WO2022110592A1 - 一种电极的冷冻涂覆设备及制造方法 - Google Patents

一种电极的冷冻涂覆设备及制造方法 Download PDF

Info

Publication number
WO2022110592A1
WO2022110592A1 PCT/CN2021/082914 CN2021082914W WO2022110592A1 WO 2022110592 A1 WO2022110592 A1 WO 2022110592A1 CN 2021082914 W CN2021082914 W CN 2021082914W WO 2022110592 A1 WO2022110592 A1 WO 2022110592A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
coating
freezing
refrigeration
platform
Prior art date
Application number
PCT/CN2021/082914
Other languages
English (en)
French (fr)
Inventor
黄淳
郭勇明
Original Assignee
中国科学院上海高等研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011346096.9A external-priority patent/CN112517335A/zh
Priority claimed from CN202022773557.2U external-priority patent/CN214052357U/zh
Application filed by 中国科学院上海高等研究院 filed Critical 中国科学院上海高等研究院
Publication of WO2022110592A1 publication Critical patent/WO2022110592A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/02Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface
    • B05C11/04Apparatus for spreading or distributing liquids or other fluent materials already applied to a surface ; Controlling means therefor; Control of the thickness of a coating by spreading or distributing liquids or other fluent materials already applied to the coated surface with blades
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture

