WO2014096627A1 - Utilisation pour la deshydrogenation d'hydrocarbures d'un catalyseur a base d'oxyde de fer et son - Google Patents

Utilisation pour la deshydrogenation d'hydrocarbures d'un catalyseur a base d'oxyde de fer et son Download PDF

Info

Publication number
WO2014096627A1
WO2014096627A1 PCT/FR2013/053005 FR2013053005W WO2014096627A1 WO 2014096627 A1 WO2014096627 A1 WO 2014096627A1 FR 2013053005 W FR2013053005 W FR 2013053005W WO 2014096627 A1 WO2014096627 A1 WO 2014096627A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
use according
dehydrogenation
support
active phase
Prior art date
Application number
PCT/FR2013/053005
Other languages
English (en)
Inventor
Antoine Fecant
Isabelle CZEKAJEWSKI
Delphine Bazer-Bachi
Original Assignee
IFP Energies Nouvelles
Compagnie Generale Des Etablissements Michelin
Michelin Recherche Et Technique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles, Compagnie Generale Des Etablissements Michelin, Michelin Recherche Et Technique S.A. filed Critical IFP Energies Nouvelles
Publication of WO2014096627A1 publication Critical patent/WO2014096627A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3332Catalytic processes with metal oxides or metal sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron

Definitions

  • the object of the invention is to provide an improved performance catalyst applied to the dehydrogenation process of saturated or monounsaturated hydrocarbon compounds present in hydrocarbon cuts, preferably in the non-oxidizing butene dehydrogenation process.
  • the dehydrogenation process makes it possible to convert the saturated or monounsaturated compounds of the petroleum fractions to the corresponding alkenes or polyunsaturated compounds while avoiding parasitic reactions such as cracking or skeletal isomerization.
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • the catalysts for dehydrogenation of hydrocarbon compounds are generally based on metal oxides of groups VIB and VIII of the periodic table of elements, in particular based on iron or chromium oxides.
  • the active phase of the catalysts is in the form of particles deposited on a support which can
  • the metal content, the size and the nature of the particles of the metal oxide active phase, as well as the textural and structural properties of the support are among the criteria that have an importance on the performance of the catalysts.
  • US Pat. No. 3,626,021 discloses a process for the dehydrogenation of aliphatic hydrocarbons of 5 to 10 carbon atoms, using a catalyst consisting essentially of chromium, an alkali metal oxide and zinc aluminate in its true spinel form, use of the true spinel form to minimize skeletal isomerization and improve selectivity and reaction yields.
  • US 6,369,000 discloses a method of making a metal aluminate catalyst support, the metal being inserted into the crystal structure.
  • it is known from the literature Toledo JA, Bosch P., Valenzuela MA, Montoya A, Nava N., Journal of Molecular Catalysis A: Chemical, 125, pp. 53-62, 1997; JA Toledo MA Valenzuela, H. Armendariz, G. Aguilar-Rios, B. Zapata, A. Montoya, N. Nava, P. Salas, I. Schifter, Catalysis Letters, 30, pp.
  • the catalyst supports or catalysts according to the prior art differ from the catalysts according to the present invention by the nature, structure and / or textural properties of the phases.
  • the present invention aims to obtain iron oxide catalysts on a zinc aluminate support having physicochemical properties and improved catalytic performance compared to the catalysts of the prior art.
  • the invention relates to a high surface area catalyst comprising an iron oxide on a zinc aluminate support and its use in a dehydrogenation process for converting the saturated or monounsaturated compounds of the petroleum fractions to the corresponding alkenes or polyunsaturated compounds while avoiding the parasitic reactions such as cracking or skeletal isomerization.
  • the catalysts according to the invention comprise iron oxide deposited on a zinc aluminate support, said zinc aluminate support having a large specific surface area and a particular porous distribution.
  • the invention relates to a catalyst comprising an active phase of iron oxide deposited on a support, said active phase of iron oxide being amorphous or having crystallites of sufficiently small size not to be detected in X-ray diffraction analysis.
  • said support being a zinc aluminate, said catalyst having a BET surface area of between 80 m 2 / g and 240 m 2 / g.
  • BET specific surface area means a specific surface area measured by the method Brunauer, Emmett, Teller, as defined in S.Brunauer, PHEmmett, E. Teller, J. Am. Chem. Soc., 1938, 60 (2), pp. 309-319.
  • BET specific surface of said support is advantageously between 130 and
  • the average diameter of the mesopores is between 30 ⁇ and 200 ⁇ , preferably between 30 ⁇ and 90 ⁇ .
  • the mass content of the active phase, relative to metallic iron, relative to the total mass of the final supported catalyst is between 2% and 20% by weight, preferably between 5% and 15% by weight.
  • the active phase of iron oxide is amorphous or has crystallites of sufficiently small size not to be detected in X-ray diffraction analysis. By sufficiently small, it is meant that the iron oxide phase induces lines which are indistinguishable
  • the zinc aluminate support of the catalyst according to the invention has a diffractogram which corresponds to ZnAl 2 O 4 (International Center for Diffraction Data ICDD 5-669 classification).
  • the catalyst may also advantageously contain a group IA element, preferably chosen from Li, Na and K, preferably K.
  • the BET specific surface area of the catalyst is between 80 and 240 m 2 / g, advantageously between 100 and 155 m 2 / g.
  • the catalyst according to the invention is advantageously in the form of balls, trilobes, extrudates, pellets, or irregular and non-spherical agglomerates, the specific shape of which may result from a crushing step.
  • said catalyst is in the form of beads or extrudates.
  • said catalyst is in the form of extrudates.
  • the support used is prepared by kneading one or more compounds of zinc and hydrated alumina in the presence of a peptising agent (mineral or organic acid).
  • a peptising agent mineral or organic acid.
  • zinc oxides can be used in the manufacture of the solid according to the invention.
  • the zinc compounds used are chosen from commercial zinc oxides or prepared by any other synthetic route.
  • the alumina precursor used has the general formula Al 2 O 3 , nH 2 O.
  • alumina hydrates such as hydrargilite, gibbsite, bayerite, boehmite or pseudo-boehmite and amorphous or essentially amorphous alumina gels.
  • a mixture of these products under any combination may be used as well.
  • the dehydrated forms of these compounds which consist of transition alumina and which comprise at least one of the phases taken from the group: rho, khi, eta, gamma, kappa, theta and delta, which are different essentially by the organization of their crystalline structure.
  • the aluminate in the case where the aluminate is introduced directly during the shaping, it can be prepared by conventional methods known to those skilled in the art, such as co-precipitation of aluminum precursors and zinc , hydrothermal synthesis, the sol-gel route, the impregnation of zinc precursors on alumina or boehmite.
  • the support of the catalyst according to the invention may be prepared by extrusion kneading in two ways (denoted by A and B) and by impregnation of an aluminum support in a way C.
  • the process for preparing the support used in the present invention comprises at least the following steps (way A):
  • A1 premixing the powders (zinc oxide and boehmite, or else zinc oxide, aluminate and boehmite, or else aluminate alone or aluminate and boehmite, or aluminate and ZnO) by rotating the arms of a mixer kneading the powders in the presence of at least one peptising agent (mineral or organic acid) and a liquid (water, preferably, but alcohols such as ethanol may advantageously be used) and optionally a soluble precursor of zinc,
  • heat treatment comprising at least:
  • the zinc precursor optionally used (step A2) is a soluble salt in aqueous solution: it may advantageously be chosen from nitrates, carbonates, hydroxides and sulphates. A zinc acetate may also be used.
  • the mixture of Zn and Al precursors is produced by mixing, batchwise or continuously.
  • a kneader preferably equipped with Z-arms, or cams, or in any other type of mixer such as for example a planetary mixer may be used.
  • Another mode of preparation (channel B) of the support used in the present invention comprises the following steps:
  • step B2 adding at least one zinc oxide, or at least one zinc oxide and an aluminate or aluminate to the paste obtained in step B1) and mixing the mixture obtained,
  • the carrier used in the present invention may be in the form of powder, extrudates, balls or pellets.
  • the mixing step can be coupled with the shaping by extrusion in the same equipment.
  • the extrusion of the mixture also called “kneaded paste” can be carried out either by extruding directly end of continuous mixer type bi-screw for example, or by connecting one or more batch kneaders to an extruder.
  • the geometry of the die, which confers their shape to the extrudates can be chosen from the well-known dies of the skilled person. They can thus be, for example, cylindrical, multilobed, fluted or slotted.
  • the extrudates are dried at between 40 ° and 100 ° C., preferably between 70 ° and 120 ° C., and then calcined at 300 ° to 1100 ° C., preferably at between 350 ° and 800 ° C.
  • the mass ratio AI 2 0 3 / ZnO is preferably between 80/20 and 30/70, excluding ratios between 55.8 / 44.2 and 55.4 / 44.6 of the true aluminate spinel of zinc.
  • the peptizing agent is chosen from hydrochloric acid, sulfuric acid, nitric acid, acetic acid and formic acid.
  • the aluminate supports can be obtained by dry impregnation of a solution containing the element Zn on an aluminum support. In this case, we proceed in several steps:
  • the zinc precursor used in the preparation of the impregnating solution (step C1) is a soluble salt in aqueous solution: it may advantageously be chosen from nitrates, carbonates, hydroxides or sulphates. A zinc acetate may also be used. The concentration of zinc precursor is adjusted according to the target Zn / Al ratio for the preparation of the aluminate support.
  • step C2) the solution prepared during step C1) is brought into contact with the aluminic support.
  • the volume of solution corresponds to the porous volume of support.
  • the aluminum support may be in any form known to those skilled in the art, such as, for example, beads, extrudates, pellets, granules, powder.
  • a support consisting of gamma-alumina will preferably be used, but alumina-hydrate-based supports such as hydrargilite, gibbsite, bayerite, boehmite or pseudo-bohmite and gels may advantageously be selected. amorphous or essentially amorphous alumina.
  • the extrudates are dried between 40 and 150 ° C, preferably between 70 and 120 ° C, and then calcined between 300 and 1100 ° C, preferably between 350 and 800 ° C.
  • the catalysts are prepared by any method known to those skilled in the art.
  • One route for obtaining the catalyst is the dry impregnation of the active phase precursor in solution on the aluminate support.
  • An aqueous solution of an iron precursor is prepared.
  • the degree of oxidation of the iron precursor is greater than 0.
