WO2022110395A1 - 一种散热装置 - Google Patents

一种散热装置 Download PDF

Info

Publication number
WO2022110395A1
WO2022110395A1 PCT/CN2020/137781 CN2020137781W WO2022110395A1 WO 2022110395 A1 WO2022110395 A1 WO 2022110395A1 CN 2020137781 W CN2020137781 W CN 2020137781W WO 2022110395 A1 WO2022110395 A1 WO 2022110395A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary
sub
channel
heat dissipation
dissipation device
Prior art date
Application number
PCT/CN2020/137781
Other languages
English (en)
French (fr)
Inventor
陈晓杰
徐莎莎
方文兵
李富根
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022110395A1 publication Critical patent/WO2022110395A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to the technical field of heat dissipation, in particular to a heat dissipation device.
  • Vapor chamber Chamber VC is an ideal solution to solve the heat dissipation problem of various electronic products.
  • the temperature equalizing plate usually includes two cover plates that cover each other and a mesh wire arranged between the two as a capillary structure. trouble.
  • the purpose of the present invention is to provide a heat dissipation device with simple processing technology.
  • the present invention provides a heat dissipation device, the heat dissipation device has a hot end in contact with a heat source and a cold end away from the heat source, the heat dissipation device includes a plate body with a closed inner cavity, a heat dissipation device filled in the closed inner cavity The cooling medium and the capillary structure accommodated in the closed inner cavity, the heat dissipation device has a first direction from the hot end to the cold end and a second direction perpendicular to the first direction, characterized in that:
  • the capillary structure is formed on the inner surface of the plate body by etching, and the capillary structure includes a plurality of first capillary units spaced along the first direction and disposed between two adjacent first capillary units.
  • the second capillary unit between them; each of the first capillary units includes a plurality of first capillary monomers spaced along the second direction, and a channel is formed between two adjacent first capillary monomers.
  • a plurality of the first capillary monomers in the adjacent first capillary units are arranged in a matrix; each of the second capillary units includes a plurality of second capillary monomers spaced along the second direction, Each of the second capillary monomer portions is housed in the channel.
  • each of the first capillary monomers is disposed opposite to one of the adjacent first capillary units along the first direction, and each of the channels is opposite to an adjacent first capillary unit.
  • One of the second capillary units in the second capillary units is oppositely disposed along the first direction, and each of the second capillary units is partially accommodated in the channel disposed opposite to the second capillary unit.
  • the heat dissipation device further has a third direction perpendicular to the first direction and the second direction, and the third direction is the thickness direction of the plate body;
  • the orthographic projection of the third direction is a polygon, the polygon includes two first parts oppositely arranged along the first direction, each of the first parts includes two first sides arranged at an included angle, and the channel includes A first sub-channel disposed between the first sides of two adjacent first capillary monomers, each of the second capillary monomers is partially accommodated in the first sub-channel of the channel disposed opposite to it. in a sub-channel.
  • the two first parts are arranged at intervals along the first direction
  • the polygon further includes a second part connecting the two first parts
  • the second part includes two parallel to each other and along the first part.
  • the second sides are spaced apart in two directions
  • the channel further includes a second sub-channel disposed between the second sides of two adjacent first capillary monomers, the second sub-channel is connected to the second side of the first capillary monomer.
  • the first sub-channel is connected.
  • the distance between the two second sides of the first capillary monomer is greater than or equal to 0.02 mm and less than or equal to 1.00 mm.
  • the width of the second sub-channel is greater than or equal to 0.02 mm and less than or equal to 0.50 mm.
  • each of the second capillary monomers separates the first sub-channels of the channel disposed opposite to it into two sub-channels located on both sides of the second capillary monomer and communicated with the second sub-channels respectively.
  • the width of the first segment is greater than or equal to 0.02 mm and less than or equal to 0.50 mm
  • the width of the second segment is greater than or equal to 0.02 mm and less than or equal to 0.50 mm.
  • the orthographic projection of the second capillary monomer along the third direction is a rhombus
  • the rhombus includes a third part and a fourth part oppositely arranged along the first direction, each of the second capillary Both the third portion and the fourth portion of the monomer are at least partially housed within the first sub-channel of the channel disposed opposite the second capillary monomer.
  • the orthographic projection of the second capillary monomer along the third direction is the polygon, and the first part of each of the second capillary monomers is at least partially accommodated in the same direction as the second capillary monomer. body in the first sub-channel of the channel arranged oppositely.
  • the length of the second edge of the second capillary monomer along the first direction is less than or equal to the length of the second edge of the first capillary monomer along the first direction.
  • the minimum distance between two adjacent second capillary monomers along the second direction is greater than or equal to 0.02 mm and less than or equal to 0.50 mm.
  • the board body includes a first sub-board and a second sub-board, the first sub-board and the second sub-board are arranged opposite and fixedly connected; the capillary structure is arranged in the direction of the first sub-board The surface on the side of the second sub-board and the capillary structure is in contact with the second sub-board, or the capillary structure is arranged on the surface of the first sub-board facing the second sub-board and A surface of the second sub-board facing the side of the first sub-board.
  • the beneficial effect of the present invention is that the capillary structure is directly formed by etching on the inner surface of the plate of the heat sink, and no traditional mesh wire is required as the capillary structure, which reduces the processing steps of the heat sink and makes the processing technology of the heat sink more concise;
  • the use of mesh cables is avoided, which is conducive to the preparation of ultra-thin temperature chambers with a thickness of less than 0.3 mm;
  • the positional arrangement between the first capillary monomer and the second capillary monomer is conducive to improving the filling of the cooling medium in the closed cavity Uniformity, each second capillary monomer is partially accommodated in a channel formed between two adjacent first capillary monomers, so that a Y-shaped groove for the flow of the cooling medium is formed in the closed cavity, which is conducive to the cooling medium from The rise from the hot end to the cold end improves the performance of the vapor chamber.
  • FIG. 1 is a schematic structural diagram of a heat dissipation device provided by the present invention.
  • Fig. 2 is the exploded structure diagram of the heat sink shown in Fig. 1;
  • FIG. 3 is a cross-sectional view of the heat sink shown in FIG. 1 along the P-P direction;
  • FIG. 4 is a first partial schematic view of the first sub-board in the heat dissipation device shown in FIG. 2;
  • Fig. 5 is a partial enlarged view of part A in Fig. 4;
  • FIG. 6 is a second partial schematic view of the first sub-board in the heat dissipation device shown in FIG. 2;
  • Fig. 7 is a partial enlarged view of part B in Fig. 6;
