WO2014096626A1 - Procede de deshydrogenation non oxydante mettant en œuvre un catalyseur comprenant un oxyde de manganese sur un support de silice - Google Patents

Procede de deshydrogenation non oxydante mettant en œuvre un catalyseur comprenant un oxyde de manganese sur un support de silice Download PDF

Info

Publication number
WO2014096626A1
WO2014096626A1 PCT/FR2013/053004 FR2013053004W WO2014096626A1 WO 2014096626 A1 WO2014096626 A1 WO 2014096626A1 FR 2013053004 W FR2013053004 W FR 2013053004W WO 2014096626 A1 WO2014096626 A1 WO 2014096626A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
manganese
active phase
dehydrogenation
weight
Prior art date
Application number
PCT/FR2013/053004
Other languages
English (en)
Inventor
Antoine Fecant
Pedro Mendes
Isabelle CZEKAJEWSKI
Original Assignee
IFP Energies Nouvelles
Compagnie Generale Des Etablissements Michelin
Michelin Recherche Et Technique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles, Compagnie Generale Des Etablissements Michelin, Michelin Recherche Et Technique S.A. filed Critical IFP Energies Nouvelles
Publication of WO2014096626A1 publication Critical patent/WO2014096626A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3332Catalytic processes with metal oxides or metal sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese

Definitions

  • the dehydrogenation process makes it possible to convert the saturated or monounsaturated compounds of the petroleum fractions to the corresponding alkenes or polyunsaturated compounds while avoiding parasitic reactions such as cracking or skeletal isomerization.
  • the object of the invention is to propose the use of an improved performance catalyst comprising a silica-supported manganese oxide in processes for the non-oxidative dehydrogenation of saturated or monounsaturated hydrocarbon compounds present in petroleum fractions or derived from biomass, preferably in a non-oxidizing olefin dehydrogenation process, very preferably in a non-oxidative butene dehydrogenation process.
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • the catalysts for dehydrogenation of hydrocarbon compounds are generally based on metal oxides of groups VIB and VIII of the periodic table of elements, in particular based on iron or chromium oxides.
  • the active phase of the catalysts is either in bulk form or in the form of particles deposited on a support which may be a refractory oxide in the form of beads, extrudates, trilobes or in forms having other geometries.
  • the metal content, the size and the nature of the particles of the metal oxide active phase, as well as the textural and structural properties of the support are among the criteria that have an importance on the performance of the catalysts.
  • Oxidative and non-oxidative dehydrogenations do not follow the same reaction scheme. Indeed, the non-oxidative dehydrogenation reaction produces, in addition to an olefin, dihydrogen while in the oxidative dehydrogenation reaction, the reactant reacts with oxygen to give the corresponding olefin and water. These two reactions being different, the catalysts that are effective for the latter are not, obviously, identical.
  • the present invention aims at providing the use of catalysts comprising a silica oxide on a silica support in non-oxidizing dehydrogenation of hydrocarbons.
  • the type of catalyst according to the invention makes it possible to achieve improved performances in the non-oxidative dehydrogenation of hydrocarbons.
  • the dehydrogenation process makes it possible to convert the saturated or monounsaturated compounds of the petroleum or biomass cuts to the corresponding alkenes or polyunsaturated compounds while avoiding parasitic reactions such as cracking or skeletal isomerization.
  • the invention relates to a non-oxidative hydrocarbon dehydrogenation process using a catalyst comprising a manganese oxide supported on silica.
  • the invention relates to a process for the non-oxidative dehydrogenation of aliphatic, naphthenic or olefinic compounds using a catalyst comprising an active phase comprising a manganese oxide and a silica support, the BET specific surface area of said catalyst being between 1 and 500 m. 2 / g, the total pore volume of said support being between 0.1 and 2 mL / g, the manganese element of said active phase being at a degree of oxidation greater than zero, the mass content of the active phase, with respect to the total mass of the final supported catalyst being between 2% and 20% by weight, said process operating at a temperature of between ⁇ ' ⁇ and 750 ° C., a pressure of between 0.1 and 10%. absolute bar and a hourly volume velocity (VVH) for the hydrocarbon feed to be dehydrogenated between 1 and 1000 h " , in the gas phase and in the presence or absence of water vapor.
  • VVH hourly volume velocity
  • Said aliphatic, naphthenic or olefinic compounds may come from petroleum fractions or be derived from biomass.
  • Preferably said process is a non-oxidizing olefin dehydrogenation process, very preferably a non-oxidizing olefin C 4 dehydrogenation process.
  • Hydrocarbon conversion processes such as steam cracking or catalytic cracking are operated at high temperatures and produce a wide variety of unsaturated molecules such as ethylene, propene, linear butenes, isobutene, pentenes and unsaturated compounds containing up to about 15 carbon atoms.
  • unsaturated molecules such as ethylene, propene, linear butenes, isobutene, pentenes and unsaturated compounds containing up to about 15 carbon atoms.
  • the unsaturated molecules must comply with very strict purity constraints.
  • the monounsaturated and polyunsaturated compounds used in the preparation of polymers have a high added value.
  • direct dehydrogenation methods for saturated or monounsaturated molecules are developed to access these products more specifically.
  • unsaturated compounds derived from the dehydration of ex-biomass products can be used.
  • the gasoline cut (7 to 10 carbons) may have the following average composition: of the order of 60% by weight of paraffins, of the order of 30% by weight of naphthenes and of the order of 10% weight in aromatics.
  • the reforming process makes it possible to dehydrogenate cyclohexane to benzene.
  • Ethylbenzene produced by alkylation of benzene, can also be catalytically dehydrogenated to give predominantly styrene.
  • This route is the preferred route for obtaining styrene as the essences of the steam cracker contain only 3 to 5% by weight of styrene.
  • a crude C4 cut obtained from a refinery may have the following average composition: 35% by weight of isobutane, 20% by weight of n-butane, 14% by weight of isobutene, 30% by weight of n-butenes and about 1% by weight distributed between C 3 and C 5 .
  • the dehydrogenation of butanes and / or butenes to butadiene is suitable for the production of butadiene.
  • the dehydrogenation process is advantageous for obtaining monounsaturated or polyunsaturated products that are not very present in steam cracker cuts.
  • the non-oxidizing dehydrogenation is carried out in the gas phase, in the presence of water vapor or not, preferably in the presence of water vapor.
  • a reaction in the presence of water vapor makes it possible to limit the endothermicity of the reaction and to increase the cycle time of the catalysts by limiting the formation of coke.
  • low pressures are preferred for thermodynamic reasons since they allow for higher conversions at equal temperatures.
  • the dilution with water vapor also makes it possible to lower the partial pressure of saturated or monounsaturated compounds to be dehydrogenated.
  • the operating conditions generally used for the non-oxidative dehydrogenation reactions are as follows: a temperature of between 0 ° C.
  • VVH Hourly volume velocity
  • the pressure is generally between 0.1 and 0.4 bar absolute
  • the temperature between 500 and 700 ⁇
  • the hourly volume velocity (VVH) is between 50 and 500 hr -1 .
  • the pressure is generally between 1 and 4 bar absolute
  • the temperature between 500 and 700 ' ⁇
  • the hourly volume velocity (VVH) is between 100 of 1000 h "1
  • the molar ratio of vapor recomposed saturated or monounsaturated to be dehydrogenated between 1 and 50, preferably between 5 and 30.
  • the non-oxidizing dehydrogenation process according to the invention uses a catalyst comprising a manganese oxide on a SiO 2 silica support.
  • the silica support can be obtained by any method known to those skilled in the art.
  • the specific surface area of the catalyst Is between 1 and 500 m 2 / g, preferably between 50 and 400 m 2 / g.
  • the total pore volume of said support is between 0.1 and 2 mJg, preferably between 0.2 and 1.5 mJg.
  • the support may contain impurities up to a few hundred ppm, such as sodium, potassium, magnesium, chlorine, sulphates, titanium oxide or even aluminum oxide.