  • the concentration of the aqueous solution of the metal precursor is adjusted according to the desired metal mass content on the catalyst.
  • the preparation of the aqueous metal precursor solution is preferably carried out at room temperature.
  • the iron precursor may be in ionic form. In this case, it is in the form of salt.
  • the iron precursor is a soluble salt in aqueous solution which is selected from the group consisting of a halide, an oxide, a hydroxide, a nitrate and a sulfate.
  • the aqueous solution obtained in step P1) is brought into contact with said aluminate support prepared during the step of preparing the support.
  • the volume of solution corresponds to the pore volume of the aluminate support.
  • the dry impregnation is preferably carried out dropwise, that is to say that the solution is impregnated dropwise on the support.
  • the impregnation is preferably carried out at room temperature.
  • the impregnated catalyst is generally dried in order to remove all or part of the water introduced during the impregnation, preferably at a temperature of between 50 and 250 ° C, more preferably between 70 ° and 200 ° C.
  • the drying is carried out in air, or in an inert atmosphere (nitrogen for example).
  • the catalyst is subsequently calcined, generally in air, preferably at a hourly space velocity (LHSV) of between 100 and 5000 h "1, the hourly space velocity being defined as the ratio of volume flow of charge 25 q C, 1 atm
  • LHSV hourly space velocity
  • the calcination temperature is generally between 250 ° C. and 900 ° C., preferably between about 350 ° C. and about 800 ° C.
  • the calcination time is generally between 0.5 hours and 5 hours.
  • the calcination step may be carried out by temperature step up to the set maximum set temperature P5) Possible deposit of a group IA element
  • one or more members of Group IA of the periodic table of elements may be added, preferably by dry impregnation of an aqueous precursor solution.
  • the precursor is a soluble salt in aqueous solution which is selected from group consisting of a halide, an oxide, a carbonate, a hydroxide, a nitrate and a sulphate.
  • the element is potassium
  • the precursor is preferably a potassium carbonate.
  • the catalyst obtained at the end of the calcination step B4) can undergo a gas stream treatment comprising between 25 vol% and 100 vol% of a reducing gas.
  • the reducing gas is preferably hydrogen. This step is preferably carried out at a temperature of between 50 ° C. and 450 ° C.
  • Said reduction can be carried out in situ or ex situ, that is to say after or before the catalyst is loaded into the reactor. It is preferably carried out in situ, ie in the reactor where the catalytic conversion is carried out.
  • This possible reduction can enable said catalyst to be activated and to form iron oxide particles at oxidation levels lower than those formed after the calcination step P4). All or part (> 90% by weight) of the iron remains at a degree of oxidation greater than 0.
  • the catalyst is prepared in several impregnations.
  • the sequences can be as follows:
  • the invention also relates to the use of the catalyst obtained from the catalyst preparation processes described in the present invention.
  • the catalyst according to the invention can be used in processes involving transformation of organic compounds.
  • the catalyst according to the invention can be used in processes for the dehydrogenation of aliphatic, naphthenic or olefin. This dehydrogenation process can be carried out in the presence of oxygen or not.
  • the operating conditions generally used for these reactions are as follows: a temperature of between 0 ° C. and 700 ° C., preferably of between 400 ° C. and 680 ° C., a pressure of between 0.1 and 5 bar absolute, preferably between 0 ° C. and 2 and 2 bar absolute, a hourly volume velocity (VVH) in hydrocarbon feedstock of between 1 and 1000 h -1 , preferably between 125 and 500 h -1 .
  • VVH hourly volume velocity
  • the molar ratio of steam to filler is between 1 and 50, preferably between 8 and 20.
  • oxygen is present, the molar ratio oxygen on charge is between 0.1 and 5, preferably between 0.2 and 1.5.
  • the catalysts according to the invention are used for the oxidative and non-oxidative dehydrogenation reactions of linear C 4 olefins, preferably non-oxidizing, ie in the absence of oxygen.
  • Hydrocarbon conversion processes such as steam cracking or catalytic cracking are operated at high temperatures and produce a wide variety of unsaturated molecules such as ethylene, propene, linear butenes, isobutene, pentenes and unsaturated compounds containing up to about 15 carbon atoms.
  • unsaturated molecules such as ethylene, propene, linear butenes, isobutene, pentenes and unsaturated compounds containing up to about 15 carbon atoms.
  • the unsaturated molecules must comply with very strict purity constraints.
  • the monounsaturated and polyunsaturated compounds used in the preparation of polymers have a high added value.
  • direct dehydrogenation methods for saturated or monounsaturated molecules are developed to access these products more specifically.
  • unsaturated compounds derived from the dehydration of ex-biomass products can be used.
  • the gasoline cut (7 to 10 carbons) may have the following average composition: of the order of 60% by weight of paraffins, of the order of 30% by weight of naphthenes and of the order of 10% weight in aromatics.
  • the reforming process makes it possible to dehydrogenate cyclohexane to benzene.
  • Ethylbenzene produced by alkylation of benzene, can also be catalytically dehydrogenated to give predominantly styrene. This route is the preferred route for obtaining styrene because the steamcracker gasoline sections contain only 3 to 5% by weight of styrene.
  • a crude C4 cut obtained from a refinery may have the following average composition: 35% by weight of isobutane, 20% by weight of n-butane, 14% by weight of isobutene, 30% by weight of n-butenes and about 1% by weight distributed between C3 and C5.
  • the dehydrogenation of butanes and / or butenes to butadiene is suitable for the production of butadiene.
  • the dehydrogenation process is advantageous for obtaining monounsaturated or polyunsaturated products that are not very present in steam cracker cuts.
  • the non-oxidizing dehydrogenation is carried out in the gas phase, in the presence of water vapor or not, preferably in the presence of water vapor.
  • a reaction in the presence of water vapor makes it possible to limit the endothermicity of the reaction and to increase the cycle time of the catalysts by limiting the formation of coke.
  • low pressures are preferred for thermodynamic reasons since they allow for higher conversions at equal temperatures.
  • the dilution with water vapor also makes it possible to lower the partial pressure of saturated or monounsaturated compounds to be dehydrogenated.
  • the pressure is generally between 0.2 and 0.4 bar absolute, the temperature between 600 and 620 ⁇ and the hourly volume velocity (VVH) is around 300 h "1 .
  • the pressure is generally between 1, 5 and 2 bar absolute, the temperature between 600 and 700 ° C, the hourly volume velocity (VVH) is between 125 of 500 h "1 and the molar ratio of vapor recomposed saturated or monounsaturated to dehydrogenate) between 8 and 20.
  • the solid A1 is prepared by kneading a boehmite and zinc oxide in the presence of 4% nitric acid in solution in water, so as to obtain a composition of the material whose elemental analysis is 22%.
  • weight Zn and 34% weight Al, ie a molar ratio Zn / Al 0.27 and an Al 2 O 3 / ZnO mass ratio of 65/35.
  • the catalyst is extruded with a 3 mm diameter die and subjected to heat treatment at 650 ° C. for 2 hours.
  • the BET specific surface area of the A1 solid is 165 m 2 .g -1 .
  • an aqueous Fe (NO 3 ) 3 iron nitrate solution is prepared by diluting 16.27 g of iron nitrate nonahydrate (Aldrich) in demineralised water.
  • the total volume of the aqueous solution prepared corresponds to the pore volume of the support.
  • the solid A2 obtained is dried under air at 120 ° C. and is then calcined for 2 hours at 650 ° C. under a stream of air with a flow rate of 1 Lh " (g of catalyst) " 1 .
  • This solid is impregnated in the same way twice more to result in catalyst A.
  • the catalyst A obtained contains 8% by weight of Fe metal (13% by weight in Fe 2 O 3 form ), 21% by weight of Zn and 32% by weight of Al relative to the weight of the dry catalyst.
  • the BET specific surface area of catalyst A is 137 m 2 ⁇ g -1 .
  • Example 2 Catalyst B (non-compliant)
  • Catalyst B (not in accordance with the invention) is a catalyst based on chromium and potassium oxide supported on a gamma-alumina. It differs from the invention by the nature of the support and the supported oxide phase.
  • an aqueous solution of chromium nitrate Cr (NO 3 ) 3 is prepared by dilution of 34.2 g of chromium nitrate nonahydrate (Aldrich) in demineralized water.
  • the total volume of the prepared aqueous solution corresponds to the pore volume of a commercial alumina support of 140 m 2 .g "1 and the total pore volume ml.g 1".
  • the alumina support is in the form of a ball with a diameter of between 2 and 4 mm.
  • the solid obtained is dried under air at 120 ° C. and then calcined for 2 hours at
  • This solid is then impregnated dry with an aqueous solution in which 1.69 g of K 2 CO 3 (Aldrich) were dissolved in 86 ml of demineralized water.
  • the catalyst B obtained contains 8% by weight of Cr metal (12% by weight in Cr 2 0 3 form ), and 1% K relative to the weight of the dry catalyst.
  • the BET specific surface area of catalyst B is 124 m 2 ⁇ g -1 .
  • Catalyst C (not in accordance with the invention) is an iron oxide catalyst supported on a zinc aluminate identical to catalyst "I8" as described in the publication: JA Toledo, MA Valenzuela, H. Armendariz, G. Aguilar-Rios, B. Zapata, A. Montoya, N. Nava, P. Salas, I. Schifter, Catalysis Letters, 30, p. 279-288, 1995.
  • This catalyst C contains 8% by weight of metallic iron (13% by weight in Fe 2 O 3 form ).
  • the catalysts are subjected to a dehydrogenation test of 1-butene in 1,3-butadiene in a fixed bed reactor of diameter 20 mm.
  • the volume of the catalytic bed is 40 cc diluted to a ratio 1/3 with silicon carbide particle size 1.5 mm.
  • a preheating zone at the inlet of the reactor makes it possible to obtain a uniform temperature.
  • the 1-butene VVH is set at 200 hr -1 , a flow rate of 2 hr.h " controlled by a mass flow meter.
  • the volume ratio H 2 0/1 -Butene is set at 20.
  • the pressure is maintained at 1 barg and the temperature of the catalytic bed is 650 ° C.
  • the gas is analyzed by gas chromatography. The first analysis is performed 5 minutes after the start of the test, then every 20 minutes.
  • Catalyst A according to the invention has improved performance compared to catalyst B not according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne un catalyseur comprenant une phase active d'oxyde de fer déposée sur un support, ladite phase active d'oxyde de fer étant amorphe ou présentant des cristallites de taille suffisamment petite pour ne pas être détectés en analyse par diffraction des rayons X, ledit support étant un aluminate de zinc, ledit catalyseur présentant une surface spécifique BET comprise entre 80 m2/g et 240 m2/g ainsi que son utilisation pour la déshydrogénation oxydante ou non de composés aliphatiques, naphténiques ou oléfiniques.