  • Fig. 8 is the structural representation of a first capillary monomer in Fig. 7;
  • Fig. 9 is the structural representation of a second capillary monomer in Fig. 7;
  • FIG. 10 is a third partial schematic view of the first sub-board in the heat dissipation device shown in FIG. 2;
  • Figure 11 is a partial enlarged view of part C in Figure 10;
  • FIG. 12 is a schematic structural diagram of a second capillary monomer in FIG. 11 .
  • FIG. 1 is a schematic structural diagram of a heat dissipation device provided by the present invention
  • FIG. 2 is an exploded structural diagram of the heat dissipation device shown in FIG. 1
  • the heat sink 100 may include a plate body 1 , a capillary structure 2 and a cooling medium 3 , wherein the plate body 1 has a closed inner cavity 10 , the capillary structure 2 is formed on the inner surface of the plate body 1 by etching, and the cooling medium 3 is filled in the plate body 1 inside the closed cavity 10.
  • the inner surface of the board body 1 is the surface of the board body 1 that is invisible from the outside.
  • the plate body 1 may be of a rectangular structure, and the plate body 1 may also be of a rounded rectangular structure. That is to say, the front and back surfaces of the board body 1 may be rectangular, and the front and back surfaces of the board body 1 may also be rounded rectangles. The front and back surfaces of the plate body 1 are viewed from the direction parallel to the thickness of the plate body 1 .
  • the board body 1 may also have other different shapes and structures, and the present invention does not limit the specific shape of the board body 1 .
  • One end 101 of the plate body 1 can be used as the hot end of the heat dissipation device 100 , and the other end 102 of the plate body 1 can be used as the cold end of the heat dissipation device 100 .
  • the hot end 101 of the plate body 1 is in contact with the heat source, and a cooling medium 3 can be set in the closed cavity 10 of the plate body 1. When the heat source heats up, the liquid cooling medium 3 is heated at the hot end 101 of the plate body 1, and a phase change occurs.
  • the gaseous cooling medium 3 diffuses from the hot end 101 of the plate body 1 to the cold end 102 of the plate body 1 and transfers heat to the cold end 102 of the plate body 1 , and the gaseous cooling medium 3 is at the cold end of the plate body 1 .
  • 102 is cooled down by cooling, and undergoes a phase change to become liquid again.
  • the liquid cooling medium 3 undergoes capillary phenomenon in the capillary structure 2 and flows back to the hot end 101 of the plate body 1 .
  • the plate body 1 can be made of metal material, such as copper or copper alloy.
  • Copper and copper alloy materials have high thermal conductivity, and can quickly transfer the heat of the heat source to the cooling medium 3 , and can also quickly transfer the heat generated by the phase change of the cooling medium 3 to the cold end 102 .
  • the cooling medium 3 may be water, and the cooling medium 3 may also be ethanol or acetone.
  • the board body 1 may include a first sub-board 11 and a second sub-board 12 .
  • the first sub-board 11 and the second sub-board 12 are disposed opposite to each other and are fixedly connected to form the board body 1 . That is to say, the first sub-board 11 and the second sub-board 12 are fixedly connected to form the board body 1 after being covered with each other.
  • the first sub-board 11 and the second sub-board 12 may be fixedly connected by welding, and the first sub-board 11 and the second sub-board 12 may be fixedly connected by bonding, and the first sub-board 11 and the second sub-board
  • the fixed connection method of 12 can also be screw connection, and the first sub-board 11 and the second sub-board 12 can also be fixedly connected by a combination of various connection methods.
  • the present invention does not limit the specific connection manner between the first sub-board 11 and the second sub-board 12 .
  • the capillary structure 2 is provided between the first sub-board 11 and the second sub-board 12 .
  • the board body 1 may form the capillary structure 2 on the first sub-board 11 and/or the second sub-board 12 by etching.
  • the board body 1 can also form the capillary structure 2 in other ways, for example, the board body 1 can form the first sub-board 11 with the capillary structure 2 and/or the second sub-board with the capillary structure 2 by casting 12.
  • the present invention does not limit the specific manner in which the capillary structure 2 is formed on the inner surface of the plate body 1 .
  • FIG. 3 is a cross-sectional view of the heat sink shown in FIG. 1 along the P-P direction
  • FIG. 4 is a first partial schematic view of the first sub-board in the heat sink shown in FIG. 2
  • 5 is a partial enlarged view of part A in FIG. 4 .
  • the capillary structure 2 is formed on the surface of the first sub-board 11 facing the second sub-board 12 by etching, and the capillary structure 2 is in contact with the second sub-board 12 .
  • the capillary structure 2 is in contact with the second sub-board 12 , which means that there is no gap between the surface of the capillary structure 2 facing the second sub-board 12 and the surface of the second sub-board 12 facing the first sub-board 11 . void.
  • the capillary structure 2 can simultaneously act as a support structure between the first sub-board 11 and the second sub-board 12 .
  • the capillary structure 2 may also be disposed on the surface of the first sub-board 11 facing the second sub-board 12 and the surface of the second sub-board 12 facing the first sub-board 11 at the same time.
  • the plate body 1 has a first direction F1 pointing from the hot end 101 to the cold end 102, a second direction F2 perpendicular to the first direction F1, and a third direction F3 along the thickness direction of the plate body 1, wherein the third direction F3 is perpendicular at the same time. in the first direction F1 and the second direction F2.
  • the capillary structure 2 includes a plurality of first capillary units 21 arranged at intervals along the first direction F1 and second capillary units 22 arranged between two adjacent first capillary units 21 , and each first capillary unit 21 includes a plurality of first capillary units 21 .
  • the first capillary monomers 210 are arranged at intervals along the second direction F2, and each second capillary unit 22 includes a plurality of second capillary monomers 220 arranged at intervals along the second direction F2.
  • the plurality of first capillary monomers 210 in adjacent first capillary units 21 are arranged in a matrix, and specifically, each first capillary monomer 210 in one first capillary unit 21 One of the first capillary units 210 in the capillary unit 21 is disposed opposite to each other along the first direction F1.
  • a channel 23 is formed between two adjacent first capillary units 210, and each second capillary unit 220 is partially accommodated in the channel 23.
  • each channel 23 is connected to the adjacent second capillary unit 22.
  • One of the second capillary cells 220 is disposed opposite to each other along the first direction F1, and each second capillary cell 220 is partially accommodated in the channel 23 disposed opposite to it.
  • a plurality of channels 23 can be formed, and the cooling medium 3 flows through the plurality of channels 23 , which is beneficial to lift the cooling medium 3 in the closed cavity 10 Therefore, the performance of the heat sink 100 is improved.
  • the orthographic projection of the first capillary monomer 210 along the third direction F3 may be a polygon, and the polygon includes two first parts 211 , the two first parts 211 are disposed opposite to each other along the first direction F1 , and each first part 211 includes two first parts 211 .
  • the two first portions 211 are disposed adjacent to each other along the first direction F1, so that the polygon becomes a rhombus.
  • the distance D1 between the two distant end points of the two first sides 2111 is greater than or equal to 0.02 mm and less than or equal to 1.00 mm, that is, 0.02 mm ⁇ D1 ⁇ 1.00 mm.
