained in the pores with an apparent diameter of between 2 and 50 nm.
  • the pore modes correspond to the inflection points of the function represented.
  • the group VIII metal and group VIB metal contents are measured by X-ray fluorescence.
  • the catalyst used in the context of the selective hydrogenation process according to the invention comprises an active phase formed of at least one metal from group VIB and at least one metal from group VIII.
  • the group VIB metal present in the active phase of the catalyst is preferably chosen from molybdenum and tungsten, more preferably molybdenum.
  • the group VIII metal present in the active phase of the catalyst is preferably chosen from cobalt, nickel and the mixture of these two elements, more preferably nickel.
  • the active phase consists of molybdenum and nickel.
  • the total content of group VIII metal is generally between 1 and 20% by weight, expressed in the oxide form of the group VIII metal relative to the total weight of the catalyst, preferably between 2 and 15% by weight, preferably between 3 and 13% by weight relative to the total weight of the catalyst.
  • the metal content is expressed as CoO or NiO respectively.
  • the group VIB metal content is generally between 1 and 30% by weight, expressed in the oxide form of the group VIB metal relative to the total weight of the catalyst, preferably between 5 and 20% by weight, and even more preferably between 8 and 15% by weight relative to the total weight of the catalyst.
  • the metal is molybdenum or tungsten
  • the metal content is expressed in Mo0 3 or W0 3 respectively.
  • the molar ratio between the group VIII metal and the group VIB metal is advantageously between 0.3 and 3 mol/mol, preferably between 0.4 and 2.5 mol/mol, and very preferably between 0 .5 and 2 mol/mol.
  • the Group VIII metal is preferably nickel.
  • the Group VIB metal is preferably molybdenum.
  • the catalyst does not contain phosphorus.
  • the catalyst generally comprises a specific surface of between 50 and 200 m 2 /g, preferably between 60 and 170 m 2 /g and preferably between 70 and 130 m 2 /g.
  • the pore volume of the catalyst is generally between 0.5 mL/g and 1.3 mL/g, preferably between 0.6 mL/g and 1.1 mL/g.
  • the alumina support of the catalyst used in the context of the selective hydrogenation process according to the invention is a macroporous and mesoporous alumina support comprising a bimodal distribution of mesopores in which:
  • the volume of mesopores with a diameter greater than or equal to 2 nm and less than 18 nm corresponds between 10 and 30% by volume of the total pore volume of said support;
  • the volume of mesopores with a diameter greater than or equal to 18 nm and less than 50 nm corresponds between 30 and 50% by volume of the total pore volume of said support;
  • the volume of macropores with a diameter greater than or equal to 50 nm and less than 8000 nm corresponds between 30 to 50% by volume of the total pore volume of said support.
  • the volume of the mesopores of the support with a diameter greater than or equal to 2 nm and less than 18 nm corresponds to between 15 and 25% by volume of the total porous volume of said support.
  • the volume of the mesopores of the support with a diameter greater than or equal to 18 nm and less than 50 nm corresponds to between 35 and 45% by volume of the total porous volume of said support.
  • the volume of the macropores of the support with a diameter greater than or equal to 50 nm and less than 8000 nm corresponds between 35 to 50% by volume of the total porous volume of said support.
  • the porous distribution of the mesopores with a diameter greater than or equal to 2 nm and less than 18 nm is centered on a range of values comprised between 10.5 and 14.5 nm, preferably between 12 and 13 nm.
  • the porous distribution of the mesopores with a diameter greater than or equal to 18 nm and less than 50 nm is centered on a range of values comprised between 22 and 28 nm, preferably between 23 and 27 nm.
  • the support generally comprises a specific surface comprised between 50 and 210 m 2 /g, preferably comprised between 70 and 180 m 2 /g and preferably comprised between 70 and 160 m 2 /g.
  • the pore volume of the support is generally between 0.7 mL/g and 1.3 mL/g, preferably between 0.8 mL/g and 1.2 mL/g.
  • the support is in the form of balls with a diameter of between 0.8 and 10 mm, preferentially between 1 and 5 mm, and more preferentially between 2 and 4 mm.
  • the catalyst consists of an active phase consisting of molybdenum and nickel catalyst and the mesoporous and macroporous alumina support comprising a bimodal distribution of mesopores and in which:
  • the volume of mesopores with a diameter greater than or equal to 2 nm and less than 18 nm corresponds between 10 and 30% by volume of the total pore volume of said support;
  • the volume of mesopores with a diameter greater than or equal to 18 nm and less than 50 nm corresponds between 30 and 50% by volume of the total pore volume of said support;
  • the volume of macropores with a diameter greater than or equal to 50 nm and less than 8000 nm corresponds between 30 to 50% by volume of the total pore volume of said support.
  • alumina support of the catalyst used in the context of the selective hydrogenation process according to the invention can be synthesized by any method known to those skilled in the art.
  • the alumina support used according to the invention is in the form of beads.
  • the preparation of the support comprises the following steps: s1) dehydration of an aluminum hydroxide or an aluminum oxyhydroxide at a temperature between 400° C. and 1200° C., preferably between 600° C.
  • alumina powder for a period of between 0.1 second and 5 seconds, preferably between 0.1 second and 4 seconds, to obtain an alumina powder; s2) shaping of said alumina powder obtained in step s1) in the form of balls; s3) heat treatment of the beads obtained in step s2) at a temperature greater than or equal to 200° C.; s4) hydrothermal treatment of the alumina balls obtained at the end of step s3) by impregnation with water or a preferentially acidic aqueous solution, then residence in an autoclave at a temperature between 100° C. and 300° C, preferably between 150°C and 250°C; s5) calcining said alumina balls obtained at the end of step s4) at a temperature between 500°C and 820°C.
  • Steps s1) to s5) are described in detail below.
  • step s1) dehydration of an aluminum hydroxide or an aluminum oxyhydroxide is carried out at a temperature between 400° C. and 1200° C., preferably between 600° C. and 900° C., for a period of between 0.1 second and 5 seconds, preferably between 0.1 second and 4 seconds, to obtain an alumina powder.
  • the aluminum hydroxide can be chosen from hydrargillite, gibbsite or bayerite.
  • the aluminum oxyhydroxide can be chosen from boehmite or diaspore.
  • step s1) is carried out using hydrargillite.
  • step s1) is carried out in the presence of a current of hot gas, such as dry air or moist air, making it possible to quickly eliminate and entrain the evaporated water.
  • a current of hot gas such as dry air or moist air
  • the active alumina powder obtained after the dehydration of the aluminum hydroxide or oxyhydroxide is ground to a particle size of between 10 to 200 ⁇ m.
  • the active alumina powder obtained after the dehydration of aluminum hydroxide or oxyhydroxide is washed with water or an acidic aqueous solution.
  • any mineral or organic acid may be used, preferably nitric acid, hydrochloric acid, perchloric or sulfuric acid for mineral acids, and a carboxylic acid (formic, acetic or malonic acid), a sulphonic acid (para-toluene sulphonic acid) or a sulfuric ester (lauryl sulphate) for organic acids.
  • step s2) the said alumina powder obtained at the end of step s1) is shaped.
  • the shaping of said alumina powder is carried out so as to obtain balls, called granulation, is generally carried out by means of rotating technology such as a rotating bezel or a rotating drum.
  • This type of process makes it possible to obtain balls of controlled diameter and pore distributions, these dimensions and these distributions being, in general, created during the agglomeration step.
  • the porosity can be created by various means, such as the choice of the particle size of the alumina powder or the agglomeration of several alumina powders of different particle sizes. Another method consists in mixing with the alumina powder, before or during the agglomeration step, one or more compounds, called porogens, which disappear on heating and thus create porosity in the balls.
  • pore-forming compounds used mention may be made, by way of example, of wood flour, charcoal, activated carbon, carbon black, sulfur, tars, plastic materials or emulsions of plastic materials such as polyvinyl chloride, polyvinyl alcohols, naphthalene or the like.
  • the amount of pore-forming compounds added is determined by the volume desired to obtain beads with a raw filling density of between 500 and 1100 kg/m 3 , preferably between 700 and 950 kg/m 3 , and with a diameter of between 0.8 and 10 mm, preferably between 1 and 5 mm, and ink more preferably between 2 and 4 mm.
  • a selection by sieving of the balls obtained can be carried out according to the desired particle size.
  • a heat treatment is carried out on the alumina powder shaped in the form of balls obtained at the end of step s2) at a temperature greater than or equal to at 200°C, preferably between 200°C and 1200°C, preferably between 300 and 900°C, very preferably between 400°C and 750°C, for a period generally between 1 and 24 hours, from preferably between 1 and 6 hours.
  • the beads obtained at this intermediate step comprise a specific surface between 50 and 420 m 2 /g, preferably between 60 and 350 m 2 /g, and even more preferably between 80 and 300 m 2 /g.
  • step s4) the alumina balls obtained at the end of step s3) undergo a hydrothermal treatment by impregnation with water or a preferably acidic aqueous solution, then stay in an autoclave at a temperature between between 100°C and 300°C, preferably between 150°C and 250°C.
  • the hydrothermal treatment is generally carried out at a temperature of 100° C. to 300° C., preferentially from 150° C. to 250° C., for a duration greater than 45 minutes, preferentially from 1 to 24 hours, very preferentially from 1.5 to 12 hours.
  • the hydrothermal treatment is generally carried out using an aqueous acid solution comprising one or more mineral and/or organic acids, preferably nitric acid, hydrochloric acid, perchloric acid, sulfuric acid, weak whose solution has a pH lower than 4 such as acetic acid or formic acid.
  • said acidic aqueous solution also comprises one or more compounds capable of releasing anions capable of combining with aluminum ions, preferably compounds comprising a nitrate ion (such as aluminum nitrate), chloride, sulphate, perchlorate, chloroacetate, trichloroacetate, bromoacetate, dibromoacetate, and anions of general formula: R-COO such as formates and acetates.
  • a nitrate ion such as aluminum nitrate
  • chloride sulphate, perchlorate, chloroacetate, trichloroacetate, bromoacetate, dibromoacetate, and anions of general formula: R-COO such as formates and acetates.
  • R-COO such as formates and acetates.
  • the alumina balls obtained at the end of step s4) undergo calcination at a temperature of between 500° C. and 820° C., preferably between 550° C. and 750° C., and for a period generally between 1 and 24 hours, preferably between 1 and 6 hours.
  • the alumina balls obtained comprise a specific surface between 50 and 210 m 2 /g, preferably between 70 and 180 m 2 /g, and even more preferably between 70 and 160 m 2 /g .
  • the catalyst used in the context of the selective hydrogenation process according to the invention can be prepared by means of any technique known to those skilled in the art, and in particular by impregnation of the elements of groups VIII and VIB on the selected support.
  • This impregnation can for example be carried out according to the method known to those skilled in the art under the terminology of dry impregnation, in which just the quantity of desired elements is introduced in the form of salts soluble in the chosen solvent, for example demineralized water, so as to fill as exactly as possible the pores of the support.
  • the precursor of the active phase based on the element of group VIII and the precursor of the active phase of the element of group VIB can be introduced simultaneously or successively.