Description

UTILISATION POUR LA DESHYDROGENATION D'HYDROCARBURES D'UN CATALYSEUR A BASE D'OXYDE DE FER ET SON
L'objet de l'invention est de proposer un catalyseur à performances améliorées appliqué au procédé de déshydrogénation de composés hydrocarbonés saturés ou monoinsaturés présents dans les coupes hydrocarbures, de préférence au procédé de déshydrogénation non oxydante de butène.
5
Le procédé de déshydrogénation permet de transformer les composés saturés ou monoinsaturés des coupes pétrolières vers les alcènes ou composés polyinsaturés correspondants en évitant les réactions parasites telles que le craquage ou l'isomérisation squelettale.
10
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R.
□de , 81 ème édition, 2000-2001 ). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC.
15
ART ANTÉRIEUR
Les catalyseurs de déshydrogénation de composés hydrocarbonés sont généralement à base d'oxydes métalliques des groupes VIB et VIII de la classification périodique des éléments, notamment à base d'oxydes de fer ou de chrome. La phase active 20 des catalyseurs se présente sous la forme de particules déposées sur un support qui peut
être un oxyde réfractaire sous forme de billes, d'extrudés, de trilobés ou sous des formes présentant d'autres géométries. La teneur en métal, la taille et la nature des particules de la phase active d'oxyde métallique, ainsi que les propriétés texturales et structurales du support font partie des critères qui ont une importance sur la performance des catalyseurs.
25
Le brevet US 3,626,021 présente un procédé de déshydrogénation d'hydrocarbures aliphatiques de 5 à 10 atomes de carbones mettant en œuvre un catalyseur composé essentiellement de chrome, d'un oxyde de métal alcalin et d'aluminate de zinc dans sa forme spinelle vraie, l'utilisation de la forme spinelle vraie permettant de minimiser l'isomérisation 30 squeletalle et d'améliorer la sélectivité et les rendements de réaction.
Le brevet US 6,369,000 présente un procédé de fabrication d'un support de catalyseur à base d'aluminate de métal, le métal étant inséré dans la structure cristalline. D'autre part, il est connu de la littérature (J.A. Toledo, P. Bosch, M.A. Valenzuela, A. Montoya, N. Nava, Journal of Molecular Catalysis A: Chemical, 125, p. 53-62, 1997 ; J.A. Toledo, M.A. Valenzuela, H. Armendariz, G. Aguilar-Rios, B. Zapata, A. Montoya, N. Nava, P. Salas, I. Schifter, Catalysis Letters, 30, p. 279-288, 1995) d'utiliser des catalyseurs à base d'aluminate de fer et de zinc et de Fe203 sur aluminate de zinc en déshydrogénation oxydante de 1 -butène. La surface spécifique développé par les catalyseurs présentés dans ces études est en général faible et toujours inférieure à 90 m2.g"1.
Cependant, les supports de catalyseur ou les catalyseurs selon l'art antérieur diffèrent des catalyseurs selon la présente invention par la nature, la structure et/ou les propriétés texturales des phases.
La présente invention vise à obtenir des catalyseurs à base d'oxyde de fer sur un support aluminate de zinc ayant des propriétés physico-chimiques et des performances catalytiques améliorées par rapport aux catalyseurs de l'art antérieur.
RÉSUMÉ DE L'INVENTION
L'invention concerne un catalyseur de haute surface spécifique comprenant un oxyde de fer sur un support aluminate de zinc et son utilisation dans un procédé de déshydrogénation permettant de transformer les composés saturés ou monoinsaturés des coupes pétrolières vers les alcènes ou composés polyinsaturés correspondants en évitant les réactions parasites telles que le craquage ou l'isomérisation squelettale.
Les catalyseurs selon l'invention comprennent de l'oxyde de fer déposé sur un support aluminate de zinc, ledit support aluminate de zinc possédant une surface spécifique importante et une répartition poreuse particulière. Ces propriétés particulières combinées de la phase active et du support sont à l'origine de l'amélioration des performances catalytiques.
DESCRIPTION DÉTAILLÉE DE L'INVENTION
L'invention concerne un catalyseur comprenant une phase active d'oxyde de fer déposée sur un support, ladite phase active d'oxyde de fer étant amorphe ou présentant des cristallites de taille suffisamment petite pour ne pas être détectés en analyse par diffraction des rayons X, ledit support étant un aluminate de zinc, ledit catalyseur présentant une surface spécifique BET comprise entre 80 m2/g et 240 m2/g. Par surface spécifique BET, on entend une surface spécifique mesurée par la méthode Brunauer, Emmett, Teller, telle que définie dans S.Brunauer, P.H.Emmett, E.Teller, J. Am. Chem. Soc, 1938, 60 (2), pp 309-319. La surface spécifique BET dudit support est avantageusement comprise entre 130 et
190 m2/g. Le diamètre moyen des mésopores est compris entre 30 À et 200 À, de préférence entre 30 À et 90 À.
La teneur massique de la phase active, rapportée au fer métallique, par rapport à la masse totale du catalyseur supporté final est comprise entre 2% et 20% poids, de préférence entre 5% et 15% poids. La phase active d'oxyde de fer est amorphe ou présente des cristallites de taille suffisamment petite pour ne pas être détectés en analyse par diffraction des rayons X. Par suffisamment petite, on entend que la phase oxyde de fer induit des raies qui ne se distinguent pas du bruit de fond en analyse par diffraction des rayons X. Le support aluminate de zinc du catalyseur selon l'invention présente un diffractogramme qui correspond au ZnAI204 (classification International Center for Diffraction Data ICDD 5-669).
Le catalyseur peut également avantageusement contenir un élément du groupe IA, de préférence choisi parmi Li, Na et K, de manière préférée K.
La surface spécifique BET du catalyseur est comprise entre 80 et 240 m2/g, avantageusement comprise entre 100 et 155 m2/g.
Le catalyseur selon l'invention se présente avantageusement sous forme de billes, de trilobés, d'extrudés, de pastilles, ou d'agglomérats irréguliers et non sphériques dont la forme spécifique peut résulter d'une étape de concassage. De manière très avantageuse, ledit catalyseur se présente sous forme de billes ou d'extrudés. De manière encore plus avantageuse, ledit catalyseur se présente sous forme d'extrudés. PRÉPARATION DU SUPPORT
Préparation par malaxage extrusion
Le support utilisé est préparé par malaxage d'un ou plusieurs composés du zinc et d'alumine hydratée en présence d'un agent peptisant (acide minéral ou organique). Sources d'oxyde de zinc, d'alumine, d'aluminate, et de précurseurs du zinc
De nombreuses méthodes de préparation d'oxyde de zinc sont décrites dans la littérature : procédé indirect, encore appelé procédé français, le procédé direct, également appelé procédé américain, ou encore, par déshydratation d'hydroxyde de zinc obtenu par précipitation, par décomposition des différents précurseurs du zinc, qu'ils soient commerciaux ou obtenus par une précipitation préliminaire.
Les oxydes de zinc commerciaux peuvent être mis en œuvre dans la fabrication du solide selon l'invention. Les composés du zinc utilisés sont choisis parmi les oxydes de zinc commerciaux ou préparés selon toute autre voie de synthèse.