Definitions

  • the invention belongs to the field of lithium ion battery electrode manufacturing technology, and particularly relates to a freezing coating device and a manufacturing method.
  • FIG. 1 A schematic diagram of the structure of the electrode coating equipment currently on the market is shown in FIG. 1 , which includes a box body 11 , a conveyor belt device 12 installed inside the box body 11 , and a transmission position fixedly installed on the conveyor belt device 12 .
  • the running speed of the conveyor belt; the distance between the scraper 14 and the platform 15 can be adjusted to complete the coating of electrodes with different thicknesses.
  • Freeze casting also known as ice-templating
  • Freeze casting is a new environmentally friendly material forming technique developed in recent years to obtain directional array holes, see [An,S.,B.Kim, and J. Lee, Incomparable hardness and modulus of biomimetic porous polyurethane films prepared by directional melt crystallization of a solvent. Journal of Crystal Growth, 2017.469:p.106-113]. Due to the wide range of applicable materials, including ceramics, metals, polymers and composite materials, and the controllable shape and size of the resulting pores, the research on the application of freeze casting to material forming has also increased significantly in recent years.
  • the disadvantage of the current freeze casting method is that it requires an additional operation of connecting the obtained electrode with the metal foil of the current collector, which greatly reduces the continuity of the electrode manufacturing technology, on the contrary, increases its complexity, and is not compatible with the current industrialized manufacturing process. .
  • the refrigerating device includes a refrigerating device placed under, above, left, right, front or rear of the platform.
  • the refrigerating device further includes a water-cooling assembly matched with the refrigerating device, and the water-cooling assembly includes a water-cooling head device and a circulating water pump arranged between the refrigerating device and the platform; and the refrigerating device also includes power supply for the cooling unit described above.
  • the thickness of the substrate is 0.1 mm-10 cm.
  • the electrode includes a lithium battery positive electrode and a lithium battery negative electrode
  • the material of the lithium battery positive electrode includes a manganese-based, nickel-based, cobalt-based, iron-based or copper-based active material
  • the material of the lithium battery negative electrode includes an active material.
  • the thickness of the prepared electrode is 50 nm to 2 mm.
  • the electrode coating equipment includes a box body, a conveyor belt device installed inside the box body, a push rod fixedly installed on a transmission position of the conveyor belt device, and an adjustable scraper connected with the push rod. and the platform on the upper surface of the box.
  • the roller of the conveyor belt device is horizontally arranged, and the two ends of the roller of the conveyor belt device and the conveyor belt extend outward from both sides of the box body; There is a beam between the top ends of the two vertical bars, and the height of the beam is higher than the platform, and the scraper is adjustable and installed on the beam.
  • the present invention provides a kind of freezing coating manufacturing method of electrode, comprising:
  • the freezing coating device includes an electrode coating device and a freezing device arranged on the electrode coating device;
  • the electrode coating device includes a box body, a a conveyor belt device inside the body, a push rod fixedly mounted on a transfer position of the conveyor belt device, an adjustable scraper, and the platform on the upper surface of the box body;
  • S5 Turn on the power supply of the electrode coating device, set the coating speed, and start coating; freeze during the coating process to obtain an electrode with completely frozen and crystallized electrode slurry; or after the coating is completed, start freezing to obtain a completely frozen electrode slurry Crystallized electrodes; wherein the freezing time is from 1 second to 24 hours to ensure that the electrode slurry is completely frozen and crystallized;
  • the refrigerating device includes a refrigerating device placed above, below, left or right of the platform, the refrigerating device includes a refrigerating surface, and a substrate is placed on the refrigerating surface; in the step S2, the current collector is directly placed On the refrigeration device, or the current collector is placed on the substrate on the refrigeration surface of the refrigeration device, or the current collector is first placed on a substrate of different materials and then placed on the substrate on the refrigeration surface of the refrigeration device, or the current collector is placed first. The platform is then placed on the refrigeration unit.
  • the material of the current collector is one of metal foil, metal mesh, carbon-based foil and carbon-based mesh.
  • the thickness of the prepared electrode is 50 nm to 2 mm.
  • the electrode freezing coating equipment of the present invention adds a freezing device on the basis of the traditional coating machine, so as to realize the subsequent processing operations such as freezing crystallization and freeze drying after completing the normal coating, and finally obtain a microstructured electrode, breaking through the traditional electrode structure. constraints, while achieving a cost-effective electrode fabrication process with optimized electrode structure performance. Therefore, from the technical effect that has been achieved, the electrode freezing coating equipment breaks through the limitation of the electrode structure of the current lithium battery electrode manufacturing industry, and improves the energy density of the lithium battery.
  • FIG. 1 is a schematic structural diagram of a conventional electrode coating equipment.
  • FIG. 2 is a schematic structural diagram of an electrode freezing coating apparatus according to an embodiment of the present invention, wherein part of the structure of the electrode coating apparatus is omitted.