  • the impregnation of each precursor can advantageously be carried out in at least two stages.
  • the different precursors can thus be advantageously impregnated successively with a different impregnation and maturation time.
  • One of the precursors can also be impregnated several times.
  • the support thus filled with the solution is left to mature at a temperature below 50° C., preferably at room temperature, for a period of between 0.5 hour and 12 hours, preferably between 0.5 hour and 6 hours, and even more preferably between 0.5 and 3 hours.
  • the catalyst precursor After introduction of the precursors of the active phase, the catalyst precursor undergoes an activation treatment.
  • This treatment generally aims to transform the molecular precursors of the elements into the oxide phase. In this case, it is an oxidizing treatment but a simple drying of the catalyst can also be carried out.
  • the catalyst precursor is dried at a temperature of between 50° C. and 200° C., preferably between 70 and 180° C., for a period typically of between 0.5 and 12 hours, and even more preferably for a period of 0.5 to 5 hours.
  • the drying step is advantageously carried out in a traversed bed using air or any other hot gas.
  • the gas used is either air or an inert gas such as argon or nitrogen.
  • the drying is carried out in a traversed bed in the presence of air.
  • an oxidizing treatment also called calcination
  • this is generally carried out in air or in dilute oxygen
  • the treatment temperature is generally between 200° C. and 550° C., preferably between 300° C. C and 500°C, and advantageously for a period typically between 0.5 and 24 hours, preferably for a period of 0.5 to 12 hours, and even more preferably for a duration of 0.5 to 10 hours.
  • the oxidizing treatment step is advantageously carried out in a traversed bed using air or any other hot gas.
  • the gas used is either air or an inert gas such as argon or nitrogen.
  • the oxidizing treatment is carried out in a traversed bed in the presence of air.
  • metal salts of molybdenum and nickel that can be used in the process for preparing the catalyst are, for example, nitrate of nickel and ammonium heptamolybdate. Any other salt known to those skilled in the art having sufficient solubility and decomposing during the activation treatment can also be used.
  • the drying and the oxidizing treatment are both carried out during the catalyst preparation process.
  • activation phase Before its use as a hydrotreating catalyst, it is advantageous to subject the dried or optionally calcined catalyst to a sulfurization step (activation phase).
  • This activation phase is carried out by methods well known to those skilled in the art, and advantageously under a sulfo-reducing atmosphere in the presence of hydrogen and hydrogen sulfide.
  • Hydrogen sulfide can be used directly or generated by a sulfide agent (such as dimethyl disulfide).
  • the catalyst is preferably used at least partly in its sulfurized form.
  • the introduction of the sulfur can take place before or after any activation step, that is to say drying or calcination.
  • the sulfur or a sulfur compound can be introduced ex situ, that is to say outside the reactor where the process according to the invention is carried out, or in situ, that is to say in the reactor used for the process according to the invention.
  • these ex situ sulfurizations are characterized by a final passivation step. Indeed, the sulphide phases have a very high reactivity with respect to the ambient air (self-heating character by oxidation) prohibiting their subsequent handling without additional treatment aimed at limiting this reactivity.
  • the catalyst is sulfurized by passing a charge containing at least one sulfur compound, which, once decomposed, leads to the fixing of sulfur on the catalyst.
  • This charge can be gaseous or liquid, for example hydrogen containing ITH S, or a liquid containing at least one sulfur compound.
  • the invention relates to a process for treating a gasoline comprising any type of chemical family and in particular diolefins, mono-olefins, and sulfur compounds in the form of mercaptans and light sulphides.
  • the present invention finds particular application in the transformation of conversion gasolines, and in particular gasolines originating from catalytic cracking, from fluidized bed catalytic cracking (FCC), from a coking process, from a visbreaking process, or a pyrolysis process.
  • the feed is a gasoline from catalytic cracking units.
  • the fillers to which the invention applies generally have a boiling point of between 0°C and 280°C.
  • the fillers can also contain hydrocarbons with 3 or 4 carbon atoms.
  • gasolines from catalytic cracking units contain, on average, between 0.5% and 5% by weight of diolefins, between 20% and 50% by weight of mono-olefins, between 10 ppm and 0, 5% weight of sulphur, generally less than 300 ppm of mercaptans.
  • Mercaptans are generally concentrated in the light fractions of gasoline and more specifically in the fraction whose boiling point is below 120°C.
  • the gasoline treatment described in this selective hydrogenation process mainly consists of:
  • the sulfur compounds which it is sought to convert are mainly mercaptans.
  • the main transformation reaction of mercaptans consists of a thioetherification reaction between the mono-olefins and the mercaptans. This reaction is illustrated below by the addition of propane-2-thiol to pent-2-ene to form a propyl-pentyl sulfide.
  • the compounds likely to be thus transformed and made heavier are the sulphides and mainly CS2, COS, thiophane, methyl-thiophane.
  • the charge to be treated is mixed with hydrogen before being brought into contact with the catalyst.
  • the amount of hydrogen injected is such that the molar ratio between the hydrogen and the diolefins to be hydrogenated is greater than 1 (stoichiometry) and less than 100, and preferably between 1 and 10 mol/mol. Too much excess hydrogen can lead to strong hydrogenation of mono-olefins and consequently a reduction in the octane number of gasoline.
  • the entire feed is generally injected at the reactor inlet. However, it may be advantageous, in certain cases, to inject a fraction or all of the charge between two beds consecutive catalysts placed in the reactor. This embodiment makes it possible in particular to continue to operate the reactor if the inlet of the reactor is clogged by deposits of polymers, particles, or gums present in the charge.
  • the mixture consisting of gasoline and hydrogen is brought into contact with the catalyst at a temperature between 80°C and 220°C, and preferably between 90°C and 200°C, with a liquid space velocity ( LHSV) between 1 lr 1 and 10 h 1 , the unit of the liquid space velocity being the liter of charge per liter of catalyst and per hour (l/l.h).
  • LHSV liquid space velocity
  • the pressure is adjusted so that the reaction mixture is mainly in liquid form in the reactor.
  • the pressure is between 0.5 MPa and 5 MPa and preferably between 1 and 4 MPa.
  • the gasoline treated under the conditions stated above has a reduced content of diolefins and mercaptans.
  • the gasoline produced contains less than 1% by weight of diolefins, and preferably less than 0.5% by weight of diolefins.
  • Light sulfur compounds whose boiling point is lower than that of thiophene (84°C) are generally converted at more than 50%. It is therefore possible to separate the light fraction from the gasoline by distillation and send this fraction directly to the gasoline pool without additional hydrodesulphurization treatment.
  • the light end of gasoline generally has an end point below 120°C, and preferably below 100°C and most preferably below 80°C.
  • the selective hydrogenation process according to the invention is particularly suitable for being implemented in the context of the desulphurization process described in patent application EP 1 077247.
  • the present application also relates to a gasoline desulphurization process comprising sulfur compounds, comprising at least the following stages: a) a selective hydrogenation stage implementing the process described above; b) a step of separating the gasoline obtained in step a) into two fractions comprising respectively a light gasoline and a heavy gasoline; c) a stage of hydrodesulfurization of the heavy gasoline separated in stage b) on a catalyst making it possible to at least partially decompose the sulfur compounds into HS.
  • Stage b) of separation is preferably carried out by means of a conventional distillation column, also called a splitter.
  • This fractionation column must make it possible to separate a light fraction of the gasoline containing less than 10 ppm by weight of sulphur.
  • This column generally operates at a pressure between 0.1 and 2 MPa and preferably between 0.2 and 1 MPa.
  • the number of theoretical plates of this separation column is generally between 10 and 100 and preferably between 20 and 60.
  • the reflux rate expressed as being the ratio of the liquid flow in the column divided by the flow of distillate expressed in kg / h, is generally less than 1 and preferably less than 0.8.
  • the light gasoline obtained at the end of the separation generally contains at least all of the C5 olefins, preferably the C5 compounds and at least 20% of the C6 olefins.
  • this light fraction has a sulfur content of less than 10 ppm by weight of sulphur, that is to say that it is not necessary to treat the light cut by an additional hydrodesulphurization step before using it as fuel. .
  • Step c) desulphurization is preferably a hydrodesulphurization step carried out by passing heavy gasoline, in the presence of hydrogen, over a catalyst comprising at least one element from group VIII and/or at least one element from group VIB at least partly in sulfide form, at a temperature of between about 210°C and about 350°C, preferably between 220°C and 320°C, under a pressure generally of between about 1 and about 4 MPa, preferably between 1.5 and 3 MPa.
  • the space velocity of the liquid is between approximately 1 and approximately 20 h -1 (expressed in volume of liquid per volume of catalyst and per hour), preferably between 1 and 10 ir 1 , very preferably between 3 and 8 ir 1 .
  • the H 2 /charge ratio is between 100 and 600 Nl/l and preferably between 300 and 600 Nl/l.
  • the group VIII metal content, expressed as oxide, is generally between 0.5 and 15% by weight, preferably between 1 and 10% by weight relative to the weight of the catalyst.
  • the group VIB metal content, expressed as oxide, is generally between 1.5 and 60% by weight, preferably between 3 and 50% by weight relative to the weight of catalyst.
  • the group VIII element when present, is preferably cobalt
  • the group VIB element when present, is generally molybdenum or tungsten. Combinations such as cobalt-molybdenum are preferred.
  • the catalyst support is usually a porous solid, such as for example an alumina, a silica-alumina or other porous solids, such as for example magnesia, silica or titania, alone or in combination. mixture with alumina or silica-alumina.
  • a catalyst in which the group VIB metal density, expressed in % by weight of group VIB metal in oxide form (the % by weight being expressed relative to the total weight of the catalyst) per unit of specific surface area is greater than 0, 07 and preferably greater than 0.12.
  • the catalyst according to step c) preferably has a specific surface of less than 250 m 2 /g, more preferably less than 230 m 2 /g, and very preferably less than 190 m 2 /g.
  • the deposition of the metals on the support is obtained by any method known to those skilled in the art such as, for example, dry impregnation, by excess of a solution containing the metal precursors.
  • the impregnation solution is chosen so as to be able to dissolve the metal precursors in the desired concentrations.
  • the molybdenum precursor can be molybdenum oxide, ammonium heptamolybdate and while the cobalt precursor can be for example cobalt nitrate, l hydroxide, cobalt carbonate.
  • the precursors are generally dissolved in a medium allowing their solubilization in the desired concentrations.
  • the catalyst is activated in a first stage.
  • This activation can correspond either to an oxidation then to a reduction, or to a direct reduction, or to a calcination only.
  • the calcination step is generally carried out at temperatures ranging from around 100 to around 600° C. and preferably between 200 and 450° C., under a flow of air.