Le précurseur d'alumine utilisé répond à la formule générale Al203, nH20. On peut en particulier utiliser des hydrates d'alumine tels que l'hydrargilite, la gibbsite, la bayerite, la boehmite ou la pseudo bœhmite et les gels d'alumine amorphe ou essentiellement amorphes. Un mélange de ces produits sous quelque combinaison que ce soit peut être également utilisé. On peut également mettre en œuvre les formes déshydratées de ces composés qui sont constitués d'alumine de transition et qui comportent au moins une des phases prises dans le groupe : rhô, khi, êta, gamma, kappa, thêta et delta, qui se différencient essentiellement par l'organisation de leur structure cristalline.
Dans le cas où l'aluminate est introduit directement lors de la mise en forme, celui-ci peut être préparé par les méthodes classiques connues de l'homme du métier, comme par exemple la co-précipitation de précurseurs d'aluminium et de zinc, la synthèse hydrothermale, la voie sol-gel, l'imprégnation de précurseurs de zinc sur alumine ou boehmite.
Le support du catalyseur selon l'invention peut être préparé par malaxage extrusion selon deux voies (notées A et B) et par imprégnation d'un support aluminique selon une voie C. Le procédé de préparation du support utilisé dans la présente invention comprend au moins les étapes suivantes (voie A) :
A1 ) pré-mélange des poudres (oxyde de zinc et bœhmite, ou bien oxyde de zinc, aluminate et boehmite, ou encore aluminate seul ou aluminate et boehmite, ou aluminate et ZnO) par mise en rotation des bras d'un malaxeur malaxage des poudres en présence d'au moins un agent peptisant (acide minéral ou organique) et d'un liquide (eau, préférentiellement, mais des alcools comme l'éthanol peuvent être avantageusement utilisés) et optionnellement un précurseur soluble du zinc,
extrusion de la pâte obtenue après malaxage (suivie optionnellement d'une étape de sphéronisation si on souhaite obtenir des billes)
traitement thermique comprenant au moins :
A4.1 ) une étape de séchage des extrudés obtenus lors de l'étape A3)
A4.2) une calcination sous air
éventuellement un broyage en vue d'une mise en forme différente de l'extrudé obtenu à l'issue des précédentes étapes.
Le précurseur de zinc, utilisé optionnellement (étape A2) est un sel soluble en solution aqueuse : il pourra être choisi avantageusement parmi les nitrates, carbonates, hydroxydes, et les sulfates. On pourra également avoir recours à un acétate de zinc.
De préférence, le mélange des précurseurs de Zn et Al est réalisé par malaxage, en batch ou en continu. Dans le cas où cette étape est réalisée en batch, un malaxeur de préférence équipé de bras en Z, ou à cames, ou dans tout autre type de mélangeur tel que par exemple un mélangeur planétaire peut être utilisé.
Un autre mode de préparation (voie B) du support utilisé dans la présente invention comprend les étapes suivantes :
B1 ) peptisation de la boehmite en présence d'au moins un agent peptisant de type acide minéral ou organique
B2) ajout d'au moins un oxyde de zinc, ou d'au moins un oxyde de zinc et d'un aluminate ou d'un aluminate à la pâte obtenue à l'étape B1 ) et malaxage du mélange obtenu,
B3) extrusion de la pâte obtenue après malaxage (suivie optionnellement d'une étape de sphéronisation si on souhaite obtenir des billes)
B4) traitement thermique comprenant au moins :
B4.1 ) une étape de séchage des extrudés obtenus à l'étape B3) B4.2) une calcination sous air
B5) éventuellement un broyage en vue d'une mise en forme différente de l'extrudé obtenu à l'issue des précédentes étapes. Le support utilisé dans la présente invention peut être sous forme de poudre, d'extrudés, de billes ou de pastilles.
Dans le cas où ledit procédé de préparation est mis en œuvre en continu, l'étape de mélange peut être couplée avec la mise en forme par l'extrusion dans un même équipement. Selon cette mise en œuvre, l'extrusion du mélange nommé aussi "pâte malaxée" peut être réalisée soit en extrudant directement en bout de malaxeur continu de type bi-vis par exemple, soit en reliant un ou plusieurs malaxeurs batch à une extrudeuse. La géométrie de la filière, qui confère leur forme aux extrudés, peut être choisie parmi les filières bien connues de l'Homme du métier. Elles peuvent ainsi être par exemple, de forme cylindrique, multilobée, cannelée ou à fentes.
Les extrudés sont séchés entre 40 et Ι δΟ 'Ό, de préférence entre 70 et 120°C, puis calcinés entre 300 et 1 100 °C, de préférence entre 350 et 800 °C. Le rapport massique AI203/ZnO est de préférence compris entre 80/20 et 30/70, à l'exclusion des rapports compris entre 55,8/44,2 et 55,4/44,6 de la spinelle vraie aluminate de zinc.
De manière préférée, l'agent peptisant est choisi parmi l'acide chlorhydrique, l'acide sulfurique, l'acide nitrique, l'acide acétique et l'acide formique.
Imprégnation d'un précurseur de Zn sur support aluminique
Selon un autre mode de préparation (voie C), les supports d'aluminate peuvent être obtenus par imprégnation à sec d'une solution contenant l'élément Zn sur un support aluminique. On procède, dans ce cas, en plusieurs étapes :
C1 ) préparation d'une solution du précurseur de Zn
C2) imprégnation de la solution sur le support aluminique
C3) séchage du support
C4) calcination De préférence, le précurseur de zinc, utilisé dans la préparation de la solution d'imprégnation (étape C1 ) est un sel soluble en solution aqueuse : il pourra être choisi avantageusement parmi les nitrates, carbonates, hydroxydes, ou sulfates. On pourra également avoir recours à un acétate de zinc. La concentration en précurseur de zinc est ajustée en fonction du ratio Zn/AI visé pour la préparation du support aluminate.
Lors de l'étape C2) la solution préparée lors de l'étape C1 ) est mise en contact avec le support aluminique. Le volume de solution correspond au volume poreux de support. Le support aluminique peut se présenter sous toute forme connue de l'homme du métier, comme, par exemple, billes, extrudés, pastilles, granules, poudre.
On utilisera de façon préférée un support constitué d'alumine gamma, mais on pourra avantageusement sélectionner des supports à base d'hydrates d'alumine tels que l'hydrargilite, la gibbsite, la bayerite, la boehmite ou la pseudo bœhmite et les gels d'alumine amorphe ou essentiellement amorphes.
Les extrudés sont séchés entre 40 et 150°C, de préférence entre 70 et 120 °C, puis calcinés entre 300 et 1 100 °C, de préférence entre 350 et 800 °C.
On pourra éventuellement procéder à des imprégnations successives par exemple, pour atteindre les ratio Zn/AI les plus élevés, en répétant la séquence décrite précédemment.
PRÉPARATION DES CATALYSEURS
Les catalyseurs sont préparés par toute méthode connue de l'homme du métier. Une voie d'obtention du catalyseur est l'imprégnation à sec du précurseur de phase active en solution sur le support aluminate.
P1) Préparation d'une solution comprenant le précurseur