  • the orthographic projection of the second capillary monomer 220 along the third direction F3 may be a rhombus, and the rhombus includes a third portion 223 and a fourth portion 224 oppositely disposed along the first direction F1.
  • the first sub-channel 231 of the channel 23 is formed between the first sides 2111 of two adjacent first capillary cells 210, and the third part 223 and the fourth part 224 of each second capillary cell 220 are partially accommodated therewith. In the first sub-channel 231 of the oppositely arranged channel 23 .
  • FIG. 6 is a second partial schematic view of the first sub-board in the heat dissipation device shown in FIG. 2
  • FIG. 7 is a partial enlarged view of part B in FIG. 6
  • FIG. 8 is FIG. 7 Schematic diagram of the structure of one of the first capillary monomers.
  • the orthographic projection of the first capillary monomer 210 along the third direction F3 may be a polygon, and the polygon includes two first parts 211 and one second part 212 , the two first parts 211 are oppositely arranged along the first direction F1 , and each first part 211 includes two first sides 2111 arranged at an included angle, and the second portion 212 includes two second sides 2121 that are parallel to each other and arranged at intervals along the second direction F2.
  • the two first parts 211 are spaced apart from each other along the first direction F1, and a second part 212 is connected between the two first parts 211, so that the polygon becomes a hexagon.
  • the distance H between the two end points of the same first side 2111 along the first direction F1 is greater than or equal to 0.02 mm and less than or equal to 2.00 mm, that is, 0.02 mm ⁇ H ⁇ 2.00 mm.
  • a second sub-channel 232 of the channel 23 is formed between the second sides 2121 of two adjacent first capillary monomers 210 , and the second sub-channel 232 communicates with the first sub-channel 231 .
  • the width L1 of the second sub-channel 232 is greater than or equal to 0.02 mm and less than or equal to 0.50 mm, that is, 0.02 mm ⁇ L1 ⁇ 0.50 mm.
  • the minimum distance L2 between two adjacent second capillary monomers 220 along the second direction F2 is greater than or equal to 0.02 mm and less than or equal to 0.50 mm, that is, 0.02 mm ⁇ L2 ⁇ 0.50 mm.
  • FIG. 9 is a schematic structural diagram of a second capillary monomer in FIG. 7 .
  • the orthographic projection of the second capillary monomer 220 along the third direction F3 may be a polygon, and the polygon includes two first parts 221 and one second part 222 , the two first parts 221 are oppositely disposed along the first direction F1 , and each first part
  • Each of 221 includes two first sides 2211 arranged at an included angle
  • the second portion 222 includes two second sides 2221 that are parallel to each other and spaced along the second direction F2.
  • the two first parts 221 are spaced apart from each other along the first direction F1, and a second part 222 is connected between the two first parts 221, so that the polygon becomes a hexagon.
  • the two first portions 221 of each of the second capillary cells 220 are partially accommodated in the first sub-channels 231 of the channel 23 opposite to the second capillary cell 220 , and separate the first sub-channels 231 into respective
  • the first segment 2311 and the second segment 2312 located on both sides of the second capillary monomer 220 communicate with the second sub-channel 232 respectively.
  • the width L3 of the first segment 2311 and the width L4 of the second segment 2312 may both be less than or equal to the width of the second sub-channel 232 .
  • the width L3 of the first section 2311 and the width L4 of the second section 2312 are both greater than or equal to 0.02 mm and less than or equal to 0.50 mm, that is, 0.02mm ⁇ L3 ⁇ L1 ⁇ 0.50mm and 0.02mm ⁇ L4 ⁇ L1 ⁇ 0.50mm .
  • the second capillary unit 220 can accommodate the first sub-channels 231 of the channel 23 opposite to the second capillary unit 220
  • the 231 is separated into a first section 2311 and a second section 2312 which are located on both sides of the second capillary monomer 220 and communicate with the second sub-channel 232 respectively, so that the channel 23 finally forms a Y-shaped groove.
  • the trench pitch of this structure varies less, and in the Y-type structure, the pitch (L3 and L4) of the bifurcated trenches (the first segment 2311 and the second segment 2312 ) is slightly smaller than that of the vertical trench (the second sub-channel 232 ) In the case of the distance (L1), the capillary force of the cooling medium 3 at the bifurcation groove is made larger, which is beneficial to the rise of the cooling medium 3. At the same time, although the channel spacing is reduced at the bifurcated grooves, the number of channels in the bifurcated grooves is larger than that of the vertical grooves, thereby ensuring that the permeability of the capillary structure 2 is not greatly affected.
  • the length of the second edge 2221 of the second capillary monomer 220 along the first direction F1 is smaller than the length of the second edge 2121 of the first capillary monomer 210 along the first direction F1. That is, in the first direction F1 , the length of the second side 2221 of the second capillary monomer 220 is smaller than the length of the second side 2121 of the first capillary monomer 210 .
  • FIG. 10 is a third partial schematic view of the first sub-board in the heat dissipation device shown in FIG. 2
  • FIG. 11 is a partial enlarged view of part C in FIG. 10
  • FIG. 12 is FIG. 11 Schematic diagram of the structure of a second capillary monomer in .
  • the orthographic projection of the second capillary monomer 220 along the third direction F3 may be a polygon, and the polygon includes two first parts 221 and one second part 222 , the two first parts 221 are oppositely disposed along the first direction F1 , and each first part Each of 221 includes two first sides 2211 arranged at an included angle, and the second portion 222 includes two second sides 2221 that are parallel to each other and spaced along the second direction F2. Wherein, the two first parts 221 are spaced apart from each other along the first direction F1, and a second part 222 is connected between the two first parts 221, so that the polygon becomes a hexagon.
  • the two first portions 221 of each of the second capillary cells 220 are partially accommodated in the first sub-channels 231 of the channel 23 opposite to the second capillary cell 220 , and separate the first sub-channels 231 into respective The first segment 2311 and the second segment 2312 are located on both sides of the second capillary monomer 220 .
  • the length of the second edge 2221 of the second capillary monomer 220 along the first direction F1 is equal to the length of the second edge 2121 of the first capillary monomer 210 along the first direction F1. That is, in the first direction F1 , the length of the second side 2221 of the second capillary monomer 220 is equal to the length of the second side 2121 of the first capillary monomer 210 .
  • the present invention directly etches the capillary structure on the inner surface of the plate of the heat dissipation device, and does not need to set a traditional network cable as the capillary structure, reduces the processing steps of the heat dissipation device, and makes the processing technology of the heat dissipation device more concise, thereby saving heat dissipation.
  • the processing cost of the device at the same time, the use of mesh cables is avoided, which is conducive to the preparation of ultra-thin temperature equalizing plates with a thickness of less than 0.3 mm; and the positional arrangement between the first capillary monomer and the second capillary monomer is conducive to improving the closed interior.
  • each second capillary monomer is partially accommodated in a channel formed between two adjacent first capillary monomers, so that a Y-shaped groove for the flow of the cooling medium is formed in the closed cavity , which is conducive to the diffusion of cooling medium from the hot end to the cold end, and improves the performance of the vapor chamber.