  • the reduction step is carried out under conditions allowing at least a part of the oxidized forms of the base metal to be converted into metal. Generally, it consists in treating the catalyst under a flow of hydrogen at a temperature preferably at least equal to 300°C.
  • the reduction can also be carried out in part by means of chemical reducing agents.
  • the catalyst used in step c) is preferably used at least partly in its sulfurized form.
  • the introduction of the sulfur can take place before or after any activation step, that is to say calcination or reduction.
  • the sulfur or a sulfur compound can be introduced ex situ, that is to say outside the hydrodesulphurization reactor, or in situ, that is to say in the hydrodesulphurization reactor.
  • these ex situ sulfurizations are characterized by a final passivation step. Indeed, the sulphide phases have a very high reactivity with respect to the ambient air (self-heating character by oxidation) prohibiting their subsequent handling without additional treatment aimed at limiting this reactivity.
  • the catalyst is preferably reduced under the conditions described previously, then sulphurised by passing through a charge containing at least one sulfur compound, which, once decomposed, leads to the fixing of sulfur on the catalyst.
  • This charge can be gaseous or liquid, for example hydrogen containing H 2 S, or a liquid containing at least one sulfur compound.
  • Example 1 Catalyst A (according to the invention)
  • Support S1 of catalyst A is prepared by dehydration of hydrargillite ( EMPLURA® , MerckTM) in order to obtain an alumina powder.
  • the temperature is set at 800° C. and the contact time of the material to be dehydrated with a flow of dry air is 1 second.
  • the alumina powder obtained is ground to a particle size of between 10 and 200 ⁇ m and then washed three times with a volume of distilled water equal to twice the volume of the powder used.
  • Said alumina powder is shaped in the presence of carbon black (N990 Thermax ® ) with a plate granulator (GRELBEXTM P30) equipped with a conical cylindrical bowl at an angle of 30° and a rotation speed at 40 revolutions per minute so as to obtain balls with a diameter mainly comprised between 2 and 4 mm after sieving the solid.
  • the quantity of carbon black is adjusted to obtain a raw filling density of the objects of 800 kg/m 3 .
  • Said balls undergo a heat treatment in air at 720° C. so as to give them a specific surface area of 200 m 2 /g.
  • a hydrothermal treatment is applied to said balls by impregnation of the porous volume with an aqueous solution of nitric acid (0.1 N, MerckTM).
  • the hydrothermal treatment is carried out at a temperature of 200° C. for 6.5 hours, in a rotating basket autoclave.
  • the balls thus obtained undergo a final calcination treatment in air at 650° C. for 2 hours.
  • the support S1 has a specific surface of 141 m 2 /g, a total pore volume of 0.97 mL/g as well as the following pore distribution given by mercury porosimetry:
  • - a volume of mesopores with a diameter greater than or equal to 18 nm and less than 50 nm, whose pore distribution is centered on 26 nm, of 0.43 mL/g corresponding to 44% of the total pore volume; - a volume of macropores with a diameter greater than or equal to 50 nm and less than 8000 nm of 0.39 mL/g, corresponding to 40% of the total pore volume.
  • Support S1 has a water uptake volume of 0.95 mL/g.
  • the impregnation solution is prepared by diluting 6.07 grams of ammonium heptamolybdate (Mq 7 (NH 4 ) 6 q 24.4H 2 0, 99.98%, MerckTM), 17.43 grams of nickel nitrate (Ni(N0 3 ) 2 , 6H 2 0, 99.5%, MerckTM) in 36.2 mL of distilled water. After dry impregnation of 40 grams of support and a maturation step for 12 hours in an atmosphere saturated with humidity, the solid is dried for 12 hours at 120°C. The solid is then calcined in air at 450° C. for 2 hours.
  • Catalyst A has a total pore volume of 0.83 mL/g and a specific surface of 103 m 2 /g.
  • Example 2 Catalyst B not compliant (Catalyst and monomodal mesoporous orand)
  • Support S2 of catalyst B is prepared by dehydration of hydrargillite ( EMPLURA® , Merck) in order to obtain an active alumina powder.
  • the temperature is set at 800° C. and the contact time of the material to be dehydrated with a flow of dry air is 1 second.
  • the active alumina powder obtained is ground to a particle size of between 10 and 200 ⁇ m and is then washed three times with a volume of distilled water equal to twice the volume of the powder used.
  • Said active alumina powder is shaped with a plate granulator (GRELBEXTM P30) equipped with a conical cylindrical bowl at an angle of 30° and a rotation speed of 40 revolutions per minute so as to obtain balls with a diameter mostly between 2 and 4 mm (after sieving the solid) and a raw filling density of the objects of 780 kg/m 3 .
  • Said balls undergo a heat treatment in air at 700° C. so as to give them a specific surface area of 250 m 2 /g.
  • a hydrothermal treatment is applied to said balls by impregnation of the porous volume with an aqueous solution of nitric acid (0.1 N, MerckTM). The hydrothermal treatment is carried out at a temperature of 200° C.
  • the support S2 has a specific surface of 71 m 2 /g, a total pore volume of 0.56 mL/g as well as the following porous distribution given by mercury porosimetry:
  • - a volume of mesopores with a diameter greater than or equal to 10 nm and less than 50 nm, whose pore distribution is centered on 20 nm, of 0.35 mL/g corresponding to 63% of the total pore volume; - a volume of macropores with a diameter greater than or equal to 50 nm and less than 8000 nm of 0.21 mL/g, corresponding to 38% of the total pore volume.
  • Support S2 has a water uptake volume of 0.54 mL/g.
  • the impregnation solution is prepared by diluting 2.76 grams of ammonium heptamolybdate (Mq 7 (NH 4 ) 6 q 24.4H 2 0, 99.98%, MerckTM), 8.80 grams of nickel nitrate (Ni(N0 3 ) 2 , 6H 2 0, 99.5%, MerckTM) in 20.7 mL of distilled water. After dry impregnation of 40 grams of support and a maturation step for 12 hours in an atmosphere saturated with humidity, the solid is dried for 12 hours at 120°C.
  • a second impregnation step is carried out with a solution prepared by diluting 3.18 grams of ammonium heptamolybdate (Mq 7 (NH 4 ) 6 q 24 .4H 2 0, 99.98%, MerckTM), 7.69 grams of nickel nitrate (Ni(NC>3)2, 6H 2 0, 99.5%, MerckTM) in 18.8 mL of distilled water. After dry impregnation of 40 grams of support and a maturation step for 12 hours in an atmosphere saturated with humidity, the solid is dried for 12 hours at 120°C. The solid is then calcined in air at 450° C. for 2 hours.
  • Catalyst B has a total pore volume of 0.45 mL/g and a specific surface of 59 m 2 /g.
  • a commercial support S3 (SA52124, UniSpheres® NorPro) is provided in the form of beads with a diameter of between 2 and 4 mm.
  • the S3 support has a specific surface area of 8 m 2 /g, a total pore volume of 0.33 mL/g as well as the following pore distribution given by mercury porosimetry:
  • - a volume of macropores with a diameter greater than or equal to 50 nm and less than 8000 nm of 0.33 mL/g, corresponding to 100% of the total pore volume.
  • Support S3 has a water uptake volume of 0.47 mL/g.
  • the impregnation solution is prepared by diluting 2.76 grams of ammonium heptamolybdate (Mq 7 (NH 4 ) 6 q 24.4H 2 0, 99.98%, MerckTM), 8.80 grams of nickel nitrate (Ni(NC>3)2, 6H 2 0, 99.5%, MerckTM) in 18 mL of distilled water. After dry impregnation of 40 grams of support and a maturation step for 12 hours in an atmosphere saturated with humidity, the solid is dried for 12 hours at 120°C.
  • a second impregnation step is carried out with a solution prepared by diluting 3.18 grams of ammonium heptamolybdate (Mq 7 (NH 4 ) 6 q 24 .4H 2 0, 99.98%, MerckTM), 7.69 grams of nickel nitrate (Ni(NC>3)2, 6H 2 0, 99.5%, MerckTM) in 16.4 mL of distilled water. After dry impregnation of 40 grams of support and a maturation step for 12 hours under an atmosphere saturated with humidity, the solid is dried for 12 hours at 120°C. The solid is then calcined in air at 450° C. for 2 hours.
  • Catalyst C has a total pore volume of 0.23 mL/g and a specific surface of 4 m 2 /g.
  • a commercial support S4 (SA6578, NorProTM) is supplied as a 5 mm diameter extrudate.
  • the S4 support has a specific surface of 175 m 2 /g, a total pore volume of 0.82 mL/g as well as the following pore distribution given by mercury porosimetry:
  • - a volume of mesopores with a diameter greater than or equal to 2 nm and less than or equal to 20 nm, whose pore distribution is centered on 13 nm, of 0.82 mL/g corresponding to 100% of the total pore volume.
  • the S4 support has a water uptake volume of 0.81 mL/g.
  • the impregnation solution is prepared by diluting 6.06 grams of ammonium heptamolybdate (Mq 7 (NH 4 ) 6 q 24 .4H 0.99.98%, MerckTM), 17.40 grams of nitrate of nickel (Ni(NC>3)2, 6H 2 0, 99.5%, MerckTM) in 30.7 mL of distilled water. After dry impregnation of 40 grams of support and a maturation step for 12 hours in an atmosphere saturated with humidity, the solid is dried for 12 hours at 120°C. The solid is then calcined in air at 450° C. for 2 hours.
  • Catalyst D has a total pore volume of 0.74 mL/g and a specific surface of 127 m 2 /g.
  • Example 5 Non-compliant catalyst E (monomodal macroporous and small mesoporous catalyst)
  • a commercial support S5 (SA6176, NorProTM) is provided in the form of an extrudate 1.6 mm in diameter.
  • the S5 support has a specific surface of 250 m 2 /g, a total pore volume of 1.05 mL/g as well as the following porous distribution given by mercury porosimetry:
  • the S5 support has a water uptake volume of 1.02 mL/g.
  • the impregnation solution is prepared by diluting 6.00 grams of ammonium heptamolybdate (Mq 7 (NH 4 ) 6 q 24 .4H 0.99.98%, MerckTM), 17.40 grams of nitrate of nickel (Ni(NC>3)2, 6H 2 0, 99.5%, MerckTM) in 39.1 mL of distilled water.
  • Catalyst E has a total pore volume of 0.84 mL/g and a specific surface of 207 m 2 /g.
  • catalysts A, B, C, D and E The activity of catalysts A, B, C, D and E is evaluated by a test of selective hydrogenation of a mixture of model molecules carried out in a stirred 500 ml autoclave reactor.
  • a test of selective hydrogenation of a mixture of model molecules carried out in a stirred 500 ml autoclave reactor.
  • Typically between 2 and 6 grams of catalyst are sulfurized at atmospheric pressure in a sulfurization bench under an H 2 S/H 2 mixture consisting of 15% by volume of H 2 S at 1 l/g. h of catalyst and at 400°C for two hours (ramp of 5°C/min) followed by a plateau of 2 hours under pure hydrogen at 200°C.
  • This protocol makes it possible to obtain sulfurization rates greater than 70% for all the catalysts in accordance with the invention.
  • the catalyst thus sulfurized is transferred to the reactor in the absence of air and then brought into contact with 250 ml of model charge under a total pressure of 1.5 MPa and a temperature of 160°C.
  • the pressure is kept constant during the test by supplying hydrogen.
  • the charge used for the activity test has the following composition: 1000 ppm weight of sulfur of thiophene compounds in the methyl 3-thiophene form, 500 ppm weight of sulfur of mercaptans in the form of propane-2-thiol, 10% weight of olefin in the form of hexene-1, and 1% by weight diolefin in the form of isoprene, in n-heptane.
  • the duration of the test is fixed at 200 minutes and the gas phase chromatographic analysis of the liquid effluent obtained makes it possible to evaluate the activities of the various catalysts in hydrogenation of isoprene (formation of methylbutenes), hydrogenation of hexene 1 (formation n-hexane) and heavier propane-2-thiol (disappearance of propane-2-thiol).
  • the catalyst activity for each reaction is defined relative to the rate constant obtained for each reaction normalized per gram of catalyst.
  • the rate constants are calculated assuming an order 1 for the reaction. Activities are normalized to 100% for catalyst A.
  • the selectivity of the catalyst with respect to the hydrogenation of isoprene is equal to the ratio of the activities of the catalyst in the hydrogenation of isoprene and of hexene-1 A(isoprene)/A(hexene-1).
  • the selectivity is normalized to 100% for catalyst A.
  • the results obtained on the various catalysts are reported in Table 1 below.
  • catalyst A according to the invention has an activity in diolefin hydrogenation and in mercaptan weighting which is systematically greater than that of the other catalysts.
  • the selectivities are always among the highest for catalyst A according to the invention.