  • an electrode freezing coating apparatus includes an electrode coating apparatus 1 and a freezing device disposed on the platform 15 of the electrode coating apparatus 1 .
  • the prepared electrode includes a lithium battery positive electrode (the material can be LiNi 0.8 Mn 0.1 Co 0.1 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.3 Mn 0.3 Co 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiCoO 2 , LiFePO 4 and other manganese-based, nickel-based, cobalt-based, iron-based or copper-based active materials); and lithium battery negative electrode (the material can be graphite, silicon or silicon oxide, etc. active material).
  • the thickness of the prepared electrodes was in the interval from 50 nm to 2 mm.
  • the electrode coating equipment 1 has the same structure as the conventional electrode coating equipment 1. As shown in FIG. 1, it includes a box body 11, a conveyor belt device 12 installed inside the box body 11, a The push rod 13 at a transmission position of the conveyor device 12, the adjustable scraper 14 fixedly connected with the push rod 13, and the platform 15 located on the upper surface of the box body 11, so that the platform 15 is installed on the box body 11 on.
  • the conveyor belt device 12 has rollers and conveyor belts. In this embodiment, the rollers of the conveyor belt device 12 are arranged horizontally, and both ends of the rollers of the conveyor belt device 12 and the conveyor belt protrude outward from both sides of the box body 11 .
  • the push rod 13 includes two vertical rods 131 disposed at both ends of the conveyor belt and a cross beam 132 connected between the top ends of the two vertical rods 131 , and the height of the cross beam 132 is higher than the platform 15 .
  • the doctor blade 14 is modulably mounted on the beam 132, so that the height of the doctor blade 14 is higher than the platform 15, and the height of the doctor blade 14 can be adjusted by the screw device of the doctor blade, so as to complete the coating of electrodes with different thicknesses.
  • the conveyor belt device 12 is driven by a motor, and the running speed of the conveyor belt device 12 can be changed through a speed control button.
  • the refrigerating device 2 includes a refrigerating device 21 placed on the platform 15 , a water-cooling assembly 22 and a power source 23 that are matched with the refrigerating device 21 .
  • the refrigeration device 21 is used as a refrigeration source.
  • the refrigeration device 21 may be a semiconductor refrigeration device, a liquid nitrogen refrigeration device or other refrigeration devices, and the cooling temperature of the refrigeration device 21 is -95°C to 25°C.
  • the refrigerating device 21 includes a refrigerating surface on which a base plate 24 is placed, and the thickness of the base plate is 0.1 mm-10 cm.
  • the water cooling assembly 22 includes a water cooling head device 221 arranged on the coating equipment 1, specifically connected to the refrigeration device 21, or a water cooling head device 221 connected to the platform 15, and a circulating water cooling head device 221.
  • the water pump 222 and the water outlet 223, the refrigeration device 21 reaches the refrigeration capacity.
  • the temperature of the cooling side is 25 to -273.15°C.
  • the water-cooled head device 221 is provided between the refrigeration device 21 and the platform 15 , so the water-cooled head device 221 is connected to both the refrigeration device 21 and the platform 15 .
  • the power source 23 is connected to a refrigeration device 21 such as a semiconductor refrigeration device.
  • the electrode manufactured by the freezing coating device of the electrode of the present invention has more excellent rate performance than the general electrode obtained by the traditional coating process, that is, higher capacity can be achieved under high rate charge and discharge, and at higher rate, The advantage is more obvious.
  • the electrode freezing coating equipment of the present invention and the traditional coating equipment were used to manufacture electrodes, and the obtained electrodes were characterized for their microstructure and electrochemical performance.
  • the electrode structure prepared by the device presents a compact and irregular arrangement, while the electrode obtained by the cryocoating device of the electrode of the present invention presents a pore-like structure oriented and arranged in the vertical direction on the microscopic level. From the electrochemical performance characterization results, the electrodes obtained by the two processes were tested for charge-discharge cycles at the same rate, and it was found that there was no significant difference in the performance of the two electrodes at low rates (0.1C), but the present invention was used at high rates.
  • the electrode performance obtained by the cryo-coating equipment of the electrode is excellent.
  • Step S1 build the freezing coating equipment based on the above; at this time, the push rod 13 is in the reset position.
  • the current collector can be directly placed on the refrigeration device 21, or the current collector can be placed on the substrate 24 on the cooling surface of the refrigeration device 21, or the current collector can be first placed on a substrate of different materials and then placed on the refrigeration device 21. On the base plate 24 on the surface, or the current collector is first placed on the platform 15 and then placed on the refrigeration device 21 .
  • the aluminum foil is firstly placed on an aluminum plate with a size of 10cm*10cm*5mm.
  • Step S6 The coating is completed, and the push rod 13 returns to the reset position.
  • Step S7 Put the electrode whose electrode slurry is completely frozen and crystallized into a drying device such as a freeze dryer or use other drying devices to dry to obtain a working electrode that can be used for assembling a battery.
  • the material of the working electrode includes LiNi 0.8 Mn 0.1 Co 0.1 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.3 Mn 0.3 Co 0.3 O 2 , LiNi 0.3 Mn 0.3 Co 0.3 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , At least one of 0.8 Co 0.15 Al 0.05 O 2 , lithium cobaltate LiCoO 2 and lithium iron phosphate LiFePO 4 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