Abstract

一种散热装置(100),具有接触热源的热端(101)和远离热源的冷端(102)、自热端(101)指向冷端(102)的第一方向(F1)和垂直于第一方向(F1)的第二方向(F2),散热装置(100)包括具有封闭内腔(10)的板体(1)、填充于封闭内腔(10)的冷却介质(3)和通过蚀刻形成于板体(1)内表面的毛细结构(2),毛细结构(2)包括多个沿第一方向(F1)间隔设置的第一毛细单元(21)和设置于相邻两个第一毛细单元(21)之间的第二毛细单元(22);每一个第一毛细单元(21)包括多个沿第二方向(F2)间隔设置的第一毛细单体(210),相邻两个第一毛细单体(210)之间形成通道(23),相邻的第一毛细单元(21)中的多个第一毛细单体(210)呈矩阵排布;每一个第二毛细单元(22)包括多个沿第二方向(F2)间隔设置的第二毛细单体(220),每一个第二毛细单体(220)部分收容于通道(23)内。上述方案可以简化散热装置(100)的加工工序。

Description

一种散热装置
本发明要求于2020年11月30日提交中国专利局、申请号为202022845755.5、名称为“一种散热装置”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
技术领域
本发明涉及散热技术领域,特别涉及一种散热装置。
背景技术
随着电子电气技术的发展和用户需求的提高,日常生活、科研科教中的各种电子产品的功能越来越多、功率越来越大,电子产品的发热也越来越严重。均温板(Vapor Chamber,VC)是目前解决各类电子产品散热问题的理想方案。
技术问题
现有技术中,均温板通常包括两个相盖合的盖板和设置在二者中间作为毛细结构的网线,网线的使用使均温板的加工工艺较为复杂,导致均温板的加工比较麻烦。
技术解决方案
本发明的目的在于提供一种加工工艺简洁的散热装置。
本发明提供一种散热装置,所述散热装置具有与热源接触的热端和远离所述热源的冷端,所述散热装置包括具有封闭内腔的板体、填充于所述封闭内腔内的冷却介质和收容于所述封闭内腔内的毛细结构,所述散热装置具有自所述热端指向所述冷端的第一方向和垂直于所述第一方向的第二方向,其特征在于:
所述毛细结构通过蚀刻形成于所述板体的内表面,所述毛细结构包括多个沿所述第一方向间隔设置的第一毛细单元和设置于相邻两个所述第一毛细单元之间的第二毛细单元;每一个所述第一毛细单元包括多个沿所述第二方向间隔设置的第一毛细单体,相邻两个所述第一毛细单体之间形成通道,相邻的所述第一毛细单元中的多个所述第一毛细单体呈矩阵排布;每一个所述第二毛细单元包括多个沿所述第二方向间隔设置的第二毛细单体,每一个所述第二毛细单体部分收容于所述通道内。
优选的,每一个所述第一毛细单体与相邻的所述第一毛细单元中的一个所述第一毛细单体沿所述第一方向相对设置,每一个所述通道与相邻的所述第二毛细单元中的一个所述第二毛细单体沿所述第一方向相对设置,每一个所述第二毛细单体部分收容于与其相对设置的所述通道内。
优选的,所述散热装置还具有垂直于所述第一方向和所述第二方向的第三方向,所述第三方向为所述板体的厚度方向;所述第一毛细单体沿所述第三方向的正投影为多边形,所述多边形包括沿所述第一方向相对设置的两个第一部分,每一个所述第一部分包括两条呈夹角设置的第一边,所述通道包括设置于相邻两个所述第一毛细单体的所述第一边之间的第一子通道,每一个所述第二毛细单体部分收容于与其相对设置的所述通道的所述第一子通道内。
优选的,所述两个第一部分沿所述第一方向间隔设置,所述多边形还包括连接所述两个第一部分的第二部分,所述第二部分包括两条相互平行且沿所述第二方向间隔设置的第二边,所述通道还包括设置于相邻两个所述第一毛细单体的所述第二边之间的第二子通道,所述第二子通道与所述第一子通道相连通。
优选的,所述第一毛细单体中的两条所述第二边之间的距离大于等于0.02毫米且小于等于1.00毫米。
优选的,所述第二子通道的宽度大于等于0.02毫米且小于等于0.50毫米。
优选的,每一个所述第二毛细单体将与其相对设置的所述通道的所述第一子通道分隔成位于所述第二毛细单体两侧并分别与所述第二子通道连通的第一段和第二段。
优选的,所述第一段的宽度大于等于0.02毫米且小于等于0.50毫米,所述第二段的宽度大于等于0.02毫米且小于等于0.50毫米。
优选的,所述第二毛细单体沿所述第三方向的正投影为菱形,所述菱形包括沿所述第一方向相对设置的第三部分与第四部分,每一个所述第二毛细单体的所述第三部分和所述第四部分均至少部分收容于与所述第二毛细单体相对设置的所述通道的所述第一子通道内。
优选的,所述第二毛细单体沿所述第三方向的正投影为所述多边形,每一个所述第二毛细单体的所述第一部分均至少部分收容于与所述第二毛细单体相对设置的所述通道的所述第一子通道内。
优选的,所述第二毛细单体的所述第二边沿所述第一方向的长度小于等于所述第一毛细单体的所述第二边沿所述第一方向的长度。
优选的,相邻两个所述第二毛细单体沿所述第二方向的最小距离大于等于0.02毫米且小于等于0.50毫米。
优选的,所述板体包括第一子板和第二子板,所述第一子板与所述第二子板相对设置且固定连接;所述毛细结构设置于所述第一子板朝向所述第二子板一侧的表面且所述毛细结构与所述第二子板抵接,或者所述毛细结构设置于所述第一子板朝向所述第二子板一侧的表面和所述第二子板朝向所述第一子板一侧的表面。
有益效果
本发明的有益效果在于:直接在散热装置的板体内表面蚀刻形成毛细结构,不需要设置传统的网线作为毛细结构,减少了散热装置的加工工序,使散热装置的加工工艺更简洁;同时,由于避免了网线的使用,有利于制备厚度小于0.3毫米的超薄均温板;此外,第一毛细单体和第二毛细单体之间的位置排布有利于提升封闭内腔内冷却介质的填充均匀性,每一个第二毛细单体部分收容于相邻两个第一毛细单体之间形成的通道内,使得在封闭内腔中形成冷却介质流动的Y型沟槽,有利于冷却介质从热端到冷端的上升,提升均温板的性能。
附图说明
为了更清楚地说明本发明中的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的散热装置的结构示意图;