Abstract

Procédé d'hydrogénation sélective d'une essence comprenant des composés polyinsaturés et des composés soufrés légers dans lequel procédé on met en contact l'essence, de l'hydrogène avec un catalyseur comprenant un métal du groupe VIB, un métal du groupe VIII, et un support d'alumine mésoporeux et macroporeux comprenant une distribution bimodale de mésopores et dans lequel : - le volume des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 10 et 30% en volume du volume poreux total dudit support; - le volume des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 30 et 50% en volume du volume poreux total dudit support; - le volume des macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 30 à 50% en volume du volume poreux total dudit support.

Description

PROCEDE D’HYDROGENATION SELECTIVE D’UNE ESSENCE EN PRESENCE D’UN CATALYSEUR SUR SUPPORT MESO-MACROPOREUX
Domaine technique
La présente invention se rapporte au domaine de l'hydrotraitement des coupes essences, notamment des coupes essences issues des unités de craquage catalytique en lit fluidisé. Plus particulièrement, la présente invention concerne la mise en oeuvre d’un catalyseur dans un procédé d’hydrogénation sélective d’une essence et d’alourdissement des mercaptans légers, et un procédé permettant de réaliser conjointement l’hydrogénation sélective des composés polyinsaturés en composés mono insaturés contenus dans les essences, ainsi que l’alourdissement des composés soufrés légers par réaction avec les composés insaturés.
Etat de la technique
La production d'essences répondant aux nouvelles normes d'environnement nécessite que l'on diminue de façon importante leur teneur en soufre à des valeurs n'excédant généralement pas 50 ppm, et préférentiellement inférieures à 10 ppm.
Il est par ailleurs connu que les essences de conversion, et plus particulièrement celles provenant du craquage catalytique, qui peuvent représenter 30 à 50 % du pool essence, présentent des teneurs en oléfines et en soufre élevées.
Le soufre présent dans les essences est pour cette raison imputable, à près de 90 %, aux essences issues des procédés de craquage catalytique, qu'on appellera dans la suite essence de FCC ("Fluid Catalytic Cracking" selon la terminologie anglo-saxonne que l'on peut traduire par craquage catalytique en lit fluidisé). Les essences de FCC constituent donc la charge préférée du procédé de la présente invention. Plus généralement, le procédé selon l'invention est applicable à toute coupe essence contenant une certaine proportion de dioléfines, et pouvant contenir en outre quelques composés plus légers appartenant aux coupes C3 et C4.
Les essences issues d'unités de craquage sont généralement riches en oléfines et en soufre, mais également en dioléfines dont la teneur, pour les essences issues de craquage catalytique peut aller jusqu’à 5 % poids. Les dioléfines sont des composés instables qui peuvent polymériser facilement et doivent généralement être éliminées avant tout traitement de ces essences tels que les traitements d'hydrodésulfuration destinés à répondre aux spécifications sur les teneurs en soufre dans les essences. Toutefois, cette hydrogénation doit être sélective aux dioléfines et limiter l'hydrogénation des oléfines afin de limiter la consommation d'hydrogène ainsi que la perte d'octane de l'essence. Par ailleurs, comme cela a été décrit dans la demande de brevet EP01077247 A1 , il est avantageux de transformer par alourdissement les mercaptans avant l'étape de désulfuration car cela permet de produire une fraction essence désulfurée composée majoritairement d'oléfines à 5 atomes de carbone sans perte d'octane par simple distillation. La quantité de soufre présente dans la charge après l'hydrogénation sélective et l'alourdissement des composés soufrés légers n'est pas modifiée, seule la nature du soufre l'est par alourdissement des composés soufrés légers.
De plus, les composés diéniques présents dans la charge à traiter sont instables et ont tendance à former des gommes par polymérisation. Cette formation de gommes entraîne une désactivation progressive du catalyseur d’hydrodésulfuration situé en aval ou un bouchage progressif du réacteur d’hydrodésulfuration. Pour une application industrielle, il est donc important d'utiliser des catalyseurs qui limitent la formation de polymères, c'est à dire des catalyseurs présentant une faible acidité ou bien dont la porosité est optimisée pour faciliter l'extraction continue des polymères ou précurseurs de gommes par les hydrocarbures de la charge, afin d'assurer une durée de cycle maximale pour le catalyseur.
Il est connu de l’art antérieur que la répartition poreuse des supports de catalyseur peut avoir un impact bénéfique sur les performances catalytiques.
Le document US 6,589,908 divulgue un procédé de préparation d’un support de catalyseur, lequel ne contient pas de macroporosité et présente une structure poreuse bimodale dans la mésoporosité telle que les deux modes de porosité soient séparés de 1 à 20 nm. Le support est utilisable dans de nombreuses applications catalytiques, et notamment en hydrotraitement, notamment en hydrodéazotation.
Le document US 5,266,300 divulgue une méthode de préparation d’un support poreux d’alumine pour son utilisation en tant que support de catalyseur d’hydrodésulfuration ou d’hydrodemetallation, ledit support comprenant un volume poreux total entre 0,65 à 1 ,30 cm3/g, ledit support poreux comprenant deux populations de macropores, dont environ 2 à 20% en volume par rapport au volume poreux total se présente sous la forme de macropores ayant un diamètre compris entre 10 000 Angstroms et 100 000 Angstroms (1000 et 10000 nm), environ 5 à 30% en volume par rapport au volume poreux total se présente sous la forme de macropores ayant un diamètre compris entre 1 000 Angstroms et 10 000 Angstroms (100 et 1000 nm), et environ 50 à 93% en volume par rapport au volume poreux total se présente sous la forme de mésopores ayant un diamètre de pores compris entre 30 Angstroms et 1000 Angstroms (3-100 nm). Les documents CN108855197, CN104248987 et CN104248985 divulgue des catalyseurs pour différentes applications catalytiques (déshydrogénation du propane, estérification) dont le support présente une distribution de pores tri modale, les populations de mésopores étant centrées sur trois pics respectivement compris entre 2 et 4nm, 5 et 15nm et 10 et 40nm.
Le document US7,790,130 divulgue une alumine pour la captation d’halogénures comprenant une porosité tri modale dont 40 à 49% en volume par rapport au volume poreux total du support se présente sous la forme de pores ayant un diamètre compris entre 15 et 50 nm.
Enfin, les documents FR 2,895,414 et FR 2,895,415 divulguent un procédé d’hydrogénation sélective de composés poly-insaturés par un catalyseur présentant une macroporosité dont le volume est compris entre 10 et 40% du volume poreux total.
Cependant, aucun des documents de l’art antérieur ne décrit la mise en oeuvre d’un procédé d’hydrogénation sélective d'une essence comprenant des composés polyinsaturés et des composés soufrés légers en présence d’un catalyseur comprenant un support présentant à la fois une porosité mésoporeuse bimodale, avec un fort volume mésoporeux couplé à un volume macroporeux spécifique.
Dans ce contexte, un des objectifs de la présente invention est de proposer un procédé permettant de réaliser conjointement l’hydrogénation sélective des composés polyinsaturés et plus particulièrement les dioléfines, ainsi que l’alourdissement des composés soufrés légers et plus particulièrement des mercaptans, en présence d’un catalyseur supporté présentant des performances en activité et en sélectivité, au moins aussi bonnes, voire meilleures, que les procédés connus de l’état de la technique.
La demanderesse a découvert que l’utilisation d’un catalyseur à base d’au moins un métal du groupe VIB, d’au moins un métal du groupe VIII, sur un support mésoporeux et macroporeux, présentant à la fois une porosité mésoporeuse bimodale, avec un fort volume mésoporeux couplé à un volume macroporeux déterminé présente une meilleure activité et une sélectivité au moins aussi bonne, voire meilleure, en hydrogénation de dioléfines tout en permettant une meilleure conversion des composés soufrés légers par rapport aux catalyseurs divulgués dans l’art antérieur.
En effet, sans être liée à une quelconque théorie scientifique, le recours d’un tel catalyseur dans un procédé d’hydrogénation sélective d’essence améliore les phénomènes de diffusion interne des réactifs et des produits par la présence de populations de tailles différentes de mésopores. De plus, la présence conjuguée de macroporosité est particulièrement judicieuse lorsque la charge à traiter contient une quantité significative d’oléfines (composés insaturés) réactives, notamment de dioléfines, ce qui est le cas des essences, pouvant donner lieu à la formation de gommes et ainsi boucher la porosité du catalyseur sans présence de macroporosité.
Objets de l’invention
La présente invention a pour objet un procédé d’hydrogénation sélective d'une essence comprenant des composés polyinsaturés et des composés soufrés légers dans lequel procédé on met en contact l’essence, de l’hydrogène avec un catalyseur, à une température comprise entre 80°C et 220°C, avec une vitesse spatiale liquide comprise entre 1 h-1 et 10 Ir 1 et une pression comprise entre 0,5 et 5 MPa, et avec un rapport molaire entre l'hydrogène et les dioléfines à hydrogéner supérieur à 1 et inférieur à 100 mol/mol, ledit catalyseur comprenant au moins un métal du groupe VIB, au moins un métal du groupe VIII, et un support d’alumine mésoporeux et macroporeux comprenant une distribution bimodale de mésopores et dans lequel :
- le volume des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 10 et 30% en volume du volume poreux total dudit support ;
- le volume des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 30 et 50% en volume du volume poreux total dudit support ;
- le volume des macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 30 à 50% en volume du volume poreux total dudit support.
Selon un ou plusieurs modes de réalisation, ledit support comprend une surface spécifique comprise entre 50 et 210 m2/g.
Selon un ou plusieurs modes de réalisation, ledit support comprend un volume poreux total compris entre 0,7 et 1 ,3 mL/g.
Selon un ou plusieurs modes de réalisation, le volume des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 15 et 25% en volume du volume poreux total dudit support.
Selon un ou plusieurs modes de réalisation, le volume des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 35 et 45% en volume du volume poreux total dudit support. Selon un ou plusieurs modes de réalisation, le volume des macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 35 à 50% en volume du volume poreux total dudit support.
Selon un ou plusieurs modes de réalisation, la teneur en métal du groupe VIB dudit catalyseur, exprimée sous forme oxyde, est comprise entre 1 et 30% en poids par rapport au poids total du catalyseur.
Selon un ou plusieurs modes de réalisation, la teneur en métal du groupe VIII dudit catalyseur, exprimée sous forme oxyde, est comprise entre 1 et 20% en poids par rapport au poids total dudit catalyseur.
Selon un ou plusieurs modes de réalisation, le ratio molaire entre le métal du groupe VIII et le métal du groupe VIB est compris entre 0,3 et 3 mol/mol.
Selon un ou plusieurs modes de réalisation, le métal du groupe VIII est le nickel.
Selon un ou plusieurs modes de réalisation, le métal du groupe VIB est le molybdène.
Selon un ou plusieurs modes de réalisation, la distribution poreuse des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm est centrée sur une plage de valeur comprise entre 10,5 et 14,5 nm.
Selon un ou plusieurs modes de réalisation, la distribution poreuse des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm est centrée sur une plage de valeur comprise entre 22 et 28 nm.
Selon un ou plusieurs modes de réalisation, l’essence est une essence de craquage catalytique.
Selon un ou plusieurs modes de réalisation, le support se présente sous la forme de billes de diamètre compris entre 2 et 4 mm.
Selon un ou plusieurs modes de réalisation, lorsque le support se présente sous la forme de billes, ledit support est obtenu selon étapes suivantes : s1) déshydratation d’un hydroxyde d’aluminium ou d’un oxyhydroxyde d’aluminium à une température comprise entre 400°C et 1200°C, de préférence entre 600°C et 900°C, pendant une durée comprise entre 0,1 seconde et 5 secondes, de préférence entre 0,1 seconde et 4 secondes, pour obtenir une poudre d’alumine ; s2) mise en forme de ladite poudre d’alumine obtenue à l’étape s1) sous forme de billes ; s3) traitement thermique des billes d’alumine obtenues à l’étape s2) à une température supérieure ou égale à 200°C ; s4) traitement hydrothermal des billes d’alumine obtenues à l’issue de l’étape s3) par imprégnation avec de l'eau ou une solution aqueuse, puis séjour dans un autoclave à une température comprise entre 100°C et 300°C ; s5) calcination des billes d’alumine obtenues à l’issue de l’étape s4) à une température comprise entre 500°C et 820°C.
Selon un ou plusieurs modes de réalisation, ledit catalyseur ne comprend pas de phosphore.
Description détaillée de l’invention
1. Définitions
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81ème édition, 2000-2001). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC.
La surface spécifique BET est mesurée par physisorption à l'azote selon la norme ASTM D3663-03, méthode décrite dans l'ouvrage Rouquerol F.; Rouquerol J.; Singh K. « Adsorption by Powders & Porous Solids: Principle, methodology and applications », Academie Press, 1999.
Dans la présente description, on entend, selon la convention IUPAC, par micropores les pores dont le diamètre est inférieur à 2 nm, c'est à dire 0,002 pm; par mésopores les pores dont le diamètre est supérieur à 2 nm, c'est à dire 0,002 pm et inférieur à 50 nm, c'est à dire 0,05 pm et par macropores les pores dont le diamètre est supérieur ou égal à 50 nm, c'est à dire 0,05 pm.
Dans l’exposé qui suit de l’invention, on entend par volume poreux total de l'alumine ou du catalyseur, le volume mesuré par intrusion au porosimètre à mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar (400 MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°. L'angle de mouillage a été pris égal à 140° en suivant les recommandations de l'ouvrage « Techniques de l'ingénieur, traité analyse et caractérisation », p.1050-5, écrits par Jean Charpin et Bernard Rasneur.
Afin d'obtenir une meilleure précision, la valeur du volume poreux total en ml/g donnée dans le texte qui suit correspond à la valeur du volume mercure total (volume poreux total mesuré par intrusion au porosimètre à mercure) en ml/g mesurée sur l'échantillon moins la valeur du volume mercure en ml/g mesurée sur le même échantillon pour une pression correspondant à 30 psi (environ 0,2 MPa).