  • the active phase of the catalyst is a manganese oxide which element can be at any oxidation state greater than zero.
  • the degree of oxidation of the manganese on the catalyst will be +2, +3, +4 or a mixture of these oxidation levels.
  • the mass content of the active phase, relative to the metallic manganese, relative to the total mass of the final supported catalyst is between 2% and 20% by weight, preferably between 5% and 15% by weight.
  • the active phase of manganese oxide being amorphous or crystallized.
  • the catalyst may optionally contain a Group IA element.
  • a Group IA element Preferably Li, Na or K, even more preferably K.
  • the content of element IA is between 0.1 and 5%, preferably between 0.5 and 2%.
  • the catalyst is advantageously in the form of balls, trilobes, extrudates, pellets, or irregular and non-spherical agglomerates, the specific shape of which may result from a crushing step.
  • said catalyst is in the form of beads or extrudates.
  • said catalyst is in the form of beads.
  • the preparation of the catalyst can be carried out by any method known to those skilled in the art.
  • a preferred method of obtaining may be the dry impregnation of a manganese precursor in solution in the porosity of a silica support.
  • the first step is to prepare a solution of manganese precursor.
  • Any compound containing the manganese element may be used.
  • the precursor will be manganese nitrate, manganese carbonate, manganese acetate, manganese acetylacetonate, manganese bromide, manganese chloride, manganese fluoride, manganese formate, manganese manganese iodide, manganese sulfate.
  • the manganese precursor is manganese nitrate or manganese carbonate.
  • a volume of solution adapted to the porosity of the support and in a concentration of manganese precursor adapted to the desired final content in the active phase is thus impregnated on the silica support.
  • the impregnated catalyst is generally dried in order to remove all or part of the water introduced during the impregnation, preferably at a temperature of between 50 and 50.degree. More preferably between 70 ° C and 200 ° C.
  • the drying is carried out in air, or in an inert atmosphere (nitrogen for example).
  • the catalyst is then calcined, generally under air.
  • the calcining temperature is generally between 250 ° C and 900 ° C, preferably between about 350 ° C and about 750 ° C.
  • the calcination time is generally between 0.5 hours and 16 hours, preferably between 1 hour and 5 hours.
  • the catalyst obtained at the end of the calcination step may undergo a gas stream treatment comprising between 25 vol% and 100 vol% of a reducing gas.
  • the reducing gas is preferably hydrogen.
  • this step is carried out at a temperature of between 50 ° C. and 450 ° C.
  • Said reduction can be carried out in situ or ex situ, that is to say after or before the catalyst is loaded into the reactor. It is preferably carried out in situ, ie in the reactor where the catalytic conversion is carried out. This possible reduction can enable said catalyst to be activated and to form manganese oxide particles at oxidation levels lower than those of the oxides formed after the calcination step.
  • the impregnation of the precursor of the active phase can be carried out in one or more successive impregnations. If it is made in several successive impregnations, then the stages of drying and calcination will be repeated.
  • a member of Group IA of the Periodic Table of Elements may be added by impregnating a solution containing a hydroxide, chloride, bromide, carbonate salt of the element. If a group IA element is thus deposited by dry impregnation, the drying and calcination steps are then repeated.
  • Catalyst A (not in accordance with the invention) is a catalyst based on chromium and potassium oxide supported on gamma-alumina. It differs from the invention by the nature of the active phase and the support.
  • an aqueous solution of chromium nitrate Cr (NO 3 ) 3 is prepared by dilution of 34.2 g of chromium nitrate nonahydrate (Aldrich) in demineralized water.
  • the total volume of the prepared aqueous solution corresponds to the pore volume of a commercial alumina support of 140 m 2 .g "1 and the total pore volume ml.g 1".
  • the alumina support is in the form of a ball with a diameter of between 2 and 4 mm.
  • the solid obtained is dried under air at 120 ° C. and then calcined for 2 hours at 650 ° C. under a stream of air with a flow rate of 1 Lh " (g of catalyst) " .
  • This solid is then impregnated dry with an aqueous solution in which 1.69 g of K 2 CO 3 (Aldrich) were dissolved in 86 ml of demineralized water.
  • the catalyst A obtained contains 8% by weight of Cr metal (12% by weight in Cr 2 0 3 form ), and 1% K relative to the weight of the dry catalyst.
  • the BET specific surface area of catalyst A is 124 m 2 ⁇ g -1
  • Example 2 Catalyst B (according to the invention)
  • Catalyst B (according to the invention) is a catalyst comprising a manganese oxide supported on a silica.
  • an aqueous solution of manganese nitrate Mn (NO 3 ) 2 is prepared by diluting 21.2 g of manganese nitrate tetrahydrate (Aldrich) in demineralized water.
  • the total volume of the aqueous solution prepared corresponds to the pore volume of a commercial silica support of 323 m 2 ⁇ g -1 and a total pore volume of 0.8 ml ⁇ g -1 .
  • the silica support is in the form of a ball with a diameter of between 2 and 4 mm. This solution is then impregnated on 44.2 g of the silica support.
  • the catalyst B obtained contains 9.4% by weight of Mn metal (12.1% by weight in MnO form) relative to the dry catalyst mass.
  • the BET specific surface area of catalyst B is 123 m 2 ⁇ g -1 .
  • the catalysts are subjected to a dehydrogenation test of 1-butene in 1,3-butadiene in a fixed bed reactor of diameter 20 mm.
  • the volume of the catalytic bed is 40 cc diluted to a ratio 1/3 with silicon carbide particle size 1.5 mm.
  • a preheating zone at the inlet of the reactor makes it possible to obtain a uniform temperature.
  • the 1-butene VVH is set at 200 hr -1 , a flow rate of 2 hr.h " controlled by a mass flow meter.
  • the volume ratio H 2 0/1 -Butene is set at 20.
  • the pressure is maintained at 1 barg and the temperature of the catalytic bed is 650 ° C.
  • the gas is analyzed by gas chromatography. The first analysis is performed 5 minutes after the start of the test, then every 20 minutes.
  • catalyst B in non-oxidizing dehydrogenation of 1-butene induces improved performance compared to catalyst A whose implementation is not in accordance with the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne un procédé de déshydrogénation non-oxydante de composés aliphatiques, naphténiques ou oléfiniques mettant en œuvre un catalyseur comprenant une phase active comprenant un oxyde de manganèse et un support silice, la surface spécifique BET dudit catalyseur étant comprise entre 1 et 500 m2/g, le volume poreux total dudit support étant compris entre 0,1 et 2 m L/g, l'élément manganèse de ladite phase active se trouvant à un degré d'oxydation supérieur à zéro, la teneur massique de la phase active, rapportée au manganèse métallique, par rapport à la masse totale du catalyseur supporté final étant comprise entre 2% et 20% poids, ledit procédé opérant à une température comprise entre 0° C et 750° C, une pression comprise entre 0,1 et 10 bar absolu et une vitesse volumique horaire (V.V.H.) pour la charge en hydrocarbure à déshydrogéner comprise entre 1 et 1 000 h-1, en phase gaz et en présence ou non de vapeur d'eau.