On prépare une solution aqueuse d'un précurseur de fer. Le degré d'oxydation du précurseur de fer est supérieur à 0. La concentration de la solution aqueuse du précurseur métallique est ajustée selon la teneur massique en métal voulue sur le catalyseur. La préparation de la solution aqueuse de précurseur métallique s'effectue de préférence à température ambiante. Le précurseur de fer peut-être sous forme ionique. Dans ce cas, il se présente sous forme de sel. De préférence, le précurseur de fer est un sel soluble en solution aqueuse qui est choisi dans le groupe constitué par un halogénure, un oxyde, un hydroxyde, un nitrate et un sulfate.
P2) Imprégnation de la solution sur le support aluminate
On met en contact la solution aqueuse obtenue à l'étape P1 ) avec ledit support aluminate préparé lors de l'étape de préparation du support. Le volume de solution correspond au volume poreux du support aluminate.
L'imprégnation à sec est de préférence réalisée goutte à goutte, c'est-à-dire que la solution est imprégnée goutte à goutte sur le support. L'imprégnation se fait de manière préférée à température ambiante. P3) Séchage du catalyseur
Le catalyseur imprégné est généralement séché afin d'éliminer toute ou une partie de l'eau introduite lors de l'imprégnation, de préférence à une température comprise entre 50 et 250 'Ό, de manière plus préférée entre 70 ^ et 200 °C. Le séchage est effectué sous air, ou sous atmosphère inerte (azote par exemple).
P4) Calcination du catalyseur
Le catalyseur est ensuite calciné, généralement sous air, de préférence à une vitesse volumique horaire (VVH) comprise entre 100 et 5000 h"1 , la vitesse volumique horaire étant définie comme le rapport du débit volumique de charge à 25qC, 1 atm sur le volume de catalyseur. La température de calcination est généralement comprise entre 250 °C et 900 °C, de préférence comprise entre environ 350 °C et environ 800 °C. La durée de calcination est généralement comprise entre 0,5 heures et 5 heures. L'étape de calcination peut-être opérée par palier de température, jusqu'à la température de consigne maximale définie. P5) Dépôt éventuel d'un élément du groupe IA
Éventuellement, un ou plusieurs éléments du groupe IA du tableau périodique des éléments, de préférence choisi parmi Li, Na et K, et de manière préférée K, peuvent être ajoutés, de préférence par imprégnation à sec d'une solution aqueuse de précurseur. De préférence, le précurseur est un sel soluble en solution aqueuse qui est choisi dans le groupe constitué par un halogénure, un oxyde, un carbonate, un hydroxyde, un nitrate et un sulfate. Lorsque l'élément est le potassium, le précurseur est de manière préférée un carbonate de potassium. Les étapes P3) de séchage et P4) de calcination sont alors répétées.
P6) Réduction éventuelle
Éventuellement, le catalyseur obtenu à l'issu de l'étape de calcination B4) peut subir un traitement sous flux gazeux comprenant entre 25 vol% et 100 vol% d'un gaz réducteur. Le gaz réducteur est de préférence l'hydrogène. De manière préférée, cette étape est effectuée à une température comprise entre 50 'C et 450 °C.
Ladite réduction peut être réalisée in situ ou ex situ, c'est à dire après ou avant le chargement du catalyseur dans le réacteur. Elle est de préférence réalisée in situ , c'est à dire dans le réacteur où est réalisée la transformation catalytique.
Cette réduction éventuelle peut permettre d'activer ledit catalyseur et former des particules d'oxyde de fer à des degrés d'oxydation inférieurs à ceux des oxydes formés après l'étape de calcination P4). Tout ou partie ( > 90% en poids) du fer reste à un degré d'oxydation supérieur à 0.
Selon une variante de préparation du catalyseur, le catalyseur est préparé en plusieurs imprégnations. Pour les catalyseurs préparés en trois imprégnations, les enchaînements peuvent être les suivants :
- Imprégnation n °1 - Séchage - Calcination - Imprégnation n °2 - Séchage -
Calcination - Imprégnation n °3 - Séchage - Calcination
L'invention concerne aussi l'utilisation du catalyseur obtenu à partir des procédés de préparation de catalyseur décrits dans la présente invention.
UTILISATION DU CATALYSEUR SELON L'INVENTION
Le catalyseur selon l'invention peut être utilisé dans les procédés faisant intervenir une transformation de composés organiques. Ainsi, le catalyseur selon l'invention peut être utilisé dans les procédés de déshydrogénation de composés aliphatiques, naphténiques ou oléfiniques. Ce procédé de déshydrogénation peut être réalisé en présence d'oxygène ou non.
Les conditions opératoires généralement utilisées pour ces réactions sont les suivantes : une température comprise entre 0°C et 700 °C, de préférence entre 400 et 680 °C, une pression comprise entre 0,1 et 5 bar absolu, de préférence entre 0,2 et 2 bar absolu, une vitesse volumique horaire (V.V.H.) en charge hydrocarbure comprise entre 1 et 1000 h"1 , de préférence entre 125 et 500 h"1. Lorsque de la vapeur d'eau est présente, le rapport molaire vapeur d'eau sur charge est compris entre 1 et 50, de préférence entre 8 et 20. Lorsque de l'oxygène est présent, le rapport molaire oxygène sur charge est compris entre 0,1 et 5, de préférence entre 0.2 et 1 ,5.
La mise en œuvre du catalyseur selon l'invention et les conditions de son utilisation doivent être adaptées par l'utilisateur à la réaction et à la technologie utilisée.
Selon une application préférée, les catalyseurs selon l'invention sont mis en œuvre pour les réactions de déshydrogénation oxydante et non oxydante d'oléfines linéaire en C4, de préférence non oxydante, c'est à dire en l'absence d'oxygène. Les procédés de conversion des hydrocarbures tels que le vapocraquage ou le craquage catalytique sont opérés à haute température et produisent une grande variété de molécules insaturées telles que l'éthylène, le propène, les butènes linéaires, l'isobutène, les pentènes ainsi que des molécules insaturées contenant jusqu'à environ 15 atomes de carbone. Pour permettre l'utilisation de ces différentes coupes dans les procédés de pétrochimie tels que les unités de polymérisation, les molécules insaturées doivent respecter des contraintes de pureté très strictes.
Ainsi, les composés monoinsaturés et polyinsaturés entrant dans la préparation de polymères sont à forte valeur ajoutée. De ce fait, des méthodes de déshydrogénation directe des molécules saturées ou monoinsaturées sont développées pour accéder plus spécifiquement à ces produits. Sur le même principe, des composés insaturés issus de la déshydratation de produits ex-biomasse peuvent être utilisés. Ainsi, par exemple, la coupe essence (7 à 10 carbones) peut avoir la composition moyenne suivante : de l'ordre de 60% poids en paraffines, de l'ordre de 30% poids en naphtènes et de l'ordre de 10% poids en aromatiques. Le procédé de reformage permet de déshydrogéner le cyclohexane en benzène.
L'éthylbenzène, produit par alkylation du benzène, peut être lui aussi déshydrogéné de façon catalytique pour donner majoritairement du styrène. Cette voie est la voie préférentielle d'obtention du styrène car les coupes essences du vapocraqueur contiennent uniquement 3 à 5 % poids de styrène.
Les vapocraqueurs utilisant comme charge l'éthane produisent uniquement 1 à 2 % poids de butadiène relativement à la capacité de production en éthylène. Or une coupe C4 brute issue d'une raffinerie peut avoir la composition moyenne suivante : 35 % poids en isobutane, 20 % poids en n-butane, 14 % poids en isobutène, 30 % poids en n-butènes et environ 1 % poids répartis entre des C3 et des C5. Là encore la déshydrogénation des butanes et/ou des butènes en butadiène est appropriée pour la production de butadiène.