Le volume des macropores et des mésopores est mesuré par porosimétrie par intrusion de mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar (400 MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°.
On fixe à 0,2 MPa la valeur à partir de laquelle le mercure remplit tous les vides intergranulaires, et on considère qu'au-delà le mercure pénètre dans les pores de l'échantillon.
Le volume macroporeux du catalyseur est défini comme étant le volume cumulé de mercure introduit à une pression comprise entre 0,2 MPa et 30 MPa, correspondant au volume contenu dans les pores de diamètre apparent supérieur à 50 nm.
Le volume mésoporeux du catalyseur est défini comme étant le volume cumulé de mercure introduit à une pression comprise entre 30 MPa et 400 MPa, correspondant au volume contenu dans les pores de diamètre apparent compris entre 2 et 50 nm.
Lorsque le volume incrémental des pores mesuré par porosimétrie mercure est tracé en fonction du diamètre des pores, les modes de porosités correspondent aux points d’inflexion de la fonction représentée.
Les teneurs en en métal du groupe VIII et métal du groupe VIB sont mesurées par fluorescence X.
2. Description
Catalyseur
Le catalyseur utilisé dans le cadre du procédé d’hydrogénation sélective selon l’invention comprend une phase active formée d’au moins un métal du groupe VIB et d’au moins un métal du groupe VIII.
Le métal du groupe VIB présent dans la phase active du catalyseur est préférentiellement choisi parmi le molybdène et le tungstène, plus préférentiellement le molybdène. Le métal du groupe VIII présent dans la phase active du catalyseur est préférentiellement choisi parmi le cobalt, le nickel et le mélange de ces deux éléments, plus préférentiellement le nickel. De préférence, la phase active est constituée de molybdène et de nickel.
La teneur totale en métal du groupe VIII est généralement comprise entre 1 et 20% poids exprimée sous forme oxyde du métal du groupe VIII par rapport au poids total du catalyseur, de préférence comprise entre 2 et 15% poids, de préférence comprise entre 3 et 13% poids par rapport au poids total du catalyseur. Lorsque le métal est le cobalt ou le nickel, la teneur en métal s’exprime en CoO ou NiO respectivement.
La teneur en métal du groupe VIB est généralement comprise entre 1 et 30% poids exprimée sous forme oxyde du métal du groupe VIB par rapport au poids total du catalyseur, de préférence comprise entre 5 et 20% poids, et encore plus préférentiellement entre 8 et 15% poids par rapport au poids total du catalyseur. Lorsque le métal est le molybdène ou le tungstène, la teneur en métal s’exprime en Mo03ou W03 respectivement.
Le ratio molaire entre le métal du groupe VIII et le métal du groupe VIB est avantageusement compris entre 0,3 et 3 mol/mol, de manière préférée entre 0,4 et 2,5 mol/mol, et de manière très préférée entre 0,5 et 2 mol/mol.
Le métal du groupe VIII est de préférence le nickel.
Le métal du groupe VIB est de préférence le molybdène.
De préférence, le catalyseur ne contient pas de phosphore.
Le catalyseur comprend généralement une surface spécifique comprise entre 50 et 200 m2/g, de préférence comprise entre 60 et 170 m2/g et de préférence comprise entre 70 et 130 m2/g.
Le volume poreux du catalyseur est généralement compris entre 0,5 mL/g et 1 ,3 mL/g, de préférence compris entre 0,6 mL/g et 1 ,1 mL/g.
Support d’alumine
Le support d’alumine du catalyseur utilisé dans le cadre du procédé d’hydrogénation sélective selon l’invention est un support d’alumine macroporeux et mésoporeux comprenant une distribution bimodale de mésopores dans lequel :
- le volume des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 10 et 30% en volume du volume poreux total dudit support ;
- le volume des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 30 et 50% en volume du volume poreux total dudit support ; - le volume des macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 30 à 50% en volume du volume poreux total dudit support.
De préférence, le volume des mésopores du support de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 15 et 25% en volume du volume poreux total dudit support.
De préférence, le volume des mésopores du support de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 35 et 45% en volume du volume poreux total dudit support.
De préférence, le volume des macropores du support de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 35 à 50% en volume du volume poreux total dudit support.
Dans un mode de réalisation selon l’invention, la distribution poreuse des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm est centrée sur une plage de valeur comprise entre 10,5 et 14,5 nm, de préférence entre 12 et 13 nm.
Dans un mode de réalisation selon l’invention, la distribution poreuse des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm est centrée sur une plage de valeur comprise entre 22 et 28 nm, de préférence entre 23 et 27 nm.
Le support comprend généralement une surface spécifique comprise entre 50 et 210 m2/g, de préférence comprise entre 70 et 180 m2/g et de préférence comprise entre 70 et 160 m2/g.
Le volume poreux du support est compris généralement entre 0,7 mL/g et 1 ,3 mL/g, de préférence compris entre 0,8 mL/g et 1 ,2 mL/g.
Avantageusement, le support se présente sous la forme de billes de diamètre compris entre 0,8 et 10 mm, préférentiellement entre 1 et 5 mm, et plus préférentiellement entre 2 et 4 mm.
De préférence, le catalyseur est constitué d’une phase active constituée de molybdène et de nickel catalyseur et du support d’alumine mésoporeux et macroporeux comprenant une distribution bimodale de mésopores et dans lequel :
- le volume des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 10 et 30% en volume du volume poreux total dudit support ;
- le volume des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 30 et 50% en volume du volume poreux total dudit support ; - le volume des macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 30 à 50% en volume du volume poreux total dudit support.
Figure imgf000011_0001
Le support d’alumine du catalyseur utilisé dans le cadre du procédé d’hydrogénation sélective selon l’invention peut être synthétisé par toute méthode connue de l’homme du métier.
Selon un mode préféré le support d’alumine utilisé selon l'invention se présente sous forme de billes. Selon ce mode préféré la préparation du support comprend les étapes suivantes : s1) déshydratation d’un hydroxyde d’aluminium ou d’un oxyhydroxyde d’aluminium à une température comprise entre 400°C et 1200°C, de préférence entre 600°C et 900°C, pendant une durée comprise entre 0,1 seconde et 5 secondes, de préférence entre 0,1 seconde et 4 secondes, pour obtenir une poudre d’alumine ; s2) mise en forme de ladite poudre d’alumine obtenue à l’étape s1) sous forme de billes ; s3) traitement thermique des billes obtenues à l’étape s2) à une température supérieure ou égale à 200°C ; s4) traitement hydrothermal des billes d’alumine obtenues à l’issue de l’étape s3) par imprégnation avec de l'eau ou une solution aqueuse préférentiellement acide, puis séjour dans un autoclave à une température comprise entre 100°C et 300°C,de préférence entre 150°C et 250°C ; s5) calcination desdites billes d’alumine obtenues à l’issue de l’étape s4) à une température comprise entre 500°C et 820°C.
Les étapes s1) à s5) sont décrites en détail ci-après.
Selon l’étape s1), on réalise une déshydratation d’un hydroxyde d’aluminium ou d’un oxyhydroxyde d’aluminium à une température comprise entre 400°C et 1200°C, de préférence entre 600°C et 900°C, pendant une durée comprise entre 0,1 seconde et 5 secondes, de préférence entre 0,1 seconde et 4 secondes, pour obtenir une poudre d’alumine. L’hydroxyde d’aluminium peut être choisi parmi l’hydrargillite, la gibbsite ou la bayerite. L’oxyhydroxyde d’aluminium peut être choisi parmi la boehmite ou le diaspore.
De préférence, l’étape s1) est réalisée en utilisant de l’hydrargillite.
Généralement, l’étape s1) est réalisée en présence d’un courant de gaz chaud, tel que de l’air sec ou de l’air humide, permettant d’éliminer et d’entraîner rapidement l’eau évaporée. Généralement, la poudre d'alumine active obtenue après la déshydratation de l'hydroxyde ou oxyhydroxyde d'aluminium est broyée dans une granulométrie comprise entre 10 à 200 pm.
Généralement, la poudre d'alumine active obtenue après la déshydratation de l'hydroxyde ou de l'oxyhydroxyde d'aluminium est lavée avec de l'eau ou une solution aqueuse acide. Lorsque que l’étape de lavage est réalisée avec une solution aqueuse acide, tout acide minéral ou organique pourra être utilisé, de manière préféré l’acide nitrique, l'acide chlorhydrique, l'acide perchlorique ou sulfurique pour les acides minéraux, et un acide carboxylique (l’acide formique, acétique ou malonique), un acide sulfonique (acide paratoluènesulfonique) ou un ester sulfurique (sulfate de lauryle) pour les acides organiques.
Selon l’étape s2), on réalise la mise en forme de ladite poudre d'alumine obtenue à l’issue de l’étape s1).
La mise en forme de ladite poudre d'alumine est réalisée de manière à obtenir des billes, nommée granulation, est généralement réalisée au moyen d'une technologie tournante comme un drageoir tournant ou un tambour tournant. Ce type de procédé permet d'obtenir des billes de diamètre et de répartitions de pores contrôlées, ces dimensions et ces répartitions étant, en général, créées pendant l'étape d'agglomération.
La porosité peut être créée par différents moyens, comme le choix de la granulométrie de la poudre d'alumine ou l'agglomération de plusieurs poudres d'alumine de différentes granulométries. Une autre méthode consiste à mélanger à la poudre d'alumine, avant ou pendant l'étape d'agglomération, un ou des composés, appelés porogènes, disparaissant par chauffage et créant ainsi une porosité dans les billes. Comme composés porogènes utilisés, on peut citer, à titre d'exemple, la farine de bois, le charbon de bois, le charbon actif, le noir de carbone, le soufre, des goudrons, des matières plastiques ou émulsions de matières plastiques telles que le polychlorure de vinyle, des alcools polyvinyliques, la naphtaline ou analogues. La quantité de composés porogènes ajoutés est déterminée par le volume désiré pour obtenir des billes de densité de remplissage en cru comprise entre 500 et 1100 kg/m3, préférentiellement entre 700 et 950 kg/m3, et de diamètre compris entre 0,8 et 10 mm, préférentiellement entre 1 et 5 mm, et encre plus préférentiellement entre 2 et 4 mm. Une sélection par tamisage des billes obtenues peut être réalisée selon la granulométrie souhaitée.
Etape s3)
Selon l’étape s3), on réalise un traitement thermique de la poudre d’alumine mise en forme sous forme de billes obtenue à l’issue de l’étape s2) à une température supérieure ou égale à 200°C, de préférence comprise entre 200°C et 1200 °C, préférentiellement entre 300 et 900°C, de manière très préférée entre 400°C et 750°C, pendant une durée comprise généralement entre 1 et 24 heures, de préférence entre 1 et 6 heures. Les billes obtenues à cette étape intermédiaire comprennent une surface spécifique entre 50 et 420 m2/g, de préférence entre 60 et 350 m2/g, et encore plus préférentiellement entre 80 et 300 m2/g.
Selon l’étape s4), les billes d’alumine obtenues à l’issue de l’étape s3) subissent un traitement hydrothermal par imprégnation avec de l'eau ou une solution aqueuse préférentiellement acide, puis séjour dans un autoclave à une température comprise entre 100°C et 300°C,de préférence entre 150°C et 250°C.
Le traitement hydrothermal est généralement conduit à une température de 100 °C à 300°C, préférentiellement de 150°C à 250°C, pendant une durée supérieure à 45 minutes, préférentiellement de 1 à 24 heures, très préférentiellement de 1 ,5 à 12 heures. Le traitement hydrothermal est généralement effectué à l'aide d'une solution aqueuse acide comprenant un ou plusieurs acides minéraux et/ou organiques de préférence l'acide nitrique, l'acide chlorhydrique, l'acide perchlorique, l'acide sulfurique, les acides faibles dont la solution a un pH inférieur à 4 comme l'acide acétique ou l'acide formique. Généralement, ladite solution aqueuse acide comprend également un ou plusieurs composés pouvant libérer des anions capables de se combiner avec les ions aluminium, de préférence les composés comprenant un ion nitrate (comme le nitrate d'aluminium), chlorure, sulfate, perchlorate, chloroacétate, trichloroacétate, bromoacétate, dibromoacétate, et les anions de formule générale : R-COO comme les formiates et les acétates.
Selon l’étape s5), les billes d’alumine obtenues à l’issue de l’étape s4) subissent une calcination à une température comprise entre 500°C et 820°C, préférentiellement entre 550°C et 750°C, et pendant une durée comprise généralement entre 1 et 24 heures, de préférence entre 1 et 6 heures. A l’issue de cette étape, les billes d’alumine obtenues comprennent une surface spécifique entre 50 et 210 m2/g, de préférence entre 70 et 180 m2/g, et encore plus préférentiellement entre 70 et 160 m2/g. Procédé de préparation du catalyseur
Le catalyseur utilisé dans le cadre du procédé d’hydrogénation sélective selon l'invention peut être préparé au moyen de toute technique connue de l'homme du métier, et notamment par imprégnation des éléments des groupes VIII et VIB sur le support sélectionné.
Cette imprégnation peut par exemple être réalisée selon le mode connu de l'homme du métier sous la terminologie d'imprégnation à sec, dans lequel on introduit juste la quantité d'éléments désirés sous forme de sels solubles dans le solvant choisi, par exemple de l'eau déminéralisée, de façon à remplir aussi exactement que possible la porosité du support. Le précurseur de la phase active à base de l’élément du groupe VIII et le précurseur de la phase active de l’élément du groupe VIB peuvent être introduits simultanément ou successivement. L’imprégnation de chaque précurseur peut être avantageusement réalisée en au moins deux fois. Les différents précurseurs peuvent ainsi être avantageusement imprégnés successivement avec un temps d’imprégnation et de maturation différentié. Un des précurseurs peut aussi être imprégné en plusieurs fois. Le support ainsi rempli par la solution est laissé à maturer à une température inférieure à 50°C, de préférence à température ambiante, pendant une durée comprise entre 0,5 heure et 12 heures, de préférence entre 0,5 heure et 6 heures, et encore plus préférentiellement entre 0,5 et 3 heures.