Description

PROCEDE DE DESHYDROGENATION NON OXYDANTE METTANT EN ŒUVRE UN CATALYSEUR COMPRENANT UN OXYDE DE MANGANESE SUR UN SUPPORT DE SILICE
Le procédé de déshydrogénation permet de transformer les composés saturés ou monoinsaturés des coupes pétrolières vers les alcènes ou composés polyinsaturés correspondants en évitant les réactions parasites telles que le craquage ou l'isomérisation squelettale.
L'objet de l'invention est de proposer l'utilisation d'un catalyseur à performances améliorées comprenant un oxyde de manganèse sur support silice dans des procédés de déshydrogénation non oxydante de composés hydrocarbonés saturés ou monoinsaturés présents dans les coupes pétrolières ou issus de la biomasse, de manière préférée dans un procédé de déshydrogénation non oxydante d'oléfines, de manière très préférée dans un procédé de déshydrogénation non oxydante de butène.
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide , 81 ème édition, 2000-2001 ). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC.
ART ANTÉRIEUR
Les catalyseurs de déshydrogénation de composés hydrocarbonés sont généralement à base d'oxydes métalliques des groupes VIB et VIII de la classification périodique des éléments, notamment à base d'oxydes de fer ou de chrome. La phase active des catalyseurs se présente soit sous forme massique soit sous la forme de particules déposées sur un support qui peut être un oxyde réfractaire sous forme de billes, d'extrudés, de trilobés ou sous des formes présentant d'autres géométries. La teneur en métal, la taille et la nature des particules de la phase active d'oxyde métallique, ainsi que les propriétés texturales et structurales du support font partie des critères qui ont une importance sur la performance des catalyseurs.
Les déshydrogénations oxydantes et non-oxydantes ne suivent pas le même schéma réactionnel. En effet, la réaction de déshydrogénation non-oxydante produit, en plus d'une oléfine, du dihydrogène alors que lors de la réaction de déshydrogénation oxydante, le réactif réagit avec l'oxygène pour donner l'oléfine correspondante et de l'eau. Ces deux réactions étant différentes, les catalyseurs efficaces pour ces dernières ne sont pas, de façon évidente, identiques. La présente invention vise à proposer l'utilisation de catalyseurs comprenant un oxyde de silice sur un support silice en déshydrogénation non oxydante d'hydrocarbures.
En effet, et de manière surprenante, le type de catalyseur selon l'invention permet d'atteindre des performances améliorées en déshydrogénation non oxydante d'hydrocarbures.
Il est en effet connu de la littérature (A. Miyakoshi, A. Ueno, M. Ichikawa, Applied Catalysis A: General, 216, p. 137-146, 2001 ) qu'un catalyseur massique à base d'oxyde de manganèse MnO (95% poids) et d'oxyde de potassium (5% poids), ne permet d'atteindre que de faibles conversions et de mauvaises sélectivités vis-à-vis de la déshydrogénation non-oxydante de l'éthylbenzène en styrène.
De plus, des travaux issus de la littérature indiquent que des catalyseurs à base de manganèse sont particulièrement étudiés en déshydrogénation oxydante de 1 -butène (V.V. Krishnan, S.L Suib, J. Catal., 184, p. 305-315, 1999), d'éthane et de propane (Q. Ge, B. Zhaorigetu, C. Yu, W. Li, H. Xu, Catal. Lett., 68, p. 59-62, 2000) ou encore de cyclohexane (H. Zhu, Q. Ge, W. Li, X. Liu, H. Xu, Catal. Lett., 105, p. 29-33, 2005). II est également connu du brevet US 4,370,259 qu'il peut être avantageux d'utiliser un catalyseur à base de manganèse et de phosphore éventuellement sur un support d'oxyde réfractaire pour la déshydrogénation oxydante d'hydrocarbures.
Ainsi, l'art antérieur ne permet pas de déduire que l'emploi selon l'invention de catalyseurs supportés sur silice comprenant un oxyde de manganèse en déshydrogénation non oxydante d'hydrocarbures puisse présenter un avantage.
RÉSUMÉ DE L'INVENTION
Le procédé de déshydrogénation permet de transformer les composés saturés ou monoinsaturés des coupes pétrolières ou issus de la biomasse vers les alcènes ou composés polyinsaturés correspondants en évitant les réactions parasites telles que le craquage ou l'isomérisation squelettale. L'invention concerne un procédé de déshydrogénation d'hydrocarbure non-oxydante mettant en œuvre un catalyseur comprenant un oxyde de manganèse supporté sur silice.
DESCRIPTION DÉTAILLÉE DE L'INVENTION
L'invention concerne un procédé de déshydrogénation non-oxydante de composés aliphatiques, naphténiques ou oléfiniques mettant en œuvre un catalyseur comprenant une phase active comprenant un oxyde de manganèse et un support silice, la surface spécifique BET dudit catalyseur étant comprise entre 1 et 500 m2/g, le volume poreux total dudit support étant compris entre 0,1 et 2 mL/g, l'élément manganèse de ladite phase active se trouvant à un degré d'oxydation supérieur à zéro, la teneur massique de la phase active, rapportée au manganèse métallique, par rapport à la masse totale du catalyseur supporté final étant comprise entre 2% et 20% poids, ledit procédé opérant à une température comprise entre Ο'Ό et 750°C, une pression comprise entre 0,1 et 10 bar absolu et une vitesse volumique horaire (V.V.H.) pour la charge en hydrocarbure à déshydrogéner comprise entre 1 et 1 000 h" , en phase gaz et en présence ou non de vapeur d'eau.
Lesdits composés aliphatiques, naphténiques ou oléfiniques peuvent provenir de coupes pétrolières ou être issus de la biomasse. De manière préférée ledit procédé est un procédé de déshydrogénation non-oxydante d'oléfines, de manière très préférée un procédé de déshydrogénation non-oxydante d'oléfine en C4.
Les procédés de conversion des hydrocarbures tels que le vapocraquage ou le craquage catalytique sont opérés à haute température et produisent une grande variété de molécules insaturées telles que l'éthylène, le propène, les butènes linéaires, l'isobutène, les pentènes ainsi que des molécules insaturées contenant jusqu'à environ 15 atomes de carbone. Pour permettre l'utilisation de ces différentes coupes dans les procédés de pétrochimie tels que les unités de polymérisation, les molécules insaturées doivent respectées des contraintes de pureté très strictes. Ainsi, les composés monoinsaturés et polyinsaturés entrant dans la préparation de polymères sont à forte valeur ajoutée. De ce fait, des méthodes de déshydrogénation directe des molécules saturés ou monoinsaturés sont développées pour accéder plus spécifiquement à ces produits. Sur le même principe, des composés insaturés issus de la déshydratation de produits ex-biomasse peuvent être utilisés. Ainsi, par exemple, la coupe essence (7 à 10 carbones) peut avoir la composition moyenne suivante : de l'ordre de 60% poids en paraffines, de l'ordre de 30% poids en naphtènes et de l'ordre de 10% poids en aromatiques. Le procédé reforming permet de déshydrogéner le cyclohexane en benzène.