电极的冷冻涂覆设备以及电极的冷冻涂覆制造方法。冷冻涂覆设备包括一电极涂覆设备(1)和设置于电极涂覆设备(1)的冷冻装置(2)。冷冻涂覆设备在电极涂覆过程中或涂覆过程完成后对电极浆液进行定向温度梯度的冷冻结晶,最后在干燥后获得定向孔状的电极,拥有简单高效的优点,并达到制造定向孔隙电极的目的。

Description

一种电极的冷冻涂覆设备及制造方法 技术领域
本发明属于锂离子电池电极制造工艺领域,具体涉及一种冷冻涂覆设备及制造方法。
背景技术
针对目前锂离子电池电极的制造产业化工业,通常运用经济且高效的涂覆工艺。
目前市场上的电极涂覆设备的结构示意图如附图1所示,其包括箱体11、一安装于箱体11的内部的传送带装置12、一固定安装于所述传送带装置12的一个传送位置上的推杆13、与所述推杆13固定连接的可调制的刮刀14以及位于所述箱体11的上表面的平台15,传送带装置12由电机驱动其运动,并可通过调速按钮改变传送带运行速度;刮刀14与平台15的距离可调,以完成涂覆不同厚度的电极。具体工作过程为:首先在平台15铺好集流体金属箔,将制备好的粘度均匀性合适的电极浆液倒至靠近推杆13的复位位置一侧的金属箔上,将调节好高度的刮刀14放置于未涂覆电极浆液一侧,接通涂敷机电源,调节好运行速度后开始涂覆,传送带装置12带动推杆13运动,进而推杆13带动刮刀14运动,直到将整个金属箔铺满一层均匀厚度的电极浆液膜。将涂覆好的电极在真空下干燥去除溶剂,最终得到可用的锂离子电池电极。
虽然此种电极制造方法简单高效且已经实现工业化,但得到的电极微结构组织无规则排布且可制造的电极厚度受到制约,这大大限制了锂离子的扩散速率而造成电极实际工作倍率性能下降,即在高电流密度充放电时,电池容量大幅度衰减。因此需要开发一种生成定向孔状电极的电极制造方法。
已有制造定向孔状电极的制造方法目前在文献中有所涉及,但由于其局限性仍未实现商业化。冷冻铸造,也被称为冰模板法(ice-templating),是一种近年来发展起来用来获得定向阵列孔状的新型环境友好型材料成型技术,参见[An,S.,B.Kim,and J.Lee,Incomparable hardness and modulus of biomimetic porous polyurethane films prepared by directional melt crystallization of  a solvent.Journal of Crystal Growth,2017.469:p.106-113]。由于适用材料广泛,包括陶瓷,金属,聚合物和复合材料,加上所得到的孔状形状和大小可控,因此近些年来冷冻铸造应用于材料成型上的研究也随着大幅增加,该技术的优越性也得到更多关注,具体参见[Mu,C.,et al.,Fabrication of microporous membranes by a feasible freeze method.Journal of Membrane Science,2010.361(1-2):p.15-21]、[Gaudillere,C.and J.M.Serra,Freeze-casting:Fabrication of highly porous and hierarchical ceramic supports for energy applications.Boletín de la Sociedad
Figure PCTCN2021082914-appb-000001
de Cerámica y Vidrio,2016.55(2):p.45-54]。
但是目前冷冻铸造法缺点是需要额外的将其得到的电极与集流体金属箔连接起来的操作,大大减少了电极制造技术的连贯性,相反增添了其复杂性,且无法与现今工业化制造工艺兼容。
发明内容
本发明的目的在于提供一种电极的冷冻涂覆设备及制造方法,以制造含有竖直孔隙结构的电极。
为了实现上述目的,本发明提供一种电极的冷冻涂覆设备,包括一电极涂覆设备和设置于所述电极涂覆设备的冷冻装置。
所述冷冻装置包括放置于平台下方、上方、左方、右方、前方或后方的制冷装置。
所述制冷装置包括半导体制冷装置或液氮制冷装置。
所述制冷装置的冷却温度在-95℃至25℃。
所述冷冻装置还包括与所述制冷装置配套的水冷组件,所述水冷组件包括设于所述制冷装置与所述平台之间的水冷头器件和循环水泵;且所述冷冻装置还包括与所述制冷装置配套的电源。
所述制冷装置包括制冷面,所述制冷面上放置有一块基板。
所述基板的厚度为0.1mm-10cm。
所述电极包括锂电池正极和锂电池负极,所述锂电池正极的材料包括锰基、镍基、钴基、铁基或铜基的活性材料,所述锂电池负极的材料包括活性材料。
所述锂电池正极的材料包括LiNi 0.8Mn 0.1Co 0.1O 2,LiNi 0.6Mn 0.2Co 0.2O 2,LiNi 0.5Mn 0.3Co 0.2O 2,LiNi 0.3Mn 0.3Co 0.3O 2,LiNi 0.8Co 0.15Al 0.05O 2,LiCoO 2,LiFePO 4中的至少一种;所述锂电池负极的材料包括石墨、硅、氧化硅中的至少一种。