Ainsi, le procédé de déshydrogénation est intéressant pour obtenir des produits monoinsaturés ou polyinsaturés peu présents dans les coupes du vapocraqueurs.
La déshydrogénation non-oxydante est réalisée en phase gaz, en présence de vapeur d'eau ou non, de préférence en présence de vapeur d'eau. En effet, une réaction en présence de vapeur d'eau permet de limiter l'endothermicité de la réaction et d'augmenter la durée de cycle des catalyseurs en limitant la formation de coke. De plus, des pressions faibles sont préférées pour des raisons thermodynamiques puisqu'elles permettent des conversions plus fortes à températures égales. Dans ce cas, la dilution à la vapeur d'eau permet aussi d'abaisser la pression partielle en composés saturés ou monoinsaturés à déshydrogéner. Pour une réaction de déshydrogénation sans dilution par de la vapeur d'eau, la pression est généralement comprise entre 0,2 et 0,4 bar absolu, la température entre 600 et 620 ^ et la vitesse volumique horaire (V.V.H) est autour de 300 h"1. Pour une réaction de déshydrogénation avec une dilution à la vapeur, la pression est généralement comprise entre 1 ,5 et 2 bar absolu, la température entre 600 et 700°C, la vitesse volumique horaire (V.V.H) est entre 125 de 500 h"1 et le ratio molaire vapeu recomposés saturés ou monoinsaturés à déshydrogéner) entre 8 et 20.
EXEMPLES
Les exemples suivants illustrent l'invention sans en limiter la portée.
Exemple 1 : Catalyseur A (selon l'invention)
Préparation du support :
Le solide A1 est préparé par malaxage d'une boehmite et d'oxyde de zinc en présence de 4% d'acide nitrique en solution dans de l'eau, de façon à obtenir une composition du matériau dont l'analyse élémentaire est 22% poids Zn et 34% poids Al, soit un ratio molaire Zn/AI=0.27 et un rapport massique AI203/ZnO de 65/35.
Le catalyseur est extrudé avec une filière de 3 mm de diamètre et soumis à un traitement thermique à 650 °C pendant 2h.
La surface spécifique BET du solide A1 est de 165 m2.g"1.
Par diffraction des rayons X, on détecte de l'oxyde de zinc ZnO et une phase aluminate de zinc. Préparation du catalyseur :
Afin de préparer 50g de catalyseur, une solution aqueuse de nitrate de fer Fe(N03)3 est préparée par dilution de 16,27 g de nitrate de fer nonahydraté (Aldrich) dans de l'eau déminéralisée. Le volume total de la solution aqueuse préparé correspond au volume poreux du support.
Cette solution est ensuite imprégnée sur 46,22 g du support A1 sec de le volume poreux 0,62 ml/g.
Le solide A2 obtenu est séché sous air à 120°C, puis est calciné pendant 2 heures à 650 'C sous un flux d'air avec un débit de 1 L.h" .(g de catalyseur)"1.
Ce solide est imprégné de la même manière deux fois encore pour aboutir au catalyseur A.
Le catalyseur A obtenu contient 8% poids de Fe métal (13% poids sous forme Fe203), 21 % poids de Zn et 32% poids d'AI par rapport à la masse du catalyseur sec. La surface spécifique BET du catalyseur A est de 137 m2.g"1.
Par diffraction des rayons X, aucune phase cristallisée de ZnO ou de d'oxyde de fer n'est détectée, on ne détecte qu'une phase aluminate de zinc. Exemple 2 : Catalyseur B (non conforme)
Le catalyseur B (non conforme à l'invention) est un catalyseur à base d'oxyde de chrome et de potassium supporté sur une alumine gamma. Il diffère de l'invention par la nature du support et de la phase oxyde supportée.
Afin de préparer 100g de catalyseur, une solution aqueuse de nitrate de chrome Cr(N03)3 est préparée par dilution de 34,2 g de nitrate de chrome nonahydraté (AIdrich) dans de l'eau déminéralisée. Le volume total de la solution aqueuse préparé correspond au volume poreux d'un support alumine commercial de 140 m2.g"1 et de volume poreux total 1 mL.g" . Le support alumine est sous forme de bille de diamètre compris entre 2 et 4mm.
Cette solution est ensuite imprégnée sur 90,1 g du support alumine.
Le solide obtenu est séché sous air à 120°C, puis est calciné pendant 2 heures à
650 'C sous un flux d'air avec un débit de 1 L.h" .(g de catalyseur)"1.
Ce solide est ensuite imprégné à sec avec une solution aqueuse dans laquelle 1 ,69 g de K2C03 (AIdrich) ont été dissouts dans 86 mL d'eau déminéralisée.
Le catalyseur B obtenu contient 8% poids de Cr métal (12% poids sous forme Cr203), et 1 % K par rapport à la masse du catalyseur sec.
La surface spécifique BET du catalyseur B est de 124 m2.g"1.
Par diffraction des rayons X, aucune phase cristallisée d'oxyde de chrome n'est détectée, on ne détecte qu'une phase cristallisée alumine gamma et un fond de diffusion correspondant à de la matière amorphe.
Exemple 3 : Catalyseur C (non conforme)
Le catalyseur C (non conforme à l'invention) est un catalyseur à base d'oxyde de fer supporté sur un aluminate de zinc identique au catalyseur "I8" tel que décrit dans la publication : J.A. Toledo, M.A. Valenzuela, H. Armendariz, G. Aguilar-Rios, B. Zapata, A. Montoya, N. Nava, P. Salas, I. Schifter, Catalysis Letters, 30, p. 279-288, 1995. Ce catalyseur C contient 8% poids de fer métallique (13% poids sous forme Fe203). Il diffère de l'invention par la nature du support puisque la phase spinelle ZnAI204 est détectée en analyse par diffraction des rayons X, et par les caractéristiques structurales puisque la surface spécifique est mesurée à 26 m2/g et le diamètre moyen des pores est égal à 620 À. Exemple 4 : Test catalytique en déshydrogénation du 1 -Butène.
Les catalyseurs sont soumis à un test de déshydrogénation de 1 -butène en 1 ,3- butadiène dans un réacteur lit fixe de diamètre 20mm. Le volume du lit catalytique est de 40 ce dilué à un ratio 1/3 avec du carbure de silicium de granulométrie 1 ,5 mm. Une zone de préchauffe à l'entrée du réacteur permet d'obtenir une température uniforme.
Lors de la mise en température du réacteur, un flux d'azote et d'eau vapeur est injecté jusqu'à atteindre la consigne. Le début de la phase de test démarre lorsque le flux d'azote est remplacé par le flux de 1 -Butène (Air Liquide 99%).
La VVH en 1 -butène est fixée à 200 h"1 , soit un débit de 2 NL.h" contrôlé par un débitmètre massique. Le ratio volumique H20/1 -Butène est fixé à 20. La pression est maintenue à 1 barg et la température du lit catalytique est de 650 °C.
Après séparation des hydrocarbures et de la vapeur d'eau à température et pression ambiante, le gaz est analysé en chromatographie gazeuse. La première analyse est effectuée 5 minutes après le début du test, puis toutes les 20 minutes.
Par la première analyse des effluents à t = 5 minutes, on calcule la conversion du 1 - butène et la sélectivité en 1 ,3-butadiène (en pourcentage). Les résultats obtenus pour les catalyseurs A (selon l'invention) et B (non conforme à l'invention) sont reportés dans le tableau 1 .
Figure imgf000015_0001
Tableau 1 : Conversions en 1 -Butène et sélectivité en 1 ,3-Butadiène
Le catalyseur A conforme à l'invention présente des performances améliorées par rapport au catalyseur B non conforme à l'invention.