L'éthylbenzène, produit par alkylation du benzène, peut être lui aussi déshydrogéné de façon catalytique pour donner majoritairement du styrène. Cette voie est la voie préférentielle d'obtention du styrène comme les coupes essences du vapocraqueur contiennent uniquement 3 à 5 % poids de styrène.
Les vapocraqueurs utilisant comme charge l'éthane produisent uniquement 1 à 2 % poids de butadiène relativement à la capacité de production en éthylène. Or une coupe C4 brute issue d'une raffinerie peut avoir la composition moyenne suivante : 35 % poids en isobutane, 20 % poids en n-butane, 14 % poids en isobutène, 30 % poids en n-butènes et environ 1 % poids répartis entre des C3 et des C5. Là encore la déshydrogénation des butanes et/ou des butènes en butadiène est appropriée pour la production de butadiène.
Ainsi, le procédé de déshydrogénation est intéressant pour obtenir des produits monoinsaturés ou polyinsaturés peu présents dans les coupes du vapocraqueurs.
La déshydrogénation non-oxydante est réalisée en phase gaz, en présence de vapeur d'eau ou non, de préférence en présence de vapeur d'eau. En effet, une réaction en présence de vapeur d'eau permet de limiter l'endothermicité de la réaction et d'augmenter la durée de cycle des catalyseurs en limitant la formation de coke. De plus, des pressions faibles sont préférées pour des raisons thermodynamiques puisqu'elles permettent des conversions plus fortes à températures égales. Dans ce cas, la dilution à la vapeur d'eau permet aussi d'abaisser la pression partielle en composés saturés ou monoinsaturés à déshydrogéner. Les conditions opératoires généralement utilisées pour les réactions de déshydrogénation non-oxydantes sont les suivantes : une température comprise entre 0°C et 750 ^, de préférence entre 400 et 700 ^. Une pression comprise entre 0,1 et 10 bar absolu, de préférence entre 0,2 et 3 bar absolu. Une vitesse volumique horaire (V.V.H.) pour la charge en hydrocarbure à déshydrogéner comprise entre 1 et 1 000 h"1 , de préférence entre 125 et 500 h \
Pour une réaction de déshydrogénation sans dilution par de la vapeur d'eau, la pression est généralement comprise entre 0,1 et 0,4 bar absolu, la température entre 500 et 700 ^ et la vitesse volumique horaire (V.V.H) est comprise entre 50 et 500 h"1.
Pour une réaction de déshydrogénation avec une dilution à la vapeur, la pression est généralement comprise entre 1 et 4 bar absolu, la température entre 500 et 700 'Ό, la vitesse volumique horaire (V.V.H) est entre 100 de 1000 h"1 et le ratio molaire vapeu recomposés saturés ou monoinsaturés à déshydrogéner) entre 1 et 50, préférentiellement entre 5 et 30.
Le procédé de déshydrogénation non-oxydante selon l'invention met en œuvre un catalyseur comprenant un oxyde de manganèse sur un support de silice Si02.
Le support de silice peut être obtenu par toute méthode connue de l'homme du métier. La surface spécifique du catalyseur (mesurée par la méthode Brunauer, Emmett, Teller, i.e. méthode BET telle que définie dans S. Brunauer, P. H. Emmett, E.Teller, J. Am. Chem. Soc, 1938, 60 (2), pp 309-319.) est comprise entre 1 et 500 m2/g, de préférence entre 50 et 400 m2/g. Le volume poreux total dudit support est compris entre 0,1 et 2 mIJg, de préférence entre 0,2 et 1 ,5 mIJg.
Le support peut contenir des impuretés à hauteur maximum de quelques centaines de ppm telles que du sodium, du potassium, du magnésium, du chlore, des sulfates, de l'oxyde de titane ou encore de l'oxyde d'aluminium.
La phase active du catalyseur est un oxyde de manganèse lequel élément peut se trouver sous n'importe quel degré d'oxydation supérieur à zéro. De manière préféré le degré d'oxydation du manganèse sur le catalyseur sera de +2, +3, +4 ou un mélange de ces degrés d'oxydation.
La teneur massique de la phase active, rapportée au manganèse métallique, par rapport à la masse totale du catalyseur supporté final est comprise entre 2% et 20% poids, de préférence entre 5% et 15% poids. La phase active d'oxyde de manganèse étant amorphe ou cristallisée.
Le catalyseur peut éventuellement contenir un élément du groupe IA. De préférence du Li, du Na ou du K, de manière encore plus préférée du K. Lorsqu'il en contient, la teneur en élément du groupe IA est comprise entre 0,1 et 5%, de manière préférée entre 0,5 et 2%.
Selon l'invention, le catalyseur se présente avantageusement sous forme de billes, de trilobés, d'extrudés, de pastilles, ou d'agglomérats irréguliers et non sphériques dont la forme spécifique peut résulter d'une étape de concassage. De manière très avantageuse, ledit catalyseur se présente sous forme de billes ou d'extrudés. De manière encore plus avantageuse, ledit catalyseur se présente sous forme de billes.
La mise en œuvre du catalyseur selon l'invention et les conditions de son utilisation doivent être adaptées par l'utilisateur à la réaction et à la technologie utilisée.
La préparation du catalyseur peut être réalisée par toute méthode connue de l'homme du métier. Par exemple, un mode préféré d'obtention pourra être l'imprégnation à sec d'un précurseur de manganèse en solution dans la porosité d'un support de silice.
La première étape consiste à préparer une solution de précurseur de manganèse. Tout composé contenant l'élément manganèse pourra être employé. De manière préféré le précurseur sera le nitrate de manganèse, le carbonate de manganèse, l'acétate de manganèse, l'acétylacétonate de manganèse, le bromure de manganèse, le chlorure de manganèse, le fluorure de manganèse, le formate de manganèse, l'iodure de manganèse, le sulfate de manganèse. De manière préféré, le précurseur de manganèse est le nitrate de manganèse ou le carbonate de manganèse.
Un volume de solution adapté à la porosité du support et dans une concentration en précurseur de manganèse adaptée à la teneur finale désirée en phase active est ainsi imprégné sur le support de silice.