制备出的电极的厚度为50nm至2mm。
所述电极涂覆设备包括一箱体、一安装于箱体的内部的传送带装置、一固定安装于所述传送带装置的一个传送位置上的推杆、与所述推杆连接的可调制的刮刀以及位于所述箱体的上表面的所述平台。
所述传送带装置的滚筒水平设置,且传送带装置的滚筒和传送带的两端自所述箱体的两侧向外伸出;所述推杆为包括两个设于传送带的两端的竖杆和连接于两个竖杆的顶端之间的一横梁,且横梁的高度高于所述平台,所述刮刀可调制地安装于所述横梁上。
另一方面,本发明提供一种电极的冷冻涂覆制造方法,包括:
S1:搭建一冷冻涂覆设备,所述冷冻涂覆设备包括一电极涂覆设备和设置于所述电极涂覆设备上的冷冻装置;所述电极涂覆设备包括一箱体、一安装于箱体的内部的传送带装置、一固定安装于所述传送带装置的一个传送位置上的推杆、可调制的刮刀以及位于所述箱体的上表面的所述平台;
S2:将集流体置于平台上;
S3:配制好的电极浆液倒在集流体上的靠近推杆的复位位置一侧;
S4:在所述推杆上安装所述刮刀并调节其高度,使得刮刀的刀刃的高度位于推杆和电极浆液之间;
S5:接通电极涂覆设备的电源,设置涂覆速度,开始涂覆;在涂覆过程中冷冻,得到电极浆液完全冷冻结晶的电极;或者涂覆完成之后,开始冷冻,得到电极浆液完全冷冻结晶的电极;其中冷冻的时间为1秒至24小时,以确保电极浆液完全冷冻结晶;
S6:涂覆完成,推杆回到复位位置。
S7:将电极浆液完全冷冻结晶的电极利用干燥设备干燥,得到可用于组装电池的工作电极。
所述冷冻装置包括放置于平台上方、下方、左方或右方的制冷装置,所述制冷装置包括制冷面,所述制冷面上放置有一块基板;在所述步骤S2中, 集流体直接置于制冷装置上,或者集流体置于制冷装置的制冷面上的基板上,或者集流体先设置于不同材质的基底上再置于制冷装置的制冷面上的基板上,或者集流体先置于平台上再置于制冷装置上。
所述集流体的材料为金属箔、金属网、碳基箔和碳基网中的一种。
在所述步骤S7中,制备出的电极的厚度为50nm至2mm。
本发明的电极的冷冻涂覆设备通过在传统涂覆机的基础上添加冷冻装置,以实现在完成正常涂覆之后进行冷冻结晶,冷冻干燥等后续处理操作最后获得微结构电极,突破传统电极结构的限制,同时实现电极制造工艺经济高效与优化电极结构性能。因此,从已经达到的技术效果来看,电极的冷冻涂覆设备突破目前锂电池电极制造产业电极结构的限制,提升锂电池的能量密度。
附图说明
图1为传统的电极涂覆设备的结构示意图。
图2为根据本发明的一个实施例的电极的冷冻涂覆设备的结构示意图,其中省略了电极涂覆设备的部分结构。
具体实施方式
以下结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围。
如图2所示为根据本发明的一个实施例的电极的冷冻涂覆设备,其包括一电极涂覆设备1和设置于所述电极涂覆设备1的平台15上的冷冻装置。
制备的电极包括锂电池正极(其材料可以是LiNi 0.8Mn 0.1Co 0.1O 2,LiNi 0.6Mn 0.2Co 0.2O 2,LiNi 0.5Mn 0.3Co 0.2O 2,LiNi 0.3Mn 0.3Co 0.3O 2,LiNi 0.8Co 0.15Al 0.05O 2,LiCoO 2,LiFePO 4等其它锰基、镍基、钴基、铁基或铜基的活性材料);和锂电池负极(其材料可以是石墨、硅或氧化硅等其它活性材料)。制备出的电极的厚度在从50nm至2mm的区间内。
所述电极涂覆设备1与传统的电极涂覆设备1的结构相同,如图1所示,其包括一箱体11、一安装于箱体11的内部的传送带装置12、一固定安 装于所述传送带装置12的一个传送位置上的推杆13、与所述推杆13固定连接的可调制的刮刀14以及位于所述箱体11的上表面的平台15,由此平台15安装在箱体11上。传送带装置12具有滚筒和传送带,在本实施例中,传送带装置12的滚筒水平设置,且传送带装置12的滚筒和传送带的两端均自所述箱体11的两侧向外伸出。推杆13为包括两个设于传送带的两端的竖杆131和连接于两个竖杆131的顶端之间的一横梁132,且横梁132的高度高于所述平台15。所述刮刀14可调制地安装于所述横梁132上,从而使得刮刀14的高度高于所述平台15,并且刮刀14的高度通过刮刀的螺旋设备可调,以完成涂覆不同厚度的电极。传送带装置12由电机驱动,并可通过调速按钮改变传送带装置12的运行速度。
再请参见图2,所述冷冻装置2包括放置于平台15上的制冷装置21以及与之配套的水冷组件22和电源23。其中,制冷装置21作为制冷源。