图2为图1所示散热装置的爆炸结构图;
图3为图1所示散热装置沿P-P方向的剖视图;
图4为图2所示散热装置中第一子板的第一种局部示意图;
图5为图4中A部分的局部放大图;
图6为图2所示散热装置中第一子板的第二种局部示意图;
图7为图6中B部分的局部放大图;
图8为图7中一个第一毛细单体的结构示意图;
图9为图7中一个第二毛细单体的结构示意图;
图10为图2所示散热装置中第一子板的第三种局部示意图;
图11为图10中C部分的局部放大图;
图12为图11中一个第二毛细单体的结构示意图。
本发明的实施方式
下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1和图2,图1为本发明提供的散热装置的结构示意图,图2为图1所示散热装置的爆炸结构图。散热装置100可以包括板体1、毛细结构2和冷却介质3,其中,板体1具有封闭内腔10,毛细结构2通过蚀刻形成于板体1的内表面,冷却介质3填充于板体1的封闭内腔10内。需要说明的是,板体1的内表面为板体1中从外界不可见的表面。
优选的,板体1可以为矩形结构,板体1也可以为圆角矩形结构。也即是说,板体1的正面和背面可以为矩形,板体1的正面和背面也可以为圆角矩形。其中,板体1的正面和背面为从平行于板体1的厚度方向所看到的两面。在具体的应用场景下,板体1也可以具有其他不同的形状结构,本发明对板体1的具体形状不做限制。
板体1的一端101可以作为散热装置100的热端,板体1的另一端102可以作为散热装置100的冷端。板体1的热端101与热源接触,板体1的封闭内腔10内可以设置冷却介质3,当热源发热时,液态的冷却介质3在板体1的热端101受热升温,发生相变成为气体,气态的冷却介质3由板体1的热端101扩散至板体1的冷端102并将热量传递至板体1的冷端102,气态的冷却介质3在板体1的冷端102受冷降温,发生相变重新成为液体,液态的冷却介质3在毛细结构2发生毛细现象,回流至板体1的热端101。板体1可以为金属材质,比如铜或铜合金。铜和铜合金材料具有较高的导热率,可以将热源的热量迅速传递给冷却介质3,也可以将冷却介质3相变产生的热量迅速传递到冷端102。其中,冷却介质3可以为水,冷却介质3也可以为乙醇或丙酮等。
板体1可以包括第一子板11和第二子板12,第一子板11与第二子板12相对设置且固定连接形成板体1。也即是说,第一子板11与第二子板12相盖合后固定连接形成板体1。第一子板11与第二子板12固定连接的方式可以为焊接,第一子板11与第二子板12固定连接的方式也可以为粘接,第一子板11与第二子板12固定连接的方式还可以为螺接,第一子板11与第二子板12还可以通过多种连接方式相组合的方式实现固定连接。本发明对第一子板11与第二子板12之间具体的连接方式不做限制。
毛细结构2设置在第一子板11与第二子板12之间。具体地,板体1可以通过蚀刻的方式在第一子板11和/或第二子板12上形成毛细结构2。通过直接在板体1内表面蚀刻形成毛细结构2,不需要设置传统的网线作为毛细结构,可以减少散热装置100的加工工序,使散热装置100的加工工艺更简洁,从而节约散热装置100的加工成本;同时,由于避免了网线的使用,可以减小散热装置100的厚度,有利于制备厚度小于0.3毫米的超薄散热装置100。需要说明的是,板体1也可以通过其他方式形成毛细结构2,比如板体1可以通过浇铸的方式形成具有毛细结构2的第一子板11和/或具有毛细结构2的第二子板12。本发明对毛细结构2形成于板体1内表面的具体方式不做限制。
需要说明的是,在本发明的描述中,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
请一并参阅图3、图4和图5,图3为图1所示散热装置沿P-P方向的剖视图,图4为图2所示散热装置中第一子板的第一种局部示意图,图5为图4中A部分的局部放大图。毛细结构2通过蚀刻形成于第一子板11朝向第二子板12一侧的表面,且毛细结构2与第二子板12抵接。需要说明的是,毛细结构2与第二子板12抵接,表示毛细结构2朝向第二子板12一侧的表面与第二子板12朝向第一子板11一侧的表面之间没有空隙。在这种情况下,毛细结构2可以同时充当第一子板11与第二子板12之间的支撑结构。作为一种实施方式,毛细结构2也可以同时设置于第一子板11朝向第二子板12一侧的表面和第二子板12朝向第一子板11一侧的表面。
板体1具有从热端101指向冷端102的第一方向F1、垂直于第一方向F1的第二方向F2以及沿板体1厚度方向的第三方向F3,其中,第三方向F3同时垂直于第一方向F1和第二方向F2。毛细结构2包括多个沿第一方向F1间隔设置的第一毛细单元21和设置在相邻两个第一毛细单元21之间的第二毛细单元22,每一个第一毛细单元21均包括多个沿第二方向F2间隔设置的第一毛细单体210,每一个第二毛细单元22均包括多个沿第二方向F2间隔设置的第二毛细单体220。
其中,相邻的第一毛细单元21中的多个第一毛细单体210呈矩阵排列,具体地,一个第一毛细单元21中的每一个第一毛细单体210均与相邻的第一毛细单元21中的一个第一毛细单体210沿第一方向F1相对设置。相邻两个第一毛细单体210之间形成一个通道23,每一个第二毛细单体220均部分收容于通道23内,具体地,每一个通道23均与相邻的第二毛细单元22中的一个第二毛细单体220沿第一方向F1相对设置,每一个第二毛细单体220均部分收容于与其相对设置的通道23内。通过第一毛细单体210和第二毛细单体220之间的位置排布,可以形成多个通道23,冷却介质3通过多个通道23流动,有利于提升冷却介质3在封闭内腔10内的填充均匀性,从而提升散热装置100的性能。
请继续参阅图5。第一毛细单体210沿第三方向F3的正投影可以为多边形,该多边形包括两个第一部分211,两个第一部分211沿第一方向F1相对设置,每一个第一部分211均包括两条呈夹角设置的第一边2111。其中,两个第一部分211沿第一方向F1相互邻接设置,以使该多边形成为菱形。两条第一边2111中相远离的两个端点之间的距离D1大于等于0.02毫米且小于等于1.00毫米,也即0.02mm≤D1≤1.00mm。第二毛细单体220沿第三方向F3的正投影可以为菱形,该菱形包括沿第一方向F1相对设置的第三部分223与第四部分224。相邻两个第一毛细单体210的第一边2111之间形成通道23的第一子通道231,每一个第二毛细单体220的第三部分223和第四部分224均部分收容于与其相对设置的通道23的第一子通道231内。