Le catalyseur imprégné est généralement séché afin d'éliminer toute ou une partie de l'eau introduite lors de l'imprégnation, de préférence à une température comprise entre 50 et 250 de manière plus préférée entre 70 °C et 200 °C. Le séchage est effectué sous air, ou sous atmosphère inerte (azote par exemple).
Le catalyseur est ensuite calciné, généralement sous air. La température de calcination est généralement comprise entre 250 °C et 900 °C, de préférence comprise entre environ 350 °C et environ 750 °C. La durée de calcination est généralement comprise entre 0,5 heures et 16 heures, de préférence entre 1 heures et 5 heures.
Éventuellement, le catalyseur obtenu à l'issu de l'étape de calcination peut subir un traitement sous flux gazeux comprenant entre 25 vol% et 100 vol% d'un gaz réducteur. Le gaz réducteur est de préférence l'hydrogène. De manière préférée, cette étape est effectuée à une température comprise entre 50 'Ό et 450 °C. Ladite réduction peut être réalisée in situ ou ex situ, c'est à dire après ou avant le chargement du catalyseur dans le réacteur. Elle est de préférence réalisée in situ , c'est à dire dans le réacteur où est réalisée la transformation catalytique. Cette réduction éventuelle peut permettre d'activer ledit catalyseur et former des particules d'oxyde de manganèse à des degrés d'oxydation inférieurs à ceux des oxydes formés après l'étape de calcination. Tout ou partie, c'est à dire plus de 90% poids du manganèse reste à un degré d'oxydation supérieur à 0. L'imprégnation du précurseur de la phase active peut être réalisée en une ou plusieurs imprégnations successives. Si elle est faite en plusieurs imprégnations successives, alors les étapes de séchage et de calcination seront répétées.
Éventuellement, un élément du groupe IA du tableau périodique des éléments pourra être ajouté par imprégnation d'une solution contenant un sel hydroxyde, chlorure, bromure, carbonate de l'élément. Si un élément du groupe IA est ainsi déposé par imprégnation à sec, les étapes de séchage et de calcination sont alors répétées.
EXEMPLES
L'invention est illustrée par les exemples qui suivent sans pour autant en limiter la portée. Exemple 1 : Catalyseur A (mise en œuvre non-conforme à l'invention)
Le catalyseur A (non conforme à l'invention) est un catalyseur à base d'oxyde de chrome et de potassium supporté sur une alumine gamma. Il diffère de l'invention par la nature de la phase active et du support.
Afin de préparer 100g de catalyseur, une solution aqueuse de nitrate de chrome Cr(N03)3 est préparée par dilution de 34,2 g de nitrate de chrome nonahydraté (AIdrich) dans de l'eau déminéralisée. Le volume total de la solution aqueuse préparé correspond au volume poreux d'un support alumine commercial de 140 m2.g"1 et de volume poreux total 1 mL.g" . Le support alumine est sous forme de bille de diamètre compris entre 2 et 4mm.
Cette solution est ensuite imprégnée sur 90,1 g du support alumine.
Le solide obtenu est séché sous air à 120°C, puis est calciné pendant 2 heures à 650 'C sous un flux d'air avec un débit de 1 L.h" .(g de catalyseur)" .
Ce solide est ensuite imprégné à sec avec une solution aqueuse dans laquelle 1 ,69 g de K2C03 (AIdrich) ont été dissouts dans 86 mL d'eau déminéralisée. Le catalyseur A obtenu contient 8% poids de Cr métal (12% poids sous forme Cr203), et 1 % K par rapport à la masse du catalyseur sec.
La surface spécifique BET du catalyseur A est de 124 m2.g"1. Exemple 2 : Catalyseur B (selon l'invention)
Le catalyseur B (selon l'invention) est un catalyseur à comprenant un oxyde de manganèse supporté sur une silice.
Afin de préparer 50g de catalyseur, une solution aqueuse de nitrate de manganèse Mn(N03)2 est préparée par dilution de 21 ,2 g de nitrate de manganèse tetrahydraté (AIdrich) dans de l'eau déminéralisée. Le volume total de la solution aqueuse préparé correspond au volume poreux d'un support silice commercial de 323 m2.g"1 et de volume poreux total 0,8 mL.g"1. Le support silice est sous forme de bille de diamètre compris entre 2 et 4mm. Cette solution est ensuite imprégnée sur 44,2 g du support silice.
Le solide obtenu est séché sous air à 120°C, puis est calciné pendant 2 heures à 650 'Ό sous un flux d'air avec un débit de 1 L.h" .(g de catalyseur)"1.
Le catalyseur B obtenu contient 9,4% poids de Mn métal (12,1 % poids sous forme MnO) par rapport à la masse du catalyseur sec.
La surface spécifique BET du catalyseur B est de 123 m2.g"1.
Exemple 3 : Procédé de déshydrogénation non oxydante du 1 -Butène
Les catalyseurs sont soumis à un test de déshydrogénation de 1 -butène en 1 ,3- butadiène dans un réacteur lit fixe de diamètre 20mm. Le volume du lit catalytique est de 40 ce dilué à un ratio 1/3 avec du carbure de silicium de granulométrie 1 ,5 mm. Une zone de préchauffe à l'entrée du réacteur permet d'obtenir une température uniforme.
Lors de la mise en température du réacteur, un flux d'azote et d'eau vapeur est injecté jusqu'à atteindre la consigne. Le début de la phase de test démarre lorsque le flux d'azote est remplacé par le flux de 1 -Butène (Air Liquide 99%).
La VVH en 1 -butène est fixée à 200 h"1 , soit un débit de 2 NL.h" contrôlé par un débitmètre massique. Le ratio volumique H20/1 -Butène est fixé à 20. La pression est maintenue à 1 barg et la température du lit catalytique est de 650 °C. Après séparation des hydrocarbures et de la vapeur d'eau à température et pression ambiante, le gaz est analysé en chromatographie gazeuse. La première analyse est effectuée 5 minutes après le début du test, puis toutes les 20 minutes.
Par la première analyse des effluents à t = 5 minutes, on calcule la conversion du 1 - butène et la sélectivité en 1 ,3-butadiène (en pourcentage). Les résultats obtenus pour les catalyseurs A (non conforme à l'invention) et B (conforme à l'invention) sont reportés dans le tableau 1 . Catalyseur Conversion (%)
Catalyseur A (non conforme) 30 70
Catalyseur B (selon l'invention) 31
Tableau 1 : Conversions en 1 -Butène et sélectivité en 1 ,3-Butadiène
La mise en œuvre du catalyseur B en déshydrogénation non-oxydante du 1 - butène conforme à l'invention induit des performances améliorées par rapport au catalyseur A dont la mise en œuvre est non conforme à l'invention.