Après introduction des précurseurs de la phase active, le précurseur de catalyseur subit un traitement d’activation. Ce traitement a généralement pour but de transformer les précurseurs moléculaires des éléments en phase oxyde. Il s’agit dans ce cas d’un traitement oxydant mais un simple séchage du catalyseur peut également être effectué.
Dans le cas d’un séchage, le précurseur de catalyseur est séché à une température comprise entre 50°C et 200°C, de préférence entre 70 et 180°C, pendant une durée comprise typiquement entre 0,5 à 12 heures, et de façon encore plus préférée pendant une durée de 0,5 à 5 heures. L'étape de séchage est avantageusement effectuée en lit traversé en utilisant de l'air ou tout autre gaz chaud. De manière préférée, lorsque le séchage est effectué en lit traversé, le gaz utilisé est soit l'air, soit un gaz inerte comme l'argon ou l'azote. De manière très préférée, le séchage est réalisé en lit traversé en présence d'air.
Dans le cas d'un traitement oxydant, également appelé calcination, celui-ci est généralement mis en oeuvre sous air ou sous oxygène dilué, et la température de traitement est généralement comprise entre 200°C et 550°C, de préférence entre 300°C et 500°C, et avantageusement pendant une durée typiquement comprise entre 0,5 à 24 heures, de façon préférée pendant une durée de 0,5 à 12 heures, et de façon encore plus préférée pendant une durée de 0,5 à 10 heures. L'étape de traitement oxydant est avantageusement effectuée en lit traversé en utilisant de l'air ou tout autre gaz chaud. De manière préférée, lorsque l’étape de traitement oxydant est effectuée en lit traversé, le gaz utilisé est soit l'air, soit un gaz inerte comme l'argon ou l'azote. De manière très préférée, le traitement oxydant est réalisé en lit traversé en présence d'air.
A titre d’exemple, lorsque l’élément du groupe VIII est le nickel et l’élément du groupe VIB est le molybdène, des sels de métaux de molybdène et de nickel utilisables dans le procédé de préparation du catalyseur sont par exemple le nitrate de nickel et l'heptamolybdate d'ammonium. Tout autre sel connu de l'homme du métier présentant une solubilité suffisante et décomposable lors du traitement d'activation peut également être utilisé. Avantageusement, le séchage et le traitement oxydant sont tous les deux réalisés lors du procédé de préparation du catalyseur.
Avant son utilisation en tant que catalyseur d'hydrotraitement, il est avantageux de soumettre le catalyseur séché ou optionnellement calciné à une étape de sulfuration (phase d'activation). Cette phase d’activation s’effectue par les méthodes bien connues de l'homme de l'art, et avantageusement sous une atmosphère sulfo-réductrice en présence d’hydrogène et d’hydrogène sulfuré. L’hydrogène sulfuré peut être utilisé directement ou généré par un agent sulfure (tel que le diméthyldisulfure).
Le catalyseur est de préférence utilisé au moins en partie sous sa forme sulfurée. L’introduction du soufre peut intervenir avant ou après toute étape d’activation, c’est-à-dire de séchage ou de calcination. Le soufre ou un composé soufré peut être introduit ex situ, c’est-à-dire en dehors du réacteur où le procédé selon l’invention est réalisé, ou in situ, c’est- à-dire dans le réacteur utilisé pour le procédé selon l’invention. Dans le premier cas, ces sulfurations ex situ se caractérisent par une étape finale de passivation. En effet, les phases sulfures présentent une très grande réactivité vis à vis de l'air ambiant (caractère auto- échauffant par oxydation) interdisant leur manipulation ultérieure sans un traitement complémentaire visant à limiter cette réactivité. Parmi les procédures de sulfurations ex situ commerciales, citons le procédé TOTSUCAT™ de la société Eurecat (EP 0 564 317 B1 et EP 0 707 890 B1) et le procédé XpresS™ de la société TRICAT (brevet US-A-5 958 816). Dans le second cas (sulfuration in-situ), le catalyseur est sulfuré par passage d'une charge contenant au moins un composé soufré, qui une fois décomposé conduit à la fixation de soufre sur le catalyseur. Cette charge peut être gazeuse ou liquide, par exemple de l’hydrogène contenant de ITH S, ou un liquide contenant au moins un composé soufré. Procédé d’hydroqénation sélective
L'invention concerne un procédé de traitement d'une essence comprenant tout type de familles chimiques et notamment des dioléfines, des mono-oléfines, et des composés soufrés sous forme de mercaptans et de sulfures légers. La présente invention trouve particulièrement son application dans la transformation des essences de conversion, et en particulier des essences en provenance du craquage catalytique, du craquage catalytique en lit fluidisé (FCC), d’un procédé de cokéfaction, d’un procédé de viscoréduction, ou d’un procédé de pyrolyse. De préférence, la charge est une essence issue d'unités de craquage catalytique. Les charges pour lesquelles s'applique l'invention ont généralement une température d'ébullition comprise entre 0°C et 280°C. Les charges peuvent également contenir des hydrocarbures à 3 ou 4 atomes de carbone.
Par exemple, les essences issues d'unités de craquage catalytique (FCC) contiennent, en moyenne, entre 0,5% et 5% poids de dioléfines, entre 20% et 50% poids de mono-oléfines, entre 10 ppm et 0,5% poids de soufre dont généralement moins de 300 ppm de mercaptans. Les mercaptans se concentrent généralement dans les fractions légères de l'essence et plus précisément dans la fraction dont la température d'ébullition est inférieure à 120°C.
Le traitement de l'essence décrit dans le présent procédé d'hydrogénation sélective consiste principalement à :
- hydrogéner sélectivement les dioléfines en mono-oléfines ;
- transformer les composés soufrés légers saturés et principalement les mercaptans, en sulfures ou mercaptans plus lourds par réaction avec les mono-oléfines ;
- isomériser les composés mono-oléfines ayant leur double liaison C=C externe en leur isomère à double liaison C=C interne.
Les réactions d'hydrogénation des dioléfines en mono-oléfines sont illustrées ci-dessous par la transformation du 1 ,3 pentadiène, composé instable, qui peut facilement être hydrogéné en pent-2-ène. Toutefois, on cherche à limiter les réactions secondaires d'hydrogénation des mono-oléfines qui dans l'exemple ci-dessous conduiraient à la formation de n-pentane.
Figure imgf000016_0001
Les composés soufrés que l'on cherche à transformer sont principalement les mercaptans. La réaction principale de transformation des mercaptans consiste en une réaction de thioéthérification entre les mono-oléfines et les mercaptans. Cette réaction est illustrée ci- dessous par l'addition du propane-2-thiol sur le pent-2-ène pour former un propyl-pentyl sulfure.
Figure imgf000017_0001
En présence d'hydrogène, la transformation des composés soufrés peut également passer par la formation intermédiaire d'H S qui peut ensuite s'additionner sur les composés insaturés présents dans la charge. Cette voie est toutefois minoritaire dans les conditions préférées de la réaction.
Outre les mercaptans, les composés susceptibles d'être ainsi transformés et alourdis sont les sulfures et principalement le CS2, le COS, le thiophane, le méthyl-thiophane.
Dans certains cas, on peut également observer des réactions d'alourdissement des composés azotés légers, et principalement des nitriles, du pyrrole et de ses dérivés.
Selon l'invention, le catalyseur permet également de réaliser une isomérisation des composées mono-oléfiniques ayant leur double liaison C=C en position externe en leur isomère ayant leur double liaison C=C en position interne.
Cette réaction est illustrée ci-après par l'isomérisation du hexène-1 en hexène-2 ou hexène- 3.
Figure imgf000017_0002
Dans le procédé d'hydrogénation sélective selon l'invention, la charge à traiter est mélangée à de l'hydrogène avant d'être mise en contact avec le catalyseur. La quantité d'hydrogène injectée est telle que le rapport molaire entre l'hydrogène et les dioléfines à hydrogéner soit supérieur à 1 (stœchiométrie) et inférieure à 100, et de préférence compris entre 1 et 10 mol/mol. Un trop large excès d'hydrogène peut entraîner une forte hydrogénation des mono- oléfines et par voie de conséquence, une diminution de l'indice d'octane de l'essence. La totalité de la charge est généralement injectée à l'entrée du réacteur. Toutefois, il peut être avantageux, dans certains cas d'injecter une fraction ou la totalité de la charge entre deux lits catalytiques consécutifs placés dans le réacteur. Ce mode de réalisation permet notamment de continuer à opérer le réacteur si l'entrée du réacteur se trouve bouchée par dépôts de polymères, de particules, ou de gommes présentes dans la charge.
Le mélange constitué de l'essence et de l'hydrogène est mis en contact avec le catalyseur à une température comprise entre 80°C et 220°C, et de préférence entre 90°C et 200°C, avec une vitesse spatiale liquide (LHSV) comprise entre 1 lr1 et 10 h 1 , l'unité de la vitesse spatiale liquide étant le litre de charge par litre de catalyseur et par heure (l/l. h). La pression est ajustée afin que le mélange réactionnel soit majoritairement sous forme liquide dans le réacteur. La pression est comprise entre 0,5 MPa et 5 MPa et de préférence entre 1 et 4 MPa.
L'essence traitée dans les conditions énoncées ci-dessus, présente une teneur en dioléfines et en mercaptans réduite. Généralement, l'essence produite contient moins de 1 % poids de dioléfines, et de préférence moins de 0,5% poids de dioléfines. Les composés soufrés légers dont la température d'ébullition est inférieure à celle du thiophène (84°C) sont généralement convertis à plus de 50%. Il est donc possible de séparer la fraction légère de l'essence par distillation et d'envoyer directement cette fraction au pool essence sans traitement d’hydrodésulfuration complémentaire. La fraction légère de l'essence a généralement un point final inférieur à 120°C, et de préférence inférieure à 100°C et de façon très préférée inférieure à 80°C.
Le procédé d'hydrogénation sélective selon l'invention est particulièrement adapté pour être mis en oeuvre dans le cadre du procédé de désulfuration décrit dans la demande de brevet EP 1 077247.
La présente demande a également pour objet un procédé de désulfuration d’essence comprenant des composés soufrés, comprenant au moins les étapes suivantes : a) une étape d'hydrogénation sélective mettant en oeuvre le procédé décrit précédemment ; b) une étape de séparation de l'essence obtenue à l’étape a) en deux fractions comprenant respectivement une essence légère et une essence lourde ; c) une étape d’hydrodésulfuration de l’essence lourde séparée à l’étape b) sur un catalyseur permettant de décomposer au moins partiellement les composés soufrés en H S.
L'étape b) de séparation est réalisée de préférence au moyen d’une colonne de distillation classique appelée aussi splitter. Cette colonne de fractionnement doit permettre de séparer une fraction légère de l'essence contenant moins de 10 ppm poids de soufre. Cette colonne opère généralement à une pression comprise entre 0,1 et 2 MPa et de préférence entre 0,2 et 1 MPa. Le nombre de plateaux théoriques de cette colonne de séparation est généralement compris entre 10 et 100 et de préférence entre 20 et 60. Le taux de reflux, exprimé comme étant le rapport du débit liquide dans la colonne divisé par le débit de distillât exprimé en kg/h, est généralement inférieur à 1 et de préférence inférieur à 0,8.
L’essence légère obtenue à l'issue de la séparation contient généralement au moins l'ensemble des oléfines en C5, de préférence les composés en C5 et au moins 20 % des oléfines en C6. Généralement, cette fraction légère présente une teneur en soufre inférieur à 10 ppm poids de soufre, c'est à dire qu'il n'est pas nécessaire de traiter la coupe légère par une étape d’hydrodésulfuration supplémentaire avant de l'utiliser comme carburant.
L'étape c) de désulfuration est de préférence une étape d’hydrodésulfuration réalisée par passage de l’essence lourde, en présence d'hydrogène, sur un catalyseur comprenant au moins un élément du groupe VIII et/ou au moins un élément du groupe VIB au moins en partie sous formes sulfures, à une température comprise entre environ 210°C et environ 350°C, de préférence entre 220°C et 320°C, sous une pression généralement comprise entre environ 1 et environ 4 MPa, de préférence entre 1 ,5 et 3 MPa. La vitesse spatiale du liquide est comprise entre environ 1 et environ 20 h-1 (exprimée en volume de liquide par volume de catalyseur et par heure), de préférence entre 1 et 10 ir1, de manière très préférée entre 3 et 8 ir1. Le rapport H2/charge est compris entre 100 à 600 Nl/I et préférentiellement entre 300 et 600 N l/l.
La teneur en métal du groupe VIII exprimée en oxyde est généralement comprise entre 0,5 et 15% poids, préférentiellement entre 1 et 10 % poids par rapport au poids du catalyseur. La teneur en métal du groupe VIB exprimée en oxyde est généralement comprise entre 1 ,5 et 60% poids, préférentiellement entre 3 et 50% poids par rapport au poids de catalyseur.
L’élément du groupe VIII, lorsqu’il est présent, est de préférence le cobalt, et l’élément du groupe VIB, lorsqu’il est présent, est généralement le molybdène ou le tungstène. Des combinaisons telles que cobalt-molybdène sont préférées. Le support du catalyseur est habituellement un solide poreux, tel que par exemple une alumine, une silice-alumine ou d'autres solides poreux, tels que par exemple de la magnésie, de la silice ou de l'oxyde de titane, seuls ou en mélange avec de l'alumine ou de la silice-alumine. Pour minimiser l'hydrogénation des oléfines présentes dans l’essence lourde, il est avantageux d'utiliser préférentiellement un catalyseur dans lequel la densité en métal du groupe VIB, exprimée en % poids de métal du groupe VIB sous forme oxyde (le % en poids étant exprimé par rapport au poids total du catalyseur) par unité de surface spécifique est supérieure à 0,07 et de préférence supérieure à 0,12. Le catalyseur selon l’étape c) présente de préférence une surface spécifique inférieure à 250 m2/g, de manière plus préférée inférieure à 230 m2/g, et de manière très préférée inférieure à 190 m2/g.
Le dépôt des métaux sur le support est obtenu pour toutes méthodes connues de l'homme de l'art telles que par exemple l'imprégnation à sec, par excès d'une solution contenant les précurseurs de métaux. La solution d'imprégnation est choisie de manière à pouvoir solubiliser les précurseurs de métaux dans les concentrations désirées. Par exemple, dans le cas de la synthèse d'un catalyseur CoMo, le précurseur de molybdène peut être l'oxyde de molybdène, l'heptamolybdate d'ammonium et tandis que le précurseur de cobalt peut être par exemple le nitrate de cobalt, l'hydroxyde de cobalt, le carbonate de cobalt. Les précurseurs sont généralement dissous dans un milieu permettant leur solubilisation dans les concentrations désirées.