参见图2,制冷装置21可以是半导体制冷装置、液氮制冷装置或其它制冷装置,制冷装置21的冷却温度在-95℃至25℃。制冷装置21包括制冷面,该制冷面上放置有一块基板24,该基板的厚度为0.1mm-10cm。所述水冷组件22包括设于涂覆设备1上,具体与所述制冷装置21连接的水冷头器件221,或与所述平台15连接的水冷头器件221,以及与水冷头器件221连接的循环水泵222和排水口223,制冷装置21达到制冷量。制冷面的温度为25到-273.15℃。在本实施例中,所述水冷头器件221设于所述制冷装置21与所述平台15之间,因此水冷头器件221与所述制冷装置21和所述平台15均连接。
所述电源23连接制冷装置21如半导体制冷装置。
本发明的电极的冷冻涂覆设备通过在传统涂覆机的基础上添加冷冻装置,以实现在完成正常涂覆之后进行冷冻结晶,冷冻干燥等后续处理操作最后获得微结构电极,突破传统电极结构的限制,同时实现电极制造工艺经济高效与优化电极结构性能。因此,从已经达到的技术效果来看,电极的冷冻涂覆设备突破目前锂电池电极制造产业电极结构的限制,提升锂电池的能量密度。
利用本发明的电极的冷冻涂覆设备制造的电极具有比传统涂覆工艺得到的一般电极具有更优异的倍率性能,即在高倍率充放电下实现更高的容量, 且在越高倍率下,优势更加明显。
同一电极浆液分别采用本发明的电极的冷冻涂覆设备与传统涂覆设备进行电极的制造,对得到的电极进行微观结构和电化学性能的表征,从微观形貌表征结果可以看出传统涂覆设备制备的电极结构呈现组织紧密且无规律排布,而本发明的电极的冷冻涂覆设备得到的电极在微观上呈现沿竖直方向定向排列的孔状结构。从电化学性能表征结果看,对两种工艺得到的电极在相同倍率下充放电循环测试,结果发现在低倍率(0.1C)下两种电极表现无明显差异,但在高倍率下采用本发明的电极的冷冻涂覆设备得到的电极表现较优异,具体表现为在5C倍率下,冷冻电极保持65.9mAh/g的放电容量,传统涂覆电极的放电容量保持在55.8mAh/g;在20C倍率下,传统的涂覆设备得到电极已经失去充放电能力,但电极的冷冻涂覆设备制作得到电极依旧保持32.8mAh/g的放电容量。从电化学性能上看,采用本发明设计电极的冷冻涂覆设备得到的电极表现更加优异,因此体现出本发明的优越性。
基于上文所述的电极的冷冻涂覆设备,所述实现的电极的冷冻涂覆制造方法的具体工作流程如下:
步骤S1:搭建基于上文所述的冷冻涂覆设备;此时,推杆13位于复位位置。
步骤S2:将集流体置于冷冻装置2上;由于所述冷冻装置2包括放置于平台15下方、上方、左方、右方、前方或后方的制冷装置21如半导体制冷装置,且制冷装置21的制冷面上放置有一块基板24,因此,集流体置于平台15上。其中,集流体的材料为金属箔、金属网、碳基箔和碳基网中的一种或其它材料。在本实施例中,制冷装置21置于平台15上方,集流体置于平台15上方的制冷装置21上设置的基板24上;
其中,集流体可以直接置于制冷装置21上,或者集流体置于制冷装置21的制冷面上的基板24上,或者集流体上先设置于不同材质的基底上再置于制冷装置21的制冷面上的基板24上,或者集流体先置于平台15上再置于制冷装置21上。在本实施例中,先将铝箔放于尺寸为10cm*10cm*5mm铝板上。
步骤S3:配制好的电极浆液倒在集流体的靠近推杆13的复位位置一侧;电极浆液粘度适宜,分散均匀。在本实施例中,由于制备的电极是作为锂电 池电池的正极材料(三元材料LiNi 0.8Mn 0.1Co 0.1O 2,LiNi 0.6Mn 0.2Co 0.2O 2,LiNi 0.5Mn 0.3Co 0.2O 2,LiNi 0.3Mn 0.3Co 0.3O 2,LiNi 0.8Co 0.15Al 0.05O 2,钴酸锂LiCoO 2和磷酸铁锂LiFePO 4中的至少一种)孔状电极,电极浆液的成份包括活性材料、导电材料和粘结剂。
步骤S4:在推杆13上安装可调制的刮刀14并调节其高度,使得刮刀14的刀刃的高度位于推杆13和电极浆液之间。
步骤S5:接通电极涂覆设备1的电源,即接通冷冻装置2的电源,设置涂覆速度,开始涂覆;其中,设置的涂覆速度为1mm/分钟–1m/秒;在涂覆过程中冷冻,得到电极浆液完全冷冻结晶的电极;或者涂覆完成之后,开始冷冻,得到电极浆液完全冷冻结晶的电极;其中冷冻的时间为1秒至24小时,以确保电极浆液完全冷冻结晶;
步骤S6:涂覆完成,推杆13回到复位位置。
步骤S7:将电极浆液完全冷冻结晶的电极放入冷冻干燥机这种干燥设备内或利用其它干燥设备干燥,得到可用于组装电池的工作电极。在本实施例中,所述工作电极的材料包括LiNi 0.8Mn 0.1Co 0.1O 2,LiNi 0.6Mn 0.2Co 0.2O 2,LiNi 0.5Mn 0.3Co 0.2O 2,LiNi 0.3Mn 0.3Co 0.3O 2,LiNi 0.8Co 0.15Al 0.05O 2,钴酸锂LiCoO 2和磷酸铁锂LiFePO 4中的至少一种。
由此,可以实现电极的冷冻涂覆制备。
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (15)