Claims

REVENDICATIONS
Procédé de déshydrogénation non-oxydante de composés aliphatiques, naphténiques ou oléfiniques mettant en œuvre un catalyseur comprenant une phase active comprenant un oxyde de manganèse et un support silice, la surface spécifique BET dudit catalyseur étant comprise entre 1 et 500 m2/g, le volume poreux total dudit support étant compris entre 0,1 et 2 mL/g, l'élément manganèse de ladite phase active se trouvant à un degré d'oxydation supérieur à zéro, la teneur massique de la phase active, rapportée au manganèse métallique, par rapport à la masse totale du catalyseur supporté final étant comprise entre 2% et 20% poids, ledit procédé opérant à une température comprise entre Ο 'Ό et 750 'Ό, une pression comprise entre 0,1 et 10 bar absolu et une vitesse volumique horaire (V.V.H.) pour la charge en hydrocarbure à déshydrogéner comprise entre 1 et 1 000 h"1 , en phase gaz et en présence ou non de vapeur d'eau.
Procédé selon la revendication 1 opéré en l'absence de vapeur d'eau, à une pression comprise entre 0,1 et 0,4 bar absolu, une température comprise entre 500 et 700 ^ et une V.V.H comprise entre 50 et 500 h"1.
Procédé selon la revendication 1 opéré en présence de vapeur d'eau, à une pression comprise entre 1 et 4 bar absolu, une température comprise entre 500 et 700 'Ό, une V.V.H comprise entre 100 de 1000 h"1 , et un ratio molaire vapeur/(composés saturés ou monoinsaturés à déshydrogéner) compris entre 1 et 50.
Procédé selon l'une des revendications 1 à 3, dans lequel la surface spécifique BET dudit catalyseur est comprise entre 50 et 400 m2/g.
Procédé selon l'une des revendications 1 à 4, dans lequel le volume poreux total dudit support est compris entre 0,2 et 1 ,5 mIJg.
Procédé selon l'une des revendications 1 à 5, dans lequel l'élément manganèse de ladite phase active se trouve à un degré d'oxydation de +2, +3, +4 ou en mélange de ces degrés d'oxydation.
7. Procédé selon l'une des revendications 1 à 6, dans lequel la teneur massique de ladite phase active, rapportée au manganèse métallique, par rapport à la masse totale du catalyseur supporté final est comprise entre 5% et 15% poids. 8. Procédé selon l'une des revendications 1 à 7, dans lequel ledit catalyseur comprend un élément du groupe IA, dont la teneur est comprise entre 0,1 et 5%.
9. Procédé selon la revendication 8 dans lequel ledit élément du groupe IA est du Li, du Na ou du K.
10. Procédé selon la revendication 8 dans lequel ledit élément du groupe IA est du K.
1 1 . Procédé selon l'une des revendications 1 à 10 de déshydrogénation non oxydante des oléfine en C4.
PCT/FR2013/053004 2012-12-19 2013-12-09 Procede de deshydrogenation non oxydante mettant en œuvre un catalyseur comprenant un oxyde de manganese sur un support de silice WO2014096626A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1203492A FR2999570A1 (fr) 2012-12-19 2012-12-19 Procede de desydrogenation non oxydante mettant en oeuvre un catalyseur comprenant un oxyde de manganese sur un support de silice
FR12/03.492 2012-12-19

Publications (1)