Claims

REVENDICATIONS
1 . Utilisation pour la déshydrogénation de composés aliphatiques, naphténiques ou oléfiniques d'un catalyseur comprenant une phase active d'oxyde de fer déposée sur un support, ladite phase active d'oxyde de fer étant amorphe ou présentant des cristallites de taille suffisamment petite pour ne pas être détectés en analyse par diffraction des rayons X, ledit support étant un aluminate de zinc, ledit catalyseur présentant une surface spécifique BET comprise entre 80 m2/g et 240 m2/g, et étant tel que le rapport massique AI203/ZnO est compris entre 80/20 et 30/70, à l'exclusion des rapports compris entre 55,8/44,2 et 55,4/44,6 , opérant à une température comprise entre 0°C et 700 'Ό, à une pression comprise entre 0,1 et 5 bar absolu, à une V.V.H. en charge hydrocarbure comprise entre 1 et 1000 h"1 et, lorsque de la vapeur d'eau est présente, avec un rapport molaire vapeur d'eau sur charge est compris entre 1 et 50, et, lorsque de l'oxygène est présent, avec un rapport molaire oxygène sur charge est compris entre 0,1 et 5, de préférence entre 0.2 et 1 ,5.
2. Utilisation selon la revendication 1 , opéré en présence de vapeur d'eau, avec une pression comprise entre 1 ,5 et 2 bar absolu, une température comprise entre 600 et 700°C, une V.V.H entre 125 de 500 h"1 et un ratio molaire vapeur/(composés saturés ou monoinsaturés à déshydrogéner) entre 8 et 20
3. Utilisation selon la revendication 1 , opéré sans dilution par de la vapeur d'eau, avec une pression comprise entre 0,2 et 0,4 bar absolu, une température comprise entre 600 et 620 <€ et une V.V.H autour de 300 h"1.
4. Utilisation selon l'une des revendications 1 à 3 tel que lorsque de l'oxygène est présent, le rapport molaire oxygène sur charge est compris entre 0,1 et 5.
5. Utilisation selon l'une des revendications 1 à 3 tel que ladite déshydrogénation est une déshydrogénation non oxydante d'oléfines linéaire en C4.
6. Utilisation selon l'une des revendications 1 à 5 tel que le diamètre moyen des mésopores dudit catalyseur est compris entre 30 À et 90 À. Utilisation selon l'une des revendications 1 à 5 tel que la teneur massique de la phase active dudit catalyseur, rapportée au fer métallique, par rapport à la masse totale dudit catalyseur supporté final est comprise entre 2% et 20% poids.
Utilisation selon l'une des revendications 1 à 5 tel que la teneur massique de la phase active dudit catalyseur, rapportée au fer métallique, par rapport à la masse totale dudit catalyseur supporté final est comprise entre 5% et 15% poids.
Utilisation selon l'une des revendications 1 à 5 tel que ledit catalyseur contient un élément du groupe IA.
Utilisation selon la revendication 9 tel que ledit élément du groupe IA est choisi parmi Li, Na et K
Utilisation selon l'une des revendications 1 à 5 tel que ledit catalyseur se présente sous forme de billes, de trilobés, d'extrudés, de pastilles, ou d'agglomérats irréguliers et non sphériques dont la forme spécifique peut résulter d'une étape de concassage
PCT/FR2013/053005 2012-12-20 2013-12-09 Utilisation pour la deshydrogenation d'hydrocarbures d'un catalyseur a base d'oxyde de fer et son WO2014096627A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR12/03.537 2012-12-20
FR1203537A FR2999954A1 (fr) 2012-12-20 2012-12-20 Catalyseur a base d'oxyde de fer et son utilisation en deshydrogenation