  1. 一种电极的冷冻涂覆设备,其特征在于,包括一电极涂覆设备(1)和设置于所述电极涂覆设备(1)上的冷冻装置(2)。
  2. 根据权利要求1所述的电极的冷冻涂覆设备,其特征在于,所述电极涂覆设备(1)具有平台(15),所述冷冻装置(2)包括置于平台(15)下方、上方、左方、右方、前方或后方的制冷装置(21)。
  3. 根据权利要求2所述的电极的冷冻涂覆设备,其特征在于,所述制冷装置包括半导体制冷片或液氮制冷装置。
  4. 根据权利要求2所述的电极的冷冻涂覆设备,其特征在于,所述制冷装置(21)的冷却温度在-95℃至25℃。
  5. 根据权利要求2所述的电极的冷冻涂覆设备,其特征在于,所述冷冻装置(2)还包括与所述制冷装置(21)配套的水冷组件(22),所述水冷组件(22)包括与所述制冷装置(21)连接的水冷头器件(221)或与所述平台(15)连接的水冷头器件(221),及与水冷头器件(221)连接的循环水泵(222);且所述冷冻装置(2)还包括与所述制冷装置(21)配套的电源(23)。
  6. 根据权利要求2所述的电极的冷冻涂覆设备,其特征在于,所述制冷装置(21)包括制冷面,所述制冷面上放置有一块基板(24)。
  7. 根据权利要求6所述的电极的冷冻涂覆设备,其特征在于,所述基板(24)的厚度为0.1mm-10cm。
  8. 根据权利要求1所述的电极的冷冻涂覆设备,其特征在于,所述电极包括锂电池正极和锂电池负极,所述锂电池正极的材料包括锰基、镍基、钴基、铁基或铜基的活性材料,所述锂电池负极的材料包括活性材料。
  9. 根据权利要求8所述的电极的冷冻涂覆设备,其特征在于,所述锂电池正极的材料包括LiNi 0.8Mn 0.1Co 0.1O 2,LiNi 0.6Mn 0.2Co 0.2O 2,LiNi 0.5Mn 0.3Co 0.2O 2,LiNi 0.3Mn 0.3Co 0.3O 2,LiNi 0.8Co 0.15Al 0.05O 2,LiCoO 2,LiFePO 4中的至少一种;所述锂电池负极的材料包括石墨、硅、氧化硅中的至少一种。
  10. 根据权利要求1所述的电极的冷冻涂覆设备,其特征在于,制备出的电极的厚度为50nm至2mm。
  11. 根据权利要求1所述的电极的冷冻涂覆设备,其特征在于,所述电 极涂覆设备(1)包括一箱体(11)、一安装于箱体(11)的内部的传送带装置(12)、一固定安装于所述传送带装置(12)的一个传送位置上的推杆(13)、与所述推杆(13)连接的可调制的刮刀(14)以及位于所述箱体(11)的上表面的所述平台(15)。
  12. 根据权利要求11所述的电极的冷冻涂覆设备,其特征在于,所述传送带装置(12)的滚筒水平设置,且传送带装置(12)的滚筒和传送带的两端自所述箱体(11)的两侧向外伸出;所述推杆(13)为包括两个设于传送带的两端的竖杆(131)和连接于两个竖杆(131)的顶端之间的一横梁(132),且横梁(132)的高度高于所述平台(15),所述刮刀(14)可调制地安装于所述横梁(132)上。
  13. 一种电极的冷冻涂覆制造方法,其特征在于,包括:
    步骤S1:搭建一冷冻涂覆设备,所述冷冻涂覆设备包括一电极涂覆设备(1)和设置于所述电极涂覆设备(1)上的冷冻装置(2);所述电极涂覆设备(1)包括一箱体(11)、一安装于箱体(11)的内部的传送带装置(12)、一固定安装于所述传送带装置(12)的一个传送位置上的推杆(13)、可调制的刮刀(14)以及位于所述箱体(11)的上表面的所述平台(15);
    步骤S2:将集流体置于平台(15)上;
    步骤S3:配制好的电极浆液倒在集流体上的靠近推杆(13)的复位位置一侧;
    步骤S4:在所述推杆(13)上安装所述刮刀(14)并调节其高度,使得刮刀(14)的刀刃的高度位于推杆(13)和电极浆液之间;
    步骤S5:接通电极涂覆设备(1)的电源,设置涂覆速度,开始涂覆;在涂覆过程中冷冻,得到电极浆液完全冷冻结晶的电极,或者涂覆完成之后,开始冷冻,得到电极浆液完全冷冻结晶的电极;其中冷冻的时间为1秒至24小时,以确保电极浆液完全冷冻结晶;
    步骤S6:涂覆完成,推杆(13)回到复位位置;
    步骤S7:将电极浆液完全冷冻结晶的电极放入利用干燥设备干燥,得到可用于组装电池的工作电极。
  14. 根据权利要求13所述的电极的冷冻涂覆制造方法,其特征在于,在 所述步骤S1中,所述冷冻装置(2)包括放置于平台(15)上方、下方、左方或右方的制冷装置(21),所述制冷装置(21)包括制冷面,所述制冷面上放置有一块基板(24);且
    在所述步骤S2中,集流体直接置于制冷装置(21)上,或者集流体置于制冷装置(21)的制冷面上的基板(24)上,或者集流体上先设置于不同材质的基底上再置于制冷装置(21)的制冷面上的基板(24)上,或者集流体先置于平台(15)上再置于制冷装置(21)上。
  15. 根据权利要求13所述的电极的冷冻涂覆制造方法,其特征在于,所述集流体的材料为金属箔、金属网、碳基箔和碳基网中的一种。
PCT/CN2021/082914 2020-11-25 2021-03-25 一种电极的冷冻涂覆设备及制造方法 WO2022110592A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202022773557.2 2020-11-25
CN202011346096.9A CN112517335A (zh) 2020-11-25 2020-11-25 一种电极的冷冻涂覆设备及制造方法
CN202011346096.9 2020-11-25
CN202022773557.2U CN214052357U (zh) 2020-11-25 2020-11-25 一种电极的冷冻涂覆设备