Publication Number Publication Date
WO2014096626A1 true WO2014096626A1 (fr) 2014-06-26

Family

ID=48128373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/053004 WO2014096626A1 (fr) 2012-12-19 2013-12-09 Procede de deshydrogenation non oxydante mettant en œuvre un catalyseur comprenant un oxyde de manganese sur un support de silice

Country Status (2)

Country Link
FR (1) FR2999570A1 (fr)
WO (1) WO2014096626A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370259A (en) * 1980-05-13 1983-01-25 Phillips Petroleum Company Oxidative dehydrogenation catalyst
US5597944A (en) * 1994-11-07 1997-01-28 Texaco Inc. Dehydrogenation of N-paraffin to N-olefin employing manganese oxide octahedral molecular sieve as catalyst
US20040242945A1 (en) * 2003-05-29 2004-12-02 Pelati Joseph E. Dehydrogenation of alkyl aromatic compound over a gallium-zinc catalyst
EP2329878A1 (fr) * 2008-09-22 2011-06-08 Waseda University Catalyseur de déshydrogénation pour composés alkylaromatiques à l'origine d'une catalyse redox efficace, procédé de préparation du catalyseur et procédé de déshydrogénation l'utilisant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370259A (en) * 1980-05-13 1983-01-25 Phillips Petroleum Company Oxidative dehydrogenation catalyst
US5597944A (en) * 1994-11-07 1997-01-28 Texaco Inc. Dehydrogenation of N-paraffin to N-olefin employing manganese oxide octahedral molecular sieve as catalyst
US20040242945A1 (en) * 2003-05-29 2004-12-02 Pelati Joseph E. Dehydrogenation of alkyl aromatic compound over a gallium-zinc catalyst
EP2329878A1 (fr) * 2008-09-22 2011-06-08 Waseda University Catalyseur de déshydrogénation pour composés alkylaromatiques à l'origine d'une catalyse redox efficace, procédé de préparation du catalyseur et procédé de déshydrogénation l'utilisant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KRISHNAN V V ET AL: "Oxidative Dehydrogenation of 1-Butene over Manganese Oxide Octahedral Molecular Sieves", JOURNAL OF CATALYSIS, ACADEMIC PRESS, DULUTH, MN, US, vol. 184, no. 2, 10 June 1999 (1999-06-10), pages 305 - 315, XP004443144, ISSN: 0021-9517, DOI: 10.1006/JCAT.1999.2460 *

Also Published As

Publication number Publication date
FR2999570A1 (fr) 2014-06-20

Similar Documents

Publication Publication Date Title
TWI574942B (zh) 用於乙烯及2-丁烯之複分解以及/或雙鍵異構化之催化劑
CA2748338C (fr) Regeneration de catalyseurs
TWI629255B (zh) 將石蠟轉換成烯烴的製程及用於其中的催化劑
RU2422420C1 (ru) Способ получения олефинов
WO2015055380A1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur contenant du cuivre et au moins un metal choisi parmi le nickel ou le cobalt
JP6803729B2 (ja) p−キシレンの製造方法
WO2014096625A1 (fr) Procede de deshydrogenation non oxydante mettant en œuvre un catalyseur comprenant un oxyde de manganese sur un support d'alumine
FR3022802B1 (fr) Catalyseur oxyde de fer sur support alumine alpha et sa mise en œuvre dans un procede de deshydrogenation d'hydrocarbures monoinsatures comprenant de 4 a 5 atomes de carbone
WO2014096626A1 (fr) Procede de deshydrogenation non oxydante mettant en œuvre un catalyseur comprenant un oxyde de manganese sur un support de silice
WO2014118194A2 (fr) Catalyseur comprenant des oxydes mixtes des éléments aluminium, zinc et manganèse et son utilisation en déshydrogenation
WO2014096628A1 (fr) Catalyseur a base d'oxyde de chrome et son utilisation pour la deshydrogenation d'hydrocarbures
KR101485697B1 (ko) 알칼리금속으로 개질된 노말-부탄의 탈수소화 및 탈수소 이성화 반응용 촉매 및 이를 이용하여 노말-부탄으로부터 노말-부텐 대 이소부텐 생성비가 조절된 노말-부텐, 1,3-부타디엔 및 이소부텐의 혼합물을 제조하는 방법
WO2011008310A1 (fr) Catalyseurs en sphères stratifiées à indices d'accessibilité élevés
JP7090471B2 (ja) p-キシレンの製造方法
WO2015197856A1 (fr) Catalyseur oxyde de fer sur support alumine alpha et sa mise en oeuvre dans un procede de deshydrogenation d'hydrocarbures monoinsatures
US20120322650A1 (en) Layered catalyst
FR3026317A1 (fr) Catalyseur oxyde de fer sur support alumine alpha et sa mise en œuvre dans un procede de deshydrogenation d'hydrocarbures monoinsatures
FR2999954A1 (fr) Catalyseur a base d'oxyde de fer et son utilisation en deshydrogenation
US20120323058A1 (en) Process for using layered sphere catalyst
FR3011846A1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur contenant de l'etain et au moins un metal choisi parmi le fer, molybdene et/ou le cobalt
FR3011847A1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur contenant de l'argent et au moins un metal choisi parmi le fer, molybdene et/ou le cobalt
FR3011843A1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur contenant du fer et au moins un metal choisi parmi le zinc ou le cuivre.
FR3011845A1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur contenant du fer et au moins un metal choisi parmi le nickel ou le cobalt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13818273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13818273

Country of ref document: EP

Kind code of ref document: A1