Après introduction du ou des éléments et éventuellement mise en forme du catalyseur, le catalyseur est dans une première étape activé. Cette activation peut correspondre soit à une oxydation puis à une réduction, soit à une réduction directe, soit à une calcination uniquement. L’étape de calcination est généralement réalisée à des températures allant d’environ 100 à environ 600°C et de préférence comprises entre 200 et 450°C, sous un débit d’air. L’étape de réduction est réalisée dans des conditions permettant de convertir au moins une partie des formes oxydées du métal de base en métal. Généralement, elle consiste à traiter le catalyseur sous un flux d’hydrogène à une température de préférence au moins égale à 300°C. La réduction peut aussi être réalisée en partie au moyen de réducteurs chimiques.
Le catalyseur utilisé à l’étape c) est de préférence utilisé au moins en partie sous sa forme sulfurée. L’introduction du soufre peut intervenir avant ou après toute étape d’activation, c’est-à-dire de calcination ou de réduction. Le soufre ou un composé soufré peut être introduit ex situ, c’est-à-dire en dehors du réacteur d’hydrodésulfuration, ou in situ, c’est-à- dire dans le réacteur d’hydrodésulfuration. Dans le premier cas, ces sulfurations ex situ se caractérisent par une étape finale de passivation. En effet, les phases sulfures présentent une très grande réactivité vis à vis de l'air ambiant (caractère auto-échauffant par oxydation) interdisant leur manipulation ultérieure sans un traitement complémentaire visant à limiter cette réactivité. Parmi les procédures de sulfurations ex situ commerciales, citons le procédé TOTSUCAT™ de la société Eurecat (EP 0 564 317 B1 et EP 0 707 890 B1) et le procédé XpresS™ de la société TRICAT (brevet US-A-5 958816). Dans le second cas (sulfuration in- situ), le catalyseur est de préférence réduit dans les conditions décrites précédemment, puis sulfuré par passage d'une charge contenant au moins un composé soufré, qui une fois décomposé conduit à la fixation de soufre sur le catalyseur. Cette charge peut être gazeuse ou liquide, par exemple de l’hydrogène contenant de l’H2S, ou un liquide contenant au moins un composé soufré.
Exemples
Exemple 1 : Catalyseur A (selon l’invention)
Le support S1 du catalyseur A est préparé par déshydratation d'hydrargillite (EMPLURA®, Merck™) afin d'obtenir une poudre d'alumine. La température est fixée à 800°C et le temps de contact du matériau à déshydrater avec un débit d’air sec est de 1 seconde. La poudre d'alumine obtenue est broyée dans une granulométrie comprise entre 10 à 200 pm puis est lavée trois fois avec un volume d'eau distillée égal à 2 fois le volume de la poudre mise en oeuvre. Ladite poudre d’alumine est mise en forme en présence de noir de carbone (N990 Thermax ®) avec un granulateur à plateau (GRELBEX™ P30) équipé d’un bol cylindrique de forme conique à un angle de 30° et une vitesse de rotation de 40 tours par minutes de manière à obtenir des billes d'un diamètre compris majoritairement entre 2 et 4 mm après tamisage du solide. La quantité de noir de carbone est ajustée pour obtenir une densité de remplissage en cru des objets de 800 kg/m3. Lesdites billes subissent un traitement thermique sous air à 720°C de manière à leur procurer une surface spécifique de 200 m2/g. Ensuite, on applique un traitement hydrothermal auxdites billes par imprégnation au volume poreux avec une solution aqueuse d’acide nitrique (0,1 N, Merck™). Le traitement hydrothermal est conduit à une température de 200°C durant 6,5 heures, dans un autoclave à panier rotatif. Les billes ainsi obtenues subissent un dernier traitement de calcination sous air à 650°C pendant 2 heures. Le support S1 présente une surface spécifique de 141 m2/g, un volume poreux total de 0,97 mL/g ainsi que la répartition poreuse suivante donnée par porosimétrie au mercure :
- un volume de mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm, dont la distribution poreuse est centrée sur 13 nm, de 0,15 mL/g correspondant à 15% du volume poreux total ;
- un volume de mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm, dont la distribution poreuse est centrée sur 26 nm, de 0,43 mL/g correspondant à 44% du volume poreux total ; - un volume de macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm de 0,39 mL/g, correspondant à 40% du volume poreux total.
Le support S1 présente un volume de reprise en eau de 0,95 mL/g. La solution d’imprégnation est préparée par dilution de 6,07 grammes d’heptamolybdate d’ammonium (Mq7(NH4)6q24,4H20, 99,98,%, Merck™), 17,43 grammes de nitrate de nickel (Ni(N03)2, 6H20, 99,5%, Merck™) dans 36,2 mL d’eau distillée. Après imprégnation à sec de 40 grammes de support et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. Le solide est ensuite calciné sous air à 450°C pendant 2 heures. Le catalyseur A obtenu contient 9,1%poids de NiO et 10,0%poids de M0O3, ainsi qu’un ratio molaire Ni/Mo=1 ,75. Le catalyseur A possède un volume poreux total de 0,83 mL/g et une surface spécifique de 103 m2/g.
Exemple 2 : Catalyseur B non conforme (Catalyseur
Figure imgf000022_0001
et orand mésoporeux monomodal)
Le support S2 du catalyseur B est préparé par déshydratation d'hydrargillite (EMPLURA ® , Merck) afin d'obtenir une poudre d'alumine active. La température est fixée à 800°C et le temps de contact du matériau à déshydrater avec un débit d’air sec est de 1 seconde. La poudre d'alumine active obtenue est broyée dans une granulométrie comprise entre 10 à 200 pm puis est lavée trois fois avec un volume d'eau distillée égal à 2 fois le volume de la poudre mise en oeuvre. Ladite poudre d’alumine active est mise en forme avec un granulateur à plateau (GRELBEX™ P30) équipé d’un bol cylindrique de forme conique à un angle de 30° et une vitesse de rotation de 40 tours par minutes de manière à obtenir des billes d'un diamètre compris majoritairement entre 2 et 4 mm (après tamisage du solide) et une densité de remplissage en cru des objets de 780 kg/m3. Lesdites billes subissent un traitement thermique sous air à 700°C de manière à leur procurer une surface spécifique de 250 m2/g. Ensuite, on applique un traitement hydrothermal auxdites billes par imprégnation au volume poreux avec une solution aqueuse d’acide nitrique (0,1 N, Merck™). Le traitement hydrothermal est conduit à une température de 200°C durant 6,5 heures, dans un autoclave à panier rotatif. Les billes ainsi obtenues subissent un dernier traitement de calcination sous air à 950°C pendant 2 heures. Le support S2 présente une surface spécifique de 71 m2/g, un volume poreux total de 0,56 mL/g ainsi que la répartition poreuse suivante donnée par porosimétrie au mercure :
- un volume de mésopores de diamètre supérieur ou égal à 10 nm et inférieur à 50 nm, dont la distribution poreuse est centrée sur 20 nm, de 0,35 mL/g correspondant à 63% du volume poreux total ; - un volume de macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm de 0,21 mL/g, correspondant à 38% du volume poreux total.
Le support S2 présente un volume de reprise en eau de 0,54 mL/g. La solution d’imprégnation est préparée par dilution de 2,76 grammes d’heptamolybdate d’ammonium (Mq7(NH4)6q24,4H20, 99,98,%, Merck™), 8,80 grammes de nitrate de nickel (Ni(N03)2, 6H20, 99,5%, Merck™) dans 20,7 mL d’eau distillée. Après imprégnation à sec de 40 grammes de support et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. Une deuxième étape d’imprégnation est réalisée avec une solution préparée par dilution de 3,18 grammes d’heptamolybdate d’ammonium (Mq7(NH4)6q24,4H20, 99,98,%, Merck™), 7,69 grammes de nitrate de nickel (Ni(NC>3)2, 6H20, 99,5%, Merck™) dans 18,8 mL d’eau distillée. Après imprégnation à sec de 40 grammes de support et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. Le solide est ensuite calciné sous air à 450°C pendant 2 heures. Le catalyseur B obtenu contient 8,9%poids de NiO et 10,3%poids de M0O3, ainsi qu’un ratio molaire Ni/Mo=1 ,67. Le catalyseur B possède un volume poreux total de 0,45 mL/g et une surface spécifique de 59 m2/g.
Figure imgf000023_0001
On fournit un support commercial S3 (SA52124, UniSpheres ® NorPro) sous forme de billes de diamètre compris entre 2 et 4 mm. Le support S3 présente une surface spécifique de 8 m2/g, un volume poreux total de 0,33 mL/g ainsi que la répartition poreuse suivante donnée par porosimétrie au mercure :
- un volume de macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm de 0,33 mL/g, correspondant à 100% du volume poreux total.
Le support S3 présente un volume de reprise en eau de 0,47 mL/g. La solution d’imprégnation est préparée par dilution de 2,76 grammes d’heptamolybdate d’ammonium (Mq7(NH4)6q24,4H20, 99,98,%, Merck™), 8,80 grammes de nitrate de nickel (Ni(NC>3)2, 6H20, 99,5%, Merck™) dans 18 mL d’eau distillée. Après imprégnation à sec de 40 grammes de support et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. Une deuxième étape d’imprégnation est réalisée avec une solution préparée par dilution de 3,18 grammes d’heptamolybdate d’ammonium (Mq7(NH4)6q24,4H20, 99,98,%, Merck™), 7,69 grammes de nitrate de nickel (Ni(NC>3)2, 6H20, 99,5%, Merck™) dans 16,4 mL d’eau distillée. Après imprégnation à sec de 40 grammes de support et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. Le solide est ensuite calciné sous air à 450°C pendant 2 heures. Le catalyseur C contenant 8,9%poids de NiO et 10,3%poids de M0O3, ainsi qu’un ratio molaire Ni/Mo=1 ,68. Le catalyseur C possède un volume poreux total de 0,23 mL/g et une surface spécifique de 4 m2/g.
Figure imgf000024_0001
On fournit un support commercial S4 (SA6578, NorPro™) sous forme d’extrudé de 5 mm de diamètre. Le support S4 présente une surface spécifique de 175 m2/g, un volume poreux total de 0,82 mL/g ainsi que la répartition poreuse suivante donnée par porosimétrie au mercure :
- un volume de mésopores de diamètre supérieur ou égal à 2 nm et inférieur ou égal à 20 nm, dont la distribution poreuse est centrée sur 13 nm, de 0,82 mL/g correspondant à 100% du volume poreux total.
Le support S4 présente un volume de reprise en eau de 0,81 mL/g. La solution d’imprégnation est préparée par dilution de 6,06 grammes d’heptamolybdate d’ammonium (Mq7(NH4)6q24,4H 0, 99,98,%, Merck™), 17,40 grammes de nitrate de nickel (Ni(NC>3)2, 6H20, 99,5%, Merck™) dans 30,7 mL d’eau distillée. Après imprégnation à sec de 40 grammes de support et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. Le solide est ensuite calciné sous air à 450°C pendant 2 heures. Le catalyseur D obtenu contient 9,0%poids de NiO et 10,0%poids de M0O3, ainsi qu’un ratio molaire Ni/Mo=1 ,73. Le catalyseur D possède un volume poreux total de 0,74 mL/g et une surface spécifique de 127 m2/g.
Exemple 5 : Catalyseur E non-conforme (Catalyseur macroporeux et petit mésoporeux monomodal)
On fournit un support commercial S5 (SA6176, NorPro™) sous forme d’extrudé de 1 ,6 mm de diamètre. Le support S5 présente une surface spécifique de 250 m2/g, un volume poreux total de 1 ,05 mL/g ainsi que la répartition poreuse suivante donnée par porosimétrie au mercure :
- un volume de mésopores de diamètre supérieur ou égal à 2 nm et inférieur ou égal à 20 nm, dont la distribution poreuse est centrée sur 7 nm, de 0,68 mL/g correspondant à 65% du volume poreux total ;
- un volume de macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm de 0,37 mL/g, correspondant à 35% du volume poreux total. Le support S5 présente un volume de reprise en eau de 1 ,02 mL/g. La solution d’imprégnation est préparée par dilution de 6,00 grammes d’heptamolybdate d’ammonium (Mq7(NH4)6q24,4H 0, 99,98,%, Merck™), 17,40 grammes de nitrate de nickel (Ni(NC>3)2, 6H20, 99,5%, Merck™) dans 39,1 mL d’eau distillée. Après imprégnation à sec de 40 grammes de support et une étape de maturation pendant 12 heures sous atmosphère saturée en humidité, le solide est séché pendant 12 heures à 120°C. Le solide est ensuite calciné sous air à 450°C pendant 2 heures. Le catalyseur E contient 9,0%poids de NiO et 9,9%poids de Mo03, ainsi qu’un ratio molaire Ni/Mo=1 ,75. Le catalyseur E possède un volume poreux total de 0,84 mL/g et une surface spécifique de 207 m2/g.
Exemple 6 : Mise en oeuvre des catalyseurs en hydrogénation sélective
L'activité des catalyseurs A, B, C, D et E est évaluée par un test d’hydrogénation sélective d'un mélange de molécules modèles effectué dans un réacteur autoclave agité de 500 ml. Typiquement entre 2 et 6 grammes de catalyseur sont sulfurés à pression atmosphérique en banc de sulfuration sous mélange H2S/H2 constitué de 15% volumique d'H2S à 1 l/g. h de catalyseur et à 400°C durant deux heures (rampe de 5°C/min) suivi d’un palier de 2 heures sous hydrogène pur à 200°C. Ce protocole permet d’obtenir des taux de sulfuration supérieurs à 70% pour l'ensemble des catalyseurs conformément à l’invention. Le catalyseur ainsi sulfuré est transféré dans le réacteur à l'abri de l'air puis mis au contact de 250 ml de charge modèle sous une pression totale de 1 ,5 MPa et une température de 160°C. La pression est maintenue constante durant le test par apport d'hydrogène. La charge utilisée pour le test d’activité présente la composition suivante : 1000 ppm poids de soufre de composés thiophéniques sous forme méthyl 3-thiophène, 500 ppm poids de soufre de mercaptans sous forme de propane-2-thiol, 10% poids oléfine sous forme de hexène-1 , et 1% poids dioléfine sous forme d’isoprène, dans du n-heptane.
Le temps t=0 du test correspond à la mise en contact du catalyseur et de la charge. La durée du test est fixée à 200 minutes et l’analyse chromatographique en phase gaz de l’effluent liquide obtenu permet d’évaluer les activités des différents catalyseurs en hydrogénation de l’isoprène (formation des méthylbutènes), hydrogénation du héxène 1 (formation du n- hexane) et alourdissement du propane-2-thiol (disparition du propane-2-thiol).
L’activité du catalyseur pour chaque réaction est définie par rapport à la constante de vitesse obtenue pour chaque réaction normalisée par gramme de catalyseur. Les constantes de vitesse sont calculées en considérant un ordre 1 pour la réaction. Les activités sont normalisées à 100% pour le catalyseur A. La sélectivité du catalyseur vis à vis de l’hydrogénation de l’isoprène est égale au rapport des activités du catalyseur en hydrogénation de l'isoprène et de l'hexène-1 A(isoprène)/A(héxène-1). La sélectivité est normalisée à 100% pour le catalyseur A. Les résultats obtenus sur les différents catalyseurs sont reportés dans le tableau 1 ci- dessous.
Tableau 1
Figure imgf000026_0001
Performances des catalyseurs A à E en hydrogénation sélective
On constate que le catalyseur A selon l’invention présente une activité en hydrogénation de dioléfine et en alourdissement de mercaptans systématiquement supérieure à celles des autres catalyseurs. De plus, les sélectivités sont toujours parmi les plus élevées pour le catalyseur A selon l’invention.