Publications (1)

Publication Number Publication Date
WO2022110592A1 true WO2022110592A1 (zh) 2022-06-02

Family

ID=81753854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082914 WO2022110592A1 (zh) 2020-11-25 2021-03-25 一种电极的冷冻涂覆设备及制造方法

Country Status (1)

Country Link
WO (1) WO2022110592A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115458814A (zh) * 2022-08-31 2022-12-09 江西省中子能源有限公司 一种锂电池封装生产装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080084016A (ko) * 2007-03-14 2008-09-19 삼성에스디아이 주식회사 극판 압연 장치
JP2015206529A (ja) * 2014-04-18 2015-11-19 クリーン・テクノロジー株式会社 薄膜塗工装置に設ける乾燥装置
CN204866384U (zh) * 2015-07-31 2015-12-16 东莞市利赛奥新能源科技有限公司 一种锂电池极片涂布装置
CN108258187A (zh) * 2018-01-08 2018-07-06 苏州宇量电池有限公司 一种锂离子电池极片的低温干燥方法
CN109755469A (zh) * 2017-11-01 2019-05-14 中国科学院大连化学物理研究所 一种锂硫电池用薄层状电极及其制备和应用
CN112517335A (zh) * 2020-11-25 2021-03-19 中国科学院上海高等研究院 一种电极的冷冻涂覆设备及制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080084016A (ko) * 2007-03-14 2008-09-19 삼성에스디아이 주식회사 극판 압연 장치
JP2015206529A (ja) * 2014-04-18 2015-11-19 クリーン・テクノロジー株式会社 薄膜塗工装置に設ける乾燥装置
CN204866384U (zh) * 2015-07-31 2015-12-16 东莞市利赛奥新能源科技有限公司 一种锂电池极片涂布装置
CN109755469A (zh) * 2017-11-01 2019-05-14 中国科学院大连化学物理研究所 一种锂硫电池用薄层状电极及其制备和应用
CN108258187A (zh) * 2018-01-08 2018-07-06 苏州宇量电池有限公司 一种锂离子电池极片的低温干燥方法
CN112517335A (zh) * 2020-11-25 2021-03-19 中国科学院上海高等研究院 一种电极的冷冻涂覆设备及制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115458814A (zh) * 2022-08-31 2022-12-09 江西省中子能源有限公司 一种锂电池封装生产装置

Similar Documents

Publication Publication Date Title
WO2019109398A1 (zh) 一种超薄金属锂复合体及其制备方法和用途
CN105932245B (zh) 一种高压实密度硅碳负极材料及其制备方法和应用
CN110676420A (zh) 一种锂离子电池的补锂隔膜
CN110957470B (zh) 具有垂直孔道结构的锂离子电池极片的制备方法及产品
CN112517335A (zh) 一种电极的冷冻涂覆设备及制造方法
CN104868106A (zh) 一种石墨烯包覆锂离子电池石墨负极材料的方法及其应用
CN105449165A (zh) 锂离子电池的富锂极片及其制备方法
CN107785552B (zh) 一种氮掺杂花状等级结构多孔碳-硒复合正极材料及其制备方法与应用
CN111682147B (zh) 一种同时抑制锂枝晶和穿梭效应的双涂层隔膜及其制备方法
WO2012019492A1 (zh) 锂离子电池三维纳米多孔金属氧化物电极材料及其制备方法
CN109860554B (zh) 一种结构稳定型锂电池复合电极粉体材料的制备方法
CN110224122B (zh) 具有多孔结构的预锂化合金的制备方法
CN110752349A (zh) 一种锂硫电池正极的制备方法
KR20220104684A (ko) 리튬 이온 전지용 실리콘-탄소 음극재 및 그 제조 방법
WO2022110592A1 (zh) 一种电极的冷冻涂覆设备及制造方法
CN110544773A (zh) 用于锂金属负极的三维多孔碳限域MOFs集流体的制备方法
CN113707954A (zh) 一种负极补锂结构、其制备方法和负极补锂方法
CN108493483A (zh) 一种固态电解质膜电芯层结构界面处理方法、锂电芯结构
CN109585914B (zh) 氧化物固态电解质薄片的制备方法及采用该方法制备的固态电池
CN111519141B (zh) 锂合金靶材及其制备方法与应用
CN109390554B (zh) 一种负极片及其富锂负极片和锂离子二次电池及制备方法
CN115148960A (zh) 负极极片及包含该负极极片的电化学装置、电子装置
CN214052357U (zh) 一种电极的冷冻涂覆设备
CN112652805A (zh) 一种锂离子电池用一体化多孔电极及其制备和应用
CN113964381B (zh) 一种非对称凝胶态电解质及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896110

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21896110

Country of ref document: EP

Kind code of ref document: A1