请参阅图6、图7和图8,图6为图2所示散热装置中第一子板的第二种局部示意图,图7为图6中B部分的局部放大图,图8为图7中一个第一毛细单体的结构示意图。第一毛细单体210沿第三方向F3的正投影可以为多边形,该多边形包括两个第一部分211和一个第二部分212,两个第一部分211沿第一方向F1相对设置,每一个第一部分211均包括两条呈夹角设置的第一边2111、第二部分212包括两条相互平行且沿第二方向F2间隔设置的第二边2121。其中,两个第一部分211沿第一方向F1相互间隔设置,一个第二部分212连接于两个第一部分211之间,以使该多边形成为六边形。两条第二边2121之间的距离D2与两条第一边2111中相远离的两个端点之间的距离D1相等,也即0.02mm≤D1=D2≤1.00mm。优选的,同一条第一边2111的两个端点之间沿第一方向F1的距离H大于等于0.02毫米且小于等于2.00毫米,也即0.02mm≤H≤2.00mm。相邻两个第一毛细单体210的第二边2121之间形成通道23的第二子通道232,第二子通道232与第一子通道231相连通。第二子通道232的宽度L1大于等于0.02毫米且小于等于0.50毫米,也即0.02mm≤L1≤0.50mm。优选的,相邻两个第二毛细单体220沿第二方向F2的最小距离L2大于等于0.02毫米且小于等于0.50毫米,也即0.02mm≤L2≤0.50mm。
请一并参阅图9,图9为图7中一个第二毛细单体的结构示意图。第二毛细单体220沿第三方向F3的正投影可以为多边形,该多边形包括两个第一部分221和一个第二部分222,两个第一部分221沿第一方向F1相对设置,每一个第一部分221均包括两条呈夹角设置的第一边2211、第二部分222包括两条相互平行且沿第二方向F2间隔设置的第二边2221。其中,两个第一部分221沿第一方向F1相互间隔设置,一个第二部分222连接于两个第一部分221之间,以使该多边形成为六边形。每一个第二毛细单体220的两个第一部分221均部分收容于与该第二毛细单体220相对设置的通道23的第一子通道231内,并将该第一子通道231分隔成分别位于该第二毛细单体220两侧的第一段2311和第二段2312,第一段2311和第二段2312分别与第二子通道232连通。作为一种实施方式,第一段2311的宽度L3和第二段2312的宽度L4可以均小于等于第二子通道232的宽度。优选的,第一段2311的宽度L3和第二段2312的宽度L4均大于等于0.02毫米且小于等于0.50毫米,也即0.02mm≤L3≤L1≤0.50mm且0.02mm≤L4≤L1≤0.50mm。
通过使第二毛细单体220的两个第一部分221部分收容于与该第二毛细单体220相对设置的通道23的第一子通道231内,第二毛细单体220将该第一子通道231分隔成分别位于该第二毛细单体220两侧并分别与第二子通道232连通的第一段2311和第二段2312,以使通道23最终形成Y型结构的沟槽。该结构的沟槽间距变化较小,在Y型结构中,分叉沟槽(第一段2311和第二段2312)的间距(L3和L4)略小于垂直沟槽(第二子通道232)的间距(L1)的情况下,使得分叉沟槽处冷却介质3的毛细作用力更大,有利于冷却介质3的上升。同时,分叉沟槽处虽然槽道间距减小,但分叉沟槽的槽道数量多于垂直沟槽的槽道数量,从而保证了毛细结构2的渗透率不受较大影响。
需要说明的是,在该种实施例中,第二毛细单体220的第二边2221沿第一方向F1的长度小于第一毛细单体210的第二边2121沿第一方向F1的长度。也即在第一方向F1上,第二毛细单体220的第二边2221的长度小于第一毛细单体210的第二边2121的长度。
请参阅图10、图11和图12,图10为图2所示散热装置中第一子板的第三种局部示意图,图11为图10中C部分的局部放大图,图12为图11中一个第二毛细单体的结构示意图。第二毛细单体220沿第三方向F3的正投影可以为多边形,该多边形包括两个第一部分221和一个第二部分222,两个第一部分221沿第一方向F1相对设置,每一个第一部分221均包括两条呈夹角设置的第一边2211、第二部分222包括两条相互平行且沿第二方向F2间隔设置的第二边2221。其中,两个第一部分221沿第一方向F1相互间隔设置,一个第二部分222连接于两个第一部分221之间,以使该多边形成为六边形。每一个第二毛细单体220的两个第一部分221均部分收容于与该第二毛细单体220相对设置的通道23的第一子通道231内,并将该第一子通道231分隔成分别位于该第二毛细单体220两侧的第一段2311和第二段2312。
需要说明的是,在该种实施例中,第二毛细单体220的第二边2221沿第一方向F1的长度等于第一毛细单体210的第二边2121沿第一方向F1的长度。也即在第一方向F1上,第二毛细单体220的第二边2221的长度等于第一毛细单体210的第二边2121的长度。
综上所述,本发明直接在散热装置的板体内表面蚀刻形成毛细结构,不需要设置传统的网线作为毛细结构,减少了散热装置的加工工序,使散热装置的加工工艺更简洁,从而节约散热装置的加工成本;同时,避免了网线的使用,有利于制备厚度小于0.3mm的超薄均温板;并且第一毛细单体和第二毛细单体之间的位置排布有利于提升封闭内腔内冷却介质的填充均匀性,每一个第二毛细单体部分收容于相邻两个第一毛细单体之间形成的通道内,使得在封闭内腔中形成冷却介质流动的Y型沟槽,有利于冷却介质从热端扩散到冷端,提高均温板的性能。
上文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,上文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (13)