Publications (1)

Publication Number Publication Date
WO2014096627A1 true WO2014096627A1 (fr) 2014-06-26

Family

ID=47827317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/053005 WO2014096627A1 (fr) 2012-12-20 2013-12-09 Utilisation pour la deshydrogenation d'hydrocarbures d'un catalyseur a base d'oxyde de fer et son

Country Status (2)

Country Link
FR (1) FR2999954A1 (fr)
WO (1) WO2014096627A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3626021A (en) 1968-07-01 1971-12-07 Atlantic Richfield Co Dehydrogenation of aliphatics over alkali metal oxide-chromia-zinc aluminate spinel catalyst
WO2002022763A1 (fr) * 2000-09-11 2002-03-21 Research Triangle Institute Procede de desulfuration de combustibles hydrocarbures et de composants de combustibles
US6369000B1 (en) 1999-09-17 2002-04-09 Phillips Petroleum Company Process for producing a metal aluminate catalyst support
US20080251423A1 (en) * 2005-09-27 2008-10-16 Research Triangle Institute Regenerable Sorbents for Removal of Sulfur from Hydrocarbons and Processes for Their Preparation and Use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3626021A (en) 1968-07-01 1971-12-07 Atlantic Richfield Co Dehydrogenation of aliphatics over alkali metal oxide-chromia-zinc aluminate spinel catalyst
US6369000B1 (en) 1999-09-17 2002-04-09 Phillips Petroleum Company Process for producing a metal aluminate catalyst support
WO2002022763A1 (fr) * 2000-09-11 2002-03-21 Research Triangle Institute Procede de desulfuration de combustibles hydrocarbures et de composants de combustibles
US20080251423A1 (en) * 2005-09-27 2008-10-16 Research Triangle Institute Regenerable Sorbents for Removal of Sulfur from Hydrocarbons and Processes for Their Preparation and Use

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"CRC Handbook of Chemistry and Physics", 2000, CRC PRESS
J.A. TOLEDO; M.A. VALENZUELA; H. ARMENDARIZ; G. AGUILAR-RIOS; B. ZAPATA; A. MONTOYA; N. NAVA; P. SALAS; SCHIFTER, CATALYSIS LETTERS, vol. 30, 1995, pages 279 - 288
J.A. TOLEDO; P. BOSCH; M.A. VALENZUELA; A. MONTOYA; N. NAVA, JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 125, 1997, pages 53 - 62
S.BRUNAUER; P.H.EMMETT; E.TELLER, J. AM. CHEM. SOC., vol. 60, no. 2, 1938, pages 309 - 319
TOLEDO J A ET AL: "Oxidative dehydrogenation of 1-butene to butadiene on ?-Fe2O3/ZnAl2O4 and ZnFexAl2-xO4 catalysts", CATALYSIS LETTERS, KLUWER ACADEMIC PUBLISHERS-PLENUM PUBLISHERS, NE, vol. 30, no. 1-4, 13 December 2004 (2004-12-13), pages 279 - 288, XP002524585, ISSN: 1572-879X, DOI: 10.1007/BF00813694 *

Also Published As

Publication number Publication date
FR2999954A1 (fr) 2014-06-27

Similar Documents

Publication Publication Date Title
EP3191221B1 (fr) Catalyseur mesoporeux a base de nickel et son utilisation en hydrogenation d&#39;hydrocarbures
EP2249963B1 (fr) Catalyseur d&#39;hydrogenation selective et son procede de preparation
EP3154685B1 (fr) Catalyseur mesoporeux et macroporeux a base de nickel ayant un diametre median macroporeux compris entre 50 nm et 200 nm et son utilisation en hydrogenation d&#39;hydrocarbures
EP2083002B1 (fr) Procédé d&#39;oligomérisation des oléfines utilisant un catalyseur à base de silice-alumine
EP3154684B1 (fr) Catalyseur a base de nickel mesoporeux et macroporeux ayant un diametre median macroporeux superieur a 200 nm et son utilisation en hydrogenation d&#39;hydrocarbures
FR2873116A1 (fr) Procede d&#39;oligomerisation des olefines utilisant un catalyseur a base de silice-alumine
EP3740309B1 (fr) Procede de preparation d&#39;un catalyseur particulier d&#39;hydrogenation selective et d&#39;hydrogenation des aromatiques par malaxage
WO2015055380A1 (fr) Procede d&#39;hydrogenation selective mettant en œuvre un catalyseur contenant du cuivre et au moins un metal choisi parmi le nickel ou le cobalt
EP3154686A1 (fr) Catalyseur mesoporeux et macroporeux a base de nickel obtenu par comalaxage et ayant un diametre median macroporeux superieur a 300 nm et son utilisation en hydrogenation d&#39;hydrocarbures
WO2015189193A1 (fr) Catalyseur mesoporeux et macroporeux a phase active de nickel obtenu par comalaxage et ayant un diametre median macroporeux compris entre 50 et 300 nm et son utilisation en hydrogenation d&#39;hydrocarbures
EP4003588B1 (fr) Procede de preparation d&#39;un catalyseur comprenant une phase active de nickel repartie en croute
FR2932701A1 (fr) Catalyseur d&#39;hydrogenation selective et son procede de preparation
WO2014096628A1 (fr) Catalyseur a base d&#39;oxyde de chrome et son utilisation pour la deshydrogenation d&#39;hydrocarbures
WO2014118194A2 (fr) Catalyseur comprenant des oxydes mixtes des éléments aluminium, zinc et manganèse et son utilisation en déshydrogenation
WO2014096627A1 (fr) Utilisation pour la deshydrogenation d&#39;hydrocarbures d&#39;un catalyseur a base d&#39;oxyde de fer et son
EP4251715A1 (fr) Procede d&#39;hydrodesulfuration en presence d&#39;un catalyseur sur support meso-macroporeux
FR3022802B1 (fr) Catalyseur oxyde de fer sur support alumine alpha et sa mise en œuvre dans un procede de deshydrogenation d&#39;hydrocarbures monoinsatures comprenant de 4 a 5 atomes de carbone
FR3099389A1 (fr) Catalyseur comprenant une phase active de nickel soufre repartie en croute
WO2014096625A1 (fr) Procede de deshydrogenation non oxydante mettant en œuvre un catalyseur comprenant un oxyde de manganese sur un support d&#39;alumine
FR3068983A1 (fr) Procede d&#39;hydrogenation selective mettant en œuvre un catalyseur obtenu par impregnation comprenant un support specifique
WO2024017703A1 (fr) Procede de preparation d&#39;un catalyseur comprenant une phase active de nickel et un alliage nickel cuivre
WO2022090023A1 (fr) Catalyseur d&#39;hydrogenation selective a base de palladium sur un support en oxyde de zinc
WO2014096626A1 (fr) Procede de deshydrogenation non oxydante mettant en œuvre un catalyseur comprenant un oxyde de manganese sur un support de silice
WO2015197856A1 (fr) Catalyseur oxyde de fer sur support alumine alpha et sa mise en oeuvre dans un procede de deshydrogenation d&#39;hydrocarbures monoinsatures
FR3026317A1 (fr) Catalyseur oxyde de fer sur support alumine alpha et sa mise en œuvre dans un procede de deshydrogenation d&#39;hydrocarbures monoinsatures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13818274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13818274

Country of ref document: EP

Kind code of ref document: A1