Claims

REVENDICATIONS
1. Procédé d’hydrogénation sélective d'une essence comprenant des composés polyinsaturés et des composés soufrés légers dans lequel procédé on met en contact l’essence, de l’hydrogène avec un catalyseur, à une température comprise entre 80°C et 220°C, avec une vitesse spatiale liquide comprise entre 1 lr1 et 10h 1 et une pression comprise entre 0,5 et 5 MPa, et avec un rapport molaire entre l'hydrogène et les dioléfines à hydrogéner supérieur à 1 et inférieur à 100 mol/mol, ledit catalyseur comprenant au moins un métal du groupe VIB, au moins un métal du groupe VIII, et un support d’alumine mésoporeux et macroporeux comprenant une distribution bimodale de mésopores et dans lequel :
- le volume des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 10 et 30% en volume du volume poreux total dudit support ;
- le volume des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 30 et 50% en volume du volume poreux total dudit support ;
- le volume des macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 30 à 50% en volume du volume poreux total dudit support.
2. Procédé selon la revendication 1 , dans lequel ledit support comprend une surface spécifique comprise entre 50 et 210 m2/g.
3. Procédé selon l’une des revendications 1 ou 2, dans lequel ledit support comprend un volume poreux total compris entre 0,7 et 1 ,3 mL/g.
4. Procédé selon l’une quelconque des revendications 1 à 3, dans lequel le volume des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm correspond entre 15 et 25% en volume du volume poreux total dudit support.
5. Procédé selon l’une quelconque des revendications 1 à 4, dans lequel le volume des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm correspond entre 35 et 45% en volume du volume poreux total dudit support.
6. Procédé selon l’une quelconque des revendications 1 à 5, dans lequel le volume des macropores de diamètre supérieur ou égal à 50 nm et inférieur à 8000 nm correspond entre 35 à 50% en volume du volume poreux total dudit support.
7. Procédé selon l’une quelconque des revendications 1 à 6, dans lequel la teneur en métal du groupe VIB dudit catalyseur, exprimée sous forme oxyde, est comprise entre 1 et 30% en poids par rapport au poids total du catalyseur.
8. Procédé selon l’une quelconque des revendications 1 à 7, dans lequel la teneur en métal du groupe VIII dudit catalyseur, exprimée sous forme oxyde, est comprise entre 1 et 20% en poids par rapport au poids total dudit catalyseur.
9. Procédé selon l’une quelconque des revendications 1 à 8, dans lequel le ratio molaire entre le métal du groupe VIII et le métal du groupe VIB est compris entre 0,3 et 3 mol/mol.
10. Procédé selon l’une quelconque des revendications 1 à 9, dans lequel le métal du groupe VIII est le nickel.
11. Procédé selon l’une quelconque des revendications 1 à 10, dans lequel le métal du groupe VIB est le molybdène.
12. Procédé selon l’une quelconque des revendications 1 à 11 , dans lequel la distribution poreuse des mésopores de diamètre supérieur ou égal à 2 nm et inférieur à 18 nm est centrée sur une plage de valeur comprise entre 10,5 et 14,5 nm.
13. Procédé selon l’une quelconque des revendications 1 à 12, dans lequel la distribution poreuse des mésopores de diamètre supérieur ou égal à 18 nm et inférieur à 50 nm est centrée sur une plage de valeur comprise entre 22 et 28 nm.
14. Procédé selon l’une quelconque des revendications 1 à 13, dans lequel l’essence est une essence de craquage catalytique.
15. Procédé selon l’une quelconque des revendications 1 à 14, dans lequel le support se présente sous la forme de billes de diamètre compris entre 2 et 4 mm.
16. Procédé selon la revendication 15, dans lequel ledit support est obtenu selon les étapes suivantes : s1) déshydratation d’un hydroxyde d’aluminium ou d’un oxyhydroxyde d’aluminium à une température comprise entre 400°C et 1200°C, de préférence entre 600°C et 900°C, pendant une durée comprise entre 0,1 seconde et 5 secondes, de préférence entre 0,1 seconde et 4 secondes, pour obtenir une poudre d’alumine ; s2) mise en forme de ladite poudre d’alumine obtenue à l’étape s1) sous forme de billes ; s3) traitement thermique des billes d’alumine obtenues à l’étape s2) à une température supérieure ou égale à 200°C ; s4) traitement hydrothermal des billes d’alumine obtenues à l’issue de l’étape s3) par imprégnation avec de l'eau ou une solution aqueuse, puis séjour dans un autoclave à une température comprise entre 100°C et 300°C ; s5) calcination des billes d’alumine obtenues à l’issue de l’étape s4) à une température comprise entre 500°C et 820°C.
17. Procédé selon l’une quelconque des revendications 1 à 16, dans lequel ledit catalyseur ne comprend pas de phosphore.
PCT/EP2021/082067 2020-11-27 2021-11-18 Procede d'hydrogenation selective d'une essence en presence d'un catalyseur sur support meso-macroporeux WO2022112079A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020237017907A KR20230115295A (ko) 2020-11-27 2021-11-18 중간 다공성-거대 다공성 지지체 상에서 촉매의 존재하에서 가솔린의 선택적 수소화 방법
AU2021386151A AU2021386151A1 (en) 2020-11-27 2021-11-18 Method for the selective hydrogenation of a gasoline in the presence of a catalyst on a mesoporous-macroporous substrate
US18/036,772 US20230405573A1 (en) 2020-11-27 2021-11-18 Method for the selective hydrogenation of a gasoline in the presence of a catalyst on a mesoporous-macroporous substrate
MX2023005249A MX2023005249A (es) 2020-11-27 2021-11-18 Proceso de hidrogenacion selectiva de una gasolina en la presencia de un catalizador sobre un soporte meso-macroporoso.
EP21806764.3A EP4251713A1 (fr) 2020-11-27 2021-11-18 Procede d'hydrogenation selective d'une essence en presence d'un catalyseur sur support meso-macroporeux
CN202180079686.6A CN116669851A (zh) 2020-11-27 2021-11-18 在中孔-大孔基质上的催化剂的存在下将汽油选择性加氢的方法
JP2023532273A JP2023550821A (ja) 2020-11-27 2021-11-18 メソ多孔性・マクロ多孔性担体上の触媒の存在下におけるガソリンの選択的水素化のための方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2012318 2020-11-27
FR2012318A FR3116831B1 (fr) 2020-11-27 2020-11-27 Procede d’hydrogenation selective d’une essence en presence d’un catalyseur sur support meso-macroporeux

Publications (1)

Publication Number Publication Date
WO2022112079A1 true WO2022112079A1 (fr) 2022-06-02

Family

ID=74347323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/082067 WO2022112079A1 (fr) 2020-11-27 2021-11-18 Procede d'hydrogenation selective d'une essence en presence d'un catalyseur sur support meso-macroporeux

Country Status (9)

Country Link
US (1) US20230405573A1 (fr)
EP (1) EP4251713A1 (fr)
JP (1) JP2023550821A (fr)
KR (1) KR20230115295A (fr)
CN (1) CN116669851A (fr)
AU (1) AU2021386151A1 (fr)
FR (1) FR3116831B1 (fr)
MX (1) MX2023005249A (fr)
WO (1) WO2022112079A1 (fr)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266300A (en) 1989-08-02 1993-11-30 Texaco Inc. Method of making porous alumina
EP0564317B1 (fr) 1992-04-01 1996-07-03 EUROPEENNE DE RETRAITEMENT DE CATALYSEURS (en abrégé EURECAT) Procédé de présulfuration de catalyseur de traitement d'hydrocarbures
US5958816A (en) 1997-02-28 1999-09-28 Tricat, Inc. Method of presulfiding and passivating a hydrocarbon conversion catalyst
EP0707890B1 (fr) 1994-10-07 2000-01-19 Eurecat Europeenne De Retraitement De Catalyseurs Procédé de prétraitement hors site d'un catalyseur de traitement d'hydrocarbures
EP1077247A1 (fr) 1999-08-19 2001-02-21 Institut Francais Du Petrole Procédé de production d'essences à faible teneur en soufre
US6589908B1 (en) 2000-11-28 2003-07-08 Shell Oil Company Method of making alumina having bimodal pore structure, and catalysts made therefrom
FR2895415A1 (fr) 2005-12-22 2007-06-29 Inst Francais Du Petrole Procede d'hydrogenation selective mettant en oeuvre un catalyseur presentant un support specifique
FR2895414A1 (fr) 2005-12-22 2007-06-29 Inst Francais Du Petrole Procede d'hydrogenation selective mettant en oeuvre un catalyseur presentant une porosite controlee
CA2615225A1 (fr) * 2006-12-21 2008-06-21 Institut Francais Du Petrole Procede d'hydroconversion en phase slurry de charges hydrocarbonees lourdes et ou de charbon utilisant un catalyseur supporte
US7790130B2 (en) 2007-08-31 2010-09-07 Uop Llc Wide mesoporous alumina composites having trimodal pore structure
CN104248987A (zh) 2013-06-28 2014-12-31 中国石油化工股份有限公司 球形蒙脱石介孔复合材料和负载型催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN104248985A (zh) 2013-06-28 2014-12-31 中国石油化工股份有限公司 球形蒙脱石介孔复合载体和负载型催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN108855197A (zh) 2017-05-10 2018-11-23 中国石油化工股份有限公司 丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法
CN109884122A (zh) * 2017-12-06 2019-06-14 天津大学 基于硫化铼纳米器件的有机气体检测芯片

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266300A (en) 1989-08-02 1993-11-30 Texaco Inc. Method of making porous alumina
EP0564317B1 (fr) 1992-04-01 1996-07-03 EUROPEENNE DE RETRAITEMENT DE CATALYSEURS (en abrégé EURECAT) Procédé de présulfuration de catalyseur de traitement d'hydrocarbures
EP0707890B1 (fr) 1994-10-07 2000-01-19 Eurecat Europeenne De Retraitement De Catalyseurs Procédé de prétraitement hors site d'un catalyseur de traitement d'hydrocarbures
US5958816A (en) 1997-02-28 1999-09-28 Tricat, Inc. Method of presulfiding and passivating a hydrocarbon conversion catalyst
EP1077247A1 (fr) 1999-08-19 2001-02-21 Institut Francais Du Petrole Procédé de production d'essences à faible teneur en soufre
US6589908B1 (en) 2000-11-28 2003-07-08 Shell Oil Company Method of making alumina having bimodal pore structure, and catalysts made therefrom
FR2895415A1 (fr) 2005-12-22 2007-06-29 Inst Francais Du Petrole Procede d'hydrogenation selective mettant en oeuvre un catalyseur presentant un support specifique
FR2895414A1 (fr) 2005-12-22 2007-06-29 Inst Francais Du Petrole Procede d'hydrogenation selective mettant en oeuvre un catalyseur presentant une porosite controlee
US7718053B2 (en) * 2005-12-22 2010-05-18 Institut Francais Du Petrole Selective hydrogenation process employing a catalyst having a controlled porosity
CA2615225A1 (fr) * 2006-12-21 2008-06-21 Institut Francais Du Petrole Procede d'hydroconversion en phase slurry de charges hydrocarbonees lourdes et ou de charbon utilisant un catalyseur supporte
US7790130B2 (en) 2007-08-31 2010-09-07 Uop Llc Wide mesoporous alumina composites having trimodal pore structure
CN104248987A (zh) 2013-06-28 2014-12-31 中国石油化工股份有限公司 球形蒙脱石介孔复合材料和负载型催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN104248985A (zh) 2013-06-28 2014-12-31 中国石油化工股份有限公司 球形蒙脱石介孔复合载体和负载型催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN108855197A (zh) 2017-05-10 2018-11-23 中国石油化工股份有限公司 丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法
CN109884122A (zh) * 2017-12-06 2019-06-14 天津大学 基于硫化铼纳米器件的有机气体检测芯片

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"CRC Handbook of Chemistry and Physics", 2000, CRC PRESS
JEAN CHARPINBERNARD RASNEUR, TECHNIQUES DE L'INGÉNIEUR, TRAITÉ ANALYSE ET CARACTÉRISATION, pages 1050 - 5
ROUQUEROL F.ROUQUEROL J.SINGH K.: "Adsorption by Powders & Porous Solids: Principle, methodology and applications", 1999, ACADEMIC PRESS

Also Published As

Publication number Publication date
EP4251713A1 (fr) 2023-10-04
US20230405573A1 (en) 2023-12-21
CN116669851A (zh) 2023-08-29
KR20230115295A (ko) 2023-08-02
FR3116831A1 (fr) 2022-06-03
JP2023550821A (ja) 2023-12-05
MX2023005249A (es) 2023-05-23
AU2021386151A1 (en) 2023-06-22
FR3116831B1 (fr) 2023-11-03

Similar Documents

Publication Publication Date Title
EP2962753B1 (fr) Catalyseur d'hydrotraitement à densité de molybdène élevée et méthode de préparation
EP2255873B1 (fr) Catalyseurs d'hydrodémétallation et d'hydrodésulfuration et mise en oeuvre dans un procédé d'enchaînement en formulation unique
EP3191221B1 (fr) Catalyseur mesoporeux a base de nickel et son utilisation en hydrogenation d'hydrocarbures
CA2615210C (fr) Procede d'hydroconversion en slurry de charges hydrocarbonees lourdes en presence d'une phase active dispersee et d'un oxyde a base d'alumine
EP2249963B1 (fr) Catalyseur d'hydrogenation selective et son procede de preparation
EP3154685B1 (fr) Catalyseur mesoporeux et macroporeux a base de nickel ayant un diametre median macroporeux compris entre 50 nm et 200 nm et son utilisation en hydrogenation d'hydrocarbures
FR2910352A1 (fr) Procede d'hydroconversion en phase slurry de charges hydrocarbonees lourdes et ou de charbon utilisant un catalyseur supporte
EP3154684B1 (fr) Catalyseur a base de nickel mesoporeux et macroporeux ayant un diametre median macroporeux superieur a 200 nm et son utilisation en hydrogenation d'hydrocarbures
FR2895415A1 (fr) Procede d'hydrogenation selective mettant en oeuvre un catalyseur presentant un support specifique
EP2644683B1 (fr) Procédé d'hydrogenation selective d'une essence
CA2872292A1 (fr) Procede d'hydrotraitement de gazole mettant en oeuvre un enchainement de catalyseurs
WO2022112079A1 (fr) Procede d'hydrogenation selective d'une essence en presence d'un catalyseur sur support meso-macroporeux
WO2021224171A1 (fr) Catalyseur d'hydrogenation selective comprenant une repartition particuliere du nickel et du molybdene
WO2022112081A1 (fr) Procede d'hydrodesulfuration de finition en presence d'un catalyseur sur support meso-macroporeux
EP4251716A1 (fr) Procede de captation d'impuretes organometalliques en presence d'une masse de captation sur support meso-macroporeux
WO2022112078A1 (fr) Procede d'hydrodesulfuration en presence d'un catalyseur sur support meso-macroporeux
EP4146383A1 (fr) Catalyseur d'hydrogenation comprenant un support et un ratio nimo specifique
EP4251714A1 (fr) Procede d'hydrodesulfuration mettant en oeuvre un catalyseur comprenant un support d'alumine flash
WO2021224173A1 (fr) Catalyseur d'hydrogenation selective comprenant un support specifique en partie sous forme aluminate
WO2022223482A1 (fr) Catalyseur contenant du phosphore et du sodium et son utilisation dans un procede d'hydrodesulfuration
WO2023117533A1 (fr) Procede de traitement d'une essence contenant des composes soufres comprenant une etape de dilution
WO2021013526A1 (fr) Procédé de production d'une essence a basse teneur en soufre et en mercaptans
EP4122596A1 (fr) Catalyseur d hydrodésulfuration avec répartition en croûte de la phase active

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21806764

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023006734

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 18036772

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023532273

Country of ref document: JP

Ref document number: 202180079686.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021386151

Country of ref document: AU

Date of ref document: 20211118

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021806764

Country of ref document: EP

Effective date: 20230627

ENP Entry into the national phase

Ref document number: 112023006734

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230411

WWE Wipo information: entry into national phase

Ref document number: 523440918

Country of ref document: SA