  1. 一种散热装置,所述散热装置具有与热源接触的热端和远离所述热源的冷端,所述散热装置包括具有封闭内腔的板体、填充于所述封闭内腔内的冷却介质和收容于所述封闭内腔内的毛细结构,所述散热装置具有自所述热端指向所述冷端的第一方向和垂直于所述第一方向的第二方向,其特征在于:
    所述毛细结构通过蚀刻形成于所述板体的内表面,所述毛细结构包括多个沿所述第一方向间隔设置的第一毛细单元和设置于相邻两个所述第一毛细单元之间的第二毛细单元;每一个所述第一毛细单元包括多个沿所述第二方向间隔设置的第一毛细单体,相邻两个所述第一毛细单体之间形成通道,相邻的所述第一毛细单元中的多个所述第一毛细单体呈矩阵排布;每一个所述第二毛细单元包括多个沿所述第二方向间隔设置的第二毛细单体,每一个所述第二毛细单体部分收容于所述通道内。
  2. 根据权利要求1所述的散热装置,其特征在于,每一个所述第一毛细单体与相邻的所述第一毛细单元中的一个所述第一毛细单体沿所述第一方向相对设置,每一个所述通道与相邻的所述第二毛细单元中的一个所述第二毛细单体沿所述第一方向相对设置,每一个所述第二毛细单体部分收容于与其相对设置的所述通道内。
  3. 根据权利要求2所述的散热装置,其特征在于,所述散热装置还具有垂直于所述第一方向和所述第二方向的第三方向,所述第三方向为所述板体的厚度方向;所述第一毛细单体沿所述第三方向的正投影为多边形,所述多边形包括沿所述第一方向相对设置的两个第一部分,每一个所述第一部分包括两条呈夹角设置的第一边,所述通道包括设置于相邻两个所述第一毛细单体的所述第一边之间的第一子通道,每一个所述第二毛细单体部分收容于与其相对设置的所述通道的所述第一子通道内。
  4. 根据权利要求3所述的散热装置,其特征在于,所述两个第一部分沿所述第一方向间隔设置,所述多边形还包括连接所述两个第一部分的第二部分,所述第二部分包括两条相互平行且沿所述第二方向间隔设置的第二边,所述通道还包括设置于相邻两个所述第一毛细单体的所述第二边之间的第二子通道,所述第二子通道与所述第一子通道相连通。
  5. 根据权利要求4所述的散热装置,其特征在于,所述第一毛细单体中的两条所述第二边之间的距离大于等于0.02毫米且小于等于1.00毫米。
  6. 根据权利要求4所述的散热装置,其特征在于,所述第二子通道的宽度大于等于0.02毫米且小于等于0.50毫米。
  7. 根据权利要求4所述的散热装置,其特征在于,每一个所述第二毛细单体将与其相对设置的所述通道的所述第一子通道分隔成位于所述第二毛细单体两侧并分别与所述第二子通道连通的第一段和第二段。
  8. 根据权利要求7所述的散热装置,其特征在于,所述第一段的宽度大于等于0.02毫米且小于等于0.50毫米,所述第二段的宽度大于等于0.02毫米且小于等于0.50毫米。
  9. 根据权利要求3或4所述的散热装置,其特征在于,所述第二毛细单体沿所述第三方向的正投影为菱形,所述菱形包括沿所述第一方向相对设置的第三部分与第四部分,每一个所述第二毛细单体的所述第三部分和所述第四部分均至少部分收容于与所述第二毛细单体相对设置的所述通道的所述第一子通道内。
  10. 根据权利要求4所述的散热装置,其特征在于,所述第二毛细单体沿所述第三方向的正投影为所述多边形,每一个所述第二毛细单体的所述第一部分均至少部分收容于与所述第二毛细单体相对设置的所述通道的所述第一子通道内。
  11. 根据权利要求10所述的散热装置,其特征在于,所述第二毛细单体的所述第二边沿所述第一方向的长度小于等于所述第一毛细单体的所述第二边沿所述第一方向的长度。
  12. 根据权利要求1所述的散热装置,其特征在于,相邻两个所述第二毛细单体沿所述第二方向的最小距离大于等于0.02毫米且小于等于0.50毫米。
  13. 根据权利要求1所述的散热装置,其特征在于,所述板体包括第一子板和第二子板,所述第一子板与所述第二子板相对设置且固定连接;所述毛细结构设置于所述第一子板朝向所述第二子板一侧的表面且所述毛细结构与所述第二子板抵接,或者所述毛细结构设置于所述第一子板朝向所述第二子板一侧的表面和所述第二子板朝向所述第一子板一侧的表面。
PCT/CN2020/137781 2020-11-30 2020-12-18 一种散热装置 WO2022110395A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022845755.5 2020-11-30
CN202022845755.5U CN213783952U (zh) 2020-11-30 2020-11-30 一种散热装置

Publications (1)

Publication Number Publication Date
WO2022110395A1 true WO2022110395A1 (zh) 2022-06-02

Family

ID=76895752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137781 WO2022110395A1 (zh) 2020-11-30 2020-12-18 一种散热装置

Country Status (2)

Country Link
CN (1) CN213783952U (zh)
WO (1) WO2022110395A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007044537A1 (de) * 2007-09-18 2009-03-19 Bayerische Motoren Werke Aktiengesellschaft Kühlkörper
CN102811590A (zh) * 2012-07-31 2012-12-05 华南理工大学 一种均热板的吸液芯结构
CN106376214A (zh) * 2015-07-20 2017-02-01 台达电子工业股份有限公司 薄型均温板
CN111386436A (zh) * 2017-09-28 2020-07-07 大日本印刷株式会社 蒸发室、电子设备、蒸发室用金属片以及蒸发室的制造方法
CN211120791U (zh) * 2019-10-15 2020-07-28 惠州惠立勤电子科技有限公司 薄型均温板
CN112665430A (zh) * 2019-10-15 2021-04-16 惠州惠立勤电子科技有限公司 薄型均温板及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007044537A1 (de) * 2007-09-18 2009-03-19 Bayerische Motoren Werke Aktiengesellschaft Kühlkörper
CN102811590A (zh) * 2012-07-31 2012-12-05 华南理工大学 一种均热板的吸液芯结构
CN106376214A (zh) * 2015-07-20 2017-02-01 台达电子工业股份有限公司 薄型均温板
CN111386436A (zh) * 2017-09-28 2020-07-07 大日本印刷株式会社 蒸发室、电子设备、蒸发室用金属片以及蒸发室的制造方法
CN211120791U (zh) * 2019-10-15 2020-07-28 惠州惠立勤电子科技有限公司 薄型均温板
CN112665430A (zh) * 2019-10-15 2021-04-16 惠州惠立勤电子科技有限公司 薄型均温板及其制作方法

Also Published As

Publication number Publication date
CN213783952U (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
US10468691B2 (en) Bipolar plates for use in conduction-cooled electrochemical cells
EP3748750A1 (en) Fuel cell metal bipolar plate
JP4857723B2 (ja) 燃料電池
JP2000149977A (ja) 燃料電池スタック
JP2011076967A (ja) 組電池
CN110767919B (zh) 燃料电池的双极板和燃料电池
KR101491372B1 (ko) 연료 전지 분리판 및 이를 포함하는 연료 전지 스택
WO2023216482A1 (zh) 移动终端、均温板和均温板的制作方法
CN218498198U (zh) 液冷组件以及电池包
KR101078132B1 (ko) 연료 전지 및 연료 전지용 가열 장치
CN216085095U (zh) 电池外壳、电池模组及电池包
WO2022110395A1 (zh) 一种散热装置
JP2008021515A (ja) 燃料電池のセパレータ構造
WO2024022415A1 (zh) 液冷板及电池模组
US11152654B2 (en) Battery pack
CN111785987A (zh) 双极板用流场式散热装置
CN108140712A (zh) 热电发电装置和热电发电方法
CN109509890A (zh) 燃料电池分隔件、单体燃料电池和燃料电池电堆
CN213366661U (zh) 电池模组结构和电池包
CN210714830U (zh) 一种发动机散热器多排水箱铝芯体
CN209914351U (zh) 一种变频器的水冷板散热器
JP2001043868A (ja) 燃料電池用セパレータ
CN218414767U (zh) 一种锂电池u型高效液冷组件及锂电池模组
CN212084083U (zh) 一种基于渐缩流道设计的高效浸没式液冷服务器
CN219917291U (zh) 电池包

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963283

Country of ref document: EP

Kind code of ref document: A1